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Abstract

We study unsupervised learning of occluding objects in
images of visual scenes. The derived learning algorithm is
based on a probabilistic generative model which parame-
terizes object shapes, object features and the background.
No assumptions are made for the object orders in depth
or the objects’ planar positions. Parameter optimization
is thus subject to the large combinatorics of depth orders
and positions. Previous approaches constrained this com-
binatorics but were still only able to learn a very small
number of objects. By applying a novel variational EM ap-
proach, we show that even without constraints on the object
combinatorics, a relatively large number of objects can be
learned. In different numerical experiments, our unsuper-
vised approach extracts explicit object representations with
object masks and object features closely aligned with the
true objects in the scenes. We investigate the robustness of
the approach and the use of the learned representations for
inference. Furthermore, we demonstrate generality of the
approach by applying it to grayscale images, color-vector
images, and Gabor-vector images as well as to motion tra-
Jjectory data for which the extracted components correspond
to motion primitives.

1. Introduction

Visual scenes consist of mutually occluding objects at
different positions. A long-standing goal of unsupervised
learning on images is to be able to learn object representa-
tions from scenes without any label information pertaining
to these objects. The problem faced by all the approaches
pursuing this goal is the large combinatorics of objects in
the images. Potentially, a scene can consist of virtually any
number of objects at any planar position and in any orders
of depth.

Approaches to learn the low-level statistical properties
of images (e.g., sparse coding [ 1] or ICA and their variants)
address the combinatorics of low-level object parts such as
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edges but usually avoid explicit treatments of edge positions
or edge occlusions. Nevertheless, they require approximate
learning methods to avoid the still large combinatorics of
different edges in an image patch. By using approxima-
tions they can, however, learn large numbers of image com-
ponents in terms of hundreds or even thousands of basis
functions (e.g., [2]). Similarly, restricted Boltzmann ma-
chines (RBMs, e.g., [3]) have been used to learn image
features. Image representations learned without supervi-
sion have been shown to be very successful in computer
vision, especially if they are combined with other methods
[2, 4]. This success is driving further research on unsuper-
vised learning approaches for computer vision.

To learn statistical models of whole visual scenes rather
than small patches, similar probabilistic approaches are thus
developed and applied increasingly frequently. The re-
quired modeling of object occlusions and object positions
is considerably more challenging than the task to extract
low-level features as it is addressed by sparse coding and
ICA. The problem of object occlusions has recently been
addressed by modifying and generalizing established ap-
proaches: Sparse coding and ICA have thus been general-
ized to Occlusive Components Analysis (OCA, [5]), while
RBMs have been generalized to masked RBMs [6]. By
using deterministic approximations to Expectation Maxi-
mization (EM) in [5], explicit object representations can
be learned from cluttered scenes. By applying sampling in
RBMs [6], hierarchical representations that take occlusions
into account can be learned. Training both these occlusion
models is difficult because occlusions result in a greater
combinatorics and typically involve more pronounced lo-
cal optima than preceding models. Furthermore, OCA and
masked RBMs both do not model object positions explic-
itly — a property they inherit from standard sparse coding
and standard RBMs, respectively. In contrast, earlier ap-
proaches based on sprites [7, 8] explicitly model object oc-
clusions and object translations. Sprite models are gener-
ative models of visual scenes allowing for arbitrary planar
positions but fixed the depth order (an object always has the
same distance from the camera). This restriction of depth



order combinatorics allows for a more efficient learning.
Still only few objects can be learned because of the addi-
tional combinatorics of different translations (usually two
or three objects are learned from videos but [8] also report
experiments on data with up to five objects). The sprites
model has later been extended with linear subspace object
representations and a restricted form of depth order infer-
ence [9], but still only experiments with up to four objects
are reported. In approaches that maintain explicit models of
translation invariance but only consider one object per im-
age more objects can be learned: work on transformation-
invariant clustering [10] reports applications to up to eight
objects (also compare [|1]). However, note that the con-
straint to just one object per image avoids both the combi-
natorics of object occlusions as well as of different object
positions.

In this work, we consider the full combinatorics of pla-
nar object positions and depth orders in visual scenes. For
modeling and learning, the new approach combines meth-
ods of sprite models with translation invariance [7, 8] and of
models with unconstrained depth orders [5]. To overcome
the combinatorial challenges of the model, we apply a novel
variational EM approach for parameter optimization [12] as
well as sophisticated annealing schemes to avoid local op-
tima. The derived learning algorithm is hereby designed to
be applicable to general feature representations of images,
i.e., it is applicable to grayscale and color images as well
as to arrays of more complex feature vectors such as Ga-
bor vectors. Furthermore, the generality of the underlying
generative model allows for applications to data of domains
other than images. We demonstrate the performance of the
learning algorithm by applying it to visual scenes of differ-
ent complexity, and show the generality of the approach by
extracting motion primitives from the trajectories of hand-
written characters.

2. The Generative Model

Our generative model of visual scenes is defined for im-
ages in the form of two-dimensional arrays of feature vec-
tors 4. Depending on the application, a feature vector can
be a scalar gray value, an RGB color vector, or a more
complex feature vector. Given the resolution (D;, Ds)
of an image, the data points are thus of the form Y =
(g(1,1)7 s 7g(D1,D2))'

The generative model assumes such images to be com-
posed of possibly H occluding components (objects) at ar-
bitrary planar positions. The object positions are modeled
by h = 1,..., H hidden variables @), € {1,...,D1} x
{1,...,Dy}. Each object is modeled to appear in an im-
age with probability 7 € [0,1]. Instead of modeling ob-
ject presence and absence explicitly, we, for mathematical
convenience, assign the special “position” (—1,—1) to all
objects which are not chosen to generate the image. As-
suming a uniform distribution for the positions, the prior
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Figure 1. a The Graphical Model. b An illustration of the image
generation procedure.

distribution for objects and their positions is thus given by:

H
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where the hidden variable X = (&,...,Z ) contains the
information on presence/absence and position of all the im-
age components.
The objects in the model are represented as sets of pa-
rameters for object masks and object features. High val-

ues of mask parameters aﬁ encode the shape of an object h

while the values of feature parameters wﬁ‘ encode the values

of the object’s planar feature arrangement Mask and fea-
ture parameters are visualized for two objects in Fig. 1b (top
row). Given translations of the objects, masks and feature
parameters are shifted by changing parameters indices w.r.t.
cyclic boundary conditions (see Fig. 1, second row), which
is given by

-

d= (i+72):= ((11 + 21) mod D1, (i2 + z2) mod DQ)T. 2)

Such a modulus operation is used because it reduces the
translation space of every object by a factor of four.

After translation, two or more objects may occupy the
same pixel d, but only one of them can determine the pixel
value due to occlusion (see Fig. 1). We model this property
by defining a hidden variable 7, = (m1.1y, .. .,M(p,,D,))-

For each pixel d of the image, the value of m ; determines
which of the components is used to set the pixel’s vecto-
rial value. m takes all objects, their positions and their
mask parameters into account. We collect all mask pa-
rameters into a matrix A = (a',...,af’) with a" =

(@fy 1ys- > p, p,y) and define the set T — {h|Zn #

(-1,— )} to contain all objects present in the scene. The



distribution of 17 is then defined by:

(D1,D2)
p(i X, A) = [ p(mgX, A),
d=(1,1)
p(mAX,A) = e
(maiX, 4) (1-A)—— 0 e
Z:h’el“c‘
(d-7,/)

We will refer to the entries of the variable m as mask vari-
ables because of their close association with the mask pa-
rameters. A = [], (1 a?(;_f} )) denotes the probability
that the background determines the pixel value (in this case
mg = 0). The mask variable m ; is assigned to compo-

nent h (my; = h) with a high likelihood if the translated

mask parameter of this component is high at d. Note that
the considered mask parameters are normalized according
to all other objects in I', i.e., all other objects in the im-
age. The value of each m ; is thus chosen according to the
mixture distribution defined by the mask parameters and the
background in (3). This is similar to [7, 8] with the differ-
ence that our used mask variable is not assuming the same
depth order of objects for all images. Modeling occlusion
using the mixture approach in (3) represents an approxima-
tion but inference and learning become more efficient than
iterating through all depth orders (compare [5]).

After drawing object presence/absence, object positions
and the mask variables, the image is finally generated using
background and object features. Based on a Gaussian noise
model, the distribution of visual scenes is given by:

(D1,D2)
p(Yi, X,0) = [T »@zlmgX,0),
d=(1,1)
Nz B,o%) v
g’_V Baa—B ) mg= 0
(yd\md,X 6) = 2 =
N(y ’ w(d_;i’md.)’o- )7 md € Fv

where o2 is the variance of all the component features.

The background distribution is a Gaussian distribution with
mean B and variance 0%. Equations | to 4 define our
generative model. Mask parameters of the objects will
be denoted by A as defined above and, analogously, their
features will be denoted by W = (W1 ... . WH) with
Wh = (wé‘l 1>+ W(p, py)- The set of all model pa-
rameters is denoted by O.

3. Likelihood Optimization

Given the dataset Y = {Y (1) ... Y (M) unsupervised
learning can be formulated as finding the best model param-
eters w.r.t. the data likelihood L = p(Y (M) ... Y(N)|@).
Following the Expectation Maximization (EM) approach,
we derived parameter update rules by setting the derivatives

of the model’s free energy w.r.t. the parameters to zero. For
the feature parameters W, we obtain:

S S & (X)a (mzy s =h X) 7
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with the abbreviations: ¢ (X) = p(X|Y(™,©) and
g™ (mg; X) = p(mz|Y ™, X, ©). For the mask parame-
ters A, a straightforward derivation is unfortunately not pos-
sible and with usual approximations it is difficult to keep A
in the interval (0, 1). Instead, we define the mask parameter
as the average of the mask posteriors,
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This definition is inspired by the update rules of the mask
variable in fore/background models (see [13]), but has here
been extended to handle multiple occluding objects without
a predefined order.

For computational efficiency, we decompose the very
large joint space of 7 and X by exploiting the standard as-
sumption of independent observed variables (compare, e.g.,

[7, 8]):
(D1,D2)
p(i, X|Y,0) = p(X|y,0) ][]
d=(1,1)

MGz =hX).  ©

p(mg]Y,X,0). ()

It follows that the update equations can be computed with
the posterior over individual pixels,

p(Y,mg|X,0)
Zmiieru{o} p(Y, mi;|X7 o)’

p(mg|Y,X,0) = (¢

and the posterior over the translation variable X,

(D1,D2)

I >

d=(1,1) mgeru{o}

P(X]Y,0) ox p(Y,mz|X,))p(X|©).
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Variational EM Optimization. With the above posterior
equations, parameter optimization can be performed using
EM without approximations. However, the computation is
intractable for anything else than very small-scale prob-
lems because the computational complexity of qén)(X )s
O((D1 Dy + 1)H ), increases exponentially with the num-
ber of components. Therefore, we apply a novel variational
approximation to EM in the form of Expectation Trunca-
tion [12]. Expectation Truncation has the benefit of being
very efficient while maintaining rich posterior representa-
tions. With the variational approximation the posterior is
not factored but truncated. For our model it is given by:

p(X,Y™|0)
ZXEICn p(X, Y™ |0)

and zero otherwise. High precision is achieved if the set
K., contains those configurations of X with most posterior

p(X|Y™ 0)~ JfX € Ko, (10)




mass. As the number of objects in an image is usually small
compared to the total number of objects, we can expect rel-
atively small sets of /C,, to finally provide good approxi-
mations. To find sets C,, we, in practice, define a selection
function assigning a score to every translation of every com-
ponent,
S8V (@") = iep, N, | s0%,0%),Vh € {1,... H}.
Y
A selection can be computed efficiently as it only considers
D1 Dy H cases. For each component h, P, denote the in-
dices of the reliable pixels which are defined as those with
the A\ highest mask parameters a?. To construct IC,,, we
first select the components and their translations with the
S highest scores of the selection function. Then we define
IC,, to contain all combinations of the selected translations
of all the selected components (plus the conditions of the
components not being in the image). We define S as the
largest .S with which /C,, has less than or equal to K entries.
Note that the accuracy of this approximation is determined
by approximation parameters A and K. The larger A and K
the higher is the accuracy, however, the computational cost
is also higher.
Directional Annealing. The convergence to local optima
is a commonly encountered problem in many optimization
tasks. Deterministic Annealing (DA) is a widely used tech-
nique, which has demonstrated substantial performance im-
provement by avoiding local optima for a variety of super-
vised and unsupervised learning methods [14]. It can be
smoothly integrated into EM algorithms with some small
modifications on posterior calculations [15]. However,
in numerical experiments on our model as well as other
translation-invariant models, we found that the conventional
DA requires substantial modifications to remain applicable.
The reason is that the updated parameters are the sum of
data points weighted by the posteriors (see Eqn.5). Con-
sidering the posterior of the translation variable, the update
parameters (e.g. W) can be viewed as a convolution of a
filter with the data points (images), where the posterior is
the filter. Therefore, when conventional DA smooths the
posteriors, the posterior of the translations performs like a
smoothing filter. As a consequence, the feature parameters
are smoothed into a uniform value after few EM iterations.
Overly strong smoothing can be avoided by careful tuning
of the annealing temperature to a low value. However, at
such values annealing usually becomes ineffective.

Taking these observations into account, we consider a
novel type of annealing which avoids the over-smoothing
effect also at high temperatures. The approach separates
the hidden variables into two groups by whether they con-
tain translations or not, and only performs annealing on the
marginal posterior distribution of the group not containing
translations. More specifically, the hidden variable X in our
model encodes the existence of components and the transla-
tions of the existing components. Following this approach,
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we rewrite X as a pair of hidden variables (3, Z), where
the binary vector § defines whether each component exists
and Z gives the translations of the existing components. As
stated before, annealing is only applied to the marginal pos-
terior distribution of s

B
#EY.0) = SO szinv.e) = pzlsy.e),
12)
where 8 = 1/T and T is the annealing temperature. Sub-
stituting (12) into the joint posterior of (s, Z), we obtain:

p(5,2]Y,0) = p(5]Y,0) - p(Z |5,Y,0)
_ pEV.0)?  pEzlv,e) (3
Y« p(EY,0)8  p(8Y,0)

The performance of our annealing algorithm is evaluated
quantitatively on synthetic data (see Sec.4). We ran our
learning algorithm 10 times with and without annealing sep-
arately, while keeping other configurations the same. The
performance is evaluated by computing the mean squared
error between the learned features and their ground truth.
The squared error is only computed for the pixels of learned
components with their mask parameters greater than or
equal to 0.5, because only the pixels with high mask param-
eters reliably represent the components (see Fig. 3b). Due to
the absence of supervision information, it is unknown which
learned component corresponds to which ground truth com-
ponent with what translation. Therefore, the squared error is
computed for the best matched components with the corre-
sponding translations. Fig. 2 shows the comparison. The re-
sults show that directional annealing more efficiently avoids
local optima and thus addresses the important problem of
more pronounced local optima in models of occlusion.

4. Experimental Results

We applied the derived algorithm to different types of
data in numerical experiments. We will start with visual
scene where ground truth is available then go to increas-
ingly challenging settings and finally apply the approach to
data from a domain other than images. All runs of the algo-
rithm were executed on a GPU cluster of 12 GTX480 cards.

Visual Scenes of COIL Objects. We first demonstrated
the performance of our algorithm on data generated using
objects from the COIL-100 image dataset [16]. 16 differ-
ent objects were selected, downscaled to 10 x 10 pixels and



Figure 3. a 16 out of 2000 of the used data set. b Learned parame-
ters. Ist column: mask parameters &". 2nd column: mean feature
parameters W". 3rd column: mean features for mask parameters
> 0.5.

segmented out from the black background. An image was
generated by randomly selecting a subset of the 16 objects,
where each object has a probability of 0.2 to appear. The ap-
pearing objects were placed at random positions on a 30 x 30
black image. When overlapping, the objects occluded each
other with a different random depth order for each image.
We generated N = 2000 such images in total and Fig. 3a
shows some typical examples.

Our algorithm was applied with H = 16 components
and a Gaussian background distribution with zero mean and
variance 0% = 0.001%. The initial features W were set to
randomly selected data points. The initial mask parame-
ters A were independently and uniformly drawn from the
interval (0,1) for the area where the difference between
the model features and the background features were larger
than 0.1. The initial temperature for annealing was set to
T = 50. After keeping it constant for 10 iterations, the
temperature linearly decreased to 1 within 100 iterations.
For the robustness of learning, the feature variance o2 de-
creased together with the temperature from 0.3% to 0.022.
The algorithm terminated when the temperature was equal
to 1 and the difference of the data log-likelihood of two con-
secutive iterations was sufficiently small (less than 0.01%).
Learning was performed with the approximation parame-

ters A = 30, K = 10,000. Parameter optimization took
40 minutes, approximately. Fig.3b shows the resulting pa-
rameters for object masks and object features. As can be
observed, all 16 generating data components were recov-
ered. Note that the feature parameters show non-zero val-
ues outside the region of high mask values. Their relevance
is negligible, however, as only the features for high mask
values significantly effect the likelihood (see third column
in Fig. 3b). In different runs of the algorithm with different
initial parameter values, the algorithm recovered all objects
in about half of the runs (see Fig. 2).

These results demonstrate that efficient learning is pos-
sible for objects at arbitrary positions and with arbitrary
depth ordering. Previous results did not report more than
six or ten [5] objects even though depth order [8] or po-
sition combinatorics [5] was constrained. No results for
more than very few objects (two to four) were reported for
the unstrained case because the combinatorics scales super-
exponentially with the number of components. Besides the
speed-up provided by GPU parallelization, the algorithmic
advancements of our approach are the key of conquering the
super-exponential complexity of the combinatorics.

Video Data. After having verified parameter recovery of
the algorithm on ground truth data, we then applied the ap-
proach to data of real visual scenes. We used two video
sequences of objects placed in front of a camera. Both
videos contained objects changing their positions and oc-
cluding each other if overlapping each other (see Fig. 4a for
some sample frames and Supplement for the full sequence).
The resolution of both videos was 320 x 240 and images for
training were extracted at a rate of three frames per second.
For more robustness, each extracted image was represented
by Gabor feature vectors (one scales, eight orientations, see
Supplement for details) instead of RGB colors.

From the first video 523 images were extracted and rep-
resented by a grid of 40 x 30 Gabor vectors. Our algorithm
was applied with H = 5 components and the object appear-
ance frequency of m = 0.2. The mean of the Gaussian back-
ground distribution was set to the first image and its vari-
ance to 0% = 0.042. The initial parameters and the anneal-
ing scheme were the same as in the synthetic experiment,
and the feature variance decreased from 0.12 to 0.06%. By
using approximation parameters of KX = 200 and A = 100,
parameter optimization required 6.2 minutes. Fig.4b (left
two columns) shows the learned parameters for masks and
features by heat maps. As can be observed, the box has
been represented by the first component and the mug by the
fourth. The stapler has been represented twice, by the sec-
ond and the third component. The last component has cap-
tured some background features. Note that the stapler repre-
sentations are associated with two different scales as in the
video it is indeed placed at different depth. As an example
application of the learned representation, we show in Fig. 4¢
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Figure 4. a 3 frames from each video: 1st row for Video 1, 2nd row for Video 2. The heat maps show the max of Gabor responses
(Y g max = Maxy Yy ;). b Learned parameters: left two columns for Video 1 and right two columns for Video 2. e¢&d The inference result
for some frames. The left column indicates the detection of components (every component a color). The right column denotes the inferred
mask variable (black for background). e A measure of accuracy for Video 1 (blue for detected at correct positions, red for detected at
wrong positions, green for the ground truth). The (precision, recall) percentages: cup (45%,90%), stapler (100%,82%), box (100%,77%).

the inferred object classes and positions (left column), and
the inferred mask values for each Gabor grid point (right
column). As can be observed, object classes and positions
are correctly inferred, and the inferred mask variable gives
an appropriate estimate on the regions occupied by the ob-
jects. Note that our model does not use pixel proximity but
its explicit object representation that is learned statistically
across the sequence. The model is thus providing image in-
formation complementary, e.g., to segmentation algorithm.
To give a quantitative measure of performance, the accuracy
of detection is evaluated by manually checking every frame
of the video (see Fig. 4e and Suppl. for details).

To provide an increased challenge for the algorithm, the
objects used in the second video were smaller, the light was
dimmer, and the background was more cluttered, on 444
frames. This time, we compute Gabor features on a finer
grid of resolution 54 x 40. On these data the learning algo-
rithm with H = 6 components and approximation parame-
ters K = 200 and A = 50 required 8.3 minutes for param-
eter optimization. Fig. 4b (right two columns) again shows
the learned object parameters. This time the used box ob-
ject is represented by two components while the first com-
ponent represents part of the background. Fig.4d shows
inferred object classes and positions as well as the inferred
values of the mask variable. A decreased continuity of the
mask values is evidence of the increase difficulty of the task.
However, mask values still show appropriate regions for the
different objects. The top two images hereby show an exam-

ple of false positive detections where part of the background
gets associated with the box object. Such false positives
could, however, be detected using post-processing based on
other cues (e.g. continuity in time).

Motion Trajectories. Modeling motion primitives has been
addressed in neuroscience and robotics in the context of
motor synergies [17]. Most approaches of motion primi-
tive learning either only extract static primitives from an
individual time step [18], or do a linear subspace analy-
sis on pre-segmented motion clips [19], of which the re-
sults are strongly influenced by the segmentation points.
Some recent works aim to learn linearly superimposed mo-
tion primitives with various time spans and flexible activa-
tion points by nonnegative matrix factorization [20], facto-
rial hidden markov model [2 1] and multivariate orthogonal
matching pursuit [22]. Besides linear superimposed motion
primitives, which are suitable in the context of limb con-
trol where the accuracy of path is more concerned, there is
another type of motion primitives where the global motion
switches among motion primitives sequentially. Namely, at
every time step only one motion primitive exclusively con-
trols the global motion. Such primitive types are useful for
global motion planning where computation is a major con-
cern, e.g. robotic planning and controlling [23, 24]. How-
ever, there has been few works about learning such exclu-
sive motion primitives without pre-segmentation. By apply-
ing our approach to motion trajectory data, we found that it
is able to extract motion primitives as the components of
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Figure 5. a 5 samples of character trajectories, generated by integrating the velocities over time. b Learned parameters. The 1st&3rd
columns show the integrated trajectories (red segments denote where its mask parameter is > 0.5). The 2nd&4th columns show the mask
parameters. ¢ Some reconstruction results. The solid curves indicate the reconstruction results (every component a color) and the dotted

curves show the original trajectories.

data. As demonstrated in the following experiment, with-
out changing the model or imposing sparsity constraints on
temporal domain, motion primitives naturally arise as a re-
sult of optimization.

We applied our model to handwriting trajectory data
[25]. The data was captured using a WACOM tablet at
200Hz. It has 2858 characters in total and each character
is a 3-dimension time series consisting of the 2-dimension
pen velocity and the pen tip force. For simplicity, we ig-
nored the tip force dimension and aligned the time series to
200 time steps by truncating the longer ones and padding
shorter ones with zeros. Fig.5a shows 5 samples of the
character trajectories by integrating the velocities over time.
Our algorithm was applied with H = 10 components. The
Gaussian background distribution was set to zero mean and
variance 0% = 0.12. The initial parameters and the anneal-
ing scheme had the same setting as previous two experi-
ments except the initial annealing temperature was 7' = 20.
The feature variance decreased from 2.0% to 1.02. Fig.5b
shows the learned component parameters. As the data are
time series, the mask parameters are shown as curves along
the time line. Note that the learned mask parameters are
only high over a small part of the time series and low else-
where. The trajectories over those time segments (see the
red segments in Fig. 5b) are examples of motion primitives
which are used to construct most of the characters. To show
this, we reconstructed the data points using the MAP es-
timates of hidden variables. The MAP estimates determine
the most likely component and translation for each time step
of a given datapoint. Using the MAP estimates we recon-
structed data points by replacing, at each time step, the ve-
locity by the mean velocity from the corresponding com-
ponent. The reconstruction results of some characters are
shown in Fig. 5c (see supplement for more examples). Note
that the velocity integration is very sensitive to small differ-
ences. Such differences can, over time, cause the integrated
curve to divert significantly from the original. Importantly,
however, the structures of the reconstructed characters re-
mained very similar to the original and reconstructions were

comprised of several motion primitives.

5. Discussion

We have studied unsupervised learning from visual
scenes with arbitrary object positions and orders in depth.
Our approach is based on a probabilistic generative model
with hidden variables for the planar positions of the com-
ponents and a selection of one component per pixel through
a mixture distribution. A computationally tractable learn-
ing algorithm was derived by applying a truncated varia-
tional EM approach [12]. In numerical experiments we have
shown that representations of objects can be learned in the
form of object masks and object features. By applying the
approach to motion trajectory data, we have, furthermore,
demonstrated the applicability to other data domains.

As for earlier approaches such as sprite models [7, 8]
or occlusive components analysis (OCA, [5]), the hidden
variables and parameters in our approach directly reflect
the properties of observed data: the mask and feature pa-
rameters reflect object shapes and appearances, and the hid-
den variables explicitly encode the component positions and
their responsibilities for the pixels in a given image. Along
with OCA and sprites models, our approach thus follows
one of the original goals of generative modeling: deriv-
ing learning algorithms based on the models replicating
the true generating process as explicitly as possible. Other
approaches follow alternative paths: Boltzmann machines
map learning of visual properties to learning across hier-
archical stages [3, 6] while other models, e.g., use a con-
densed image representation, an epitome, for learning and
inference on images. In RBMs and epitome models, image
generation is more indirectly associated with the physical
generation of images, which can have positive and nega-
tive consequences often depending on the addressed task.
Epitome models or RBMs have thus been applied very suc-
cessfully, e.g., to fill-in missing image parts while the more
direct sprites models or OCA provide explicit representa-
tions of individual objects, which can directly be used, e.g.,
for object detection, removal, position inference efc. Still



other approaches learn object shapes and appearances us-
ing bilinear models (e.g., [26]), which can indirectly ad-
dress the invariance problem by learning different compo-
nent styles. However, for mathematical convenience, com-
ponents in these models are assumed to combine linearly
— an assumption that can not capture occlusion of objects.
Layered models have also been explored in the literature of
video layer decomposition. Recent works [27, 28, 29] usu-
ally assume manual initialization, while some earlier works
of flow-based layered models [30, 31] do not require man-
ual initialization but use fixed depth orders.

All the approaches discussed above will exhibit their full
potential if they are combined with other technology for
computer vision, similar to, e.g., sparse coding approaches
which recently have been widely used in computer vision
applications. Because of the large complexity of visual
scenes compared to patches, much more experience has to
be gathered in this line of research, however. In addition to
object positions and depths, in principle, other object trans-
formations such as object scaling or rotation, as well as il-
lumination changes, could be formulated by a generative
model. In general, the more properties of visual scenes are
modeled the more powerful the model becomes. The major
difficulty remains, however, practicality and computational
tractability. In the numerical experiments for our approach
we have shown that, compared to earlier approaches, rela-
tively large numbers of objects/components can be learned
efficiently without imposing constraints on the position or
object depth combinatorics. Our approach thus goes signif-
icantly beyond the scene complexities that could previously
be addressed by similar approaches.
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