Physical and perceptual evaluation of the Interaural Wiener Filter algorithm

Simon Doclo1, Thomas J. Klasen1, Tim van den Bogaert2, Marc Moonen1, Jan Wouters2

1Dept. of Electrical Engineering (ESAT-SCD), KU Leuven, Belgium
2Laboratory for Exp. ORL, KU Leuven, Belgium

IHCON, Aug 19 2006

Overview

• Binaural hearing aids: noise reduction and preservation of binaural cues
• Overview of binaural noise reduction algorithms
• Binaural multi-channel Wiener filter:
 o Estimate of speech component at both hearing aids
 o Speech cues are preserved – noise cues may be distorted
• Preservation of binaural cues:
 o Extension of cost function with ITD-ILD-ITF expressions
• Experimental results:
 o Physical evaluation (SNR, ITD, ILD)
 o Perceptual evaluation (SRT, localisation)
• Audio demonstration
Problem statement

- Hearing impairment → reduction of speech intelligibility in background noise
 - Signal processing to selectively enhance useful speech signal
 - Many hearing impaired are fitted with hearing aid at both ears
 - Multiple microphones available: spectral + spatial processing

- **Binaural auditory cues:**
 - Interaural Time Difference (ITD) – Interaural Level Difference (ILD)
 - Binaural cues, in addition to spectral and temporal cues, play an important role in binaural noise reduction and sound localization

\[\text{ITD} = \tau \]
\[\text{ILD} = \frac{P_L}{P_R} \]
Problem statement

- **Bilateral system:**
 - Independent processing of left and right hearing aid
Problem statement

• Bilateral system:
 • Independent processing of left and right hearing aid
 • Localisation cues are distorted [Van den Bogaert, 2006]

• Binaural system:
 • Cooperation between left and right hearing aid (e.g. wireless link)
 • Assumption: all microphone signals are available at the same time

Objectives/requirements for binaural algorithm:

1. SNR improvement: noise reduction, limit speech distortion
2. Preservation of binaural cues (speech/noise) to exploit binaural hearing advantage
3. No assumption about position of speech source and microphones
Binaural noise reduction techniques

- Problem statement
- Binaural noise reduction
- Multi-channel Wiener filter
- Preservation of binaural cues
- Experimental results
- Audio demo
- Conclusions
Binaural noise reduction techniques

- Problem statement
- Binaural noise reduction
- Multi-channel Wiener filter
- Preservation of binaural cues
- Experimental results
- Audio demo
- Conclusions
Binaural noise reduction techniques

- Fixed beamforming: spatial selectivity + binaural speech cues
 - Maximize directivity index while restricting speech ITD error [Desloge, 1997]
 - Superdirective beamformer using HRTFS [Lotter, 2004]

 - low computational complexity
 - limited performance, known geometry, broadside array, only speech cues

[Desloge, 1997]
Binaural noise reduction techniques

- **CASA-based techniques** [Kollmeier, Peissig, Wittkop, Dong, Haykin]
 - Computation and application of (real-valued) binaural mask based on binaural and temporal/spectral cues
 - perfect preservation of binaural cues of speech/noise component
 - mostly for 2 microphones, “spectral-subtraction”-like problems
Binaural noise reduction techniques

- Adaptive beamforming: based on GSC-structure
 - Divide frequency spectrum: low-pass portion unaltered to preserve ITD cues, high-pass portion processed using GSC [Welker, 1997]

 🌟 preserves binaural cues to some extent

 ☹️ substantial reduction in noise reduction performance, known geometry
Binaural noise reduction techniques

- **Binaural multi-channel Wiener filter** [Doclo, Klasen, Wouters, Moonen]
 - MMSE estimate of speech component in microphone signal at both ears

 - speech cues are preserved, no assumptions about position of speech source and microphones
 - noise cues may be distorted

Extension of MWF: preservation of binaural speech and noise cues without substantially compromising noise reduction performance
Design of hearing aid SP algorithm requires some mathematics but perceptual evaluation in a couple of minutes...
Configuration and signals

- **Configuration**: microphone array with M microphones at left and right hearing aid, communication between hearing aids

$$Y_{0,m}(\omega) = X_{0,m}(\omega) + V_{0,m}(\omega), \quad m = 0 \ldots M_0 - 1$$

- **Vector notation**: \(Y(\omega) = X(\omega) + V(\omega)\)
- **Use all microphone signals to compute output signal at both ears**

$$Z_0(\omega) = W_0^H(\omega)Y(\omega), \quad Z_1(\omega) = W_1^H(\omega)Y(\omega)$$
Overview of cost functions

Multi-channel Wiener filter (MWF): MMSE estimate of speech component in microphone signal at both ears

trade-off noise reduction and speech distortion

Speech-distortion weighted multi-channel Wiener filter (SDW-MWF)

Partial estimation of noise component

Extension with ITD-ILD or Interaural Transfer Function (ITF)

binaural cue preservation of speech + noise

[Doclo 2002, Spriet 2004]

[Klasen 2005]

[Doclo 2005, Klasen 2006]
Binaural multi-channel Wiener filter

- **Binaural SDW-MWF**: estimate of speech component in microphone signal at both ears (usually front microphone) + trade-off between noise reduction and speech distortion

\[
J(W) = E \left\{ \left\| X_{0,i_0} - W_0^H X \right\|^2 + \mu \left\| W_0^H V \right\|^2 \right\}
\]

\[
W_{SDW} = R^{-1} r
\]

- **Problem statement**
- **Binaural noise reduction**
- **Multi-channel Wiener filter**
- **Preservation of binaural cues**
- **Experimental results**
- **Audio demo**
- **Conclusions**

- Depends on second-order statistics of speech and noise
- Estimate \(R_y \) during speech-dominated time-frequency segments, estimate \(R_v \) during noise-dominated segments, requiring robust voice activity detection (VAD) mechanism
- No assumptions about positions of microphones and sources
Binaural multi-channel Wiener filter

- **Binaural cues (ITD-ILD):**
 - Perfectly preserves binaural cues of speech component
 - Binaural cues of noise component \rightarrow speech component !!
 (cf. physical and perceptual evaluation)

- **Extension of SDW-MWF with binaural cues**
 - Add term related to binaural cues of noise (and speech) component to SDW cost function

$$J_{tot}(W) = J_{SDW}(W) + \alpha J_{cue}^x(W) + \beta J_{cue}^v(W)$$

- Possible cues: ITD, ILD, Interaural Transfer Function (ITF)
- Weight factors α and β can be frequency-dependent
Interaural Wiener Filter

- Problem statement
- Binaural noise reduction
- Multi-channel Wiener filter
- Preservation of binaural cues
- Experimental results
- Audio demo
- Conclusions

- Preserve binaural cues between input and output
 - ITD: phase of cross-correlation
 - ILD: power ratio
- ITF: Interaural transfer function (incorporates ITD and ILD)

\[ITF_{in}^v = \frac{V_{0,r_0}}{V_{1,r_1}} = \frac{E\{V_{0,r_0} V_{1,r_1}^*\}}{E\{V_{1,r_1} V_{1,r_1}^*\}} = \frac{R_v(r_0, r_1)}{R_v(r_1, r_1)} \]

\[ITF_{out}^v = \frac{Z_{v0}}{Z_{v1}} = \frac{W_H^0 V}{W_H^1 V} \]

\[J_{tot}(W) = E\left\{\left[\begin{array}{c} X_{0,r_0} - W_H^0 X \\ X_{1,r_1} - W_H^1 X \end{array}\right]\right\}^2 + \mu \left[\begin{array}{c} W_H^0 V \\ W_H^1 V \end{array}\right]^2 \]

\[+ \alpha E\left\{\left[W_H^0 X - ITF_{in}^v W_H^1 X \right]^2 \right\} + \beta E\left\{\left[W_H^0 V - ITF_{in}^v W_H^1 V \right]^2 \right\} \]

ITF preservation speech

ITF preservation noise

- Closed form expression!
- Large \(\beta \) changes direction of speech component to noise component
 \(\rightarrow \) increase weight \(\alpha \) (cf. physical and perceptual evaluation)
Overview of batch algorithm

- Problem statement
- Binaural noise reduction
- Multi-channel Wiener filter
- Preservation of binaural cues
- Experimental results
- Audio demo
- Conclusions

Problem statement

- Binaural noise reduction
- Multi-channel Wiener filter
- Preservation of binaural cues
- Experimental results
- Audio demo
- Conclusions

Overview of batch algorithm

- VAD
- Off-line computation of statistics
 - \(R_v(\omega), \ R_x(\omega) \)
- Calculate binaural input cues and filter
 - \(\mu, \alpha, \beta \)
- Frequency-domain filtering
- IFFT

Equations

- \(Y(\omega) = X(\omega) + V(\omega) \)
- \(W(\omega) = \begin{bmatrix} W_0(\omega) \\ W_1(\omega) \end{bmatrix} \)
- \(Z_0 = Z_{x0} + Z_{v0} \)
- \(Z_1 = Z_{x1} + Z_{v1} \)
Experimental results

- Problem statement
- Binaural noise reduction
- Multi-channel Wiener filter
- Preservation of binaural cues
- Experimental results
 - Physical
 - Perceptual
- Audio demo
- Conclusions

• **Identification of HRTFs:**
 o Binaural recordings on CORTEX MK2 artificial head
 o 2 omni-directional microphones on each hearing aid (d=1cm)
 o LS = -90°:15°:90°, 90°:30°:270°, 1m from head
 o Conditions: $T_{60}=140$ ms, $f_s=16$ kHz, $L=1366$ taps
Experimental results

- Problem statement
- Binaural noise reduction
- Multi-channel Wiener filter
- Preservation of binaural cues
- Experimental results
 - Physical
 - Perceptual
- Audio demo
- Conclusions

• Speech and noise material:
 - Dutch sentences (VU list)
 - Stationary speech-weighted noise with same long-term spectrum as speech material \(\rightarrow \) spatial aspects
 - \(S_0N_{60}, SNR=0 \) dB
 - \(f_s=16 \) kHz, FFT-size \(N=256, \mu=1 \)

• Physical evaluation:
 - Speech intelligibility: \(\Delta SNR \)
 - Localisation: \(\Delta ITD / \Delta ILD \)

• Perceptual evaluation:
 - Preliminary study
 - Speech intelligibility: SRT
 - Localisation: localise S and N
Physical evaluation

- Performance measures:
 - Intelligibility weighted SNR improvement (left/right)
 \[
 \Delta SNR_L = \sum_i I(\omega_i) \Delta SNR_L(\omega_i)
 \]
 important of i-th frequency for speech intelligibility
 - ILD error (speech/noise component) \(\rightarrow\) power ratio
 \[
 \Delta ILD_x = \sum_i |ILD_{out}^x(\omega_i) - ILD_{in}^x(\omega_i)|
 \]
 - ITD error (speech/noise component) \(\rightarrow\) phase of cross-correlation
 \[
 \Delta ITD_x = \sum_i I(\omega_i) \Delta ITD_x(\omega_i)
 \]
 \[
 \Delta ITD_x(\omega_i) = \angle E\{X_{0,\omega_i} X_{1,\omega_i}^*\} - \angle E\{Z_{0} Z_{1}^*\}
 \]
 low-pass filter 1500 Hz
Physical evaluation: SNR

SNR improvement left ear

SNR improvement right ear
Physical evaluation: ILD-ITD

ILD error speech component

ILD error noise component

ITD error speech component

ITD error noise component
Physical evaluation

• Conclusions:
 o β increases: ITD-ILD error of noise component decreases
 ... BUT... ITD-ILD error of speech component increases
 o α increases: ITD-ILD error of speech component decreases
 ... BUT... ITD-ILD error of noise component increases
 o Compromise between speech and noise localisation error possible
 (cf. localisation experiments)
 o SNR improvement only slightly degraded
 (cf. SRT experiments)
Perceptual evaluation

- **Speech intelligibility: SRT**
 - How does parameter β affect speech intelligibility?
 - Two effects: increasing β reduces SNR improvement, but preserves binaural noise cues better, enabling binaural speech intelligibility advantage

- **Localisation performance**
 - How do parameters α and β affect localisation of processed speech and noise components?
 - α: preservation of speech cues, β: preservation of noise cues
Perceptual evaluation: SRT

- Problem statement
- Binaural noise reduction
- Multi-channel Wiener filter
- Preservation of binaural cues
- Experimental results
 - Physical
 - Perceptual
- Audio demo
- Conclusions

- Measurement procedure:
 - SRT = SNR where 50% of speech is intelligible
 - adaptive procedure (2 dB/step)
 - headphone experiments, using HRTFs
 - S_0N_{60} (Dutch VU sentences – stationary noise)
 - presentation level = 65 dB SPL
 - 5 normal-hearing subjects
 - $f_s=16$ kHz, FFT-size $N=256$, $\mu=1$, $\alpha=0$
 - Reference condition = no processing
Perceptual evaluation: SRT

- Results:
 - average SRT without processing = -9.2 dB
 - SRT improvements in the range 11-13 dB
 - Binaural speech intelligibility advantage does not seem to compensate for loss in SNR improvement

![Graph showing SRT improvement with respect to beta]

- Problem statement
- Binaural noise reduction
- Multi-channel Wiener filter
- Preservation of binaural cues
- Experimental results
 - Physical
 - Perceptual
- Audio demo
- Conclusions
Perceptual evaluation: localisation

- Sum of localisation errors S_x and N_0

- Parameters can be tuned to achieve better overall localization performance at the cost of some noise reduction

- Good correlation between physical and perceptual evaluation
Audio demonstration

- **Speech and noise material:**
 - HINT sentences, speech source in front (0°)
 - Multi-talker babble noise at 60°
 - SNR=0 dB, \(f_s = 16 \text{ kHz} \), FFT-size \(N=256 \), \(\mu = 1 \), \(\alpha = 0 \)

<table>
<thead>
<tr>
<th></th>
<th>Noisy</th>
<th>Speech</th>
<th>Noise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output ((\beta = 0))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output ((\beta = 0.05))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output ((\beta = 10))</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conclusions

- Speech enhancement for binaural hearing aids:
 - Improve **speech intelligibility**
 - **Localisation**: preserve binaural speech and noise cues
 - No assumptions about position speech source and microphones

- Suitable algorithm: multi-channel Wiener filter
 - speech cues are preserved noise cues may be distorted

- Preservation of binaural noise cues:
 - **Interaural Wiener filter**: extension with Interaural Transfer Function of noise (and speech) component

- Perceptual evaluation:
 - **S₀N₆₀**: SRT improvements in the range **11-13 dB**
 - Binaural speech intelligibility advantage does not seem to compensate for (small) loss in SNR improvement
 - Parameters can be tuned to achieve better overall localization performance at the cost of some noise reduction
References

References