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IMoST AN’s Mission

To support the prediction of the safety impact of an ADAS in
early design phases

� based on a model-based analysis process,
� taking into account human-in-the-loop dynamics,
� providing quantitative figures.
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Model-based analysis in the design of
advanced driver assistance systems

speed

coverage

availability
realism

risk

cost & time

· IMoSTII Public Presentation: Model-Based Analysis · 3 / 38



Model-based analysis in the design of
advanced driver assistance systems

speed

coverage

availability
realism

risk

cost & time

A thousand design flaws eliminated before the first expensive prototype is built.
All the usual benefits from model−based design:

· IMoSTII Public Presentation: Model-Based Analysis · 3 / 38



Model-based analysis in the design of
advanced driver assistance systems

speed

coverage

availability
realism

risk

cost & time

A thousand design flaws eliminated before the first expensive prototype is built.
All the usual benefits from model−based design:

Improved coverage of risky situations, rare situations, hard to provoke situtations...

Enhances safety analysis:
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The challenge

To achieve reliable predictions of
� behavior and
� safety impact

of assistance systems from extremely heterogeneous models
incorporating
� diverse types of agent models

� operator models, covering cognition, perception, and motor behavior
� vehicle and environment dynamics
� assistance and control systems (functional and non-funct. aspects)

� with various forms of probabilistic and non-deterministic behavior
� unmodelled entities, open inputs, parameter variations, noise, etc.
� mental states & decisions

� and a plethora of temporal interaction patterns
� hybrid time featuring durational and instantaneous actions
� event-driven, time-driven, and rate-driven dynamics
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� operator models, covering cognition, perception, and motor behavior
� vehicle and environment dynamics
� assistance and control systems (functional and non-funct. aspects)

� with various forms of probabilistic and non-deterministic behavior
� unmodelled entities, open inputs, parameter variations, noise, etc.
� mental states & decisions

� and a plethora of temporal interaction patterns
� hybrid time featuring durational and instantaneous actions
� event-driven, time-driven, and rate-driven dynamics

“Prediction is very difficult, especially about the future.”

[Niels Bohr]
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+ (state−dependent) mode shifts

+ triggered events

   differential equations

= hybrid discrete−continuous systems
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Ingredients of driver-in-the-loop model
[based on cognitive architecture CASCaS; Eilers, Lüdtke, Weber Wortelen 2008–]
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Finite vector of state bits: CarAhead, ...

Finite vector of continuous registers: Distance, ...
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Continuous feedback control
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Analysing the ADAS in the Loop
The model

� essentially is a stochastic hybrid system,

� albeit with extremely large state space,

� residing in a heterogeneous ensemble of COTS simulators (driving
simulator, cognitive architecture, Simulink-Stateflow model of ADAS,
models of sensors, . . . ),

� many of which are black boxes.
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Analysing the ADAS in the Loop
The model

� essentially is a stochastic hybrid system,

� albeit with extremely large state space,

� residing in a heterogeneous ensemble of COTS simulators (driving
simulator, cognitive architecture, Simulink-Stateflow model of ADAS,
models of sensors, . . . ),

� many of which are black boxes.

Only reasonable analysis technique consequently is co-simulation

is i.g. linear in the number of state bits, etc.

thus cheap and fast

but covers just one model / trajectory per run

thus remains inherently incomplete (unless even higher computational
cost than in exhaustive search is accepted)

? can it answer the following questions with any kind of confidence?

� in a qualitative setting: does system satisfy property?
� in a stochastic setting: is the probability of satisfaction > θ?
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Step I

Setting up a Faithful Co-Simulation
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The Task

Problem: Set up a co-simulation that
� unifies multiple models of (sub-)system dynamics:

� Discrete (equidistant) time; continuous time;
event-driven dynamics

� Newtonian or Markovian state dynamics

� bridges simulation time models:
� real-time (wall-clock) time vs. virtual (simulation) time

� permits component plug-and-play:
� should support full virtual model (incl. cognitive

components)
� should also work in interactive driving simulation with

real driver in the loop.

Solution: Use infrastructure (“bus”) mediating transparently
between heterogeneous simulators.
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Co-simul. of heterogeneous models [Puch et al. 2009–]
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Co-simul. of heterogeneous models [Puch et al. 2009–]

Using HLA [IEEE Std. 1516], the co-simulation

� enforces temporal and state consistency between the individual
components, despite heterogeneous time models,

� is input-to-state deterministic
(when replacing stochastic sources by inputs)
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Co-simul. of heterogeneous models [Puch et al. 2009–]

� Scope of temporal and state consistency extends to various analysis
tools and experiment data bases.

� For all these, it is transparent whether they are coupled to
1 an autonomous simulation incorporating a driver model,
2 an interactive simulation in one of the various driving simulators.
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Step II

Statistical Model-Checking — The Very Idea
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Statistical Model Checking — the very Idea

In a purely stochastic setting, we can generalize from samples:
� Given a stochastic process P, a random variable x ∈ [0, 1] in P,

we approximate the expected value Ex of x in P by
1 taking n random samples (i.e., simulation runs),

each yielding a value xi, i ∈ {1, . . . , n}, for x,
2 then computing the estimate Ẽx = 1

n

∑n

i=1
xi.
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2 then computing the estimate Ẽx = 1

n

∑n

i=1
xi.

� The law of large numbers tells that given sufficiently large n, the
estimate Ẽx is unlikely to be far off
� as a considerable over- or underestimation of Ex would require

samples with an accumulation of one-sided errors,
� which are peculiar samples and thus unlikely.
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we approximate the expected value Ex of x in P by
1 taking n random samples (i.e., simulation runs),

each yielding a value xi, i ∈ {1, . . . , n}, for x,
2 then computing the estimate Ẽx = 1

n

∑n

i=1
xi.

� The law of large numbers tells that given sufficiently large n, the
estimate Ẽx is unlikely to be far off
� as a considerable over- or underestimation of Ex would require

samples with an accumulation of one-sided errors,
� which are peculiar samples and thus unlikely.

� The exact figure is given by Hoeffding’s inequality: For all t > 0,

Pr(Ẽx − Ex ≥ t) ≤ e−2nt2 , Pr(Ẽx − Ex ≤ −t) ≤ e−2nt2

� independent of P’s structural properties, like probability distributions,
size of state set, etc.,

� provided sampling is random in the sense of stochastic independence
between draws of individual samples.
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Statistical Model Checking [Younes, Simmons 2002–]

Given a property Ex ≤ θ, with θ ∈ (0, 1),

� e.g. x =

{
1 iff (simulated) trajectory reaches a bad state,
0 else,

� such that Ex ≤ θ means risk of misbehavior is at most θ,

let’s try to “verify” Ex ≤ θ by random sampling:

1 add a small don’t care range t s.t. any answer is acceptable if
Ex ∈ [θ− t, θ+ t]

2 collect n random samples and compute ε = Ẽx − θ,

3 test whether ε ≤ 0.

· IMoSTII Public Presentation: Model-Based Analysis · 14 / 38



Statistical Model Checking [Younes, Simmons 2002–]

Given a property Ex ≤ θ, with θ ∈ (0, 1),

� e.g. x =

{
1 iff (simulated) trajectory reaches a bad state,
0 else,

� such that Ex ≤ θ means risk of misbehavior is at most θ,

let’s try to “verify” Ex ≤ θ by random sampling:

1 add a small don’t care range t s.t. any answer is acceptable if
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Hoeffding’s inequality tells us how to interpret the outcome:
� If ε ≤ 0 then we can say that the property is satisfied,

� If ε > 0 then we can say that the property is violated
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let’s try to “verify” Ex ≤ θ by random sampling:

1 add a small don’t care range t s.t. any answer is acceptable if
Ex ∈ [θ− t, θ+ t]

2 collect n random samples and compute ε = Ẽx − θ,

3 test whether ε ≤ 0.

Hoeffding’s inequality tells us how to interpret the outcome:
� If ε ≤ 0 then we can say that the property is satisfied,

but only with confidence 1− e−2nt2 .
� If ε > 0 then we can say that the property is violated

but only with confidence 1− e−2nt2 .
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Statistical Model Checking [Younes, Simmons 2002–]

Given a property Ex ≤ θ, with θ ∈ (0, 1),

� e.g. x =

{
1 iff (simulated) trajectory reaches a bad state,
0 else,

� such that Ex ≤ θ means risk of misbehavior is at most θ,

let’s try to “verify” Ex ≤ θ by random sampling:

1 add a small don’t care range t s.t. any answer is acceptable if
Ex ∈ [θ− t, θ+ t]

2 collect n random samples and compute ε = Ẽx − θ,

3 test whether ε ≤ 0.

Hoeffding’s inequality tells us how to interpret the outcome:
� If ε ≤ 0 then we can say that the property is satisfied,

but only with confidence 1− e−2nt2 .
� If ε > 0 then we can say that the property is violated

but only with confidence 1− e−2nt2 .
� which means that we are misled by false positives / false negatives

with probability e−2nt2 .
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Interpretation of result
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Obs.: P(false certificate) → 0 if n → ∞ or t → max(θ, 1− θ).
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But what if safety targets are high and interesting events are rare?
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Hardness: What safety targets are we after?

� Statistically1, we have one injury per 1.46 · 106km road traffic.
If every tenth collision is assumed to lead to some injury, this
means one collision every 1.5 · 105km on average.

1Ingeborg Vorndran: Unfallstatistik — Verkehrsmittel im Risikovergleich.
Statistisches Bundesamt, 12/2010
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5 · 10−6 to 10−5 per maneuver — the latter if we accept filtering in
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Hardness: What safety targets are we after?

� Statistically1, we have one injury per 1.46 · 106km road traffic.
If every tenth collision is assumed to lead to some injury, this
means one collision every 1.5 · 105km on average.

� I.e., likelihood of collision during filtering in should be of order
5 · 10−6 to 10−5 per maneuver — the latter if we accept filtering in
being of above average risk.

Can we assess such reliability figures by simulation / SMC?

1Ingeborg Vorndran: Unfallstatistik — Verkehrsmittel im Risikovergleich.
Statistisches Bundesamt, 12/2010
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verification by simulation

(c = 0.99)

model checking
probabilistic

exhaustive exploration

4,603 simul. runs

46,050 simul. runs

statistical
model checking

460,515 simul. runs

model checking

where we
need to be

when a single run takes 2.5 minutes.

460,515 simul. runs take approx. 2.2 years

sampling, but only if design exceeds safety target.

−> Design to death or analyze to death!

Smaller no. of simulation runs possible w. sequential
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Step III

Enhancing Statistical Model Checking
by Guided Simulation
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Cures suggested in the literature

To reduce the number of samples necessary for achieving a given confidence

� Zuliani , Platzer , and Clarke suggests Bayesian Statistical Model
Checking [Zuliani , Platzer , Clarke 2010]

� but this is prone to fallacies of Bayesian inference in case of (even
moderately) rare events [Younjoo Kim, Moonzoo Kim, Taihyo Kim 2012]
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Cures suggested in the literature

To reduce the number of samples necessary for achieving a given confidence

� Zuliani , Platzer , and Clarke suggests Bayesian Statistical Model
Checking [Zuliani , Platzer , Clarke 2010]

� but this is prone to fallacies of Bayesian inference in case of (even
moderately) rare events [Younjoo Kim, Moonzoo Kim, Taihyo Kim 2012]

To deal with rare events,

� Zuliani, Baier, and Clarke suggest an adaptation of importance sampling
to give rare events a boost:

Ẽx =
1

n

n∑

i=1

p(xi)

p̂(xi)
V(xi)

where p̂ is a modified distribution used for sampling the xi which
emphasizes the rare events [Zuiliani, Baier, Clarke 2012].

� Has been successfully applied to technical models, where the rare events
are primary faults (like sensor faults in Simulink’s fault-tolerant fuel cell
demo) s.t. the necessary modification p p̂ is obvious.
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� Zuliani , Platzer , and Clarke suggests Bayesian Statistical Model
Checking [Zuliani , Platzer , Clarke 2010]

� but this is prone to fallacies of Bayesian inference in case of (even
moderately) rare events [Younjoo Kim, Moonzoo Kim, Taihyo Kim 2012]

To deal with rare events,

� Zuliani, Baier, and Clarke suggest an adaptation of importance sampling
to give rare events a boost:

Ẽx =
1

n

n∑

i=1

p(xi)

p̂(xi)
V(xi)

where p̂ is a modified distribution used for sampling the xi which
emphasizes the rare events [Zuiliani, Baier, Clarke 2012].

� Has been successfully applied to technical models, where the rare events
are primary faults (like sensor faults in Simulink’s fault-tolerant fuel cell
demo) s.t. the necessary modification p p̂ is obvious.

� Unclear how to apply this to probabilistic decisions in cognitive models.
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The need for identifying the important events

In human-in-the-loop models, an obvious monotonicity between the
primary stochastic events (e.g., look now or later) and the rare events
to be observed (e.g., accidents) is missing:

� Is it more risky to look 20ms earlier rather than later? Or vice
versa?

� Is it more risky to watch the side mirror first and then the inner
one? Or vice versa?
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The need for identifying the important events

In human-in-the-loop models, an obvious monotonicity between the
primary stochastic events (e.g., look now or later) and the rare events
to be observed (e.g., accidents) is missing:

� Is it more risky to look 20ms earlier rather than later? Or vice
versa?

� Is it more risky to watch the side mirror first and then the inner
one? Or vice versa?

Before (or while) employing importance sampling,
we first have to learn what events are important and when/how.
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Criticality-guided simulation

Idea: Make simulation a daredevil, greedy for risk.
� Good heuristic measures for distance to hazardous situation are

often easy to obtain: e.g., estimated time to collision.
� Use these “criticality functions” to attract simulation towards risk:

� Bias random sources to prefer values with high criticality,
� thus becoming greedy for risk,
� while retaining a randomized process eventually covering the signal

space.
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Problem:
� Criticality is naturally measured in terms of the system response

rather than the input stimuli s.t. a direct assessment of the
available choices usually is impossible.
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� Good heuristic measures for distance to hazardous situation are

often easy to obtain: e.g., estimated time to collision.
� Use these “criticality functions” to attract simulation towards risk:

� Bias random sources to prefer values with high criticality,
� thus becoming greedy for risk,
� while retaining a randomized process eventually covering the signal

space.

Problem:
� Criticality is naturally measured in terms of the system response

rather than the input stimuli s.t. a direct assessment of the
available choices usually is impossible.

Idea:
� Adaptively fit a criticality function to input stimuli based on

observed criticality of system response.
� Use interpolation to assess stimulus values not encountered before.
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Schematic view: standard randomized simulation
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Schematic view: standard randomized simulation

x

P(x)

Very unlikely to find hazardous situations,
especially in higher-dimensional search spaces.
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Schematic view: criticality-guided simulation
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Schematic view: criticality-guided simulation

x

P(x)

Crit(x)

Active guiding towards hazardous situations,
provided criticality function yields reasonable
heuristic measure.
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Effect of guiding — benchmark results

Scenario: Driving at a winding road with
different curve radii

� Target speed 100km

h

� Secondary in-vehicle task:
read displayed numbers

Question: How likely is the distraction to cause a near hit of a bridge
pillar far down the track?
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Effect of guiding — benchmark results

Scenario: Driving at a winding road with
different curve radii

� Target speed 100km

h

� Secondary in-vehicle task:
read displayed numbers

Question: How likely is the distraction to cause a near hit of a bridge
pillar far down the track?

Result: Within 10k
simulations (≈ 1

week simulation
time), only guided
simulation could
provide reasonable
yield of near-hits,
i.e., a useful statistics
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Step IV

Getting the Most out of Simulation Time
by Trajectory Recombination

· IMoSTII Public Presentation: Model-Based Analysis · 26 / 38



Rationale

Problem: Simulation still is extremely time-consuming:

� 10k simulations ≈ 1 week simulation time
� need to get into at least that range:

� w/o importance sampling: need ≈ 2.5m simulations
(safety target 4 · 10−6 at confidence 99%)

� with gain factor 1000: still need ≈ 2.5k simulations
⇒ still unsuitable for desktop use

Idea: Enhance simulation coverage (and thus statistics)
through recombination (rather than computation) of
simulation runs.
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Problem: Simulation still is extremely time-consuming:

� 10k simulations ≈ 1 week simulation time
� need to get into at least that range:

� w/o importance sampling: need ≈ 2.5m simulations
(safety target 4 · 10−6 at confidence 99%)

� with gain factor 1000: still need ≈ 2.5k simulations
⇒ still unsuitable for desktop use

Idea: Enhance simulation coverage (and thus statistics)
through recombination (rather than computation) of
simulation runs.

Approach: Collect trajectory segments;
recombine at crossing points (or at near hits).
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State-space exploration by rapidly exploring
random forests (RRF)
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A novel extension of rapidly exploring random trees, as successfully used in

robotics [LaValle, Kuffner 2001] and hybrid systems [Nahhal, Dang 2007–]

for reachability, to quantitative analysis of stochastic systems.
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Recombination of trajectory segments from RRF

x1

x2

x3
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Recombination of trajectory segments from RRF

ε

x1

x2

x3

Likelihood of ε-jumps evaluated
based on

� probability in a learnt
low-dimensional model of
reasonable trajectories in traffic

� arithmetic constraint solving
applied for eliminating physically
infeasible ε-bridges (first
experiments)

Likelihood of tree branches inherited
from importance sampling.
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Step V

Mined Models Complementing Mind Models
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Constructing stochastic models by data mining:
Rationale

1 The cognitive model is a postulate
� need a “measurable” model of normative behavior to validate (and

optimize) it

2 ADAS shall provide help when driver is in need — not domineer
over the driver
� need a quantitative model of risk / controllability / . . . for ADAS

trigger design

3 Detailed co-simulation covers rather isolated maneuvers (e.g.,
filtering in) only; i.e., SMC computes conditional probabilities only
� need to interface to models computing “background” probabilities
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Mining stochastic models: Langevin analysis of
human-in-the-loop dynamics [Langner, Peinke 2008–]

Derives a potential-based model of the joint dynamics of driver and car with
or without assistance

� derivation is automatic from experimental data using an extension of the
Langevin method

� extension is able to deal with scarce and non-equidistant samples
[Langner, Peinke 2010]
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Mining stochastic models: Langevin analysis of
human-in-the-loop dynamics [Langner, Peinke 2008–]

Derives a potential-based model of the joint dynamics of driver and car with
or without assistance

� derivation is automatic from experimental data using an extension of the
Langevin method

� extension is able to deal with scarce and non-equidistant samples
[Langner, Peinke 2010]

� results in a stochastic vector field able to faithfully reconstruct global
trajectories from a low-dimensional, homogeneous, Markovian model

� can be used for assessing the holistic co-simulation
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Use of mined model in ADAS design

� Langevin model provides extrapolation of situation

� Can be used for computing (expected) time to collision

� Which can be converted into a risk map:

� Provides information on reasonable time/situation for
� when to trigger the ADAS dialogues,
� where to guide the driver.
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Step VI

Requirements Specification
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Visual system specification

Goal: A formal, visual, spatio-temporal logic for concisely expressing
movements of traffic agents in space and time

Approach: A spatio-temporal counterpart to MSCs/LSCs, designed to

1 enhance communication between traffic psychologists, system
engineers, software engineers

2 permit automatic on-line evaluation of driving experiments /
simulations wrt. formal specifications (including animation of spec.)

3 serve as a concise and expressive filter when browsing experiment
data bases
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Discussion
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Problems addressed by IMoST AN

1 Simulation explores only one trajectory per simulation run:
� coverage?
� generation of interesting inputs for open systems?
� estimation of probability of hazardous behaviour?

2 Analysis of simulation results:
� lacking a mechanism for generating interesting input, hazardous

situations can only (if ever) be found by simulating enourmous
numbers of different scenarios

� how to find the needle in the haystack of simulation runs?

3 Human models inevitably are approximations only:
� impact on safety assessment unclear.

4 Accidents in human-controlled traffic are extremely rare
events:
� very unlikely to see a statistically relevant number of accidents in any

reasonable number of simulation runs.
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