Design and low-cost implementation of a robust multichannel noise reduction scheme for cochlear implants

Simon Doclo1, Ann Spriet1,2, Jean-Baptiste Maj1,2, Marc Moonen1, Jan Wouters2, Bas Van Dijk3, Jan Janssen3

1Dept. of Electrical Engineering (ESAT-SCD), KU Leuven, Belgium
2Laboratory for Exp. ORL, KU Leuven, Belgium
3Cochlear Technology Centre Europe, Belgium

DARTS, 22 October 2003
Overview

• Problem statement: hearing in background noise
• Adaptive beamforming: GSC
 • not robust against model errors
• Design of robust noise reduction algorithm
 • robust fixed spatial preprocessor
 • robust adaptive stage
• Experimental results
• Low-cost implementation of adaptive stage
 • stochastic gradient algorithms
 • computational complexity + memory requirements
• Conclusions
Problem statement

- Hearing problems effect more than 12% of population

- Digital hearing instruments allow for advanced signal processing, resulting in improved speech understanding

- Major problem: (directional) hearing in background noise
 - reduction of noise wrt useful speech signal
 - multiple microphones + DSP in BTE
 - current systems: simple fixed and adaptive beamforming
 - robustness important due to small inter-microphone distance

Design of robust multi-microphone noise reduction scheme
Cochlear implants

- **Working principle:** sound is converted to electrical stimuli in speech processor, allowing deaf people to hear again.

![Cochlear implants diagram]
Algorithmic requirements

• ‘Blind’ techniques: unknown noise sources and acoustic environment

• Adaptive: time-variant signals and acoustic environment

• Robustness:
 o microphone characteristics (gain, phase, position)
 o other deviations from assumed signal model (e.g. VAD)

• Implementation issues:
 o number of microphones
 o low computational complexity
 o memory
State-of-the art noise reduction

- **Single-microphone techniques:**
 - spectral subtraction, Kalman filter, subspace-based
 - only temporal and spectral information → **limited performance**

- **Multi-microphone techniques:**
 - exploit spatial information
 - *Fixed beamforming*: fixed directivity pattern
 - *Adaptive beamforming* (e.g. GSC): adapt to different acoustic environments → improved performance

 - Sensitive to a-priori assumptions
 - *Multi-channel Wiener filtering* (MWF): MMSE estimate of speech component in microphones → improved robustness

Robust scheme, encompassing both GSC and MWF
Adaptive beamforming: GSC

- **Fixed spatial preprocessor:**
 - Fixed beamformer creates speech reference \(y_0[k] \)
 - Blocking matrix creates noise references \(y_i[k] = x_i[k] + v_i[k] \)
- **Adaptive noise canceller:**
 - Standard GSC minimises output noise power

\[
\begin{align*}
\min_{\mathbf{w}[k]} & \left\{ \mathbf{v}_0[k] - \mathbf{w}^T[k] \mathbf{v}[k] \right\}^2 \\
\mathbf{w}[k] & = \begin{bmatrix} \mathbf{w}_1^T[k] & \mathbf{w}_2^T[k] & \cdots & \mathbf{w}_{N-1}^T[k] \end{bmatrix}^T \\
\mathbf{v}[k] & = \begin{bmatrix} \mathbf{v}_1^T[k] & \mathbf{v}_2^T[k] & \cdots & \mathbf{v}_{N-1}^T[k] \end{bmatrix}^T
\end{align*}
\]
Robustness against model errors

- Spatial preprocessor and adaptive stage rely on assumptions (e.g. no microphone mismatch, no reverberation, ...)
- In practice, these assumptions are often not satisfied
 - Distortion of speech component in speech reference $x_0[k]
 - Leakage of speech into noise references, i.e. $x[k] \neq 0$

Speech component in output signal gets distorted

$$z_x[k] = x_0[k - \Delta] - w^T[k]x[k]$$

- Design of robust noise reduction algorithm:
 1. Design of robust spatial preprocessor (fixed beamformer) using statistical knowledge about microphone characteristics
 2. Design of robust adaptive stage by taking speech distortion into account in optimisation criterion \rightarrow speech distortion weighted multichannel Wiener filter (SDW MWF)

Limit distortion both in $x_0[k]$ and $w^T[k]x[k]$
Design of fixed beamformer

- **FIR filter-and-sum structure**: arbitrary spatial directivity pattern for arbitrary microphone configuration
- **Objective**: calculate fixed FIR filters $w_n[k]$ such that beamformer performs desired spatial and spectral filtering

Spatial directivity pattern: $H(\omega, \theta) = \frac{Z(\omega, \theta)}{S(\omega)} = w^T g(\omega, \theta)$

Desired spatial directivity pattern: $D(\omega, \theta)$
Design procedures

- Design filter \(\mathbf{w} \) such that spatial directivity pattern \(H(\omega, \theta) \) optimally fits \(D(\omega, \theta) \) → minimisation of cost function
 - Broadband problem: no design for separate frequencies \(\omega_i \)
 → design over complete frequency-angle region

- Cost functions:
 - Least-squares → quadratic function
 \[
 J_{LS}(\mathbf{w}) = \int_{\Theta} \int_{\Omega} F(\omega, \theta) \left[H(\omega, \theta) - D(\omega, \theta) \right]^2 d\omega d\theta
 \]
 amplitude and phase
 - Non-linear cost function → iterative optimisation = complex!
 \[
 J_{NL}(\mathbf{w}) = \int_{\Theta} \int_{\Omega} F(\omega, \theta) \left[\left| H(\omega, \theta) \right|^2 - \left| D(\omega, \theta) \right|^2 \right]^2 d\omega d\theta
 \]
 only amplitude
 - Eigenfilter based on TLS-criterion → GEVD
 \[
 J_{TLS}(\mathbf{w}) = \int_{\Theta} \int_{\Omega} F(\omega, \theta) \frac{\left[H(\omega, \theta) - D(\omega, \theta) \right]^2}{\mathbf{w}^T \mathbf{Q}_{e}^{tot} \mathbf{w} + 1} d\omega d\theta
 \]
Simulations

Parameters:
- $N=5$, $d=4\text{cm}$
- $L=20$, $f_s=8\text{kHz}$
- Pass: $40^\circ-80^\circ$
- Stop: $0^\circ-30^\circ + 90^\circ-180^\circ$

Delay-and-sum

Non-linear procedure

TLS-Eigenfilter
Robust broadband beamforming

- Small deviations from assumed microphone characteristics (gain, phase, position) → large deviations from desired directivity pattern, especially for small-size microphone arrays
- In practice microphone characteristics are never exactly known
 - Measurement or calibration procedure
 - Incorporate specific (random) deviations in design

\[A_n(\omega, \theta) = a_n(\omega, \theta) \cdot e^{-j\psi_n(\omega, \theta)} \cdot e^{-j\omega \delta_n \cos \theta f_s / c} \]

- Consider all feasible microphone characteristics and optimise
 - average performance using probability as weight

\[J_{\text{mean}} = \int_{A_0} \ldots \int_{A_{N-1}} J(A_0, \ldots, A_{N-1}) f_A(A_0) \ldots f_A(A_{N-1}) dA_0 \ldots dA_{N-1} \]

 - requires statistical knowledge about probability density functions
 - worst-case performance → minimax optimisation problem
 - finite grid of microphone characteristics → high complexity
Simulations

- Non-linear design procedure
- N=3, positions: [-0.01 0 0.015] m, L=20, f_s=8 kHz
- Passband = 0°-60°, 300-4000 Hz (endfire)
 Stopband = 80°-180°, 300-4000 Hz
- Robust design - average performance:
 Uniform pdf = gain (0.85-1.15) and phase (-5°-10°)
- Deviation = [0.9 1.1 1.05] and [5° -2° 5°]

<table>
<thead>
<tr>
<th>Design</th>
<th>J</th>
<th>J_{dev}</th>
<th>J_{mean}</th>
<th>J_{max}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-robust</td>
<td>0.1585</td>
<td>87.131</td>
<td>275.40</td>
<td>3623.6</td>
</tr>
<tr>
<td>Average cost</td>
<td>0.2196</td>
<td>0.2219</td>
<td>0.3371</td>
<td>0.4990</td>
</tr>
<tr>
<td>Maximum cost</td>
<td>0.1707</td>
<td>0.1990</td>
<td>0.4114</td>
<td>0.4167</td>
</tr>
</tbody>
</table>
Introduction
- Fixed beamforming
 - Broadband design
 - Robustness
- Adaptive stage
- Implementation
- Conclusions

Simulations

<table>
<thead>
<tr>
<th>Non-robust design</th>
<th>Robust design</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Angle (deg)**
- **Frequency (Hz)**
- **dB**
<table>
<thead>
<tr>
<th>Non-robust design</th>
<th>Robust design</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Design of robust adaptive stage

- Distorted speech in output signal: \(z_x[k] = x_0[k - \Delta] - w^T[k] x[k] \)

- Robustness: limit \(w^T[k] x[k] \) by controlling adaptive filter \(w[k] \)
 - Quadratic inequality constraint (QIC): \(\|w[k]\| \leq \beta \)
 - conservative approach, constraint \(\neq f(\text{amount of leakage}) \)
 - Take speech distortion into account in optimisation criterion
 \[
 \min_{w[k]} E\left\{ (v_0[k - \Delta] - w^T[k] v[k])^2 \right\} + \frac{1}{\mu} E\left\{ (w^T[k] x[k])^2 \right\}
 \]
 noise reduction \quad speech distortion
 - \(1/\mu \) trades off noise reduction and speech distortion
 - \(1/\mu = 0 \) or no speech leakage \(\rightarrow \) GSC
 - \(1/\mu = 1 \) \(\rightarrow \) MMSE estimate of speech component in speech reference signal
 - Regularisation term \(\sim \) amount of speech leakage

\[\rightarrow\] Limit speech distortion, while not affecting noise reduction performance in case of no model errors \(\leftrightarrow \) QIC
Wiener solution

- **Optimisation criterion:**

\[
\begin{align*}
\min_{w[k]} E\left\{ (v_0[k - \Delta] - w^T[k]v[k])^2 \right\} + \frac{1}{\mu} E\left\{ (w^T[k]x[k])^2 \right\}
\end{align*}
\]

\[
w[k] = \left[\frac{1}{\mu} E\{x[k]x^T[k]\} + E\{v[k]v^T[k]\} \right]^{-1} E\{v[k]v_0[k - \Delta]\}
\]

- **Problem:** clean speech \(x[k]\) and hence speech correlation matrix \(E\{x[k]x^T[k]\}\) are unknown!

Approximation: \(E\{x[k]x^T[k]\} = E\{y[k]y^T[k]\} - E\{v[k]v^T[k]\}\)

\[
w[k] = \left[\frac{1}{\mu} E\{x[k]x^T[k]\} + \left(1 - \frac{1}{\mu} \right) E\{v[k]v^T[k]\} \right]^{-1} E\{v[k]v_0[k - \Delta]\}
\]

- **VAD (voice activity detection) mechanism required!**

- **Introduction**
- **Fixed beamforming**
- **Adaptive stage**
 - SP SDW MWF
 - Experimental validation
- **Implementation**
- **Conclusions**
Spatially-preprocessed SDW-MWF (1)

- In new optimisation criterion additional filter $w_0[k]$ on speech reference signal may be added

$$\min_{w[k]} E\left\{ (v_0[k - \Delta] - w^T[k] v[k])^2 \right\} + \frac{1}{\mu} E\left\{ (w^T[k] x[k])^2 \right\}$$

$$w[k] = [w_0^T[k] \quad w_1^T[k] \quad \cdots \quad w_{N-1}^T[k]]^T$$

⇒ Speech Distortion Weighted Multichannel Wiener Filter (SDW-MWF)
Spatially-preprocessed SDW-MWF (2)

- SP-SDW-MWF encompasses both GSC and SDW-MWF as special cases:
 - No filter $w_0[k]$ on speech reference
 - speech distortion regularised GSC (SDR-GSC)
 - regularisation term added to GSC: the larger the speech leakage, the larger the regularisation
 - special case: $1/\mu = 0$ corresponds to traditional GSC
 - SDR-GSC outperforms GSC with quadratic inequality constraint
 - Filter $w_0[k]$ on speech reference
 - SDW-MWF on pre-processed microphone signals
 - in absence of model errors = cascade of GSC + single-channel postfilter (SDW Wiener filter)
 - Model errors do not effect its performance!

Outperforms QIC-GSC and SDR-GSC
Experimental validation (1)

- Set-up:
 - 3-mic BTE mounted on dummy head in office room (d = 1cm, 1.5cm)
 - Speech source in front of dummy head (90°)
 - 5 stationary speech-like noise sources: 75°, 120°, 180°, 240°, 285°
 - Microphone gain mismatch Ψ₂ at 2nd microphone

- Performance measures:
 - Intelligibility-weighted signal-to-noise ratio
 \[\text{SNR}_{\text{intellig}} = \sum_{i=1}^{I} I_i \text{SNR}_i \]
 - \(I_i \) = band importance of \(i \)th one-third octave band
 - \(\text{SNR}_i \) = signal-to-noise ratio in \(i \)th one-third octave band
 - Intelligibility-weighted spectral distortion
 \[\text{SD}_{\text{intellig}} = \sum_{i=1}^{I} I_i \text{SD}_i \]
 - \(\text{SD}_i \) = average spectral distortion in \(i \)th one-third octave band

\[\text{SD}_i = \frac{\int_{2^{-1/6}}^{2^{1/6}} f_{c,i} \left| 10 \log_{10} G_x(f) \right| df}{\left(2^{1/6} - 2^{-1/6}\right)f_{c,i}} \]

\[G_x(f) = \frac{E\left\{Z_x^2(f)\right\}}{E\left\{X^2(f)\right\}} \]

(Power Transfer Function for speech component)
Experimental validation (2)

- **SDR-GSC: \(w_0 = 0 \)**
 - GSC (1/\(\mu = 0 \)): degraded performance if significant leakage
 - 1/\(\mu > 0 \) increases robustness (speech distortion \(\leftrightarrow \) noise reduction)

- **SP-SDW-MWF: \(w_0 \neq 0 \)**
 - No mismatch: same \(\Delta \text{SNR}_{\text{ intellig}} \) as SDR-GSC, larger \(\Delta \text{SD}_{\text{ intellig}} \) due to SDW-WF post-filter
 - Performance is not degraded by mismatch
Experimental validation (3)

- GSC with QIC (\(\| w[k] \| \leq \beta \)) : QIC increases robustness GSC
 - QIC \(\neq f(\text{amount of speech leakage}) \) \(\rightarrow \) less noise reduction than SDR-GSC for small mismatch
- For large mismatch: less noise reduction than SP-SDW-MWF

SP-SDW-MWF achieves better noise reduction than QIC-GSC, for a given maximum speech distortion level
Low-cost implementation (1)

- **Algorithms** (in decreasing order of complexity):
 - GSVD-based – *chic et très cher*
 - QRD-based, fast QRD-based – *chic et moins cher*
 - Stochastic gradient algorithms – *chic et pas cher*

- **Stochastic gradient algorithm (time-domain):**

 - Cost function

 \[J(w) = E\left\{ \left(v_0[k - \Delta] - w^T[k]v[k]\right)^2 \right\} + \frac{1}{\mu} E\left\{ w^T[k]x[k] \right\} \]

 results in LMS-based updating formula

 \[w[k+1] = w[k] + \rho[v[k]v_0[k - \Delta] - v^T[k]w[k]] - \frac{1}{\mu}x[k]x^T[k]w[k] \]

 - Classical GSC
 - regularisation term

 - Allows transition to classical LMS-based GSC by tuning some parameters (1/\(\mu\), \(w_0\))
Low-cost implementation (2)

- **Stochastic gradient algorithm (time-domain):**
 - Regularisation term $-\frac{1}{\mu}x[k]x^T[k]w[k]$ is unknown
 - Store samples in memory buffer during speech-and-noise periods and approximate regularisation term
 - Large buffer required
 - Better estimate of regularisation term can be obtained by smoothing (low-pass filtering)

- **Stochastic gradient algorithm (frequency-domain):**
 - Block-based implementation: improve gradient estimate by averaging over K samples
 - Frequency-domain: fast convolution and fast correlation
 - Complexity reduction
 - Tuning of ρ and $1/\mu$ per frequency
 - Still large memory requirement due to data buffers
 - Approximations allow to replace data buffers by correlation matrices in frequency-domain \rightarrow memory reduction
Complexity + memory

- Parameters: \(N = M = 2 \) (\#mics, \#adaptive filters), \(L = 64, f_s = 16\text{kHz}, L_{buf} = 10000 \)
- Computational complexity:

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Complexity</th>
<th>MIPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>QIC-GSC</td>
<td>((3N-1)\text{FFT} + 14N - 12)</td>
<td>1.38</td>
</tr>
<tr>
<td>SDW-MWF (no approximation)</td>
<td>((3M+5)\text{FFT} + 28M + 6)</td>
<td>3.46</td>
</tr>
<tr>
<td>SDW-MWF (approximations)</td>
<td>((3M+2)\text{FFT} + 8M^2 + 14M + 3)</td>
<td>2.8</td>
</tr>
</tbody>
</table>

Complexity comparable to FD implementation of QIC-GSC

- Memory requirement:

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Memory</th>
<th>kWords</th>
</tr>
</thead>
<tbody>
<tr>
<td>QIC-GSC</td>
<td>(4(N-1)L + 6L)</td>
<td>0.64</td>
</tr>
<tr>
<td>SDW-MWF (no approximation)</td>
<td>(2ML_{buf} + 6LM + 7L)</td>
<td>41.22</td>
</tr>
<tr>
<td>SDW-MWF (approximations)</td>
<td>(4LM^2 + 6LM + 7L)</td>
<td>2.24</td>
</tr>
</tbody>
</table>

Substantial memory reduction through approximations
Conclusions

- **Design of robust multimicrophone noise reduction algorithm:**
 - Design of robust fixed spatial preprocessor
 - need for statistical information about microphones
 - Design of robust adaptive stage
 - take speech distortion into account in cost function
 - **Spatially pre-processed SDW Multichannel Wiener Filter**
- SP-SDW-MWF encompasses GSC and MWF as special cases
- **Experimental results:**
 - SP-SDW-MWF achieves better noise reduction than QIC-GSC, for a given maximum speech distortion level
 - Filter w_0 improves performance in presence of model errors
- **Implementations:** Stochastic gradient algorithms available at affordable complexity and memory
- **Further research:** robustness against VAD-errors
 - e.g. parameters dependent on input SNR
Relevant publications

Available at SISTA publication engine: http://www.esat.kuleuven.ac.be/~sistawww/cgi-bin/pub.pl