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Abstract
Knowing a system’s power dissipation and timing behaviour is mandatory for today’s system
development and key to an effective design space exploration. Not only does battery lifetime
or design of the power supply directly depend on the power dissipation of the system.
Second-order effects such as thermal behaviour or degradation effects that are directly or
indirectly affected by the power dissipation must be considered, too.

Various techniques for power estimation exist at different levels of abstraction. Low-level
approaches provide accurate estimation results but require a lot of computational effort. High-
level approaches however, allow fast and early estimates, but lack of a deeper knowledge
and understanding of the hardware, implementing the behaviour. Therefore, they can only
give rough estimates. What is missing is an approach allowing fast and early estimates with
respect to as many relevant hardware artefacts and physical properties as possible.

This doctoral thesis tackles the problem of a fast, yet accurate power and timing estimation of
embedded hardware modules at a high-level of abstraction. A comparatively time consuming
low-level estimation is performed once in order to obtain an accurate estimate. By augmenting
an executable high-level simulation model with this power and timing information, fast and
comprehensive simulations at a high-level of abstraction using a large set of different use
cases become possible. The abstraction gap between fast simulation and accurate estimation
is closed.

This work describes a technique for automatically identifying and characterising combi-
national macros in synchronous sequential systems, such as co-processors or hardware
accelerators. Using a high-level synthesis, a pure behavioural high-level system description is
transformed into a cycle-accurate description at structural register-transfer level. So-called
hardware basic blocks, comprising a set of jointly active RT components, are identified and
characterised automatically. The characterisation uses sophisticated RT-level power models,
which provide accurate power and timing estimates. The characterisation also considers as
many relevant physical properties and synthesis artefacts as possible. These include schedul-
ing and binding as well as parasitic functionality, for instance. Non-functional properties
such as clock or controller power as well as static power dissipation are also considered.

Using the characterised macros, a power and timing annotated high-level simulation model is
generated. This C++-based virtual prototype allows a fast, yet accurate estimation of the given
design with respect to various use cases and test stimuli. Beyond that, the generated prototype
can be embedded into a virtual system prototype allowing a design space exploration, far
more complex and comprehensive than would be feasible by using a common estimation
approach at register-transfer level.

Evaluation of the presented approach is performed using a set of several industrial and
academic use cases. Results show that by having an average relative error per cycle of less
than 6.93 % for most simulated clock cycles and a total error of around 1 %, a speed-up of
approximately 160× compared to an RT-level estimation is archived, while giving nearly
cycle-accurate power estimates.
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Zusammenfassung

Das Wissen um die Verlustleistung und des zeitlichen Verhaltens eines Systems ist unerlässlich
für den heutigen Systementwurf. Es ist der Schlüssel für eine effektive Exploration des Ent-
wurfsraumes. Nicht nur die Laufzeit der Batterie oder die Auslegung der Energieversorgung
hängen von der Verlustleistung ab. Nachrangige Effekte wie z. B. das thermische Verhalten
des Systems oder auch Alterungseffeke, welche direkt oder indirekt von der Verlustleistung
abhängen, müssen ebenfalls berücksichtigt werden.

Es existieren verschiedene Techniken für die Abschätzung der Verlustleistung sowie des
zeitlichen Verhaltens auf ganz unterschiedlichen Abstraktionsebenen. Verfahren auf niedriger
Ebene ermöglichen genaue Vorhersagen, benötigen jedoch einen hohen Rechenaufwand.
Verfahren auf hoher Ebene hingegen erlauben schnelle und frühzeitige Abschätzungen. Ihnen
mangelt es jedoch an einen tieferen Verständnis der Hardware, welche das Verhalten imple-
mentiert. Daher können sie lediglich ungenaue Vorhersagen machen. Es fehlt ein Verfahren,
welches schnelle und frühe Vorhersagen unter Berücksichtigung so vieler physikalischer
Eigenschaften und Hardware-Artefakten wie möglich, erlaubt.

Diese Doktorarbeit adressiert das Problem schneller aber dennoch präziser Vorhersagen
der Verlustleistung und des zeitlichen Verhaltens eingebetteter Hardware-Module auf einer
hohen Abstraktionsebene. Eine vergleichsweise zeitaufwändige Abschätzung auf niedriger
Ebene wird einmalig durchgeführt, um eine akkurate Abschätzung zu erhalten. Durch
das Anreichern eines Modells auf hoher Abstraktionsebene mit den zuvor gewonnenen
Informationen, werden schnelle und umfangreiche Simulationen auf hoher Abstraktionsebene
unter Verwendung von einer Vielzahl an Anwendungsfällen möglich. Die Lücke zwischen
schneller Simulation und akkurater Abschätzung wird geschlossen.

Diese Arbeit beschreibt ein Verfahren für das automatisierte Erkennen und Charakterisieren
von kombinatorischen Makros in synchronen sequentiellen Systemen, wie z. B. Co-Prozessor-
en oder Hardware-Beschleunigern. Mit Hilfe einer High-Level Synthese wird eine, zunächst
rein funktionale, High-Level Systembeschreibung in eine zyklengenaue Beschreibung auf
struktureller Register-Transfer Ebene erzeugt. Sogenannte Hardware Basis Blöcke, welche eine
Menge gemeinsam aktiver Register-Transfer Komponenten umfassen, werden automatisch
identifiziert und charakterisiert. Die Charakterisierung nutzt fortgeschrittene Power-Modelle
auf Register-Transfer Ebene, welche genaue Ergebnisse bezüglich zeitlichem Verhalten sowie
der Verlustleistung liefern. Die Charakterisierung berücksichtigt darüber hinaus auch so
viele physikalische Eigenschaften und Synthese-Artefakte wie möglich. Dazu zählen z. B.
Scheduling, Binding so wie parasitäre d. h. ungewollte Funktionalität. Nich-funktionale
Eigenschaften wie Verlustleistung durch den Controller oder den Takt ebenso wie Leckströme
werden ebenfalls berücksichtigt.

Mittels der charakterisierten kombinatorischen Makros wird ein High-Level Simulationsmo-
dell erzeugt. Dieses ist um Informationen bezüglich zeitlichem Verhalten sowie der Verlust-
leistung angereichert. Der so erzeugte, C++-basierte virtuelle Prototyp erlaubt eine schnelle
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aber dennoch genaue Abschätzung des gegebenen Systems bezüglich verschiedener Anwen-
dungsfälle und Teststimuli. Darüberhinaus kann der erzeugte Prototyp in einen virtuellen
Systemprototypen eingebettet werden. Dies erlaubt eine deutlich komplexere und umfassende-
re Exploration des Entwurfsraumes, als unter Verwendung einer herkömmlichen Abschätzung
auf RT-Ebene möglich gewesen wäre.

Die Evaluation des hier vorgestellten Ansatzes erfolgte unter Verwendung von verschiedenen
Anwendungsfällen aus akademischen und industriellem Umfeld. Die Ergebnisse zeigen,
dass bei einem relativen Fehler von weniger als 6.93 % für die meisten der simulierten Takte
und einem Gesamtfehler von ca. 1 %, eine Beschleunigung von ungefähr 160× im Vergleich
zu einer herkömmlichen Simulation auf RT-Ebene erreicht werden kann, wobei annähernd
Takt-genaue Vorhersagen bezüglich der Verlustleistung möglich sind.
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We are like dwarfs standing upon the shoulders of giants, and so able to see

more and see farther than the ancients.

(Bernard of Chartres, around 1120)
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Chapter1
Introduction

Abstract
This chapter motivates the proposed characterisation and model generation
process. It will explain why power estimation, especially on high levels
of abstraction, is still an important topic and how it influences the design
process. The chapter will show that despite shrinking technology sizes and
transistor construction techniques like high-k and Fin-FET as well as power
management techniques like power-gating, power dissipation and power
density are still a matter of concern. Various old and new challenges regarding
power dissipation are stated and it is described how these interfere with new
design methods, processes, and tools. It will be shown that in upcoming
designs, challenges like estimation of degradation effects, thermal simulation,
etc., all relying on accurate power estimates, must be addressed. Power
dissipation and thus power estimation will therefore still play a key role. Based
on the named challenges, requirements for a sophisticated power and timing
estimation process with respect to various functional and non-functional
properties of embedded systems are identified and the contribution of this
thesis for addressing the challenges is outlined.

After a brief history of semiconductor technology, the future development
of semiconductor technology, based on the predictions made by the ITRS, is
described. Todays and future challenges in electronic design automation will
be shown and subsequently, this chapter will outline the scope of this thesis
and its main contribution to the research community. Finally, the structure
of this thesis is delineated.
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Chapter 1 Introduction

One day before Christmas Eve in 1947 John Bardeen, William Shockley, and Walter Brattain,
all three working at Bell Laboratories presented their supervisors the results of their

work. It was a bulky piece of some centimetres in size, built from a chunk of germanium, a
plastic triangle with gold foil at each of its sides, and a spring, pressing the apex onto the
germanium. This device will later be known as the world’s first transistor. Compared to a
vacuum tube, used those days, a transistor is smaller, lighter, and more rugged, consumes
less power, operates at lower voltages, produces less heat, and has a greater reliability. At
that day the very impressive story of semiconductor technology started, which led to a world,
were nearly every electronic device has more transistors than their inventors had dreamed of
back in December 1947.

Ten years later in 1957 the first single crystal silicon was available and the following year
the first field effect transistor was developed. It took another three years until the first
integrated circuit (IC) was available from Texas Instruments. Until 1959 almost all electronic
components performed only a one particular function. A circuit was created by wiring several
of these components together. But then in 1960, Dawon Kahng also a Bell Laboratories
employee invented the metal-oxide-semiconductor field-emitting transistor (MOSFET), which
started a rapidly developing semiconductor industry. One year later Fairchaild presented a
camera, the first product using a monolithic IC. It took another year until the first transistor-
transistor logic was invented. Again, one year past until the first IC using p-channel metal-oxide
semiconductor (PMOS) technology was developed by RCA. Previously, only n-channel metal-
oxide semiconductor (NMOS) transistors were used. Now, in the year 1963, it was possible to
created circuits, using complementary metal oxide semiconductor (CMOS) technology. Decreasing
feature sizes of the technology nodes allowed more and more complex circuits to be built and
in 1965 Gordon E. Moore published what today is known as Moore’s law [99]:

The complexity for minimum component costs has increased at a rate of roughly a
factor of two per year. [. . . ] Certainly over the short term this rate can be expected
to continue, if not to increase. Over the longer term, the rate of increase is a bit
more uncertain, although there is no reason to believe it will not remain nearly
constant for at least 10 years. That means by 1975, the number of components
per integrated circuit for minimum cost will be 65 000. I believe that such a large
circuit can be built on a single wafer.

In mid-seventies, Moore amended his statement to a doubling every two years. According to
today’s interpretation of Moore’s Law it states that the number of transistors on a standard
processor doubles every eighteen months.

By the end of the 1960s, nearly 90 % of all manufactured components were ICs. In 1970 Cogar
et al. at IBM fabricated a metal gate NMOS, which is particularly suitable for micro-electronic
ICs. Only one year later Intel presented the first microprocessor. Another year later in 1972
Frederico Faggin begins to work on an 8-bit processor, the Intel 8080. Three years later, first
commercial microprocessors were available with the 8080 and the 6800. In the same year the
first personal computer was available. In the decade between 1970 and 1980 NMOS remained
state of the art in commercial products. NMOS however has the disadvantage that a transistor
is constantly conduction as long as a logical one is applied to the input. Gradually, this
yields to problems with the power dissipation of the system. A disadvantage CMOS does not
have due to its complementary structure i. e., either the pull-up or the pull-down network
is not conducting. So CMOS gained more importance and it is still used since the 1980s. In
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the years technology feature sizes dramatically decreased. At the same time the number of
transistors per chip increased exponentially, ass predicted by Moore. With increasing numbers
of transistors build on a single chip, the costs per transistor have drastically fallen. In 1954,
five years before the first integrated circuit was invented, the average selling price of a single
transistor was $5.52. Fifty years later, in 2004, the price had dropped to a billionth of a dollar
or a nanodollar. One more year later, in 2005, not only a transistor, but a single Bit of dynamic
random access memory (DRAM) was available for the same price [9]. In 2010 Intel stated at the
International Consumer Electronics Show (CES) that the price of a single transistor is about the
same price as a printed newsletter character and that about four million 32 nm transistors fit
in the period at the end of this sentence [42].

Figure 1.1 compares gate length and transistor count for typical Intel desktop processors [43,
44]. It is clearly visible how well Moor’s law and the International Technology Roadmap for
Semiconductors (ITRS) gate length prediction fit to Intel’s processor development.

1985 1990 1995 2000 2005 2010 2015 2020 2025
0

500

1000

1500

year

tr
an

si
st

or
ga

te
le

ng
th

[n
m
]

Manufacturing process for typical Intel processors
ITRS gate length prediction
Transistor count for typical Intel processors
Moor’s Law: Number of transistors doubles every 18 month

0

100

200

300

400

nu
m

be
r

of
tr

an
si

st
or

s
[ 1
×

10
6]

Figure 1.1: Transistor gate length versus node count — Intel’s manufacturing process fits
Moore’s Law. Until 2005 processor’s transistor count also fits Moor’s Law. After
2005 a wider range of processors, containing some low-performance processors
with small transistor count were introduced.

It is also visible, how much development cycles have shortened. The number of processor
models and types introduced per year has steadily increased. At the same time, differences
between the models also increased, clearly recognizable by the scattering starting from the
year 2000.
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Chapter 1 Introduction

1.1 Today’s Challenges in Hardware Design

Already back in 2008 Rabaey et al. stated that there will be a change in the way computation
takes place [110]. High-performance computing like climate simulation, particle physics,
and material research as well as personal desktop computers still has a major part in the IT
landscape. But the share of distributed systems like sensors nodes, environmental control,
and especially mobile computing devices is massively increasing. By today, a high-end car
has about 95 processors embedded in several sub-systems [79], for example. This number is
to increase over the next years.

Using an increasing number of transistors to build the systems is also known as More Moore.
With a larger transistor count, the system can handle different tasks. By incorporating
different modules like processing units, co-processors and accelerators as well as memories
on a single chip, so-called Systems-on-a-Chip (SoCs) are build. But not only an increasing
number of transistors and more and more digital modules are incorporated to build the
systems. There will also be a diversity of the systems. That is, future systems also known as
cyber-physical systems will include non-digital parts like analogue and radio frequency, high-
voltage power, sensors and actuators, or even bio-chips, containing a complete Lab-on-a-Chip
(LoC), where the last ones are especially interesting for environmental monitoring and health
applications [9]. Wired or wireless networks allow the individual systems communicating
with each other. This trend is known as More than Moore. While in the past systems were built
in hardware completely i. e., extremely parallel and extremely low-power, recent systems are
moving to more flexible application and domain specific processors at low frequencies. These
processors are then combined with highly specialised hardware accelerators [79]. A right
balance between performance and flexibility must be found.

All these different systems contain highly specialised parts with a dedicated purpose and a
clearly defined functionality. Despite platform-based design [121], reuse of available intellectual
property (IP) components, and evolutionary product lines, development of new systems still
requires design of new parts implementing new functionalities. That is, if a system needs
a new functionality it cannot be built by only re-using IP modules [123]. Only by using all
these different techniques a new system can be build.

Shorter development cycles and a larger variety of implemented functionality require faster
design and development iterations. Thus, faster tools are required that can handle more and
more complex systems while requiring less time for estimation and optimisation. This is
especially true when designing application specific integrated circuits (ASICs), whose highly
specialisation often prohibits reuse of complete and pre-existing platforms. The problems
of the overall design process for complex and heterogeneous systems are addressed by the
Seventh European Framework Programme (FP7) integrated project COMPLEX [1, 63, 65, 67],
in which the techniques proposed in this thesis were incorporated. The COMPLEX project
provides a system design process, able to deal with a wide variety of heterogeneous embedded
systems, including hardware, software, and IP modules.

Generally spoken, an embedded system design process is a sequence of decisions that finally
lead to a concrete hard- and/or software implementation of the indented functionality. The
decisions are made with respect to the designer’s expectations in terms of functional and
non-functional properties of the system. These properties need to be captured and tracked
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1.1 Today’s Challenges in Hardware Design

during the entire design process. All dimensions i. e., functional behaviour, timing, power,
performance, memory, area, etc. of the design space need to be explored, in order to estimate
the costs of the final system implementation. For this purpose a dependable and accurate
model of the future system and workload scenario is necessary. In the past, embedded
systems have only implemented simple functions, but nowadays complete, heterogeneous,
and complex systems, like SoCs or more recently cyber-physical systems, can be build.

Besides the complexity of the design process for heterogeneous systems, there are some
well-known issues that still must be regarded as well as some new concerns that must be
tackled by today’s design process. The most important ones are given in the following.

Power Dissipation With an increased range of functionality implemented in a single SoC,
power dissipation of the chip also increased. Even though smaller technology feature sizes
lowered the demand for power of a single transistor, the number of transistors used on a SoC
increased dramatically. To face increasing power dissipation, various techniques have been
developed, starting with establishing CMOS technology, usage of multi gates, or introducing
other new transistor technologies. As will be shown in detail later, power dissipation is
two-fold: dynamic power dissipation, caused by switching transistor capacitances; and static
power dissipation as an artefact of the technology, used for implementing the design.

While scaling down technology feature size shifts the relation between the two types of power
dissipation from dynamic to static power dissipation, the introduction of new technologies
like high-k or Fin-FET transistors tremendously reduced static power dissipation. With current
technologies, dynamic power has a larger share of the total power dissipation than its static
counterpart. The ITRS predicts that this share will even increase in the next years [2–4].
Figure 1.2 shows the predicted development of dynamic and static power dissipation per
transistor’s gate-width for a high-performance technology.
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Figure 1.2: Dynamic and static power dissipation — Over the years different technologies
emerge. But dynamic power dissipation (assuming 0.33 % active time) has always
the major share of the total power dissipation.
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Chapter 1 Introduction

Having nearly constant power dissipation per transistor, while building more transistors onto
a single chip, the total power dissipation increases. In 2003 Gupta and Najm argued that
power dissipation could exceed 30 to 50 W [69]. For processors this prediction had become
true, as is visible from Figure 1.4. In current system design, power dissipation limits the
performance of the system. Back in 2001 the ITRS predicted that by the year 2006 processors
will run at 6 GHz, which never happened. Even today recent high-performance processors are
not running faster than about 4 GHz, not at least because of the processor’s power dissipation.
Power efficiency and performance per Watt have become crucial metrics [79].

Most techniques for reducing dynamic and static power dissipation come with a certain
overhead in terms of required chip area or they lower the operation speed of the system, for
example. In order to perform a trade-off, it is required to see how the individual techniques
or combinations of them influence the overall system behaviour. Power estimation is evolving
from tasks like comparing design alternatives with respect to their power dissipation, to
sophisticated use cases like chip-level power grid analysis, IR-drop calculation for static
timing analysis, or hot-spot sensitive system floor planning [108]. It is also the basis for an
estimation of the system’s thermal behaviour and also the indirect cause for degradation and
ageing effects, for example. All these effects cause emerging problems as will be shown later
in this section.

Battery runtime Usually power dissipation was estimated in order to find the least power-
consuming design. Lower power dissipation allows smaller batteries to be used, or, assuming
the same battery capacity is provided, extends the runtime of a mobile system. These
arguments still hold today, but more and more mobile devices enter the market that are
providing a large computational power for a large range of applications, which on the other
hand will drastically shortening the battery lifetime. Today’s smartphones’ batteries last
about one to two days, while a couple of years ago a typical mobile phone’s batteries lasted
about 14 days. Besides the well-known mobile phones and mobile gaming devices, a new
class of mobile computers have gained large parts of the consumer marked. These net-books,
tablets, and ultra-mobile PCs are less than a sheet of paper in size, weight only slightly more
than 500 g but provide the same amount of computational power like a common desktop
computer only a couple of months ago. These mobile devices have to be very responsible
with the available amount of energy in order to provide the required computation power
while maintain a suitable long run-time.

Power Density Besides the ever increasing market demand for more computational power
and longer run-times of mobile devices, the device’s internal power density is an important
technical concern. Although the number of transistors doubles every 18 months, shrinking
sizes of the technology nodes cause the die size to remain nearly the same. It is predicted by
the ITRS that scaling technology nodes down from 10 µm in the 1970s, 180 nm in 2000, 32 nm
in 2009, and finally to 22 nm in 2011 will lead to a feature size of about 5.80 nm in 2026 [4].
Figure 1.3 shows the predicted development in the coming years.
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Figure 1.3: ITRS gate length prediction — While technology could be scaled down in the past
decades, it is assumed that between 2020 and 2023 feature size reaches atomic
level and thus will bring up a complete new class of problems and technical
challenges.

While length and width of a single transistor shrink over the years, power per gate-width
stays nearly the same, as Figure 1.2 on page 5 shows. If halving the length and width of
a transistor, respectively, the power dissipation of the transistor is also halved. However,
four times as many transistors can be placed on the same surface. This development leads
to an increasing power density inside the die. Figure 1.4 shows this effect for typical Intel
processors [43, 44]. The often cited scenario with ever and ever increasing power density as
predicted by Borkar [29] did not occur. In 1999, when his article was published, a processor
requires significantly less than 100 W/cm2. Since then the power dissipation broke that barrier,
but did not already achieve the power density of a rocket nozzle as predicted. On the contrary,
since 2005 power density is slightly decreasing, showing the effort spend by the industry to
tackle the problem. Ever increasing power density has been prevented by massive usage of
parallel processing, for example. But power constrains still prevent the system from operating
all its modules at full performance at the same time [50]. Even today, power dissipation is
still a problem of concern, causing a large range of limitations for the devices to be built.
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Figure 1.4: Processor power density — Before 2000 power density follows Moore’s Law. Be-
tween 2000 and 2005, power density of typical consumer processors still increases,
but mobile low-power processors were introduced. Since 2005 the power density
of processors does not increase any more and a large variety of different processor
types is available.
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Chapter 1 Introduction

Heat and Cooling Each milliwatt dissipating during operation of the system can be con-
sidered to be converted into heat. The more power dense a certain area is, the hotter the
chip gets at that particular point. The heat must be hauled from the inner of the chip to the
outside of the package. The heat is emitted to the environment using heat spreaders, fans,
water-cooling systems, or even more powerful cooling mechanisms. When building integrated
3D-stacks, heat becomes a serious issue. Hot-spots located in the inner of the stack cannot be
cooled adequately, leading to an increased temperature of the surrounding parts of the stack.
Expensive cooling techniques like special cooling layers between ordinary die layers and the
introduction of thermal through-silicon vias (TSVs) are required, in order prevent the stack
from damage. All these techniques increase the overall costs of the chip and its package.

Degradation and Ageing Besides increasing manufacturing costs, heat along with high
power dissipation introduces new effects like degradation and ageing, which lower the yield
during production as well as the expected lifetime of the system [30, 58, 113]. Even worse,
smaller technology nodes are more susceptible for these effects than larger ones. Thus,
degradation and reliability are currently of researchers’ interest. Most degradation effects
like electro migration, hot-carrier injection (HCI), or negative-bias temperature instability (NBTI)
depend on the temperature, the system is running at and thus the power dissipated by the
system as well as the electrical currents flowing through the transistor.

1.2 Challenges and Requirements for High-Level Power Estimation

The previous section showed that many challenges in today’s hardware design process are
power related or are directly caused by the system’s power dissipation. Therefore, reducing
power dissipation is a key strategy in the future’s design process. Recent research showed
that the way energy is drawn from a battery has a high impact on the total amount of energy
available to the system [89]. That is, in battery-powered systems the design target is not
necessarily average power reduction, but battery lifetime extension [15, p. 140].

Nevertheless, if peak or average power dissipation or even battery lifetime is the optimisation
goal, accurate power estimation is one key to solving today’s and tomorrow’s power-related
problems in the design process. A new and sophisticated power estimation technique is
required that is able to cope with today’s complex embedded hardware designs. In today’s
full-custom hardware design, there are three major influences that must be regarded:

1. The overall workload of the system i. e., the computational workload.

2. The concrete hardware architecture, which is not predictable without having at least a
net list at register-transfer level (RTL) or better an even more detailed view, introducing
artefacts like parallelism or parasitic functionality influencing the power and timing
behaviour.

3. The influence of physical properties like supply voltage, temperature, or process param-
eters significantly affecting dynamic as well as static power dissipation.
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1.2 Challenges and Requirements for High-Level Power Estimation

Figure 1.5 shows the power breakdown of a smartphone for various use cases. Analysis had
been done by Carroll and Heiser for a smartphone with freely available specifications and
with respect to typical use cases [37]. Even if parts like mass storage, display, or wireless
connections such as wireless local area network (WLAN), Bluetooth, etc. require a large amount
of energy, computational components like the main processor core(s), hardware accelerators,
or hardware implemented audio/video codecs still have a major impact and must be regarded,
accordingly. The figure clearly shows that energy demand of a certain part of the overall
system highly depends on the scenario in which the system is currently been used.
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Figure 1.5: Power breakdown of a smartphone — Energy demand of the individual parts of
the overall system highly depends on the use case the system is used within. For
use cases phone call and email (GPRS) with 1040 mW and 601 mW, respectively the
total power dissipation is very high and had been cropped in the figure.

The smartphone example sketches the character of today’s embedded systems. They are
complex and heterogeneous i. e., they are built from different types of sub-modules including
hard- and software as well as IP modules. In these heterogeneous SoCs or cyber-physical
systems, single parts of the system cannot be considered separately. They must be considered
together and while interacting with each other in order to capture and make statements about
the overall system behaviour and the particular part’s individual workload [85]. Of course, a
realistic workload must be applied to the system during estimation.

Due to the different nature of each module type, each one requires its own estimation tech-
nique and sophisticated characterisation tool. In the past, different sophisticated disciplines
were developed, each one focusing on a certain module type. But today’s design process
requires that all modules must be considered jointly in order to obtain reliable estimations of
the entire system. An estimation process must consider the overall system with all different
types of modules, while interacting with each other. Due to the complex nature of the overall
system estimation, this topic cannot be covert in a single thesis. More work is required, but
has to be done with respect to the overall problem. This thesis focuses on ASICs, hardware
co-processors, and accelerators. Despite the restriction on one module type, it must be
possible to embed the proposed estimation process in a larger estimation framework, allowing
to estimate the overall system.
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Chapter 1 Introduction

Typical embedded systems consist of a particularly large number of transistors. The ARMv7-
based SoC of an iPhone 5 is built in a 32 nm, high-k metal gate and low-power technology
from Samsung. It has several millions of transistors on an area of 96.71 mm2. It is obvious
that timing and power dissipation of such large and complex systems cannot be estimated at
transistor level. An abstraction is required to cope with the increasing complexity. Abstraction
typically takes place in terms of a spatial abstraction. That is, several building blocks of a
certain abstraction level are considered as building block in the next higher level. Figure 1.6
shows typical abstraction levels and how they build the next higher level.
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Figure 1.6: Abstraction levels — Abstraction takes place in terms of a spatial abstraction.
That is, several building blocks of a certain abstraction level are considered as one
building block in the next higher level. Characterisation of the new building block
is performed by using the power models of the lower abstraction level.

In the past, the abstraction level for an early power and timing estimation had to rise from
transistor to RT-level to cope with the ever increasing system size and complexity. While
abstracting, each building block of level Li is defined in terms of building blocks from level
Li−1. For lower levels of abstraction such as gate- or RT-level it is possible to provide a
library of pre-characterised building blocks. The sets of building blocks in each level are small
enough for characterising all possible peculiarities of all building blocks.

For logic gates the library provides operations like AND or OR with different bit widths,
totalling in about 100 entries in the library. For register transfer (RT) components, the library
provides operations like +, ×, multiplexing, or storing. Again, each operation is available
for different bit widths and with different implementations such as small or fast, totalling in
hundreds of different RT components in thousands of different sizes. So-called soft macros
had been introduced to cope with the increasing number of components. With each higher
level of abstraction, the models must become more flexible. All the pre-characterised blocks
can then be instantiated from the library when composing the system.

With today’s systems a barrier is reached that cannot be bypassed by simply raising the level
of abstraction to the next level. At abstraction levels above RTL, it is no longer possible to
provide such a pre-characterised component library. With an increasing level of abstraction,
the number and complexity of building blocks in a particular level also increases. This is true
for various natural systems and even Lego [38]. A combinational macro performs a large and
possibly independent set of arithmetic operations. Apart from generic macros like glue-logic
or simple arbitration logic, there are way too much possible operations that can be performed
by a combinational macro, prohibiting a characterisation of all possible macros. It is required
that the macros are identified and characterised for each system individually.
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1.3 Scope and Contribution of this Doctoral Thesis

Since the library of low-level building blocks is generated only once and is then used for a
very large number of systems, its generation i. e., the characterisation of all building blocks
may take some time. For combinational macros the characterisation process must be fast,
since the macros are characterised for each system individually. That is, a modified system
implementation requires a re-characterisation thereof. But once all combinational macros
have been characterised, the generated models can still be used for a larger range of use cases,
improving the system evaluation and design space exploration.

1.3 Scope and Contribution of this Doctoral Thesis

This thesis tackles the problem of power and timing estimation of full-custom hardware
accelerators and co-processors, embedded in a larger and heterogeneous system. Main goal is
to provide a methodology that allows a fast, yet accurate power and timing estimation at a
high level of abstraction. In this thesis, a novel approach is presented that:

• utilises the existing high-level synthesis and power estimation tool PowerOpt for per-
forming a characterisation of full-custom hardware modules that are part of a larger
and heterogeneous system,

• uses the estimates obtained during characterisation at RTL for creating a high-level
power and timing augmented simulation model of the given hardware module, and

• utilises a fast compiled simulation with power and timing estimation capabilities for
increasing estimation speed, while retaining suitable accurate estimation results.

The new high-level power and timing estimation process for embedded systems smoothly
integrates into an existing design process. This provides maximal benefit while modifying
the existing design process as little as possible. The new estimation process enables a design
space exploration at a very high-level of abstraction based on accurate power and timing
estimates obtained at RTL. Among other things, the main contributions of this thesis are:

1. A procedure for automatically identifying combinational macros in a given RT-level
data path and its corresponding controller.

2. Two different techniques for characterising power dissipation and timing behaviour of
the identified combinational macros.

3. A way for characterising synthesis artefacts like static power as well as dynamic power
dissipation due to controller and clock-tree activity.

4. A method for characterising the aforementioned metrics based on structural properties
only, allowing a subsequent estimation with respect to different supply voltages and
clock frequencies.

5. A process for generating a power and timing annotated high-level model of the given
hardware module, based on the previously identified and characterised macros and
synthesis artefacts.

6. A technique allowing the generated virtual prototype to be embedded in a virtual
system prototype, enabling an estimation of the entire system with respect to individual
module interactions.
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Chapter 1 Introduction

1.4 Structure of the Thesis

After some motivation given in this chapter, the following Chapter 2 introduces some basics
and fundamentals, the presented approach relies on. These include the definition of an
embedded system and the steps of a typical design process. Causes of static and dynamic
power dissipation and their various subtypes are given. It is also outlined how power and
timing estimation can be performed at lower levels of abstraction. These fundamentals give
the basis for the content of this thesis and might be skipped by sophisticated readers.

Related work regarding power and timing estimation as well as model generation is given
and assessed in Chapter 3. The various approaches are explained and it is reviewed how
well they met the requirements to a high-level estimation process, identified earlier in this
chapter. Based on the review results, the approaches are classified and suitable concepts for
developing a new high-level power and timing approach are identified.

Main work of this thesis is given in Chapters 4 and 5, respectively. After defining the
input model, the former one describes the development and usage of the newly developed
estimation process, including identification and characterisation of so-called hardware basic
blocks.

Chapter 5 however, addresses the generation of a power-aware executable high-level model. It
describes how the combinational macros, previously identified and characterised, along with
the controller’s finite-state machine are transformed into C/C++ code, allowing a compiled
simulation of the system.

The overall approach and all of its sub-parts are evaluated in Chapter 6, using a set of
industrial and academic example systems. The evaluation will show the efficiency and the
performance of the proposed approach. Finally, a conclusion and future work are given in
Chapter 7.
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Chapter2
Fundamentals

Abstract
The basics for understanding cause and effect of power dissipation as well
as basics concerning hardware design and high-level synthesis are given in
this chapter. It gives an introduction into the topic of high-level synthesis,
describes the causes of power dissipation, and explains power and timing
estimation of embedded full-custom hardware modules at different levels of
abstraction. It will also introduce all technical terms used in this thesis.
These are the fundamentals for the further understanding of this thesis.
Sophisticated readers may want to skip this chapter.

First, this chapter gives a definition of an embedded system and different
design methodologies are shown. Some ways of describing and simulating
an embedded system are outlined. The chapter then shows how a system,
given at electronic system level is transformed and refined into a description
at the electrical level. Different levels of abstraction and the corresponding
synthesis steps are shown. This chapter also points out the different causes
of dynamic and static power dissipation, respectively. Parasitic effects like
glitches, hazards, or parasitic functionality are also introduced and explained.
Finally some basics of power and timing estimation at different levels of
abstraction are given.
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Chapter 2 Fundamentals

Before a new power and timing estimation process for full-custom digital hardware
modules can be developed, a good understanding of the underlying basics is required,

beginning with the specifics of embedded systems. In contrast to a general purpose computer
such as a personal computer, an embedded system is limited in hard- as well as software
functionality. Its key characteristic is that it performs a dedicated function. Because of its
dedicated functionality, an embedded system typically provides only a very limited or even
no human interface at all. As the name suggests, it is embedded as part of a larger system.
Generally speaking, it can be said that there exists a large variety of embedded systems. They
range from consumer electronics like portable multimedia players or mobile phones to vehicle
control systems in avionics and automotive as well as autonomous audio/video surveillance
systems, for instance. Except for some highly specialised systems, embedded systems are
often mass-produced articles.

Niemann states that embedded systems typically have real-time constraints and are hard to
program [106, sec. 1.1]. They often consist of hard- and possible software parts. Different
types of implementations i. e., ASICs, field-programmable gate arrays (FPGAs), or digital signal
processors (DSPs) are possible when developing an embedded system. If the system contains
software parts, they can be executed on an embedded processor or soft-core that is instantiated
within the ASIC. It is also possible to develop or customise a special processor core with
a reduced and application-specific instruction set i. e., an application-specific instruction-set
processor (ASIP).

If the system’s application is safety-critical like in automotive, avionics, or health applications,
special design steps like formal verification are necessary to check and met the safety require-
ments. If the system is part of a mobile and/or autonomous device, the system must be
energy efficient in order to extent battery lifetime. Another way is to design systems capable
of harvesting energy from their environment.

Bailey et al. pointed out that development of an embedded system is made across a number
of levels of abstraction at the same time. The same holds for the different aspects of the
system [11, p. 167]. It can be stated that the number of objects in a design decreases
exponentially with higher levels of abstraction [56].

2.1 Technical Terms

Prior to explaining the technical basics of power dissipation and estimation, some technical
terms must be introduced, starting with an explanation of how signal values are interpreted.
Without loss of generality, there exist several techniques for interpreting and encoding signal
values. In the reminder of this thesis it is assumed that a clock cycle starts at a rising edge
of the clock signal. The falling edge occurs in the middle of the clock period. The clock
cycle ends at the next rising edge. Regarding signal encoding, it is assumed that states of the
controller’s finite-state machine (FSM) as well as multiplexer select signals are encoded binary.
Registers and handshake signals have an active-high semantic. An exception to this rule
are memory control signals like chip- or write-enable, since these are historically active-low.
Regarding power gating, an implementation using PMOS gating is assumed.
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2.1 Technical Terms

For lower levels of abstraction there is a common understanding of the used wording.
Unfortunately this is not true for higher levels of abstraction. The following nomenclature is
used within this thesis:

System / Virtual system prototype The, possibly pure functional, high-level description
of the intended behaviour. It is typically given as C/C++ source code. The virtual system
prototype is the power and timing augmented version of the system, built from the
individual virtual prototypes of the system’s modules.

Module / Virtual prototype A part of the overall system. Typically, a module is of a certain
type like hardware, software, or IP. Focus of this thesis is on hardware modules. The
virtual prototype is a power and timing annotated version of a module and is generated
during model generation.

Design A specific instantiation of a full-custom hardware module. That is, a concrete
implementation generated during high-level synthesis, using a specific set of synthesis
and target parameters. During design space exploration, several different designs i. e.,
instances of a module are evaluated and compared against each other.

Process The behaviour inside a module that is running in parallel to the other processes of
the same module and of course to the other modules of the system. A process consists
of an RT data path and its corresponding controller.

Controller An FSM, defining the control flow of the process. The FSM’s output symbol is
used to control the data path, while the input symbol is used to obtain the data path’s
current state i. e., register values etc.

RT data path The behavioural implementation of a single process. The data path performs
the computation by utilising RT-level functional units such as adders and multipliers as
well as data-flow controlling blocks like multiplexers etc.

Operation A minimal part of a functional description. Typically a mathematical operation
like an addition or multiplication.

Operator An RT component allowing the execution of a certain mathematical operation.
Examples are adders, multipliers etc. Multiple operations can be mapped to the same
operator.

RT component Besides the mentioned operators, additional RT components like multiplex-
ers, registers, etc. are required. An RT component itself is built from several logic
gates.

Logic gate / Standard cell Implements a logical function like AND, OR, etc. The standard
cell in turn is built from transistors.

Transistor / Device A semiconductor device for switching electrical signals.
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Chapter 2 Fundamentals

2.2 System Design Methodologies

Gajski et al. have identified three different methodologies of system design that can be
assigned to different periods of time [55, pp. 18]. In the 1960s to 1980s Capture and Simulate
was state of the art. Behaviour was specified without giving details of the implementation.
The behavioural specification was split into blocks, which in turn will be refined down to gate
or even transistor-level. Simulation and verification was then performed at this low level of
abstraction [131].

From the late 1980s to the late 1990s a methodology called Describe and Synthesise was used [55].
First usable synthesis tools were available and the behaviour and structure could be captured
at logic level. In other words, the design could be described in terms of Boolean expressions
or FSMs. The synthesis tool then creates the net list implementation. Main benefit was that
both, the logic level as well as the description in terms of standard cells could be simulated
and that the equivalence between both could be verified.

Since the early 2000s, a methodology is used that could be called Specify, Explore, and Refine [55].
For the first time the level of abstraction increases to system level and models include both,
hard- and software. The design process starts with an executable description of the system’s
behaviour. Exploration is performed at one level of abstraction. If requirements are met, the
model is refined and exploration is repeated at the next lower level of abstraction.

The system itself can be built using three different approaches [55, pp. 35]. First, there is
the Bottom-Up approach were the system is assembled from components and modules from
a library. That is, before creating the system the component library must be available. It
also must contain all possible components, as briefly outlined in Section 1.2. Bouyssounouse
and Sifakis call this approach Component-based Design and mention that it is widely used
especially when modelling large software systems [31, chap. 11]. They also broach the
issue of component models for embedded systems, which helps formalising the components’
interfaces.

The currently used design approach is typically a bottom-up assembly of independent sub-
systems to constitute a SoC. But with more complex SoCs, the design process starts to be more
top-down, which is the second approach. It builds the system from a set of applications that is
mapped onto a multi-processor platform [79]. A top-down approach refines a system only
once the entire design is finished at one level. For reaching the next lower level of abstraction,
each module and component is decomposed into smaller components [55]. Main drawback
of this approach is that system metrics like power and timing are not available until the last
step of the design process has been carried out. It is therefore difficult to perform design
optimisations at earlier steps of the process.

A third way combines the benefits of the bottom-up and the top-down approach. It is known
as the Meet in the Middle approach [55]. Here, the top-down approach is used at higher levels
of abstraction, while the bottom-up approach is used at lower levels of abstraction. That
is, a system is refined until components from a library are available. The level on which
the top-down and the bottom-up approach met can vary. A well-known meet-in-the-middle
approach is Platform-based Design. Platform-based design, as described by Bouyssounouse and
Sifakis [31], starts by defining a so-called platform. The system is decomposed into processing
elements and communication structures. By choosing specific modules from the library, an

16



2.3 Hardware Design and Synthesis Process

instance of the platform is built. This helps to prevent redesigning the SoC from scratch for
each generation or for each application. Typically, 70 to 80 % of the SoC does not have to be
regenerated. Most modules can be reused [79], but not all functionality can be implemented
by re-using IP modules [123]. New module types, which are not available from a library, must
be refined to lower levels of abstraction, until components from a library are available. For
the approach presented in this thesis, this level is RTL, for which there exists a corresponding
component library.

Considering non-pre-existing hardware modules, using the meet-in-the-middle approach
allows statements about the system’s metrics as soon as RTL has been reached. But for today’s
complex systems it is still required to provide high-level models allowing an estimation of
the entire system’s implementation. One way to cope with the lack of a generic component
library above RTL is to perform a design estimation and characterisation, whose result is a
power and timing augmented high-level model. Classical Front-End tools allow capturing the
system and developing the platform, whereas Back-End tools provide the ability to develop
hard- as well as software. The characterisation and model generation approach presented
here can be considered to be a reverse back-end tool. It does not provide a refinement of a
particular module, but it uses the low-level model to create an enriched high-level model,
which in turn provides fast, yet accurate statements about the system’s metrics.

2.3 Hardware Design and Synthesis Process

As mentioned in Section 2.2, this thesis will utilise a meet-in-the-middle approach, which
performs a top-down refinement of the system until components from a lower-level library are
available. As discussed later, there are a lot of tools for high-level synthesis as well as power
and timing estimation available. In this thesis the power optimising high-level synthesis and
estimation tool PowerOpt is used. However, all techniques and methods mentioned in this
thesis can be implemented in or applied to other tools and approaches as well.

Using the meet-in-the-middle approach, designing an embedded system typically starts with
a non-formal, colloquial specification of the system to build. Only functionality, but not
its implementation is described. Most companies start with a description embodied in an
executable specification, but this starting point is already some type of an implementation
solution that will have a strong influence on the final implementation [11]. This hypothesis is
also supported by Chapter 6, in which the proposed approach is evaluated.

Based on the functional description a coarse-grained partitioning is performed. The system
is split into blocks, each one implementing a certain part of the overall functionality. Inter-
connections between blocks represent communication between connected blocks. At this
point early decisions about the hard- and software mapping are made. Each of the blocks
represents a processing unit. This can be a processor, executing software tasks, a hardware
accelerator or co-processor, or even a third-party IP module. It is also possible that multiple
tasks are mapped onto the same processing unit. This is especially true for software tasks
that are mapped onto the same processor core. Communication between blocks is mapped
in the same way. Again, multiple communication relations can be mapped onto the same
communication structure such as a bus or the like.
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For each of these blocks, a description of the functions, implemented by the particular block, is
created. This block and line structure along with block-associated descriptions are referred as
electronic system level (ESL), where the semi-automatic synthesis process starts. Such a typical
hardware synthesis process is shown in Figure 2.1. An overview of the topic of high-level
synthesis is also given by Coussy et al. [45], for example.
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System synthesis

Behavioural level

RT synthesis

RT level
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Logic level
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Figure 2.1: Typical synthesis process — The process starts at a very high level of abstraction.
During the individual synthesis steps, the design is refined. The electrical level is
represented as a database, containing pre-characterised cells that are instantiated
during layout synthesis.

In the figure, typical design elements and tasks are given for each level of abstraction and
synthesis step, respectively. In the following, each of them is outlined briefly.

Electronic system level At system or electronic system level, processors cores, memories,
buses, IP cores, etc. are typical building blocks. The functionality is given as a set
of communicating tasks that are distributed over the building blocks. Timing is only
determined by external constraints, as defined in the specification, for example. Values
are given in terms of very abstract data types.

System synthesis System synthesis transforms the system into a behavioural or algorithmic
description. This includes identifying which parts of the system are implemented in
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hardware and which ones are implemented as software. This is known as hardware/soft-
ware separation. During synthesis, the execution order of tasks is determined, which is
also known as task scheduling. Finally, task allocation is performed, which assigns the
tasks to specific hardware resources.

Behavioural level At behavioural level, which is also known as algorithmic level, blocks
communicating via signals form the system. The behaviour itself is implemented
as algorithms, parallel processes, control and data flow graphs (CDFGs), etc. Timing
constraints are given either external or internal. Values are given more detailed but still
as abstract data types.

RT synthesis During RT or high-level synthesis it is defined in which control step an
operation is performed. This is known as scheduling. During allocation it is determined
how many RT components are instantiated. During binding, operations are assigned to
functional units. Moreover, the architecture used for a certain functional unit is selected
during module selection. Several optimisations can be applied to improve timing, area,
and power, for instance [128].

RT level At RTL, the system is seen as a set of registers, multiplexers, adders, and other
functional units, as well as their interconnect. The behaviour can be represented by a set
of RT functions. Timing is cycle-accurate and values have a bit semantic e. g., fixed-point.
For this thesis this is the most important level of abstraction, since power estimation
and characterisation is performed on this level. The description at RTL can be obtained
from intermediate representation such as CDFGs, which are described in detail by
Namballa et al. [102]. These CDFGs can also be hierarchical [137]. The register-transfer
level is typically implemented in terms of a finite state machine with data path (FSMD),
as presented by Gajski et al. [54, sec. 2.4]. Such an FSMD consists of a state register, a
next-state and an output logic as well as of a data path. The output function controls
the data path i. e., the select signals of multiplexers, register-enable signals of registers,
etc. A generic structure of an FSMD and its interaction with the surrounding system is
shown in Figure 4.5 on page 67.

Logic synthesis During logic synthesis functional units are mapped to standard cells from
a design library. Several optimisations for area and timing are performed.

Logic level At logic level, the system is seen as a set of logic gates, implementing simple
logical functions. Several nets like the interconnect between the logic gates, the clock-tree
and so forth are also considered. Timing information contains the real delay and values
are seen as bits and bit vectors.

Layout synthesis Layout synthesis directly maps logic gates from the net list, available
at logic level to an electrical implementation. Implementations of all logic gates are
available from an ASIC cell library. Layout synthesis also performs the place and route
phase. That is, placement of logic gates and their interconnection is done.

Electrical level On the electrical level, the system consists of transistors, resistors, and
capacities. Individual functional units cannot longer be identified. Timing information
is available as real delay. Values are seen as voltages and currents.
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2.4 Power Dissipation

Power dissipation in a typical digital design can be split into different parts, which can be
considered individually. Before the individual parts are presented, it is important to have a
basic understanding of how a simple circuit does work. In the following, this thesis focuses
on circuits manufactured in CMOS technology. Electrical currents inside the circuit are seen
the technical way i. e., a current flows from the supply voltage Vdd to the ground voltage Vss,
which also represent the logical one and zero, respectively.

2.4.1 Dynamic Power

Dynamic power dissipation, denoted as Pd, occurs while individual transistors of a circuit
are switching. For this thesis, dynamic power dissipation comprises only transistors directly
implementing the behaviour i. e., the functional units, multiplexers, and registers of the data
path. Other transistors, like the ones implementing the controller, for example are considered
separately in Section 2.4.3.

In CMOS technology, a circuit is built using two sub-circuits. The pull-up network allows a
connection between output signal and the supply voltage, whereas the pull-down network
allows the connection between the output signal and the ground voltage. It is obvious, that
the pull-up and pull-down networks must implement complementary behaviour. Commonly,
the pull-up network is implemented using PMOS transistors, whereas NMOS transistors are
used to implement the pull-down network. A simple CMOS inverter gate, as the one shown
in Figure 2.2, visualises this.

A Q

Vdd

Vss

Cl

Figure 2.2: Simple inverter gate in CMOS technology — The virtual capacitance Cl is charged
via the pull-up network if a logical zero is applied to input A. It is discharged via
the pull-down network, if a logical one is applied to A.

Dynamic power dissipation is three-fold. The first part of the total energy dissipates while
the virtual capacitance Cl, connected to the output of the inverter, is charged via the supply
voltage Vdd. In this case, 50 % of the energy dissipate while the electric charge passes through
the PMOS transistor.

Since both P- and NMOS transistors are switching simultaneously i. e., one transistor starts
conducting, while the other one stops to conduct, there is a small time window where both
transistors are partially conducting. In this time frame, there is a direct connection between
supply and ground voltage. This short circuit causes additional power dissipation. This
second part of the total dynamic power dissipation becomes an important part, if the supply
voltage is up-scaled. It may account up to 20 % of the total power dissipation as shown by
Zaccaria et al. [142, p. 27].
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The third and final part dissipates if the capacitance is discharged again via Vss. In this case,
it is assumed that the remaining energy dissipates while the electrical charge passes through
the NMOS transistor. That is, a complete charge and discharge cycle of the capacitance takes
two clock cycles. This fact is also reflected by the well-known formula for dynamic power
dissipation, shown in Equation (2.1), where Cl is the switched capacitance, α is the switching
activity, and Vdd is the supply voltage. The clock frequency of the system is given by fclk.

Pload =
1
2

αClV2
dd fclk (2.1)

These just mentioned effects are all relevant for estimating the dynamic power dissipation of
a single transistor or simple logic gates. If estimating power dissipation of a whole circuit,
additional parasitic effects occur that are influencing the total amount of energy that dissipates.
There exist incomplete or unnecessary transitions and operations, for example. Three of these
parasitic effects are shown in Figure 2.3.
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(c) Parasitic functionality
Figure 2.3: Additional dynamic power effects — A glitch occurs, if two signals arrive subse-

quently, a hazard occurs, if signals arrive subsequently due to different lengths
of the data path, and parasitic functionality is caused by RT components that are
active, but whose results are not required.

The first one is called glitch. A glitch is an incomplete transition of the output signal of a logic
gate, which is caused by asynchronously arriving input signals. That is, the first input signal
arrives at the logic gate, causing the output signal to start changing its value. After a certain
amount of time, the second signal arrives and the output signal goes back to its initial value.
Figure 2.3a visualizes this. Remembering Figure 2.2, this means that the capacitance Cl is not
completely charged or discharged, respectively.

A hazard is a complete, but unnecessary transition. This is shown in Figure 2.3b. Hazards
occur, if logic gates are chained. This means that input signals have different path lengths.
In this case, it might occur that an input signal of a logic gate arrives delayed compared to
the other ones, because it is the result of an upstream logic gate. If so, the output signal will
perform a complete transition, stay at its new value for a certain amount of time, and will
then perform another transition back to its initial value. Of course, this can happen multiple
times, depending on the length of the preceding chain of logic gates.

Additional or parasitic activity is not logic level specific. It can also occur at RTL. For instance,
a register may serve as input for two operators but only one result is required, depending
on the current state of the controller. If the value of that register changes, both operators are
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active resulting in corresponding switching activity and thus power dissipation, although
only one result is required and thus only the necessary operator should be active. Figure 2.3c
on the previous page depicts such behaviour. This parasitic functionality can be avoided by
techniques like operand isolation, but it comes with a corresponding overhead in terms of area.

2.4.2 Static Power

Besides power dissipation caused by charging and discharging capacitances, there is another
type of power dissipation, which is caused by parasitic currents. All in all, there are eight
types of so-called leakage currents, or simply leakage for short, all exemplified in Figure 2.4 for
an NMOS transistor.

Bulk

Gate
Source Drain

IsubthIGISL IGIDL

IHCI IGB
IGS IGD

ISJ IDJ
Ipunch

Figure 2.4: Leakage currents in a NMOS transistor — There are various leakage currents in a
typical transistor. The type of the transistor i. e., NMOS or PMOS and its current
state i. e., locking or conducting, determine which is the dominating current.

It is clear that the actual currents depend on the voltages applied to source, drain, gate, and
bulk, respectively. A PMOS transistor has similar leakage currents, but due to the underlying
physics they are weighted differently. The currents can be divided in three main classes.

The first class contains the current from source to drain. This sub-threshold current Isubth flows,
even though the transistor should be locking. Due to a very small difference between supply
voltage Vdd and threshold voltage Vth the channel is in a low inversion state. Even a low
voltage between source and drain will thus result in this current, which increases with the
temperature of the system [104, p. 498]. Source-Drain leakage Isubth is the dominating leakage
current for technologies between 180 nm and 90 nm. For technologies with a feature size
smaller than 90 nm other leakage currents are taking precedence.

The second class contains currents coming from the gate. Overall there are three currents, in
particular gate-source IGS, gate-drain IGD, and gate-bulk leakage IGB. Together they are referred
as gate leakage Igate. In all cases, electrons tunnel potential barriers. Hence, a smaller oxide
results in an exponentially larger gate leakage. For technologies between 90 and 65 nm this is
the most important leakage. In technologies below 65 nm high-k materials are used, making
the problem of gate leakage manageable.

The last class contains junction leakage, flowing through the p-n junction. These currents
occur at the source as source junction leakage ISJ as well as at the drain as drain junction
leakage IDJ. However, more important are gate induced drain leakage IGIDL and gate induced
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source leakage IGISL. This is especially true for technologies smaller than 65 nm. Generally these
currents are caused by randomly drifting carriers or electron-hole generation at imperfections.
In addition, the field between source and gate or drain and gate advances the probability that
electrons tunnel through the barrier.

In addition to the eight types of leakage current, there are two additional effects, which
typically do not lead to leakage currents, but limit the voltages the transistor can operate at.
Both are mentioned for completeness. The first one, is hot carrier injection, where accelerated
electrons can go from the channel to the gate, causing a current IHCI from gate to the channel.
The second effect is a punch-through of electrons from drain to source. The exact location
of p-n junctions depends on doping and fields inside the transistor. A stronger field brings
source and drain regions closer together. If both touch, a short circuit is formed, resulting in
a current Ipunch. To preserve the functionality of the transistor, the supply voltage is chosen
in such way that a punch-through does not occur.

Most of the leakage currents just mentioned partly depend on the state of the transistor
i. e., if the transistor is conducting or if it is locking. Thus, leakage could be assumed data-
dependent [59, 75]. However, Helms et al. have shown that in a larger perspective, leakage
is nearly data-independent and that data-dependency decreases with an increasing level
of abstraction [76]. That is, in large designs data-dependent leakage currents of individual
transistors are averaging out each other. Due to space limitations, only a very brief overview
of the topic could be given. A more detailed overview of leakage is given by Narendra
and Chandrakasan [103]. An extensive description of leakage currents and especially their
estimation is given by Helms [73].

2.4.3 Additional Sources of Power Dissipation

Besides dynamic and static power dissipation, which are directly caused by implementing the
intended functionality of the module, there are some additional sources of power dissipation.
They are introduced during system synthesis and must also be regarded during power
estimation.

The first one contains all structures, required for storing data values, such as registers and
memories. In contrast to a typical full-custom hardware module, which has a fairly irregular
structure, the structure of memories is very regular. This regular structure can be utilised,
enabling a large number of techniques especially for memory power estimation [124].

The clock-tree must be regarded, too. It is a set of wires across the overall system, providing
the clock signal to all registers and other clock-dependent components that are distributed all
over the system. This large network is charged and discharged in each clock cycle, in order
to provide the rising and the falling clock edge. Thus, depending on the size of system, a
comparatively large capacitance is switched twice in each clock cycle. There exist techniques
for reducing the switched capacitance such as clock-gating. These optimisation techniques
are a research topic of their own and are not discussed in detail in this thesis. This thesis as
well as the used estimation tool PowerOpt assume a non-gated clock signal. However, this
feature can be provided easily, if necessary.
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For buses the same applies as for the clock-tree. Buses are a set of parallel and comparatively
long wires connecting two or more modules or components of the embedded system. Special
attention is required by the bus arbiter. This component is arbitrates of resolves concurrent
and thus conflicting accesses to the bus. For sophisticated buses like AMBA AHB or IBM
CoreConnect, complex bus controllers are required. These implement the bus protocol,
including burst-mode, byte enabling, or timeouts. For this thesis a simple and state-less
resolution logic is assumed, which is the type of bus arbitration that is also introduced by
PowerOpt for inter-process communication etc.

2.4.4 Power Gating

There are several techniques for reducing the power dissipation of a system. Examples are
operand isolation, or power-optimising binding and allocation like it is done by PowerOpt.
Power optimisation techniques at very low levels of abstraction i. e., at electrical level are
regarded during characterisation of the logic gates. Power optimisation techniques at RTL are
typically applied during synthesis and are thus reflected within the resulting data path. All
these techniques are transparent to the design process, proposed in this thesis. That is, their
effect is regarded implicitly. One exception to this is power gating.

Power gating of individual RT components was introduced for reducing leakage currents
while the particular components are not operating. If a component is not required for
a certain amount of time, the controller is able to disable the particular component by
separating it from the supply or ground voltage, respectively. This is done using so-called
sleep transistors. Generally speaking, there are three different variants in which power gating
can be implemented. These are shown in Figure 2.5.
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(b) NMOS gating
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(c) Double gating
Figure 2.5: Power gating — An RT component is separated from supply or ground voltage,

respectively. For this, a special sleep-transistor is used that is typically slower
than the transistors, implementing the RT component, but it is able to efficiently
conduct larger currents than the usual transistors can.

Power gating allows disconnecting a particular module from the supply and/or ground
voltage, respectively. If the module is disconnected from the supply voltage, this technique
is called PMOS power gating and is shown in Figure 2.5a. If the supply voltage is no longer
applied to the module, the module’s internal capacitances are discharged over time due to
leakage currents.
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If the module is disconnected from ground instead of supply voltage, a technique called
NMOS power gating, which is depicted in Figure 2.5b, is used. In this case the module’s
internal capacitances a charged instead of discharged.

P- and NMOS power gating can be combined to a technique called double power gating, as
shown in Figure 2.5c. However, this technique is only rarely used and more an academic
approach. It is mentioned here for completeness, only. Each technique can be implemented
in various variants e. g., using multiple sleep-transistors in a row or in parallel. For the
remainder of this thesis, power gating is not seen as an optimisation technique for individual
RT components, but at a larger level. Not individual RT components, but the entire module
can be power gated, if its functionality is currently not needed by the system. This is simply
done by power gating all RT components that belong to the module.

Of course charging and discharging capacitances requires some time. While it can be assumed
that an individual RT component can be enabled within one clock cycle, this is not true for an
entire module. Due to limitations of the supply grid, charging all capacitances of an entire
module cannot be completed within a single clock cycle. The actual time required for the
module to become ready after it had been enabled depends on the module and its internal
structure. An extensive description of power gating and its application during high-level
synthesis is given by Rosinger [114].

2.5 Simulation Models for Power and Timing Estimation

The previous sections gave a brief overview of the different sources of power dissipation.
These are the basics for understanding and developing power estimation techniques. As
mentioned in Section 1.2 and shown in Figure 1.6 on page 10, there are various levels of
abstraction at which power and timing estimation can be performed.

While synthesis lowers the level of abstraction by adding more fine-grained information,
power estimation approaches try to go the other way round by applying different abstractions.
Starting from a low level of abstraction, where precise information about power and timing
are available, more abstract models are generated, providing fast, yet accurate estimation
results. The following sections give a succinct overview of different abstraction level at which
power estimation is typically performed. It will be outlined which information is available at
which level of abstraction and which information is lost during abstraction.

2.5.1 Electrical Level

Power and timing estimation on the electrical level is carried out by simulating each individual
transistor of the circuit. This is mostly done using the simulation program with integrated circuit
emphasis (SPICE) or one of its derivatives like HSPICE or PSpice. Simulation of the circuit is
done using a MOSFET transistor model, where the likely most common model is the Berkeley
short-channel IGFET model (BSIM) [126].

SPICE is widely accepted as reference if no physical measurement is possible, either due
to unavailable test equipment or due to the absence of the manufactured chip. Besides a
physical measurement, a SPICE simulation can be assumed to give the most precise estimation
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results. At this very low level of abstraction all electrical effects, such as partial or incomplete
transitions, etc. can be seen and estimated accurately. Figure 2.6 shows the simulation of an
inverter chain with three CMOS inverters using HSPICE.
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Figure 2.6: SPICE simulation of an CMOS inverter chain — The simulation uses continuous

signal values. Simulation is done by solving differential equations.

A recent full-fledged characterisation card, describing all physical properties and characteris-
tics of a CMOS transistor has more than 700 entries [73, p. 96]. The most important ones are
obviously width and length of the transistor gate as well as electrical properties like threshold
voltage. A comprehensive description of CMOS devices with their structure, parameters and
characteristics is given by Rabaey et al. [109, sec. 3.3].

A circuit can be built by instantiating the appropriate transistor models in SPICE. Afterwards
a transient simulation of the circuit can be performed. Continuously-valued voltages and
currents can be measured at various points of the circuit. Measured values are then used
to compute precise switched capacitance, static power dissipation, etc. It is obvious that
estimations at such low level of abstraction are very time consuming.

2.5.2 Logic Level

Simulations at the electrical level can be used to characterise complete logic gates. This is
done by creating an electrical level model for each logic gate. These circuits are than simulated
using SPICE and a characterisation is performed afterwards. The characterised models can
then be used during a logic-level simulation. This simulation is performed digitally. That is,
all signals have discrete values. Typically, a four-valued semantic is used, which supports a
logical zero and one as well as the special values undefined and conflict. Simulation of effects
like glitches or other short impulses depends on the used delay model.

Simulation can be performed using different delay models, each one with its own accuracy
and simulation speed. The fastest simulation model is called Zero Delay. It is clock based,
meaning that all signal values and transitions are evaluated at clock-cycle borders, only. Using
this delay model no validation of circuit’s timing is possible. Hazards cannot be modelled.
Switched capacitance is computed by evaluating signal values before and after the transition.
A more advanced delay model is Unit Delay, at which all gate have the same delay. This
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model allows a rough hazard detection and exact timing can only be estimated rudimentary.
Figure 2.7 shows a unit delay simulation of an inverter chain.
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Figure 2.7: Logic-level simulation of an inverter chain — The discrete-valued trace has been

obtained using a unit-delay simulation with an unit delay of 10 ps.

The most advanced delay model is Real Delay, which tries to determine the exact pin-to-pin
delay. This delay depends on various parameters such as transition direction, fan-in and
-out etc. These real delays can also be obtained from a standard-cell library, if available.
These libraries are typically provided by the technology vendor. The real-delay model uses a
discrete event simulation, for which various delay models such as transport, inertial, or dynamic
delay, are available. Other types of models, which are pattern independent, are also possible.
These include Markov chains or logic tables, for example. Some of them are mentioned in
Section 3.1.

2.5.3 Register Transfer Level

The models available at logic level can be further abstracted to RT-level models. Again, this
is done by performing an estimation and characterisation at the lower level of abstraction
i. e., at logic level. Besides behaviour, main parameters for the generated RT models are
technology, bit-width, applied input patterns, and temperature. In a first step, all structural
parameters like technology or bit-width are separated from the data dependency. That is,
switched capacitance is modelled data dependent and for each clock cycle, whereas static
power dissipation is modelled data-independent. Figure 2.8 on the following page shows a
typical RT-level simulation trace.

As can be seen, glitches and hazards as well as logic-level optimisations can no longer be
modelled when using this approach. Nevertheless, the RT component internal glitches and
hazards can be considered during characterisation, depending on the timing model used
during logic level simulation. Assuming a compact layout of an RT component, glitches due
to the interconnection between the logic gates can be estimated as well. More difficult is
the prediction of glitches and hazards due to the interconnection between RT components,
since their exact position in the design and thus the length of the interconnect might not be
known.
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Figure 2.8: RT-level simulation of an inverter chain — The digital simulation at RTL uses the

zero-delay transport model. All transitions occur at the rising clock edge.

Generally, it can be stated that a shorter data path between registers helps reducing glitches
and hazards, since the output of a register is glitch and hazard free. Therefore, shorter data
paths can be estimated more accurately at RTL than longer ones. One way to deal with this
issue is to add an overhead, depending on the length of the data path.

During characterisation of an RT component, consideration of all possible input vectors is
infeasible. Therefore, data abstraction and reduction must be applied. Input data can be
abstracted in terms of Hamming- and signal distance, for example [80]. There are also several
approaches available, which help reducing the amount of data to be considered. The most
important ones are explained in Section 3.1. If data had been reduced, a lookup interpolation
is required during estimation at RTL. Again, there are various ways how this can be done.
Prominent techniques are nearest neighbour, linear interpolation, Lagrange interpolation,
spline or bilinear interpolation, which are listed with an increasing order of complexity.
Internally, PowerOpt uses such lookup tables. It is also possible to use analytical model like
regression instead of lookup tables. Some of them are also mentioned in Section 3.1.

2.5.4 Above RT-Level

Abstraction from RTL is done in very different ways. As stated in Section 1.2, no generic
encompassing library of power and timing-aware RT components can be provided. This
leads to a confusing variety of different estimation approaches. In general, abstraction is
done by creating equivalent transaction-level modelling (TLM) descriptions, power state machines
(PSMs), or by transforming the RT-level description into a cycle-accurate functional description
(CAFD) using a high-level language such as C or C++. A more detailed overview of available
techniques is given in Section 3.2.

All these abstraction techniques have usually in common that they discard information about
synthesis artefacts like extra functionality, clock-tree, etc. Also, the more abstract the approach
is, the less information about the processed data is considered during estimation. While
CAFDs may consider the processed data, TLM-based techniques only consider the type and
amount of data that is been processed by or communicated between the individual parts of
the system. Finally, techniques like PSMs do not consider the processed data at all. They
simulate and estimate the system in terms of abstract states or processing phases. Thus, only
the control-flow is considered during simulation and estimation.
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2.6 Summary

This chapter gave the basics and fundamentals, the approach proposed in this thesis relies
on. After a short introduction of the nomenclature, used in this thesis, it had been shown,
how embedded systems are generally defined. An outline of classical methodologies for
the specification and the system design processes was given, both with focus on hardware
modules. The typical design process, based on a high-level synthesis was presented and
typical steps of a high-level synthesis were described. It was also mentioned, which infor-
mation is available at the different levels of abstraction. Causes of dynamic and static power
dissipation including several synthesis artefacts had been introduced. Based on the level of
detail several estimation techniques are presented. Each with its own level of accuracy and
required computational effort.

Main message of this chapter is that power dissipation is inherently a structural property.
That is, power estimation can only be performed, if the physical structure of the design is
known. A pure behavioural description of the system is not sufficient. However, in order to
meet the requirements of today’s system design process a suitable abstraction must be found.
This abstraction must allow fast estimations of complex and heterogeneous systems while
maintaining the desired level of estimation accuracy.

After having a comprehensive understanding of the hardware design and synthesis process,
the causes of dynamic as well as static power dissipation and after knowing some basic power
and timing estimation techniques at several levels of abstractions, it becomes possible to
asses existing work of the scientific community, regarding power and timing estimation of
embedded hardware modules. This assessment with respect to the requirements, identified
in Section 1.2, is done in the following chapter.
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Chapter3
State of the Art

Abstract
This chapter gives an overview of existing work regarding power and timing
estimation at different levels of abstraction as well as several model abstraction
techniques. Power estimation is of interest since the late 1940s, when the
first transistor was introduced. Since then methods for designing ICs are a
research topic and the researching community has proposed a large number
of different concepts and approaches. This chapter gives an overview of
existing approaches regarding power estimation as well as high-level model
generation. In the following, several different low- and high-level power
estimation approaches are presented and discussed, each one representing a
typical class of approaches. Drawing on these examples classes, the approaches
are compared to each other and assets as well as limitations are shown.

The chapter is divided into two different parts. The first one tackles power
estimation. Starting at a low level of abstraction and then reducing the gran-
ularity step-by-step, main concepts and techniques for estimating a system’s
power dissipation are discussed. The second part considers techniques for
abstracting RT-level models in such way that a fast simulation of the model
becomes possible. Finally, the summary will show that none of the approaches
discussed can deal with all challenges, identified in the previous chapter.
Individual aspects and functionaries from the presented approaches are picked
and it is outlined how they can be combined to build a new and sophisticated
characterisation and model generation process.
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After knowing the fundamentals from Chapter 2, an overview of existing work can
be given. Aim of this chapter is to identify approaches and techniques suitable for

dealing with the challenges, mentioned in Section 1.1. Due to the large variety of different
approaches and techniques a comprehensive overview of all existing approaches cannot
be given. Instead, different classes are identified. Their assets and limitations are then
explained using a representative example. First, methods and techniques for characterising
and estimating the power dissipation of an embedded system are presented and discussed.
These vary from approaches at logic level up to experience-based approaches, purely relying
on knowledge databases and the designer’s know-how. By discussing the basic idea of the
approaches as well as their advantages and disadvantages, suitable techniques and methods
can be identified.

The second part of this chapter tackles the field of model abstraction. Like before, basic idea
as well as advantages and disadvantages are discussed. The information collected in both
parts is then used for identifying existing methods and techniques that can be combined
with newly developed strategies for building a design process, which is able to deal with the
challenges in today’s embedded hardware design process.

3.1 Power Estimation

Chapter 1 shows that power dissipation is a topic of concerns since the introduction of
transistor technology. Reliable power estimation is the key for effective power optimisation.
Even back in the 1970s and 80s, when NMOS was the only technique used for system design,
power dissipation was a serious problem, not least because a logical zero at the gate’s output
caused a comparatively large electrical current between supply and ground voltage. New
techniques were developed to deal with this issue, but until they were available power
dissipation had to be considered during design development. This is still true today. Power
dissipation is still a concern and had to be addresses during system design.

Various techniques for predicting the system’s power dissipation have been proposed and
implemented. These techniques use different metrics and inputs for estimating the power
dissipation. Some of the metrics can be applied on different levels of abstraction, while others
require a very specific input or they are specialised to certain types of designs. For different
parts of the design like controller, memory, clock-tree, etc. different estimation techniques are
available to come up to the special structure of these parts. Several surveys of the different
techniques and methods are available from various authors [15, 17, 94, 111]. Another good
and well known survey especially for logic level estimation techniques is given by Najm [101].
A supplementary survey especially for estimation techniques at higher levels of abstraction is
given by Landman [86] as well as Macii and Poncino [93].

In order to develop a new power and timing estimation approach that tackles all the problems
and challenges mentioned in Section 1.1, an overview and specifically a classification of the
existing approaches and techniques is required. Based on such a classification, identifying the
techniques which are most suitable for the mentioned challenges becomes possible. Based
on and inspired by the existing techniques a new approach can then be developed in a
second step. It must be noted that classifying different existing approaches is quite subjective
to a large extend. The large variety of approaches makes it impossible to come up to all
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different aspects tackled by the individual approaches. Basic techniques can be identified
and compared, but no general classification is possible. There are too many details in which
the particular techniques differ from each other. Each technique has its own advantages in a
certain field of application, while in other fields it might suffer from a lack of applicability.

Generally speaking, there are two main ways of classifying power estimation approaches. First,
they can be classified based on the design process. In this case, techniques and approaches are
classified based on when and where in the design process a particular technique is applied.
A typical classification can identify four different classes:

Top-Down Approaches start with a high-level simulation to generate the inputs for a lower-
level power model. They characterise each design individually. Thus, each design has its
own power model. However, these models are usually based on existing designs or the
experience of the designer. Top-down approaches typically use metrics like switching
activity or activation patterns for predicting the power dissipation. These approaches
are commonly used in early design phases, where the concrete implementation of the
functionality and the technology to be used is not known, yet.

Bottom-Up Approaches perform a low-level characterisation, enabling a high-level simula-
tion to perform the power estimation. For the technology used for implementing the
design, a power macro model is built that will be used during estimation. Such a macro
model typically represents an RT component like an adder, a multiplier, or the like. The
model estimates the power dissipation of the particular component based on the input
values, collected during a functional simulation. That is, macro models are typically
strongly pattern dependent. In order to use such a bottom-up approach nearly the
whole design process must be completed. The implementation of the functionality as
well as the technology for implementing the behaviour must be fixed.

Analytical Approaches attempt to correlate power dissipation to measures of design com-
plexity. These approaches estimate power dissipation indirectly and are useful in early
design stages. The designer is required to provide several values, such as gate count,
switching activity, etc. Since these values typically are not known exactly before the
final implementation is available, the designer has to estimate them. This leaves a lot
personal judgement and thus yields very inaccurate results. While analytical approaches
are error-prone in general, they may give accurate results for parts of the design for
which the values are easy to estimate and where the underlying technology nodes are
very similar in terms of structure, behaviour, and power dissipation. This is true for
memories, clock-trees, or complete FPGAs, for example.

Hybrid Approaches are more a combination of the classes, mentioned above rather than a
class of its own. In most cases, a hybrid approach combines a bottom-up and a top-
down approach. Starting point is typically a high-level description, when no low-level
description is available, yet. A quick synthesis is performed in order to create an initial
guess of the target design. The created low-level description contains all parameters that
are required for the intended estimation. Once a final implementation of the intended
behaviour is available, it is characterised and the obtained values are back-annotated to
the high-level description. The annotated high-level description can then be used in a
high-level simulation or if the particular behaviour is reused in another design.

33



Chapter 3 State of the Art

This classification seems to be obvious. The identified classes are very general and not bound
to a specific level of abstraction. At the same time this is a disadvantage. It is not clear which
information is available i. e., which technical details are already known and can be taken into
consideration when developing the new estimation process.

A second way for classifying power estimation approaches and techniques bases on the level
of granularity at which technical information is available. This type of classification is more
technology-related and each class of estimation approaches can be assigned to a specific level
of abstraction. In each of these classes in turn, there are different approaches of how the
available information is used. The following classification groups the approaches based on
their behaviour during estimation and not during characterisation.

3.1.1 Pattern-Based Approaches

One of the oldest and probably the most widely used method for power estimation is macro
modelling. For each component of the system a macro model is provided. During a functional
simulation of the system, in- and sometimes also output patterns of the component are
captured. These patterns are then used by the macro model to compute the component’s
power dissipation. Using actual data patterns, spatial and temporal correlations as well as
non-uniformities of the pattern distribution are taken into account.

In practice, only power dissipation of atomic RT components like functional units, multiplexer,
buses, and latches or register is modelled [74]. These components do not have an internal state.
Thus, the macro model is nearly time independent. Because dynamic power dissipation Pd
directly correlates to the switched capacitance and thus the switching activity, two consecutive
pattern pati−1 and pati are required by the macro model. In this case, generic power estimation
Equation (3.1) can be applied.

Pi
d = f (pati−1, pati) (3.1)

Aim of macro modelling is to derive function f itself. This is repeated for each atomic building
block of the design. For power estimation, more complex blocks of a design are decomposed
into these atomic components [108]. The building blocks belonging to the design and thus
the macro models to be used during estimation are typically obtained from functional and/or
structural description of the design. At RTL this could be Verilog or very-high-speed integrated
circuit hardware description language (VHDL), for example.

As mentioned above, a given building block like an adder is available in different sizes i. e.,
in different bit widths. In this case, a soft-macro is used. Such a macro models the power
dissipation with respect to different parameters like the bit-width etc. If the component is also
available in different implementations e. g., in a small and in a fast version, different macro
models are required—one for each implementation. The same applies, if the component
can operate in different power modes. In this case, it might be reasonable to provide one
macro model for each mode, as it has been proposed by Potlapally et al. [108]. Two general
assumptions can be made, as stated by Benini et al. [16] and Bogliolo et al. [21]:

1. In a combinational circuit some input has to switch in order to dissipate power.

2. The presence of switching outputs always corresponds to some internal activity.
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Macro Models at Logic Level

A macro model library at logic level using SystemC has been prototypically developed by
Xanthos et al. [139]. Their work shows in a very descriptive way the application of a macro
model. A design is built from SystemC modules implementing the functionality of a certain
logic gate such as INV, NAND2, or OR2. More complex gates are built from these primitives. The
approach is also able to handle glitches. A modification of the SystemC kernel was necessary
in order to extend the SystemC modules with power estimation capabilities.

Very similar to the just mentioned approach is the concept presented by Klein et al. [82, 83].
An augmented SystemC implementation of the design is created. The instrumented code
allows monitoring the signal statistics during a functional simulation. In contrast to the work
of Xanthos et al. the concepts allows creating models that work at RTL by overloading the
SystemC implementation of the particular RT-level operations. Again, activation is monitored
and patterns are captured to obtain a power estimate.

The other way round is done by Llopis and Goossens [90]. Instead of coarse-grain macro
models, Llopis and Goossens use simple single-bit operators, so-called power primitives. An
expansion function is used for expanding the given RT component into a number of these
primitives. Different expansion functions can be applied to the RT component, each one
providing a different low-level implementation of the component. This can be seen as some
kind of a quick-syntheses approach. Considering data patterns at logic level gives very
accurate result, including glitches and hazards. If a macro model is provided for each
implementation of a logic gate, the accuracy will even increase. Nevertheless, estimating
power for each logic gate individually can only be done for a very small number of gates.
Even the increasing amount of computation power of today’s work-stations is not able to cope
with the increasing number of logic gates per design. For today’s designs, much faster but
still accurate approaches and techniques are required.

Information Theoretic Approach at Logic Level

Marculescu et al. presented an approach that uses information-theoretic data to generate the
power model for designs at logic level and for simple RT components [96]. This is done by
extending the generic Equation (2.1) on page 21 to consider each gate individually, which
yields Equation (3.2).

P =
1
2

fclkV2
dd

N

∑
n=1

(Clnαn) (3.2)

It is obvious that switching activity αn per logic gate plays a key role. In order to estimate
power dissipation of more complex components on RTL, switching activity is represented
by a typical wire inside the RT component. A so-called effective information scaling factor
is used to reflect the structure and the functionality of the component. In contrast to the
approaches mentioned above, not the actual input patterns are applied to the model, but some
information about the switching activity at the component’s inputs. For each component the
output entropy, which is computed from the input entropy, serves as input for subsequent
components. Considering an information-theoretic representation of the in- and outputs
of an RT component gives a significant speed-up compared to conventional, pattern-based
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approaches. Even though no actual data patterns are required for power estimation, the RT
component’s input switching activity must be known. That is, a functional simulation is still
required, even if only at RTL.

Macro Models at Register-Transfer Level

As one of the first research groups, Burch et al. began to consider RT components as a whole
instead as the sum of its logic gates [35]. A large number of randomly generated input
patterns are applied to the RT component and the resulting power dissipation is measured.
Such an approach is called Monte Carlo approach. Since each pattern should be considered
individually and independent from the previous patterns, estimation is split into a set-up
phase and a sampling phase. The set-up phase initiates the circuit and assures that only power
dissipation caused by switching activity, but not caused by the initial loading of capacities is
considered. That is, after set-up the power dissipation is a stationary process. Estimation is
repeated until a certain level of confidence is reached i. e., a trade-off between the performance
and the desired percentage error is possible. Burch et al. also found out that their approach
can also be applied to circuits that have a non-normal power distribution e. g., a double-
normal distribution, which has two local maxima of the dissipated power. Tailed-normal and
chopped-normal distributions can be considered as well. However, it is difficult to determine
the correct set-up time. The authors propose summing-up the delays of all logic gates on the
longest path, but this will not work for circuits containing feedback-loops.

Bogliolo et al. presented a regression-based approach for creating power macro models for
combinational logic blocks [21]. Again, for each RT component in the RTL-library a macro
model is generated. Basically, they propose three different types of estimates. The first one
performs a static estimation. During a functional simulation switching activity at the in- and
outputs of the RT components are monitored. The average switching probability can then be
computed, which serves as input to the power model. The second approach is a conventional
macro model approach. During a functional simulation of the system, each in- and output
pattern is forwarded to the model. Their third approach tries to tune the macro model during
a functional RT-level simulation, using a logic level simulation. The approach achieves an
error of about 15 %. However, for a cycle-accurate estimation the error becomes larger than
34 %. The approach is very similar to the one presented by Wu et al. [138], which had been
proposed two years earlier. Another approach that relies on regression is given by Gupta and
Najm [68, 69]. But instead using the input pattern directly, their approach uses the Hamming
distance of two consecutive input patterns as input to their model, which helps reducing the
amount of data that must be considered. All regression-based approaches have in common,
that their accuracy depends on the abstraction of the input values. This allows a trade-off
between performance and estimation accuracy. However, considering data patterns, even if
abstracted, still requires a lot of computational effort.

Nemani and Najm [105] state that power dissipation is highly related to the area. Since
area depends on the implementation of individual RT components, Nemani and Najm
propose a technique for deriving the circuit’s area from the Boolean function’s structure and
entropy. This in turn can be used for an optimised implementation of the circuit. Considering
the area instead of functionality takes into account the fact that power dissipation highly
depends on the number and size of the used transistors that are implementing the behaviour.
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Main drawback of the model is that it assumes that inputs are spatial and temporarily
independent, which is not true, even for larger designs. Moreover, the approach can only
consider combinational macros. Complete clocked sequential systems cannot be considered.
With this approach an average error between 30.21 and 33.70 % is achieved, although for
about 80 % of the designs, the estimation error is below 25 %.

Reducing the complexity while increasing the model’s flexibility can be achieved by abstracting
the model’s input data, as shown by Jochens et al. [80]. By computing the Hamming distance
of two consecutive data patterns with respect to different bit regions, as proposed by Landman
and Rabaey [87], the accuracy of the power estimation model can be notably increased. A
given word consists of two regions. The first one contains the sign bits, while the second one
contains bits that are uncorrelated in terms of space and time. With the proposed approach,
the estimation error is typically less than 15 to 20 %, while providing sophisticated soft-macros
that are parameterised in terms of bit-width. This in turn will reduce size and complexity of
the component library.

FSMD at Register-Transfer Level

During logic synthesis, the design is transformed from an RT-level to a logic-level description.
Within this step, the boundaries between the RT components are broken and optimisations
are applied to all logic gates at once. As a result, power dissipation can no longer be
attributed to individual RT components. But typically synthesis artefacts like introduction of
multiplexers, wires of different lengths, or simple gates that serve as glue logic are neglected
in common approaches at RTL. Bruno et al. presented a methodology that can deal with these
artefacts [34]. While achieving a speed-up between 2 and 38×, the relative error is between
14.20 and 34.10 %. The authors also state that their approach is technology independent. This
is achieved by introducing a scaling factor, which is used to adapt the generated power model
to a new technology. This scaling factor is computed by selecting a golden instance from the
library. Since new technologies may comprise completely new designs components, this is not
sufficient. While the authors’ statement that a RT-level net list does not model the logic-level
net list is true in general, sophisticated RT-level estimation tools like PowerOpt consider the
technology that was used during syntheses and also take different ways of implementing an
RT component into account. Thus, they will give good estimates.

Soft Macros at Register-Transfer Level

With increasing complexity of the designs, using hard-macros had become too inflexible to
cope with the new requirements. Parametrically soft-macros were the solution. These macros
can be modified using one or more user-defined parameters like bit-width, for instance.
Macro models for power estimation had to keep up the pace and also become parametric.
Bogliolo et al. propose to create a macro model that relies on the transition probability of
the in- and output signals [22]. The model is scalable in terms of bit-width and size of
the technology nodes. Using a reference bit-width and technology, a power model that
only depends on the signal statistics can be created. This can be done using conventional
hard-macro modelling techniques. Using this technique, an error of about 10 % is achieved.
Parameterised soft-macros give a lot of flexibility. In particular, it becomes possible to obtain
extrapolated assumptions for new and uncharacterised bit-widths or technology feature sizes.

37



Chapter 3 State of the Art

Primitives and Operator Overloading

An approach that replaces conventional RT-level components with ones that are power aware
is proposed by Ravi et al. [112]. A library of common RT components is characterised and
corresponding power models are created. The original RT-level input model along with
the power-aware RT-level component library is then used to create an enhanced RT-level
model with power estimation capabilities. During generation of the enhanced model, various
optimisations are applied in order to increase its simulation speed. While sampling at RTL is
usually done for the complete design, Ravi et al. propose partitioned sampling. That is, more
estimation effort is spent for components that contribute more to the overall power dissipation.
Using partitioned sampling combined with the optimisations during model generation, a
speed-up of about 31× is achieved.

There is also an approach proposed by Damaševičius and Štuikys that overloads logic and
arithmetic operations like +, -, etc. in SystemC [47]. Same applies to read and write-
operations on SystemC signals. The approach tries to estimate the total power by summing
power dissipation for each operation, considering the concrete input vectors. With this, an
error of about 6 % is achieved, but simulation time increases by 71 %. Mayor benefit of this
approach is its transparency to the developer. Monitoring components and collecting input
vectors is done fully transparent to the developer, because of the overloaded operations.
Despite the fact that a modified SystemC kernel is required, main disadvantage is that a
design given in SystemC typically does not represent the synthesis result. That is, mapping
different operation on the same operator and the resulting sequence of input patterns are
hard to consider. Also, effects like parasitic functionality cannot be considered at all.

Summary of Pattern-Based Approaches

Most techniques discussed above use the macro-modelling approach. They rely on a library
of macro models, containing a model for each available component. During estimation,
the models are stimulated using some kind of activity measure. This can be the actual
data patterns or some abstracted information like Hamming distance or transition density,
as proposed by Najm [100]. Considering the correct in- and output pattern for a certain
simulation run, it is possible to obtain very accurate results. Moreover, regression-based
approaches at RTL cannot only be applied to the data path, but also to the controller as shown
by Benini et al. [19]. Pattern-based approaches in general and macro models in particular
are not applicable in all cases. This is because they rely on the assumption that there is a
direct correlation between in- and output activity on one hand and the component’s power
dissipation on the other hand. For more generic and sequential components i. e., components
with an internal state, this assumption does not hold. In these cases, power dissipation is
time-dependent i. e., it does also depend the previous input patterns.

All these techniques suffer from the same problem. They require actual or some kind of
abstract data patterns to be applied i. e., they can only be used after allocation and binding
have been performed. They have to reflect the final implementation of a design. In principal
it is possible to assume that each operation is mapped to its own operator. In this case, data
pattern per operation are still monitored, but it is not feasible to re-construct the correct
pattern sequences that occur if two or more operations are mapped to the same operator.
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3.1.2 Activation-Based Approaches

Activation-based approaches typically do not consider individual patterns of logic or RT-level
components. They consider activations of larger parts of the design. That can be a control
step of the FSMD or the activation of a more complex behaviour such as an instruction.

FSMD with Data Patterns

The power estimation approach presented by Zhong et al. is somewhat in between a pattern-
and an activation-based approach [144, 145]. As can be seen from Chapters 4 and 5, this
approach is similar to the one presented in this thesis. Zhong et al. propose to transform the
given design into a CAFD, which is a C/C++ representation of the design’s CDFG. Basically,
the CAFD is a large switch-statement, where each state of the CAFD represents a specific
control step. For each RT component, a virtual component with an associated macro model
is created in the CAFD. During simulation, each in- and output pattern of a component is
passed to the corresponding macro model. At the end of each control step the power of all RT
components of the design is collected and accumulated in order to give the total power of the
actual clock cycle.

Using a CAFD as the executable model for power estimation gives good results, because
these types of models are relatively close to the final implementation at RTL. It is obvious
that creating an executable model that monitors every in- and output pattern of each RT
component and forwards this information to one out of a large set of macro models yields
a very large system model. Since the model is created by a tool and must not be read by
a human, this is not a problem. More important is the fact that the macro models have
to consider each in- and output of all RT components. This will massively slow down the
simulation speed. In order to speed up the simulation, the number of considered data patterns
must be reduced, which will lower the accuracy of the approach. Moreover, synthesis artefacts
like parasitic functionality cannot be modelled, since it is not possible to determine the pattern
of the RT components that are active due to parasitic i. e., unwanted activity.

FSMD with Toggle Count

Reducing the required computational effort can be done by using the more abstract toggle
count per state instead of considering every in- and output pattern of each RT component
individually. Based on the implementation given as FSMD, a characterisation of the design
can be performed. Using statistical methods, the average toggle count per state and unit of
the data path is obtained and annotated to the CAFD. During functional simulation of the
design, toggle information is collected and used as input for the power model. This approach,
which has been proposed by Ahuja et al., therefore requires two different phases [6, 7]. In the
learning phase characterisation of the implementation model i. e., power characterisation as
well as a characterisation of the FSMD model i. e., activity characterisation is performed. In
the second phase, the utilisation phase, the measured activity is applied to the power model
and information about power dissipation is obtained. Using only designs with six to ten
states, a speed-up up to 1.57× is achieved, while having a relative error of 0.25 to 3.81 %,
compared to an RT-level power estimation.
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There is one main disadvantage of this approach. Only a statistical representation of the
toggle count for each state is given, assuming that the activity is roughly the same each time
a specific state of the FSM is entered. For complex designs this is not true. Most controllers
are implemented as Mealy machine. The activity occurring in a specific state therefore also
highly depends on the inputs, applied to the FSM. Of course, each Mealy machine can be
transformed into a Moore machine, where the activity does only depend on the machine’s
state, but this transformation possibly causes a state explosion and is therefore not feasible in
most cases.

Power State Machines

A modelling technique using so-called power state machines (PSMs) was introduced by Benini
et al. in 1998 [17]. This power modelling technique at system level requires the power states
of the modelled components to be known or to be derived from a model at a lower level of
abstraction. In many cases, power states will correspond to functionalities, provided by the
component. For a universal asynchronous receiver/transmitter (UART) this can be IDLE, SEND, or
RECEIVE, for example. If power states are not specified by the component’s documentation, the
states must be identified and power dissipation in the states needs to be distinguished, which
may be a difficult task. Usually, there are only a small number of power states because of the
increased complexity and overhead for supporting the power management [18]. Transitions
between power states are triggered by events. These events need to be generated by a
simulation environment, hence an executable system model is required. In early steps of the
design process, executable models are not available. There are concepts available allowing to
apply formal verification methods to PSMs in order to evaluate power management policies,
like the one presented by Shukla and Gupta [127].

Power states provide an easy way to model the power dissipation of a given design. The
modes itself can be identified easily and associated power values can be obtained in various
ways, starting from a low-level simulation an characterisation and ending at using the value
from the module’s data sheet. The functional model must be extended by adding the capability
to send the required events. If this is not possible, monitors can be added to the design,
monitoring the module’s communication protocol and deriving the module’s actual power
state from it [92, 135]. This technique is discussed below. Originally introduced for estimating
power dissipation of components like hard drives etc., PSMs can only be used for designs
that have clearly distinguishable modes of operation. Also, their power dissipation must
mainly depend on this power state and not on the data that is processed while a certain state
is active.

Instruction Based

If the system is built from cores or components communicating with each other, the approach
proposed by Givargis et al. [60] can be applied. This approach assumes that the individual
cores of a system provide a specific functionality that can be activated by calling a method
of the core, implementing the functionality. This functionality or instruction as the authors
call it, is characterised using a low-level model of the particular core. For a typical UART
the authors mention ENABLE, DISABLE, RESET, and WRITE_BUFFER as possible instructions, for
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example. The created model contains information about the toggle-count of the particular
instruction. During a high-level simulation, the toggle-count for all parts of the systems is
collected. In a second step this information is used to obtain power dissipation values from
a power model. This approach is also applicable for designs, where communication takes
place in terms of messages that are passed from one core to another. An error between 11
and 31 % can be achieved while having a speed-up of about 1000× comparing the C/C++ to
the logic level simulation. An approach very similar was presented by Maldari et al. [95].
Their approach is applied to the AMBA AHB, a SoC communication infrastructure. Typical
instructions are read, write, or idle. An again, the chosen model depends on the component
under observation.

Since performance and accuracy of both approaches depend on the size and the complexity
of the defined instructions this approach is highly scalable. Allowing models of different
complexity to be used, the approach becomes even more scalable. Even though the developer-
based identification of the instructions of a core and the model to be used makes the approach
highly scalable it causes a problem. The developer will typically define the instructions based
on the functional behaviour of the core. This is already shown by the selection made by
the authors themselves in their publication. However, the power model does not necessarily
correspond to the behavioural instructions. Another system breakdown might give a much
better power model, even though this breakdown is not obvious.

Signal Monitors

A very similar but more generic approach has been published by Vece et al. [135]. Their
approach can be used to estimate power dissipation of a SystemC design. The SystemC
module under observation is enclosed by a so-called power estimator. This estimator manly
consists of a simulation engine, also called Power Kernel and a set of user defined power states.
These states are distinct in terms of the algorithm used for characterisation and the different
data that is applied to the power kernel. The developer must also specify a state machine,
defining possible transitions between states and the events that cause such state switches.
The third part of the approach are modified in- and output signals. These augmented signals
allow the power kernel observing the communication of the SystemC module and trigger the
state machine. A very similar, but more advanced approach is presented by Lorenz et al. [92],
which provides sophisticated techniques for driving the state machine such as time-outs.

All approaches using a wrapper or monitor for examining the component under observation
require only a minimum of changes to that component. Only in- and output signals must
be augmented in order to monitor their activity. On the other hand, these black-box-like
approaches suffer from the fact that the internal state of the component is not known and
must be estimated with a low level of confidence. This complicates modelling, especially of
complex behaviour.
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TLM Based

Dhanwada et al. present an approach similar to the signal monitors, but their approach
bases on TLM transactions [49]. The approach assumes that the components of a system
provide different functionalities. It monitors the activation of these functionalities in order to
obtain a power estimate. Communication patterns are identified at a high-level of abstraction.
These patterns in turn are assumed to cause specific patterns of power dissipation. The
authors introduce a so-called hierarchical transaction-level power (HTLP) structure, which allows
different levels of granularity starting from data-phase level up to complex compositions of
various transactions. Having a speed-up between 45 and 4460×, a relative error between
2.60 and 11.19 % compared to a logic level estimation can be achieved. Two very similar
approaches are proposed by Ben Atitallah et al. [14] and Lebreton and Vivet [88], respectively.
The first one also uses a hierarchical description to model power dissipation. In contrast
the approach by Dhanwada et al., they do not model transactions but activities at different
levels of granularity, starting from complex instructions down to more fine-grained single
operations. The second one uses a concept based on power phases. Each phase has associated
a specific power dissipation. This value can then be modified based on the component’s state
i. e., power mode. Like signal monitors, observing the TLM transactions is non-invasive. Since
the pattern of power dissipation depends on the communication pattern, a strong correlation
between both is required. If the power dissipation depends on the data that is been processed,
but which is not part of the transaction e. g., a direct memory access (DMA) operation, it might
be difficult to derive the power dissipation from the communication protocol.

Summary of Activation-Based Approaches

Abstracting from concrete data patterns that are processed by a component to its activations,
a notable simulation and estimation speed-up is achieved. The accuracy of the corresponding
approach depends on the level of granularity, at which the activations are considered as well
as the data-dependency of the underlying power model. While activations of individual states
of an FSM provide relative good estimates, activations of instructions or TLM transactions are
quite more inaccurate. They however are preferred, if the component under observation has
distinct power modes or power states, wherein each state is homogeneous with respect to
its power dissipation. All approaches have in common that they consider the control-flow in
some way and thus are at least implicitly data-dependent.

3.1.3 Stochastic-Based Approaches

While information-theoretic approaches at lower levels of abstraction estimate average activity
of the components based on the entropy of their in- and output signals [96], higher-level
approaches estimate power dissipation based on activation and interaction probability. For
generating appropriate input-stimuli, the behaviour of the individual modules and their
interaction must be known, respectively.
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PSM of Multiple Cores

In 2003 Bergamaschi and Jiang proposed a PSM-based concept where each state of the PSM
represents a specific power consumption mode, rather than a physical state of a certain core
of the SoC [20]. In their concept, each core implements one of three different PSM classes,
depending on the power modes, supported by the particular core. The PSM of each core is
triggered by an external power management unit (PMU), selecting the actual power mode or
state, respectively. It is also possible that the PSMs directly interact with each other. The
compound system is also represented as a PSM. This PSM is created by building the product
state machine of all core-PSMs. Power dissipation of the overall system is obtained using a
symbolic simulation. Starting from the initial state of the SoC-PSM each reachable state is
derived. Specifying invalid states and the input given by the PMU, the set of reachable states
can be reduced. While traversing all possible paths of the PSM, minimal and maximal power
dissipation is computed. Similar to formal verification techniques, a power reachability analysis
can be performed this way.

This concept is well suited for early estimation, where no detailed information about the
system implementation is available. Simple and generic core-PSMs allow usage of a PSM
library, containing pre-characterised power models. Symbolic simulation enables a verification-
like assessment of the system’s power dissipation. Power constraints like maximal power
dissipation can be formally checked. However, pre-defined PSM classes are only suitable for
cores with a simple behaviour of the power dissipation e. g., software processors. Full-custom
hardware or ASICs have much more complex power states. Introducing more complex PSMs
to this approach will result in a very large state space when building the SoC-PSM. Moreover,
power estimates don not rely on a given use case. Total energy consumption can only hardly
be predicted.

Neural Networks

Veller et al. have patented an approach that uses a neural network for power estimation [136].
The system is assumed to be a set of components using a message- or transaction-based
communication infrastructure. The approach provides a protocol library and each message
that is recognised during communication is mapped to a specific step in the used com-
munication protocol. Several transactions can be combined to so-called super transactions,
which represent complex control operations, for example. In a second step, a low-level i. e.,
logic-level description of a design is enriched with monitors. These monitors are then used
to build a power per message/transaction library. This library is used to train the neural
network. That is, the neural network represents the high-level power model of the given
design.

This approach is suitable for simple designs where transactions are used to initiate certain
behaviour. This is even true for complex protocols, where a sequence of transactions causes a
particular behaviour regarding power dissipation. Nevertheless, the accuracy of the approach
depends on the uniqueness of the transactions. The given approach may fail, if a sequence
of transactions is used to configure a hardware accelerator component and where the last
message initiates the operation of the component. In this simple but frequently occurring
example only one single bit might set the power mode in which the component will operate.
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It is obvious that the power dissipation of the component highly depends on this particular
bit. If the other bits of the transactions heavily vary e. g., if a lot of data is to be transferred to
the component, it will be very difficult for the neural network to learn the meaning of that
specific bit, which is responsible for setting the power mode.

Summary of Stochastic-Based Approached

Having probabilities used as stimulation data, statements about the upper and lower bound
of the power dissipation are possible. If the probabilities are derived from a set of functional
simulations, average power dissipation for the given use cases can be estimated, too. Main
benefit of stochastic-based approaches is that they allow a (semi-)formal verification of the
design’s power dissipation. That is, corner cases can be identified automatically. These
are hard to identify using concrete use cases, especially if the corner case origins from an
unknown side-effect.

3.1.4 Experience-Based Approaches

The last class of estimation approaches is more a class of guess- and experience-based
approaches. All approaches have in common, that estimates highly depend on the experience
of the designer. They are often used when existing designs are mapped onto a new technology.
In this case, low-level estimates, which can be used for characterisation are not available
yet. Estimates from older technologies however are available and can be used to perform an
extrapolation.

Spreadsheet-Based approaches

In very early design stages spreadsheet-based approaches are used. Such spreadsheets are
usually provided by the technology vendor and offer only very coarse-grained trade-offs.
The designer adds custom information like usage, switching activity, or certain architecture
parameters. This information is typically based on the experience of the designer. The
spreadsheet then calculates the power dissipation, temperature development and so forth.
The concrete activity and behaviour of the intended application or design, respectively is
not considered. Since influences of optimisation techniques can only hardly be predicted,
spreadsheets approaches are mainly used for designs relying on regular structures like FPGAs.
An example for such a spreadsheet is the Xilinx XPower Estimator [141], which is available
even as a smartphone app [140].

Spreadsheets are a well-known tool for estimating the power dissipation of FPGAs. Having
the spreadsheet available and having an idea of the activity and size of the design under
development, early estimates are possible. These can then be used for selecting the right
FPGA for the given application. The quality of the estimates depends on the quality of
the power models, embedded in the spreadsheet. Activity and size are hard to predict,
even if a behavioural RT-level description of the design exists, since there are too many
optimisations that can be performed by the synthesis tool, which have a large effect on the
resulting implementation.
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Data Sheet and Experience-Based Approaches

If no other information is available, the data sheet of the module can be used as reference. This
is most often the case, if the module is provided as black-box-model by a third-party-vendor
and if non-invasive approaches like signal monitors or protocol state machines are not possible
or too complex to implement. Depending on the granularity of the data sheet, individual
power or operation modes are given, for which values regarding the power dissipation are
also given. By having a rough understanding in the behaviour of the system and how it
interacts with the module, an estimate of the module’s power dissipation can be calculated.

Ultimately, if no information is available at all i. e., the design is available as box-and-arrow
diagram, only and no decision regarding technology and third-party-vendors had been made,
power estimation completely relies on the experience of the developer or some knowledge-
data base. In this case, experience from older projects and designs, that where alike the
actual one, are used to made some kind of an educated guess. If the technology used for a
well-known design is scaled-down for example, this can be used for estimating the resulting
power dissipation in a first approximation.

3.1.5 System-Level Power Estimation

System-level power estimation is a topic of its own. It defies the previous classification.
While the approaches and techniques mentioned above are specific to one type of embedded
modules, system-level power estimation must deal with different types, such as hardware,
software, and IP modules. Section 4.1 argues that system-level power estimation must
comprise different characterisation technologies in order to cope with the different types of
modules. This is reflected in the following sections. It can be seen that some of approaches,
presented below combine multiple techniques, mentioned in the previous sections.

Platform-Based Design

Key for enabling system-level power estimation is the utilisation of platform-based design
during the design phase. If platform-based design, as proposed by Sangiovanni-Vincentelli
[120, 122] is used, the functionality of the system is defined separately from its architecture.
This enables an evolution of future hardware generations. A functional refinement is done
by mapping the functionality onto existing modules or by developing ASIPs along with
dedicated hardware accelerators or ASICs. In platform-based design, individual modules of
the system are specified at different levels of abstraction. Multi-abstraction-level simulation is
possible by generating TLM wrappers of each of the system’s modules.

The refinement and module selection decision are guided by the goals and constraints,
specified along with the functional specification. Thus, for each level of abstraction at which a
module is specified, a corresponding power model must exist. During the multi-abstraction-
level simulation, these models can be used to obtain an estimate of the overall system’s
power dissipation. It is obvious that the accuracy of the estimate per module depends on the
abstraction level, the particular module is specified at. The following approaches deal with
these heterogeneous multi-abstraction-level simulations.
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Hardware/Software Co-Estimation

Already back in 1998, Fornaciari et al. presented an approach for co-estimating hard- and
software modules [52]. A detailed RT-level power model is used for characterising the
hardware modules of the design. The model considers components of the data path, the
controller, memory, etc. The generated model is weakly pattern dependent i. e., during power
estimation only switching probabilities, reflecting the typical behaviour are required. For
estimating software power, a simpler model is used. The given code is compiled into a virtual
instruction set, making the approach processor independent. Software power dissipation is
then computed by assuming a constant power dissipation, if a certain instruction is executed.
This information is then abstracted to basic block level. For the first time, this approach allows
a co-estimation of hard- and software modules. While a detailed model is used for estimating
hardware modules, the software model is kept simple, as the authors point out themselves. It
was sufficient for that time, but it does not meet current requirements. Today’s software cores
are much too complicated to be modelled by this approach.

Power Monitors

The concept of a multi-abstraction-level simulation was already implemented by Bansal et al.
in 2005 [12]. The authors argued that adding power estimation capabilities to a high-level
simulation slows down the simulation speed by a factor of about 8.50. They tackled this
problem by distributing the estimation effort unevenly over space and time. Particularly,
the estimation effort is different for different modules and may also vary over time. This is
achieved by adding so-called power monitors to the system. There exist five different monitor
types for the different types of modules i. e., there exists monitors for central processing units
(CPUs), buses, memories, and caches as well as for ASICs. Like the signal monitors, proposed
by Vece et al. [135] and Lorenz et al. [92], they monitor the in- and output of each module.
Each monitor is equipped with different power models, allowing a run-time trade-off between
accuracy and performance. For ASICs, models at logic level, at RTL, and at behavioural level
with and without sampling applied, are available.

Using different power models during simulation and selecting the appropriate accuracy
depending on the component and time, allows a fast simulation while having a precise
accuracy, whenever needed. For the two power models at behavioural level, Bansal et al. refer
to the work of Zhong et al. [144], which is outlined above. Thus, their approach has the same
drawbacks such as that parasitic functionality cannot be considered.

System-Level Power State Machines

For high-level power estimation Streubühr et al. propose a process very similar to the already
known PSMs [130]. A SystemC-based design description is developed by extending so-called
virtual processing components. Each processing component implements a single module of the
system. It has three different execution modes, namely IDLE, EXEC, and STALL. A module can
also operate at different power modes. Each combination of execution and power mode has a
dedicated power dissipation as well as a transfer delay assigned. The later one is used for
performance estimation.
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With a description at such coarse-grained level of detail, a fast simulation and estimation is
possible. Besides detailed drawbacks, for example that a delay, which depends on the data
being processed, cannot be modelled directly, only rough estimates can be obtained, since the
processed data is not considered at all. Having only three different execution modes available
for modelling the power dissipation of a module is not suitable for the complex modules,
embedded in modern SoCs.

Lajolo et al. [85] propose a technique for hardware/software co-estimation, which utilises
different power estimators. Each estimator is plugged into a system-level simulation master.
During simulation, the individual estimators such as RT-level estimators or instruction set
simulators (ISSs), are activated whenever needed. The authors propose some speed-up
techniques, which reduce the number of activations of the power estimators. For software
macro modelling is applied, allowing an estimation of complex instructions like operation and
assignment instead of estimating each individual micro-code instruction of the processor.
For hardware modules energy and delay caching is used. For a part of the control flow whose
power dissipation has only a small variance i. e., a small data dependency, a single power
value can be used as an approximation. Parts of the control-flow with a higher variance must
be estimated using the RT-level power estimator. This caching gives an average speed-up of
13×, while the software macro models provide an average speed-up of about 44.80×. The
average estimation error for total energy dissipation is around 24.30 %.

3.1.6 Summary of Power Estimation Approaches

The previous sections classified various approaches and techniques for power estimation.
Figure 3.1 on the following page depicts the coarse classification of the approaches mentioned
above. The approaches and techniques are classified based on the level of detail as well as
their model of computation during estimation i. e., during usage of the generated model. The
x-axis shows the level of detail which is required by the generated model to compute the
power dissipation. The y-axis shows the model of computation implemented by the generated
model.

Summarising it can be stated that experience-based approaches provide the fastest estimates.
Nearly no computation effort is required, but a fairly good understanding of the design under
development is required, in order to provide the measures, required by the spread-sheets etc.
Stochastic-based approaches benefit from the fact that they do not need a concrete use case.
By using probabilities, estimation of upper and lower bound of the power dissipation as well
as identification of corner cases is possible. It also allows a formal verification of the design.
Activation-based pattern can be used, if they have been created on a characterisation of the
underlying RT implementation of the design. The accuracy of the model then highly depends
on the granularity i. e., the level of detail the activations are considered at. Pattern-based
approaches are slow in terms of simulation speed, since they typically consider the same
amount of data as the behavioural model.

The temporal resolution of the presented approaches depends on their level of detail. The
more low-level details are considered by the model, the more fine-grained the temporal
resolution typically is. At the lowest level of abstraction, tools like SPICE allow a continuous
estimation i. e., a suitable sample rate is automatically determined by SPICE and only limited
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Figure 3.1: Coarse classification of existing power estimation approaches — A higher level of
abstraction typically gives faster, while lower levels give more accurate results. A
pure simulative model of computation leads to coverage problems, while formal
approaches often suffer from infeasibility. Simulation speed is is third dimension,
but comparable values are regrettably difficult to obtain from the presented papers
and articles. It can be assumed that a lower level of details as well as simpler
model of computation increases simulation speed.
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by the resolution of the data types used for representing the time. Depending in the used
delay model, estimation approaches at logic level provide a temporal resolution higher than a
clock cycle i. e., they are able to model glitches, hazards, etc. All estimation approaches at RTL
typically provide cycle-accurate power estimates. Above RTL, approaches and their temporal
resolution become more diverse. Activation-based approaches that consider states of an
FSM still provide cycle-accurate estimates, while approaches considering TLM transactions,
instructions, power states, etc. provide a granularity that depends on the length of the
particular activation. Approaches, which use spread- or even data sheets have no temporal
resolution at all. They only provide a single value such as total energy or average power
dissipation.

In order to obtain fast, yet accurate estimates an approach should be located between
the pattern- and activation-based approaches. Activations can be easily obtained during
behavioural simulation while a reduced level of detail enables faster estimations. However,
the chosen level of detail will determine the accuracy of the approach and must therefore be
chosen wisely. The implications and requirements that are arising from this knowledge are
discussed in Section 3.3.

3.2 RT-Level Abstraction Techniques

After knowing different types and techniques for estimating power dissipation of embedded
hardware, the most important abstraction and model generation techniques can be discussed.
These are techniques allowing the generation of a high-level model, which in turn allows a
fast simulation of the design. The high-level model itself is augmented with non-functional
information such as power and timing. A static analysis is difficult, if not impossible due to
the dynamic behaviour of the system and its complex interactions [57].

Generally, two types of abstraction techniques can be identified. The first one abstracts
the characterised low-level model to a higher-level model, which only models the power
dissipation. That is, the high-level model does not contain any information about the
functional behaviour. Only the control-flow is taken into account, as far as this is necessary for
estimating the power dissipation. Typical representatives of this class are all approaches using
only a PSM and obviously all estimation approaches, relying on the developer’s experience.
Some of these techniques have been discussed in the previous section.

The second class is more advanced. Besides the power dissipation, this class models the
functional behaviour. This feature is a key for embedding the generated model into a virtual
system prototype, as required by requirement 8. In order to fulfil the requirement, only the
second class is considered in this thesis. From Section 2.4, it should be clear that the low-level
model must be at least at RTL or even lower, in order to obtain accurate results. Therefore,
this section will focus on abstraction techniques, creating a high-level model, based on an
RT-level description.
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Already back in 1995 Hojati and Brayton proposed a technique for abstracting the behaviour
of a data paths [77]. They identified two different abstraction steps that can be performed.
Data path abstraction reduces the complexity of the data path by removing parts of it or by
reducing the number of bits within it. Control abstraction however, tries to reduce the state
space to be considered. That is, it tries reducing the number of the controller’s output values
or the number of its states. Both steps must be taken for creating a model with an acceptable
complexity, which in turn will result in a reasonable simulation time.

Host-Compiled Software

Model generation for embedded software can be done straight-forward. The software is
cross-compiled for the target architecture. A basic block analysis and characterisation is then
performed. Collected information is then back-annotated to the source code, which in turn
can be compiled for execution on the host system, as proposed by Gerstlauer et al. [57].

For embedded hardware abstraction is more complicated. At RTL, embedded hardware
is most often described as set of concurrently running processes that are communicating
with each other and their environment. Simulation is typically done using a discrete-event
simulation. A direct translation of such a model into a software model is not possible.
Instead, fundamental structure and behavioural properties are extracted and a new model is
generated.

Boolean Expressions

At RTL or logic level the design can be seen as set of Boolean equations, describing the
behaviour. These equations can be extracted and a Boolean network [13] can be generated.
One typical purpose of this kind of abstraction is to allow a formal verification of the design.
Tools like Vapor as proposed by Andraus and Sakallah [8] are typically used for allowing such
an automatic verification of the given design. That is, it can be checked, if certain assumptions
are fulfilled by the design’s low-level implementation. These techniques can also be used, if
automatic power verification e. g., using power contracts, as proposed by Nitsche et al. [107]
should be performed.

Data Flow, Task Graphs, and State Machines

If only a rough representation of the behaviour is required, process networks, state machines,
or data-flow-based models can be used as the most abstract level. These models do not
describe the exact behaviour of the design, but model its behaviour in terms of functional
tasks, exchanging messages over dedicated or shared channels. These channels can be used
for exchanging data as well as for synchronising the tasks. During simulation, events and
activations can be monitored.
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TLM Transactions

Models at RTL can also be abstracted into equivalent TLM descriptions, as shown by Bombieri
et al. [23, 26]. The design is converted into an extended FSM (EFSM), which is basically a
conventional FSM with register values from the data path. This state machine is automatically
extracted and its equivalence to the RT-level model is checked automatically [24]. The EFSM
is then embedded in a TLM slave module, which is triggered from its environment. Execution
is then performed in three steps, namely reading input, performing computation, and generating
output. A very similar approach is presented by Lorenz et al. [91]. This approach has also been
extended for enabling power estimation, by introducing a so-called protocol state machine [92].
This technique allows a non-invasive power estimation of TLM modules. Therefore, it can also
be used for black-box IP modules. It might happen that the first two phases i. e., reading the
input and performing the computation are interleaved. That is, the computation is performed
and other input is requested during the computation phase. These types of behaviour cannot
be modelled by these approaches.

Software

In contrast to the initially mentioned abstraction, which creates a host-compiled software
model from an embedded software module, this section describes approaches for generating
a power and timing augmented software model from an RT-level model. If the RT-level
model was obtained using a high-level synthesis, this opens the possibility to perform
some back annotation. That is, directly enriching the input model with the properties that
had been obtained during characterisation. While this way seems obvious for power and
timing estimation of software modules, it is not that easy for hardware modules. During
the compilation process, a lot of transformations and optimisations are applied to the input
model. Regarding high-level synthesis it becomes even more difficult, since the synthesis also
introduces resource sharing, parallelism, etc. It is thus very hard, not to say infeasible, to
identify which artefact at RTL is caused by which entity or instruction in the input model.

Krishnaiah et al. stated that behavioural models with algorithmic descriptions are ten times
faster than those with architectural details [84]. The authors give three advises for accelerating
SystemC simulations: first, minimise architectural detail; second, minimise the number of
concurrent processes, and finally maximise the usage of native C/C++ data types. These
recommendations are followed by most approaches.

Back in 2000, Greaves presented a tool called VTOC, which was able to convert a synthesisable
Verilog model into an ANSI C model [61]. In a first step, the Verilog hierarchy is flattened,
until a single module, containing the complete behaviour of the Verilog module, is available.
For each assignment type like blocking, non-blocking, etc., a corresponding C construct
is selected. Dependencies between the assignments are resolved by a static schedule and
intermediate variables are introduced, whenever needed. Using this approach a speed-
up between 15.74 and 105.00×, depending on the granularity of the input model, can be
achieved. The approach has been successfully applied to an industrial five million logic
gategate design [129].
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Bombieri et al. follow a very similar approach, but spent some significant effort for generating
an optimised C/C++ model. Almost all structural information is discarded, while preserving
the functionality of the module. In a loop rolling transformation, multiple instance if the
same entity are removed and replaced by a loop, implementing the same behaviour. The
generated model cannot only be used for a high-level simulation, but also for re-synthesis
to RTL. Experiments showed, that area optimisation and re-synthesis steps allow an area
improvement by a factor of 3 and a performance improvement by a factor of 2.50, compared
to the original RT-level model.

A very similar approach is taken by the well-known tool Verilator. The open source tool
was introduced in 1994 and creates a cycle-accurate behavioural C/C++ model from a given
synthesisable Verilog model. Verilator resolves the module hierarchy i. e., it resolves all
modules until only one top-level module is left. This is very similar to a synthesis step.
Verilator also simplifies the four-valued logic that is supported by Verilog to a two-valued
logic that is used in the generated model. By applying a zero-delay simulation model, the
generated C++ model can be simulated about 100 times faster than the original input model,
which typically has a more fine-grained event-driven simulation semantic.

A way for creating Systems Modeling Language (SysML), which is an extension of Unified
Modeling Language (UML), from RT-level models is presented by Bombieri et al. [27]. Based
on their existing work [25], where the authors presented a way for generating embedded
software from RT-level modules, they propose a process that allows generation of C/C++,
SystemC, or Java models by previously generating SysML.

All these approaches, which are generating some kind of a software model from the RT-level
model have in common that the generated model in terms of lines of code, is significantly
larger than the original input model. Zhong et al. showed that a CAFD abstracted from an
RT-level description, is some kind of a three-address-code. This kind of code can be easily
optimised by the compiler. Therefore, no significant increase in simulation time is observable,
when executing the generated binary [145].

3.2.1 Summary of Abstraction Techniques

Having the challenges identified in Section 1.2 and the existing approaches just discussed in
mind, an abstraction from RTL to a power and timing augmented high-level model can be
developed. As mentioned above, performing a back-annotation i. e., augmenting the input
model with non-functional properties is not possible. Thus, a new model must be generated,
containing a behavioural description of the data path as well as all properties obtained during
characterisation. In order to allow detailed estimations, the generated model should be a
CAFD, which is enriched with power and timing information. By using C/C++ as language
for the generated model, a compiled simulation is possible, which is expected to provide a
reasonable speed-up.

Host-compiled software cannot be used. It is only applicable for embedded software. Boolean
expressions are a quite powerful tool. However, they are better suited for formal verification
and estimation of upper and lower bounds of the power dissipation, than for the exact power
estimation with respect to a given use case. If a fast simulation is required, task graphs
or state machines can be used. However, since they lack of detailed information about the
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behaviour, they cannot be used for a behavioural simulation of the given design. Approaches
using TLM wrappers or the like are well suited for black-box IP modules, because they do
not require any or only a minimal change to the existing model. However, these types of
approaches suffer from a lack of accuracy, if the component has an internal state. Creating a
software model from the given module has several benefits. By abstracting from architectural
details, simulation speed can be improved without changing the accuracy or the timing of
the behavioural simulation. The generated software model can also easily be augmented
with power information, still considering all architectural artefacts that had been removed
by the behavioural abstraction step. In other words, the behavioural simulation considers
only necessary parts of the design, while the power estimation also considers all artefacts
introduced by the high-level synthesis. This will allow a fast but still accurate simulation and
estimation of the design.

3.3 Summary

This chapter presented existing work regarding power estimation and characterisation as
well as several approaches and techniques for model abstraction. As can be seen from the
large number of different approaches, power estimation can be performed in very different
ways. Accurate estimation is typically performed at RTL. Even though low-level approaches
at, or even below RTL will provide accurate estimation results, they are very time consuming.
Therefore, they cannot be used for estimating such complex systems, like the ones considered
in this thesis. Early or high-level estimation approaches however, are available but inherently
cannot consider the actual implementation of the behaviour. Therefore, they lack of the
required accuracy.

Simulating and estimating such complex systems in a reasonable amount of time, while
preserving the desired accuracy of the estimation results, requires an appropriate level of
abstraction. Estimation must be performed fast but accuracy requirements must still be met.
None of the presented approaches and technologies is able to fulfil all the challenges, stated
in Section 1.1.

Considering these challenges and the more detailed requirements mentioned in Chapter 4,
selected approaches can be endorsed and modified to facilitate the development of a new and
sophisticated approach for fast high-level power and timing estimation with respect to low-
level properties. Using a high-level synthesis, a high-level input model can be transformed
into an RT-level description. The low-level description is characterised with respect to as
many physical properties as needed. Using this information, an abstraction can be performed.
The behaviour is described in terms of combinational macros, which are at the next level of
abstraction above RTL. The control-flow can be easily represented as an FSM, which allows
cycle-accurate estimates. Together with the macros, the FSM can be used to build a CAFD that
is augmented with accurate power and timing information. Using C/C++ as output model
language, a compiled simulation becomes feasible, which is expected to provide a significant
speed-up compared to the RT-level simulation and which allows the model to be embedded
into a virtual system prototype.
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Summarising the existing work and rating the individual approaches and techniques, a new
characterisation and model generation process can be outlined. Such an ideal design process
would be four-fold:

1. The process starts at a very high level of abstraction, where there is only a rough idea
about the design’s implementation. Of course, required functionality is known and
might be represented as box-and-arrow diagram, but hardware/software partitioning
has not been performed, yet. Despite the functionality, some ideas about existing
components and modules that should be reused or adapted are also known. At this first
stage in the design process, high-level approaches can be used to support the design
decisions especially with respect to the platform selection and the hardware/software
partitioning.

2. This first step is followed by a newly developed second design step. This level of
abstraction can be referred to as platform level. Functionality to be implemented as well
as the underlying platform is known. There is still a large degree of freedom regarding
module selection, structure of the interconnect, or implementation and optimisation of
full-custom hardware components, for example. At this level, a framework is required
to guide the developer through the design process and provide different Pareto-optimal
solutions to the developer in order to support the design space exploration.

3. The third step is performed on a very low-level of abstraction. Most decisions have
been made and design space exploration is nearly completed. During this step, focus
is on optimising the implementation of the selected modules and platform artefacts.
Depending on the required level of accuracy, some parts of the design can be estimated
at a low level of abstraction, but this is done for each part individually. The surrounding
environment i. e., the system the module is part of, serves as test bench and provides
the stimuli for characterising the particular module.

4. Finally, information obtained during characterisation is used to create a high-level
model of the module. Besides the behaviour this model contains information about
non-functional properties like power and timing. The model itself can then be embedded
into a virtual system prototype, allowing an estimation of the module with respect to
the behaviour of the overall systems and by applying a large number of complex use
cases.

The detailed requirements to such a characterisation and model generation process are
identified in the following chapter. The chapter also shows how such a process can be
designed and which problems must be addressed.
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Chapter4
Power Estimation &
Characterisation

Abstract
This chapter presents the proposed techniques for automatically identifying
and characterising combinational macros within a given full-custom hard-
ware module, as well as considering as many synthesis artefacts as possible.
Based on the RT-level data path and its corresponding controller, both created
by the high-level synthesis, a characterisation of the module is performed.
Combinational macros are automatically identified and augmented with ac-
curate power and timing information. Together with information about
non-functional properties like clock or controller power, they can be used to
create an executable, power and timing aware high-level model

The chapter starts with an overview of the overall characterisation process,
the proposed flow is part of. After outlining a typical high-level synthesis
of full-custom hardware modules, the structure of the generated RT-level
description is explained. This description is the input model to the proposed
characterisation process. A detailed description of the identification process
for combinational macros as well as their characterisation is given. Synthesis
artefacts like static power dissipation or clock and controller power are also
taken into consideration.

55



Chapter 4 Power Estimation & Characterisation

The previous chapters made clear that power dissipation is still an important issue in
today’s system design process. It outlined the basics that are required for creating a new,

sophisticated and versatile power and timing estimation process. The first question to be
answered when setting up such a new power and timing estimation process is the question
for the causes of power dissipation, since these must be tackled by the estimation process.
In Chapter 2 this question is answered in a technical way by explaining static and dynamic
power dissipation. But the effects described there are only the physical cause i. e., the system’s
physical reaction to an external event. These effects are not the initial cause. Remembering
the multimedia-player mentioned in Chapter 1, the initial root cause for power dissipation is
the user, using the device or more precisely the system’s stimulus given by the user or the
system’s environment, respectively.

Such a stimulus is referred to as use case. A use case is a high-level description of how the
user or the system’s environment interacts with the device. In case of the multimedia player
the user can play music files, show images, or play videos, for instance. Each use case itself
can be divided into sub-cases. A music file, for example can be encoded in stereo or mono. If
the multimedia player has two audio-decoder queues, one for the left and one for the right
channel, one of the queues can be switched off, if a mono-encoded file is played. Yet, these
subdivisions are still not sufficient enough. The music files can be encoded with different
bit rates or can even have complete different file formats. Interestingly the same applies to
playing videos or even to showing images. Compressing file formats like JPEG, for example
use different channels, one for each colour and like music files, they also support different
compression rates. Even the decoding algorithms are very similar. Most of them rely on
fast Fourier transforms (FFTs) or discrete cosine transforms (DCTs) and thus can share respective
hardware co-processors. Power estimation at a high-level of abstraction however, cannot
regard all the different behaviours i. e., bit rates, channels, file formats, etc.

While power estimation approaches at a high level of abstraction might be suitable for power
budgeting, they cannot be used if a detailed analysis is required. Power estimation at a high
level of abstraction will always give very inaccurate estimates, as already shown in Section 3.1.
The reason for that is very simple. For high-level estimation approaches it is hard to consider
implementation artefacts of the specified behaviour. There are too many implementation
details and correlations between the individual parts of the design that must be taken into
consideration, requiring a very large set of use cases that has to cover very little details of the
actual implementation. If the system shall be broken down into such small and fine-grained
use cases, it is obviously infeasible for the designer to cover or even to identify each one of
them.

A closer look at the fine-grained use cases reveals that they will be inherently activated by the
input file and have to cover each possible control flow. That is, that power dissipation directly
depends on the control flow, resulting from the input data of the system. In order to provide
accurate estimates, it is mandatory to consider the concrete control flow as it is enforced by
the input data. Since the control flow is directly given by the implementation of the system,
it can be analysed automatically. Analysing the control flow also adds the benefit that the
design, once characterised with a small representative set of use cases, can be estimated using
a large variety of different use cases. This leads to the conclusion that characterisation must
be performed on the actual implementation of the design, rather than on the use cases.
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Automated analysis of the control flow allows a far more detailed look at the behaviour, as
this could be done manually by a designer, who is trying to provide suitable use cases. This is
true for all types of modules. No matter whether it is a hardware, a software or an IP module.
As stated earlier, power dissipation of the overall system depends on the external stimulus as
well as the internal interaction of the different modules of the system. That is, all different
types of modules must be considered holistically.

In order to provide a flexible power estimation model, an accurate and versatile characteri-
sation is required. Since the model for power and timing estimation will be generated only
once, but is used several times, a higher effort for characterisation and model generation
is acceptable, as long as the simulation of the generated model is fast. However, as stated
in Section 1.2, the characterisation must be performed for each system individually. Thus,
an extreme long characterisation, which might be acceptable for the characterisation of an
RT-level component library, is still not applicable. A good trade-off between characterisation
effort and estimation accuracy must be found.

As seen in the previous chapter, a lot of power estimation approaches at various levels of
abstraction exist. Simplistically, it can be said that low-level approaches provide accurate
results, but require too much computation time. High-level approaches however, allow fast
simulations but give inadequate estimates. It is therefore a necessary compromise which
combines the advantages of both, the quick characterisation and the accurate estimation. In
expansion to the challenges mentioned in Section 1.2, the following more precise requirements
to a fast, but sill accurate high-level power and timing estimation process can be identified:

1. Even though this thesis will focus on a high-level estimation process for embedded
hardware modules, the proposed characterisation and estimation process must allow
the consideration of larger and heterogeneous systems, the hardware module is possibly
part of.

2. Since the behaviour and thus power dissipation of the hardware module depends on
the system the module is part of as well as the way it interacts with the other modules
of the systems, the manner in which the module is used within the system must be
regarded, too.

3. Dynamic as well as static power dissipation are inherently structural properties. There-
fore, the new estimation process must consider artefacts introduced by the high-level
synthesis. Therefore, not the behavioural description must be considered, but the
structural RT-level description, generated by the high-level synthesis tool must be used
as input model for the characterisation process.

4. The characterisation process should only be based on structural properties like switched
capacitance, which are fixed after synthesis. These properties should be separated from
physical parameters like supply voltage or clock frequency, which might vary over time
or between different system instances during design space exploration.

5. Since especially dynamic power dissipation is data dependent, its characterisation
and estimation must be done with respect to the data that is processed by the module.
Characterisation must therefore be performed with data and workloads that are typically
processed by the module.
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6. In order to provide fast, yet accurate estimates, a high-level model must be generated
containing as much low-level information as necessary for giving accurate estimates,
while still allowing a fast simulation and estimation.

7. In order to be as flexible as possible, the proposed process must allow an estimation of
the module’s power dissipation and timing behaviour under consideration of various
use cases and scenarios.

8. For supplementing requirement 1, it must be possible to embed the generated power
and timing model into a larger and heterogeneous virtual system prototype, allowing
an assessment of the overall system’s metrics.

4.1 The COMPLEX Design Space Exploration Process

Enabling such a holistic approach that does not only allow estimating digital hardware
modules, but other parts of the system as well, leads to some additional requirements. A
typical embedded system can be split in three different types of components. There are the
aforementioned digital, often full-custom ASICs, there is software, running on some kind of
embedded processor, and there are IP modules, available from third-party vendors. Due to
the diversity of all these types, each one requires its own estimation techniques and tools.
Although this thesis focuses on full-custom digital hardware modules, it must be seen in
a larger context, well knowing that the proposed estimation process for digital hardware
modules must be usable together with the estimation processes for the other module types.

The presented approach is part of a larger estimation framework that allows a fast and
accurate power and timing estimation of the overall system, which is built from all component
types. The system estimation process was developed by an international consortium during
the EU FP7 Project COMPLEX [1]. An overview of the proposed system estimation process is
given in several publications [63, 65, 66], each one with its own focus on a specific aspect of
the estimation process. By considering complex and heterogeneous systems, the COMPLEX
project inherently fulfils requirement 1. The proposed process is outlined in Figure 4.1.

The COMPLEX estimation process starts with an executable description of the system be-
haviour given as C/C++ or SystemC source code. The design is verified by simulation using
a set of use cases. After the correct behaviour of the system has been proven, the system is
partitioned. This can be done automatically, but is typically done manually, since automatic
hard-/software partition is an ambitious task of its own. In COMPLEX, the hard-/software
separation is performed by the tool SMOG, allowing a user-constrained semi-automatic hard-
/software separation. It also generates a test bench for the separated module. Input stimuli of
the separated module are monitored during a functional simulation of the overall system and
serve as input to the test bench, used for simulating the separated module individually. This
allows a self-contained simulation and characterisation of the module while still considering
the overall system behaviour and module interaction. Having a hard-/software separation
tool available that is able to automatically generate a test bench with respect to the overall
system behaviour allows a characterisation of an individual system module with respect the
overall system’s behaviour. With this, requirement 2 is fulfilled.
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Use
case

C/C++/SystemC input model User

Hard- / Software partitioning

Hardware
modules
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modules
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Software
characterisation
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Power & timing augmented SystemC model
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Figure 4.1: Design process, as proposed by the project COMPLEX — A complex design
containing full-custom hardware, software, and IP modules is split into individual
parts. Each module is characterised using the appropriate tool. After charac-
terisation, a virtual system is created that contains augmented versions of the
characterised modules. Estimates obtained during simulation of the virtual system
are used during the next iteration step of the design space exploration.
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For each module type, an individual characterisation is performed, using different techniques
for hardware [78], software [32], and black-box IP modules [91]. All characterisation processes
have in common that they create a behavioural description of the particular module. This
description is augmented with estimated power and timing information. An executable model
of the overall system is generated that allows a fast and precise power and timing estimation
of the entire system. This self-simulating model enables a functional simulation of the system
while simultaneously estimating power dissipation and exact timing. This is done using
the same use cases as has been used for simulating the pure behavioural description of the
system. The results of the simulation, given as traces, for example, are then used to evaluate
the system and the chosen implementation.

4.2 Power Estimation Process for Digital Hardware

While power and timing estimation of software and IP modules is described by Brandolese
and Fornaciari [32] and Lorenz et al. [91], respectively, this thesis focuses on power and timing
estimation of full-custom digital hardware modules. Some of the methods and procedures
described here as well as in Chapter 5, have previously been published [63–67, 78].

4.2.1 Basic Idea

In Section 3.1 it had been stated, that an RT-level estimation is time-consuming, because it
considers individual RT components. High-level estimation however lacks of the desired
accuracy. The presented approach combines the benefits of both abstractions levels by
automatically creating a fast high-level model that considers as much low-level information
as needed for providing accurate estimation results.

The basic idea of the approach is to consider RT components that are jointly active at once.
In analogy to a basic block known from software development, such a set of atomically
executed operations is called hardware basic block. By considering such a set of jointly active
RT components at once, a significant simulation speed-up is expected. This is reinforced by
the fact that certain RT components do not need to be included in the behavioural simulation
but during characterisation, only.

The hardware basic blocks are automatically identified and characterised. Besides the basic
blocks, other design parts such as clock-tree, controller, etc. must be considered, too. During
characterisation, concrete data patterns will be used. This allows modelling data-dependencies
implicitly and therefore will provide reliable estimates.

A high-level synthesis is used to refine the initially pure behavioural description given in
C/C++ and SystemC into an RT-level description. This description along with representative
data patterns is then used for characterising the design. From all information obtained during
design analysis and characterisation, an executable C++-based high-level model is generated.
This high-level model is a behavioural virtual prototype of the intended design. Besides the
functional behaviour, the prototype also provides accurate information about the design’s
power dissipation and timing behaviour. It can then be used to perform fast, yet accurate
estimations considering a large number of complex and holistic use cases. Figure 4.2 shows

60



4.2 Power Estimation Process for Digital Hardware

how the proposed flow can be mapped onto the well-known Y-Chart, proposed by Gajski and
Kuhn [53].

StructuralBehavioural

Physical

Circuit level

Logic level

Processor level

System level

Transistors

Logic gates

RT components

Processing elements

1 HW/SW separation
& task mapping

2 High-level
synthesis

3 Characterisation
& model generation

4 Virtual system
generation

Figure 4.2: Mapping of the proposed process onto the Y-Chart — The process starts with
pure behavioural description given in C/C++/SystemC. Hardware/software sepa-
ration and task mapping are performed, both adding structural information to
behavioural description. In a second step, a high-level synthesis refines the hard-
ware modules onto structural RTL. During characterisation and model generation,
which is the third step, information like dynamic and static power are added to
the cycle-accurate behavioural model. During the final virtual system generation
step all augmented sub-models are re-assembled to create the power and timing
aware overall system model.

4.2.2 Estimation Process Outline

As already mentioned in the previous section, the overall system is given as pure behavioural
description in C/C++ or SystemC. By performing a user-guided hardware/software separation
followed by a task mapping, structural information is added to the model. After this step, the
processing unit of each task is known. That is, the particular processor for software tasks or
the hardware accelerator for hardware tasks, for example. The modules to be implemented as
hardware accelerators are refined onto RTL. This is done automatically in the second step
by a high-level synthesis tool. After synthesis, a functional description at structural RTL

61



Chapter 4 Power Estimation & Characterisation

is available. The RT-level description is characterised and a power and timing augmented
virtual prototype of the module is generated during the third step. In the fourth and final
step, all virtual prototypes of all modules are re-assembled to build the power and timing
aware high-level model of the entire system. Besides the functional behaviour, this virtual
system prototype contains structural information like switched capacitances, static power
dissipation, or area.

The proposed estimation and characterisation process for digital hardware modules mainly
consists of steps two and three i. e., high-level synthesis and augmented model generation.
This process is depicted in Figure 4.3. It bases on a conventional high-level synthesis using
the power-optimising synthesis tool PowerOpt. Therefore, the modules of the design that
should be implemented as full-custom hardware must be given as a C/C++ or SystemC
description, respectively. In any case the input code must follow the restrictions given by
the synthesis tools, since not all valid C/C++/SystemC constructs can be synthesised. Using
this behavioural description, a high-level synthesis is performed. The high-level synthesis
performed by PowerOpt consist of all typical synthesis steps already mentioned in Section 2.3
and depicted in Figure 2.1 on page 18.

Based on the given behavioural description a CDFG, containing all information about the
functional behaviour is generated. By performing scheduling, allocation, and binding, the
CDFG is transformed into a structural RT-level description.

The RT-level description consists of so-called processes. Each process in turn consists of a
controller and a corresponding RT data path. All processes operate in parallel. Inter-process
communication takes place using a two-way hand-shake protocol. Data is exchanged between
processes using data channels like shared registers, FIFO-queues, or memories. A design may
have several instances of the same process. All instances perform the same behaviour, but
each instance must be estimated and characterised individually, in order to consider different
data dependencies of the individual process instances.

In a conventional high-level synthesis process, the RT data path is generated in hardware
description languages, like VHDL or Verilog. These can then be used as input for the back-end
synthesis process. In the proposed process however, the generated RT-level description is
used to generate a power and timing augmented high-level model. The characterisation
process of a hardware module is shown in detail in Figure 4.4 on page 64.

During characterisation, two types of aspects must be considered: functional and non-functional
aspects. Functional aspects are directly related to the functional behaviour of the module,
such as dynamic power dissipation due to system activity or timing. Non-functional aspects
comprise all synthesis artefacts. These artefacts include static power dissipation and clock-tree
power, for example. By considering functional as well as non-functional aspects during the
characterisation process, requirement 3 from the beginning of this chapter is satisfied.

The characterised metrics are used to create a power and timing augmented C/C++ model
of the hardware module. Annotating information about non-functional aspects to the be-
havioural description is done on the basis of basic blocks, hence the name block annotated C++

(BAC++). This virtual prototype of the hardware module can then be used to build the power
and timing aware virtual prototype of the overall system.
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Figure 4.3: Synthesis-based characterisation process — The proposed characterisation pro-
cess depends on a typical high-level synthesis, as performed by PowerOpt. A
behavioural high-level description is transformed into an RT-level description
by applying loop-unrolling, scheduling, allocation, binding, etc. Based on the
synthesis result, hardware basic blocks are identified and characterised and non-
functional properties are characterised as well. Finally, a power and timing
augmented version of the module is created.
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switch (state) {
...
case S1:
if (cond1 == true) {
hbb003();
next_state = S2;

} else {
hbb004();
next_state = S3;

}
break;

...
}
capacitance = 0.61e-9*units::farad;
cycles = 1;
notify_ctrl_power(capacitance,cycles);
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int power_of_2(const int p) {
int i = 1;
for (int c=0; c<p; c++) {
i = i * 2;

}
return i;

}

C/C++ input model

HBB3

HBB4
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Hardware basic blocks

idle
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s2FSM
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void hbb004 (void) {
int local_reg1 = this->reg1.read();
int local_reg2 = this->reg2.read();
int local_reg3 = this->reg3.read();

int sub1 = local_reg2 - local_reg3;
int mul1 = local_reg1 * sub1;
this->reg6.write(mul1);

int mux1 = sub1;
this->reg7.write(mux1);

capacitance = 1.33e-9*units::farad;
cycles = 1;
notify_hbb_power(capacitance,cycles);

}

Data path representation

Figure 4.4: Module’s behaviour characterisation process — A controller and its corresponding
RT data path are generated by a conventional high-level synthesis. An RT-level
power estimation is performed on both. Hardware basic blocks are identified
within the data path and characterisation in terms of switched capacitance is
performed. Same applies to the controller. The controller’s FSM is transformed in
to a large switch-statement, whereas the hardware basic blocks are implemented
as C++-methods. Both are augmented with the previously characterised power
and timing information. General design parameters like equivalent conductance,
average power dissipation, or different supported supply voltages and clock
frequencies are used for creating the power mode table, which specifies different
modes the module can operate at.
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4.2.3 Classification of the Proposed Process

The proposed approach can be classified with respect to the existing work, mentioned in
Chapter 3. Like many of the approaches mentioned above, the proposed approach uses an
RT-level description as input model, since it provides the appropriate level of detail, required
for accurate power and timing characterisation. Considering the RT-level characterisation
approaches above, it can be seen that the approach just outlined is more precise than the one
presented by Ahuja et al. [6, 7], which considers only the toggle count during a given state
of the FSM. However, compared to the approach presented by Zhong et al. [144, 145] it is
less precise, since not individual RT components and their input patterns are considered, but
combinational macros. Individual RT components are considered during characterisation,
only. Moreover, the approach presented in this thesis uses a more detailed RT-level power
model for characterisation, which considers all components of the data path as well as
interconnect, memories, etc. In doing so, the proposed approach surpasses most of the
drawbacks of the approach presented by Zhong et al.

During model generation, the presented approach follows the advices given by Krishnaiah
et al. [84]. It tries to reduce the architectural detail as much as possible, while maintaining all
information required for a proper behavioural simulation and accurate power estimation. It
also tries to use native C/C++ data types in the generated high-level model whenever possible,
in order to speed up the simulation. Like most RTL-to-C/C++ abstraction tools [28, 61]
the proposed approach will statically schedule the RT-level statements inside the identified
combinational macros. In contrast to the work of Bombieri et al. [28], no optimisation in terms
of re-scheduling, register reduction, etc. will be done, in order to maintain an accurate power
and timing estimate of the characterised module.

The TLM wrapper, used for integration of the generated high-level model into the virtual
system prototype is similar to the TLM wrappers proposed by Bombieri et al. [23, 26]. One
difference is that the approach, proposed in this thesis uses a CAFD instead of an EFSM,
which, however, is not very different. The most important difference is that in contrast to
the abstraction technique described by Bombieri et al., the approach presented in this thesis
provides cycle-accurate power information.

4.3 Input Model

Before describing the proposed power and timing characterisation and estimation process
in detail, the input model to the process is specified. As pointed out earlier, the generated
RT-level description consists of a set of parallel running processes. Each of these processes is
estimated and characterised individually. The following sections describe the models used for
representing a single process i. e., the controller and its corresponding RT data path. Since the
following sections of this chapter all refer to the RT level, the term data path refers to the RT
data path hereafter. Describing the input model in a formal way helps adopting the proposed
techniques to other synthesis and estimation tools than PowerOpt.
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4.3.1 FSM of the Controller

The controller, controlling the data path’s behaviour is an FSM F. It corresponds to the
Mealy machine model, which has been developed by Mealy for the synthesis of sequential
circuits [98]. It is defined as follows:

F = (Σ, Γ, S, s0, δ, ω)

The elements of the sextuple are defined as:

Σ : Input alphabet

Γ : Output alphabet

S 6= ∅ : Finite set of states

s0 ∈ S : Initial state

δ : S× Σ 7→ S : Transition function

ω : S× Σ 7→ Γ : Output function

The state machine’s in- and output symbols can be split into individual bits. Each bit
represents a specific in- or output control signal of the controller, respectively:

σ ∈ Σ : {0, 1}m and γ ∈ Γ : {0, 1}n

The in- and output signals connect the controller’s FSM to the data path and other processes of
the module. The controller’s output signals are used to control the data path. That is, enabling
registers, selecting active multiplexer inputs, and performing the hand-shake with other
processes. Inputs, however, are used to access register values, immediate computation results,
and are also used by the hand-shake protocol. Figure 4.5 gives overview of the controller’s
structure how it interacts with its environment. There may be also direct connections between
the data path and the other processes. These data and address signals are used by the data
path for accessing shared data channels.

4.3.2 RT Data Path

The data path G, defined by Equation (4.1) is a directed graph. It consists of RT components,
represented by the vertices V of the graph and connections lying in-between, corresponding to
the edges E of the graph. The data path is controlled by the FSM F, whose output alphabet Γ
consists of all valid combinations of control signal values. On the other hand, some signals of
the data path serve as input for the FSM and thus form the input alphabet Σ.

G = (V, E) with E ⊆ (V ×V) (4.1)

The set V of RT components can be split into subsets, depending on the type of the individual
components:

V = VR ∪VM ∪VO ∪VC
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Figure 4.5: Controller interaction — The controller is a FSM. The input symbol σ is built from
registers and intermediate results of the data path as well as from the handshake
signals of the other processes. Based on the input symbol and current state s,
the output symbol γ and the next state s′ are computed by the output and next
state logic, respectively. The output symbol can be split into register-enable and
mux-select as well as handshake signals. The first two control the data path and
the latter are used for inter-process communication.

The individual sets are defined as:

VR : Registers of the data path

VM : Multiplexers of the data path

VO : Operators of the data path

VC : Constants of the data path

Each RT component v ∈ V has in- and outputs, used for interconnecting two consecutive
components. Each input can have exactly one connection. An output can have multiple
connections. Therefore, each component has only one output. The general statement that a
component has one output and possible multiple inputs has some exceptions. Constants do
not have any inputs. Registers and multiplexer however, also have control signals, allowing to
control the component’s behaviour. That is, enabling the register or selecting the multiplexer’s
desired input, respectively.

An edge (v1, v2) represents a directed connection between two RT components v1 and v2,
where the data output of v1 is connected to one of the data inputs of v2. An auxiliary function
shown in Equation (4.2) on the next page allows traversing through the data path. It specifies
an ordered tuple of components that have a direct or an indirect connection between each
other i. e., there exists a path between the two components. Such a path may contain cycles,
but it is required that all cycles in the data path must contain at least one register, as shown
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in Equation (4.3).

path(v1, v2) = (w1, w2, . . . , wn) | w1 = v1, wn = v2, (wi, wi+1) ∈ E (4.2)

∃vi(vi ∈ path(v1, v1) ∧ vi ∈ VR) (4.3)

This is a typical requirement for clocked sequential systems. It also assures that no delta
cycles must be considered during characterisation of the data path. Nevertheless, there might
be loops between the data path and the controller as well as between different processes. This
issue will be discussed in Section 5.3. Due to timing requirements and in order to prevent
resonant circuits, most synthesis tools do not implement unregistered loops in the data path.
Thus, this requirement does not restrict typical designs. The limitations caused by it can
therefore be neglected.

4.4 Functional Properties

As pointed out earlier, estimation and characterisation of functional properties is two-fold.
First, so-called hardware basic blocks are identified within the data path. A hardware basic
block is a set of RT components jointly active within a specific control step i. e., a specific
clock cycle. A hardware basic block can thus be considered as a combinational macro,
describing all operations performed during that control step. The concept of a hardware
basic block is similar to a basic block, known from compiler construction [62, sec. 9.1.2] and
software estimation [33]. While a software basic block is a temporal abstraction, covering
instructions from multiple cycles, a hardware basic block is a spatial abstraction, covering
multiple operations, executed in parallel. Second, an estimation of each hardware basic
block’s power dissipation is performed. Estimation results are then used to characterise each
hardware basic block. Finally, some optimisations can be performed on the characterised
hardware basic blocks, in order to speed-up their execution.

Performing characterisation based on hardware basic blocks provides an appropriate level of
granularity. It allows a cycle-accurate estimation of the power dissipation as well as accurate
timing prediction, while providing a lot optimisation potential to the compiler, as shown
in Section 5.4.1. Since a hardware basic block comprises several RT components, it might
occupy a large area of the chip. Evaluation shows that up to 24 % of the total chip area can be
activated by a single hardware basic block. While considering a large number of components
at once gives a significant increase in simulation performance, it reduces the spatial resolution
of the estimated power dissipation. In other words, the amount of energy dissipating as well
as the point in time it dissipates can be estimated accurately, but not the location on the chip.
Unfortunately, this information is required for identifying hot-spots, for instance. However,
Sander et al. have shown that distribution of heat can be considered at a much coarse-grained
level in terms of spatial and temporal resolution [119]. Put simply, the chip is not becoming
much warmer in a single clock cycle.
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4.4.1 Preliminary Considerations

Before giving a detailed description of the identification and characterisation process, some
preliminary consideration must be made. It is important to understand how the controller cre-
ates the output symbol and how data is processed within the data path in order to understand
how unique hardware basic blocks can be identified. Reducing size and complexity of the
power and timing augmented high-level model, generated from the characterised hardware
basic blocks is an important goal. Thus, it is required to reduce the number and complexity
of the identified hardware basic blocks in the first place. The following paragraphs give an
insight of the controller’s and data path’s internal behaviour. This basic knowledge is then
used for developing a hardware basic block identification technique.

Behaviour of the Controller’s Output and Next-State Logic

In order to provide a hardware basic block identification process, it is required to understand
how the RT components that are active during the execution of a hardware basic block are
activated by the controller. That is, the interaction between the controller and the data path
must be understood. The set of active components is defined by the output signals of the
controller, which in turn depend on the controller’s current state and input signals, applied
at the same time. Figure 4.6 depicts how the values of the output signals are computed by the
controller.

Input signal

Boolean atom/variable

Boolean output condition

Output signal

Controller output logic

R
T

da
ta

pa
th

Reads registers, intermediate
results, status signals, etc.

Evaluates if an input
signal has a certain value

Logical concatenation
of Boolean atoms

Enables registers, per-
forms handshake, etc.

Figure 4.6: Controller output logic — Input signals are read from the data path and are used
as Boolean atoms within the output conditions. An output condition is a logical
concatenation of multiple atoms. An output condition can also be an atom itself.
If an output condition evaluates to true, the output signal gets the value assigned
that is associated to the condition. This in turn can be a Boolean condition again.

For each state of the controller’s FSM a set of so-called output conditions determines if a specific
output symbol i. e., a specific pattern of control signals is applied to the data path. These
output conditions also determine the next state of the FSM. That is, the output conditions
represent the controller’s output and next-state logic or the FSM’s output and transition
function, respectively. An output condition can perform assignments to several signals at the
same time. If an output condition evaluates to true, the value, associated to the condition
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is assigned to the corresponding control signals. This value in turn can also be a Boolean
condition. In this case, the value assigned to the signal arises from a conjunction of both
conditions.

An output condition is a Boolean expression very similar to the formulas known from
satisfiability modulo theories (SMT) problems. It is built from AND and OR concatenation
of SMT predicates. In contrast to a conventional Boolean predicate, the SMT predicates
make statements about non-Boolean-valued variables. Using a Boolean abstraction, the SMT
predicates can be considered as Boolean atoms. During simulation, it is possible to evaluate
the statement of the predicate and thus determine the truth-value of the Boolean atom. An
output condition may also be an atom itself. This is, its logical name is used within another
output condition.

The variable assignment for each Boolean atom or SMT predicate, respectively is obtained
from the input symbol i. e., the controller’s input signals. That is, the predicates make
statements about the values of the signal assigned to the particular predicate. In their entirety,
the input signals to make a statement about the state of the data path.

An input signal is used for accessing register values and intermediate results of the data path.
Handshake signals, used for communicating with other processes and data channels are also
used as input. An example pseudo-code, showing the correlation of the individual stages of
the output logic is given in Listing 4.1.

//Obtain value of Boolean atoms from data path (SMT predicate evaluation)
boolean Sel_Reg_1 := (Reg_1==5);

3 boolean Sel_Reg_2 := (Reg_2==true);
boolean Sel_Assign_1 := (Assign_1==false);

6 //Compute output conditions from Boolean atoms
boolean ctrlflow_1 := (Sel_Reg_1==true);
boolean ctrlflow_2 := (Sel_Reg_1==false) && (Sel_Reg2==true);

9 boolean ctrlflow_3 := (Sel_Assign_1==false) || (ctrlflow_2);

//Assign values to output/control signals
12 MuxSelect_Mux_4 := ctrlflow_1;

RegEnable_Reg_4 := ctrlflow_2;
if (ctrlflow_3) then

15 RegEnable_Reg_5 := true;
else

RegEnable_Reg_5 := false;
18 endif

Listing 4.1: Pseudo-code implementation of the output logic — Input signals are accessed.
Results of the SMT predicate evaluation are assigned to Boolean atoms. These
are used to evaluated the output conditions, which in turn set the output signals.
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Operation of the Data Path

In an RT data path, operations are not only required for providing registers’ inputs, but
also for obtaining values used for communicating with the surrounding system i. e., other
processes of the module. In this case, values are not stored in registers, but are written to data
ports, connecting the process with the surrounding processes and data channels. While the
activation of a Register can be obtained from its enable signal, the activation of a data port
can be obtained from the value of the associated handshake signal. In the following, registers
and ports can be considered to be equal. Thus, in the next sections the term register referrers
to both, data ports and registers.

If a register takes a new value, this value appears at the register’s output at the beginning
of the next clock cycle i. e., control step. From the output of the register the signal value
propagates trough the data path, activating several RT components, which perform different
transformations i. e., operations on the signal. The signal may also be split or duplicated.
Signal propagation stops at registers, since they will propagate the signal in the cycle after the
next one. Hence, the set of active RT components and thus the hardware basic block, which
describes the operation of the data path within one control step, is enclosed by registers.
Timing of the system is given by the propagation delay of the longest path between two
consecutive registers. Signal transformations and updating the values stored in the registers
cause dynamic power dissipation, as explained in Section 2.4.1. Dynamic power dissipation is
therefore caused by register outputs that change at a rising or falling clock edge, respectively,
depending on if the registers-enable signals are active-high or active-low.

Top-Down versus Bottom-Up Identification Approach

Following a straight forward approach, identifying a hardware basic block requires knowledge
of which registers are updated at the end of one control step, which in turn will cause RT
components to be active in the next control step. An RT component is considered to be active
if it propagates the updated output signal of a register. The active components are determined
by the given data path i. e., the connections between the RT components. This is especially
true for the multiplexers of the data path and the values of their select-signals in the second
control step.

The proposed estimation approach uses a static analysis of the process’s controller and data
path. This requires characterising each possible data flow in advance and then using the
pre-characterised properties during high-level estimation. For the straight forward approach,
the data path is analysed top-down along the data flow. Using this approach, a large set
of possible combinations of control signal values must be considered. The total number of
possible combinations of signal values is shown in the first part of Equation (4.4) on the
following page. It consists of all possible combinations of register enables signals in state si
denoted by reg_ena(si) and the possible combinations of mux-select signals in all subsequent
states si+1, denoted by mux_sel(si+1) Handling such a large number of possible combinations
will lead to a very large number of hardware basic blocks that must be characterised. This
large number of basic blocks cannot be identified and characterised in an acceptable amount
of time. It will also lead to very complex high-level model in the second place. Therefore, the
straight forward approach is not feasible. A more sophisticated technique is necessary.
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Assuming that the results of the signal transformations are required for the operation of the
design and are thus stored in registers, another approach can be used. In this approach the
hardware basic block is defined by the registers whose values are updated at the end of the
control step. The hardware basic block then consists of all components that are required
for providing the registers’ inputs. Since the values of the register-enable and mux-select
signals are applied in the same control step and due to the fact that the output of the source
registers does not change during that control step, only this single one control step must
be considered. The second part of Equation (4.4) shows that this drastically reduces the
number of possible combinations of control signal values that must be considered. In this
approach power dissipation should not be referred to as caused by changing register outputs,
but as required for providing registers’ inputs.

Using the bottom-up approach has the disadvantages that it is assumed that source registers
take a new value exactly one clock cycle before their value is required. In other words, it is
assumed that the value of a register is used in the clock cycle directly after the register has
taken its new value. This is obviously not always true. It might occur that a register value is
updated, but that the updated value is required several cycles later. In this case the caused
power dissipation is assumed to occur later, which in turn blurs the estimation result. This
effect and its influence are discussed in more detail in Section 6.5.5.

Equation (4.4) compares the number of possible combinations of signal values and therefore
hardware basic blocks that must be identified and characterised when using the straight
forward and the proposed approach, respectively. Since register-enable and mux-select signal
are set in the same control step, they may share some signals. This again will reduce the
number of possible signal value combinations that must be considered, as shown in the third
part of Equation (4.4).

∑
∀si+1

(
2|reg_ena(si)|+|mux_sel(si+1)|

)
︸ ︷︷ ︸

Top-Down

� 2|reg_ena(si)|+|mux_sel(si)|

︸ ︷︷ ︸
Bottom-Up (worst case)

≥ 2|reg_ena(si)∪mux_sel(si)|

︸ ︷︷ ︸
Bottom-Up (general case)

(4.4)

Unique Hardware Basic Block Identifier

After having defined that register-enable and mux-select signals from the same control step
are used for hardware basic block identification, a unique hardware basic block identifier is
required next. Since a hardware basic block is assumed to be responsible for providing register
inputs, the first idea is to use the enable signals of the registers that will store the computed
values at the end of the clock cycle as the identifier for the hardware basic blocks. Actually
there are some drawbacks, when using the register-enable signals, only. First, register enable
signals might by ambiguous. Algorithm 4.1 depicts this. Register R1 is enabled, regardless
of the condition. This is, knowing that register R1 is enabled is not sufficient enough for
knowing which computation must be performed by the activated hardware basic block.

Second, there are a lot possible combinations of the register-enable signals, but not all
combinations are used, as shown in Algorithm 4.2. In the example, only two out of 16
combinations must be considered, since register R1 and R2 as well as R3 and R4 are enabled
jointly. That is, the values of a large number of output signals may be obtained from a
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smaller number of output conditions. Even though registers R1 and R2 might share the same
register-enable signal, this is not always the case. Both registers might be used individually
by other hardware basic blocks requiring a single register-enable signal for both of them.
Obviously the same is true for registers R3 and R4.

if condition then
R1 ← R2 + R3;

else
R1 ← R4 − R5;

end if

Algorithm 4.1: Assignment to same register
— Using register-enable sig-
nal may be ambiguous. In
both branches R1 is enabled,
even though different compu-
tations are performed.

if condition then
R1 ← R5 + R6;
R2 ← R6 + R7;

else
R3 ← R5 − R7;
R4 ← R6 + R8;

end if

Algorithm 4.2: Multiple register assign-
ments — Considering the
four register-enable signals,
24 = 16 combinations are
possible, although only two
will occur.

The first issue concerning the ambiguity can be solved by considering register-enable as well
as mux-select signals. Then, the hardware basic block is not only defined by the register-enable
signal, but also by the mux-select signal selecting the correct operator’s output. But again,
there are lot combinations of signal values possible, even more than when only considering
register-enable signals. Once more, some combinations of output signal values are used,
while others will never occur. It is apparent that some knowledge about data path’ behaviour
intended by the controller is required.

As mentioned earlier and shown in Figure 4.6 on page 69, the values of the control signals are
computed by evaluating the controller’s output conditions. The controller’s output conditions
in turn perform an evaluation of the input signals, which provide the assignments to the
Boolean variables. An output condition of a signal can be built from multiple Boolean atoms.
It is required that the total number of Boolean variables that must be taken into account when
identifying a hardware basic block is smaller than the number of output signals driven by the
controller. Otherwise using output signals as identifier would be more efficient. Evaluation
shows that the number of Boolean atoms used inside the output conditions is significantly
smaller than the number out output signals, driven by the controller. This is partly because
most of the atoms are used in several output conditions at the same time.

The behaviour of the data path and thus each hardware basic block can therefore be identified
by a combination of the controller’s state s and a set of variable assignments a to the Boolean
atoms of the output conditions. The considered variable assignments must cover all variable
assignments, possibly caused by the controller’s input signals, required for evaluating the
output conditions. That is, a hardware basic block describes the behaviour of the data
path caused by the unique output symbol generated by the output conditions, if the given
variable assignment is applied. An example identifier is shown in Equation (4.5). For a
better understanding and readability, the Boolean atoms have been replaced with the SMT
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predicates, they are mapped to. For this example, the hardware basic block, associated to the
identifier is active, if the controller’s FSM is in state s1, register R1 has the value true, while
register R5 does not have value 0 and finally, comparator C9 must not give the intermediate
result true.

(s, a) = (s1, {(R1 = true) = true, (R5 = 0) = false, (C9 = true) = false}) (4.5)

4.4.2 Hardware Basic Block Identification

For each combination of state and variable assignment, a hardware basic block is identified.
Using state and assignment, the controller’s output symbol i. e., the values of the controller’s
output control signal can be computed. Starting from the control signals, enabled registers
are identified. These so-called target registers define the end of the hardware basic block. All
RT components that are required for providing the target registers’ inputs are part of the
hardware basic block. Which components are required for the particular register’s input is
also defined by which inputs of the data path’s multiplexers are selected during the current
control step. Only components connected to the selected input must be considered. The
beginning of the hardware basic block is defined by the registers that provide the input to the
active RT components. These registers are called source registers. Source and target registers
must not necessarily be a disjoint sets i. e., a source register can also be a target register and
vice versa.

Providing the registers’ inputs may cause some parasitic functionality. Since this parasitic
functionality also causes power dissipation, these components must also be considered while
estimating power dissipation of the hardware basic block. Components causing parasitic
functionality are identified by searching the data path for components whose inputs are
provided by the source registers but which do not belong to the components required for
providing the target registers’ inputs. In other words, they get new input values, but their
results are not needed and thus discarded.

Figure 4.7 shows exemplary the hardware basic block that results, if the controller performs
the following operations in the current control step:

R6 ← R1 · (R2 − R3)

R7 ← R2 − R3

In the particular control step, the controller enables registers R6 and R7. These two registers are
the target register of the hardware basic block and serve as starting point for the identification
of active RT components. Traversing the data path upwards contrary to the data flow, it can
be seen that the multiplication and the multiplexer are active. Registers R1 and R2 serve as
input to the multiplication and thus are the first identified source registers. In the particular
control step, the controller also configures the multiplexer to select input 0. Thus, only the
data path connected to that input is considered. In this example the subtraction must be
considered. Registers R2 and R3 serve as input, said register R2 is already known to be a
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Figure 4.7: Definition of a hardware basic block — A hardware basic block is a set of RT
components that is required for providing the enabled registers’ inputs. It may
also contain components that are active due to parasitic functionality. Registers
define the beginning and the end of the hardware basic block, respectively.

source register. Again it must be noted that all source registers are assumed to provide new
values, even though this is not always the case. Since register R3 is a source register and may
change its output the adder may also become active, even though the result of the operation
is discarded. Thus, the adder belongs to the set of RT components active due to parasitic
functionality. Since register R8 is not enabled in the particular control step, the data path
providing its input is considered to be inactive.

Formally, a hardware basic block H is a sub-graph of the data path G. It contains all RT
components that are active while the FSM of the controller is in a specific state s and the input
symbol σ is applied to the FSM. The input symbol creates a specific variable assignment a,
causing the controller’s output conditions i. e., output logic to apply output symbol γ to the
data path. The output symbol defines which register-enable signals are set and which inputs
are selected by the multiplexers of the data path.

Since the output symbol applied to the data path and thus the hardware basic block depends
on the current state s and variable assignment a of the FSM, the basic block can be identified
by (s, a). Equation (4.6) defines a hardware basic block formally.

H(s,a) =
(

V(s,a), E(s,a)
)
⊆ G = (V, E) (4.6)

The elements of the tuple are defined as:

V(s,a) : RT components, active during (s, a)

E(s,a) : Connections between the active RT components

In order to define different sets of RT components inside a hardware basic block Equation (4.7)
on the next page provides useful specialisation of the above mentioned path-function from
Equation (4.2) on page 68. It requires that all valid paths within a hardware basic block must
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start and end at a register, but do not pass one. This assures that all paths belonging to the
hardware basic block can be computed in one clock cycle.

pathH(v1, v2) = path(v1, v2) : ∀vi(vi ∈ path(v1, v2) \ {v1, v2} =⇒ vi /∈ VR) (4.7)

During execution, not all possible paths inside the data path of a hardware basic block
are active. A multiplexer for example does only forward one of its inputs. That is, only
components connected to the selected input belong to an active path. Components connected
to the inputs that are not selected by the multiplexer must not be considered. Equations (4.8),
(4.9), and (4.10) allow determining whether a specific path is active, or not.

input(v1, v2) 7→ Z :


−1, if (v1, v2) /∈ E
Index of the input port of v2

to which v1 is connected, else

(4.8)

select(s,a)(v) 7→N0 :

{
Index of the input port of v that
is selected during (s, a)

(4.9)

Equation (4.8) allows identifying the input port of the multiplexer to which a given component
is connected. Equation (4.9) however, determines the input that is selected by the multiplexer
if the controller is in state s and assignment a is given by the input symbol. Having these
functions defined, it is possible to define Equation (4.10), which determines whether a specific
edge, connected to one of the multiplexer’s inputs is active, or not.

active(s,a)(v1, v2) | (v1, v2) ∈ E :


true, if v2 /∈ VM

true, if v2 ∈ VM and
input(v1, v2) = select(s,a)(v2)

false, else

(4.10)

If the target component is not a multiplexer, all incoming edges are always active. This is the
case for adders, multipliers, or comparators, for example. An incoming edge of a multiplexer
however, is only active if it is connected to the selected input.

Using the definition from Equation (4.10), it is possible to define an active path. An active path
is a path that contains only components that are pairwise connected via active edges. That is,
if two components on the path are connected via an edge, it must be an active one.

activepath(v1, v2) = pathH(v1, v2) | v1, v2 ∈ V :

∀w1, w2

(
w1, w2 ∈ pathH(v1, v2) ∧ (w1, w2) ∈ E ⇐⇒ active(s,a)(w1, w2)

)
(4.11)

Having all these auxiliary functions defined, it is possible to define different sets of com-
ponents that are all belonging to a specific hardware basic block. The components V(s,a),
which are active while a hardware basic block is active, can be split into source registers V(s,a)

SR

providing the input, target registers V(s,a)
TR storing new values at the end of the current control
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step, active components V(s,a)
A performing the arithmetic operations of the hardware basic

block, and some additional nodes V(s,a)
E , which are active due to parasitic functionality. All

are shown in Equation (4.12).

V(s,a) = V(s,a)
SR ∪V(s,a)

TR ∪V(s,a)
A ∪V(s,a)

E (4.12)

The individual sets of components are defined as follows: The set of target registers i. e.,
the set of registers storing new values at the end of the current control step is defined by
Equation (4.13). For the example hardware basic block from Figure 4.7 on page 75 V(s,a)

TR
contains registers R6 and R7.

V(s,a)
TR : Registers enabled during (s, a) (4.13)

Equation (4.14) defines the set of active components V(s,a)
A . These are all the components that

are on an active path, which ends at one of the target registers, but are not a register themselves.
Starting from registers R6 and R7 in the example above, the set of active components contains
the multiplier, the multiplexer, and the subtractor. The multiplier and subtractor are on the
active paths that end at register R6. For the given example, the multiplexer selects input
number 0. That is, the active and thus possible paths must pass the subtractor. All paths
through the adder are not active. Thus, the RT components on these paths do not belong to
the set of active components.

V(s,a)
A = activepath(v1, v2) \VR | v1 ∈ V, v2 ∈ V(s,a)

TR (4.14)

The set of source registers providing the input to the hardware basic block are defined by
Equation (4.15). The set contains all registers having an active path to at least one of the
target registers. Applying this equation to the example will result in a set, containing R1, R2,
and R3. For all these registers there exists a path, ending at one of the target registers from
set V(s,a)

TR . There is also a path from R4 to R7, but since the multiplexer does not select input
number one, this one is not active. Therefore, register R4 does not belong to the set of source
registers.

V(s,a)
SR = activepath(v1, v2) \

(
V(s,a)

TR ∪V(s,a)
A

)
| v1 ∈ VR, v2 ∈ V(s,a)

TR (4.15)

Finally, the set of components active due to parasitic functionality comprises all components
that have an active path, starting at one of the source registers, but are neither a target register
nor an active component. This set is defined by Equation (4.16). For the example used here,
this means that the adder and subtractor as well as the multiplier and the multiplexer lie on a
path starting at one of the source registers V(s,a)

SR . However, only components that are neither
member of the active components nor are registers are considered. Thus, the only remaining
component is the adder.

V(s,a)
E = activepath(v1, v2) \

(
VR ∪V(s,a)

A

)
| v1 ∈ V(s,a)

SR , v2 ∈ V (4.16)
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Roughly speaking, active components V(s,a)
A perform the operations, whose results are stored

in the target registers V(s,a)
TR . That means that there exists a path from at least one of the target

registers to the active component. The source registers V(s,a)
SR provide the input for the active

components. That is, there exists a connection from the target registers to the source registers
via the active components. Thus, the active components are enclosed by source and target
registers, respectively. A register can be source and target register at the same time. Some
components V(s,a)

E are also active due to activity induced by the active components and the
source registers. In this case, both serve as input for these additional components. The results
of these components are neither required nor used. Hence, their unwanted activity is called
parasitic functionality. An algorithmic description of the hardware basic block identification
can be found in Algorithm A.1.

4.4.3 Handling the State Explosion

For reasonable designs, creating a hardware basic block for each possible output symbol i. e.,
all possible assignments to the Boolean output conditions in a specific state of controller’s
FSM is infeasible. For n Boolean-valued output signals 2n hardware basic blocks must be
characterised, in order to achieve a full coverage. Knowing that typical designs can have more
than 100 output signals, yielding more than 2100 ≈ 1.27× 1030 hardware basic blocks, it is
obvious that the number of hardware basic blocks must be reduced.

First idea is to use a Moore machine instead of a Mealy machine for describing the controller’s
FSM. In contrast to a Mealy machine, where the output symbol is generated based on the
machine’s actual state and applied input symbol, the output symbol of Moore machine
depends on the machine’s state, only. Mealy and Moore machines have the same cardinality
and can be converted into each other [71, p. 25]. Transforming the Mealy machine into a
Moore machine is done by creating a state in the Moore machine for each combination of
state and input symbol of the Mealy machine. Again, for n Boolean-valued input signals and
m states in the Mealy machine 2n ×m states are created for the Moore machine.

This effect is also known as state explosion and prohibits transformation of the Mealy machine
into a Moore machine for reasonable complex designs. Because of the exponential behaviour,
less considered output signals lead to significantly less hardware basic blocks to characterise.
The number of considered output signals can be reduced in various ways. The high efficiency
of the techniques presented in the following, in reducing the number of actually identified
basic blocks to only a minimal fraction of the originally estimated number, is shown in
Section 6.1.1.

Consider Only Control Signals

As can be seen in Figure 4.5 on page 67, not all output signals of the controller are connected
to the data path. Some signals are required for performing the hand-shake protocol with other
processes or are used for accessing data channels like shared registers and memories. It is
obvious that these signals must not be considered during hardware basic block identification.
For the given example, only signals γ[k+ 1] to γ[n] must be taken into account. Exceptions are
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signals that are used for enabling external data channels. These signals must be considered in
the same way as register-enable signals.

Consider Only Relevant Signals/Conditions

Not all signals i. e., bits of the output symbol are required for performing the data path’s
operation. In a specific state, only a subset of the control signals is driven with values
depending on the output conditions. All other signals are driven with their default values.
For register-enable signals that is, that the register is disabled and for mux-select signals the
default input is selected.

These signals are considered to have no influence – neither on the behaviour nor on the
power dissipation in the particular state. During basic block identification, signals driven with
their default values can be ignored. Thus, only control signals driven in the given state are
considered to be relevant and only these are used during identification and characterisation.

Predicate Reduction

After knowing the signals to be considered during hardware basic block identification,
the output conditions, required for generating that signals are also known. These output
conditions typically share some predicates and thus Boolean atoms. As mentioned earlier,
for all possible Boolean assignments to the atoms, a hardware basic block must be identified.
That is, the number of hardware basic blocks highly depends on the number of predicates
that must be considered.

For Boolean-valued input signals and thus Boolean-valued predicates a simplification can be
made. If the set of SMT predicates contains predicates (σ[i] = true) as well as (σ[i] = false),
for each of them a Boolean atom is introduced during Boolean abstraction, as shown in
Equation (4.17).

(σ[i] = true) 7→ a and (σ[i] = false) 7→ b (4.17)

For these two Boolean atoms, a total amount of four Boolean assignments is possible. However,
some statements are redundant, unnecessarily increasing the identification effort. This can be
prevented by considering the predicate σ[i] = false to be σ[i] = true and invert the associated
Boolean assignment. That is, assignments to the second Boolean atom can be replaced by
assignments to the first one. In doing so, the second Boolean atom can be discarded. The
transformation is shown exemplary in Equations (4.18) and (4.19). Using this simplification,
the number of possible Boolean assignments that must be considered during hardware basic
block identification is halved for each Boolean-valued predicated that can be discarded.

b = true ⇔ (σ[i] = false) = true ⇔ (σ[i] = true) = false ⇔ a = false (4.18)

b = false ⇔ (σ[i] = false) = false ⇔ (σ[i] = true) = true ⇔ a = true (4.19)
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Zero-Strength Hardware Basic Blocks

Zero-strength hardware basic blocks occur, if no behaviour needs to be executed for the given
assignment to the output conditions. That is, the hardware basic block does not contain any
active RT components. In particular, it does not contain any activated target registers. This is
the case, if the controller is performing the hand-shake protocol, for example.

If the controller only performs the hand-shake protocol, no register enable signal is driven.
This case may also occur, if the given Boolean assignment set does not activate any target
registers, as shown in Table 4.1. In this case, no RT component is assumed to be active
and thus no power dissipation of the data path must be considered. Since zero-strength
hardware basic blocks do not perform any operation, they are ignored during basic block
identification.

Remember Required Assignments

Even if several signals are driven by the controller in a specific state, not all signals are
required for identifying the associated basic block. This is due to dependencies between the
signals. Figure 4.8 shows a simple data path with hierarchical organised multiplexers.

R1 R2 R3 R4 R5

+ + + +

mux2
0 1

sel2 mux3
0 1

sel3

mux1
0 1

sel1

R6ena

Figure 4.8: Required assignment identification — The evaluated mux-select signals and thus
the required Boolean assignments may depend on other mux-select signals and
are thus known after hardware basic block identification, only. The value of the
mux-select signal of mux2 is only required, if mux1 selects input 0, whereas the
select signal of mux3 must only be evaluated, if mux1 selects input 1.

The value of the mux-select signal sel1 determines whether mux-select signal sel2 or sel3 is
required for identifying the corresponding hardware basic block. Table 4.1 lists all hardware
basic blocks that could possibly identified for the given data path.

The table shows that there are some zero-strength hardware basic blocks. It is obvious
that there is no operation performed, if the register is not enabled. It is also visible, that
the operation of the data path does not necessarily depend on all mux-select signals. As
mentioned, the required mux-select signals depend on the value of mux-select signal sel1.
Ignored signal values are denoted in grey in the table. Unfortunately, the required signals are
only available after identification of the hardware basic block.
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# ena sel1 sel2 sel3 operation note

1 0 0 0 0 – zero-strength
...

...
...

...
...

...
...

8 0 1 1 1 – zero-strength
9 1 0 0 0 R6 = R1 + R2 new one

10 1 0 0 1 R6 = R1 + R2 copy of 9
11 1 0 1 0 R6 = R2 + R3 new one
12 1 0 1 1 R6 = R2 + R3 copy of 11
13 1 1 0 0 R6 = R3 + R4 new one
14 1 1 0 1 R6 = R4 + R5 new one
15 1 1 1 0 R6 = R3 + R4 copy of 13
16 1 1 1 1 R6 = R4 + R5 copy of 14

Table 4.1: Required assignments — Boolean assignments that are not considered during
hardware basic block identification are printed in grey. Hardware basic blocks one
to eight must not be identified, since no target register is activated at all.

For each identified hardware basic block, its required control signals are known. Before
identifying a hardware basic block for a new Boolean assignment, all driven signal values
are obtained by evaluating all relevant output conditions. If there already exists a hardware
basic block for a subset of the signals with the given values, the new hardware basic block
will be a copy of the existing one. In this case, no identification must be performed for the
given Boolean assignment.

Discard Duplicate Hardware Basic Blocks

Due to the structure and complexity of the output conditions it might occur that different
Boolean assignments, which are applied to the output conditions, activate the same behaviour
of the data path. In this case, only one copy of the hardware basic block must be characterised
and used during model generation. The equivalence of two hardware basic blocks is given,
if they enable the same target registers and configure the multiplexers in the same way. In
this case, both hardware basic blocks have the same active paths and thus perform the same
behaviour.

Ha = Hb ⇔
(
∀

r∈V(s,a)
TR

(
r ∈ V(s,a)

TR (Ha)⇔ r ∈ V(s,a)
TR (Hb)

)
∧

∀v∈VM(v ∈ VM(Ha)⇔ v ∈ VM(Hb))∧
∀v∈VM(v ∈ VM(Ha)⇒ (select(Ha, v) = select(Hb, v)))

) (4.20)

After a new hardware basic block has been identified, it is checked, if another hardware
basic block performing the same behaviour is already known. Is this the case, the Boolean
assignment set, enabling the second hardware basic block is added as enabling assignments
set to the first one and the second basic block is discarded. Since the characterisation should
be performed considering data-dependencies implicitly, only hardware basic blocks from
the same state are checked for equivalence. Hardware basic blocks from other state might
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have the same behaviour in principal, but since they are activated in a different context, their
data-dependent power dissipation might be different. Thus, hardware basic blocks from
different states cannot be considered to be equal, even if they perform the same behaviour.

4.4.4 Special Cases

There are some special hardware basic blocks that must be identified or that might occur
during hardware basic block identification, which deserve special attention.

Assignment Hardware Basic Blocks

In order to obtain the assignments to the Boolean atoms, which in turn will compute the
controller’s output symbol, some information from the data path is required. This are register
values, for example. But not only values stored in registers are required. Some intermediate
results might be required, too. Such intermediate results check, if a specific register holds
a specific value or if an operator has computed a specific result, for example. To be able to
evaluate the output conditions, these intermediate values must be known. In contrast to a
register, whose value is available all the time, an intermediate result must be recomputed,
each time its value is required.

The points in the data path at which the controller accesses these intermediate results
are called assignments. They are not to be confused with the Boolean assignments to the
Boolean expressions, required for evaluating the controller’s output conditions and thus the
controller’s output symbol.

Each state of the controller has some assignment hardware basic blocks associated, computing all
controller inputs required for evaluating all relevant output conditions of that particular state.
Figure 4.9 shows how assignment and conventional hardware basic blocks are related. Since
the input to the controller might depend on different mux-select values, it is possible that a
state has multiple assignment hardware basic blocks associated.

Invalid Hardware Basic Blocks

Invalid hardware basic blocks are generated, if the basic block identification tries to find a
hardware basic block for a Boolean assignment to the output conditions that cannot occur.
Figure 4.10 shows this relationship.

The basic block identification process presented above, tries to identify a hardware basic
block for each possible Boolean assignment to both output conditions c1 and c2. The analysis
does not consider how the inputs input1 and input2 are obtained, since this is part of the
data path. It can thus not determine that the assignment (input1=true, input2=true) is not
possible and therefore can never occur. Identifying all valid input values of all input signals
is an ambitious task, requiring a sophisticated and very time consuming analysis of the data
path. This is not possible during characterisation. Because it is not possible to determine all
possibly occurring input values and thus all possible Boolean assignments, a hardware basic
block for each assignment is generated.

82



4.4 Functional Properties

//Controller input
//computation
hbb001();

//Condition evaluation
cond1 = assign1.read()==true;

//Behavioural execution
if (cond1==true) {

hbb002();
}

R1

≥ +

5 1

Assign1

void hbb001(void) {
bool geq1 = 5>=R1.read();
assign1.write(geq1);

}

void hbb002(void) {
int add1 = R1.read() + 1;
R1.write(add1);

}

FSM input Behaviour Simplified BAC++ code

Figure 4.9: Assignment hardware basic block — Assignment hardware basic blocks are
required for obtaining intermediate values that are necessary for determining
the control flow. That is, they are required for evaluating the controller’s output
conditions. In contrast to a register, whose value is available all the time, an
intermediate result must be recomputed, each time its source registers is updated
or some of its required multiplexers selects a different input port.

mux0 1 2
sel

RT data path

//Input generation
input1 = a && !b;
input2 = a && b;

//Condition eval.
c1 = input1==true;
c2 = input2==true;

//Ouput generation
sel[0] = c1;
sel[1] = c2;

Evaluation

condition mux required input value

c1 c2 sel a b

0 0 0 false false OR true
0 1 1 true false
1 0 2 true true
1 1 3 true false AND true

Required input values

Figure 4.10: Emergence of invalid hardware basic blocks — Hardware basic block identifica-
tion tries to identify a hardware basic block for all possible Boolean assignments
to output conditions c1 and c2. But it cannot determine that the combination
of input values yielding Boolean assignment (input1=true, input2=true) is not
possible and thus will never occur. Identifying a hardware basic block for that
assignment is not feasible, since the multiplexer does not have an input 3. The
hardware basic block for that assignment is considered to be invalid and therefore
is discarded.
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During basic block identification for the Boolean assignment (input1=true, input2=true) it
is not possible to determine the correct input for the multiplexer, since it does not have four
inputs. The hardware basic block is thus invalid and is discarded.

It might occur that a hardware basic block can be identified for an invalid assignment i. e., the
error is not detected during identification. In this case the hardware basic block is generated
appropriately during model generation, but the generated hardware basic block will never
be executed during simulation. Thus, identifying invalid hardware basic blocks does slow
down the characterisation process but has no effect on the correctness or the accuracy of the
generated model.

4.4.5 Hardware Basic Block Characterisation

After all hardware basic blocks had been identified, their power dissipation and timing
can be characterised. In order to be able to consider different power modes i. e., different
combinations of supply voltage and clock frequency, using dissipated energy as characterising
property is not sufficient. Instead, a more structure-related metric is chosen. It separates
parameters like supply voltage, which may vary during simulation, from architectural proper-
ties like capacitance, which are fixed after synthesis. This separation approach is shown in
Equation (4.21).

Ed = f (H, Vdd)

≈ f1(H) · f2(Vdd)

= Cl(H) ·V2
dd

(4.21)

Terms f1(H) and f2(Vdd) are independent from each other. It must be noted that f1(H) is a
linear factor and f2(Vdd) is the same for all processes. This allows a hardware basic block H
to be characterised by the capacitance Cl it switches when activated.

The second property needed for representing a hardware basic block is the number of clock
cycles required for its execution. Since the basic blocks are generated from an internal cycle-
accurate model, their timing behaviour can also be characterised with the same accuracy. The
hardware basic blocks that are identified as described in Section 4.4.2 require exactly one
clock cycle to perform their operations. However, hardware basic blocks covering multiple
cycles are conceivable, as shown in Section 7.1. Having cycle-accurate hardware basic blocks
available, the temporal resolution of the generated model will be tclk i. e., one clock period.

Simple Capacitance Characterisation

As just mentioned, hardware basic block characterisation is done in terms of switched
capacitance and clock cycle count. Also mentioned was the fact, that each hardware basic
block requires exactly one clock cycle to be computed, since it is a spatial abstraction.
Characterisation is done as follows.

The power dissipation of each RT component is given by its RT-level power model. Various
techniques for estimating power dissipation at RTL are outlined in Section 3.1. Different
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RT-level power models can be used for characterisation. Currently, the PowerOpt-internal
model is used, allowing a comparison of the results of the proposed approach to the estimates
of PowerOpt. This comparison is done in Section 6.2. The PowerOpt-internal power model
computes dissipated dynamic energy Ed with respect to the RT component’s input patterns.
These are obtained from a functional simulation. Equation (4.22) shows how the average
switched capacitance is obtained using the RT-level model. By characterising a hardware
basic block using its switched capacitance, requirement 4 from the beginning of this chapter
is satisfied.

Cl(H) =
1

V2
dd

#comp(H)

∑
i=1

1
#pat(v)− 1

#pat(vi)

∑
j=2

Ed
(
vi, patj−1, patj

)
(4.22)

The number of RT components in the given hardware basic block H is denoted by #comp(H).
The number of input patterns that had been applied to RT component vi ∈ H is given by
#pat(vi). The RT-level power model then computes the dynamic energy dissipating, if the
pattern at tj−1 and tj are applied to vi consecutively.

Since the actual data patterns are used, the characterisation is implicitly data dependent,
satisfying requirement 5 from this chapter’s introduction. Considering the data dependency
requires a representative data set to be used for characterisation. So far, a hardware basic
block describes the data dependency related to the control flow, but not the data-dependent
activity for each individual RT component.

Obtaining the Number of Activations Knowing the timestamps, a given RT component
is active is key to the simple characterisation process. As mentioned, the pattern lists are used
for obtaining average switched capacitance per activation of an RT component. Actually, the
concrete pattern lists are not known. Instead, a value change sequence for each RT component
is known. This sequence is loaded from a value change dump (VCD) file, generated by the
RT-level simulation tool during power estimation. The sequence consists of timestamp/value-
tuples, each one denoting the point in time, a specific signal changes its value and the new
value it has from that time on.

If an operator performs the same operation twice i. e., the same data patterns are applied
twice in succession, this cannot be seen from the value change sequence list. In this case, the
second activation is missed, since no value change had occurred. If the patterns are missing
on the sequence, less activations are assumed than actually occurred. This causes the average
power dissipation per activation to be higher, in the second place.

In order to cope with this problem, an algorithm has been developed that is able to obtain
the exact number of times, a given RT component is active. The algorithm assumes an RT
component to be activated either if its output value is stored in a register or if the component
is generating an output due to parasitic functionality.

The times the output values of an RT component are stored can be obtained by starting from
the RT component and traversing the data path downwards until all target registers of that
component had been found. The times the RT component is used is then the joint set of all
times, all target registers are enabled. Timestamps are considered with respect to the select
values of all affected multiplexers. That is, only timestamps at which the multiplexers forward
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the output value from the RT component are taken into account. For the example data path
shown in Figure 4.11, this is done using Equation (4.23).

R1 R2 R3

M1

0 1
r

+

M2

0 1
s

R5R4

Figure 4.11: Obtaining times an RT
component is active

tused = tenable(R4)∪
(tenable(R5) ∩ ts=0(M2))

(4.23)

toutput = tenable+tclk
(R1)∪(

tenable+tclk
(R2) ∩ tr=0(M1)

)
∪(

tenable+tclk
(R3) ∩ tr=1(M1)

) (4.24)

tactive = tused ∪ toutput (4.25)

#activations = |tactive| (4.26)

However, this does not take parasitic functionality into account. That is, an RT component
might be active more often than its output value is required. In order to consider this too,
the data path is traversed upwards, until all source registers are found. Again, this is done
with respect to the affected multiplexer’s select values. At all times at which new values from
the source registers are forwarded to the RT component, it is assumed to generate an output
value and thus to be active. A source register provides its new output value exactly one clock
cycle after it has been enabled. For the given example, this set of timestamps is obtained by
using Equation (4.24).

The set of timestamps the RT component is active then is the joint set of used and output
timestamps, as stated by Equation (4.25). There is typically a large overlap between both
sets. A special case and exception are multiplexers, which select the default channel when
not used. They become active significantly more often, than their results are used. This is
especially true if there is a lot of activity on the default input, while the results are discarded
after they passed the multiplexer. Having the correct number of activations available from
Equation (4.26), Equation (4.22) on the preceding page can be modified to obtain the correct
value, as done by Equation (4.27).

Cl(H) =
1

V2
dd

#comp(H)

∑
i=1

1
#activations(v)

#pat(vi)

∑
j=2

Ed
(
vi, patj−1, patj

)
(4.27)

Scaling Factor for Operators and Multiplexers Even though Equations (4.23) to (4.26)
provide a good way for obtaining the correct number of activations, the result will not be
correct in all cases. Especially if communication between processes takes place or if special
resolution logic e. g., for arbitrating memory access from multiple processes, is inserted into
the data path determining if and when an input port is written is not always possible. In this
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case, the assumed number of activations is obtained from the value-change-sequence. This
will lead to an overestimation of the dissipated energy, as described above.

Another obstacle arises from the simulation of assignment hardware basic blocks. As men-
tioned earlier, these are required for computing intermediate results, required as inputs to
the controller’s SMT predicates of the output conditions. Section 5.4.2 explains that the
assignment hardware basic blocks are computed during delta cycles and therefore are possi-
bly computed multiple times within the simulation of one clock cycle. Furthermore, there
typically exists a comparatively large overlap between the assignment hardware basic blocks
and the behavioural basic block, executed in the same cycle.

To avoid double-counting of the capacitance switched by RT components belonging to
an assignment as well as to a behavioural basic block, only the later one is taken into
consideration. Regardless of the overlap there might be some RT components only belonging
to the assignment hardware basic block. Such an example is given in Figure 4.9 on page 83.
Not considering such components during power estimation will lead to an underestimation.

A scaling factor ks
C is introduced for coping with the over- and underestimation just mentioned.

It is applied to the switched capacitance of operators and multiplexers, respectively. Registers
must not be taken into account since the number of their activations can be obtained exactly.
They also do not belong to any assignment hardware basic block. This scaling factor can
be easily obtained by performing an estimation using BAC++ with a scaling factor of 1.00
with the results from the estimation using PowerOpt and computing the relation between
both. This is shown in Equation (4.28). Of course, this is done with respect to operator
and multiplexer power, only. A scaling factor ks

C < 1 typically indicates designs with a lot
inter-process communication, while a factor ks

C > 1 is an indicator for a complex output- and
next-state logic. This is also visible from the detailed evaluation results in Appendix D.

ks
C =

Cmux&op, PowerOpt
l

Cmux&op, BAC++ (simple)
l

(4.28)

Advanced Capacitance Characterisation

Evaluating the simple characterisation approach, as done in Section 6.2.1, shows that the
simple characterisation is not effective enough i. e., will give a relatively high estimation
error. This is especially true for the error-over-time i. e., the relative error per clock cycle.
This is because the simple characterisation considers all data patterns that are applied to
the RT component while characterising the hardware basic block, the component belongs to.
Since the high-level synthesis may use resource-sharing and thus bind several operations to a
single RT component, the data patterns of the particular component may belong to different
hardware basic blocks. Different hardware basic blocks in turn may use the shared RT
component differently. This results in a varying dynamic power dissipation, depending on the
context i. e., the basic block the component is used in. In other words, the power dissipation
of a given RT component at a given time depends on the context of the operation.

Thus, a more sophisticated characterisation approach considers only the data patterns belong-
ing to the particular hardware basic block under consideration. An unbinding step separates
the pattern list of the RT component. In other words, a separate pattern list for each hardware
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basic block the RT components belongs to, is created. This is shown in Figure 4.12. These
pattern lists are then used during basic block characterisation.

Basic block 1
cycle operation

1 0x10 + 0x2A
3 0x0A + 0x3C
15 0xD8 + 0x01
17 0x72 + 0xE3

Basic block 2
cycle operation

6 0x01 + 0xD1
9 0x02 + 0x54
10 0xFC + 0x28
18 0x10 + 0x36

Basic block 1
from → to

(0x00,0x00)→ (0x10,0x2A)
(0x10,0x2A)→ (0x0A,0x3C)
(0xFC,0x28)→ (0xD8,0x01)
(0xD8,0x01)→ (0x72,0xE3)

Basic block 2
from → to

(0x0A,0x3C)→ (0x01,0xD1)
(0x01,0xD1)→ (0x02,0x54)
(0x02,0x54)→ (0xFC,0x28)
(0x72,0xE3)→ (0x10,0x36)

Adder 1
input

cycle a b

0 0x00 0x00
1 0x10 0x2A
3 0x0A 0x3C
6 0x01 0xD1
9 0x02 0x54
10 0xFC 0x28
15 0xD8 0x01
17 0x72 0xE3
18 0x10 0x36

Operations Input transitionsValue change sequence

Figure 4.12: Unbinding of operations — The value change sequence of a given RT component
must be split in order to assign individual operations to the corresponding
hardware basic blocks. During characterisation of the basic blocks, input transi-
tions are taken into account. The current pattern always belongs to the actual
basic block. However, the previous patter must be taken from the value change
sequence, since it might belong to another hardware basic block. For better
readability, data patterns belonging to the same basic block are encoded in the
same colour. Cycle zero denotes the initial pattern applied to the component, if
the simulation starts.

Equation (4.27) from the simple characterisation approach on page 86 can be modified to
consider only input patterns belonging to the actual hardware basic block. A delta-function
shown in Equation (4.29) determines whether a data pattern must be considered, or not.

δ(H, t) 7→ {0, 1} :

{
1, if t ∈ activetimes(H)

0, else
(4.29)

Since the RT-level power estimation does not consider individual data patterns but transitions
between them, a pair of data patterns must be considered. Such a pair from the pattern
list is only considered, if the second one belongs to the hardware basic block. This reflects
the fact that the input of the RT component switches from pattern patj−1 to patj during
execution of the particular hardware basic block. It is important to note, that both patterns do
not necessarily belong to the same basic block. On the contrary – it is very likely that both
patterns belong to different basic blocks. This is depicted in the right tables of Figure 4.12.

The modified characterisation is given by Equation (4.30). Again, characterising a hardware
basic block using its switched capacitance satisfies requirement 4, which has been identified
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at the beginning of this chapter.

Cl(H) =
1

V2
dd

#comp(H)

∑
i=1

1
#activetimes(H)

#pat(vi)

∑
j=2

δ
(

H, t
(

patj
))

Ed
(
vi, patj−1, patj

)
(4.30)

Obtaining the Number of Activations As for the simple characterisation approach, the
number of activations must be known. But in contrast to the simple characterisation, not
activations of individual RT components but activations of the complete hardware basic block
must be considered.

By analysing the controller’s FSM and its corresponding data path along with the pattern
lists obtained from a functional simulation, it becomes possible to determine the timestamps
a particular hardware basic block was active. This step requires a lot of computational effort.
However, the more precise this identification is, the more accurate the power estimation
results will be. In contrast, with a less precise timestamp identification, power estimation
results will converge to the simple characterisation approach, which considers all timestamps
during basic block characterisation.

A hardware basic block is assumed to be active at a specific timestamp, if all of its target
registers have their enable-signals set at that timestamp. At the same timestamp, all other
registers of the process must not be enabled, as defined by Equation (4.31). Related mux-select
signals can also be taken into account during identification of active timestamps of a hardware
basic blocks. In this case it is checked, whether all mux-select signals have the value as
during identification of the basic block. This will increase the accuracy of the characterisation
for cases where two distinct basic blocks have the same set of target registers, but activate
different parts of the data path. Experiments have shown that the improvement in estimation
accuracy is not worth the additional effort during characterisation.

active(H, t)⇔ ∀r∈VR

((
r ∈ V(s,a)

TR ⇔ r is enabled
)
∧
(

r /∈ V(s,a)
TR ⇔ r is not enabled

))
(4.31)

Scaling Factor for Operators and Multiplexers Like for the simple characterisation ap-
proach, the number of activations cannot always be obtained correctly. This is caused by
incomplete value change sequences for data ports, for example. In rare cases it might also
occur that two distinct hardware basic block have the same set of target registers, but different
mux-select configurations. Since the active times of a basic block are determined based on
the target registers only, it is assumed that a basic block is more often active than it really is.
In contrast to the simple estimation approach, where a wrong number of activations yields
an under- or overestimation, for the advanced estimation approach it yields a fuzzy result.
If more activations than actually occurred are assumed, data patterns, belonging to differ-
ent hardware basic blocks are taken into consideration, too. These additionally considered
patterns reduce the accuracy of the estimation. This error must be corrected.

Therefore, a scaling factor kadv
C is introduced, allowing to adjust the power estimation. Again,

this factor is computed by comparing the estimation results of BAC++ with the ones obtained
from an estimation using PowerOpt after the design had been characterised. This is shown in
Equation (4.32) on the next page. Of course, this scaling factor is only applied to the switched
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capacitance estimated for multiplexers and functional operators. Switched capacitances of
registers etc. are left unchanged.

kadv
C =

Cmux&op, PowerOpt
l

Cmux&op, BAC++ (advanced)
l

(4.32)

Contingency Option It might occur that for certain hardware basic blocks no active time-
stamps and thus no data patterns are available at all. That is, the particular basic block is
never activated by the use case, employed during characterisation. If no data patterns for the
specific basic block are available, the advanced characterisation cannot be performed. In this
case, the simple characterisation approach is used as contingency option.

4.4.6 Data Channels

Another source of dynamic power dissipation that must be considered are data channels,
such as memories or shared registers. In this thesis only a very basic characterisation is used,
since main focus is on the afore mentioned hardware basic blocks. For memories it is assumed
that activation takes place whenever the memory block is enabled. That is, at times when
the chip-enable signal is low. In the current implementation, no difference between read and
write accesses is made. Equation (4.33) assumes that the same capacitance is switched, if the
memory is accessed, independent from the type of access. This is a sufficient approximation,
if it is assumed that the relation between read and write accesses is the same for all use cases.
Like before, total dissipated energy is obtained from the RT-level power model.

Cl(M) =
1

V2
dd

1
#activations(M)

Etotal
d (M) (4.33)

For shared registers the characterisation is straight forward. A shared register is assumed to
be written, if its enable-signal is set by one of the processes sharing the register. Like for the
simple hardware basic block characterisation approach, it is assumed that each write-access
to the register switches the same capacitance, as shown in Equation (4.34). Again, total
dissipated energy is provided by the RT-level power model.

Cl(Rshared) =
1

V2
dd

1
#activations(Rshared)

Etotal
d (Rshared) (4.34)

4.5 Non-Functional Properties

Non-functional properties are not directly related to the functionality and the behaviour of
the design. Instead, they are introduced during high-level synthesis, in order to implement
the design. In other words, they are a necessary overhead that is required for implementing
the intended behaviour.
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While dynamic power dissipation of the data path is characterised per hardware basic block,
dynamic power dissipation due to non-functional properties is characterised per process.
This is especially true for all sources of power dissipation that are active in each clock cycle,
including clock and controller power. Again, physical parameters like supply voltage are
separated from structural properties like capacitance. This is shown in Equation (4.35).

Ed = f (p, Vdd)

≈ f1(p) · f2(Vdd)

= Cl(p) ·V2
dd

(4.35)

The total capacitance that is switched by a process p in each clock cycle is built from various
sources, as shown in Equation (4.36). Each one of them is described in more detail in one of
the following sections.

Cl(p) = Cl(ctrl) + Cl(clk) + Cl(net) (4.36)

Another important non-functional property is static power dissipation, whose characterisation
is done in terms of a conductance instead of switched capacitance. Finally, so-called idle-
power must be characterised, allowing to perform an estimation of the module’s power
dissipation during idle-phases. That is, if no behavioural simulation of the module takes
place. These sources of power dissipation also discussed in the following sections.

4.5.1 Controller Power

Besides RT components directly related to the functional behaviour of the hardware module,
there are components required for controlling the behaviour i. e., for controlling the RT data
path of the module. As can be seen in Figure 4.5 on page 67, the controller consists of a state
register and output as well next-state logic, which are active in each clock cycle.

Even though the controller is relatively small compared to the data path [145], it must be
regarded during power estimation. Due to its small influence on the total power dissipation,
its dynamic power dissipation can be assumed to be the same in each clock cycle. It thus
can be averaged over all cycles, yielding Equation (4.37). Total energy dissipated by the
controller is given by the RT-level power model. Keeping individual activities for each state
could be easily included in the model, but experiments have shown that an overall average is
acceptable. More details on this are given in Section 6.2.

Cl(ctrl) =
1

V2
dd · #cyc

Etotal
d (ctrl) (4.37)

4.5.2 Clock Power

Probably the most active part of a hardware module is the clock. The clock or its distribution
net also called the clock-tree to be more precise, switches every clock cycle. Even worse, the
clock-tree performs two complete transitions within one single clock cycle. That is, at a rising
and at a falling clock edge. Assuming that no power saving techniques like clock gating are
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applied, the clock’s power dissipation is obviously very regular and is thus the same for all
cycles. Clock power is characterised using Equation (4.38), in which total energy dissipation
of the clock net is provided by the RT-level power model. Even though clock gating is not
directly supported by PowerOpt, it supports clock-gating-aware RT components such as
registers. However, their modified power dissipation is part of their particular RT-level power
model and thus must not be considered separately.

Cl(clk) =
1

V2
dd · #cyc

Etotal
d (clk) (4.38)

4.5.3 Interconnect Power

While PowerOpt internally provides a cycle-accurate model for power dissipation due to
switched interconnect capacitances, it uses the all-cycles average value during power trace
generation. In order to allow the power & timing model creating a power trace, which is
comparable to the power trace directly obtained from PowerOpt, the interconnect power is also
characterised using the average value, as shown in Equation (4.39). If a more precise power-
over-time information regarding the interconnect power is required, this can be implemented
easily.

Cl(net) =
1

V2
dd · #cyc

Etotal
d (net) (4.39)

4.5.4 Static Power

As stated in Section 2.4.2, static power dissipation can be considered to be data-independent
for larger parts of the design. The processes created during high-level synthesis can be
considered to be such large parts. As shown in Appendix C, a typical process comprises
several hundred RT components with thousands of transistors.

If static power dissipation is considered to be data independent, it can be considered to
be a synthesis artefact, depending on the semiconductor technology used for synthesis.
Common estimation approaches use transistor count or gate-equivalents for modelling static
power, since they give a good first approximation if no detailed information is available.
However, in this thesis static power dissipation is characterised by the internal equivalent
conductance G, which is a complex function of voltage and temperature, as well as synthesis
and process parameters [73]. Thus, a nominal value, obtained during characterisation is used
for modelling the equivalent conductance. This nominal value can be scaled appropriately
during estimation, as described in Section 5.6.

Characterisation of static power dissipation is done analogously to the characterisation of
hardware basic blocks, even though it is more complex [73]. Again, structural properties
like conductance can be separated from parameters like supply voltage. But a closer look
reveals that conductance itself also depends on the applied supply voltage or temperature,
for example. This fact is regarded by the dimensionless function g(Vdd, T), which scales the
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nominal conductance G with respect to the aforementioned parameters.

Pl = f (p, Vdd, T)
≈ f1(p) · f2(Vdd) · g(Vdd, T)

= G(p) ·V2
dd · g(Vdd, T)

(4.40)

The conductance of a given process p is the sum of its local conductance and the conductance
of all its sub-processes, as shown in Equation (4.41).

G(p) = Glocal(p) +
#children(p)

∑
i=1

G(childi(p)) (4.41)

The local conductance itself is the sum of the conductance of all RT components vi belonging
to the given process p and can be computed using Equation (4.42). The static power dissipation
of a single RT component is available from the PowerOpt internal RT-level power models.

Glocal(p) =
1

V2
dd

#comp(p)

∑
i=1

Pl(vi) (4.42)

4.5.5 Idle Power

A special case must be considered, if the module under consideration is embedded in a larger
system. In this case, it may occur that the module is idle for a longer time e. g., between
two calls or activations of the module. In this case, not all idle cycles will be simulated
individually. On contrary, there is no functional simulation at all, as explained in Section 5.3.
In order to still obtain the power dissipation of the module, a so-called idle power is provided.
The idle power of the module is computed once, if the module enters its idle state. The trace
generation then assumes that this power will be correct until a new power value is set. This is
the case if the next activation of the module occurs or if a new supply voltage is applied to
the module.

During idle-phases of the module, each of the included controllers waits for its surrounding
environment to perform the hand-shake protocol. That is, for each process, the state register
keeps its value, the output logic does not activate the data path, and the next state logic only
observes the input signals, required for performing the hand-shake protocol. Summarising,
the data path can be considered to be dormant and the output- and next-state-logic are
virtually inactive. The only remaining source of dynamic power dissipation is the clock-tree.
However, static power dissipation must be considered as usual during idle-phases.

Average switched capacitance during idle-phases of the process is characterises very similar
to the static power of the modules, as described in Section 4.5.4. It can be obtained by
Equation (4.43), shown below.

Cidle
l (p) = Cl(clk) +

#children(p)

∑
i=1

Cidle
l (childi(p)) (4.43)
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4.6 Power Modes

It is possible that a hardware module can operate in different modes, so-called power modes.
A power mode is a set of system properties. In particular it is a tuple, containing the actual
supply voltage and clock frequency, the module will operate at while the particular power
mode is active. Using so-called power mode transitions, it is possible to switch from one power
mode to another one. Due to its strong effects on the module’s behaviour, a power mode
transition can only take place in specific phases of the module’s behaviour. For full-custom
hardware such a transition can take place if the module has finished its actual task i. e., if the
module becomes idle.

Power mode transitions are controlled, or requested to be more precise, by the global power
management. That is, a system-wide power manager decides in which power mode a specific
module has to operate in. This decision is based on a so-called power management policy.
During synthesis of the hardware module, a so-called power mode table is derived, which
contains all power modes that are supported by the module, as well as all allowed power
mode transitions. This table can then be used for deriving a suitable power management
policy for the overall system.

As described in more detail in Section 5.7, a global power manager requests the local power
manager to perform a power mode transition. Such a power mode transition is a change
of supply voltage and clock frequency, where the former is of particular interest during
characterisation. Changing the supply voltage to a higher or lower electrical potential causes
the capacitances inside the module to partially charge and discharge, respectively. Of course,
charging and discharging capacitances requires some time. Thus, a power mode transition
introduces a penalty in terms of power and delay, which must be considered during estimation
and functional simulation.

A special case of a power mode is the application of power gating, which is described
in Section 2.4.4. This technique allows switching off a hardware module completely. By
disconnecting the design from the supply voltage, static power can be reduced. If a module is
power gated, its internal state i. e., the content of its registers and memories, is lost typically.
Special state retention registers can be used to prevent this. While the module is power gated,
all internal capacitances are discharged slowly, due to leakage currents. If the module is
re-activated after being power gated, all discharged capacitances must be charged again and
all internal signals must reach a steady state. Thus, a power mode transition from an off- to
an on-mode dissipates significantly more energy than a transition between two on-modes.

4.6.1 Power Mode Identification

The supply voltage of a SoC is often defined externally, sometimes even external to the chip.
From a constant supply voltage source, a DC/DC-converter creates the desired voltages.
The delay for switching the supply voltage is typically in the order of tens of microseconds.
Recent research has developed methods for applying dynamic voltage/frequency scaling (DVFS)
using on chip voltage regulators, allowing the supply voltage to be scaled in the order of tens
of nanoseconds [51]. The clock frequency is modified in a very similar way. An oscillator,
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providing a given frequency is also typically located externally to the chip. Using clock
dividers and multipliers, the desired clock frequency can be generated.

In the design process of the overall chip, available supply voltages are limited by the technol-
ogy used for synthesis. Available clock frequencies can be defined later, since clock divider
and multiplier can be adapted easily. Thus, power modes are identified by specifying the
desired supply voltage. Afterwards, PowerOpt’s voltage-dependent delay model can be used
for obtaining possible frequencies in dependence of the critical path in the generated data
path. A power mode is then defined by the given supply voltage and the next lower clock
frequency provided by the clock divider/multiplier, which is next to the frequency identified
by PowerOpt.

If such a differentiated characterisation is not possible, the α-power law, introduced by Sakurai
and Newton [118] can be used. The α-power-law models the drain current of MOSFETs which
in turn affects the maximal frequency a circuit can operate at. It shows that the delay of
a circuit is proportional to a function of supply and threshold voltage [117], as shown in
Equation (4.44).

1
fclk

∝
Vdd

(Vdd −Vth)
α (4.44)

Knowing this and having a reference point (Vref, fref) available from the high-level synthesis,
it is possible to obtain new power modes in a first approximation. The required α can be
calculated from the technology information. The maximal possible frequency for a given
supply voltage Vdd can be estimated using Equation (4.45). Result is a new possible power
mode (Vdd, fclk).

1
fclk

=
(Vref −Vth)

α

frefVref
· Vdd

(Vdd −Vth)
α (4.45)

Reference voltage and frequency Vref and fref, respectively have been used during character-
isation. Parameters Vth and especially α are technology dependent and can be obtained if
technology data is available. For recent technologies α seems to converge at 1.3. Generally
speaking it can be said that the α-power law is suitable at the working point of a given
technology, but not at the borders of the typical parameter interval.

4.6.2 Power Mode Characterisation

As mentioned above, a power mode is characterised by its combination of supply voltage
and clock frequency. These two values are suitable for enabling a DVFS-aware functional
simulation. However, in order to derive power management policies for the global power
manager, some more information is needed. For deriving good power management policies,
average dynamic as well as average static power dissipation must be known. These two values
can be easily obtained from PowerOpt by performing an RT-level power estimation using the
supply voltage and clock frequency, specified by the particular power mode.

95



Chapter 4 Power Estimation & Characterisation

4.6.3 Power Mode Transition Characterisation

A characterisation of power mode transitions cannot be done directly using PowerOpt, since it
does not provide the required power models. However, characterisation can be done using the
models presented by Rosinger [114]. The following sections describe how a characterisation
of power mode transitions can be performed.

A power mode transition is performed by applying techniques known from DVFS. An
example for such a transition on a system with two different supply voltages is given by
Cheng and Baas [39]. First, the design is stalled, in order to save all intermediate results
i. e., the registers’ content. Second, the power supply is shut off, followed by a short delay.
Third, the power supply is switched over and finally the stall is released. In order to simplify
the power manager, it is typically assumed that all possible power mode transitions require
the same amount of time. The presented power mode model however, is able to cope with
different transition times. More details about the power required for enabling and disabling
the supply voltage can be found in the work of Rosinger et al. [116].

If the supply voltage is changed for a larger part of the design, the required energy can be
obtained by summing up the values for all RT components that belong to the particular area.
Such an area is also called a power island. For the approach, presented in this thesis, the
complete module belongs to a single power island i. e., the supply voltage and clock frequency
is the same for all RT components. Basically, there are different types of transitions that can
be performed by the power island.

Transitions between On-Modes

The simplest case is a power mode transition between two on-states. During a transition
between two on-modes, the internal state of the RT component or even of the entire hardware
module remains stable. Charged capacitances must be partially discharged or charged,
depending on whether the new power mode has a higher or lower supply voltage. Discharged
capacitances remain unaffected. No glitches or hazards occurs during the mode transition.

Transitions between Off-Modes

Transitions between off-modes i. e., between different power-saving or sleep-modes, are very
similar to power mode transitions between on-modes. Again, the internal state of the module
remains stable, since all capacitances remain unchanged. When performing a transition from
a lower to a higher supply voltage, the capacitances are slightly loaded, due to the higher
potential difference. This is true, even for a PMOS power gating transistor due to leakage
currents, passing through the gate transistor. The same happens vice versa, if a power mode
transition to a lower supply voltage is performed. However, more important than the partial
charging and discharging of capacitances is the fact that the leakage currents of the module
will increase due to the higher supply voltage.
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Transitions between Off- and On-Modes

Most interesting are power mode transitions between an off- and an on-mode and vice versa.
In the first case the module is enabled. Therefore, not only internal capacitances must be
charged, the internal state of the module must also become stable. During the stabilising
phase, a lot of glitches and hazards may occur inside the module, causing additional power
dissipation. Moreover, the stable internal state that must be reached, depends on the applied
input vector, making an exact estimation even more complex. During a transition from an on
to an off state, the module is disabled. In this case, all capacitances are partially discharged
and the state is lost.

Transition Costs

A transition between power modes causes a penalty in terms of delay and additional power
dissipation. For simple RT components, it can be assumed that the power mode transition is
performed within one clock cycle. This is also true, if a transition from an off- to an on-mode
is performed, as shown by Rosinger [114, sec. 4.2.5]. The delay can be approximated using
Equation (4.46). In the equation, τRC denotes the RC time constant. This is the time required
for charging capacitance C through resistor R to about 63.20 % of the difference between
initial and final value. The capacitance is assumed to be fully charged after 5τRC, when it is
charged to about 99.30 %.

τtrans ≈ 5τRC <
1

fclk
with τRC = RC (4.46)

For single RT components, the limiting factor is the power-gating transistor, which separates
the RT component from the supply and ground voltage, respectively. For larger structures,
the supply grid becomes the limiting factor. If a lot of RT components are enabled at the
same time, the supply grid cannot deliver the required electrical current, resulting in an
IR-drop. This in turn causes the timing penalty to increase heavily. It can increase from 1 to
5 ns to several milliseconds. Since the delay highly depends on design properties that are
not available before a low-level placement and supply grid routing has been performed, any
statement at a high level of abstraction is only a first approximation. Equation (4.47) can be
used for obtaining the energy, required for performing the power mode transition.

Etrans =
1
2

Cl

∣∣∣V2
to −V2

from

∣∣∣ktrans (4.47)

The scaling factor ktrans is component dependent and reflects the fact, that there is some
internal toggling of the individual gates, until a stable state is reached. This cannot be
approximated using area or the like. This ktrans depends on the component’s type, bit width,
as well as initial and target voltage.
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4.7 Summary

This chapter has shown a new power and timing characterisation approach for digital hard-
ware modules. It briefly described the project COMPLEX, which allows a design space
exploration for complex and heterogeneous embedded systems. With this, the design space
exploration process developed by the project COMPLEX fulfils requirement 1, from the begin-
ning of this chapter. Based on the COMPLEX design space exploration process, an estimation
process for embedded digital hardware modules has been developed, allowing an estimation
and characterisation of hardware modules embedded in a complex and heterogeneous system.
By considering the entire system as test bench for the hardware module requirement 2 is
fulfilled. Module’s estimation is performed on an RT-level data path, which is obtained from
a high-level synthesis. The characterisation is based on combinational macros, automatically
identified in the RT data path.

Each identified and characterised macro or hardware basic block is a spatial abstraction by
describing a set of RT components, jointly active at once. Several methods for handling the
occurring state explosion are given. These range from the reduction of the control signals
that must be considered to discarding hardware basic blocks whose behaviour is already
implemented by another hardware basic block. Characterisation of the hardware basic blocks
is done in terms of structural properties, as required by requirement 4. Physical parameters
like supply voltage are separated, allowing the executable model, described in the following
chapter, to be used in different scenarios. Synthesis artefacts such as parasitic functionality
are also considered, fulfilling requirement 3.

Two different characterisation techniques are shown, both considering data dependencies
implicitly, as required by requirement 5. Non-functional properties like power dissipation due
to clock or controller activity are also included in the model. The aforementioned separation
of structural properties and physical parameters allows the model to regard several power
modes and also considers transitions between the individual modes. Special attention was
given to power mode transitions from off- to on-states.

Summarising, it can be stated that this chapter has shown a way for raising the level of
abstraction at which accurate power and timing estimates can be made, by almost an entire
level. The presented hardware basic blocks encapsulate a large number of RT components,
promising a large speed-up during simulation. Despite the expected gain in simulation
speed, the characterisation based on structural properties and with respect to implicit data-
dependencies is still providing accurate results.

With the results of the identification and characterisation process, described in this chapter, it
becomes possible to generate an executable, power and timing aware high-level simulation
model. This model and its generation are described in the following chapter.
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Chapter5
Executable Model Generation

Abstract
This chapter explains how the characterised information is used to create
an executable virtual prototype of the hardware module. This prototype
is used to estimate the overall system’s behaviour in terms of power and
timing, by performing a simulation of the virtual prototype. The prototype
consists of augmented versions of its contained modules. Each module is
provided with additional information about power and timing, obtained
during characterisation. Along with a functional simulation of the overall
system, activity information is collected and power and timing is estimated.

The following chapter presents in detail how the virtual prototype for a full-
custom hardware module is generated. First, it outlines the structure of the
generated virtual prototype and how the individual parts interact with each
other. It then gives a detailed insight in the implementation of the functional,
the power mode as well as the power & timing model. It shows how these
models are combined for obtaining accurate estimates. Towards the end, the
chapter also explains how the virtual prototype of the hardware module is
connected to the overall system prototype.
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After the characterisation of the design under consideration has been performed, a power
and timing aware behavioural model can be generated. It utilises the characterised

values in order to provide fast, yet accurate estimates. This satisfies requirement 6 of the
requirements to a new characterisation and estimation process, as identified in the introduction
of Chapter 4.

For gaining a notable simulation speed-up, the simulation semantics must be simplified.
Simulation details must be abstracted in a way that improves simulation speed, but retains the
desired accuracy of the estimation. Some abstraction techniques are mentioned in Section 3.2.
Generally, there are different types of abstraction that can be applied [48]. It is also possible
to apply a combination of them. Even though the author’s original intention was their
application on software systems, they also can be applied to models, describing hardware
systems [123]. Abstraction by translation evaluates the input model and translates it into a
new output model. This is the most familiar technique in hardware design. Abstraction
by extension utilises facilities from the lower level to build the higher one. A prominent
example is SystemC, which extends the C++ standard, allowing to model hardware modules.
Finally, there is interpretation e. g., in the form of firmware or microcode. It can be used for
software modules, for example. For modelling hardware modules, it might be best compared
with VHDL or Verilog, which are not executed directly, but interpreted by the simulator.
However, there are also some tools which compile VHDL and Verilog before performing the
simulation.

As mentioned in Section 4.3, the behavioural input model of the proposed characterisation
process is a C/C++ model, which in turn is a sequential description of the behaviour. This
model can be executed on a software processor i. e., the host machine. During high-level
synthesis, this model is transformed into a description consisting of hierarchical organised
and concurrently executed processes. Each process in turn consists of a data path and an
associated controller. During scheduling, allocation, and binding phases of the synthesis
process, individual operations of the input model are mapped to hardware operators.

In order to optimise power and utilisation of the hardware resources, several operations are
mapped onto the same operator. Different optimisation strategies can be used to minimise
the number of RT components, required for implementing the design. These massive transfor-
mations and optimisations prohibit a simple back-annotation of the characterised hardware
properties to the C/C++ input model. It is necessary to create a new high-level description of
the syntheses result. This new description must represent the functionality and all syntheses
artefacts, required by an accurate power and timing estimation.

In order to allow a co-simulation with the original test bench as well as the surrounding
system i. e., the virtual system prototype, the output model preferably should be a C/C++

model. As mentioned above, augmentation takes place in terms of basic block, hence the
name block annotated C++ (BAC++). Such a model allows a fast compiled simulation with
power and timing estimation capabilities. Since the original test bench can be utilised, the
generated model can be used with different input stimuli, and not only the ones it had been
characterised with. This fulfils requirement 7 of the requirements identified at the beginning
of the previous chapter.
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5.1 Simulation Models

Different simulation models can be used for implementing the BAC++ model. Basically,
three different types can be identified [143, chap. 3]. Differential equation models are the most
powerful models. The actual state of the system is specified as a set of state variables. Using
derivative functions, which specify the rate at which these variables change, the system’s
state can be computed for any point in time. For computing the state of the system for ti+1
from ti without knowing what happens between those two points in time so-called solver
or numerical integration methods are required. This type of modelling is mostly used for
modelling continuous systems.

Using discrete time models, simulation is performed step-by-step, where each step covers a
well-defined but maybe abstract amount of time. An example for such a model is an FSM. In
each simulation step, a transition between two states takes place. The transition and possible
output words are defined by corresponding functions. An example of such a model is given
in Section 4.3.1. This type of modelling is well-suited for clocked systems.

Modelling digital systems is most often done using discrete event models. A system consists of
different components, each one issuing events. These events can be internal i. e., do not affect
other components, or they can be external. Internal events are triggered and scheduled by
the component itself. External events however, are caused by other components. Therefore,
the time they occur cannot be predicted. All events that occur are scheduled and stored in
an event queue. This list is processed event by event. Processing an event might cause other
events, which in turn are scheduled and stored in the event queue. Simulation is completed,
if no events are left in the event queue or if a specified timeout is reached.

While differential equation models are suitable for continuous simulations such as Simulink,
for example, they are not suited for modelling digital hardware at logic- or RT-level. Discrete
time models seem to be the most obvious solution. Due to the discrete nature of the systems
discussed here, they are preferable. The design’s controllers are implemented as FSMs and
can therefore be modelled easily using a discrete time approach. Communication between
processes however is performed asynchronously and might iterate several times during a
single timestamp. Therefore, discrete time modes are not powerful enough.

The solution is using a discrete event model approach. This type of model is capable of
modelling the process-internal synchronous as well as the process-external asynchronous
behaviour accurately. However, discrete event models typically use a sophisticated and
therefore complex event queue, providing different delay models to signal assignments, such
as inertial or transport delay. Considering the model, which is generated during synthesis,
such a sophisticated event queue is not required and can be replaced by a simpler one. It can
be assumed that events can occur only in the next delta or clock cycle, respectively. Moreover,
it can be assumed that each process causes at least one event per clock cycle. This event
is the computation of the FSM’s next state. Regarding the hardware basic blocks it can be
guaranteed that a static scheduling of their operations is possible.

Summarising, the generated model will be a light-weight discrete event simulation, allowing
asynchronous communication between processes and statically scheduled behaviour inside
the identified hardware basic blocks.
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5.2 Structure of the Generated Model

The hardware implementation of the characterised module is a hierarchical structure of
concurrently running processes. These are implementing the behaviour of the initial system
description. Each process consists of an FSM and a corresponding data path. A process
may also contain one or more sub-processes. Inter-process communication is performed by
internal signals, which are connecting the sub-processes with each other as well as with the
controller of the process itself.

During creation of the corresponding BAC++ model, this structure is maintained. Additionally,
the generated BAC++ module contains models, required for estimating the power and timing
behaviour of the module. The structure of the generated model is shown in Figure 5.1.
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Figure 5.1: Structure of a generated BAC++ module — The created BAC++ HW module
contains the functional and power mode model as well as the power & timing
model. The functional model itself consists of processes containing a RT data path
and the corresponding controller. It may also contain sub-processes. The created
module is connected to the TLM interface using shared register files.

The structure of the generated BAC++ model consists of three main parts. The functional model
contains the behaviour of the module in terms of previously identified hardware basic blocks,
whose characterisation is described in Section 4.4. These are enriched with power and timing
information, obtained during characterisation. Execution of the hardware basic blocks is
managed by a controller, created from the process’ FSM. The power mode model implements the
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available power modes that had been introduced in Section 4.6 and the transitions between
these modes. Power mode transitions can be requested from an external power manager,
for example. The power & timing model considers information from the functional model, the
actual power mode, and also non-functional design artefacts of the module, as described in
Section 4.5. It combines this information in order to obtain the metrics required during design
space exploration.

Besides the three models just mentioned, two register files are provided for accessing the
module. The first one, the local resource management (LRM) register file is used for accessing
the module’s power management i. e., for requesting power modes. The second one is used
for emulating the function call of the C/C++ input model, the generated hardware module
was originally derived from. Both register interfaces can be wrapped by a TLM interface,
allowing the module to be optionally used in a TLM-based virtual system prototype. The
TLM wrapper basically provides a TLM-interface for accessing these two register files.

If the generated virtual prototype is embedded in a virtual system prototype, the BAC++

model must be synchronised with the overall system. Synchronisation with the surrounding
system is performed by the BAC++ module container. Even though the BAC++ model is cycle
accurate, it performs a temporal decoupled simulation. During execution of the functional
behaviour, local simulation time is ahead of SystemC’s simulation time. Moreover, simulation
of the BAC++ module cannot be interrupted until it has completed its actual behaviour, which
is known as run-to-completion scheduling. The local time of the BAC++ module is an offset to
the global simulation time. At the end of the behavioural execution, local and SystemC time
are synchronised. This is done by resetting the local time of the BAC++ model.

An eventually pending power mode transition is performed afterwards. Also, the trace-
generation back-end is notified that the module is now idle. Even though no behavioural
simulation of the module takes place, its idle-power is visible within the overall system’s
power trace. All four parts of the generated BAC++ representation will be explained in more
detail in the following sections, but the model of computation is introduced first.

5.3 Model of Computation

The generated BAC++ model provides a compiled simulation. That is, it has to be compiled in
order to be executed. The simulation performed by the model is cycle accurate. As stated,
the generated model consists of a set of hierarchical structured processes. All processes are
executed simultaneously. Execution of a process or the design, respectively, can be split into
three phases. This is shown in Figure 5.2 on the next page.

In the first phase initialisation & power management, the generated design can be considered
to be controlled externally. In other words, there exists no internal control flow. This phase
can only be entered if the module is idle. The phase is entered directly before the simulation
starts in order to perform an initialisation of the module. All registers are set to their default
values and signals for inter-process communication are set to valid values. This phase is also
entered during transitions between power modes. In this case the module cannot operate,
since it is controlled by the power management.
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Figure 5.2: Main simulation loop — The main simulation loop consists of three main phases.
In the first phase the module is initialised and power mode transitions are per-
formed. The second phase simulates the function call. That is, it passes the call
parameters and the return values to and from the module, respectively. The third
phase performs the actual behaviour by triggering all concurrently running state
machines of the module.

The second phase performs the simulation of the function call. After initialisation, the module is
idle until it is been activated i. e., it is called using the call-interface. If the module is activated,
call parameters are moved from the function-call interface into the data path of the module.
In particular, the parameters are moved into the corresponding data channels like shared
registers for simple call parameters or memories for arrays or user defined data types like
structs. After all parameters have been provided to the data path, the handshake protocol is
performed accordingly.

In the third phase, the behavioural execution is performed. This means, that the module’s
processes perform their control steps, until computation is complete. After the behavioural
execution phase had been completed, computed results are moved to the function-call interface
and the operation is finished by completing the handshake protocol. After the complete
function call has been completed, the module is idle again and power management can be
performed, for example.

5.3.1 Behavioural Execution

After all call parameters have been provided to the functional model, execution of the modules
behaviour can be performed. As mentioned, all processes are executed simultaneously and
cycle by cycle. That is, the FSMs of the processes are triggered in the same way. Generally,
there are two differed types of simulation steps.
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First, there are synchronous steps. This is, all the behaviour directly related to a rising clock
edge. Computation of register values is done only once per cycle, for example. Data exchange
between processes takes place by means of registered interfaces. That is, exchanged data is
also only read and written on a rising clock edge. This is especially true for data channels
like shared registers or memories. Again, exchanged data is computed only once per cycle.
Therefore, this simulation step is called HBB cycle. The ordinary hardware basic blocks
described in Section 4.4.2 are activated only once per simulation of a complete clock cycle.
At the end of their execution, each hardware basic block notifies the power & timing model
about the capacitance that had been switched during execution. During an HBB cycle, the
process’ controller computes the next state and also notifies the power & timing model about
switched capacitance.

Besides the ordinary hardware basic blocks there is some behaviour that must be executed
asynchronously, like the handshake protocol, for example. In order to perform the handshake
as well as for computing the next state in the HBB cycle, the controller’s conditions must be
evaluated. These conditions do not depend solely on synchronous memory components like
registers. They also depend on the asynchronously performed handshake protocol as well as
some intermediate results. These intermediate results or assignments, as stated in Section 4.4.4,
are directly obtained from the data path. Hence, some asynchronous computation must be
performed. This is done during so-called delta cycles. Since the computation of a delta cycle of
one process may affect the input of the other processes of the module, delta cycles must be
performed until the module reaches a steady state. Due to the simple handshake protocol, the
steady state is reached after approximately two to three delta cycles, depending on whether
the processes are in a handshake phase, or not. Co-operation of asynchronous handshake
protocol and synchronously performed behavioural simulation is shown in Figure 5.3 on the
following page.

There is a third type of simulation step, called clock cycle. This simulation step marks the
end of the currently simulated clock cycle. Hence its name. During this step, the internal
time reference in terms of cycle count is increased and the current states of all the controllers’
FSMs are set to the ones computed in the HBB cycle.

5.3.2 Inter-Process Communication

While the behaviour of each process is implemented as a clocked sequential system and
thus uses a synchronous model of computation, the handshake protocol is performed asyn-
chronously. That is, inter-process communication is performed asynchronously while be-
haviour and data exchange is performed synchronously.

Asynchronous behaviour is performed by means of a very simple discrete event simulation.
In such a simulation, writing a value to some kind of channel causes an event to occur. In
other words, the new value is not available instantaneously, but is scheduled using a possibly
timed event-queue. The new value becomes visible, if the particular event is processed by
the simulation engine. All event-queues are processed one after another and the behaviour,
sensitive to the channel is triggered. During execution of the behaviour new events may be
triggered, which again will be scheduled using the event-queues. Simulation of all delta
cycles is completed if no more events are left in the queues.
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Figure 5.3: Behavioural execution — Behavioural execution is controlled by the generated
controller. Delta cycles perform the handshake and compute combinational
operations, HBB cycles compute hardware basic blocks, and clock cycles update
the controllers’ states and compute the progress of time.

Timeless behaviour of the generated high-level model is performed during these delta cycles.
As detailed in Section 5.4.3, signals are used for communication. These signals provide a
very simple event-queue that can hold exactly one event of type value changed. Using this
simplified technique, no sophisticated event-queue like in VHDL or Verilog is required.

Each time the signal gets a value assigned that is different from its actual one, the event is
raised. If there are events left to be processed, a delta cycle is executed. First, all signals take
their new values and their events are reset. Hereafter, the timeless behaviour of the processes
is simulated. Specifically, the controller’s state machine’s read and write handshake signals
etc. The handshake protocol used for inter-process communication is a very simple protocol,
requiring only a small number of delta cycles, which in turn will fasten the simulation. After
all delta cycles have been performed, simulation continues with the synchronous behaviour,
as shown in Figure 5.3.

5.3.3 Progress of Time

Module internal progress of time is correct by construction. This is because a cycle-accurate
model is been created, based on the also cycle-accurate RT-level description of the module,
which was generated during high-level synthesis. Process-local time is considered in terms of
cycle count. After all delta and the single HBB cycle had been performed, local time of the
process is increased, by increasing the cycle count by one. The process’ internal cycle count is
used as reference timestamp sent to the power & timing model. This uses the timestamp the
compute the actual elapsed time in seconds, based on the applied clock frequency.
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Progress of time must be considered in two ways. At first, it must be considered during
trace generation. As mentioned in Section 5.6.5, any information that is added to the trace
contains information about time in terms of a timestamp given in seconds. The timestamp is
an absolute time information that is obtained by adding the local time offset to the global
SystemC time.

Secondly, time must be considered, if the generated BAC++ model returns simulation control to
the SystemC kernel. In order to further increase simulation speed, the behaviour implemented
by the generated BAC++ model is not immediately synchronised with the actual simulation
time of SystemC. Instead, synchronisation is only performed, if it is required by the behaviour.
Local BAC++ and global SystemC time are synchronised at communication borders i. e., if
an external channel is accessed. Behaviour that has been obtained from a C/C++ input
specification is always executed to completion, also known as run-to-completion. In other
words, an activation of the generated BAC++ module represents the particular function call
from the input model.

Synchronisation behaviour is implemented by the created BAC++ module container. It is
transparent to the functional model. In order to run ahead of the actual SystemC simulation
time, additionally elapsed time is stored by the module container. The actual time inside the
BAC++ module is obtained by adding the additional elapsed time to the actual simulation time
of the SystemC simulation kernel. This way it is possible to obtain exact timestamps during
execution of the functional behaviour, as it is required for generating timestamp/value-tuples
that should be traced. After behavioural execution has finished, the simulation kernel is
notified about the elapsed time and the local time is reset.

5.4 Functional Model

The functional model contains the behavioural description of the module as well as all power
and timing information directly related to its behaviour. Its structure is directly derived from
the structure of the RT-level description, which was generated during high-level synthesis.

The model is generated from hardware basic blocks, identified during characterisation. Each
basic block contains a small part of the behaviour as well as metrics for power and timing
estimation, directly depending on its behaviour. During simulation, different basic blocks are
executed, depending on the actual control flow, which in turn was triggered by the applied
input stimuli. Each time a hardware basic block is executed, it notifies the power & timing
model about the switched capacitance and the amount of clock cycles that where required for
its execution.

During BAC++ model generation, a C++-class hierarchy is created, representing all processes
with their controller and RT data path as well as their sub-processes. Each controller is
implemented as a switch statement, emulating the controller’s FSM and thus the control flow.
The behaviour of the data path is represented by the identified hardware basic blocks. Each
one is implemented as a C++ member method of the class, which implements the particular
process the hardware basic block belongs to.

In complex designs, which contain sophisticated and concurrent running behaviours, these
processes are arranged in a hierarchical structure. This means that a process may contain
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sub-processes. The process itself and its sub-processes can communicate with each other. The
created process classes are connected with each other during instantiation using references to
shared variables. Not shown in Figure 5.1 on page 102, but part of the generated model are
special communication channels, such as shared registers or memories. These channels allow
a data exchange between the individual processes.

The implemented model of computation uses a simple discrete-event simulation for inter-
process communication. Thus, all operations on signals are executed on current signal values.
After obtaining all new values, the values of the signals are updated. For hardware basic
blocks a more simple approach is feasible. Because a hardware basic block is enclosed by
registers and may not contain any loops, it can be statically scheduled. Thus, no delta cycles
are required for simulating a basic block.

5.4.1 Hardware Basic Block Implementation

Most important part during generation of the executable model is the code generation for
implementing the hardware basic blocks. The previous chapter has defined a hardware basic
block as combinational macro, representing a certain functionality that is activated in the data
path, if a specific output symbol is applied by the controller. While the RT-level model allows
a parallel execution of the behaviour, the C++ implementation of the basic block requires the
behaviour to be executed sequentially. Therefore, all operations belonging to the basic block
must be statically scheduled. During operation scheduling, all inter-operation dependencies
and lifetime of registers values must be regarded.

Operations belonging to a hardware basic block are implemented using local variables.
Therefore, the result of an operation is only available within the method, implementing the
hardware basic block. However, registers and other RT components that are unique to a
single process are created as process-local variables, accessible from all hardware basic blocks
and the process’ controller. An example implementation of a hardware basic block is shown
in Listing 5.1. It depicts the implementation of the hardware basic block from Figure 4.7 on
page 75.

Code generation is done in three major steps. First, a local copy of all required source registers
is created. This is done by the lines 3 to 5. Creating a local copy of the required register values
allows the registers to be read and written in the same hardware basic block without creating
a race condition. Second, new register values are computed by the lines 8 to 13. The code
created for value computation is generated using a bottom-up depth-search in the data path.
That is, before creating a certain operation, its required inputs must be available. Therefore,
the inputs are generated first. This is repeated until the required input contains only source
registers, since they can be assumed to be available.

An important property that must be regarded during code generation is the bit-with of the
operator. The RT-level description is bit-accurate i. e., registers, operators, etc. have the
required bit-width. Unfortunately, C/C++ does not natively provide arbitrary bit-widths.
Depending on the compiler’s target architecture only types with a certain bit-width are
available. These types are used, whenever possible. However, especially bit-widths which are
not a multiple of a byte are not available. In order to maintain the correct behaviour during
overflows etc., bit-masking and shifting operations are added whenever necessary.
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void hbb0001(void) {
// Create local copy of all source registers

3 int local_r1 = this->r1.read();
int local_r2 = this->r2.read();
int local_r3 = this->r3.read();

6

// Compute new values of registers r6 & r7
int sub1 = local_r2 - local_r3;

9 int mul1 = local_r1 * sub1;
this->r6.write(mul1);

12 int mux1 = sub1;
this->r7.write(mux1);

15 // Notify power & timing model
this->send_notification(hbb_notification(

"hbb0001", // sender name
18 7.362e-13*si::farads, // functional units & muxes

0.000e-00*si::farads, // interconnect
1.182e-12*si::farads, // registers

21 1 // duration [cycles]
));
return;

24 }

Listing 5.1: Abridged BAC++ implementation of a simple hardware basic block — The code
consists of three main parts. The first section is responsible for creating a local
copy of all source registers, while the second part performs the actual computation.
The third part finally notifies the power & timing model about dissipated power
and elapsed clock cycle.

In the last step, after all new values have been computed, the power & timing model can be
notified about dissipated power and elapsed clock cycles. Lines 16 to 22 show how such a
notification is send. It contains the values obtained during characterisation of the hardware
basic block. Even though the implementation of the hardware basic block only contains
the required computations, synthesis artefacts like parasitic functionality are part of the
characterised values for dynamic power dissipation.

The generated code is some kind of three-address code, well known from compiler con-
struction. In other words, each line contains a single and simple operation. Typically this is
an operation, two operands and an assignment of the result. Generating the three-address
code in the way described above, may cause successive, simple assignments to occur. Such a
sequence of simple assignments occurs during code generation for multiplexers, for instance.
An example is shown in line 12 of Listing 5.1. Fortunately, these simple assignments can
be easily optimised by the compiler. Zhong et al., which use a very similar approach for
generating C/C++ code, have shown that converting C-code into three-address C-code does
not lead to an observable increased execution time [145]. This is because most compilers
internally use some kind of a three-address representation as well.
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5.4.2 Controller Implementation

The controller of each process is implemented as one large switch statement, where each
case section represents a specific state of the controller’s FSM. In each state, the controller
evaluates the SMT predicates, which are required for computing the controller’s next state
or the active hardware basic block, and behaves accordingly. The behaviour within a state
is two-fold and reflects the different execution cycles, introduced in Section 5.3.1. A sample
implementation of a single state of the controller’s FSM is shown in Listing 5.2.

case S1: {
switch (cycle_type) {

3 case DELTA_CYCLE:
if (IOST_fsync_syncRight_rdy_r==true && SEL_Assign_1==false) {

IOEN_mem_in_readWritePort_0_CEN0.write(0);
6 }

if (true) {
IOEN_fsync_syncRight_ack_r.write(1);

9 }
if (true) {

this->hbb0001();
12 }

break; //DELTA_CYCLE

15 case HBB_CYCLE:
if(!IOST_fsync_syncRight_rdy_r){

this->state.write(S1);
18 }else if (true) {

this->state.write(S2);
}

21 if (IOST_fsync_syncRight_rdy_r==true && SEL_Assign_1==false) {
this->hbb0002();

}
24 break; //HBB_CYCLE

}//switch cycle_type
} break; //S1

Listing 5.2: Sample BAC++ implementation of a single state of the controller’s FSM — During
a delta cycle, handshake with other modules like memories or the surrounding
processes is performed. Intermediate results, required for evaluation the Boolean
conditions are also computed. In a HBB cycle, the next state is computed and the
behavioural hardware basic blocks are activated.

In the listing, lines 3 to 13 embrace the implementation of a delta cycle. The controller
evaluates the SMT predicates and determines its behaviour during the delta cycle. Register
values are directly available, but intermediate results, required by the controller must be
computed during the delta cycle, as mentioned in Section 4.4.1. First, the controller performs
the handshake protocol. In the example, line 5 shows the handshake with a memory,
while line 8 performs the handshake with the surrounding processes. Second, line 11
activates the assignment hardware basic block hbb0001, which is responsible for computing
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the intermediate results like the value of Assign_1. Since predicate SEL_Assign_1 depends on
the value of Assign_1, which might change during execution of hbb0001, the predicates must
be re-evaluated. Thus, another delta cycle is required, if a value is changed by an assignment
hardware basic block. This phase is repeated by the simulation kernel, until no more delta
cycles are required. This is also shown in Figure 5.3 on page 106.

After completing all delta cycles, the actual behaviour of the data path can be simulated,
which is done in lines 15 to 24. After the handshake has been completed and all intermediate
results are available, the next state of the controller’s FSM is computed in lines 16 to 20. The
next state is computed before the hardware basic block is activated, because it might depend
on the register values, which in turn might be changed during execution of the basic block.
Computing the next state before executing the behaviour of the data path allows using a
single-valued register logic instead of a costly current-/next-value logic for each register.
After the next state has been computed, behavioural hardware basic blocks are activated. In
Listing 5.2 this is done in lines 21 to 23. Exactly one hardware basic block per process is
executed, since exactly one of the conditions will evaluate to true. In the example, it can bee
seen that hbb0002 and the memory handshake depend on the same condition. Therefore, it
can be assumed, that the memory is used by the basic block.

In the final behavioural execution phase, which is not shown in Listing 5.2, the clock cycle is
performed. Since this phase is the same for all states of the controller’s FSM, it is done directly
after the switch statement. During a clock cycle, the local simulation time i. e., the local cycle
count is increased. After the clock cycle had been performed, the behaviour, described in
Section 5.3.1 as well as in this section, is repeated, until all data has been processed.

5.4.3 Implementation of Inter-Process Communication

There are two different ways for implementing inter-process communication. First, there are
simple signals, which can be directly connected to the processes. These are typically used
for implementing the handshake protocol. Data exchange however, is done using so-called
data channels. This second way can be subdivided into different data channels. In this thesis
memories and shared registers are supported.

In the generated model, inter-process communication is performed by means of signals, which
are implemented as shared variables. Connecting the processes with the signals is done in
the constructor’s initialisation list of the parent process i. e., the class that instantiates the
processes to be connected. Inside a process, the external signal is represented as a reference
to the object representing the signal. If a signal is passed to sub-processes, again this is done
as a reference to the actual object. This way, the interconnection between processes is checked
during compile time. No special elaboration phase is necessary.

All signals provide a common interface for reading and writing values. Since the actual
internal behaviour is hidden, they can be considered as abstract channels. The channel can
then be accessed using simple function-calls. Using the proposed channel approach it is not
possible to detect competitive write operations from multiple clients. It is even not possible to
determine, if a certain client is a channel reader, a writer, or both. Again, this simple structure
of the inter-process communication improves the simulation speed. Since it can be assumed
that the generated model is correct by construction, the drawback is negligible.
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For data exchange between processes data channels are used. Like processes, they are part of
the design hierarchy. A connection between processes and data channels is made by means of
the aforementioned signals. Most prominent data channels are shared registers and memories.
A shared register is basically an ordinary register. Main difference is that the shared register
might be enabled by several processes. While the register’s value can be read all the time,
write accesses are handled during clock cycles, only. As usual, a register can only hold a
single value. For exchange of larger sets of data, memories are used. The provided template
for instantiating memories allows multiple read and write as well as read-only ports. During
initialisation of the simulation, an image file, generated during characterisation is loaded into
the memory. Accesses to the memory are handled during clock cycles, as expected. In contrast
to process-local data structures, data channels can be accessed by multiple processes. In
order to provide a conflict-free access to the channel, a resolution-logic is provided, whenever
necessary. Since the resolution logic is pure combinational, it is evaluated during delta cycles
and thus is transparent to the processes, trying to access the channel.

5.5 Power Mode Model

The power mode model contains information about the module’s available power modes
and the allowed transitions between them. The information that is contained within the
power mode table is described in detail in Section 4.6. Also, an example table is given in
Section B.3. The power mode table is generated during characterisation and loaded during the
initialisation phase of the virtual prototype simulation. As mentioned earlier, a power mode
is a combination of applied supply voltage and clock frequency. Power mode transitions
allow switching from one power mode to another one, although not all transitions that are
possible are actually allowed.

Besides the static information about available power modes and transitions between them, the
power mode model contains information about the power mode, which is actually selected
by the global power manager during simulation of the virtual prototype. Changing the
power mode will result in a different execution time and power dissipation of the functional
model.

Power mode transitions can be requested using the LRM-interface. It is a simple register-
interface consisting of three registers. The first two registers contain the ID of the actual
and the requested power mode, respectively. The third register is a status register and
determines if a power mode transition is requested and pending, or if an error had occurred.
For example, if an unknown power mode is requested, or if the requested transition is not
allowed. Figure 5.4 shows the state machine of the power mode model.

If a power mode transition is requested by the global power manager, the power mode model
performs the requested transition as soon as possible. As an implementation artefact, these
transitions are only performed, if the behavioural code releases the control of the simulation.
Power mode transitions can only be performed between two activations of the module i. e.,
only if the module is idle. The execution of behavioural code is not interrupted by a power
mode transition request. As mentioned, the behavioural simulation has a run-to-completion
semantic. Due to the fact that typical systems do not perform a power mode transition while
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Power mode
is active

Invalid mode
or transition

Performing
transition

Transition
pending

Figure 5.4: FSM of the power mode model — Initially, a valid power mode is active. A
power mode transition can be requested at any time. If the module is idle during
the request, the transition takes place immediately. Otherwise the power mode
transition is pending. If the requested power mode is not known or if the requested
transition is not allowed, the state register of the LRM-interface is set accordingly.
A pending or invalid transition can be revoked at any time. If the module becomes
idle and a power mode transition is pending, the transition is performed.

a certain component is active, this disadvantage is acceptable. A description of the register
interface is given in Section 5.7.2.

If a power mode transition is performed, the power & timing model gets notified about
changed supply voltage and clock frequency. It is also notified about penalties caused by the
transition. Another important task of the power mode model is providing power information
for intervals, in which the particular BAC++ module has no activity. That is, if the module is
in a power saving mode like sleep, or power_gated. The same is true if the module is not
used i. e., if it is idle.

5.6 Power and Timing Model

Purpose of the power & timing model is to compute the required metrics. That is, power
dissipation in terms of watts and timing in terms of seconds. These are then used for
generating the power trace and for performing synchronisation with the virtual system
prototype, if necessary.

The power & timing model is configured with the static design metrics that cannot change
during runtime. These values are design-depended constants of the power model. The
first one is the apparent internal conductance G of the design. It describes the virtual internal
conductance of the hardware module. This constant is mainly used for computing the static
power dissipation of the module in dependence of the applied supply voltage. The second
parameter is average capacitance switched during idle-phases Cidle

l , which is used to provide
a power value during idle and sleep-phases. It mainly describes the capacitance that is
switched by the clock-tree and the controller, while the module is in its idle state. There
is also information about default voltage and clock frequency, in case that no power mode
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table is provided. Basically, power estimation is done by using Equations (5.1) and (5.2),
respectively.

Pd =
1
2

ClV2
dd fclk (5.1)

Pl = V2
ddG (5.2)

Since several notifications from different sources are received during a single clock cycle
and since a more fine-grained power trace is required, an approach more sophisticated than
Equations (5.1) and (5.2) is used. During simulation of the virtual prototype, the power &
timing model collects the information, sent from the functional and the power mode model.
As mentioned in Section 5.4, activated hardware basic blocks, processes, and data channels
as well as the power mode model send notifications to the power & timing model. This is
done each time power dissipates or if supply voltage and clock frequency have changed. The
following sections give more details on the particular models.

5.6.1 Dynamic Power Dissipation

Remembering the separation from Equation (4.21) on page 84, switched capacitance can be
accumulated for all activated hardware basic blocks of all processes of the module. Using the
observer design pattern, a notification is send from each activated hardware basic block to the
power & timing model. The same is true for the controller of the module, with the difference
that the controller is active in each clock cycle. Switched capacitance of a hardware basic
block Cl(H) as well as switched capacitance of a process Cl(p) is built from more fine-grained
values, using Equations (5.3) and (5.4).

Cl(H) = Creg
l (H) + Cop

l (H) (5.3)

Cl(p) = Cctrl
l (p) + Cclk

l (p) + Cnet
l (p) (5.4)

Switched capacitance Cl of each hardware basic block Hi and switched capacity of each
process’ controller pj is summed up. It is then multiplied by the square of the supply
voltage Vdd, giving Equation (5.5). It computes total dynamic energy at the end of each clock
cycle. That is, after the behaviour of this control step has been executed.

Etotal
d =

(
#H

∑
i=1

Cl(Hi) +
#proc

∑
j=1

Cl
(

pj
))

V2
dd (5.5)

5.6.2 Static Power Dissipation

While dynamic power estimation must be performed in every single clock cycle, static
power dissipation must be estimated after power mode transitions, only. As mentioned in
Section 4.5.4, static power depends on the equivalent conductance of the module i. e., its
top-level process M = ptoplevel, which is fixed for a given module. The equivalent conductance
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is obtained using Equation (4.41) on page 93. Besides the equivalent conductance, static power
dissipation also depends on the applied supply voltage, given by the actual power mode.

Using the separation from Equation (4.42) on page 93 and assuming that supply voltage Vdd
and temperature T is the same for all processes of the module M, static power can be
computed by Equation (5.6).

Ptotal
l = G(M)V2

ddg(Vdd, T) (5.6)

The term g(Vdd, T) is used to scale the module’s conductance with respect to the applied
supply voltage and temperature. Usually, three mesh-points, typically located at 20, 70, and
120 ◦C, are used for providing very low-level and temperature-dependent .LIB files. These in
turn are used to generate the temperature depended RT component data base (CDB)-library, used
by PowerOpt. Knowing this, syntheses and static power characterisation can be performed
for these three mesh points.

5.6.3 Total Power Dissipation

The functional model gives switched capacitance, which in turn is used to compute dissipated
energy. This is because time is modelled in terms of abstract clock cycles, only. Power
dissipation can then be obtained by using information about the clock frequency, provided by
the actual power mode. Total power dissipation can then be computed by adding the static
power, as done in Equation (5.7).

Ptotal = Etotal
d fclk + Ptotal

l (5.7)

A special case occurs during idle-phases. In this case, no dynamic power dissipation must
be considered, since the module is not active. However, even during idle-phases the module
is not completely inactive, as mentioned in Section 4.5.5. The clock-tree and the controller
are still active, for example. The capacitance that is switched during idle-phases was char-
acterised separately. Total power dissipation during idle-phases can be computed using
Equation (5.8).

Pidle
total = Cidle

l V2
dd fclk + Ptotal

l (5.8)

5.6.4 Delay

The delay of each process p is obtained using Equation (5.9). In the current model of
computation as described above, all processes are virtually executed concurrently. Moreover,
each process is activated once in a clock cycle, yielding #cyc(p) = 1. In other words, the delay
of all process is the same. That is, τ(M) = τ(pi) for all processes pi belonging to module M.
However, since the clock frequency fclk is defined by the actual power mode, the actual delay
of the processes may vary over time, depending on which power modes are selected during
simulation.

τ(p) =
#cyc(p)

fclk
(5.9)
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5.6.5 Trace Generation

Finally, the power & timing model generates a cycle-accurate power-over-time trace. Besides
the trace of total power, the power & timing model is capable of creating more fine-grained
traces. It is able to trace dissipated energy as well as dynamic power dissipation for each
kind of resource like registers, operators, and multiplexers as well as the controller, clock-tree,
and interconnect. This allows a more detailed analysis of the system’s power dissipation than
was originally possible with PowerOpt. Also, the power & timing model can create a detailed
event log, containing all notifications sent by the functional model i. e., sent by all hardware
basic blocks, processes etc.

Even though a fine-grained power trace is desirable, it might become very large. This is
especially true for larger designs with several processes which are simulated using large
sets of stimuli data. For such long simulation runs, which are typically used as basis for
temperature or degradation analysis, a cycle-accurate power trace is not required. In these
cases, a reduced trace is typically sufficient enough.

In order to provide traces with a reduced amount of data, the power & timing model is able
to perform a sampling on the received data. That is, received data is collected and averaged
over multiple clock cycles. Besides the reduced amount of data, sampling allows smoothing
the generated trace. In a typical design, there is a big difference in the power that dissipates
in two consecutive clock cycles. Displaying such uncompressed data yields confusing figures.
Smoothing the trace tackles this problem. Sampling has been used during generating of some
figures in Appendix D, for instance.

If sampling is applied, the temporal resolution of the generated power trace is reduced to
ntclk, where n denotes the width of the sampling window and tclk is the period of the clock.
Depending on the number of clock cycles required for completing the computation, the last
sample might not be complete. In this case, the sampling window is shortened, in order to
create the entry for the trace file. Timing estimation i. e., the estimated delay for the operation
is still cycle accurate.

The power & timing model supports two different back-ends for generating the trace. The
first one is used, if the virtual prototype is simulated stand-alone. In other words, simulation
of the module is performed without the surrounding system. The same test bench as has
been used for characterisation, is also used for estimation. Of course, a different set of stimuli
data was used. If the virtual prototype is simulated stand-alone, all notifications from the
functional model belonging to the same clock cycle are collected by the power & timing model.
If the actual sampling period ends, this back-end creates a comma separated values (CSV)-file
containing a single line for each traced sample period. Each line contains information about
total energy, total power as well as energy per resource type etc.

If the BAC++ model is simulated within a simulation of the virtual system prototype, a
more sophisticated back-end is required. This back-end must be capable to cope with the
decoupled simulation approach, described in Section 5.3.3. In this case, the timestamps from
the notifications, received during behavioural simulation are an offset to the global system
time. That is, the timestamp must be adjusted. This is done by adding the actual system time,
which is the point in time, the virtual prototype of the hardware module has been activated
by the surrounding system.
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The values are then forwarded to the tracing back-end, developed during the project COM-
PLEX. This back-end uses the SystemC build-in tracing features. The COMPLEX back-end
utilises so-called timed value streams. Each entry to these streams is generated as a tuple
containing corresponding power and timing information. There are two different types of
tuples. The first one contains an energy value and a duration. This type is generated by the
functional model, since the execution of each hardware basic block is well-defined in terms of
dissipated power and execution time. The second tuple is caused by setting the power mode.
It contains a power value and a timestamp, from which on the power value is valid. If a
certain power mode is activated, the time when the particular mode becomes active is known,
but it is not possible to make any statement about how long this mode will be active.

The same type of entry is used for modelling idle-phases of the module. If the module is
idle i. e., between two consecutive activations, no behavioural simulation of the module is
performed. Therefore, no notifications are sent to the observer. As mentioned in Section 4.5.5,
the pre-characterised idle-power is used to model the module’s power dissipation during
such phases. More details on this type of tracing back-end can be found in the corresponding
COMPLEX deliverable [133, sec. 3].

Besides the aforementioned power traces it is possible to have the virtual prototype to generate
additional information. First, it is possible to generate an event-log. It contains all notifications
and events like call start/end, power mode transitions, etc. in the order they are received by the
power & timing model. This log provides a deep insight into the course of the simulation.
For each event detailed information is available. This includes the origin of the notification, a
local and global timestamp, at which the event that had occurred, or switched capacitance per
resource type, if applicable. Second, statistical information can be generated by the back-end.
Besides total energy per resource type as well as static power dissipation, statistics contain
information about how often a certain hardware basic block or process has been activated. Its
contribution to the total energy dissipation is also visible.

5.7 Virtual Prototype Interfaces

For accessing the generated virtual prototype two different interfaces are provided. The first
one is the function-call interface, which allows the activation of the behavioural simulation. By
passing the appropriate function-call parameters to the prototype its behavioural simulation
can be initiated. After simulation has been completed, the same interface can be used for
accessing the computed results.

The second interface is the power management interface, allowing selection of the desired power
mode. Using this interface power modes can be requested and information about the actual
power mode as well as status information can be obtained.

These two interfaces can be used directly by the test bench, which is the typical procedure, if
a stand-alone simulation is performed. However, for embedding the prototype in a virtual
system prototype, a TLM-interface is provided. It wraps the aforementioned function-call and
power management interfaces and can be accessed using standardised TLM transactions. The
following sections describe the interfaces in more detail.
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5.7.1 Function-Call Interface

The function-call interface is used for activating the behavioural simulation of the module. As
remarked in Chapter 4, the hardware module is generated using a high-level synthesis. Input
to the synthesis is pure-functional C/C++ model that is then transformed into an RT-level
description of its hardware implementation. Exactly one method in the input model must
be declared as top-level module. The generated hardware module is thus derived from a
conventional C/C++ function call.

Since the characterised module is represented as a function call within the original source code,
this function call is reproduced within the BAC++ model. Therefore, a structure containing the
in- and output parameters as well as the optional return value of the function call is created.
The function-call interface thus represents the signature of the C/C++ model. Of course, this
type of interface must be generated for each module of the system individually. Its basic
structure is shown in Table 5.1.

The layout of the structure depends on the signature of the function call, the hardware
component was generated from, since it provides a re-implementation of the original function
call. Each in- and output parameter of the function’s signature is accessible using this interface.
In addition to the function’s parameters some control registers are also added to the interface.
These allow invoking the behaviour and provide status information. This structure is then
written and read by the TLM interface as well as by the functional model.

Each BAC++ module implements a method call(call_param_reg_map_type &params), which
simply forwards the function call and its parameters to the module’s functional model. This
member function then implements the actual behaviour of the module i. e., it reads the input
values and writes the output values from and to the referenced structure, respectively.

A function call is performed by calling the call method of the BAC++ module. A reference
to the function-call register file is passed as parameter to the method. The method then
copies the function call parameters from the function-call interface into the generated process
hierarchy of the design, as described in Section 5.3 and depicted by the central part of
Figure 5.2 on page 104. It then calls a method execute, which executes the behaviour of
the module, as depicted by the right part of Figure 5.2. The execute method performs the
behavioural simulation. Remembering Figure 5.2, the method call implements the emulation
of the function call and the method execute implements the behavioural simulation.

After completion of the functional behaviour, the resulting values are stored into the function-
call parameter structure. Again, member methods for performing the handshake protocol are
created by the BAC++ code generation, since a deeper knowledge of the generated model is
required in order to set the values correctly. More details about the internal structure of the
functional model and the handshake protocol are presented in Section 4.4.

function-call parameter 1
...

function-call parameter n
return value

Table 5.1: Function-call register map

desired power mode
recent power mode

valid reserved status

Table 5.2: Power management register map
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5.7.2 Power Management Interface

The power management interface is used by the global power manager of the virtual system
prototype for requesting power modes. The interface does also provide information about
the actual power mode as well as some status information. Its underlying state machine is
shown in Figure 5.4 on page 113. While the function-call interface must be generated for each
module individually, this interface is the same for all power-managed modules of the virtual
system prototype.

Like the register file representing the parameters of the original function call, this register
file represents the interface to the power management i. e., to the power mode model. The
interface is directly controlled by the power mode model. After receiving a TLM call that
writes to the register file, the power mode model is notified about the change. The model then
sets the status register appropriately. If a new power mode is requested, the corresponding
power mode transition is performed as soon as the module becomes idle. After the transition,
the power & timing model is notified about the new power mode and the penalty, caused by
the transition. The register file is updated accordingly to the new power mode. The structure
of the interface is shown in Table 5.2.

5.7.3 TLM Wrapper

In order to connect the generated virtual prototype of the module to the virtual prototype
of the overall system, a TLM-interface is available. This interface is basically a wrapper,
providing TLM-based access to the function-call as well as the power management interface.
The wrapper provides an interface for activating the module’s functionality from within a
TLM simulation environment. The TLM interface satisfies requirement 8, since it allows the
module to be embedded in a virtual system prototype. More details about the TLM interface
can be found in the corresponding COMPLEX deliverable [134, sec. 4].

5.8 Provided BAC++ Library

A generic class library has been implemented, providing base classes for processes and other
structural components like registers, memories, resolution logic, etc. The library also provides
the observer, the power mode as well as the power & timing model. Using this library it
is easily possible to instantiate the hierarchical structure of the design and to implement
its functionality. During compilation of and linking against the library, various settings
are provided allowing an optimisation of the generated executable. The executable can be
optimized for simulation speed or for a more detailed estimation, for example. Other settings
allowing detailed debugging or profiling are also provided.

Most important part of the library is the process template. It provides functionality for
registering the process’ registers and signals as well as functionality for automatically updating
their values. It also implements the infrastructure required by the notification pattern for the
communication with the power & timing model. Each process instance has to instantiate its
sub-processes and to implement its hardware basic blocks as well as its FSM, only.
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The template of the functional model instantiates the top-level process as well as the power
mode and power & timing model. It contains the complete implementation of the simulation
semantic as described in Section 5.3 and provides the interface to the power mode model.
Calls to the function-call interface are transparently forwarded to the top-level process.

Besides the aforementioned templates and classes, the BAC++ library contains various base
classes and utilities that can be used by the functional model. This includes templates for
instantiating data channels like shared registers or memories, for example. The later one can
be specialised by defining the bit width of the address and data ports. The memory can be
initialised using a memory image file, which has been generated during high-level synthe-
sis. Templates for signals and variables are implemented, providing a generic read/write
interface. This way, a delta-cycle-logic, as required by the discrete event simulation kernel,
is transparently usable. If ports have different data types at the outer and inner side of the
process they belong to, data conversion can be performed automatically.

Finally, the library contains all constructs for sending and receiving notifications in a conve-
nient way. That is, notifications can be instantiated easily by the hardware basic block and
processes of the module. The correct timestamp is added and all registered observers are
notified automatically.

5.9 New Workflow

Using the approach presented in this and the previous chapter, a new workflow arises. It is
depicted in Figure 5.5. This workflow smoothly integrates into the existing workflow. High-
level synthesis, in this case using PowerOpt, is carried out as usual, but with the additional
usage of the newly implemented hardware basic block identification, characterisation, and
BAC++ model generation command. As can be seen from the figure, all required files
for compiling and simulating the virtual prototype of the design under consideration are
generated automatically. The virtual prototype can be compiled and linked against the BAC++

library easily, using a pre-defined Makefile structure.

By simulating the executable virtual prototype, a power-over-time trace as well as some
statistic information is generated. It is now possible to evaluate the design with a large
number of different and complex use cases and to obtain almost RT-level accurate results
without the need of a time-consuming RT-level simulation.

Along with the extension of PowerOpt, a script has been developed that is able to automate
the design space exploration. The script can automatically perform a number of steps in the
design space exploration i. e., synthesise a design, characterise it and create the corresponding
BAC++ model. This can be automatically repeated for different designs and synthesis settings.
The script itself is controlled by a configuration file. An example of such a configuration is
shown in Listing B.4 on page 167.
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BAC++ CSV file DOT file Power mode table Memory image file(s)

BAC++ enabled PowerOpt

Source code CDB lib

Compilation Functional simulation & estimationExecutable

BAC++ lib
Statistics Event log Power trace

Figure 5.5: New workflow — New features have been integrated seamlessly into PowerOpt.
The previous workflow remains virtually unchanged. By additionally executing
the new PowerOpt command, the BAC++ model is created automatically. It can
be compiled easily and along with the power mode table as well as the memory
image files, a simulation and estimation of the hardware module or even the entire
system can be carried out. Resulting statistics together with the created power
trace can be used for evaluating the system’s implementation.

5.10 Summary

This chapter has described how the identified and characterised hardware basic blocks,
introduced in Chapter 4, can be used to create a power and timing aware virtual prototype of
the hardware module. This fulfils requirement 6 as defined at the beginning of Chapter 4.
The structure of the generated BAC++ model consists of four main parts. At first, it contains a
functional model, representing the module’s behaviour. It also contains behaviour-depended
information about switched capacitance as well as non-functional artefacts like equivalent
conductance. Second, the structure contains a power mode model. It selects the actual clock
frequency and supply voltage. As third part there is a power & timing model computing the
desired metrics from the information provided by the functional and the power mode model.
In order to comply with requirement 7, an interface is generated, mimicking the original
function-call interface of the module’s initial behavioural description. This interface allows
the virtual prototype to be executed with a set of different use cases. An optional forth part is
the TLM wrapper, which is used for connecting the generated model to the virtual system
prototype. This is done in compliance with requirement 8.

Along with Chapter 4, this chapter has described a way for generating a power and timing
aware high-level simulation model from an FSMD, generated during high-level synthesis.
Compared to most of the existing approaches mentioned in Chapter 3, the approach presented
in this thesis can be considered as a grey-box approach. Full information about the low-level
description is available, but the input model must be left unchanged. Concerning the overall
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approach, a very similar concept can be applied to software as well as black-box IP modules.
A description of power estimation of black-box IP module using a protocol state machine is
given by Lorenz et al. [92].

Having the complete estimation process including hardware basic block identification, charac-
terisation, and model generation available, it can be evaluated. This is done in the following
chapter.
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Chapter6
Evaluation

Abstract
This chapter evaluates the proposed design characterisation and model gen-
eration approach. Evaluation is done using a set of eleven academic and
industrial use cases. Individual steps of the proposed process are evaluated
independently, before the overall process is assessed. The evaluation will
show that the proposed concept of hardware basic blocks provides a good
granularity. Large basic blocks allow a significant speed-up in simulation
and estimation speed. A large variation in dissipated energy per basic block
provides accurate estimates, since a large variation of the power dissipation
over time can be assumed. The approach, presented in this thesis, provides an
estimation speed-up of about 160×, while having an error-per-cycle of less
than 15 % for most simulated clock cycles. If a small sampling window is
applied, this error can be reduced to about 6.93 %.

After a brief introduction, evaluation is done in four steps. First, the hardware
basic block identification process is evaluated. This comprises the efficiency
and quality of the proposed identification technique as well as a rating of
the identified hardware basic blocks. In a second step, the accuracy of the
simple as well as the advanced hardware basic block characterisation is shown.
The evaluation of the characterisation is followed by a short assessment of
the power mode support. The fourth step evaluates the complexity and
performance of the generated high-level models. Finally, the overall power
and timing estimation process is evaluated and its advantages over the
conventional estimation process are explicated. At the very end of this chapter,
known problems and issues of the proposed characterisation and estimation
approach are recapitulated and a summary is given.
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Evaluation is performed using academic examples, standardised benchmarks as well as
industrial designs. Overall, the evaluation is carried out on eleven example designs. For

comparability all input models were synthesised using the same technology and synthesis
settings. These are shown in detail in Table C.2 on page 170. Characterisation and evaluation
was done using different sets of input stimuli.

For a semi-automatic evaluation, a script has been developed allowing the automatic configu-
ration, synthesis, characterisation, and BAC++ model generation for each design. The script is
controlled, using a simple configuration file. An example configuration of the script is given
in Section B.4. The generated models have been compiled using different settings in order
to perform regression, performance, and accuracy measures. For example, regression was
deactivated during measuring the performance of the generated models. During accuracy
measurement however, regression was enabled.

As just mentioned, different types of examples are used during evaluation. Besides some basic
and advanced academic examples, standardised benchmarks are used, allowing a comparison
of the proposed approach with existing ones. For evaluating RT-level power estimation
approaches, standardised benchmarks like ISCAS-85 or ITC-99 are used typically. For the
purpose of this thesis, these benchmarks are unsuited since they only contain small designs.
The approach, presented in this thesis, tackles larger and more complex designs. Thus,
two benchmarks from the CHStone benchmark suite where chosen. The benchmark suite
was presented by Hara et al. [70] and is freely available on the internet [5]. Additionally, a
benchmark from the COMPLEX project was chosen, showing the applicability of the proposed
techniques to industrial-strength designs.

The first class of examples contains simple academic use cases. These use cases implement typ-
ical arithmetical algorithms, including the computation of a faculty, a square root, or factorise
a given number into its prime factors. This set also contains algorithms for performing a fast
discrete cosine transform (FDCT) or the heapsort sorting algorithm. The second class consists of
more advanced examples. It contains algorithms such as advanced encryption standard (AES)
encoding, MP3 decoding, a wavelet transformation or the linear predictive coding (LPC) known
from the global system for mobile communications (GSM) standard. The industrial-strength
benchmark consists of a hardware accelerator, implementing an FFT. It is embedded in a
complex and heterogeneous audio/video surveillance system. The accelerator is available in
seven different configurations, which allows performing a design space exploration of the
overall system. However, in this work only the configuration with a fixed FFT-depth of 256
was used. Detailed descriptions of all benchmarks and their structural properties as well as
the settings used for their synthesis are given in Appendix C. Detailed evaluation results for
each design can be found in Appendix D.

Comparing the achieved results to a low-level i. e., logic-level estimation is difficult and
very time consuming. Thus, it cannot be done for all designs that had been used for the
comparison with PowerOpt. Also, using low-level tools, it is not possible to perform such
long simulations. The computational effort that is required for a logic-level simulation and
estimation is several orders of magnitude larger than the effort required by an estimation
using the BAC++ model. Same applies to the generated trace files. Nevertheless, a comparison
for Design VII with an shortened simulation was performed. Results are shown and discussed
in Section D.11.
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6.1 Hardware Basic Block Identification

Evaluation of the hardware basic block identification is two-fold. First, the identification
process itself is evaluated. This is done by comparing the upper bound of the number of
existing hardware basic blocks to the number of actually analysed and generated basic blocks.
In a second step, the identified hardware basic blocks themselves are assessed. The number
of RT components per basic block gives an indication of the size and complexity of the later
generated high-level model. In addition, the activated area is an indication for the energy
dissipating, if the particular basic block is activated.

6.1.1 Identification Process

The first evaluation assesses the hardware basic block identification process. Since each
process of a design is characterised individually, all processes are evaluated separately. Thus,
a total of 15 processes are used for evaluating the basic block identification process.

Three metrics are used for evaluating the efficiency of the proposed identification process.
The number of analysed hardware basic blocks gives an indication of the performance of the
identification process. The less hardware basic blocks must be identified, the faster the
identification process is. As mentioned in Section 4.4.3, it is not necessary to create code for
each identified hardware basic block in the generated model. Zero-strength or invalid basic
blocks can be discarded, for example. For hardware basic blocks that are not discarded, code
must be created during model generation. Thus, the number of generated basic blocks gives a
first indication of size and complexity of the generated high-level model. The last metric
comprises the number of used hardware basic blocks. This is the most important metric, since it
states the quality of the identification process. The usage denotes the relation between the
number of generated basic blocks and the number of basic blocks that are actually activated
during simulation. The metric can be used for determining the overhead of the generated
model in terms of unnecessarily generated basic blocks. The higher the usage is, the better is
the quality of the identification for that particular process.

It is important to note that the use case, which is used for obtaining the number of used
hardware basic blocks does not necessarily provide a full coverage of the control-flow. That is,
more basic blocks might be required for providing a full-coverage than are actually activated
by the use case. Anyhow, the relation between the number of generated and the number
of used hardware basic blocks still gives a good first hint. A detailed evaluation of the
complexity and efficiency of the generated model is also given in Section 6.4. All three metrics
for all processes can be seen in Table 6.1 on the following page.

In a straight-forward approach, one hardware basic block must be identified for each output
symbol of a process. It can be seen from Table 6.1 that the proposed identification algorithm
drastically reduces the number of basic blocks that must be analysed. Only a minimal fraction
of the basic blocks that are generally possible are actually analysed. It can also be seen that
there is no direct relation between the number of states or the number of output symbols and
the number of basic blocks that must be analysed. This is because the number of basic blocks
depends on the way the data path is used by the controller i. e., it depends on the complexity
of the output logic in each state of the controller’s FSM.
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process hardware basic blocks

states out. sym. anal. gen. used usage [%]

Design I 4 5.12×102 21 9 9 100.00
Design II 18 2.10×106 66 21 12 57.14
Design III 8 3.28×104 26 15 14 93.33
Design IV 12 1.48×1020 13 11 11 100.00
Design V 29 1.13×1015 110 38 27 71.05
Design VI 107 1.18×1021 176 118 106 98.83
Design VII 110 2.53×10176 111 109 109 100.00
Design VIII 95 1.30×1033 213 135 101 74.81
Design IX (top-level) 10 6.40×101 12 2 2 100.00
Design IX (autocorrelation) 160 1.36×1039 1248 141 85 60.28
Design IX (quantisation) 60 3.25×1032 215 134 46 34.33
Design IX (coefficients) 75 1.36×1039 11 127 2169 67 3.09
Design IX (transformation) 5 1.64×104 40 17 9 52.94
Design X 65 4.21×1065 9843 1751 93 5.31
Design XI 23 1.58×1029 — — — —

Average 67.94
Table 6.1: Number of hardware basic blocks — There is an incredible large number of output

symbols possible for each process. The majority of hardware basic blocks that are
possible in principle must not be identified. For some of the identified basic blocks
no code must be generated, since they are zero-strength or invalid basic blocks. Not
all hardware basic blocks for which code has been generated are actually executed
during simulation of the BAC++ model. The usage denotes the relation between
used and generated basic blocks.
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Not for all basic blocks that are analysed, corresponding code must be generated in the BAC++

model. Invalid as well as zero-strength hardware basic blocks can be discarded once they had
been identified as such. However, their analysis still requires some computation time and thus
slows down the identification process. Zero-strength hardware basic blocks are comparatively
simple to identify, since no data path must be analysed at all. Identifying invalid basic blocks
is more time-consuming, as its invalidity might be not detected until analysis of all active
paths of the particular hardware basic block is completed. Again, the number of discarded
hardware basic blocks highly depends on the way the data path is used by the controller and
cannot be derived from the number of states or the number of output symbols of a process.

Even from the greatly reduced number of generated hardware basic blocks, not all of them
are actually used during simulation of the BAC++ model. This has multiple reasons. First,
the identification process might identify hardware basic blocks that can never be activated,
since the activating condition of a particular basic block can never evaluate to true. Second, it
might be the case that the use case that is used for simulation does not provide a full-coverage
of the data path and thus might not activate all hardware basic blocks required for a complete
replication of the control-flow and data path. Having an average usage of about 70 %, it is
safe to say that nearly all hardware basic blocks, which are generated are actually used during
simulation.

Design XI deserves special attention. As can be seen from Table 6.1, the basic block identifica-
tion was not possible for this particular design. The number of hardware basic blocks that
must be identified amounted to several millions, which is not manageable by the presented
approach. This is true, even if the previously mentioned optimisation approaches are applied.
A deeper inspection of the design reveals that the state, which is responsible for decoding
the instruction that is actually executed by the microprocessor without interlocked pipeline stages
(MIPS) processor has a very complex output logic. In that single state, 178 control signals
are driven, which depend on 5202 output conditions, each one considering three Boolean
atoms.

6.1.2 Identified Hardware Basic Blocks

The second step for evaluating the hardware basic block identification process considers the
basic blocks itself. The histogram in Figure 6.1 on the following page shows the distribution
of RT components per hardware basic block i. e., how many basic blocks contain how many
RT components. It is important to note, that the number of RT components relates to the
number of operations that are required for simulating the design’s behaviour. RT components
active due to parasitic functionality are not considered in the figure. It must also be noted
that designs with more basic blocks contribute more to the figure than designs with less basic
blocks. Generally speaking, the more RT components a hardware basic block contains, the
more complex the generated model will be. But since all RT components are considered
at once, the high-level estimation will also be faster. Because a hardware basic block is
implemented as a single C++ method, as described in Section 5.4.1, basic blocks comprising
more operations provide a better optimisation potential to the compiler. A more detailed
analysis of model efficiency is given in Section 6.4.3.
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Figure 6.1: Histogram of RT components per hardware basic block — A hardware basic block
typically contains 10 to 60 RT components, which are required for a behavioural
simulation. Some hardware basic blocks comprise up to 170 RT components.

As just mentioned, the histogram in Figure 6.1 allows a statement about the expected
complexity of the generated model. For statements about estimation granularity and therefore
estimation accuracy, the histogram is not suitable, since it contains zero-strength operations
such as assignments or constant shifts by a power of two. These zero-strength operations can
be easily implemented in hardware and have only a minor or even no effect on the power
dissipation. Also an important factor during power estimation is the kind and bit width of
an operation. An adder with a small bit width will dissipate significantly less energy than
a multiplier with a larger bit width. Therefore, another metric must be chosen for making
statements about the estimation granularity.

Figure 6.2 shows the distribution of area, activated per hardware basic block. It can be
assumed that a larger active area will result in a larger amount of energy dissipating during
activation of the basic block. Since all designs are synthesised using the same technology and
synthesis settings, activated area can be compared among the individual designs. There is
large variation between the areas, activated by a single hardware basic block. Thus, hardware
basic blocks provide a good level of granularity. They will therefore provide accurate estimates
as shown in the following Section 6.2.

Summarising it can be stated that hardware basic blocks provide a good level of granularity.
Large hardware basic blocks provide a good speed-up, since many operations are considered
at once. More details on this are discussed in Section 6.6. Variation between the hardware basic
blocks in terms of activated area provides a good level of accuracy, as shown in Sections 6.2.1
and 6.2.2, respectively.

6.2 Design Characterisation

This section focuses on the characterisation of the identified hardware basic blocks and other
design artefacts like the clock-tree or the controller. It evaluates how well the generated
traces that are obtained from a BAC++-based simulation fit the original trace, obtained from
an estimation using PowerOpt. Evaluation is done with respect to the absolute power and
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Figure 6.2: Histogram of active area per hardware basic block — There is a large variation
in activated area between the hardware basic blocks and thus in the energy
dissipated by a single basic block. Some hardware basic blocks activate up to
140 000 µm2, which is about 24 % of the total area of that particular design. For a
better readability of the figure, the right outermost values have been cropped.

energy values, respectively as well as for the shape of the generated traces. Both hardware
basic block characterisation processes are evaluated individually, allowing a comparison of
both approaches. In a third part, the characterisation of other non-functional properties like
clock-tree or controller power is evaluated.

Evaluation is done using the examples explained in detail in Appendix C. First, a high-
level synthesis is performed in order to create a specific design implementation. This
implementation is then characterised using the power measures obtained by PowerOpt. A
different set of input stimuli is then used to perform an estimation of the design. This
estimation is done twice. First, using PowerOpt and second using the generated BAC++ model.
These two traces and estimation results are then compared to each other. This complete
procedure again is done twice. First, using the simple characterisation process and then
using the advanced one. Non-functional properties like the clock-tree or the controller will
give same results, since they are characterised equally. Dynamic power dissipation due to
execution of the functional behaviour however, will give different estimates. More details of
the evaluation conditions and results for individual designs can be found in Appendix D. It
is worth mentioning that simulation of the BAC++ model automatically performs a regression
by comparing the computational result obtained by the BAC++ model with the result obtained
from the C/C++ input model. This assures the functional equivalence of the input, the RT-level,
and the BAC++ model.

In order to allow a comparison with existing approaches like the ones mentioned in Chapter 3
and those that will be published in the future, standard error measures are used for evaluation.
Most papers and articles, discussed in Chapter 3, provide only relative error measures of
the total power dissipation per use case, even though the used power models provide more
fine-grained information. Only a minority of the papers and articles provide a cycle-per-cycle
error measure, making a deep comparison of the proposed approach with the existing ones
difficult. Anyhow, evaluating the accuracy of the approach presented in this thesis is done
using five different error measures, covering errors for total as well as cycle-by-cycle power
dissipation. The measures can be split into two different classes.
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Absolute error measures allow a comparison of the traces generated by BAC++ with the traces
obtained from PowerOpt with respect to the particular design. That is, they have the same
values range and unit as the traces themselves. They play a major role when planning
the power supply for a given design, because the planning must allow for a safety margin.
While allowing statements about a particular design, these types of error measures cannot be
compared among different designs.

Relative error measures however, allow a comparison of the presented characterisation processes
for the different designs, used for evaluation. The relative measures allow a statement of how
well the presented approaches behave for the individual designs. This information can then
be used to identify certain types of classes of designs where the characterisation is satisfying
or erroneous, respectively. For the purpose of evaluating the characterisation techniques
presented in this thesis relative measures are better suited.

For all error measures explained below, it is assumed that a trace x contains N samples.
Variable xi denotes a value obtained from the BAC++ model while x̂i denotes a value obtained
from the estimation using PowerOpt. All error measures are given in order of increasing
complexity.

The most simple error measure is the plain relative error (RE). As the name suggests, it
gives the relative difference between two traces, where all elements of each trace have been
summed up. Positive and negative errors per clock cycle will average out each other. This is
apparent from the measure’s definition, shown in Equation (6.1). Of course, this type of error
measure is only valid for traces of time-invariant units such as energy in contrast to power
dissipation. In other words, this measure can be used for comparing total values like total
energy dissipation. It is used for evaluating the characterisation of non-functional properties
like clock-tree or controller power, for example. These properties have comparatively simple
characterisation models. Therefore, a more detailed analysis is not required.

RE(x) =
∑N

i=1(xi − x̂i)

∑N
i=1(x̂i)

(6.1)

More complex and more meaningful than the RE is the mean absolute percentage error (MAPE).
Its definition is shown in Equation (6.2). It is the average relative error per clock cycle. By
computing the relative percentage error before averaging, all absolute errors are equally
weighted. This is the basic measure for comparing both characterisation processes. It gives a
good statement about the quality of the characterisation processes since it is a comparable
measure of the per-cycle-accuracy of the generated traces.

MAPE(x) =
1
N

N

∑
i=1

∣∣∣∣ xi − x̂i
x̂i

∣∣∣∣ (6.2)

The root mean square error (RMS) measure, as shown in Equation (6.3), introduces a weighting
to the measurement. By squaring the error per cycle, large errors are weighted more than
smaller ones. The general assumption when using this error measure is that small and
medium errors are caused by minor and thus ignorable effects, while larger errors are a better
indicator for the general quality of the approach. For the hardware basic blocks introduced in
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this thesis, RMS weights the error of basic blocks dissipating a lot of energy and thus having
higher absolute errors higher than the error of hardware basic blocks dissipating only a small
amount of energy. By squaring and then extracting the root again, unit and values range are
kept and also only absolute values are used. Moreover, assuming a Gaussian distribution of
the errors, the RMS can draw conclusions about the standard deviation.

RMS(x) =

√√√√ 1
N

N

∑
i=1

(xi − x̂i)
2 (6.3)

Like RMS, the relative root mean square error (RRMS) weights larger errors more than smaller
ones. This measure, shown in Equation (6.4) allows comparing different errors from different
approached and designs independent from the values ranges of the particular design.

RRMS(x) =

√
N ∑N

i=1(xi − x̂i)
2

∑N
i=1|x̂i|

(6.4)

The final error measure is the coefficient of multiple determination (R2). This measure, shown
in Equation (6.5), is a special case differing from the ones mentioned above. It is a measure
of how good the BAC++ curve fits the trace, obtained from PowerOpt. In other words, it is a
measure how similar the shapes of the traces are. It can be seen as percentage of how well the
BAC++ trace models the variation of data in the trace obtained from PowerOpt. The higher
the value is, the better the traces fit. It is important to note that meaning of R2 depends on
the variation of the reference data i. e., the values obtained from PowerOpt. If the reference
data has only a very limited variation, a large and thus good value for R2 will be achieved,
even though the model is not correct.

R2(x) = 1− ∑N
i=1(xi − x̂i)

2

∑N
i=1

(
xi − 1

N ∑N
j=1
(

x̂j
))2 (6.5)

All error measures mentioned above consider each individual clock cycle while computing the
measure. Since the power estimation presented in this thesis allows very long and extensive
simulation runs, a very large number of clock cycles can be simulated. The generated
traces will thus be very long. Since for such long simulations typically no cycle-by-cycle
analysis is performed, the presented approach allows sampling. This is described in detail
in Section 6.2.4. During sampling, several cycles are considered at once, reducing the total
amount of data in the traces. If multiple clock cycles are considered together, individual
error might average out each other. This in turn will reduce the error of the estimation. In
other words, if sampling is suitable during design evaluation, a lower estimation error can
be assumed. The following evaluation assumes that no sampling is applied at all. In other
words, the figures and tables below show the worst-case. However, for the simple as well as
for the advanced characterisation process, the influence of sampling along with more detailed
tables and figures considering the different power traces and error measures for all individual
designs are given in Appendix D.
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6.2.1 Simple Characterisation

The error measures obtained using the simple characterisation process are shown in Table 6.2.
All measures are obtained with no sampling applied. This provides the highest temporal
resolution, but will also give the maximal error for each error measure. It shows that the
relative error for total energy dissipation is negligible for all designs. This is because for
total energy dissipation all hardware basic blocks’ individual errors are evening out each
other. All other measures show a variation between the individual designs. Using the simple
characterisation approach, an average MAPE of 22.98 % can be achieved.

energy trace power trace

RE [%] mean [µW] RMS [µW] RRMS [%] MAPE [%] R2 [%]

Design I 0.23 227.27 30.00 11.20 7.60 89.43
Design II 0.34 24.03 20.00 78.69 36.06 15.32
Design III 0.02 281.27 30.00 11.40 9.50 89.46
Design IV 0.14 1712.65 140.00 8.38 5.53 95.36
Design V 0.33 257.15 70.00 27.04 23.38 39.58
Design VI 0.49 314.55 110.00 33.42 37.29 18.59
Design VII 0.18 5003.72 970.00 19.43 16.65 87.58
Design VIII 0.96 412.20 200.00 47.50 46.66 40.86
Design IX 2.92 832.83 190.00 22.90 21.27 52.02
Design X 0.21 885.45 240.00 27.34 25.90 24.30

Average 0.58 995.11 200.00 28.73 22.98 55.25
Table 6.2: Error evaluation (simple characterisation)

Using a single number for making a statement about the accuracy of the simple estimation
approach is not sufficient. Figure 6.3 shows how the relative error is distributed over all
simulated clock cycles of all examples. This representation has the advantage that hardware
basic blocks that are activated more often are weighted more than basic blocks that are
activated rarely. Such a histogram is built for each design individually. The individual
error-per-cycle distribution for each example can be found in Appendix D. In a second
step, all these individual histograms are merged to create Figure 6.3. During merging, all
evaluation designs a weighted equally. In can be seen in the figure that about 22.97 % of all
simulated clock cycles have a relative error of less than 5 %. As many as 46.79 % of all cycles
have a relative error that is less than 15 %.
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Figure 6.3: Distribution of the relative error per clock cycle (simple characterisation)
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6.2.2 Advanced Characterisation

The advanced characterisation process has been evaluated using the same data sets for
characterisation and evaluation as has been used for evaluating the simple characterisation
process. Table 6.3 shows the error measures for all evaluation designs.

energy trace power trace

RE [%] mean [µW] RMS [µW] RRMS [%] MAPE [%] R2 [%]

Design I 0.10 227.27 20.00 8.87 5.46 93.36
Design II 4.22 24.03 20.00 98.65 50.10 -33.10
Design III 0.01 281.27 30.00 9.31 7.14 92.97
Design IV 0.14 1712.65 110.00 6.26 4.22 97.41
Design V 2.35 257.15 70.00 27.37 22.81 38.07
Design VI 1.58 314.55 100.00 31.56 34.63 27.38
Design VII 0.06 5003.72 250.00 5.05 3.73 99.16
Design VIII 0.94 412.20 140.00 35.04 19.98 67.81
Design IX 4.52 832.83 180.00 21.48 14.79 57.80
Design X 0.31 885.45 210.00 23.39 19.74 44.57

Average 1.42 995.11 113.00 26.70 18.26 58.54
Table 6.3: Error evaluation (advanced characterisation)

Results are very similar to the ones from the simple characterisation, but accuracy has been
improved for almost all designs, with an average MAPE of about 18.26 %. Only exception is
Design II, where an increased error can be observed. This is mainly due to the comparatively
large scaling factor. More details on the particularities of Design II are given in Section D.2.
If Design II is not considered, the advanced characterisation provides an average MAPE of
about 14.72 % and an R2 of about 68.72 %.

Again, a histogram showing the average error per clock cycle of all designs has been generated.
It is depicted in Figure 6.4. Comparing Figure 6.4 to Figure 6.3 shows the advantage of the
advanced characterisation process over the simple one. About 31.45 % of all simulated clock
cycles have a relative error of less than 5 % and about 58.07 % of all cycles have a relative error
of less than 15 %.
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Figure 6.4: Distribution of the relative error per clock cycle (advanced characterisation)
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6.2.3 Non-Functional Properties

Although non-functional properties like clock-tree, static power dissipation, etc. have already
been considered during evaluation of the power traces, they can be evaluated separately.
Due to their simple underlying estimation model, only total energy must be considered.
Furthermore, besides the breakdown for total energy, PowerOpt does not provided a detailed
cycle-by-cycle evaluation of the non-functional properties.

The detailed evaluation in Tables D.1 to D.10 shows that characterisation of non-functional
properties like clock-tree or controller power is quiet accurate. This is because of the simple
model used in PowerOpt, which can be easily rebuilt by the BAC++ model.

Regarding the interconnect, there is a small difference between the estimates obtained from
PowerOpt and BAC++, respectively. PowerOpt internally uses a data-dependent power model
for estimating the interconnect. The estimated value however, is averaged over all clock cycles
in PowerOpt’s estimate. During design characterisation, only this average value is taken into
consideration and the value is assumed to occur in each clock cycle. Using a different data set
during evaluation than during characterisation might cause the average power value to be
different.

Considering static power dissipation, a large variation of the relative error between 0.00 and
6.47 % can be noticed. Since static power contributes only a small fraction to the overall power
dissipation. Therefore the error as well as its variation can be neglected.

6.2.4 Summary

The previous sections showed that the simple as well as the advanced characterisation process
provide good estimates, wherein the advanced characterisation is superior to the simple one.
This advantage in accuracy comes with a higher computational effort during characterisation,
as discussed in Section 6.6.

Tables 6.2 and 6.3 on the previous pages show a high variation of the error measures between
the individual designs. This is caused by the structure of the designs. Especially for the
smaller designs it might occur that a single side-effect becomes very dominating. Such an
example is Design II, whose modulo-operation dominates its power dissipation. Also, the
design comprises some special cases like small hardware basic blocks or multi-cycling, which
are discussed in detail in Sections 6.5.4 and 6.5.5, respectively.

Characterisation of non-functional properties like clock-tree, static power dissipation, etc. is
the same for the simple as well as the advanced characterisation process. The breakdown
for total energy in Tables D.1 to D.10 shows that the error is negligible for all types of
non-functional properties.

More interesting is the estimation of dynamic power dissipation. Evaluation shows that
both approaches provide good estimates for registers as well as functional units. The
simple characterisation has a slight advantage over the advanced one, regarding total energy
dissipation. This is due to the characterisation technique, which uses average switched
capacitance. The advanced characterisation process however, takes the context of the activation
i. e., the hardware basic block into consideration. This will slightly increase the error for total
energy dissipation, but significantly improves the cycle-by-cycle estimation accuracy.
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6.2 Design Characterisation

Most effort has been spent for evaluating the power traces. Different error measures have
been applied, allowing a good assessment of the achieved accuracy. Tables 6.2 and 6.3 show
the error measures, obtained from the power traces. It can be seen that an acceptable error
can be achieved as well as that the shape of the trace can be modelled accurately. Again, the
advanced characterisation process has an advantage over the simple one.

On closer viewing, it can be assumed that complex designs with larger hardware basic blocks
provide a smaller error, since more RT components per basic block will even out better. It can
be seen in Figure 6.5 that this is not true for all designs. As described in Section 6.2.1, the error
per cycle might depend on the actual execution phase of the simulated design. Applying a
sampling window while within such a phase does not reduce the error significantly. This is
particular evident for Design IX, for example, whose power trace is depicted in Figure D.25
on page 194.
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Figure 6.5: Average error per sample vs. average basic block size — The marks are organised
in columns. Each column represents one design. The average relative error per
cycle is given for different sampling window sizes (colour-encoded) and for both
characterisation processes (shape-encoded). It can be seen that the error decreases
with increasing window size and that the advanced characterisation has a smaller
error. There is no negative correlation between error and the number of RT
components per basic block.

This effect is reinforced by the fact that the power, which is dissipating during execution
of a hardware basic block, does not only depend on the operations that are performed in
that basic block, but also on the patterns that had been applied to the RT components in the
previous clock cycle and thus by a different basic block. This can be seen from the right tables
of Figure 4.12 on page 88.

The estimation error can be reduced by reducing the temporal resolution i. e., by applying
sampling. The average error per sample depends on the size of the sampling window, as
shown in Figure 6.6 on the next page. The figure shows that for most designs an acceptable
error is achieved with a sampling window size of seven to ten clock cycles. Table 6.8 on
page 149 shows that the speed-up achieved by the proposed approach allows very long
simulations i. e., a considerable large number of clock cycles can be simulated. In this case,
applying a sampling window is sufficient and also required for reducing the amount of
generated data.

135



Chapter 6 Evaluation

10 20 30 40 50 60 70 80 90
0

20

40

window size [cycles]

M
A

PE
[%

]
Design I Design II Design III Design IV
Design V Design VI Design VII Design VIII
Design IX Design X

(a) Simple characterisation

10 20 30 40 50 60 70 80 90
0

20

40

window size [cycles]

M
A

PE
[%

]

(b) Advanced characterisation
Figure 6.6: Relation between average error per sample and sampling window size — The

average relative error per sample depends on the width of the sampling window.
The error decreases with larger window size. For most designs, an acceptable
error is achieved with a window size of about seven to ten clock cycles.

From Figure 6.6 it is visible that the error can be reduced significantly by applying a sampling
window. Table 6.4 shows the error measures known from Tables 6.2 and 6.3 but with having a
sampling window of ten clock cycles applied.

Comparing the error measures obtained using the simple and the advanced characterisation
process, it can be seen that the advanced characterisation provides better i. e., more accurate
estimates than the simple one. Table 6.5 shows a detailed comparison of both approaches for
all error measures. The improvement, with an exception for R2, has been computed using
Equation (6.6).

improvement(measure) = 1− measureadvanced
measuresimple

(6.6)
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simple characterisation advanced characterisation

MAPE [%] RRMS [%] R2 [%] MAPE [%] RRMS [%] R2 [%]

Design I 3.65 4.51 82.12 3.11 3.73 87.81
Design II 13.03 18.35 22.70 12.11 17.95 26.07
Design III 2.05 2.53 93.95 1.63 2.07 95.93
Design IV 2.06 2.65 92.41 1.66 2.21 94.72
Design V 6.69 8.37 17.82 4.84 6.21 54.71
Design VI 7.94 9.58 59.34 10.93 12.67 28.92
Design VII 14.87 16.99 89.42 3.32 4.19 99.36
Design VIII 15.74 18.64 21.04 9.89 13.60 57.93
Design IX 11.96 13.50 66.61 11.94 15.49 56.02
Design X 12.95 14.11 40.58 9.85 11.75 58.79

Average 9.09 10.92 58.60 6.93 8.99 66.02
Table 6.4: Error evaluation (with a sampling window of ten clock cycles applied)

accuracy improvement [%]

RE MAPE RMS RRMS R2

Design I 58.04 28.13 33.33 20.74 4.39
Design II -1149.33 -38.93 0.00 -25.37 -316.07
Design III 31.62 24.81 0.00 18.35 3.93
Design IV -0.01 23.80 21.43 25.29 2.15
Design V -608.22 2.44 0.00 -1.25 -3.83
Design VI -223.80 7.13 9.09 5.55 47.29
Design VII 68.43 77.57 74.23 74.00 13.22
Design VIII 1.94 57.18 30.00 26.22 65.95
Design IX -55.07 30.46 5.26 6.22 11.12
Design X -44.60 23.79 12.50 14.43 83.43

Average -144.49 20.55 43.50 7.06 5.96
Table 6.5: Accuracy improvement — The table shows the relative improvement gained when

using the advanced characterisation technique instead of the simple one. All values
are given as relative improvement and not in percent-points. The large decline of
the accuracy for the relative error is explained by the very small values of the errors.
Thus, even very little absolute differences will result in large relative variations.
Most important columns are MAPE and R2.
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6.3 Power Modes

Quantitative evaluation of the provided power mode model is difficult, since such a feature is
not supported by PowerOpt. Figure 6.7 shows a power trace for different power modes for
the simple and the advanced characterisation, respectively. Power mode one is defined as
(Vdd = 1.00 V, fclk = 100 MHz), while the second power mode is defined by (Vdd = 0.90 V,
fclk = 75 MHz). Having the first one used during synthesis, it can serve as reference point

for the α-power law, introduced in Section 4.6.1. Equation (4.45) on page 95 then gives the
second power mode. It can be seen in the figure that the power mode transition takes place at
around 1.20 µs. It lasts for about 125 ns and causes a power dissipation of 2.50 mW during
that time. The corresponding power mode table can be found in Listing B.3.
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Figure 6.7: Power trace with respect to different power modes

6.4 Generated Model

Evaluation of the generated BAC++ models consists of two steps. First, the complexity of the
models is assessed. In a second step the efficiency is evaluated. Before evaluating the models,
their functional correctness must be shown.

6.4.1 Functional Correctness of the Generated Model

The structure and behaviour of the hardware basic blocks is derived from the RT data path.
The static scheduling is done using a back-tracking algorithm, shown in Algorithm A.2. Along
with the requirement that the data path must be cycle-free this yields a correct implementation.
Since each hardware basic block describes the behaviour of exactly one single clock cycle, its
timing is correct by construction.

The same applies to the design’s controller. The BAC++ model generation directly derives the
controller’s cycle-accurate FSM from the RT-level description. Hence, the generated model’s
timing behaviour is correct by construction. The behaviour of the FSM is defined by the
state and output transitions functions. Again, these are derived from the data path and thus
correct by construction. During basic block identification various optimisations are performed,
reducing the total number of basic blocks to be created. In order to assure that the generated
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model is still functionally correct, an automatic regression test has been performed during
simulation of the BAC++ model. The results of each run of the BAC++ model are compared
to the results, obtained from the original C/C++ input model. If the regression test is passed
successfully, the BAC++ model as well as the RT-level model can be assumed to be functionally
correct.

6.4.2 Complexity of the Generated Model

Comparing the complexity of the generated BAC++ model to the complexity of the C/C++

input model gives an indication of the quality of the generated model. In other words, it
allows a first impression of the expected compile and simulation time of the created BAC++

model. Additionally, it allows a statement about the expected readability of the generated
code.

The generated BAC++ model is a representation of all controllers and their particular data
paths, belonging to the design. Besides the behaviour, this representation also contains
structural information as well as information about power and timing. This additional
information has been added during synthesis and characterisation, respectively. Because
information is added and a more fine-grained description of the behaviour is generated, it
is expected that the generated model will be notably more complex than the original C/C++

input model.

Since the input as well as the generated BAC++ model are software-based models, metrics for
measuring the software complexity can be utilised for determining the complexity of both
models. Besides lines of code, there exists no common technique for measuring the complexity
of a given software. There are several works on this subject, which all have a different focus.
Most techniques aim at determining the readability and maintainability of the code [36] or
how error-prone the implementation is [72]. Research shows that developers more often judge
the complexity of a given software based on the data- instead of the control-flow [81]. Since
most information which has been added by the model generation presented in this thesis,
refers to the control-flow, a suitable measure must be found.

Since the BAC++ model is automatically generated from an RT-level description of a synthe-
sised hardware module, it will be difficult to understand in any case. This is because the input
model, generated by the syntheses tool is hard to understand in the first place. On the other
hand, the generated model is not to be read by a developer. Instead, it is an intermediate
description, resulting while creating the virtual system prototype. An adequate metric for
measuring the complexity will therefore focus on the control-flow of the generated model,
allowing statements on the complexity of the module’s simulation.

In this thesis McCabe’s Cyclomatic Complexity v(G) is used as metric for the models’ complex-
ity. It was introduced by McCabe [97] back in 1976 and directly measures the number of
independent paths through the source code. Even though it is not free from critics [125], it is
an often cited reference and thus allows comparing the evaluation results from this thesis
with existing results from other approaches.

The measure allows statements about the control-flow within the given source code i. e.,
executable. Thus, it is a metric for the complexity of the CDFG. It is important to note that
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this complexity refers to the complete model, which was generated, and not only to the
modelled hardware module. The metric can be seen as an indicator for the performance of
the simulation and the overall process, discussed in Section 6.6.

The measure v(G) is defined in Equation (6.7), where E is the number of edges in the control
flow graph (CFG), V is the number of vertices, and P is the number of independent graphs i. e.,
procedures and methods.

v(G) = E−V + 2P (6.7)

Table 6.6 shows the lines of code required for implementing the particular model as well as
the model’s complexity. The test bench is included in all counts. It is important to note that
the Verilog and BAC++ model are automatically generated by PowerOpt.

C/C++ input Verilog BAC++

LoC NoM v(G) LoC LoC NoM v(G)

Design I 70 1 6 917 770 14 89
Design II 96 1 9 1843 1430 17 230
Design III 97 1 8 1193 983 14 110
Design IV 199 1 16 3134 2211 28 156
Design V 133 1 15 2931 2512 27 322
Design VI 395 1 57 6492 6925 35 849
Design VII 583 1 15 25 240 11 907 17 737
Design VIII 273 1 37 21 714 6751 30 800
Design IX 589 1 75 16 360 99 238 56 31 998
Design X 624 1 73 13 236 126 118 42 19 791
Design XI 378 1 50 17 133 — — —

Table 6.6: Code complexity comparison — Lines of code (LoC) denote the number of non-
blank, non-comment lines in the model. The number of modules (NoM) denotes the
number of non-trivial modules such as classes. McCabe’s Cyclomatic Complexity
v(G) describes the complexity of the model’s control flow.

Comparing the code size and complexity with the number of identified and especially
generated hardware basic blocks from Table 6.1 on page 126, it can be seen that there is a
relation between the number of generated basic blocks and complexity of the BAC++ model.
It can be seen that v(G) is correlated to the number of states and the number of generated
hardware basic blocks as well as other structural elements like memories and shared registers,
for example.

Regarding the readability of the design’s controllers it can be stated that the RT-level and
BAC++ description are both equal easy to understand. Even if a different syntax is used,
in both cases a controller is implemented by one large switch statement, as depicted in
Listing 5.2 on page 110. Remembering Table 6.1 on page 126, it can be seen that there might
be a very large number of hardware basic blocks per design. But each one is very simple in its
structure as can be seen in Listing 5.1 on page 109. All basic blocks are implemented in terms
of three-address-code. Each hardware basic block contains a large set of operations belonging
together. The operations represent the complete computation in that particular clock cycle
starting at the source register and ending at the target register. The way data passes through
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the multiplexers is transparent i. e., the particular mux-select values had been resolved. In
summary it can be said that the behaviour of a hardware basic block and thus the design, can
be understood far more easily as it would be possible, if only a structural RT-level description
in VHDL or Verilog would have been available.

6.4.3 Efficiency of the Generated Model

In Section 4.2.1 it had been argued that considering several RT components at once gains a
speed-up during simulation. In the presented approach, all operations taking place in a certain
clock cycle are modelled by one hardware basic block. Due to static scheduling and resolved
mux-select values, some of the operations belonging to a basic block can be optimized or even
removed by the compiler. An example for such an optimisation is given in line 12 of Listing 5.1
on page 109, where the simple assignment can be removed. Moreover, only RT components
required by the behaviour must be considered during simulation. Components active due
to parasitic functionality must be considered during characterisation and estimation but
not during behavioural simulation. They are considered in the generated notification about
switched capacitance, but not in the behavioural description of the basic block. Table 6.7
shows the number of RT components that is considered per basic block. It must be noted that
Table 6.7 considers all generated hardware basic blocks and not only the activated ones.

#RT components per hardware basic block

#simulated components #estimated components

#HBBs min max mean min max mean

Design I 9 2 12 5.56 3 13 8.78
Design II 21 1 17 6.33 2 21 11.05
Design III 15 1 14 6.07 6 14 13.93
Design IV 11 11 47 28.00 82 94 96.55
Design V 38 2 28 9.63 24 29 28.03
Design VI 118 3 32 8.97 3 124 69.25
Design VII 109 3 170 41.09 3 862 526.35
Design VIII 135 2 23 8.43 3 115 78.36
Design IX 2463 2 68 21.14 2 92 75.33
Design X 1751 2 97 49.63 58 718 620.97

Table 6.7: Number of RT components considered at once — During execution of a hardware
basic block several RT components are considered at once. Components active due
to parasitic functionality are considered during characterisation, but must not be
simulated when using the BAC++ approach. Only their switched capacitance is
considered.

The speed-up that can be achieved with the generated models is discussed in detail in
Section 6.6. Figure 6.8 on the next page however, shows the relation between the size of
a hardware basic block in terms of considered RT components and the achieved speed-up.
It can be seen from the figure that there is a relation between number of RT components
considered at once during an activation of the hardware basic block and the simulation
speed-up. However, especially the right outermost two marks of the figure show that there
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are also other influences having an significant effect on the speed-up. Even though both
designs consider roughly the same number of RT components per hardware basic block they
provide a significantly different speed-up.
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Figure 6.8: Average number of RT components vs. speed-up — The achieved speed-up
depends on the size of the hardware basic blocks. The larger the basic blocks are,
the larger the speed-up of the simulation will be. There are two reasons for this.
First, more operations in a single hardware basic block provide better optimisation
potential to the compiler. Second, large basic blocks reduce the relative overhead
of the simulation kernel per simulation step.

The penultimate mark relates to Design VII, while the right outermost mark belongs to
Design X. Both designs widely differ in terms of their control logic. DESIGN VII has a
simple control logic with very simple output conditions. In other words, the decision which
hardware basic block is to activate can be made fairly fast. Design X on the other hand has
significantly more complex output conditions. Assuming that the generated hardware basic
blocks are evenly distributed over all states of the controller’s FSM, in each state of Design X
the controller must choose one out of 27 basic blocks, which is to activate. In comparison,
Design VII as exactly one basic block per state and therefore obviously a significantly simpler
activation logic. A deeper investigation of Design X reveals that the hardware basic blocks are
not evenly distributed. Instead, only a couple of states have complex output conditions. In
these states however, the simulation logic has to choose one out of 256 basic blocks, requiring
correspondingly complex output conditions, which in turn slow down the simulation.

6.5 Discussion of Known Problems and Issues

The sections above show that the level of accuracy as well as the simulation speed that
can be achieved, depend on the structure and the BAC++ model of the estimated design.
Different design properties have an influence on the accuracy of the obtained estimates. This
is especially true for the error per cycle i. e., if no sampling is applied. The following sections
describe in detail the most important design characteristics and artefacts, having an influence
on the accuracy and simulation speed of the generated model.
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6.5.1 Micro Controlling

Micro controlling denotes cases in which the controller performs control operations at a very
fine-grained level. That is, operations are not chained directly, but a lot of control structures
such as multiplexers are inserted into the data path. By adding a lot of this control logic to the
data path, the complexity of the controller is increased, since it must control more components
of the data path. Since the number of hardware basic blocks that must be identified and
characterised highly depends in the controller’s output conditions, a more complex output
logic will yield a notable larger and more complex BAC++ model. In the following, this effect
is discussed using the example of saturating arithmetic operations, which will cause micro
controlling if not implemented correctly.

If a saturating arithmetic is used in the input model, it is important to implement this
arithmetic in a branch-free manner. If branches are used like in the implementation in
Listing B.1 on page 164, synthesis creates a very complex data path, like the one shown
in Figure 6.9. Each operation is surrounded by a set of multiplexers, implementing the
different branches of the saturation. That is, the controller is responsible for performing a
micro-controlling i. e., control the saturation for each individual operation. If a large number
of such saturating operations take place in parallel, it is obvious that the controller and its
output logic are becoming very complex. Thus, a very large number of hardware basic blocks
must be created to cover all possible control-flows – one basic block for each valid branch
evaluation of all parallel operations.

min max +

muxsel1
0 1

assign

muxsel2
0 1

R3

R1 R2

Figure 6.9: Operation saturation with branches
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For n operations that are possibly executed in parallel, Equation (6.8) gives the number of
hardware basic blocks that must be analysed. The binomial coefficient (n

i ) gives the number
of possibilities to activate i out of n operations, while 22i denotes the number of possible
combinations of mux-select signals for the i active operations.

This exponential state explosion is an inherent problem of the static analysis and cannot be
solved, since all hardware basic blocks must be identified for archiving a full coverage of the
control flow. During basic block identification, only three possible combinations of mux-select
signals remain per active operation, reducing the total complexity to O(4n − 1). These are
valid hardware basic blocks. Hence, they must thus be identified, characterised, and become
part of the generated BAC++ model.
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There are two solutions to this problem. The first one relieves the controller from micro-
controlling the saturating operation. In this case, a technology must be used for synthesis that
provides saturating operators. These operators perform the saturation internally. Therefore,
no controller interaction is required. A lot of research focuses on the problem of building
saturating operators and their influence on the signal-to-noise ratio (SNR) of the processed
data [40].

The second solution uses an implementation of saturation logic that is better suited to be
implemented in hardware. An example implementation of the branch-free saturation is shown
in Listing B.2 on page 165. This implementation reduces the micro-control overhead for the
controller by providing an implementation using less conditional statements, yielding less
complex output conditions.

6.5.2 Missing Information During Characterisation

For determining the active times of a certain RT component, considering only value change
sequences is not sufficient. This issue is discussed in detail in Section 4.4.5. An exact
knowledge of a component’s active times requires the active times of its in- and possibly its
outputs to be known. It might occur that the number of activations of a certain RT operator
cannot be estimated correctly. This case can occur at data in- and output ports, whose active
time might not always be available in PowerOpt. If so, the number of activations must be
obtained from the value change sequence. As mentioned in Section 4.4.5, if a port or any
other RT component is activated twice, but with exactly the same pattern, this is not visible
from the value change sequence. In this case, less activations are assumed than had actually
occurred.

If the number of activations of a RT component is underestimated, this causes the average
switched capacitance per activation and thus average dynamic power dissipation of that
particular component to be overestimated. This is visible in the detailed evaluation in
Tables D.1 to D.10 on pages 178 to 196.

6.5.3 Fuzzy Estimates

The errors shown in Sections 6.2.1 and 6.2.2 origin from the way the characterisation is
performed. This is especially true for the simple characterisation process. The simple
characterisation process uses average switched capacitance per activation for characterising
a hardware basic block. Because an RT component might be used differently in different
hardware basic blocks, the estimated power dissipation becomes fuzzy. Therefore, the
dissipating power is overestimated in phases with a low utilisation, while in phases with high
utilisation the power dissipation is underestimated. This effect is shown in Figure 6.10.

It can be seen in Figure 6.10a that switched capacitance and thus dissipating power is averaged
over all activations of the particular RT component. If more components are considered at the
same time, this effect is evening out, but not completely. This is shown in Figure 6.10b. This
particularly applies to designs in which the components are used in different phases, such as
Design VIII or Design IX. For the later one whose power trace is depicted in Figure D.25 on
page 194 this effect yields a very fuzzy power trace.
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Figure 6.10: Register power trace — As shown in Figure 6.10a, a certain register of Design VII

is activated 36 times. The power, dissipating per activation, depends on the
data stored in the register. This can be seen in the PowerOpt trace. Using
BAC++, the register’s total dynamic power dissipation is evenly distributed over
all activations. If all 83 registers of the design are considered at once, power
dissipation per clock cycle is averaging out over all registers. Yet, this is not
complete, as shown by Figure 6.10b. The error is caused by the fact that registers
are used differently by different hardware basic blocks.

While this effect does not influence the error for estimation of the total power dissipation, it
has an impact on the average error per cycle. This can be seen in Table 6.2 on page 132, where
designs which are sharing RT components over different phases have a higher error per cycle
than designs where RT components perform a specific operation, only and where no or only
a little resource sharing is introduced during synthesis.

The same problem occurs when using the advanced characterisation process. Again, the
values are averaged. But in contrast to the simple approach, this is done on a far more
fine-grainer level. Switched capacitance is averaged with respect to the basic blocks, the
particular RT component belongs to. This notably increases the accuracy as discussed in
Section 6.2.4.

6.5.4 Small Hardware Basic Blocks

Small hardware basic blocks are hard to estimate, because the assumption that different power
dissipation due to data-dependencies is averaged out in a hardware basic block is no longer
true. In a small basic block, its total power dissipation depends only on a small number of RT
components and their data-dependency. This is especially true, if the basic block contains a
single dominating RT component, like it is the case for Design II. Although even dynamic
power dissipation of larger basic blocks does not even out completely as shown in Figure 6.10
and discussed Section 6.2.4, smaller basic blocks tend to have a larger per-cycle-error than
larger ones. This is especially true for the simple characterisation process.

Regarding simulation speed, it is obvious that smaller hardware basic blocks provide fewer
possibilities for optimisation to the compiler. For smaller basic blocks, the advantage of the
optimisation is not enough for compensating the overhead introduced by the simulation kernel.
Thus, designs where small basic blocks make up the majority, have a smaller simulation
speed-up than designs containing a large number of larger hardware basic blocks.
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6.5.5 Multi-Cycle Operations

Time-consuming operations like multiplication, division or the modulo-operation might not
always be performed in one single clock cycle. In order to meet the required timing and clock
frequency of the design, their operation may span over multiple clock cycles in the schedule.
Hence the name multi-cycle operation. Such a multi-cycle operation starts in one cycle, but its
result is available some clock cycles later.

During RT-level power estimation, model abstraction, and power characterisation, the dynamic
power dissipation of such a multi-cycle operation is assigned to one specific clock cycle. In
PowerOpt the power dissipation is assigned to the cycle, were the operation starts. For BAC++

however, it is assigned to the cycle, the operation’s result is consumed. This is because of the
bottom-up basic block identification process. All three cases are visualised in Figure 6.11.
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Figure 6.11: Dynamic power dissipation with respect to multi-cycle operations — An op-
eration might be scheduled over multiple cycles in order to met the design’s
timing constraints as shown in Figure 6.11a. During power estimation, PowerOpt
considers the operation i. e., its power dissipation to take place in the first cycle,
the operation is active, as depicted in Figure 6.11b. Due to the bottom-up identi-
fication process, BAC++ considers the operation to take place in the last cycle, as
shown in Figure 6.11c.

This yields two problems. The first one occurs during characterisation. The simple charac-
terisation process is able to cope with multi-cycle operations, since all operations are taken
into account, regardless when the individual operations take place. Regarding the advanced
characterisation process this however, is no longer true. During the advanced characterisation
process, only data patterns or pattern transitions to be precise, belonging to the timestamps
the hardware basic block was active, are taken into account. That is, an operation is assumed
to take place if its result is consumed. For multi-cycle operations this means that the power
dissipation is assumed to take place at the end of operation. For the given example this means,
that the pattern at cycle three are taken into account, even though the relevant transition
occurs in cycle one. This transition is not taken into account during characterisation, which
leads to an underestimation of the component’s power dissipation, since the power dissipating
in cycle one is not considered.
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A very similar problem arises during simulation of the generated model. During simulation of
the BAC++ model, the power of an operation is assumed to dissipate, if its result is consumed.
For the example in Figure 6.11 this is cycle three, again. During power estimation using
PowerOpt however, the power is assumed to dissipate in the cycle the component becomes
active. That is cycle one for the given example. This causes different power traces to be
obtained from a simulation using BAC++ and PowerOpt, respectively, if the updated value of
a register is not used immediately. Again, estimation of total energy dissipation is correct,
but power that is dissipating in one clock cycle is considered in another cycle. By applying
sampling, this error becomes less important since multiple clock cycles are considered at once.
Anyhow, if the multi-cycle operation is covered by different samples i. e., starts in one sample,
but ends in another one, the problem persists.

6.6 Summary

This chapter has evaluated the proposed techniques and methodologies for automatically
identifying and characterising combinational macros and the subsequent high-level model
generation. Starting with the identification process, design characterisation and model
generation, up to the entire design process, the efficiency and accuracy of the presented
techniques and methods have been shown.

Despite some inherent problems, enumerated in Section 6.5, the identification process drasti-
cally reduces the number of combinational macros that must be identified. For Design VII the
number of hardware basic blocks that has to be identified and generated within the BAC++

model could be reduced from theoretical 253× 10174 down to 109. Even for designs with
more complex output conditions and thus more valid basic blocks like Design IX, the number
of basic blocks could be reduced from 5.71× 1045 down to 22 158. The high coverage of
the generated hardware basic blocks of about 67.94 % shows the efficiency of the proposed
identification technique. A hardware basic block typically comprises 10 to 60 RT components,
which must be functionally simulated in order to simulate the module’s functional behaviour.
Regarding power estimation, up to 862 components are considered at once, giving a significant
simulation speed-up compared to a conventional RT-level simulation.

Both, the simple as well as the advanced characterisation process have been evaluated, too.
A total of five different error measures were used for the evaluation. Both characterisation
processes provide good results, with the first one is better suited for the estimation of the
total energy and the second one is more suitable for the estimation of the power dissipation
per clock cycle or sample, respectively. This is also evident from Figure 6.12 on the next
page, which is a combination of Figures 6.3 and 6.4. It can be seen, that the advanced
characterisation process simulates more clock cycles with a smaller relative error than the
simple one. Simplified, the higher bars are on the left side of the figure, the more accurate the
characterisation process is.

The average error of both characterisation techniques depends on the structure and complexity
of the design being characterised. It can be stated that the average error per clock cycle is
between 4.22 and 34.63 % for reasonable designs that had been characterised, using the
advanced characterisation process. This error can be notably reduced for all designs and both
characterisation processes by applying a sampling window during trace generation. That is,
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Figure 6.12: Histogram of the relative error per clock cycle

by considering several cycles at once. For long simulation runs, which become possible with
the presented estimation approach, this even might be necessary in many cases in order to
keep the amount of trace data manageable. With a comparatively small sampling window of
seven to ten clock cycles, the average error per cycle can be reduced significantly to around
6.93 %. This effect is also visible regarding the RRMS, which can be reduced from 26.70 %
down to 8.99 % on average. Both characterisation processes, but especially the advanced one,
are able to reproduce the shape of the power trace very close.

As anticipated, the generated BAC++ model is notably more complex than the C/C++ input
model. This is due to the structural and behavioural information that had been added during
high-level synthesis. Additionally, power and timing information is also considered by the
generated BAC++ model. The majority of the complexity, added to the model, origins from
the static analysis of the design and the hardware basic blocks that must be generated for
each possible behaviour of the data path. However, the generated model must be seen as
an intermediate representation, which becomes part of the virtual system prototype. Even
though the BAC++ model is not intended to be read by a developer, its behaviour is simpler to
understand compared to the structural RT-level description, generated during synthesis. This
is because a hardware basic block describes the complete behaviour in a specific clock cycle,
with having all mux-select assignments etc. resolved. Thus, the BAC++ representation is more
a behavioural description with added structural information than a structural description
with added behavioural information like Verilog or VHDL.

In Section 4.4 it had been claimed that the proposed BAC++ model gains a significant simula-
tion speed-up while still providing sufficiently accurate results. The proposed characterisation
and model generation steps require an additional amount of computational effort, but the
additional time spent is more than balanced out by the achieved simulation speed-up. This
is true especially since characterisation is performed only once, while the simulation is
carried out several times. For the examples used for evaluation, an average speed-up of
389.59× could be archived, with some examples having a speed-up of up to 2460.71×. If
this outlier is neglected, the average speed-up is still at a reasonable 158.81×. This more than
compensates for the effort spent during design characterisation and BAC++ model generation.
Table 6.8 gives more details on the computational effort of the individual steps of the proposed
approach as well as the gained simulation speed-up.
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BAC++

PowerOpt charc. and gen.

syn. estim. ident. simple advanced estim. speed-up

Design I 3.74 7.73 1.54 145.54 110.30 0.104 74.36
Design II 3.94 7.87 1.52 46.50 46.87 0.152 59.00
Design III 15.59 22.94 4.88 454.01 334.66 0.164 139.90
Design IV 43.45 3.76 0.19 0.83 45.57 0.004 383.03
Design V 24.83 8.62 1.83 67.33 139.38 0.072 119.76
Design VI 656.68 27.71 99.16 186.80 2471.00 0.204 135.84
Design VII 5405.44 72.57 137.65 61.60 1418.19 0.012 2460.71
Design VIII 415.05 26.05 132.28 38.52 1238.30 0.128 203.50
Design IX 485.56 22.79 544.57 28.58 477.16 0.412 55.31
Design X 2019.64 139.65 10 286.10 1399.50 156 542.00 0.528 264.48
Design XI 5.56 5.55 — — — — —

Average 389.59
Table 6.8: Computational effort — Time required for performing a given step in the estimation

process i. e., synthesis and estimation using PowerOpt, hardware basic block identi-
fication, characterisation and model generation for both characterisation processes,
and finally the estimation using the generated high-level model. All values, except
for the speed-up are given in seconds.

As already stated in Section 5.9, the proposed process integrates seamlessly into the con-
ventional synthesis and estimation process using PowerOpt. The tool is used as usual with
an additional command to be executed. This command will then issue the automatic basic
block identification, design characterisation, and BAC++ model generation. For simulating
the virtual prototype, only minor changes to the C/C++ input model are required. The
modifications are limited to emulation of the function call. Even if PowerOpt was used for
demonstration, the general functionality and applicability of the proposed techniques and
methods has been shown.
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Chapter7
Conclusion

Abstract
This chapter recapitulates the presented approach for a fast, yet accurate
power and timing estimation of full-custom hardware modules, embedded
in a heterogeneous system. It will give an overlook over the claims that had
been made at the beginning of this thesis and it compares them to what have
actually been achieved by the proposed approach. Evaluation results are put in
connection with the proposed characterisation and model generation process.

This chapter is two-fold. First, the identification and characterisation tech-
niques as well as the model generation are summarised. The second part then
gives an outlook. It describes future work and possible improvements of the
presented approach.
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In this thesis, an approach for fast, yet accurate power and timing estimation has been
presented. Based on an RT-level description, which has been obtained from a high-level

synthesis, a power and timing augmented high-level model is generated. After a comparatively
high characterisation effort, the presented process enables a qualified assessment of the
given system. It guides the design space exploration and helps making relevant decisions,
such as platform selection, hardware/software partitioning, task allocation, definition of
communication structures, power management policies, etc.

The newly developed characterisation and model generation approach starts with an auto-
matic identification of combinational macros or so-called hardware basic blocks, fulfilling
claim 1 from Section 1.3. These basic blocks are statically analysed based on the controller’s
output and next-state logic and describe the behaviour of the data path in a particular
controller state and while a specific input word is applied.

Static analysis is prone to a state explosion. It has been shown that using the straight forward
approach, for one of the evaluated designs up to 253× 10174 hardware basic blocks are
required in order to achieve a full coverage of the control flow. By applying the developed
techniques, this number can be drastically reduced. For the designs studied during evaluation,
only a few hundred basic blocks on average are sufficient. For the just mentioned design, for
example, only 109 hardware basic blocks have been generated. Put simply, it can be said that

the number of hardware basic blocks per process has been reduced from O
(

2# controller ouput signls
)

to about O(n # states). During simulation of the generated BAC++ model, about 70 % of the
generated basic blocks are activated. The significant reduction of identified hardware basic
blocks as well as the high usage of the generated basic blocks shows the efficiency of the
proposed identification and model generation process.

For the characterisation of the identified basic blocks’ dynamic power dissipation two different
methods have been developed in compliance with claim 2. The first one provides a faster,
while the second one provides a more accurate characterisation, regarding the cycle-by-
cycle error. Other design artefacts such as clock-tree or controller power are also taken into
consideration, fulfilling claim 3. As stated by claim 4, characterisation is done on structural
properties, only. After characterisation, various information is available at different levels of
granularity. This is visible from Figure 7.1.

Evaluation shows, that an acceptable estimation error can be achieved with the presented
approach. The error regarding total energy dissipation is sufficiently small for all designs.
Non-functional properties such as clock-tree and controller power, or static power dissipation
can be estimated with a negligible error, which is typically around 1 %. The generated power
traces provide a relative error of less than 15 % for most simulated clock cycles. For both
characterisation processes, this estimation error can be significantly reduced by applying
a sampling window during power estimation. That is, each clock cycle is not considered
individually, but some cycles are considered at once. A sufficient error of about 6.93 % can
be achieved with a sampling window with a width ten clock cycles. Since millions of clock
cycles are simulated, applying sampling is acceptable, not to say necessary, in order to reduce
the amount of generated data to a manageable size. For estimating the design’s thermal
behaviour as well as degradation effects, even larger sampling windows up to hundreds or
even thousands of cycles are suitable.
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Figure 7.1: Spatial granularity of design properties — Different types of information are
available at different levels of spatial granularity.

The identified hardware basic blocks along with the characterised design properties are used
to generate an executable high-level model, which is augmented with power and timing
information. This fulfils claim 5. The generated BAC++ model contains the description of the
design’s functional behaviour as well as characterised design properties such as switched
capacitance. Only minor changes to the test bench are required in order to replace the original
input model with the generated one. Due to the efficiency of the basic block identification
process, the generated model has an acceptable size and complexity.

A C++ library is provided that contains all base classes for an easy generation of the virtual
prototype. The library also contains the simulation kernel and tracing facilities. Using this
library, the generated model can be easily compiled. Statically scheduled hardware basic
blocks, which contain a large number of RT components i. e., a large number of operations,
can be readily optimised by the compiler, yielding a simulation and estimation speed-up
of about 160×, compared to a conventional RT-level estimation. Also a TLM-interface is
provided, allowing the virtual prototype to be embedded into a virtual system prototype, as
it is required by claim 6.

The proposed approach has been integrated seamlessly into the power optimising synthesis
tool PowerOpt. Even though the presented approach relies on PowerOpt, all assumptions
made and techniques presented in this thesis, can be easily adapted to other synthesis tools
and design processes as well. The generated RT data path may be different, but the basic
properties such as an FSM-based controller with an output and next-state logic, as well as the
hierarchical structured processes with inter-process communication, can be found in almost
all designs that are generated by a high-level synthesis.

Considering the complete power and timing estimation process as it has been proposed in this
thesis, it can be stated that the process allows a fast and efficient simulation and estimation
of embedded full-custom hardware module. Using the approach, it is possible to simulate
millions or even billions of clock cycles within a few minutes while obtaining nearly RT-level
accurate power and timing estimates. With this approach the highest abstraction level, at
which power and timing can be predicted accurately, is raised by almost one entire level. All
claims, enumerated in Section 1.3, have been addressed and met. The same is true for all
requirements identified in Chapter 4.
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7.1 Outlook

The presented work must be considered as a proof of concept. This is especially true for the
implementation of the proposed methods. Although the approach has been implemented
with a view to his future expandability and re-usability, a number of implementation im-
provements possible. An analysis of the of the implementation using different performance
measuring tools reveals that at lot computation effort is required for reading, writing, and
updating signals i. e., for managing the inter-process communication. In order to provide a
homogeneous interface for accessing different types of signals and channels a corresponding
class hierarchy has been developed. This polymorphic approach this leads to virtual function
calls. These in turn require an additional access to the vtable, which selects the desired
implementation of the method during run-time. A similar issue occurs while driving the
process’ FSM. A performance optimised implementation will provide a notable simulation
speed-up.

Besides the aforementioned implementation details, improvements of the presented approach
are possible. This thesis shows the general applicability of the proposed methods and
techniques, but leaves some room for a number of improvements regarding identification
and characterisation of the hardware basic blocks as well as generation and simulation of
the BAC++ model. Some of these enhancements are listed below. They are ordered along the
proposed process.

Improved Basic Block Identification

The basic block identification process can be extended to identify output conditions that can
never evaluate to true, since the required inputs can never occur. That is, the basic block
identification process considers the data path as an additional input. This will further reduce
the number of hardware basic blocks. However, identifying invalid or impossible input
words is an ambitious task, since it requires a deep knowledge of the design’s underlying
behaviour.

Improved Characterisation

The characterisation processes can also be improved. This is especially true for the compar-
atively simple characterisation of shared registers and memories. Currently, it is assumed
that an access to the memory requires always the same amount of energy. There should be at
least a distinction between read and write accesses. The same is true for all types of abstract
data channels. Such a feature can be easily implemented, as soon as PowerOpt provides
the necessary RT-level power models. The implementation requires only minor changes of
the existing library. Only the notifications that are sent must be adapted. The remaining
simulation kernel can be left unchanged. Existing BAC++ models can still be used, even if
they then cannot benefit from the enhancement.

The currently applied characterisation of the interconnect can be enhanced, too. Currently,
the interconnect is estimated by averaging its dynamic power dissipation over all clock cycles,
because the interconnect power estimation is done by PowerOpt in this way. Since pattern
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lists are available for each signal of the interconnect, it is possible to estimate the interconnect
power with respect to the data patterns that are applied, if a certain hardware basic block
is activated. This will be an important improvement, since the interconnect power may
contribute to a great extend to the overall power dissipation, as can be seen from the detailed
energy breakdowns shown in Appendix C.

Improved Spatial Resolution

The spatial resolution is an important factor, if the power trace is an input for a thermal
estimation of the design. Currently, the spatial resolution of the estimated power dissipation
relates to the size of the hardware basic block. The location of the basic block is defined by the
location of the RT components it is built of. While this may be suitable for smaller hardware
basic blocks, for large basic block covering a larger chip area this might be insufficient.
Evaluation showed that up to 24 % of the total chip are can be activated by a single hardware
basic block. In order to cope with this issue, the spatial resolution of the estimation must
be improved. This can be done by subdividing the chip area into so-called tiles. During
characterisation of a hardware basic block, the power dissipation per tile must be estimated
and characterised. The most suitable size of the tiles must be determined for this purpose, in
order to provide a good trade-off between accuracy and additionally required effort.

Minimisation of Output Conditions

For some designs, a large number of hardware basic blocks is been created. As mention
above, this leads to correspondingly complex output conditions in the generated model.
The conditions are given in disjunctive normal form (DNF). This description of the Boolean
expression is optimized by the compiler during compile time. Especially for larger compilation
units this may take some time. Since the model may be compiled several times, the DNF
optimisation should already be done during model generation. Well known algorithms like
Quine-McCluskey can be used for optimising Boolean expressions. Such an algorithm can
be implemented or one of the freely available libraries can be adopted and used during the
model generation process.

Considering Integer Variables in Assignments

Regarding the output conditions, a second optimisation is possible. As mentioned, each
assignment to a SMT predicate is represented as a single Boolean atom. For simple Boolean
assignments this is a suitable approach. For assignments using the value of a register holding
an integer variable this might lead to a large number of atoms – one for each possible integer
assignment. It is obvious that it is not possible that multiple atoms, which all refer to the
same integer assignment, can evaluate to true at the same time. In this case it may be useful
to directly compare the value of the register, reducing the total number of Boolean atoms that
must be considered during optimisation and evaluation of the generated output conditions.
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Reuse of Behavioural Code

Also regarding the hardware basic blocks an optimisation is possible. A basic block is
generated for each possible behaviour of the data path. However, two different basic blocks
might share a subset of their operations. In this case the same code is generated for common
operations of the basic blocks, increasing the size of the model and extending the compile
time. This issue can be tackled by outsourcing the shared code into a separate method. This
method is then used by each one of the two hardware basic blocks. In the final stage, each
possible computation of a new register value is outsourced into its own method. However,
information about switched capacitance is still associated to a particular hardware basic
block.

Even though the size in terms of lines of code of the generated BAC++ model is reduced, some
drawbacks might be introduced. During compilation, the compiler has two options. First, the
compiler can inline the methods. This seems useful, since each method contains only a small
amount of instructions. In this case, the compiler can use the same optimisation potential as
in the original implementation. However, the resulting executable will also have the same
size as it would have had, when the original implementation had been used.

The compiler can also choose to not inline the methods. In this case the executable will be
notable smaller, but the compiler has less optimisation potential available. Also, intermediate
results cannot be shared among the computation of different registers and race conditions may
occur. By not inlining the method, function calls must be inserted, prohibiting an extended
optimisation and moreover increasing the simulation time. The effect on code size and
simulation time must be evaluated before a statement about the efficiency of this optimisation
can be made.

Multi-Cycle Basic Blocks

Some computation may be too complex to be performed in one clock cycle. In this case the
computation covers multiple cycles i. e., multiple states of the FSM. These states are then
executed one after another, without any conditional branches. In this case, so-called multi-cycle
basic blocks can be introduced. These cover multiple states of the FSM. The causal relationship
is defined by the computation tree logic (CTL) Equation (7.1).

(si, ai)⇔ X
(
sj, aj

)
(7.1)

Statements about the assignments a are difficult, since they depend on the input symbol of
the FSM. The input symbol in turn, might be unpredictable, since it depends on an external
input. Even input from the data path is hard to predict due to data-dependencies. However,
one corner case, shown in Equation (7.2), can be considered. In this case the output conditions
are trivial, so that no evaluation of assignments is necessary.

(si, true)⇔ X
(
sj, true

)
(7.2)

The simplified relation si ⇔ X sj can be directly obtained from the controller’s FSM. In this
case, state si has exactly one outgoing transition, leading to state sj. Moreover, this transition
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is the only incoming transition of sj. Both states must activate exactly one hardware basic
block. By combining multiple basic blocks, even more RT components are considered at once,
providing an even better simulation performance. Even though the multi-cycle basic blocks
will speed-up the simulation they will decrease temporal resolution of the estimate. The
trade-off between accuracy and performance must be evaluated.

Hardware Basic Block Correlation

The dynamic power dissipation of a hardware basic block does not only depend on the
data patterns that are applied in the current clock cycle, but also on the data patterns
that were previously applied. This is because the RT-level power models rely on pattern
transitions. In order to regard this effect during power estimation, correlations between
hardware basic blocks can be considered. That is, the actual power dissipation of a basic block
depends on the basic block(s) that were previously active. The additional effort required
during characterisation depends on how many previous hardware basic blocks i. e., how
many passed clock cycles are taken into consideration. Also, the more correlation must be
considered, the more difficult it is to provide a use case with a full coverage of all possible
correlations. Again, a good trade-off between characterisation effort and accuracy must be
found.

7.2 Last But Not Least

As mentioned in the very beginning of this thesis, the history of semi-conductor technology
is full of obstacles and challenges. Until now, almost all of them have been solved or they had
become part of today’s research objectives. This thesis also tries to make a small contribution
for solving today’s problems. By supplementing fast high-level power and timing estimation
with nearly RT-level accurate results, problems such as thermal behaviour or degradation
effects can be regarded during the design process. However, there are new challenges on the
horizon.

For over 66 years, shrinking the technology’s node size improved the performance of the
systems. Transistors had become faster and more of them could be placed in the same chip
area. As predicted, within the next 20 to 30 years, feature size will reach about 5 nm. At this
point, a physical barrier is reached, which cannot be passed without developing completely
new technologies. Quantum computing is one example for such an emerging technology.
With these new technologies been developed right now, new challenges for power estimation
will arise. With a new type of computation, new ways for estimating the power dissipation
are required. The researching community will find new approaches and solutions for the
arising problems and challenges. And over the years, with the new challenges becoming
more and more prominent, this work will lose its relevance and quit the scene for the next
generation of graduate students, ready to advance science with rapid strides. May they be
successful.
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Appendix A Algorithms

A.1 Hardware Basic Block Identification

input: States S of the controller’s FSM
input: RT data path G
output: A list of identified hardware basic blocks H
foreach state s ∈ S do

foreach a ∈ all possible assignments A of state s do
H(s,a) := new hardware basic block for s and a;

V(s,a)
TR := all registers of G that take new values if a is applied in state s;

V := V(s,a)
TR ;

while elements left in V do
v := first element of V;
S := all source components of v;
foreach source component s ∈ S do

if s ∈ Ṽ then continue;
if s is a register then

add s to V(s,a)
SR of H(s,a);

else if s is a multiplexer then
add s to V(s,a)

A of H(s,a);
add the components at the active input of s to V;

else
add s to V(s,a)

A of H(s,a);
add the components at the inputs of s to V;

end if
end foreach
add v to Ṽ;
delete v from V;

end while
add H(s,a) to H;

end foreach
end foreach
return H

Algorithm A.1: Hardware basic block identification

A hardware basic block is defined by a state s of the controller’s FSM and the Boolean
assignment a that activate the basic block. For each combination (s, a) of state and assignment
a new basic block H(s,a) is created. Starting from the target registers V(s,a)

TR the data path is
traversed upwards, contrary to the data flow, and each passed component is added to the
appropriate component set. Traversing through the actual path stops, if a source register is
found. Identifying components that are active due to parasitic functionality is done the same
way, but the data path is traversed down wards, starting at the source registers V(s,a)

SR . This is
not shown in Algorithm A.1.
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A.2 Basic Block Code Generation

A.2 Basic Block Code Generation

input: A set H of hardware basic blocks to create code for
foreach h ∈ H do

clear P;

create local copy of all V(s,a)
TR ∈ h;

foreach t ∈ V(s,a)
TR do

create(input of t, P);
write assignment t := input of t;

end foreach
write power notification for h;

end foreach

Algorithm A.2: Code generation for hardware basic blocks

Since a register can be source as well as target register at the same time, a local copy of all
source registers is made and used as input for the computations. For each target register,
the input is created using the recursive function create. A corresponding assignment to
the target register is created, too. After the code for all behavioural computations has been
created, code for notifying the power & timing model is generated.

input: A set T of inputs to create
input: A set P of already available inputs
foreach input t ∈ T do

if t ∈ P then return;
if t ∈ VR then return;
if t ∈ VM then

create(selected input of t, P);
write assignment t := selected input;

end if
if t ∈ VO then

create(all inputs of t, P);
write assignment t := operation(t, all inputs of t);

end if
add t to P;

end foreach

Algorithm A.3: Recursive creation of required input values

The given inputs are created using a depth-first search algorithm. Before a certain input is
created, its own inputs are generated. Registers must not be created, since their values are
always available. Each intermediate result is created only once and reused, if necessary.
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Appendix B Listings

B.1 Saturating Arithmetic (with branches)

#define MIN (-32768) /*0x8000*/

#define MAX (+32767) /*0x7FFF*/

3

int16_t add(int16_t a, int16_t b) {

int16_t result = a+b;

6 if (((a^b) & MIN)==0) {

if (((result^a) & MIN)!=0) {

if (a<0) {

9 result = MIN;

} else {

result = MAX;

12 }

}

}

15 return result;

}

18 int16_t sub(int16_t a, int16_t b) {

int16_t result = a-b;

if (((a^b) & MIN)!=0) {

21 if (((result^a) & MIN)!=0) {

if (a<0) {

result = MIN;

24 } else {

result = MAX;

}

27 }

}

return result;

30 }

Listing B.1: Saturation with branches

A simple implementation of the saturation arithmetic uses three conditional statements per
operation. Implementing this algorithms in hardware will cause the controller to perform
micro controlling. That is, the controller will check if the actual computation has caused an
overflow. Based on the direction of the overflow the controller will select the appropriate
saturation value. This will lead to an unnecessary complex controller and a large number of
possible hardware basic blocks in the second place.
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B.2 Saturating Arithmetic (without branches)

#define MIN (-32768) /*0x8000*/

#define MAX (+32767) /*0x7FFF*/

3

int16_t add(int16_t a, int16_t b) {

int16_t result = a+b;

6 if (((((uint16_t)a>>15)^((uint16_t)b>>15))==0) && /* same signs? */

( ((uint16_t)a>>15)^((uint16_t)result>>15))) { /* overflow? */

result = (int16_t)((uint16_t)MAX + ((uint16_t)a>>15));

9 }

return result;

}

12

uint16_t sub(uint16_t a, uint16_t b) {

int16_t result = a-b;

15 if (((uint16_t)a>>15)^((uint16_t)b>>15) && /* different signs? */

((uint16_t)a>>15)^((uint16_t)result>>15)) { /* overflow? */

result = (int16_t)((uint16_t)MAX + ((uint16_t)a>>15));

18 }

return result;

}

Listing B.2: Saturation without branches

For a more advanced implementation of the saturation logic, shift and masking operators
are used. This reduces the number of required conditional statements to one. This algorithm
can be easily and more important efficiently implemented in hardware, resulting in a less
complex output logic and thus significant less hardware basic blocks.
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B.3 Example Power Mode Table

1 <?xml version="1.0" encoding="UTF-8"?>

<power_mode_table>

<power_mode>

4 <parameters>

<parameter name="ID" value="0" unit="no"/>

<parameter name="clock_frequency" value="100" unit="MHz"/>

7 <parameter name="supply_voltage" value="1.0" unit="V"/>

<parameter name="avg_dyn_power" value="0.0" unit="W"/>

<parameter name="avg_leakage" value="0.0" unit="W"/>

10 </parameters>

<power_mode_transitions>

<pm_trans>

13 <parameter name="pm_id" value="1" unit="no"/>

<parameter name="switching_time" value="0.000000150" unit="S"/>

<parameter name="switching_power" value="0.002500" unit="W"/>

16 </pm_trans>

</power_mode_transitions>

</power_mode>

19 <power_mode>

<parameters>

<parameter name="ID" value="1" unit="no"/>

22 <parameter name="clock_frequency" value="75" unit="MHz"/>

<parameter name="supply_voltage" value="0.9" unit="V"/>

<parameter name="avg_dyn_power" value="0.0" unit="W"/>

25 <parameter name="avg_leakage" value="0.0" unit="W"/>

</parameters>

<power_mode_transitions>

28 <pm_trans>

<parameter name="pm_id" value="0" unit="no"/>

<parameter name="switching_time" value="0.000000250" unit="S"/>

31 <parameter name="switching_power" value="0.001250" unit="W"/>

</pm_trans>

</power_mode_transitions>

34 </power_mode>

</power_mode_table>

Listing B.3: Example Power Mode Table — Example XML file describing the power mode
table used during trace generation for Figure 6.7 on page 138.

A power mode table is a conventional XML-file. Each power mode is specified in terms of
an identifier as well as its associated supply voltage and clock frequency. Values for average
dynamic power and average leakage are not required by the power mode model, but can be
used for statically deriving power management policies, for example. Each power mode has
also a list of possible power mode transition assigned, which are used to create the power
mode state machine.

166



B.4 Simulation Script Configuration

B.4 Simulation Script Configuration

1 #

# Configuration file for the COMPLEX DCT32 example

#

4 [GLOBAL]

CDB_path= $POWEROPT_HOME/cdblib

report_path=../simulation_reports

7 continue_mode=new

technologies=065nm

frequency_range=100 100 0

10 voltage_range=1.0 1.0 0

temperature_range=50.0 50.0 0

13 [DESIGN]

build_tag=dct32

src_path=../examples/complex_dct32/src

16 files=dct32.cc main.cc

build_cmd=exec make clean; exec make

run_cmd=./stimulus

19 mapped_mems=Design.dct32.this in Design.dct32.this out

optimisation=power

synth_effort=low

22 estim_effort=high

Listing B.4: Simulation script configuration example

The script, which performs the design space exploration is configured using a conventional
INI-file. The file consists of several sections. The GLOBAL section defines all values that apply
to all designs that are part of the design space exploration. Each design is specified in a
DESIGN section, which can overwrite the settings from the GLOBAL section. Advanced settings
for frequency, voltage, and temperature ranges allow to specify the range boundaries as well
as the step size. This will ease the specification of possible design space alternatives. The
script also allows for interrupting and continuing the design space exploration.
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AppendixC
Tools, Designs and Settings Used for
Evaluation
For simulating, estimating and evaluating the designs, different tools were used. Table C.1
lists them ordered along the presented estimation and evaluation process. All computations
were performed on an AMD Opteron with four CPUs providing a total of 16 processor
cores. The machine has 128 GB of RAM and was running a 64 bit Debian Linux 6 (Squeeze),
which bases on an Linux kernel with version 3.2. Even though the machine provides a lot of
processing cores, most tools, but especially the ones used for simulation, characterisation and
estimation, are single threaded. Thus, only one processor core was used at a time.

Tool Version

SMOG 1.0
PowerOpt 2010.2.1_Alpha (incl. BAC++ extension)
DSE script 18 (2013-08-13)
HSPICE A-2008.03-SP1 32-BIT
GNU compiler collection 4.4.5 (Debian 4.4.5-8)
MATLAB R2012a (7.14.0.739)
Design Compiler (dc_shell) F-2011.09-SP1
Questa Advanced Simulator 10.1c 64bit
Power Compiler (dc_shell) F-2011.09-SP1

Table C.1: Used Tools

The in-house tool SMOG was used to separate the hardware modules from the overall system.
It also creates a corresponding test bench and stimuli data with respect to overall system
behaviour. The BAC++-enabled version of PowerOpt was then used for performing the high-
level synthesis as well as for generating the power and timing augmented BAC++ model.
For automating the evaluation process, the in-house design space exploration script was
used. For the exemplary traces at electrical level, HSPICE was used. The generated BAC++

model has been compiled using a recent GCC version. Evaluation and computation of the
error measures for the obtained estimation results and traces was done using MATLAB.
Logic-level synthesis, simulation and estimation were done using Design Compiler and the
Questa Simulator, respectively.
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Appendix C Tools, Designs and Settings Used for Evaluation

In order to provide comparable evaluation results, all designs used for evaluation were
synthesised using the same set of parameters. The default register type, provided by the
technology library is used for all registers of the design. For C/C++ arrays with less than
256 elements, each one is mapped onto its own register. However, if such an array is
used by multiple processes, it is mapped to a shared memory. The states of all FSMs
of the designs are encoded in a binary manner. The same is true for multiplexers. An
advanced chaining algorithm is used for chaining operations. The length of the critical path
is determined automatically by PowerOpt. The same is true for the minimal and maximal
number instantiated resources. Registers and operators must have a minimal bit width
of four, in order to be considered for resource sharing. It is more efficient to have two
small components than creating the complex multiplexers and control logic. The scheduling
algorithm tries to smooth the schedule. That is, the algorithm tries to evenly distribute the
operations to all control steps. The generic PowerOpt settings are given in Table C.2.

PowerOpt setting value

default register type reg
array scalarisation size 256
FSM encoding binary
multiplexer encoding binary
chaining advanced
critical path length auto
minimum resources auto
maximum resources auto
shared register min. bit width 4
shared operator min. bit width 4
optimize schedule smooth

Table C.2: Default PowerOpt settings used for all designs

The clock frequency was set to the next maximal usual value allowing a valid scheduling of
the design. All designs were implemented using an industrial 65 nm technology. In order to
obtain comparable results, voltage and temperature were set to 1 V and 50 ◦C for all designs,
with the voltage depending on the chosen technology. Power was chosen as optimisation
goal for all designs, whenever possible. With optimisation goal power, PowerOpt performs a
data-dependent high-level synthesis. Since different data-sets were used for characterisation
and evaluation, they had to be chosen in a way that PowerOpt creates exactly the same
controller and data path for both data-sets. For highly data-dependent designs this is hard to
achieve. In these cases area was set as optimisation goal, assuring that a data-independent
synthesis was performed. Finally, the syntheses effort was set to a value allowing a synthesis
in a reasonable amount of time. The number of RT components also includes zero-strength
components, which were optimized and eventually removed during logic and layout synthesis
low-level syntheses steps. Nevertheless, they had to be considered during characterisation
and estimation. The following designs have been used for evaluating the proposed approach.
The designs are listed in order with increasing complexity.
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Design I – Faculty Computes the faculty of a given number. This is the simplest example. It
simply consists of a loop, multiplying the actual faculty with the current value of the
counter.

characteristic value

technology 65 nm
fclk 250 MHz
Vdd 1 V
T 50 ◦C
opt. goal power
synth. effort high

# processes 1
# states 4
# RT components 15

Table C.3: Design I characteristics

Clk (3.95 %)
Ctrl (5.42 %)
Op (4.16 %)
Net (21.38 %)
Mux (14.00 %)
Reg (51.44 %)

Figure C.1: Design I energy breakdown

Design II – Prime factorisation A simple algorithm for finding the prime factors of a given
number. The algorithm is also known as the Sieve of Eratosthenes. It consists of nested
loops and some arithmetical operations. Most important operation is the modulus
operation, since it is comparatively complex the implement this operation in hardware.

characteristic value

technology 65 nm
fclk 25 MHz
Vdd 1 V
T 50 ◦C
opt. goal power
synth. effort high

# processes 1
# states 18
# RT components 42

Table C.4: Design II characteristics

Clk (11.28 %)
Ctrl (9.42 %)
Op (24.54 %)
Net (7.87 %)
Mux (13.02 %)
Reg (33.85 %)

Figure C.2: Design II energy breakdown
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Design III – Square root A simple algorithm for computing the square root of a given
number. It is an implementation of a binary version of the longhand algorithm.

characteristic value

technology 65 nm
fclk 250 MHz
Vdd 1 V
T 50 ◦C
opt. goal power
synth. effort high

# processes 1
# states 8
# RT components 31

Table C.5: Design III characteristics

Clk (5.22 %)
Ctrl (4.36 %)
Op (5.37 %)
Net (9.88 %)
Mux (13.66 %)
Reg (61.51 %)

Figure C.3: Design III energy breakdown

Design IV – Simple FDCT This simple one-dimensional, 8-sample FDCT is an example that
originally ships with PowerOpt. It consists of several simple arithmetic operations,
with a very simple control flow. All parameters are passed directly to the function, no
memory is used.

characteristic value

technology 65 nm
fclk 125 MHz
Vdd 1 V
T 50 ◦C
opt. goal power
synth. effort high

# processes 1
# states 12
# RT components 152

Table C.6: Design IV characteristics

Clk (2.47 %)
Ctrl (0.57 %)
Op (13.33 %)
Net (30.68 %)
Mux (17.89 %)
Reg (35.17 %)

Figure C.4: Design IV energy breakdown
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Design V – Heapsort Heapsort [41, sec. 6.4] is an efficient in-place sorting algorithm, re-
quiring only a small amount of extra storage. The use case applies the algorithm to
random-sized arrays, filled with randomised values.

characteristic value

technology 65 nm
fclk 125 MHz
Vdd 1 V
T 50 ◦C
opt. goal power
synth. effort high

# processes 1
# states 29
# RT components 86

Table C.7: Design V characteristics

Clk (5.94 %)
Ctrl (3.92 %)
Op (10.32 %)
Net (22.14 %)
Mux (27.98 %)
Reg (30.41 %)

Figure C.5: Design V energy breakdown

Design VI – Simple AES encoder AES is a technique for the encryption of electronic data.
It works on four-times-four arrays of data. Typical operations on the array are substitu-
tions, shifts, and XOR-operations. The selected implementation is not optimized for a
hardware implementation, but follows the reference implementation as described by
Daemen and Rijmen [46, sec. 3]. The required substitution-box as well as its reverse
counterpart are implemented as memory-based look-up tables. This allows an easy
change of the tables, but prohibits parallel access to the boxes. The synthesis tool has
thus less opportunities for an optimisation. The same applies for the round key, which
is located in a memory external to the design.

characteristic value

technology 65 nm
fclk 125 MHz
Vdd 1 V
T 50 ◦C
opt. goal power
synth. effort high

# processes 1
# states 107
# RT components 143

Table C.8: Design VI characteristics

Clk (5.99 %)
Ctrl (3.52 %)
Op (54.95 %)
Net (14.00 %)
Mux (11.23 %)
Reg (10.25 %)

Figure C.6: Design VI energy breakdown
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Design VII – DCT of an MP3 media player The design implements a hardware MP3 player.
The MP3 player is based on the MAD MP3 encoder library [132]. For acceleration, the
DCT was replaced with a hardware accelerator, representing the hardware module
under test. The DCT has a fixed depth. Thus, the resulting hardware implementation
consists of a very simple control flow. The synthesised behaviour mainly consists of two
phases. The first one loads values from the function-call interface into the DCT, while
the second phase performs the computation.

characteristic value

technology 65 nm
fclk 100 MHz
Vdd 1 V
T 50 ◦C
opt. goal power
synth. effort low

# processes 1
# states 110
# RT components 915

Table C.9: Design VII characteristics

Clk (1.74 %)
Ctrl (0.23 %)
Op (24.73 %)
Net (46.75 %)
Mux (13.91 %)
Reg (12.58 %)

Figure C.7: Design VII energy breakdown

Design VIII – Wavelet transform The wavelet algorithm consists of several nested loops.
Data is stored in a number of small internal memories. These are small enough to
be implemented as register files instead of separate memory blocks. As can be seen,
this design mainly processes large amounts of data with a comparatively small control
overhead.

characteristic value

technology 65 nm
fclk 50 MHz
Vdd 1 V
T 50 ◦C
opt. goal power
synth. effort high

# processes 1
# states 95
# RT components 205

Table C.10: Design VIII characteristics

Clk (2.03 %)
Ctrl (1.94 %)
Op (46.60 %)
Net (25.73 %)
Mux (11.73 %)
Reg (11.80 %)

Figure C.8: Design VIII energy breakdown
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Design IX – GSM LPC algorithm A LPC algorithm that is part of a GSM implementation.
The design consists of a number of sub-processes, such as autocorrelation, quantisation,
coding etc. The design has five different processes: The main process, activating and
synchronising the other processes; the autocorrelation; the computation of reflection
coefficients; the transformation to Log area ratios; and finally the quantization and coding
process. All processes are activated subsequently. The process, responsible for the
autocorrelation is the dominant process and contributes about 80.50 % of the total
energy dissipation. Slightly changes were made to the code by replacing some of the
code, implementing the saturation of operations. Namely functions gsm_add, gsm_mult,
and gsm_mult_r have been modified to support branchless saturation. A detailed
description of why these modifications where necessary is given in Section 6.5.1.

characteristic value

technology 65 nm
fclk 125 MHz
Vdd 1 V
T 50 ◦C
opt. goal power
synth. effort high

# processes 5
# states (toplevel) 10
# states (autocorr.) 74
# states (quantisation) 35
# states (coefficients) 46
# states (transformation) 5
# RT components 812

Table C.11: Design IX characteristics

Clk (12.87 %)
Ctrl (6.62 %)
Op (21.78 %)
Net (30.78 %)
Mux (12.87 %)
Reg (15.50 %)

Figure C.9: Design IX energy breakdown
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Design X – FFT of an audio/video surveillance system This design is similar to Design VII.
It implements a FFT, which is part of an audio/video surveillance system, and is used
for detecting unusual noises. The implementation utilises a branch-free saturation logic.
However, due to the large number of concurrently executed operations and the resulting
complex controller, there is a large number of hardware basic blocks.

characteristic value

technology 65 nm
fclk 125 MHz
Vdd 1 V
T 50 ◦C
opt. goal power
synth. effort high

# processes 1
# states 65
# RT components 748

Table C.12: Design X characteristics

Clk (4.20 %)
Ctrl (1.61 %)
Op (22.90 %)
Net (34.92 %)
Mux (23.58 %)
Reg (12.81 %)

Figure C.10: Design X energy breakdown

Design XI – MIPS processor core A MIPS processor core. The implementation consists of a
set of large and nested switch statements. Each case contains only a simple instruction.
A given simple application is used as test case. In a single state 421 output signals
are driven by numerous output conditions, which in turn rely on even more SMT
predicates. These conditions are used to decode the instruction, fetched from the
instruction memory.

characteristic value

technology 65 nm
fclk 100 MHz
Vdd 1 V
T 50 ◦C
opt. goal power
synth. effort high

# processes 1
# states 19
# RT components 235

Table C.13: Design XI characteristics

Clk (45.67 %)
Ctrl (5.25 %)
Op (1.30 %)
Net (14.45 %)
Mux (19.25 %)
Reg (14.03 %)

Figure C.11: Design XI energy breakdown
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Evaluation of the simple as well as the advanced characterisation approach is done in the
same way. A small data set has been used for characterising the design, while a larger data
set was used for evaluating the approach. Besides the overview over the evaluation that was
given in Section 6.2, this appendix provides more detailed information about the evaluation
results for each individual design.

For each design listed below, three figures and one table are given. The first figure shows
a section of the power traces obtained from simulations using PowerOpt and BAC++, using
the simple as well as the advanced characterisation approach. Sampling or averaging has
been applied to some of the designs in order to provide a better readability of the particular
trace. If sampling or averaging has been applied, the used window size is mentioned in
the description of the particular design’s evaluation. The values from the table however, are
created using no sampling or averaging.

The respective table shows total dissipated energy and the corresponding relative error. Both
are classified by resource type. It is important to note, that the total energy obtained from
PowerOpt also includes the energy that dissipated during test bench initialisation. BAC++

does not require this initialisation phase, yielding an extra error. Thus, the actual error for
total energy dissipation will be slightly lower than the one shown in the table.

The second figure shows a distribution of the relative error per clock cycle. In other words, it
can be seen how many clock cycles of the simulation have a certain relative error.

The third figure shows the development of the MAPE, the RMS as well as the R2, if sampling
is applied during simulation. In other word the figure shows how sampling can be used to
reduce the particular error and to improve the fitting of the trace, respectively.
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D.1 Detailed Evaluation of Design I

Evaluation was performed by simulating 5000 runs i. e., computations of the faculty for
randomly generated numbers. Different seeds have been used for characterisation and
evaluation. On average, about six RT components are simulated per hardware basic block,
while at the same time about nine components are estimated. A factor of about ks

C ≈ 1.25
was used for adjusting the switched capacitances for operators and multiplexers for the
simple characterisation approach. The advanced characterisation approach however, requires
a scaling factor of kadv

C ≈ 1.19. The section of the power trace shown in Figure D.1 shows
eight activations of the hardware module. The trace is cycle-accurate i. e., neither sampling
nor averaging were applied.
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Figure D.1: Power trace for Design I

PowerOpt BAC++ (simple) BAC++ (advanced)

Resource energy [J] energy [J] RE [%] energy [J] RE [%]

Clk 2.92×10-9 2.92×10-9 0.0002 2.92×10-9 0.0002
Ctrl 4.01×10-9 4.01×10-9 -0.0141 4.01×10-9 -0.0141
Op 13.54×10-9 13.55×10-9 0.1010 13.45×10-9 -0.6384
Net 15.81×10-9 15.86×10-9 0.2778 15.86×10-9 0.2778
Reg 38.18×10-9 38.20×10-9 0.0406 38.20×10-9 0.0377
Leak 101.85×10-12 101.85×10-12 0.0047 101.85×10-12 0.0047

Total 74.47×10-9 74.65×10-9 0.2328 74.55×10-9 0.0968
Table D.1: Energy dissipation error per resource for Design I
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Figure D.2: Distribution of the relative error per cycle for Design I
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Figure D.3: Average relative error vs. sampling window size for Design I
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D.2 Detailed Evaluation of Design II

Characterisation and evaluation were carried out by performing ten prime factorisations,
whereas different seeds are used during random number generation. During simulation,
about six RT components are simulated per basic block, while elven components are estimated
on average.

Even though the design consists of 42 RT components in total, the modulo operation is the
domination one. Both, in terms of area as well as power dissipation. As can be seen from its
definition in Equation (D.1), the modulo operation consists of a division, a multiplication, and
an addition. The first two are complex sub-circuits themselves, which results in a large circuit
with a long critical path. For comparison, a small 32 bit modulo-operator’s delay is about
31.94 times the delay of a small 32 bit adder, when implemented in the technology used in
this thesis.

(a mod b) ≡ a− b
⌊ a

b

⌋
(D.1)

In order to achieve the desired timing, the modulo operation typically becomes a multi-cycle
operation. In other words, it may span over multiple clock cycles. In this design, four states
are inserted in order to achieve timing constraint, even though the clock frequency is set to
25 MHz. The modulo operator is also used within an assignment hardware basic block. This
results in a large scaling factor of ks

C ≈ 2.01, which in turn will make the error worse, since all
functional power values are scaled. For the advanced characterisation approach the scaling
factor is even worse with kadv

C ≈ 5.53. This is caused by the problem regarding estimation
of multi-cycle operations, as mentioned in Section 6.5.5. The modulo operation cannot be
assigned to the correct clock cycle, leading to an under-estimation of the operator. This, along
with the fact that the modulo operation is the dominating one, causes this high correction
factor.

The obtained power trace was 559 984 clock cycles long. A section of the power trace is shown
in Figure D.4. Neither sampling nor sliding-window averaging had been applied to the
plotted trace.
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Figure D.4: Power trace for Design II
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D.2 Detailed Evaluation of Design II

PowerOpt BAC++ (simple) BAC++ (advanced)

Resource energy [J] energy [J] RE [%] energy [J] RE [%]

Clk 8.73×10-9 8.72×10-9 -0.0557 8.72×10-9 -0.0557
Ctrl 7.28×10-9 7.28×10-9 -0.0556 7.28×10-9 -0.0556
Op 29.40×10-9 29.20×10-9 -0.6817 29.15×10-9 -0.8678
Net 6.19×10-9 6.08×10-9 -1.6728 6.08×10-9 -1.6728
Reg 26.27×10-9 26.29×10-9 0.0814 22.99×10-9 -12.4683
Leak 8.33×10-9 8.38×10-9 0.5773 8.38×10-9 0.5773

Total 86.37×10-9 85.95×10-9 -0.4859 82.60×10-9 -4.3652
Table D.2: Energy dissipation error per resource for Design II
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Figure D.5: Distribution of the relative error per cycle for Design III
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Figure D.6: Average relative error vs. sampling window size for Design II
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Appendix D Detailed Evaluation Data

D.3 Detailed Evaluation of Design III

In total, 5000 computations of the square root, which were performed in a total of 144 774
simulated clock cycles, have been used for evaluation. Again, numbers have been gener-
ated randomly, using different seeds for characterisation and evaluation, respectively. The
generated BAC++ model contains only a small number of hardware basic blocks, simulating
about six and estimating about 14 RT components on average. However, a notable amount
of hardware basic blocks is required for providing the controller’s input. This results in
comparatively large scaling factors, especially for the advanced characterisation.

For the simple characterisation technique, a scaling factor of ks
C ≈ 1.28 has been used for

adjusting the capacitance, switched by functional operators and multiplexers. A factor of
kadv

C ≈ 1.64 was used for the advanced characterisation approach. Five computations of the
square root are shown in Figure D.7.
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Figure D.7: Power trace for Design III

PowerOpt BAC++ (simple) BAC++ (advanced)

Resource energy [J] energy [J] RE [%] energy [J] RE [%]

Clk 9.04×10-9 9.04×10-9 0.0002 9.04×10-9 0.0002
Ctrl 7.09×10-9 7.09×10-9 0.0002 7.09×10-9 0.0002
Op 30.96×10-9 30.94×10-9 -0.0720 30.96×10-9 -0.0232
Net 16.84×10-9 16.81×10-9 -0.1576 16.81×10-9 -0.1576
Reg 98.86×10-9 98.88×10-9 0.0189 98.87×10-9 0.0133
Leak 92.21×10-12 92.21×10-12 0.0030 92.21×10-12 0.0030

Total 162.89×10-9 162.85×10-9 -0.0194 162.86×10-9 -0.0132
Table D.3: Energy dissipation error per resource for Design III
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D.3 Detailed Evaluation of Design III
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Figure D.8: Distribution of the relative error per cycle for Design III
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Figure D.9: Average relative error vs. sampling window size for Design III
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Appendix D Detailed Evaluation Data

D.4 Detailed Evaluation of Design IV

This design has been evaluated by performing 257 FDCT transformations. These required 3341
clock cycles in total. Due to the very simple control flow no assignment hardware basic blocks
were required. The controller’s FSM is also quite simple, with almost all output conditions
have the trivial form true. A generated average hardware basic block comprises about 28 RT
components that must be simulated, but is able to estimate about 97 RT components.

A scaling factor of ks
C ≈ 0.98 was used for adjusting operators’ and multiplexers’ switched

capacitance during simple characterisation. Scaling factor for advanced characterisation
is kadv

C ≈ 1.13. The cycle-accurate power trace in Figure D.10 shows ten iterations of the
algorithm.

The striking shape of the R2 is caused by the fact, that a typical run of the algorithm requires
about eleven clock cycles. If the sampling window passes the borders of the individual
activations, differ notably. Additionally, the power trace becomes less pronounced with a
larger sampling window. As mentioned in Section 6.2, the measure R2 is unsuited for uniform
traces.
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Figure D.10: Power trace for Design IV

PowerOpt BAC++ (simple) BAC++ (advanced)

Resource energy [J] energy [J] RE [%] energy [J] RE [%]

Clk 941.06×10-12 941.06×10-12 0.0004 941.06×10-12 0.0004
Ctrl 217.91×10-12 217.91×10-12 0.0002 217.91×10-12 0.0002
Op 14.57×10-9 14.53×10-9 -0.2320 14.53×10-9 -0.2320
Net 14.28×10-9 14.27×10-9 -0.0850 14.27×10-9 -0.0850
Reg 15.72×10-9 15.70×10-9 -0.1111 15.70×10-9 -0.1111
Leak 36.02×10-12 36.06×10-12 0.1202 36.06×10-12 0.1202

Total 45.78×10-9 45.70×10-9 -0.1791 45.70×10-9 -0.1791
Table D.4: Energy dissipation error per resource for Design IV
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D.4 Detailed Evaluation of Design IV
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Figure D.11: Distribution of the relative error per cycle for Design IV
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Figure D.12: Average relative error vs. sampling window size for Design IV
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Appendix D Detailed Evaluation Data

D.5 Detailed Evaluation of Design V

Evaluation was done by sorting 50 arrays of random size, filled with randomly generated
numbers. Of course, different seeds have been used for characterisation and evaluation.
Simulation covered 17 994 clock cycles, of which 200 are shown in Figure D.13. A sliding
window of length four was applied to the trace for better graphical representation. On average,
each generated hardware basic block estimates 28 RT components, of which ten are required
for simulating the behaviour. Functional operators’ and multiplexers’ switched capacitance
was scaled using a factor of ks

C ≈ 1.05. For the advanced characterisation approach a scaling
factor of about kadv

C ≈ 1.86 is used.
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Figure D.13: Power trace for Design V

PowerOpt BAC++ (simple) BAC++ (advanced)

Resource energy [J] energy [J] RE [%] energy [J] RE [%]

Clk 2.10×10-9 2.11×10-9 0.4740 2.11×10-9 0.4740
Ctrl 1.39×10-9 1.40×10-9 0.4738 1.40×10-9 0.4738
Op 14.30×10-9 14.32×10-9 0.1829 14.30×10-9 0.0157
Net 7.84×10-9 7.88×10-9 0.5669 7.88×10-9 0.5669
Reg 11.32×10-9 11.36×10-9 0.3141 10.39×10-9 -8.2354
Leak 60.85×10-12 64.25×10-12 5.5910 64.25×10-12 5.5910

Total 37.65×10-9 37.14×10-9 -1.3570 36.15×10-9 -3.9911
Table D.5: Energy dissipation error per resource for Design V
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D.5 Detailed Evaluation of Design V
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Figure D.14: Distribution of the relative error per cycle for Design V
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Figure D.15: Average relative error vs. sampling window size for Design V
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Appendix D Detailed Evaluation Data

D.6 Detailed Evaluation of Design VI

All in all, 15 runs of the encoding algorithm have been used for evaluating the design, totalling
in 31 111 clock cycles to be simulated. About nine RT components are simulated per hardware
basic block, while about 69 are estimated at the same time. Adjusting switched capacitance of
operators and multiplexers for the simple characterisation was done using a factor of about
ks

C ≈ 0.97. For the advanced characterisation a factor of about kadv
C ≈ 1.52 was used. A sliding

averaging window of size 16 has been used for better plotting.
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Figure D.16: Power trace for Design VI

PowerOpt BAC++ (simple) BAC++ (advanced)

Resource energy [J] energy [J] RE [%] energy [J] RE [%]

Clk 4.16×10-9 4.16×10-9 0.0001 4.16×10-9 0.0001
Ctrl 3.53×10-9 3.53×10-9 0.0001 3.53×10-9 0.0001
Op 50.10×10-9 49.84×10-9 -0.5087 49.84×10-9 -0.5087
Net 10.01×10-9 9.84×10-9 -1.7344 9.84×10-9 -1.7344
Reg 10.39×10-9 10.44×10-9 0.4087 9.58×10-9 -7.7996
Leak 91.48×10-12 96.48×10-12 5.4688 96.48×10-12 5.4688

Total 78.43×10-9 77.90×10-9 -0.6759 77.05×10-9 -1.7639
Table D.6: Energy dissipation error per resource for Design VI
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D.6 Detailed Evaluation of Design VI
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Figure D.17: Distribution of the relative error per cycle for Design VI
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Figure D.18: Average relative error vs. sampling window size for Design VI
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Appendix D Detailed Evaluation Data

D.7 Detailed Evaluation of Design VII

For this design, the optimisation effort had to be set to a low level. Due to its exponential
behaviour, setting the effort from low to medium will increase the time required for synthesis
from 2049.32 s ≈ 34.16 minutes to 182 015 s ≈ 2.11 days. Despite the significantly higher com-
putational effort, the effect of the high synthesis effort to the resulting RT-level implementation
is negligible.

During simulation, about 41 RT components are required for simulating the behaviour in one
clock cycle. At the same time about 526 components are estimated on average. The design was
characterised using 100 samples. Evaluation was done by doing 1000 DCT transformations,
which requires 111 000 clock cycles to be simulated.

For fine-tuning operators’ and multiplexers’ switched capacitance, a scaling factor of ks
C ≈ 0.66

was used for the simple characterisation. For the advanced characterisation a scaling factor of
kadv

C ≈ 1.14 was necessary. The power trace in Figure D.19 depicts 225 cycles of the simulation,
picturing two activations of the DCT.
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Figure D.19: Power trace for Design VII

PowerOpt BAC++ (simple) BAC++ (advanced)

Resource energy [J] energy [J] RE [%] energy [J] RE [%]

Clk 96.32×10-9 96.03×10-9 -0.3073 96.03×10-9 -0.3073
Ctrl 12.68×10-9 12.64×10-9 -0.3077 12.64×10-9 -0.3077
Op 2.14×10-6 2.14×10-6 -0.0332 2.15×10-6 0.2905
Net 2.59×10-6 2.58×10-6 -0.3314 2.58×10-6 -0.3314
Reg 697.93×10-9 697.41×10-9 -0.0747 697.41×10-9 -0.0747
Leak 12.29×10-9 12.29×10-9 0.0340 12.29×10-9 0.0340

Total 5.56×10-6 5.54×10-6 -0.1995 5.55×10-6 -0.0743
Table D.7: Energy dissipation error per resource for Design VII
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D.7 Detailed Evaluation of Design VII
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Figure D.20: Distribution of the relative error per cycle for Design VII
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Figure D.21: Average relative error vs. sampling window size for Design VII
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Appendix D Detailed Evaluation Data

D.8 Detailed Evaluation of Design VIII

Characterisation was performed by simulating 25 812 clock cycles, representing three runs of
the wavelet transformation. Evaluation was done by doing ten transformation with a total
amount of 86 026 cycles. In each cycle, eight RT components are simulated on average, while
about 78 components are estimated. Scaling factor is about ks

C ≈ 0.64 was used for simple
characterisation. The advanced characterisation has a scaling factor of about kadv

C ≈ 1.46. In
order to be able to depict one complete run of the wavelet algorithm, a sampling window of
41 clock cycles has been used.
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Figure D.22: Power trace for Design VIII

PowerOpt BAC++ (simple) BAC++ (advanced)

Resource energy [J] energy [J] RE [%] energy [J] RE [%]

Clk 9.97×10-9 10.23×10-9 2.5679 10.23×10-9 2.5679
Ctrl 9.54×10-9 9.54×10-9 -0.0162 9.54×10-9 -0.0162
Op 425.25×10-9 428.04×10-9 0.6574 428.04×10-9 0.6577
Net 184.04×10-9 187.50×10-9 1.8822 187.50×10-9 1.8822
Reg 65.77×10-9 65.74×10-9 -0.0411 65.61×10-9 -0.2383
Leak 3.97×10-9 4.23×10-9 6.4665 4.23×10-9 6.4665

Total 701.69×10-9 705.28×10-9 0.5123 705.15×10-9 0.4939
Table D.8: Energy dissipation error per resource for Design VIII
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D.8 Detailed Evaluation of Design VIII
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Figure D.23: Distribution of the relative error per cycle for Design VIII
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Figure D.24: Average relative error vs. sampling window size for Design VIII
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Appendix D Detailed Evaluation Data

D.9 Detailed Evaluation of Design IX

The designs consist of five processes. One top-level process and four behavioural processes
that are executed successively. The first process performs the autocorrelation and contributes
about 85 % to the total energy dissipation. As can be seen in Figure D.25, the process itself
consists of different execution phases.

This design produces a large amount of hardware basic blocks, where the majority of the basic
blocks are not activated during characterisation. For these blocks, the simple characterisation
is used as contingency option, as described in Section 4.4.5.

Characterisation was done by performing five runs of the algorithm. Evaluation was per-
formed by running the algorithm ten times. The generated hardware basic blocks estimate 75
RT components on average, while 21 of them are required for the behavioural simulation. For
the simple characterisation approach, a scaling factor of about ks

C ≈ 0.54 was used, while a
factor of about kadv

C ≈ 1.36 was used for the advanced characterisation process. In order to fit
a complete run of the algorithm into the figure below, a sampling window with a size of 15
clock cycles was used.
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Figure D.25: Power trace for Design IX

PowerOpt BAC++ (simple) BAC++ (advanced)

Resource energy [J] energy [J] RE [%] energy [J] RE [%]

Clk 29.19×10-9 28.13×10-9 -3.6253 28.13×10-9 -3.6253
Ctrl 14.39×10-9 13.88×10-9 -3.5564 13.88×10-9 -3.5564
Op 82.53×10-9 87.97×10-9 6.5966 91.69×10-9 11.1076
Net 71.30×10-9 73.42×10-9 2.9790 73.42×10-9 2.9790
Reg 37.11×10-9 38.05×10-9 2.5311 38.12×10-9 2.7257
Leak 1.59×10-9 1.62×10-9 1.6572 1.62×10-9 1.6572

Total 241.38×10-9 243.07×10-9 0.6989 246.86×10-9 2.2711
Table D.9: Energy dissipation error per resource for Design IX
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D.9 Detailed Evaluation of Design IX
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Figure D.26: Distribution of the relative error per cycle for Design IX
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Figure D.27: Average relative error vs. sampling window size for Design IX
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D.10 Detailed Evaluation of Design X

Characterisation of the design was done by processing six FFT samples, requiring a total of
63 207 clock cycles to be simulated. Evaluation was done by processing 12 samples, which
required a total 125 385 cycles to be simulated. The use case has been contributed by the use
case provider of the project COMPLEX and represents a car passing by. Different samples
from the data set of samples have been used for characterisation and evaluation, respectively.
While the generated hardware basic blocks estimate about 621 RT components on average,
only 50 of them are required for the behavioural simulation.

The design requires a scaling factor of ks
C ≈ 0.89 for adjusting the capacitance, switched by

the design’s operators and multiplexers. For the advanced characterisation a scaling factor of
about kadv

C ≈ 1.46 was used. Power dissipation for processing a single sample is shown in
Figure D.28, using a sampling window size of 33 cycles.
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Figure D.28: Power trace for Design X

PowerOpt BAC++ (simple) BAC++ (advanced)

Resource energy [J] energy [J] RE [%] energy [J] RE [%]

Clk 36.73×10-9 36.44×10-9 -0.8137 36.44×10-9 -0.8137
Ctrl 14.09×10-9 13.98×10-9 -0.8139 13.98×10-9 -0.8139
Op 408.81×10-9 410.23×10-9 0.3486 410.21×10-9 0.3437
Net 307.60×10-9 303.28×10-9 -1.4047 303.21×10-9 -1.4271
Reg 111.56×10-9 112.91×10-9 1.2109 112.25×10-9 0.6166
Leak 2.07×10-9 2.17×10-9 4.8782 2.09×10-9 0.7530

Total 883.85×10-9 879.00×10-9 -0.5478 878.17×10-9 -0.6425
Table D.10: Energy dissipation error per resource for Design X
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D.10 Detailed Evaluation of Design X

0 5 10 15 20 25 30 35 40 45 50

2

4

6

8

10

relative error per cycle [%]

re
la

ti
ve

nu
m

be
r

of
cl

oc
k

cy
cl

es
[%

] simple characterisation
advanced characterisation

Figure D.29: Distribution of the relative error per cycle for Design X
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Figure D.30: Average relative error vs. sampling window size for Design X
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Appendix D Detailed Evaluation Data

D.11 Comparison with Logic-Level Estimation

As mentioned at the beginning of Chapter 6, comparing the results obtained from PowerOpt
and BAC++ with the results obtained from a logic-level simulation is difficult. The logic-level
simulation requires a significantly higher computational effort and a lot of restrictions apply.
Besides the increased computational effort, several manual modifications and adoptions are
necessary. Therefore, comparison with a logic-level simulation and estimation was only
performed for a single example. For the comparison, Design VII was chosen, since it is a
reasonable complex design and provides the most pronounced power trace. The following
paragraphs describe the required modifications and discuss the achieved results.

The logic-level estimation process can be outlined as follows: It starts with a characterisation
and BAC++ model generation using PowerOpt, as described in this thesis. Characterisation is
done using the simple as well as the advanced characterisation approach. For both generated
BAC++ models, the scaling factors are computed accordingly. Three power traces were
generated, using both BAC++ models as well as PowerOpt. For generating the traces, a set
of stimuli data, different from the ones used for characterisation was applied. A logic-level
synthesis is performed using Synopsis Design Compiler. The generated net list is simulated
using the Questa Advanced Simulator. The simulation creates a VCD file, which in turn is
used by the Synopsis Power Compiler for performing the logic-level power estimation, which
in turn is compared to the previously generated traces.

D.11.1 Restrictions and Required Modifications

In order to perform the desired evaluation some modifications are required. The CDB used by
PowerOpt bases on a 65 nm industrial-strength technology. Due to non-disclosure restrictions,
this technology is not available for a logic-level simulation and estimation. Moreover, it can
be assumed that further steps have been taken to conceal the exact technology data and
prevent reverse engineering of the technology. Therefore, it was necessary use a different
technology during low-level estimation. Nevertheless, in order to obtain comparable values, a
very similar technology was chosen. It is also a 65 nm technology, but has been characterised
for a supply voltage of 1.20 V and a temperature of 25 ◦C. In order to achieve comparable
results from PowerOpt, supply voltage and temperature have been adjusted accordingly
during estimation and evaluation.

Since new settings were used during the PowerOpt-based estimation, a new BAC++ char-
acterisation has been performed for Design VII, using the simple as well as the advanced
characterisation approach. For the simple characterisation approach, a scaling factor of about
ks

C ≈ 0.66 is required, while the advanced characterisation approach demands a scaling
factor of about kadv

C ≈ 1.14. Both scaling factors are very similar to the ones identified in
Section D.7. This was expected, since the generated RT-level model and thus the average
switched capacitance is the same for both cases. Deviations in the switched capacitance are
observed only from the fourth decimal place. These deviations are caused by second order
effects.
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D.11 Comparison with Logic-Level Estimation

D.11.2 Evaluation

Logic-level synthesis of the Verilog model was done in about 523.97 s using Design Compiler.
Evaluation was performed with a smaller set of stimuli data as has been used in Section D.7.
Only 1000 clock cycles have been simulated, which represent about eight runs of the DCT
algorithm. An estimation of the complete use case, covering 111 000 clock cycles would have
taken 269 013.58 s ≈ 3.11 days and was thus not feasible.

Not only is the required computational effort a problem. The VCD file, which is obtained
from a functional simulation at logic level contains about 3.20 MB of data for each simulated
clock cycle. For simulating all 111 000 clock cycles this would have led to a total file size of
about 346.88 GB, which is obviously not manageable. A sample of the power trace for 225
cycles, which equals two activations of the DCT, is shown in Figure D.31.
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Figure D.31: Logic-level power trace — Comparison of the power traces obtained using
PowerOpt and BAC++, respectively with a power trace obtained from a logic-
level simulation and estimation.

Comparing the power trace obtained from PowerOpt with the trace obtained from the logic-
level estimation, significant differences are apparent. The power trace obtained from the
logic-level estimation shows a higher volatility regarding the cycle-by-cycle power than the
one obtained from PowerOpt and both BAC++ approaches, respectively. Several factors
influence the cycle-by-cycle accuracy of the estimation. PowerOpt internally uses RT-level
macro models with a data abstraction that bases on the input’s Hamming distance. Moreover,
the logic-level power estimation uses a more accurate model for estimating the wire length,
since exact wire length and thus wire load are not known until final place and route have
been performed. These are only some issues that must be tackled during abstraction from
logic level to RTL and making accurate estimates difficult, as shown in Section 3.1.

From Figure D.31 it is observable that the differences between the estimates highly depend
on the execution phase of the design. In the first execution phase, both estimates are very
close. The estimate obtained from PowerOpt is slightly higher, due to the obstacles mentioned
above. This is also supported by Figure D.32 on the next page, which depicts in the blue and
red bars that the PowerOpt model provides an slightly overestimation in terms of area and
thus power dissipation, especially for larger RT components.

During computational phases, the power dissipation estimated at logic level is significantly
lower than estimated by PowerOpt. The DCT algorithm contains a comparatively large
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Appendix D Detailed Evaluation Data

number of arithmetic operations with one constant input value. A deeper analysis of the
Verilog model reveals that these operations also become part of the model at RTL. During logic-
level synthesis, this allows an extensive optimisation of the component’s internal structure,
since the constant input of the corresponding RT component can be hard-wired.

The required area and thus the expected power dissipation of RT components with one
fixed input can be reduced by up to 66 %, as has been shown by the FP7 ICT Project
THERMINATOR [115]. During the course of the project, PowerOpt has been enhanced in
order to allow for such optimisations during RT-level power estimation, as shown by the
green bars in Figure D.32.
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Figure D.32: Area reduction for operators with constant input — Area of a delay optimised
adder for different bit widths, with and without one constant input value.

The PowerOpt version used in this thesis does not provide this feature. It thus will notably
overestimate the dynamic power dissipation for arithmetic operations with one fixed input.
Figure D.31 shows that the power dissipation estimated by the logic-level estimation for
computational phases is about a third of the power dissipation estimated by PowerOpt and
BAC++, respectively. This corresponds to the achieved optimization.

D.11.3 Summary

Summarising it can be said, that logic-level synthesis must be performed with the same tech-
nology and settings as had been used during RT-level characterisation and CDB generation.
A lot of optimisation options are available to the logic-level syntheses. This makes accurate
predictions of the final design and thus precise power estimates during RT-level estimation
difficult. For the chosen example this is even aggravated, since features like consideration of
constant inputs are not supported by the used version of PowerOpt. More meaningful results
can be obtained by performing an evaluation that covers more designs and use cases and by
using the latest version of PowerOpt.

The comparison of the estimates obtained from PowerOpt with the estimates obtained from
BAC++ shows the same small errors as were also present for all other designs, discussed in
Sections D.1 to D.10. The error that is causes by the characterisation and estimation approach,
presented in this theses is negligible compared to the error due to abstraction from logic level
to RTL. The accuracy of the presented approach in comparison to a logic-level estimation
mainly depends on the error that is cause be the abstraction from logic level to RTL. Thus,
a better low level abstraction will also significantly increase the accuracy of the approach,
presented in this thesis.
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Symbols

Symbols

#H Number of hardware basic blocks.
#activations Number of activations.
#activetimes The number of times, a specific RT component or hard-

ware basic block was active.
#comp The number of RT components belonging to a hardware

basic block.
#cyc Number of clock cycles.
#pat Size of the pattern list of the given RT component.
#proc Number of processes.

a Boolean variable assignment to the output conditions of
the controller.

active(s,a) An active path in the data path. See definition in Equa-
tion (4.11) on page 76.

activepath An active path within a hardware basic block, which is
only allowd to pass multiplexers at their selected input
port. See also definition in Equation (4.11) on page 76.

α Switching activity or probability.

C Electrical capacitance given in farad [F]. It is the ability
to store an electrical charge.

Cl Switched capacitance in farad [F].
Cidle

l Switched capacitance during idle-phases, in farad [F].
clk A clock.
ctrl A controller.

δ State transition function of a controller’s FSM.
δ A delta function.

E All edges of the graph representation of a data path.
E Electrical energy given in joule [J].
Ed Dynamic energy
E(s,a) Connections between RT components within a hardware

basic block.
Etrans The energy in joule [J], required for performing a power

mode transition.

F Definition of a controller’s FSM.
fclk Clock frequency given in hertz [Hz] i. e., number of clock

cycles per second.

201



Symbols

fref A reference frequency.

G Graph representation of a RT data path.
G Electrical conductance given in siemens [S]. It is the

ease at which an electrical current can pass and is the
reciprocal of the electrical resistance R.

Γ Output alphabet of a controller.
γ Output symbol of a controller.

H A hardware basic block.
H(s,a) Graph representation of a hardware basic block, if the

controller is in state s an the Boolean assignment a is
applied.

I Electrical current given in ampere [A]. It is the flow of
an electrical charge.

IDJ Drain junction in ampere [A].
Igate Gate tunnelling. The combination of gate–source IGS,

gate–drain IGD, and gate–bulk leakage IGB.
IGB Gate–bulk leakage in volt [V].
IGD Gate–drain leakage in volt [V].
IGIDL Gate induced drain leakage in volt [V].
IGISL Gate induced source leakage in volt [V].
IGS Gate–source leakage in volt [V].
input See definition in Equation (4.8) on page 76.
Ipunch Depletion punch-through in ampere [A].
ISJ Source junction in ampere [A].
IHCI Hot carrier injection in ampere [A].
Isubth Sub-threshold current in ampere [A], if channel is closed.

ktrans A scaling factor for adjusting energy dissipation during
a power mode transition.

k A generic scaling factor.
kadv

C A factor for scaling the switched capacitance of func-
tional units and multiplexers, which has been estimated
using the advanced characterisation approach.

ks
C A factor for scaling the switched capacitance of func-

tional units and multiplexers, which has been estimated
using the simple characterisation approach.

M A memory.
M A full-custom hardware module.
MAPE Mean absolute percentage error. A definition is given in

Equation (6.2) on page 130.

net An interconnect.
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Symbols

O The big O-notation f ∈ O(g) states that a given function
f does not grow notably faster than function g.

ω Output function of a controller.

P Electrical power given in watt [W]. It is the rate at which
electrical energy E is transferred by an electrical circuit.

p A process of of a hardware module.
pat A specific data pattern of the given RT component.
path A path defines a set of edges directly or indirectly con-

necting two components of the data path.
pathH A path inside a hardware basic block. A path is does

not pass a register.
Pd Dynamic power dissipation in watt [W]. It can be di-

vided into power caused by charging and discharging
capacities Pload, short-circuit and glitch caused power
dissipation.

Pl Static power dissipation or leakage in watt [W].
Pload Part of dynamic power Pd that is related to charging and

discharging the capacities of the design.

R Electrical resistance given in ohm [Ω].
R2 Coefficient of multiple determination. A definition is

given in Equation (6.5) on page 131.
RE Relative error. A definition is given in Equation (6.1) on

page 130.
RMS Root mean square error. A definition is given in Equa-

tion (6.3) on page 131.
RRMS Relative root mean square error. A definition is given in

Equation (6.4) on page 131.
Rshared A shared register.

S Set of states of a controller.
s A single state of a controller.
s0 Initial state of a controller.
(s, a) Identification of a hardware basic block. It is a combina-

tion of the state s and variable assignment a.
select(s,a) Determines the value of a mux-select signal, if a specific

hardware basic block is active. A detailed definition is
given in Equation (4.9) on page 76.

Σ Input alphabet of a controller’s FSM.
σ Input symbol of a controller’s FSM.

T Temperature given in kelvin [K] or degree Celsius [◦C].
t A timestamp, which represents a discretized continuous

time value.
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Symbols

t A specific time or duration in seconds [s].
τ Delay or timing in seconds [s] or clock cycles.
τRC A time constant given in seconds [s], describing the time

required for charging a capacitance to about 63.20 % of
the difference between initial and final value.

τtrans Time in seconds [s], required for performing a power
mode transition.

tclk Clock period i. e., duration of a clock cycle given in
seconds [s]

V All nodes of the graph representation of a data path.
V The electrical voltage in volt [V] is the electrical potential

difference.
v A single RT component of the data path.
VC Constants of the data path.
Vdd The supply voltage in volt [V] of a given circuit.
v(G) McCabe’s Cyclomatic Number, measuring the complex-

ity of the control flow within a given software.
VM Multiplexer of the data path.
VO Operations of the data path.
VR Register of the data path.
Vref A reference voltage.
V(s,a) Nodes of a hardware basic block.
V(s,a)

A Active nodes of a hardware basic block.
V(s,a)

E Nodes of a hardware basic block that are active due to
parasitic functionality.

V(s,a)
SR A set of registers that serve as source registers for the

hardware basic block i. e., provide input to the data path.
V(s,a)

TR A set of registers that serve as target registers for the
hardware basic block i. e., take new values at the end of
the cycle, the hardware basic block is active.

Vss Negative supply voltage or ground.
Vth Threshold voltage in volt [V] of a given transistor tech-

nology.
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Acronyms

Acronyms

AES advanced encryption standard
ASIC application specific integrated circuit
ASIP application-specific instruction-set processor

BSIM Berkeley short-channel IGFET model

CAFD cycle-accurate functional description
CDB RT component data base
CDFG control and data flow graph
CES International Consumer Electronics Show
CFG control flow graph
CMOS complementary metal oxide semiconductor
CPU central processing unit
CSV comma separated values
CTL computation tree logic

DCT discrete cosine transform
DMA direct memory access
DNF disjunctive normal form
DRAM dynamic random access memory
DSP digital signal processor
DVFS dynamic voltage/frequency scaling

EDA electronic design automation
EFSM extended FSM
ESL electronic system level

FDCT fast discrete cosine transform
FFT fast Fourier transform
FPGA field-programmable gate array
FSM finite-state machine
FSMD finite state machine with data path

GPRS general packet radio service
GPU graphics processing unit
GSM global system for mobile communications

HCI hot-carrier injection
HDL hardware description language
HTLP hierarchical transaction-level power
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Acronyms

IC integrated circuit
IGFET insulated-gate field-effect transistor
IP intellectual property
ISS instruction set simulator
ITRS International Technology Roadmap for Semiconductors

LoC Lab-on-a-Chip
LPC linear predictive coding
LRM local resource management

MAPE mean absolute percentage error
MIPS microprocessor without interlocked pipeline stages
MOSFET metal-oxide-semiconductor field-emitting transistor

NBTI negative-bias temperature instability
NMOS n-channel metal-oxide semiconductor

PMOS p-channel metal-oxide semiconductor
PMU power management unit
PSM power state machine

R2 coefficient of multiple determination
RE relative error
RMS root mean square error
RRMS relative root mean square error
RT register transfer
RTL register-transfer level

SMT satisfiability modulo theories
SNR signal-to-noise ratio
SoC System-on-a-Chip
SPICE simulation program with integrated circuit emphasis
SysML Systems Modeling Language

TLM transaction-level modelling
TSV through-silicon via

UART universal asynchronous receiver/transmitter
UML Unified Modeling Language

VCD value change dump
VHDL very-high-speed integrated circuit hardware description

language

WLAN wireless local area network
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Glossary

Glossary

3D-stack

A three-dimensional stack of ↑dice.

allocation

Denotes the process of determining the amount of required resources. At RT-level it
refers to determining how many ↑functional units of a specific type are required for
implementing the behaviour.

application specific integrated circuit

An application specific integrated circuit (ASIC) is a digital IC that is designed to
perform a certain and clearly distinguished task within a larger system. Typical ASICs
are hardware accelerators, for example.

assignment hardware basic block

A special type of ↑hardware basic block. It computes the combinational input values,
required by the controller.

basic block

Contains instructions that are executed atomically. Once the flow enters a basic block it
leafs the block at its end without the possibility of branching or stopping. A basic block
is typically bounded by conditional statements e. g., if-then-else-branches.

behavioural level

A description is given on page 19.

binding

Denotes the processes of assigning a given behaviour to a specific hardware resource.
At RT-level that is, that a given arithmetic operation is bound to a specific ↑functional
unit like an adder or multiplier.

clock cycle

A clock cycle denotes two transitions of the clock signal. In other words it is the time
between two equal edges of the clock signal. This time is also known as clock period. In
a typical design, a clock cycle starts with a rising edge of the clock signal.

clock domain

An area of the design running at a certain clock speed. At a border between two clock
domains synchronisation must be performed. Most frequent a simple and asynchronous
handshake protocol is used.
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Glossary

clock gating

Allows the clock signal to be gated. That is, a ↑logic gate is used to separate the clock
signal from certain parts of the design. Typically an AND-gate is used to turn off a part
of the system selectively. In the deactivated parts no ↑parasitic functionality can occur,
since all registers are fixed to its current value.

clock-tree

A set of signals distributing the clock signal to all components of the design. A clock-
tree may contain transistors allowing the turn of the clock signal for certain parts of
the design. This technique is called ↑clock gating. A design may also contain several
independent clock-trees, so-called ↑clock domains.

combinational macro

A macro or circuit, containing several algorithmic operations without memory (in
contrast to ↑sequential circuits). Thus, a macro is typical enclosed by registers. The
↑hardware basic blocks, presented in this theses are such a macros.

computation tree logic

A temporal logic that can be used for the formal verification of computational systems.
Computation tree logic (CTL) allows the specification of the temporal behaviour of a
system. That is, statements about future states of the system can be made.

control and data flow graph

In a control and data flow graph (CDFG), nodes represent elementary operations such
as assignments or arithmetic operation. Edges however represent control and data
dependencies among nodes.

control step

A step of the controller of the design. Each control step is defined by the controllers
FSM. The behaviour of the design during a certain control step is defined by the control
signals enabled by the controller, activated during the particular ↑clock cycle.

cyber-physical system

A cyber-physical system is a composition of various distributed embedded systems,
connected by a wired or wireless communication network. It often contains sensors or
actors for interacting with its environment.

cycle accurate

A model is considered to be cycle accurate, if it considers each ↑clock cycle of the
modelled design individually.

cycle-accurate functional description

A cycle-accurate functional description (CAFD) describes the behaviour of a given
system with a granularity of ↑clock cycles i. e., it is used for performing a cycle-by-cycle
simulation. All operations that occur within a ↑clock cycle cannot be distinguished.

data path

An RT data path is a collection of ↑functional units or operators, which perform the data
processing in a given design. For storing information in the data path, typically registers
are used. The behaviour i. e., the data flow and storage of information is controlled by a
controller.
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Glossary

delta cycle

An intermediate step during a discrete event simulation. During a delta cycle, all
intermediate values are computed. A delta cycle may cause a subsequent delta cycle
e. g., if it changes a value of a signal. If no more delta cycles are required i. e., no values
had been changed during the current delta cycle, a normal cycle can be performed.

delta function

This function is used for enabling or disabling terms of a mathematical equation. The
delta-function typically evaluates to 1, if a specific condition is satisfied by the function’s
parameters. In this case, the particular term of the equation is enabled. If the given
parameters do not satisfy the condition, the delta functions evaluates to 0, disabling the
particular term in the equation.

design space exploration

The term design space exploration denotes the process of comparing different imple-
mentations of a given system in order to find the best solution. During design space
exploration the next iteration step is computed based on the previous results.

die

A die is a small block build of semiconducting materials, implementing a functional
circuit. Typically this block contains a complete processor of a SoC. A die might also
contain heterogeneous modules. That is, despite computational logic it might contain
analogue and mixed signal modules as well as memories. Several dice can be stacked,
forming a 3-dimensional system or ↑3D-stack.

digital signal processor

A digital signal processor (DSP) is a processor core that is optimised for signal processing.
It often contains a special architecture including circular buffers, or special instructions,
which are able to operate on multiple data simultaneously.

dynamic frequency scaling

Dynamic frequency scaling (DFS) allows to change the clock frequency a logical circuit
is running at.

dynamic power dissipation

Dynamic power dissipation Pd is caused by charging and discharging capacities, con-
nected to the gate of a transistor. These capacities are charged and discharged due to
the activity of the circuit build from the transistors. That is, dynamic power dissipation
is directly caused by the activity and the behaviour of the particular circuit.

dynamic voltage scaling

By applying dynamic voltage scaling (DVS), supply voltage and operational frequency
of a digital circuit is scaled during run-time. By adjusting the performance of the circuit
to an appropriate level the ↑power dissipation of the circuit can be reduced.

dynamic voltage/frequency scaling

Dynamic voltage/frequency scaling (DVFS) combines ↑dynamic frequency scaling and
↑dynamic voltage scaling.

electrical level

A description is given on page 19.

209



Glossary

electronic system level

A description is given on page 18.

entropy

A measure of the information density. The higher the entropy is, the higher is the value
of the information.

extended FSM

An extended FSM (EFSM) is a conventional FSM, which has been extended with register
values from the ↑data path. Transitions have Boolean expressions, so-called guards,
assigned. If all guards of a transition are satisfied, the transition is fired. While bringing
the machine from the current state to the next one, operations, also assigned to the
transition, will be executed.

finite state machine with data path

An finite state machine with data path (FSMD) is a conventional FSM with an associated
↑data path. The FSM controls the data path, which performs the data processing.

functional model

The functional model contains or represents the behaviour of a module. Typically a
functional model is executable like models written in an hardware description language
(HDL). It is also possible to provide the model in a non-executable form, like task graphs.
In this thesis the term functional model referrers to the part of BAC++ that represents the
behaviour of the characterises module.

functional unit

A component of the ↑data path that performs a certain functionality. Examples are
adders, multipliers, etc.

glitch

A glitch is an incomplete signal transition. That is, that the output of a ↑logic gate starts
to change its output, but then takes its original value. An example is given in Figure 2.3a
on page 21.

global power manager

The global power manager implements the overall system power management policy.
This is, it selects the ↑power mode of all modules, belonging to the system.

glue logic

A simple piece of hardware that is used for connecting two ore more complex hardware
modules, whose interfaces are not directly compatible with each other.

ground voltage

The ground voltage Vss or GND defined the reference point from which voltages are
measured.

Hamming distance

Number of unequal bits in two consecutive bit vectors.
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Glossary

hardware basic block

A set of RT components that are active together. Components are considered to be
active together, if they provide the input for the registers that are activated by the ↑FSM
during the same ↑clock cycle. That is, the registers are enabled in the same state of the
controller’s FSM and if the same ↑output condition holds.

hazard

A complete but unnecessary transition of a ↑logic gate. This is typically caused by
different ↑data paths of different length. An example of a hazard is given in Figure 2.3b
on page 21.

HBB cycle

A specific execution phase in the ↑model of computation, presented in this thesis. During
this phase the behaviour of the ↑hardware basic block i. e., the behaviour of the ↑data path
is simulated.

high-level synthesis

See description of RT synthesis on page 19.

hot-spot

A small area inside the ↑die with a temperature that is significantly higher than the
temperature of the surrounding area. Typically, hot-spots should be avoided, because
they cause mechanical stress.

IR-drop

An IR-drop or voltage-drop is a drop of the ↑supply voltage in a certain area of the supply
net.

layout synthesis

See description on page 19.

logic gate

A set of transistors implementing a Boolean logic function like AND, OR, etc. If the
logic gate is available from a library, it is often called a standard cell.

logic level

See description on page 19.

logic synthesis

See description on page 19.

macro model

A small power model of an RT component. Typically, this model uses the actual input
values of the component as input to compute the component’s ↑power dissipation. It is
also possible that some kind of abstraction, such as ↑Hamming distance from the input
values is used.

Mealy machine

A deterministic ↑FSM, whose outputs depend on the actual state as well as the actual
applied input symbol.
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Glossary

model of computation

Generally speaking, the model of computation defines how the behaviour of a system is
derived from its stimuli.

Moore machine

A deterministic ↑FSM whose output symbol depends on the actual state, only.

output condition

A condition evaluated for obtaining the controller’s output signals and the next state of
the controller’s FSM, respectively.

package

Contains the ↑die/dice.

parasitic functionality

The term parasitic functionality refers to RT components that are active, but whose
results are neither needed nor used for the operation of the circuit. An example is given
in Figure 2.3c on page 21.

power dissipation

Denotes the amount of electrical power that is converted into head.

power gating

A technique that allows to disconnect the gate or RT component from ↑supply voltage
and ground, respectively.

power island

A clearly delineated area of the ↑die with a common supply voltage and clock frequency.

power mode model

Describes all available ↑power modes of a module as well as possible transitions between
them.

power mode table

A table, containing all ↑power modes provided by a hardware module. The table also
contains information about possible ↑power mode transitions and the associated penalty
in terms of delay and power dissipation.

power mode transition

A change from one ↑power mode to another one. Each transition is typically connected
with a penalty in terms of ↑power dissipation and an additional delay. Power mode
transitions can only take place in certain states of the module, typically if the module is
idle.

power mode

A certain configuration of a module. Typically a power mode is defined as a combination
of applied ↑supply voltage and clock frequency. A controller is required that implements
the ↑dynamic voltage/frequency scaling policy.
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power state machine

A power state machine (PSM) is a FSM whose state denote phases in which a given
system dissipates a specific power.

power & timing model

Converts information such as switched capacitance and cycle count received from the
↑functional and the ↑power mode model, respectively in order to obtain actual power in
terms of watts and timing in terms of seconds, for example.

register transfer

The function of a system is described as a set of logic operations. Input values to the
operation are provided by one or more register. Results are also stored in registers.

register-transfer level

Typical components are adders, multipliers, registers, etc.

RT synthesis

See description on page 19.

satisfiability modulo theories

A satisfiability modulo theories (SMT) problem is a decision problem for logical formulas
with respect to combinations of background theories. Such theories can include the
theory of real and integer numbers or theories of various data structures such as lists,
arrays, vectors etc. In this thesis, SMT formulas are used to describe the output and
next-state logic of a controller. Predicates used within the SMT formulas typically
describe the state of the ↑data path. That is, they make statements about register values,
intermediate results, or handshake signals.

scheduling

Refers to the processes of determining the order in which operations are performed.
Two different types of scheduling can be identified: static scheduling is performed during
synthesis or compile time. Once the schedule is fixed it cannot be changed. Dynamic
scheduling however, is performed during run-time i. e., the schedule can be changed
dynamically.

sequential circuit

A circuit containing operations as well as a memory (in contrast to a ↑combinational
macro). That is, the circuit has a state and it operations depends on the actual input as
well as the previous input data. The circuit can be split into ↑data path and controller.

simulation program with integrated circuit emphasis

The simulation program with integrated circuit emphasis (SPICE), is a simulation
software for analogue/digital electrical circuits. Simulation is done by trying to find an
approximate solution for the differential equations, describing the system. Simulations
are very time-consuming but give very accurate results.

static power dissipation

Static power dissipation Pl, denotes unwanted electrical currents between the different
components of a transistor, especially if the transistor should be locking.
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strongly pattern dependent

A strongly pattern dependent power estimation approach requires concrete and com-
plete signal pattern to be applied to the design.

supply voltage

The supply voltage Vdd is the voltage that is applied between source and drain of the
gates.

system synthesis

See description on page 18.

System-on-a-Chip

A System-on-a-Chip (SoC) is a system whose components are integrated on a single IC.
It may contain digital and/or analogue components.

three-address code

Three-address code is a form of representing intermediate code used to aid the imple-
mentation of code-improving transformations. Each statement typically has the general
form x := a⊗ b, where a and b are the operands to the operator ⊗. The result of the
operation is stored in x.

threshold voltage

The threshold voltage Vth is the gate voltage where an inversion layer forms at the
source and drain of the transistor i. e., the depletion region starts to conduct.

use case

A use case is a defined interaction with the design under test. By using a defined input
stimulus, it can be verified if the design under test shows the correct behaviour and
produces the expected results.

weakly pattern dependent

A weakly pattern dependent power estimation approach requires the behaviour of the
design to be specified in an probabilistic way, allowing the user to specify the typical
behaviour.

zero-strength hardware basic block

A zero-strength hardware basic block does not perform any computation. It occurs, if
the output symbol that is applied to the ↑data path does not enable any target register.
In this case, no RT component is assumed to be active and thus not power is assumed
to dissipate.
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