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ABSTRACT

In many speech applications such as hands-free telephony or voice-controlled home
assistants, the distance between the user and the recording microphones can be
relatively large. In such a far-field scenario, the recorded microphone signals are
typically corrupted by noise and reverberation, which may severely degrade the
performance of speech recognition systems and reduce intelligibility and quality of
speech in communication applications. In order to limit these effects, speech en-
hancement algorithms are typically applied. The main objective of this thesis is
to develop novel speech enhancement algorithms for noisy and reverberant environ-
ments and signal-based measures to evaluate these algorithms, focusing on solutions
that are applicable in realistic scenarios.

First, we propose a single-channel speech enhancement algorithm for joint noise and
reverberation reduction. The proposed algorithm uses a spectral gain to enhance
the input signal, where the gain is computed using a combination of a statistical
room acoustics model, minimum statistics and temporal cepstrum smoothing. This
single-channel spectral enhancement algorithm can be combined easily with exist-
ing beamforming techniques when multiple microphones are available. Evaluation
results show that the proposed algorithm is able to improve speech recognition
accuracy, when using clean as well as multi-condition training data. In addition,
signal-based measures and the results of a listening test show that the proposed
algorithm is beneficial in terms of both speech quality and reverberation suppres-
sion. In the REVERB Challenge, the proposed single-channel speech enhancement
algorithm has obtained the best performance in terms of subjective speech quality
among all submitted single-channel algorithms.

Second, we propose two non-intrusive speech quality measures that combine per-
ceptually motivated features and predicting functions based on machine learning.
The first measure uses time-averaged modulation energies as input features to a
model tree. The second measure uses time-varying modulation energies as input
features to a recurrent neural network in order to take the time-dependency of the
test signal into account. Both measures are trained and evaluated using a dataset
of perceptually evaluated signals comprising a wide range of algorithms, settings
and acoustic scenarios. The results show that the speech quality measure using a
recurrent neural network as predicting function outperforms existing non-intrusive
measures and yields a similar performance as intrusive measures when trained and
evaluated for a single category of algorithms. When trained and evaluated for sev-
eral categories of algorithms, it even outperforms the intrusive benchmark measures,
making it suitable for the selection of algorithms or algorithm parameters.






ZUSAMMENFASSUNG

In vielen Sprachanwendungen, wie z.B. in der Freisprech-Telefonie oder bei
sprachgesteuerten Heimassistenten, kann der Abstand zwischen dem Benutzer und
den Aufnahmemikrofonen relativ grofs sein. In einem solchen Fernfeldszenario wer-
den die aufgezeichneten Mikrofonsignale typischerweise durch Rauschen und Nach-
hall iiberlagert, wodurch die Leistung von Spracherkennungssystemen erheblich ver-
ringert sowie die Versténdlichkeit und Qualitdt von Sprachsignalen in Kommunika-
tionsanwendungen beeintrichtigt werden kann. Um diese Effekte zu verringern, wer-
den typischerweise Sprachsignalverbesserungsalgorithmen angewendet. Hauptziel
dieser Arbeit ist die Entwicklung neuartiger Sprachsignalverbesserungsalgorithmen
fiir verrauschte und verhallte Umgebungen sowie von signalbasierten Messmethoden
zur Bewertung dieser Algorithmen. Der Schwerpunkt liegt dabei auf Losungen, die
in realistischen Szenarien anwendbar sind.

Zun#chst wird ein einkanaliger Sprachverbesserungsalgorithmus zur Reduzierung
von Umgebungsgerduschen und Nachhall vorgeschlagen. Der Algorithmus verwen-
det zur Verbesserung des Sprachsignals eine spektrale Gewichtungsfunktion, die
auf Grundlage eines statistischen Raumakustikmodells, der Statistik spektraler
Minima und einer zeitlichen Glattung des Cepstrums entworfen wird. In Syste-
men mit mehreren Mikrofonen kann der entwickelte einkanalige Algorithmus zur
spektralen Sprachsignalverbesserung problemlos mit konventionellen Methoden zur
raumlichen Filterung kombiniert werden, um die Leistung weiter zu verbessern.
Der vorgeschlagene Algorithmus erhéht die Erkennungsgenauigkeit von Systemen
zur automatischen Spracherkennung sowohl fiir ein Erkennertraining basierend
auf ungestorten Signalen allein, wie auch fiir augmentierte Trainingsdaten. Ergeb-
nisse signalbasierter Bewertungsalgorithmen, wie auch durchgefiithrter Hortests mit
Probanden zeigen, dass der vorgeschlagene Algorithmus sowohl hinsichtlich errei-
chter Sprachqualitdt, wie auch bei der Unterdriickung des Nachhalls von Vorteil ist.
Bei der REVERB Challenge konnte der entwickelte Algorithmus die beste subjek-
tive Sprachqualitdt unter allen eingereichten einkanaligen Algorithmen erreichen.

Zweitens werden in dieser Arbeit zwei Methoden zur Sprachqualititsbewertung
vorgeschlagen, die keinerlei Referenzsignale bendtigen. Diese nutzen perzeptions-
motivierte Merkmale und Vorhersagefunktionen basierend auf Methoden des
maschinellen Lernens. Die erste Bewertungsmethode verwendet zeitlich gemittelte
Modulationsenergien als Eingangsmerkmale fiir ein Entscheidungsbaummodell. Die
zweite Bewertungsmethode verwendet zeitlich variable Modulationsenergien als Ein-
gangsmerkmale fiir ein rekurrentes neuronales Netzwerk, um die Zeitabhéngigkeit
des zu bewertenden Signals zu beriicksichtigen. Beide Bewertungsmethoden werden
anhand eines umfangreichen Datensatzes perzeptiv ausgewerteter Signale trainiert
und optimiert. Der verwendete Datensatz wurde im Rahmen dieser Arbeit basierend
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auf einer Vielzahl von Algorithmen, Parametrisierungen und akustischen Szenarien
erstellt. Die Ergebnisse zeigen, dass die vorgeschlagene Bewertungsmethode mit auf
rekurrenten neuronalen Netzwerken basierender Vorhersagefunktion bestehende an-
dere referenzlose Bewertungsmethoden tibertrifft und eine dhnliche Leistung wie ref-
erenzbasierte Bewertungsmethoden liefert, wenn sie fiir eine einzelne Kategorie von
Algorithmen trainiert und verwendet wird. Wenn sie auf Grundlage von verschiede-
nen Algorithmenkategorien trainiert wird, libertrifft sie sogar referenzbasierte Bew-
ertungsmethoden und eignet sich daher fiir den Vergleich verschiedener Algorithmen
oder Algorithmenparametern.
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INTRODUCTION

Speech is one of the most natural forms of communication to exchange information
or to express emotions [1], making it particularly suited to design intuitive human-
computer interfaces [2,3]. In addition, due to the progress in hardware and software
engineering mobile computing devices, such as smartphones, tablets and laptops
are nowadays omnipresent, and allow for advanced signal processing algorithms
and automatic speech recognition (ASR) systems. Thanks to these developments
and an ever faster and larger internet coverage, speech communication and speech-
based interfaces are used by a vast number of users. Applications include hands-free
telephony, teleconferencing, hearing devices and voice control, in diverse locations,
e.g., at home, in public venues or at workplaces. Regardless of the encountered
situation or acoustic environment, users expect a satisfactory speech communication
or ASR performance.

In so-called far-field scenarios, the distance between the user and the recording
microphone(s) is relatively large. The far-field scenario is highly relevant for many
common speech applications such as hands-free phone calls, voice control of home
assistants or communication using hearing devices. While applications that can be
used in far-field scenarios are convenient for the user, these scenarios present greater
challenges than close-talk scenarios, where the microphones are close to the mouth
of the target speaker. Indeed, in far-field scenarios the microphones do not only
record the desired speech of the target speaker but also undesired noise generated by
other sound sources, e.g., concurrent speakers or music, which may greatly degrade
speech quality or ASR performance [4-6]. In addition, in an enclosed environment
the recorded speech signal is reverberant, i.e., it contains not only the direct speech
of the target speaker but also reflections against walls, ceiling and objects in the
room [7]. Although it has been shown that early reflections of the target speech can
be beneficial [8-11], large levels of reverberation can degrade speech quality and
intelligibility, as well as severely degrade the performance of ASR systems [4-6].

Hence, far-field speech applications require speech enhancement algorithms that pro-
vide effective noise reduction and dereverberation while preserving the target speech
and, possibly, its early reflections [12]. In the last decades, several single- and multi-
channel noise reduction algorithms have been proposed [13-23], e.g., assuming that
the undesired noise is uncorrelated with the target speech and/or assuming that
the spatial characteristics of the noise are different from the spatial characteristics
of the target speaker. Since reverberation is highly correlated with the speech to
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be preserved, dereverberation arguably presents a greater challenge than noise re-
duction. Nevertheless, a variety of single- and multichannel speech dereverberation
algorithms have been proposed, e.g., assuming certain temporal or spatial charac-
teristics for reverberation [24-33]. Obviously, the ultimate goal is to design speech
enhancement algorithms that achieve joint noise and reverberation reduction.

Designing speech enhancement algorithms and selecting the best algorithm for a
given application requires reliable performance measures. For ASR applications,
the performance of a speech enhancement algorithm is typically measured as the
effect on the word recognition accuracy [34,35]. For speech communication applica-
tions, the performance of a speech enhancement algorithm is typically measured as
the effect on speech quality and/or speech intelligibility. Subjective listening tests
are usually considered the most reliable way to measure these attributes, but they
can be costly and time-consuming and are not always applicable [36,37]. Alterna-
tively, signal-based measures for speech quality and speech intelligibility have been
proposed. These measures can be either intrusive, requiring a (clean) reference sig-
nal, or non-intrusive, which can be computed using only the test-signal [38-40]. A
reliable non-intrusive signal-based measure that could be used to compare a wide
range of speech enhancement algorithms would be a great asset.

This thesis focuses on speech enhancement algorithms aiming at improv-
ing the quality of speech recorded in the presence of both noise and
reverberation. The first objective is to develop novel single- and multichannel
algorithms for joint noise and reverberation reduction. The second objective is
to develop non-intrusive signal-based measures of speech quality that can be used
to reliably evaluate speech enhancement algorithms designed to operate in noisy
and reverberant environments. The remainder of this chapter is organized as fol-
lows. In Section 1.1 we describe the acoustic scenarios considered in this thesis. In
Section 1.2 we provide an overview of single- and multichannel speech enhancement
algorithms in the spectral domain. In Section 1.3 we discuss existing performance
measures to evaluate speech enhancement algorithms. In Section 1.4 we present an
overview of the thesis and its main contributions.

1.1 Speech recording in noisy and reverberant environments

The work presented in this thesis considers scenarios in which the speech of a single
target speaker is recorded in a reverberant room in the presence of noise. Noise
is composed of sounds whose sources are anything but the target speaker and can
hence be assumed to be uncorrelated with the speech signal to be preserved. As
noise sources can be extremely diverse, noise suppression algorithms are typically
designed to be applicable to a wide range of unknown noise types. Commonly consid-
ered noise types are, e.g., babble noise, corresponding to multiple speakers talking
simultaneously, or fan noise, chosen for its slowly varying spectro-temporal charac-
teristics. In noise suppression algorithms, it is often assumed that the noise signal
to be suppressed is more stationary than the target speech to be preserved. When
stationarity of the noise cannot be assumed, other properties have to be taken
into account. In some specific applications, noise suppression can be designed to
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Fig. 1.1: Spectrograms of different noise types. The spectral characteristics of stationary
noises such as fan noise (top left) or engine noise (bottom left) are typically easier
to estimate than the spectral characteristics of fast varying noises such as machine
gun noise (bottom right) or babble noise (top right).

suppress a particular type of noise, e.g., ego-noise generated by moving parts of a
robot [41-43], or keyboard strokes [44-46]. However, such approaches are limited to
a narrow range of scenarios. The stark difference between different noise types can
be illustrated by their time-frequency representations (spectrograms), depicted in
Fig. 1.1. When multiple microphones are available, one can exploit the spatial char-
acteristics of the noise in addition to the spectral characteristics, e.g., by designing
a noise suppression algorithm that is optimized for a certain (assumed) noise field.
Examples of commonly assumed noise fields are homogeneous, incoherent or coher-
ent noise fields. In an homogeneous noise field the power spectral densities (power
spectral densitys (PSDs)) recorded in all microphones are equal, which can be a
good model for babble noise. In an incoherent noise field, noise signals recorded in
different microphones are uncorrelated, which can be a good model for microphone
self-noise. On the contrary, a coherent noise field can be a good model for the speech
of an interfering speaker [47].

Reverberation consists of a superposition of reflections of the speech source against
the surfaces and objects in the room. These reflections can be classified into three
categories, namely direct speech, early reflections and late reflections, as illustrated
in Fig. 1.2. The direct speech signal is equal to the source signal, up to an attenua-
tion and a propagation delay. Reflections recorded within a few tens of milliseconds
are typically considered early reflections. Although early reflections may introduce
spectral coloration, they are often considered beneficial for speech intelligibility. In-
deed, within such a short time window, the direct speech signal and early reflections
are perceived as a single signal whose energy is larger than the energy of the direct
speech alone. In noisy environments, this results in a larger perceived signal-to-noise
ratio (SNR) [8-11,48]. In addition, the early reflections contain spatial information
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Fig. 1.2: In a room with a single speech source, the signal recorded by each microphone of
an array contains the direct speech as well as early and late reflections.

that can be used to localize the speech source of interest [49-52] or apply spatial
filtering [50-53|. Reflections recorded more than 50 to 80 milliseconds after the
source are typically considered late reflections. It is often assumed that the spa-
tial characteristics of these reflections is isotropic/diffuse, i.e., that their direction
of arrival (DOA) is uniformly distributed [7,24]. Late reflections may have a se-
vere detrimental effect on the performance of ASR systems [6, 31] as well as on
the perceived speech quality and intelligibility in speech communication applica-
tions [4,5,11,54,55]. The impact on speech intelligibility can be particularly notice-
able for people suffering from hearing loss and for non-native speakers [5,56-58|.
Consequently, the main objective of dereverberation algorithms is to suppress late
reflections. Contrary to noise, these reflections can be highly correlated with the
source of interest and suppressing them while preserving the target speech (and
early reflections) can be challenging [26].

The acoustical propagation between a source and a receiver, i.e., a microphone, can
be characterised by the so-called room impulse response (RIR), which is exemplary
depicted in Fig. 1.3. While the direct path represents the delay and attenuation
of the source signal, the early reflections consist of numerous but defined impulses
and the late reflections consist of densely-spaced impulses, often modelled as a ran-
dom process whose amplitude is exponentially decaying [24]. Various approaches
have been proposed for RIR estimation, where one needs to distinguish between
supervised system identification (SSI), requiring the source signal to be known, and
blind system identification (BSI). SSI techniques vary in terms of the used source
signal and the method used to extract the RIR from the recorded microphone sig-
nal. Common examples include maximum length sequences [59,60], inverse repeated
sequences [61], time-stretched pulses [62] or sine-sweeps [63, 64]. However, the ex-
act RIR can vary greatly with the location of the source and the microphone, or
even with changes in temperature [7,65]. BSI techniques aim at estimating RIRs
from reverberant and potentially noisy microphone signals without knowledge of the
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Fig. 1.3: The RIR contains information about the acoustics of a given room.

source signal. BSI approaches are usually based on higher-order statistics [66] or on
second-order statistics [67-70] but, despite large efforts, the obtained RIR estimates
can be highly inaccurate due to the noise conditions or numerical instabilities.

Some dereverberation algorithms make use of RIR estimates obtained using BSI to
enhance the recorded signal. However, attempts at improving robustness of these
so-called multichannel equalization algorithms against RIR estimation error [71-74]
have not been successful enough for such algorithms to be applicable in realistic
scenarios.

In practice, the design of dereverberation algorithms relies on RIR models, such
as the infinite impulse response (IIR) model, the common acoustical poles and ze-
ros model or orthonormal basis functions [75-77]. In addition, algorithms can take
advantage of a few parameters used to describe reverberation. Among those, the
most commonly found in the literature are the reverberation time, the direct-to-
reverberant ratio (DRR) and the clarity [26]. The reverberation time represents the
amount of reverberation in a room and depends only on the room characteristics,
i.e., is independent of source and microphone positions. The reverberation time is
typically defined as Tgg, i.e., the time for the reverberant energy to decay by 60 dB
after deactivation of the sound source. The DRR is defined as the ratio between the
energy of the direct speech and the energy of the reverberant speech and, in addi-
tion to the room characteristics, depends on the source and microphone positions.
The clarity is similar to the DRR, but considers both direct and early reverberant
speech as the signal of interest. The clarity is often measures as Dy, i.e., the ratio
between the energy of the first 50ms of the RIR and the energy of the complete
RIR. Reverberation time, DRR and clarity can be computed from a RIR [78] but
can also be estimated from noisy reverberant signals [79,80], making them useful
parameters for dereverberation algorithms. Some dereverberation algorithms have
been designed by modelling the time-domain RIR as a stationary noise multiplied by
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Fig. 1.4: Effect of direct path, early reflections, all reflections and noise on the spectrogram
of one exemplary speech signal. The combination of both noise and reverberation
can mask the target speech.

an exponential decay whose rate depends on the Tgg [24], and have been extended
to take into account the DRR [29,81]. When multiple microphones are available,
models can be based on assumed spatial properties of reverberation [33,82].

1.2 Speech enhancement in the spectral domain

This thesis considers the design and evaluation of speech enhancement algorithms
that estimate the signal of interest in the spectral domain, making use of the noise
and reverberation models discussed in the previous section.

Speech enhancement in the spectral domain relies on transforming the input signal
from the time domain to the spectral domain, i.e., to a time-frequency represen-
tation. Depending on the chosen transform, the time-domain signal may or may
not be reconstructible from its time-frequency representation. Such reconstruction
is not required for ASR applications, but obviously necessary for speech communi-
cation applications. In this thesis, the discrete input signals are transformed to the
spectral domain using the short-time Fourier transform (STFT), one of the most
commonly used time-frequency transforms for speech enhancement [23,83]. First,
the discrete-time input signal is divided into overlapping segments, with a typical
length of 10 to 30 ms. Then, a so-called analysis window is applied before computing
the frequency representation of this windowed segment with the Fourier transform,
typically using the fast Fourier transform (FFT) algorithm. The complex-valued
STFT representation can be transformed back to the time domain using the inverse
short-time Fourier transform (ISTFT), i.e., by applying an inverse FFT and a so-
called synthesis window. The STFT and its inverse do not introduce distortion
provided that the overlap factor as well as the analysis and synthesis windows are
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Fig. 1.5: In a typical single-channel spectral enhancement algorithm, a spectral gain is
applied to the time-frequency representation of the microphone signal y(n) to
obtain the enhanced signal §(n). The spectral gain is typically computed based
on the estimated PSDs of the interference to be suppressed and the speech to be
preserved.

chosen appropriately [84]. For an exemplary speech signal and RIR, Fig. 1.4 depicts
the spectrograms, i.e., the squared amplitude of the STFT coefficients, for direct
speech, direct speech and early reflections, reverberant speech and noisy reverber-
ant speech. The algorithms described in the following sections aim at estimating the
direct speech STFT coefficients, with or without early reflections, from the noisy
reverberant STFT coefficients in all available microphones.

The remainder of this section is organized as follows. In Subsection 1.2.1 we describe
single-channel spectral enhancement with a gain, that can be applied when only one
microphone is available. In Subsection 1.2.2 we discuss how, when multiple micro-
phones are available, speech enhancement can exploit spectral information as well as
spatio-temporal properties. In Subsection 1.2.3 we introduce direct inverse filtering
that, typically applied before spatial filtering, can further improve dereverberation.

1.2.1  Single-channel spectral enhancement

Many single-channel spectral enhancement approaches have been developed aiming
at noise suppression [15,20,85,86] or dereverberation [25,29,87|. Fig. 1.5 depicts the
block diagram of a typical spectral enhancement algorithm, where a (real-valued)
spectral gain is applied to the time-frequency representation of the microphone
signal. The computation of the spectral gain typically requires an estimate of the
PSDs of the interference to be suppressed, i.e., noise and/or reverberation. After
applying this gain, an inverse transform is used to synthesise the enhanced signal.

To estimate the noise PSD, several approaches have been proposed. A simple ap-
proach estimates the noise PSD during segments where speech is absent. This ap-
proach requires a voice activity detector (VAD) [88,89] and performs poorly for non-
stationary noise. Improved noise PSD estimators were proposed in [90-92] based on
minimum statistics (MS), i.e., assuming that in each time-frequency bin the noise
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power can be estimated as the minimum input power within a sliding, compensated
by a bias factor. Although MS-based approaches remove the need for a VAD, they
still struggle to track the PSD of rapidly varying noise. More recent noise PSD esti-
mators, e.g., based on frequency-dependent speech presence probability (SPP), have
focused on improving the tracking performance for non-stationary noise [93,94].

When applying spectral enhancement for dereverberation, the late reverberant PSD
needs to be estimated instead of the noise PSD. In [87] it has been proposed to
estimate the late reverberant PSD [33] based on the temporal exponential decay
model of RIRs proposed in [24]. This estimator has been updated in [29,81] to avoid
overestimation of the late reverberant PSD by modelling the early reflections as a
random process independent of the late reflections. Although probabilistic models
have been used to jointly estimate noise and reverberation PSDs [95, 96|, these
estimators have a larger complexity and a similar performance as approaches that
estimate the noise PSD and the late reverberant PSD separately. In the later case,
noise and reverberation are assumed to be uncorrelated and the sum of the noise
and late reverberant PSDs is used as the PSD of the interference to be suppressed.

Based on the estimated PSD of the interference, different spectral gain have been
proposed. The more straightforward, but still widely used, spectral gain is the so-
called Wiener gain [15, 20, 83]. Aiming at improving the denoising and derever-
beration performance while reducing the amount of artefacts, other spectral gain
functions have been derived, typically using different statistical models of the speech
and interference [20,97-99].

It should be noted that many recent approaches have explored the use of machine
learning to improve the performance of spectral enhancement. For example, non-
negative matrix factorization (NMF) has been used for denoising [100] as well as for
dereverberation [101]. Many recent approaches make use of deep neural networks
(DNNs) and show promising performance [102]. Such DNN-based approaches can be
designed to estimate the spectral coefficients of the clean signal [103,104] or, more
similarly to the previously described approaches, to estimate a spectral gain [105-
107].

Despite these advances, single-channel spectral enhancement has its drawbacks. The
suppression of noise and reverberation of single-channel approaches can often intro-
duce artefacts, such as so-called musical noise. Consequently, the maximum level of
suppression is, in practice, limited in order to obtain a trade-off between interfer-
ence suppression and target speech preservation. In addition, single-channel spectral
enhancement often only enhances the amplitude of the spectral coefficients and the
output signal is synthesised using the input (noisy and reverberant) phase. This may
significantly limit the performance of single-channel spectral enhancement, partic-
ularly for dereverberation. Consequently, spectral enhancement is, when possible,
often combined with spatial processing.

1.2.2  Spatial processing and spectral enhancement

When multiple microphones are available, spatial filtering can be combined with
spectral enhancement in order to exploit both spatial information and spectro-
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Fig. 1.6: When multiple microphones are available, speech enhancement algorithms can
exploit the spatial properties of the signals recorded using M microphones. Spatial
filtering is often combined with single-channel enhancement, for which required
PSD estimates may be computed from the multichannel input.

temporal properties. Beamforming is a type of spatial filtering that is known to
improve the performance of ASR systems and of speech communication. Beam-
forming has been widely used for noise reduction [16,21,22,108-112], aiming at
preserving the target speech source from a given DOA while suppressing interfering
sources and noise from other directions. To achieve this, the multichannel input
signals are typically linearly filtered before being summed together in a, so-called,
filter-and-sum structure. This can be done either in the time domain or, as in this
thesis, in the time-frequency domain.

Several signal-independent and signal-dependent beamformers have been proposed
The simplest signal-independent beamformer is the delay-and-sum beamformer,
which delays the input signals in order to time-align the target speech and where the
output signal is equal to the mean of these delayed signals. The delay-and-sum beam-
former optimally suppresses incoherent interference, i.e., interference signals that
are uncorrelated between the microphones [109]. Another frequently used signal-
independent beamformer is the superdirective beamformer [108,113], which is opti-
mal for an isotropic noise field. However, since in practice the noise field is never per-
fectly uncorrelated or isotropic and may change over time, using the estimated spa-
tial properties of the interference in signal-dependent beamformers may improve the
amount of interference suppression. Widely used signal-dependent beamformers are,
e.g., the linearly constrained minimum variance (LCMV) beamformer [114] or the
minimum variance distortionless response (MVDR) beamformer [108,113,115]. Since
the DOA of the target speech source is usually unknown, it needs to be estimated.
Although source localization, e.g., based on generalized cross correlation with phase
transform (GCC-PHAT) [116] or multiple signal classification (MUSIC) [117,118§]
typically performs well, DOA estimation errors may occur in challenging noise con-
ditions, resulting in a beamformer potentially suppressing the signal of interest.
Typically, the performance of beamformers is rather low when using few micro-
phones or small microphone arrays or when the interference is diffuse, as is the case
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with reverberation [119]. Consequently, spectral enhancement is often applied to
the output of the beamformer to suppress residual interference. Such a combination
can be interpreted as the well-known multichannel Wiener filter (MWF) [120, 121].
The PSDs required to compute the spectral gain can either be computed from
the beamformer output, similarly as in the single-channel case discussed in Subsec-
tion 1.2.1, or from the multichannel input as depicted in Fig. 1.6. In challenging
acoustic scenarios with fast varying noise, noise PSD estimators taking advantage of
the multichannel input such as in [122,123] can be beneficial. Several multichannel
estimators have also been proposed to estimate the late reverberant PSD. In [25],
it has been proposed to estimate the late reverberant PSD as the average of the
estimates obtained in each channel using the single-channel estimator from [29,81].
Though such estimate is only valid if the source-to-microphone distance is roughly
equal for all microphones, this approach can generally be used for small-sized mi-
crophone arrays. In other approaches, it is assumed that late reverberation can be
modelled as a diffuse sound field with a time-invariant spatial coherence matrix, and
several methods have been proposed to estimate the time-varying diffuse PSD, e.g.,
based on maximum likelihood estimation [124], Frobenius norm minimization [125]
or eigenvalue decomposition [126].

The progress made in the field of machine learning has motivated the development
of beamforming methods based on deep learning [127,128]. These DNN-based ap-
proaches are now widely used in ASR applications in which both spatial and spec-
tral filtering are typically trained jointly with the network used for ASR. Recent
ASR challenges have showcased their applicability and efficacy for those applica-
tions [34, 35].

Although combinations of beamforming and spectral enhancement typically result
in a good noise and interference suppression, their performance in terms of rever-
beration suppression may still be limited. For this purpose, such algorithms are
increasingly combined with a dereverberation stage, e.g., based on multichannel
linear prediction.

1.2.3  Direct inverse filtering

In order to improve dereverberation performance of multichannel speech enhance-
ment systems, a multiple input multiple output (MIMO) algorithm is often applied
prior to spatial filtering, as depicted in Fig. 1.7. In this case dereverberation can
be achieved, e.g, by estimating the reverberant component in each microphone sig-
nal and subtracting it from the microphone signals. This reverberant component is
often estimated using multichannel linear prediction (MCLP) [27,32,129-137].

Contrary to approaches such as multichannel equalization [71,72], direct inverse
filtering approaches such as MCLP do not use knowledge of the RIRs between the
source and the microphones, such that designing the required filters can be particu-
larly challenging and typically relies on some assumed characteristics of the desired
speech signal [27,138]. Early MCLP methods suffered from two main limitations
that hindered their application to realistic scenarios. First, the filters to estimate
the reverberant component to be suppressed aimed at minimizing the energy of
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Fig. 1.7: A MIMO algorithm, such as multichannel linear prediction, is often applied to
the multichannel signals prior to spatial filtering. A single-channel spectral en-
hancement algorithm is typically used to suppress the residual interference.

the output signal based on the assumption that the speech to be preserved was
temporally white [129-131], which could lead to over-estimation of the reverberant
component and consequently to signal/speech distortion. Second, the computation
of these filters required the complete utterance to be processed, i.e., so-called batch
processing, making it unusable in real-time applications.

Many extensions of MCLP methods have been proposed to address these drawbacks.
First, the over-estimation of the reverberant component can be averted by using a
prediction delay [131] and by using weighted prediction error (WPE) to take into ac-
count the time-varying nature of speech signals [132]. Second, in order to overcome
the need for batch processing, it has been proposed to estimate the filters online
using the recursive least squares (RLS) algorithm or Kalman filtering [133,135]. How-
ever, these online approches could still overestimate the reverberant component in
the presence of fast changing RIRs, e.g., if the target speech source is moving. This
has been addressed in [136] by constraining the power of the estimated reverberant
component based on an estimate of the late reverberant PSD (see Subsection 1.2.1).
Recent publications have focused on improving the robustness against a change of
speaker position, e.g., by combining the RLS algorithm with an adaptive smoothing
factor [137]. Finally, several applications of MCLP have been proposed to jointly
address dereverberation and noise suppression [139-141]. Combinations of MCLP,
spatial filtering and spectral enhancement have been shown to be particularly effec-
tive for ASR and speech enhancement, as illustrated by the results of international
challenges [31,35] and their application to consumer products [142,143].

1.3 Evaluation of speech enhancement techniques

Depending on the specific application, the speech enhancement algorithms presented
in Section 1.2 may need to be modified and their parameters need to be tuned. Prac-
tical considerations, such as the number of available microphones or computational
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constraints, often dictate many of the choices to be made. In addition, the choice
of the optimal speech enhancement algorithm and of its parameters may greatly
depend on the acoustic environment in which the algorithm will operate. For exam-
ple, while most speech communication applications aim at improving the perceived
speech quality, processing in hearing aids typically focuses on increasing speech in-
telligibility and preprocessing for ASR applications aims at improving the accuracy
of a specific ASR system.

The remainder of this section provides an overview of the evaluation of speech
enhancement algorithms for such applications and is organized as follows. In Sub-
section 1.3.1, we present an overview of a typical ASR system. In Subsection 1.3.2,
we describe the use of listening tests to measure speech intelligibility or speech qual-
ity. In Subsection 1.3.3, we introduce signal-based measures of speech intelligibility
and speech quality.

1.3.1 Automatic speech recognition

ASR aims at recognising a speech utterance from a recorded audio signal and can
provide an intuitive, hands-free interface to control a multitude of devices. Although
the performance of ASR systems was previously too poor to be implemented in
consumer products, this performance has rapidly improved during the past two
decades, such that ASR systems have now become ubiquitous [144]. For example,
ASR is used for convenience in mobile phones, tablets and computers, as well as
in more critical applications, e.g., to assist healthcare workers in protocoling their
tasks [145], to control surgical robots [146] or to support speech therapy [147]. In
order for ASR systems to be accepted by the end users, they need to perform
satisfactorily in noisy and reverberant environments or when the target speaker is
far from the microphones. ASR systems yielding such performance rely on state-of-
the-art methods from several disciplines, among which speech enhancement is used
to increase the ASR robustness in adverse acoustic environments.

An overview of a typical ASR system is depicted in Fig. 1.8. In such a system,
the speech from the user is recorded using one or multiple microphones and speech
enhancement is performed to suppress noise and reverberation that could be detri-
mental to the performance of the ASR system. Even when multiple microphones
are used, the output of the speech enhancement step is often a single channel signal.
This enhanced signal is used as the input to the feature extraction stage, sometimes
referred to as the ASR front-end, which extracts features that are relevant to the
recognition task. Features used in ASR systems are chosen to represent the useful
information present in the input signal while being invariant to irrelevant factors,
such as pitch, speaker, processing artefacts and interferences that have not been
suppressed by the speech enhancement step. Commonly used ASR features are the
Mel-frequency cepstral coefficients (MFCCs) [148], perceptual linear prediction coef-
ficients (PLPCs) [149] or amplitude modulation spectrograms (AMSs) features [150].
Generally, the impact that the choice of feature has on the performance of the overall
system decreases when a more advanced decoding stage is used.
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Fig. 1.8: Overview of a typical ASR system. The single- or multichannel signal is processed
by a speech enhancement algorithm and features are extracted from its output.
The decoding stage recognises a sentence from these features based on an acoustic
model, a lexicon and a language model.

The decoding stage can be roughly described by three components [144|. First,
the acoustic model represents the likelihood of a given feature sequence given a
sequence of phonemes, i.e., short segments of speech. Second, the lexicon represents
the complete set of words, i.e., sequences of phonemes, that can be recognised. Third,
the language model represents the probability that a given sentence, i.e., sequence of
words, is present in the considered language. By combining these three components,
the probability that a given sentence is present in the speech signal can be computed
from the input features, typically using Bayesian statistics.

Early ASR systems used hidden Markov models (HMMSs) for the acoustic model
and would often rely on manually defined lexicon and language models. State-of-
the-art ASR systems, as implemented in many end user devices, nowadays largely
rely on DNNs. Training such DNNs typically requires large amounts of labeled
speech data to train the acoustic model while lexicon and language models are often
trained on text corpora. The accuracy of ASR systems can be improved by using
model adaptation to improve robustness in adverse acoustic environments [144]
or by extracting features from multichannel signals [151]. It is worth noting that
more recent end-to-end approaches use a single DNN instead of separately trained
acoustic and language models [152,153].

When comparing speech enhancement algorithms based on ASR performance, one
can obviously only compare scores obtained on the same test set with the same
combination of features and decoding. In addition, one should keep in mind that
the impact of speech enhancement on ASR performance decreases when a more
advanced decoding stage is used. However, as long as such considerations are kept in
mind, the performance of speech enhancement algorithms for ASR can be measured
in an objective and repeatable way.
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1.3.2 Perceptual evaluation

Perceptual evaluation, i.e., evaluation using listening tests, requires a group of hu-
man assessors to evaluate the processed speech signals. Such evaluation can be con-
ducted to evaluate several attributes, among which speech intelligibility and speech
quality are the ones most often considered when evaluating speech enhancement
algorithms. Speech intelligibility can be assessed as the number of speech items,
i.e., phonemes or words, correctly identified by assessors in relation to the total
number of items present in the signal under test. Speech intelligibility is often re-
ported using the speech reception threshold (SRT), which is defined as the level of
degradation for which only 50 % of the speech items are correctly identified by an
assessor [154,155]. Several frameworks are available to measure the SRT, e.g., based
on so-called matrix sentence tests [156]. Provided that the same framework is used,
it is possible to measure the SRT for a given assessor multiple times with little varia-
tion. Moderate levels of interference may not reduce speech intelligibility while still
being detrimental to the end user. Consequently, speech enhancement algorithms
may be designed focusing, instead, on the improvement of speech quality.
Contrary to speech intelligibility, speech quality is highly subjective in nature, such
that different assessors may have different criteria of what constitutes good or poor
speech quality. Consequently, speech quality ratings can greatly differ between as-
sessors and even a single assessor might not consistently assign the same rating to a
given stimulus, hence reducing the repeatability of a speech quality test [38]. More-
over, numerous other factors influence speech quality, e.g., noise and reverberation
as well as artefacts and distortions introduced by speech enhancement algorithms
or hardware limitations. In order to assess the influence of speech enhancement
algorithms on speech quality while being conscious of these limitations, results of
listening tests are typically averaged over multiple assessors and stimuli. These tests
can be broadly classified in two categories, namely relative preference tests and ab-
solute category rating tests.

Speech quality evaluation using relative preference tests relies on paired comparisons
of stimuli using either forced-choice comparison (FCC) or comparison category rat-
ing (CCR). When using FCC, a pair of stimuli is presented to the assessors who
are forced to select the stimulus with the highest perceived speech quality. An FCC-
based test provides results in terms of how many percent of time a given algorithm
is preferred over an other. However, the magnitude of this difference is not measured.
When aiming at quantifying this preference, a CCR-based test should be used, where
the preference has to be quantified, typically using a four-point scale [157,158]. A
disadvantage of relative preference tests, using either FCC or CCR, is the fact that
it can be difficult to compare a large number of algorithms, such that in this case
absolute category rating tests are typically used instead.

Speech quality evaluation using absolute category rating tests relies on assessors
grading the quality of stimuli on a finite scale. One of the most widely used tests
is the mean opinion score (MOS) test. During a MOS test, assessors are instructed
to evaluate the quality of each stimulus separately, using a five-point scale labeled
from bad to excellent [36,157]. As the five levels of quality might not necessarily
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Fig. 1.9: Example of a graphical user interface used to conduct a MUSHRA test

be uniformly spaced, some variants of the MOS test use a continuous scale, where
assessors express their ratings as real numbers between zero and ten [159]. Other
variants aim at evaluating speech quality indirectly, by requiring assessors to quan-
tify other attributes. For example, the degradation mean opinion score (DMOS)
test relies on assessors evaluating the level of degradation of a processed signal,
in comparison to its unprocessed counterpart, on a five-point scale labeled from
inaudible to very annoying [160]. DMOS tests are mostly used when the level of
degradation is expected to be small. Other measures, such as the diagnostic accept-
ability measure (DAM), estimate the speech quality by combining the ratings that
assessors provide on numerous distinct attributes [161]. DAM is particularly useful
if insight into the decision criterion of the assessors is needed but, as it is very time
consuming, is avoided if only the overall speech quality is of interest.

In order to evaluate a large amount of algorithms while keeping the test duration
manageable, the multiple stimuli test with hidden reference and anchor (MUSHRA)
is a popular alternative [37]. An example of a graphical user interface used for such
a MUSHRA test is depicted in Fig. 1.9. For each reference, i.e., clean signal under
test, assessors are presented with multiple versions of this signal. These variations
differ, e.g., in the types of interference that are present in the signals or in the speech
enhancement algorithms that have been applied. For each stimulus, assessors use
sliders to assign a value between 0 and 100 to a given attribute, e.g., speech quality.
The reference signal is presented twice, once labeled and once hidden among the
stimuli. The value assigned to this hidden reference can be used to assess the validity
of the ratings. One or multiple so-called anchor signals are presented among the
stimuli. When measuring speech quality, these anchor signals are typically designed
to exemplify poor speech quality and, while a high rating is expected for the hidden
reference, low ratings are expected for the anchors. Though originally aimed at
evaluating audio codecs, MUSHRA tests are often used to evaluate and compare
speech enhancement algorithms [162].
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Fig. 1.10: Overview of signal-based speech quality measures. Contrary to intrusive mea-
sures, non-intrusive measures can be computed without requiring the clean
speech signal.

Regardless of conducted listening test, the significance of the results is typically
asserted through statistical analysis, e.g., using analysis of variance (ANOVA) or
a signed-rank test. In order for the results to be statistically significant, listening
tests may require many assessors, hence being both expensive and time consuming.
Consequently, although listening tests remain the gold standard for the evaluation of
speech enhancement algorithms, signal-based measures are often the only measures
used when developing new algorithms.

1.3.3 Signal-based measures

Signal-based measures, often referred to as objective measures, can be categorized as
either intrusive or non-intrusive. As depicted in Fig. 1.10, intrusive measures require
a reference signal in addition to the test signal, while non-intrusive measures can
be computed from the test signal only. Signal-based measures have been proposed
to predict speech intelligibility as well as speech quality. Typically, a signal-based
measure is considered reliable if it highly correlates with the perceptual ratings [40].
Most existing signal-based measures are intrusive. Among these intrusive mea-
sures, the articulation index (AI) [163], the speech transmission index (STI) [164],
the speech intelligibility index (SII) [165], the short-time objective intelligibility
(STOI)measure [166] and mutual-information-based measures [167], aim at estimat-
ing speech intelligibility. Other intrusive measures have been designed to estimate
speech quality. The most straightforward measure is the SNR, i.e., the ratio between
the power of the signal of interest and the power of the interference. In practice,
this ratio is usually computed over short signal segments and the values are limited
to avoid the need for a silence detector, e.g., in the computation of the segmental
SNR (SSNR) [168]. The SNR can also be computed in the frequency domain, re-
sulting in the so-called frequency-weighted segmental SNR (FWSSNR) [169]. This
approach allows to apply larger weighting coefficients to the frequency bands of
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interests, e.g., based on the articulation index [170]. It has also been proposed to
use linear predictive coding (LPC) to quantify the difference between the reference
signal and the test signal, e.g., in the log-likelihood ratio (LLR), the Itakura-Saito
measure or spectral distortion (SD) [171,172].

The reliability of measures can typically be improved by using knowledge about the
human auditory system. For example, the non-uniformity of the ear’s frequency res-
olution and the nonlinear relationship between the intensity of a sound and its per-
ceived loudness can be taken into account by using the Bark loudness scale [173]. The
Bark spectral distortion (BSD) and the modified Bark spectral distortion (MBSD)
quantify the difference between the Bark representation of the test and reference
signals [174,175]. The perceptual evaluation of speech quality (PESQ) measure [176]
is a widely used intrusive measure that as well relies on the Bark scale. PESQ differs
from BSD and MBSD, most noticeably by the way in which the difference between
the Bark representation of the test and reference signals is computed and by filtering
the input signals to mimic the properties of a telephone handset. This filtering is
due to the fact that, though widely used in the literature to evaluate speech enhance-
ment algorithms, PESQ was originally designed only to assess the limited amount
of distortion caused by telephone transmission and codecs. The perceptual objective
listening quality assessment (POLQA) measure [177], that uses a scale analogous to
the Bark scale and is often presented as the successor to PESQ, was as well developed
for telephone transmission rather than for the evaluation of speech enhancement al-
gorithms. Other intrusive measures have been proposed which make use of more
advanced auditory models, such as the perceptual similarity measure (PSM) and,
exploiting the finer temporal structure of the test signal, the PSM; based on the
perception model for quality (PEMO-Q) [178]. In addition, hybrid measures have
been proposed, which aim at combining the advantages of different intrusive mea-
sures. Hybrid measures are typically based on linear or polynomial regression, such
as the multivariate adaptive regression splines (MARS) technique [179]. Although
such approaches can improve the correlation with speech quality measured through
listening tests, the need for a reference signal still limits the applicability of these
measures. In most realistic applications, non-intrusive measures are needed.

Non-intrusive measures, i.e., measures that do not require a reference signal, have
been proposed for both speech intelligibility and speech quality estimation. Measures
for speech intelligibility include a non-intrusive extensions of the STOI [180, 181],
and measures using a trained speech recognizer as proposed in [182,183|. Similarly
as for their intrusive counterparts, non-intrusive measures of the speech quality have
not been explicitly developed for the evaluation of speech enhancement algorithms
but rather for the evaluation of narrow-band speech codecs. This is for example
the case for P.563 [184], which is often described as a non-intrusive alternative to
PESQ. In addition, measures such as the speech-to-reverberation modulation energy
ratio (SRMR) [185] and its extension, the normalized SRMR (SRMRyorm) [186],
have been developed for both speech intelligibility and speech quality and apply
a straightforward predicting function to a set of time-averaged modulation ener-
gies. Alhough SRMR,,,,, has been shown to be promising, e.g., when evaluating
cochlear implant processing [187], it can be unreliable when evaluating different
types of speech enhancement algorithms [188-190]. Rather than removing the need
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for a reference signal, it has been proposed in [191] to use twin HMMs to generate
an estimate of the clean speech signal before using this estimate and the test signal
as input to an intrusive measure. Estimating the clean speech signal is however not
straightforward and this method does not outperform the used intrusive measures.
Recently promising approaches to develop non-intrusive measures based on machine
learning have been proposed. Some measures use machine learning to estimate high-
level parameters, which are then combined using more conventional techniques. For
example, ANIQUE+ [192] uses deep learning to model distortion and the measure
proposed in [193] uses models of clean and degraded speech trained using, e.g.,
Gaussian mixture models (GMMs). The measure proposed in [194] computes the
predicted speech quality as the output of a classification and regression tree (CART)
trained using intrusive measures. These measures can be further improved by com-
bining auditory-inspired features with machine learning techniques able to better
model the factors influencing the perceived quality of processed speech.

1.4 OQutline of the thesis and main contributions

This thesis deals with the development of speech enhancement algorithms
and performance measures to evaluate the quality of speech signals pro-
cessed by such algorithms. An important aspect is that the developed algorithms
and speech quality measures should be applicable in realistic scenarios. This means
that the speech enhancement algorithms should be applicable in real-time and for
acoustic scenarios with both noise and reverberation. In addition, the speech quality
measures should be non-intrusive, i.e., they can be applied using only the processed
signal without the need for a clean reference signal. A structured overview of the
thesis is depicted in Fig. 1.11.

The main contributions in this thesis are threefold. First, we have developed a
novel single-channel speech enhancement algorithm for joint noise and
reverberation reduction. The proposed algorithm uses a spectral gain that com-
bines a statistical room acoustics model, minimum statistics and temporal cepstrum
smoothing. We have evaluated this algorithm in terms of ASR performance and in
terms of speech quality improvement using both signal-based performance measures
and a subjective listening test. The results show that the proposed algorithm is able
to improve speech quality while reducing reverberation. Moreover, this algorithm
yielded the best performance in terms of subjective speech quality among all single-
channel algorithms submitted to the REVERB Challenge [31]. Second, we have
proposed two novel non-intrusive speech quality measures that combine
perceptually motivated features and predicting functions based on ma-
chine learning (model tree, recurrent neural network (RNN)). The model
tree uses time-averaged modulation energies as input, whereas the RNN uses time-
varying modulation energies as input in order to take the time-dependency of the
test signal into account. The predicting functions used in both proposed speech
quality measures have been trained and evaluated using a corpus of perceptu-
ally evaluated speech signals that we collected for this purpose. This corpus
includes a wide range of acoustic scenarios and categories of speech enhancement
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Fig. 1.11: Overview of the thesis.

algorithms. Results show that the speech quality measure using an RNN as predict-
ing function outperforms state-of-the-art non-intrusive measures and even yields a
similar performance as intrusive measures, when the RNN is trained and tested for
a single category of speech enhancement algorithms.

Chapter 2 describes the typical issues of speech enhancement in the presence of
noise and reverberation and introduces the notation used throughout the thesis. In
addition, this chapter presents the database as well as the speech quality measures
and the ASR system used to evaluate the speech enhancement algorithms proposed
in Chapter 3. The chapter concludes by presenting the benchmark used to evaluate
the speech quality measures proposed in Chapter 4.

In Chapter 3 we propose a speech enhancement algorithm for joint noise and
reverberation reduction. The main contribution is the single-channel spectral en-
hancement algorithm that uses a spectral gain to enhance the input signal. This
spectral gain is computed by combining a statistical room acoustics model, min-
imum statistics and temporal cepstrum smoothing. This algorithm can be easily
combined with existing multichannel algorithms. In this thesis, it is combined with
an MVDR beamformer with an online estimated noise coherence matrix and steered
towards the DOA of the target speaker, which is estimated using the MUSIC al-
gorithm. We examine the performance of an ASR system, trained on either clean
or multi-condition training data, to which we input either unprocessed signals or
signals processed using the proposed algorithm. The improvement in speech recog-
nition accuracy is largest when the proposed single-channel speech enhancement
algorithm is combined with the MVDR beamformer. When using clean training
data, this combination yields an absolute improvement in recognition accuracy of
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up to 42.24% among the considered acoustic scenarios. When using multi-condition
training data, the same combination yields an absolute improvement in recognition
accuracy of up to 13.10%. In addition, we examine the performance of the proposed
algorithms using signal-based speech quality measures, intrusive measures (PESQ,
PEMO-Q) as well as non-intrusive measures (ANIQUE+, P.563, SRMR,,o;m ). With
the exception of P.563, all measures show that the proposed algorithms improve
speech quality, with the largest improvement coming from the combination of the
MVDR beamformer with the single-channel speech enhancement. We also present
the results of a MUSHRA test, conducted to assess the speech quality as well as the
amount of reverberation in the signals processed with the proposed single-channel
spectral enhancement algorithm, the MVDR beamformer, or the combination of the
MVDR beamformer with the single-channel spectral enhancement algorithm. For
all acoustic scenarios considered in this MUSHRA test, the results show that the
proposed algorithms are beneficial in terms of both speech quality and reverberation
suppression. This chapter is partly based on the work published in [195,196].

In Chapter 4 we propose two non-intrusive speech quality measures that combine
perceptually motivated features and predicting functions based on machine learn-
ing techniques. The first measure uses time-averaged modulation energies as input
to a model tree. The second measure uses time-varying modulation energies as in-
put to an RNN and can hence take the time-dependency of the test signal into
account. Both measures are trained and evaluated using a dataset of perceptually
evaluated signals that comprises a wide range of acoustic scenarios and categories of
algorithms. These algorithms include single-channel spectral enhancement, MVDR
beamforming and a combination of MCLP and MVDR beamforming. Using cross-
validation, the performance of both measures is benchmarked against intrusive mea-
sures (PESQ, PEMO-Q, POLQA) as well as non-intrusive measures (ANIQUE+,
P.563, SRMR,1orm ). The most promising of the proposed speech quality measures is
the one using an RNN as predicting function. When trained and tested for a single
category of algorithms, this measure outperforms the considered non-intrusive mea-
sures and yields a similar performance as the considered intrusive measures. When
trained and tested for several categories of algorithms, it even outperforms the in-
trusive benchmark measures. This chapter is partly based on the work published
in [197,198].

Chapter 5 concludes the thesis by summarizing its main contributions and dis-
cussing possible extensions.



PROBLEM FORMULATION AND
CONSIDERED PERFORMANCE MEASURES

This chapter describes the signal model used throughout the thesis and the corre-
sponding notations in both time and frequency domain. It introduces the objectives
guiding the development of speech enhancement algorithms and speech quality mea-
sures as well as the benchmarks used to evaluate them. The time and time-frequency
domain models for speech signals recorded in a reverberant and noisy environment
are described in Section 2.1 before describing the benchmark used to evaluate speech
enhancement algorithms in Section 2.2 and the benchmark used to evaluate speech
quality measures in Section 2.3.

2.1 Problem formulation

As described in Section 1.1, this thesis considers scenarios in which a single speech
source is recorded in a noisy and reverberant environment. In such scenario, the
time-domain signal y,,(n) recorded in the m-th microphone of M > 1 available
microphones can, as depicted in Fig. 2.1, be modeled as

Ym () = xpm(n) + v (n) = s(n) * hyp(n) + v, (n), (2.1)

where n denotes the sample index, s(n) denotes the anechoic speech signal, h,(n)
denotes the RIR of length L, between the source and the m-th microphone and
vm(n) denotes the additive noise component. The reverberant speech component
Zm(n) can be written as

Tm(n) = dm(n) + rym(n), (2.2)

where
dm(n) = s(n) * h‘fn(n), (2.3)
rm(n) = s(n) * hy, (n), (2.4)
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Fig. 2.1: Signal model for a single speech source recorded in a noisy and reverberant envi-
ronment.

with k¢ (n) and h”, (n) defined as

hm(n) for n < Ly,

W, (n) = (2.5)

0 otherwise,

B (n) = R (n) for n > Ly, (2.6)

0 otherwise,

where L, is set so that he (n) contains the direct path and a few early reflections
while A7, (n) contains the late reflections, i.e., the reverberant tail. The output signal
$(n) of a speech enhancement algorithm is computed from the recorded microphone
signals y,,(n), m € [1---M], as an estimate of either s(n) or dyef(n), where ref
denotes the index of a reference microphone.

The algorithms considered in this thesis process the recorded signal in the time-
frequency domain by using the STFT. The STFT of the input signal is obtained
by computing the discrete Fourier transform (DFT) of overlapping frames of the
time-domain signal weighted by an analysis window wgrpr(n), i.e.,

—j2nkn

N-1
m(k ) = > Werpr(n)ym (LR +n)e "N (2.7)
n=0
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where k and ¢ denote the frequency bin and frame index, respectively, N denotes
the frame length and R denotes the frame shift. The time-domain model from (2.1)
and (2.2) can be written in the STFT domain as

Ym (K, €) = xm (k, 0) + v (K, £), (2.

2.8)
m (ks 0) = du (K, €) + 1 (6, €), (2.

)

where @, (k, £), v (k, £), dm(k,£) and r.,(k, ¢) denote the STFTs of x,,(n), vm(n),
dpm(n) and rp, (n), respectlvely Speech enhancement in the STFT domain computes
an estimate §(k, ¢), of either s(k,¢), i.e., the STFT of s(n), or d,(k,£). The time-
domain output of the speech enhancement algorithm can finally be computed using
the ISTFT as

8
9

N—

3(n) = 3 Y wiseer(n — (R)3(k, e F (2.10)
¢ k=0

,_.

where wgrpr(n) denotes a synthesis window that, along with werpr(n), usually aims
at satisfying the perfect overlap-add constraint [199]. A benchmark is needed to as-
sess the ability of such speech enhancement algorithms to improve the performance
of ASR systems or the perceived speech quality. The next section describes the
benchmark used to evaluate the speech enhancement algorithms considered in this
thesis.

2.2 Speech enhancement benchmark

Though numerous speech enhancement algorithms have been proposed, their eval-
uation and their comparison with prior work is often limited due to the lack of
a publicly available benchmark. This is particularly true for algorithms designed
to improve speech quality in noisy and reverberant environments as most existing
benchmarks aimed at evaluating only robustness against noise and were often de-
signed to evaluate only the benefits of noise reduction algorithms or the performance
of ASR systems [34,200,201]. The speech enhancement algorithm, proposed in this
thesis and presented in Chapter 3, is evaluated using the corpus from the REVERB
challenge [31,162]. This corpus is designed to evaluate speech enhancement algo-
rithms in presence of reverberation and moderate level of noise when using a single-
channel, two channels or the eight channels of a circular microphone array with a
20 cm diameter. Only the single-channel and eight channels scenarios are considered
in this thesis. This corpus comprises a dataset of audio material to be processed
by the speech enhancement algorithms to be evaluated as well as evaluation tools.
The dataset, divided into a development set and an evaluation set, comprises both
simulated and real data, in which all signals have a sampling frequency fs of 16 kHz.
An overview of this dataset is depicted in Fig. 2.2.

The simulated data is generated by convolving clean speech from the WSJCAMO
corpus [202] with measured RIRs and adding ambient noise to this reverberant sig-
nal. The level of the noise is scaled to obtain an SNR of 20 dB measured considering
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f Simulated 1 ( Real
S1, near S2, near S3, near R1, near
S1, far S2, far S3, far R1, far
Dev.: 1484 Dev.: 179
L Eval.: 2176 ) Eval.:372

Fig. 2.2: Overview of the REVERB challenge dataset and number of utterances of either
simulated or real signals present in the development (Dev.) and evaluation (Eval.)
sets.

the early reverberant speech as target signal and ignoring speech pauses. For each
recorded RIR, the used noise was recorded using the same microphone position. This
ambient noise was mainly due to the air conditioning system and, consequently, is
quite stationary and has most of its energy present in the lower frequency. Though
more challenging noise conditions could be considered, this dataset focuses on the
evaluation of speech enhancement algorithms in presence of both noise and rever-
beration. The simulated data represents various reverberation conditions and is
generated using 6 RIRs, recorded in 3 different rooms (small, medium and large)
and considering two distances per room. In the remainder of this thesis, these rooms
will be denoted as “S1”, “S2” and “S3” while the distances will be referred to as “near”
and “far”. For each combination of room and distance, e.g., “S2, near”, the distance
between speech source and microphone array as well as the Tgo and Dsg measured
from the RIR are summarized in Table 2.1. A detailed description of the simulation
and RIRs recording is available in [203].

The real data is composed of recordings of utterances from the MC-WSJ-AV cor-
pus [204] spoken by a human speaker in a noisy and reverberant room. The noise
type is similar to the one used to generate the simulated data. In absence of the
clean signal, neither the SNR, nor the Tgp nor the Dsg can be exactly measured.
However, despite a slightly lower SNR and a larger distance between the speech
source and the array, the noise and reverberation conditions in the real dataset are
similar to the one in the room S3 of the simulated data. Recording distance and
estimated Tgq for the real data are also summarized in Table 2.1.

2.2.1 Considered ASR system

The sentences spoken in both simulated and real data are the same and, conse-
quently, the same ASR system can be used to evaluate the impact that speech
enhancement algorithms would have on the performance of such systems when ap-
plied to the previously described dataset. The ASR system used in this thesis is
the one that was provided as baseline for the ASR task of the REVERB Challenge.
Details of its design and comparison of its performance with more advanced systems
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Table 2.1: Distance (Dist.) between speech source and center of the microphone array as
well as Tgo and Dsg for all combinations of room and distance included in the
considered dataset. For the simulated data, T and Dsp were measured from
the recorded RIRs. For the real data, the Tso was measured in the recording
room but Ds5g is not available.

Simulated Real
S1,near| S1,far |S2,near| S2,far |S3,near| S3,far |R1,near| R1, far
Dist. [cm]|| 50 200 50 200 50 200 100 250
Tgo [ms] 300 300 600 600 700 700 700 700
Dsg 0.99 0.98 0.95 0.79 0.97 0.81

can be found in [31]. Tt relies on a bigram scheme language model and on an acoustic
model based on GMMs and HMMs.

Within this thesis, ASR performance is measured using two different acoustic models.
First, one trained on clean speech from the WSJCAMO dataset and one, so-called,
multi-condition model that has been trained on data generated by convolving the
clean speech with 24 measured RIRs with Tg( ranging from 0.2 s to 0.8 s and adding
ambient noise at an SNR of 20 dB. All models were trained using the hidden Markov
model toolkit (HTK) [205]. It can be noted that tools to train and evaluate a DNN-
based recogniser on the same data is available as part of the Kaldi toolkit [206]. This
DNN-based recogniser is not used in this thesis as ASR is here solely used to evaluate
and compare speech enhancement algorithms rather than to obtain accurate text
transcriptions. The performance of the considered ASR systems will be reported
using the recognition accuracy,

Accuracy [%] = 100 — WER, (2.11)

where the word error rate (WER) is defined as

substitutions + deletions + insertions
total

WER [%] = 100 - , (2.12)
i.e., the number of words which have been substituted by an other, deleted or
inserted, divided by the total number of words to be recognized over the complete
considered corpus.

2.2.2  Considered quality measures

The speech enhancement algorithms presented in this thesis are evaluated in terms
of the resulting speech quality using listening tests based on the MUSHRA test [37]
and, in Chapter 3, a similar test is used to measure the perceived level of rever-
beration. As the exact specifications of each test, e.g., choice of the anchors or
permutations of the presented conditions, may vary between tests, they will be
presented in each respective chapter. However, the true speech quality for a com-
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bination of algorithm and acoustic condition is, through the entirety of this thesis,
considered to be the mean of the scores assigned by all assessors participating in
a given test. More precisely, each processed signal §(n) is assigned a quality value
0 < p; < 1, which is computed by averaging all MUSHRA scores assigned to it
and by normalizing this average between 0 and 1. In addition to listening tests,
the quality of the processed signals will as well be evaluated using intrusive and
non-intrusive signal-based measures.

Three intrusive signal-based measures of the speech quality are considered in this
thesis, namely PESQ [176], POLQA [177] and PEMO-Q [178]. The computation of
the PESQ score relies on time-aligning the clean reference signal and the test sig-
nal before filtering them to replicate the effect of telephone handsets. This filtering
is applied because, though very often used in the speech enhancement literature,
PESQ was developed for the evaluation of speech codecs. The Bark representation
of each signal is extracted and the difference between the Bark representation of the
reference signal and test signal is computed. A positive difference indicates that a
disturbance, e.g., noise, is present while a negative difference indicates that part of
the speech to be preserved has been suppressed in the test signal. The final PESQ
score is computed as a linear combination of these negative and positive Bark scale
differences. The coefficients used for this combination were optimized using percep-
tually evaluated telephone data. It might be noted that, though the original version
of the PESQ score was limited to signals sampled at 8 kHz, the version used in this
thesis is the later extension for signals having a sampling frequency fs; of 16 kHz.
POLQA has been developed to supersede PESQ and to be applicable to signals
sampled at higher frequencies and containing a wider range of distortions. However,
due to licence limitations of POLQA, i.e., its source code is not available and its
licence is costly, PESQ remains more widely used for speech enhancement assess-
ment. In this thesis, POLQA scores are not available for the speech enhancement
algorithms presented in Chapter 3 but are part of the benchmark used to develop
a non-intrusive quality measures in Chapter 4. Finally, PEMO-Q aims at compar-
ing auditory-inspired representations of the test and of the reference signal. This
auditory representation is obtained by using a gammatone filter bank and filtering
each resulting band using a low-pass filter and a combination of feedback loops. The
output of this processing chain is finally analysed by a linear modulation filter bank
whose output is used to compute the difference between the reference and the test
signal.

Three non-intrusive signal-based measures of the speech quality are considered in
this thesis, namely ANIQUE+ [192], P.563 [184] and SRMRyorm [186]. These non-
intrusive measures are used to evaluate speech enhancement algorithms in Chapter 3
as well as to benchmark quality measures in Chapter 4. ANIQUE+ computes the
estimated speech quality by combining scores assigned to three types of effects that
its authors refer to as frame distortion, mute impact and non-speech impact. Though
the quantification of each of these criteria relies on similar preprocessing and filter-
bank, each of them requires a separate model that needs to be carefully tuned. So
far, ANIQUE+ is often included when, as in this thesis, one aims at benchmarking
its own measure, but is seldom applied to the evaluation of speech enhancement
algorithms. P.563 is sometimes presented as the non-intrusive counterpart of PESQ
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Fig. 2.3: Example of predicted value of the speech quality, before and after applying the
sigmoidal mapping used to compute psig. The values of p and psig in this example
show that this values may be similar and that the mapping does not necessarily
increase correlation.

and has long been considered the state-of-the-art of non-intrusive speech quality
estimation [184,193]. The P.563 score is computed by, first, detecting one of six
possible types of distortions such as unnatural male or female speech or high level
of background noise. The intermediate quality ratings assigned to these distortions
are linearly combined to compute the final quality estimate. It may be noted that
P.563 has been developed to assess the quality of speech transmitted over telephone
lines and that, therefore, it only considers distortions present in this use case. In
addition, it is only applicable to narrow-band speech signals and, as in this thesis,
signals having a higher sampling frequency have to be downsampled to 8 kHz before
applying P.563. The SRMR o, is an extension of the SRMR initially proposed
in [185] as a non-intrusive quality measure for reververberant and dereverberated
speech. Both SRMR and SRMRo;im are computed similarly. First, the test signal
is filtered through a gammatone filterbank whose characteristics are empirically de-
fined for signals recorded at either 8 kHz or 16 kHz. Then, the temporal envelope
of each band is computed using the Hilbert transform and modulation energies are
computed. SRMR and SRMR,,,y, differ in the settings applied in those steps and
more details are provided in Chapter 4. As the settings of SRMR,,o;mm have been
shown to improve the reliability of the measure, they are the ones that are used
throughout this thesis. The final quality estimation of either SRMR or SRMRy0rm
is finally computed as the ratio between the energies in the higher and lower mod-
ulation frequencies after averaging them over time.
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Fig. 2.4: Error thresholding to compute e-RMSE, the horizontal error bar represents the
95% confidence interval of the subjective test used to obtain ps. Left, the total
error is larger than the confidence interval and their difference is considered as
error to compute the e-RMSE. Right, the total error is smaller than the confidence
interval and all error is ignored.

2.3 Quality measures benchmark

Signal-based quality measures, either intrusive or non-intrusive, are only useful if
they yield a reliable estimate p; of what is considered the true quality p; of the
processed signal §(n) under test. In this thesis, this reliability is assessed by exam-
ining the correlation between the considered quality measures and the true speech
quality as well as the spread of these measures. Three different values of correlation
are considered. The first one is the Pearson correlation defined as

_ Z(pé - Mpé)(ﬁé - Mﬁ§>
V2 (ps = 1)/ 2 (s — 1p.)%

where all sums as well as the means p,, and ps, are computed over all values of
ps and p; available in the considered dataset. Second, the Spearman correlation
Pspear 18 computed similarly as in (2.13) by substituting the values of p; and p; by
their rank among the considered dataset. Finally, the sigmoidal correlation pgis is
computed similarly as in (2.13) after applying a sigmoidal mapping to the values
of ps available in the considered dataset. The parameters of this mapping have to
be learned from a training set for which the values of both p; and pz are known for
a large number of signals §(n). When computing ps, to evaluate quality measures
based on machine learning techniques in Chapter 4, the same training set is used
to train the measures and determine the parameters of the sigmoidal mapping. An
example of such mapping is depicted in Fig. 2.3. The value of ps, can be lower
than the value of p. The main appeal of using such mapping is that it allows to

p (2.13)
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normalize the range of the predicted scores in a less arbitrary way than, e.g., when
simply dividing by the largest measured value.

Along with the correlation, an important aspect to consider when evaluating a
speech quality measure is the spread of its prediction. This spread represents the
ability of the measure to assign similar scores to signals having the same true quality,
i.e., lower spreads are better. Spreads are often measured using the root mean
square error (RMSE) that is computed from the difference between ground truth
and prediction for a set of observations. However, in the case of speech quality
measures, the ground truth itself is based on averaging the scores assigned by several
participants during a listening test. As subjective scores themselves can vary, one
might want to take this uncertainty into account when evaluating speech quality
measures. For this purpose, the so-called epsilon insensitive RMSE (e-RMSE) is
used in this thesis. This measure is similar to the traditional RMSE but measures
the error from the sigmoidally mapped scores only and set it to zero if this error is
lower than the 95% confidence interval of the subjective scores. Fig. 2.4 summarizes
the way in which this error is computed but further details on the computation of
psig and e-RMSE can be found in [40].

2.4 Summary

In this chapter, we presented the models and main notations used through this
thesis to described noisy and reverberant signal in both time and time-frequency
domain. We introduced the corpus used to benchmark the speech enhancement
algorithms, that includes both real and simulated data. We briefly described the
tools used to built ASR systems trained on clean and multi-condition data to eval-
uate the benefits that the speech enhancement algorithms considered in this thesis
could have on ASR performance. We presented the signal-based measures of speech
quality, intrusive and non-intrusive, that are used in this thesis to evaluate speech
enhancement algorithms in Chapter 3 as well as to benchmark the proposed speech
quality measures in Chapter 4. Finally, we introduced the figures of merits used to
benchmark these speech quality measures.
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SPEECH ENHANCEMENT IN SINGLE- AND
MULTICHANNEL SCENARIOS

In many speech communication applications, such as voice-controlled systems or
hearing aids, distant microphones are used to record a target speaker. The micro-
phone signals are often corrupted by both reverberation and noise, resulting in a
degraded speech quality and speech intelligibility, as well as in a reduced perfor-
mance of ASR systems. Several algorithms have been proposed in the literature to
deal with these issues and are often based on combinations of beamforming and
single-channel spectral enhancement, as introduced in Section 1.2.

This chapter presents the algorithm first proposed in [195] and further evaluated
in [196], that consists of the commonly used combination of an MVDR beamformer
with a single-channel spectral enhancement algorithm. In such a combined algo-
rithm, the spectral enhancement algorithm typically consists in applying a real-
valued spectral gain to the STFT of the beamformer output. The computation
of this spectral gain relies on estimates of the PSDs of the interferences to be sup-
pressed, i.e., noise and reverberation. In this case, the reverberation to be suppressed
consists only of the late reflections as early reflections are often considered to be
beneficial, both in terms of speech quality [9] and ASR performance [207].

Different methods have been proposed for estimating the late reverberant and noise
PSDs, e.g., relying on assumptions about the sound field or on a VAD. The PSDs of
the noise and reverberation can be estimated using the output signal(s) of a block-
ing matrix, suppressing the signal to be preserved, in the well-known generalized
sidelobe canceller (GSC) structure. The blocking matrix can be designed, e.g., as a

This chapter is partly based on:

[195] B. Cauchi, I. Kodrasi, R. Rehr, S. Gerlach, A. Juki¢, T. Gerkmann, S. Doclo, and S. Goetze,
“Joint dereverberation and noise reduction using beamforming and a single-channel speech-
enhancement scheme,” in Proc. REVERB (REverberant Voice Enhancement and Recogni-
tion Benchmark) Challenge Workshop, Florence, Italy, May 2014

[196] B. Cauchi, I. Kodrasi, R. Rehr, S. Gerlach, A. Juki¢, T. Gerkmann, S. Doclo, and S. Goetze,
“Combination of MVDR beamforming and single-channel spectral processing for enhancing
noisy and reverberant speech,” FEURASIP Journal on Advances in Signal Processing, vol. 61,
pp. 1-12; Jul. 2015
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delay-and-subtract beamformer cancelling the direct speech component [208,209] or
based on a blind source separation (BSS) scheme aiming to cancel both the direct
speech component and the early reflections [210,211]. Alternatively, the PSD at a ref-
erence position can be obtained using a maximum likelihood estimator and a model
of the sound field [82]. The PSD to be used in the computation of the spectral postfil-
ter is then obtained by correcting the estimated PSD at the reference position. This
correction can be done using an adaptive filter [209], back-projection [210,211] or
the relative transfer functions between the target speaker and the microphones [82].
Other algorithms estimate the PSD of the interference from the output of the beam-
former and thus can in principle also be used if only one microphone is available. In
such algorithms [195,196,212], the estimation of the noise PSD is often derived from
statistical models of the speech and noise [90,94]. The estimation of the reverberant
PSD can, e.g., be derived from a statistical model of the RIR and the acoustical
properties of the room, such as the reverberation time (Tgp) or the DRR [81,87].
In the algorithm presented in this chapter, the microphone signals are first pro-
cessed using an MVDR beamformer [213], which aims at suppressing sound sources
not arriving from the DOA of the target speaker, while maintaining a unit gain
towards this DOA. The noise coherence matrix used to compute the coefficients of
the MVDR, beamformer is estimated online using a VAD [89], and the DOA of the
target speaker is estimated using the MUSIC algorithm [117,118]. The beamformer
output is processed using a single-channel spectral enhancement algorithm, that
aims at jointly suppressing the residual noise and reverberation. The main novel
contribution in [195,196], on which this chapter is partially based, is the combina-
tion of several estimators used in the single-channel spectral enhancement algorithm.
This spectral enhancement algorithm relies on estimates of the PSDs of the noise
and the late reverberation, similarly as in [214]. The proposed algorithm computes
a real-valued spectral gain, combining the clean speech amplitude estimator pre-
sented in [215], the noise PSD estimator based on MS [90], and an estimator of
the (late) reverberant PSD based on statistical room acoustics [24,87]. In order to
reduce the musical noise which is often a byproduct of spectral enhancement algo-
rithms, adaptive smoothing in the cepstral domain is used to estimate the speech
PSD [216,217].

The proposed algorithm is evaluated on the REVERB challenge corpus, described in
Chapter 2. The single-channel scenario is particularly challenging as illustrated by
the results of the REVERB challenge workshop [31,162], in which most contributions
succeeded to reduce reverberation but only a few improved the speech quality [195,
212]. The evaluation is conducted for different configurations of the proposed system
in terms of instrumental speech quality measures, improvement of ASR. performance
and a subjective evaluation of speech quality and dereverberation. The evaluation
results show that the proposed system is able to reduce noise and reverberation
while improving the speech quality in both single- and multichannel scenarios.

The remainder of this chapter is organized as follows. In Section 3.1, an overview of
the considered system is given as well as details of the proposed MVDR beamformer.
The single-channel spectral enhancement algorithm is presented in Section 3.2. The
experiments are described in Section 3.3 and the results are presented in Section 3.4.
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Fig. 3.1: Overview of the proposed algorithm. The STFT of the multichannel input is
processed using an MVDR beamformer whose parameters are estimated online.
Residual noise and reverberation are suppressed by a single-channel spectral en-
hancement algorithm (see Fig. 3.2).

3.1 System overview and beamformer

The proposed algorithm, depicted in Fig. 3.1, aims at obtaining an estimate §(n),
where * denotes estimated quantities, of the clean speech signal s(n) from the rever-
berant and noisy microphone signals, y,,(n). This algorithm consists of two stages.
First, an MVDR beamformer is applied to the STFTSs y,,(k, £) of the M input sig-
nals. This beamformer aims at reducing noise and reverberation by suppressing the
sound sources not arriving from the target DOA, while providing a unity gain in
the direction of the target speaker. The noise coherence matrix and the DOA used
to compute the MVDR beamformer coefficients are estimated online, allowing it
to be applied in realistic settings. The noise coherence matrix is estimated using a
VAD [89], whereas the DOA estimation is based on the MUSIC algorithm [117,118].
In order to suppress the residual noise and reverberation at the beamformer out-
put g(k,£), the beamformer output is processed by a single-channel spectral en-
hancement algorithm. The remainder of this section describes the used MVDR
beamformer and the single-channel spectral enhancement algorithm is described in
Section 3.2.
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3.1.1 MYVDR beamforming

From the signal model presented in (2.8), the STFT of the multichannel input signal
can be written in vector form as

y(k,0) = x(k,0) +v(k,£), (3.1)

where y(k, £) denotes the M-dimensional stacked vector of the received microphone
signals,

y(k, 0) = [y1(k, €), y2(k, ©), .. ,yn(k,0)]", (3.2)
and where x(k, ¢) and v(k, ¢) denote the similarly defined vectors of the reverberant
speech component and noise component, i.e.,

x(k,0) = [z1(k, £), 22(k,0), ... ,xa(k, 0], (3.3)

V(ka 6) = [’Ul(k,ﬁ), v2<ka e)v cee 7”M(k»£)]T'

The STFT §(k,£) of the beamformer output can be computed as

Gk, 0) = wil (k)y(k, £) (3.5)
= w (k)x(k, 0) + wj (k)v(k, £) (3.6)

where w;(k) denotes the stacked filter coefficient vector of the beamformer steered
towards the estimate 6 of the DOA, 6, of the target speech.

Aiming at minimizing the noise power while providing a unity gain in the direction
of the target speaker, the filter coefficients of the MVDR beamformer are computed
as [213]

F"(k)dy (k)

Mo G )

: (3.7)

>

where dj(k) and I(k) denote the steering vector towards the estimated DOA of
the target speaker and the estimated noise coherence matrix, respectively. Using a
far-field assumption, the steering vector d;(k) can be computed as

(k) = [e*j%rfk‘rl(é)7 €7j27rfk72(é)7 7e*jzﬂfkTM(é)]T, (3.8)

d;

where f, denotes the center frequency of the k-th frequency bin and 7, (A) denotes
the time difference of arrival of the source at angle 6 between the m-th microphone
and a reference position. In this thesis, this reference position is arbitrarily chosen
as the center of the microphone array.

The computation of the estimate 6 of the DOA and of the estimate (k) of the noise
coherence matrix are detailed in the next subsections.
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3.1.2 Noise coherence matrixz estimation

The noise coherence matrix is estimated during noise-only periods detected using
the VAD described in [89], as the covariance matrix of the noise-only components,
ie.,

Pk = = 3 w(k, Ok, ), (3.9)

Ly jer,

with L, denoting the set of detected noise-only frames and L, its cardinality. How-

ever, if the detected noise-only period is too short for a reliable estimate (see Sec-

tion 3.3), the coherence matrix I (k) of a diffuse noise field is used instead, i.e.,

the coherence between two microphones ¢ and ¢/, separated by a distance [; 7, is

computed as

Sin (QWfkli,i//C)
27 frlii /¢

where ¢ denotes the speed of sound, resulting in the well-known superdirective
beamformer [213]. In addition, a white noise gain constraint WNGyy,,x is imposed
in order to limit the potential amplification of uncorrelated noise, especially at low
frequencies. With such a constraint, the estimate of the noise coherence matrix used
to compute the beamformer coeflicients is equal to

i () = (3.10)

F(k) = (k) + o(k)lu, (3.11)

where Iy denotes the M x M-dimensional identity matrix and o(k) denotes a
frequency-dependent regularization parameter which is computed iteratively such
that wil(k)wg(k) < WNGpax [218].

3.1.3 DOA estimation

As the beamformer aims at suppressing sources not arriving from the target DOA,
an error in the DOA estimate may lead to suppression of the desired source by the
beamformer. In the proposed system, the subspace-based MUSIC algorithm [117,
118], shown robust in our target application (see Section 3.3), has been used to
compute the DOA estimate 6.

Assuming that speech and noise are uncorrelated, the steering vector corresponding
to the true DOA is orthogonal to the noise subspace U(k, ¢). This noise subspace is
represented by an M x (M — @Q)-dimensional matrix , where ) denotes the number
of sources, i.e., @ = 1 in this case, and is defined as

Uk, 0) = [ugyi(k, £), - jup(k,2,)]. (3.12)

The noise subspace U(k, ¢) is composed of the eigenvectors of the covariance matrix
of y(k,£) corresponding to the (M — Q) smallest eigenvalues. The MUSIC algo-
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Fig. 3.2: Overview of the proposed single-channel speech enhancement.

rithm uses this noise subspace to estimate, for each frame, the DOA as the angle
maximizing the sum of the MUSIC pseudo-spectra,

1

tg(k,0) = , (3.13)
dit (k)U (., U™ (k. £)dy (k)
over a given frequency range, i.e.,
Knigh
0(¢) = argmax Z tg(k, 0), (3.14)
O h=hiow

where kiow and Enigh denote the indices of the frequency bin corresponding to the
lowest and highest considered frequencies. When assuming, as in (3.8), that the

DOA is constant, one can compute  as the median value of é(ﬁ) over all considered
frames.

3.2 Single-channel spectral enhancement

Although the beamformer in Section 3.1 is able to reduce the interference, i.e., noise
and reverberation, to some extent, spectral enhancement algorithms are able to
further reduce reverberation as well as noise. The output signal §(k, £) of the MVDR
beamformer contains the clean speech signal s(k, £) as well as residual reverberation
r(k, ) and residual noise v(k,?), i.e.,

Gk, 0) = 2 (k, £) + v(k, 0), (3.15)

where

x(k,0) = s(k,€) +r(k,0), (3.16)
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denotes the reverberant speech component. Aiming at jointly reducing residual re-
verberation and noise, the single-channel spectral enhancement algorithm summa-
rized in Fig. 3.2 is proposed, where a real-valued spectral gain g(k, ¢) is applied to
the STFT coefficients of the beamformer output, i.e.,

5(k,0) = g(k,0)g(k,0), (3.17)

where §(k, £) denotes the STFT of the estimated speech signal.

The spectral gain g(k, £) is computed using the minimum mean square error (MMSE)
estimator for the clean speech spectral magnitude as proposed in [215] (see Subsec-
tion 3.2.1). This estimator, similarly to the Wiener filter, requires the PSDs of the
clean speech, of the noise and of the reverberation components.

First, the estimate 62 (k, £) of the noise PSD o2 (k, f) is computed based on a slight
modification of the well-known minimum statistics (MS) approach [90] (see Sub-
section 3.2.2) and used to estimate the reverberant speech PSD. The estimate
62 (k,£) of the reverberant speech PSD o2 (k, () is computed using temporal cep-
strum smoothing [216,217] (see Subsection 3.2.3). The estimate 62 (k, £) of the (late)
reverberant PSD o2(k, /) is computed from the reverberant speech PSD estimate
using the approach proposed in [87] (see Subsection 3.2.4). This approach requires
an estimate of the reverberation time Tgo, which, in this thesis, is obtained using
the estimator described in [219]. As the dereverberation task is treated separately
from the denoising task, care has to be taken that no reverberation leaks into the
noise PSD estimate and vice versa. Thus, a longer minimum search window is used
in the MS approach as compared to [90] (see Section 3.3).

The estimate 62 (k,¢) of the clean speech PSD o2 (k, ¢) is finally obtained by a re-
estimation, again using temporal cepstrum smoothing. The following subsections
give a more detailed description of the different components of this proposed single-
channel spectral enhancement algorithm.

3.2.1 Spectral gain estimation

The gain function used in the spectral enhancement scheme has been proposed
in [215] to estimate the spectral magnitude of the clean speech. This estimator is
derived by modeling the speech magnitude |s(k,?)| as a stochastic variable with a
chi probability density function (PDF) with shape parameter p, while the phase
of s(k,?) is assumed to be uniformly distributed between —7 and 7. Furthermore,
the interference j(k,¢) = r(k,£) + v(k,f) is modeled as a complex Gaussian ran-
dom variable with PSD ajz.(k, ). Assuming that r(k, £) and v(k, £) are uncorrelated,
sz(k, ) can be expressed as

o2(k,0) = B {|j(/<:,€)|2} = 02(k,0) + 02(k, 0). (3.18)
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The squared distance between the amplitudes (to the power ) of the clean speech
s(k,¢) and the estimated output §(k,¢) is defined as
2

e(k, ) = (|s(k;,e>\5—

§(I<:,Z)|B)

where the parameter [, typically chosen as 0 < 8 < 1, denotes a compression factor.
This compression factor results in a different emphasis given on estimation errors
for small amplitudes in relation to large amplitudes. The clean speech magnitude is
estimated by optimizing the MMSE criterion

(3.19)

|5(k,0)| = :Tr(g;r;ln E {e(k,€)|g}(k7€),a?(k,é),f(k,é)} , (3.20)

where &(k, ) denotes the a priori signal-to-interference ratio (SIR) defined as

a2(k,0)

R T P =T

(3.21)

where o2(k, £) denotes the PSD of the clean speech.
As shown in [215], the solution to (3.20) leads to the spectral gain g(k, ¢)

N
W0 =\ivem
1/B

Gam (u + §) P (1 —p—515 —V(W)) (3.22)
Gam (p) S (1—p,1;—v(k, 1)) .

(VD)

where v(k, £) denotes the a posteriori SIR, defined as

l5(k, 0)?

vk, £) = o2(k, 0) + o2(k, ()’

(3.23)

and
’y(k, ()g(k, f)
p+ &k, 0) 7

where ®(-) denotes the confluent hypergeometric function and Gam (-) denotes the
complete Gamma function [220]. Depending on the choice of 8 and g, the solution
in (3.22) can resemble other well-known estimators, such as the short-time spectral
amplitude estimator (8 = 1, u = 1) [98] or approaches the log-spectral amplitude
estimator [221] when § tends to 0. In order to reduce artefacts that may be intro-
duced by directly applying (3.22), the spectral gain g(k, ¢) in (3.17) is restricted to
values larger than a spectral floor gmi, (see Section 3.3), i.e.,

vk, ) = (3.24)

g(k,£) = max (§(k,£), gmin) - (3.25)
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Fig. 3.3: Power of noise as well as of clean and reverberant speech for one second of signal.

To compute the expression in (3.22), the PSDs o2(k,¢), 02(k,¢) and o2(k, ) have
to be estimated from the beamformer output. The used estimators are described in
the next subsections.

3.2.2 Noise PSD estimation

The MS [90] approach has been shown to be a reliable estimator of the noise PSD for
moderately time-varying noise conditions. This approach relies on the assumption
that the minimum of the noisy speech power over a short temporal sliding window is
not affected by the speech. The noise PSD o2 (k, ¢) is then estimated by tracking the
minimum of the noisy speech power over this sliding window, whose usual length
corresponds to 1.5 s according to [90].

Fig. 3.3 depicts the powers of anechoic speech, reverberant speech and additive noise
for one frequency bin of their power spectrograms. As illustrated in this figure, the
decay time in speech pauses is typically increased in the presence of reverberation.
Consequently, a longer tracking window is used in the proposed spectral enhance-
ment scheme (see Section 3.3) in order to avoid reverberant speech affecting the
estimation of the noise PSD o2 (k, £).

3.2.3 Speech PSD estimation

Temporal cepstrum smoothing, as proposed in [216], is used to estimate the PSD
02(k,{) of the reverberant speech component x(k, £) as well as the PSD o2(k, ) of
the dereverberated speech signal s(k, £). The estimation of o2 (k, £) only requires the
noise PSD estimate 62 (k, ¢) whereas the estimation of o2(k, ) additionally requires
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the estimate 62 (k, /) of the reverberant speech PSD, as depicted in Fig. 3.2. The
modifications required for the latter case are described at the end of this section.

The estimate of the reverberant speech PSD o2(k,f) is computed using the
maximum likelihood (ML) estimator of the a priori SNR,

_ly (/f )\2

An estimate 62 (k, /) of the reverberant speech PSD can then be obtained as

~1. (3.26)

zml(kz 0) = 62 (k,¢) max (éwml (k,0), fmm), (3.27)

where fmin > () denotes a lower bound set to avoid negative or very small values of
&z (K, 0). In the cepstral domain, 62  (k,{) can be represented by

Nooy(@,€) = IFFT {log (67, (k, O)lk=o, (z-1) } , (3.28)

where ¢ and L denote the cepstral bin index and the length of the FFT, respectively.
A recursive temporal smoothing is applied to A, (q,¢), i.e.,

Ae(q,€) = 0(q, ) Aa(q, £ = 1) + (1 = 0(q, ) Ae,y (0, 6), (3.29)

where 6(q, £) denotes a time-quefrency-dependent smoothing parameter. Only a mild
smoothing is applied to the quefrencies which are mainly related to speech, while
for the remaining quefrencies a stronger smoothing is applied. Consequently, a small
smoothing parameter is chosen for the low quefrencies, as they contain information
about the vocal tract shape, and for the quefrencies corresponding to the fundamen-
tal frequency fy in voiced speech. In order to protect these quefrencies, especially
the ones corresponding to the fundamental frequency, the parameter 6(g, £) in (3.29)
is adapted. After determining f by picking the highest peak in the cepstrum within
a limited search range, d(q, ¢) is defined as

5pitch if q € Q7

6(q, 0) = (3.30)

where Q denotes a small set of cepstral bins around the quefrency corresponding to
fo and where pitcn denﬁotes the smoothing parameter for the quefrency bins within
Q [216]. The quantity 0(q, ¢) is given as

g(q,ﬁ) = 775(% l— 1) + (1 - n)gconst(q)7 (331)

where Jconst () is time-independent and chosen such that less smoothing is applied
in the lower cepstral bins. Furthermore, 7 denotes a forgetting factor that defines
how fast the transition from (g, ¢) t0 dconst(¢) can occur (see Section 3.3). Finally,
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the reverberant speech PSD estimate 62 (k, /) can be computed by transforming
Az (g, £) back to the spectral domain, i.e.

62 (k,0) = exp (k + DFT {\s(q, O)} [g=0,... (L-1)) - (3.32)

where k denotes a parameter used to compensate for the bias due to the recursive
smoothing in the log-domain in (3.29) and is estimated as in [217].

The estimate of the reverberant speech PSD can be used to estimate the (late)
reverberant PSD o2(k, /) (see Subsection 3.2.4). After having estimated o2(k, /),
cepstral smoothing is also used to estimate the dereverberated clean speech PSD
o2(k,£). In this case, the noise PSD o2 (k, £) in equations (3.26) and (3.27) is replaced
by the interference PSD o7 (k, £) = o7 (k, £) + o (k, {).

3.2.4 Reverberant PSD estimation

The RIR model presented in [24] represents the RIR as a Gaussian noise signal
multiplied by an exponential decay A, which depends on the room reverberation
time, Tgo, i.e.,

31n(10)
A= ——2.
Teo fs

In the proposed spectral enhancement algorithm, the approach derived from this
model and presented in [87] is used to estimate the reverberation PSD o2 (k,¢) as

(3.33)

62 (k,0) = e 22Tals52 (k0 — Ty/T,), (3.34)

where

62 (k,0) = 6% (k, 0) + 62 (K, 0). (3.35)

In (3.34), Ts denotes the frame shift whereas T is the duration of the direct path
and early reflections of the RIR, typically assumed to be between 50 ms and 80 ms.
As a result, the estimate 62 (k,¢) of the late reverberation PSD can be obtained
using 62 (k,¢) and an estimate of the reverberation time Tgo obtained using an
online estimator. A comparison of online Ty estimators can be found, e.g., in [79].
In this thesis, as in [195,196], the Tgo is estimated using the estimator proposed
in [219].

Finally, using the estimated PSDs of the reverberation and of the residual noise,
an estimate 62 (k, £) of the clean speech PSD is obtained. These estimates are used
in (3.21) to compute the a priori SIR and in (3.22) to compute the real-valued
spectral gain, g(k, ¢).
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Fig. 3.4: Error in DOA estimation obtained on the simulated data of the REVERB chal-
lenge corpus (left) and beampattern of the used MVDR beamformer computed
using the noise coherence matrix of a theoretically diffuse noise field (right).

3.3 Experimental setup
3.3.1 Algorithm settings

The experiments are conducted using the corpus described in Chapter 2 in which
all signals are recorded at a sampling frequency fs =16kHz. As both the T4y and
the DOA of the target speaker are assummed constant, both Tgg and DOA have
been estimated only once per utterance as their median estimate over all frames.
The STFT has been computed using a 32 ms Hann window with 50 % overlap and
an FFT of length L = 512. The DOA has been estimated as the angle minimizing
the sum of the MUSIC pseudo-spectra, for § = 0° ... 360° for every 2°, using all 8
microphones of the circular microphone array for the frequency range from 50 Hz
to 5 kHz, see Subsection 3.1.3.

The MVDR beamformer uses a theoretically diffuse noise coherence matrix and a
white noise gain constraint WNG,,x = -10 dB if less than 10 frames are detected as
noise when applying the VAD, see (3.11). The VAD has been configured similarly
as in [89] but its parameters have been adapted in order to apply it to signals with
a sampling frequency of 16 kHz. Otherwise, the noise coherence matrix is estimated
using all detected noise-only frames, see (3.9). The speech amplitude estimator
described in Subsection 3.2.1 assumes a chi PDF with shape parameter p = 0.5,
a minimum gain gni, of -10 dB and a compression parameter 8 = 0.5. The noise
PSD estimator described in Subsection 3.2.2 uses the same parameters as in [90],
except for the length of the sliding window for minima tracking which has been set
to either 1.5s or 3s for the configurations that in our experiments are denoted by
SE; 5 and SE3, respectively. In (3.31), n = 0.96 and all parameters used used for the
speech PSD estimation, described in Subsection 3.2.3, have been set as prescribed
in [215]. In equation (3.34), Ty has been set to 80 ms.
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Fig. 3.5: Speech recognition accuracy on the simulated data of the considered corpus when
using an acoustic model trained using either clean data (top) or multi-condition
data (bottom). Horizontal bars mark the accuracy obtained on unprocessed data
while numbers indicate the accuracy gain obtained by applying the considered
algorithms.

3.3.2  Observations on beamformer design

The MVDR beamformer is steered towards the estimated DOA of the target speech
signal. In practice, errors in the DOA estimation can result in speech degradation.
Fig. 3.4 (left) depicts the DOA error obtained in all conditions for the simulated data
of the REVERB challenge (i.e. a total of 2176 utterances). The true DOA has been
considered to be the one stated in the REVERB challenge data documentation [203].
Ignoring outliers, it can be seen that the absolute value of the error is smaller than
5 degrees in room S1 while in room S2, it is smaller than 5 degrees for 50% of the
data and always smaller than 15 degrees. As expected, the largest error in DOA
estimation appears in the case of room S3, which has the largest reverberation time.
It can be seen that for room S3, for 50% of the utterances, the absolute value of the
DOA error is inferior to 5 degrees. However, it can be close to 20 degrees for some
utterances.

In order to assess the detrimental effect that such DOA error could have on the per-
formance of the MVDR beamformer, one may examine its corresponding beampat-
tern. Fig. 3.4 (right) depicts the beampattern of the MVDR beamformer computed
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Fig. 3.6: Speech recognition accuracy on the real data of the considered corpus when us-
ing an acoustic model trained using either clean data (left) or multi-condition
data (right). Horizontal bars mark the accuracy obtained on unprocessed data
while numbers indicate the accuracy gain obtained by applying the considered
algorithms.

using the noise coherence matrix of a theoretically diffuse noise field as in (3.11),
steered towards the zero degrees direction, and using the microphone configuration
described in Section 2.2. By observing the width of the main lobe it appears that
the error in DOA is small enough to not introduce distortions in room S1 and S2.
Some cancellation of the target speech signal may occur in room S3 but should be
limited to frequencies higher than 4 kHz.

3.4 Results

3.4.1 Speech recognition performance

In order to evaluate the potential benefit of the proposed signal enhancement al-
gorithm on the performance of an ASR system, the processed signals have been
used as the input for the baseline ASR system provided by the REVERB challenge
(see Section 2.2). The ASR accuracy is obtained by extracting the MFCCs, includ-
ing Deltas and double-Deltas, from the processed signal §(n) for both simulated
and real data. These MFCCs are then input to the ASR system. This subsection
presents the results obtained when using acoustic models trained on either clean or
multi-condition training data.

Fig. 3.5 depicts the accuracy obtained on the simulated data using either clean (top)
or multi-condition training data (bottom). When using the model trained on clean
data and comparing the accuracy to the one obtained from unprocessed signals (see
horizontal lines in Fig. 3.5), the accuracy decreases slightly for the conditions with
the lowest reverberation time (room S1). This indicates that spectral coloration
introduced by the enhancement algorithm may reduce the performance of the ASR
system while the benefit of dereverberation is limited for small reverberation times.
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Fig. 3.7: PESQ (top) and PEMO-Q (bottom) scores computed on the simulated data of
the REVERB challenge corpus. Horizontal bars mark the scores obtained on un-
processed data while numbers indicate the performance gain obtained by applying
the considered algorithms.

In all other conditions, the single-channel spectral enhancement algorithm improves
the accuracy, with SE3 yielding larger improvements than SE; 5. Except for room S3,
the MVDR beamformer yields better results than the single-channel algorithm. The
combination of the MVDR beamformer with SE3 yields the largest improvement:
absolute accuracy improvement up to 42.24 % for the simulated data (condition
“S2, far”).

On unprocessed signals from room S1, it appears that using the multi-condition
model does not improve the accuracy obtained with the clean model. In addition,
it appears that in room S1 all considered algorithms reduce the accuracy with
this detrimental effect being the least noticeable when applying MVDR alone. This
degradation of performance might be due to the inability of the considered ASR
system to deal with distortions, even minors, that can be introduced by speech en-
hancement algorithm. Indeed, the training data did not entails processed signal and
the MVDR, which except in the case of DOA estimation error would be distortion-
less, would logically be less affected. However, for rooms S2 and S3, multi-condition
training does improve accuracy and there is not a severe drop in performance when
the acoustic conditions are more challenging. A notable effect to observe is the
fact that, using multi-condition training, the accuracy improvement obtained by
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applying the considered algorithms is quite minor. Moreover, the difference in per-
formance between the considered algorithms is very small. Notably, for condition
“S3, far”, the gain in performance between the SE; 5 and MVDR-SE; is of less than
a percentage point.

The performance obtained on real data is depicted in Fig. 3.6. When using the acous-
tic model trained on clean data, all considered algorithms improve accuracy with
the largest improvement coming from the combination of beamforming and spectral
suppression. More specifically, the highest improvement is obtained by MVDR-SE3
in condition “R1, near”, with an accuracy improvement of 27.12 percentage points.
By observing the accuracy obtained by using the acoustic model trained on multi-
condition data, it appears that in this more challenging condition, this model is
advantageous. However, similarly as what was observed from the simulated data,
the difference in performance between the considered algorithms is limited. It ap-
pears that for ASR accuracy on the considered benchmark, MVDR is the most
suited algorithm. However, the best choice of algorithms for ASR might not be
the same as for speech quality improvement, whose evaluation through signal-based
measures and listening tests is presented in the next subsections.

3.4.2  Signal-based measures

This section evaluates the performance of the considered speech enhancement algo-
rithms by applying the signal based measures listed in Chapter 2. The performance
in term of PESQ and PEMO-Q is depicted in Fig. 3.7. As both PESQ and PEMO-Q
are intrusive measures, they are only provided for the simulated data. Meanwhile
the considered non-intrusive measures, namely ANIQUE+, P.563 and SRMRyorm,
are presented for both simulated and real data in Fig. 3.8 and Fig. 3.9, respectively.
As expected, the signal based-measures do not always show completely consistent
results. Nevertheless, some common tendencies can clearly be observed and are
summarized in the following.

Both PESQ and PEMO-Q aim at estimating the overall speech quality of the test
signal intrusively. The PESQ and PEMO-Q scores are depicted in Fig. 3.7. PESQ
shows the same trend in all conditions. More specifically, all considered enhance-
ment algorithms yield higher scores than the unprocessed signal and multichannel
enhancement yields the largest improvement. A minor advantage of MVDR+SE3
over MVDR+SE; 5 appears, e.g., in condition “S1, far”. PEMO-Q shows similar
trends, except for condition “S1, near” in which it does not show any difference
between processed and unprocessed speech, and even yields a slightly lower score
in the case of MVDR. One cannot reach definitive conclusions about the benefits
of the considered algorithms on the basis of PESQ and PEMO-Q alone and should
examine other signal-based measures.

The scores of the non-intrusive measures, i.e., ANIQUE+, P.563 and SRMR o, are
depicted in Fig. 3.8. As was the case for the intrusive measures, all indicate that the
considered algorithms improve the speech quality compared to their unprocessed
counterpart and that multichannel enhancement yields the largest improvement.
All three considered non-intrusive measures show MVDR as providing nearly no im-
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3.8: ANIQUE+ (top), P.563 (middle) and SRMRuyorm (bottom) scores computed using
the simulated data of the REVERB challenge corpus. Horizontal bars mark the
scores obtained on unprocessed data while numbers indicate the performance gain
obtained by applying the considered algorithms.

provement for condition “S2, far”, though the combined algorithms MVDR+SE; 5
and MVDR+SE3 appear to yield better performance than their single-channel coun-
terparts. This performance of MVDR is an example where the measures show incon-
sistency between one another, e.g., it appears beneficial when looking at ANIQUE+
or P.563 but seems to yield the same quality as unprocessed signals when considere-
ing SRMR,,orm alone. In addition, the minor advantage that MVDR+SE3 seems to
have over MVDR+SE; 5 when considering the intrusive measure does not appear
with these three non-intrusive measures.
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Fig. 3.9: ANIQUE+ (left), P.563 (middle) and SRMRunorm (right) scores computed using
the real data of the REVERB challenge corpus. Horizontal bars mark the scores
obtained on unprocessed data while numbers indicate the performance gain ob-
tained by applying the considered algorithms.

An even larger inconsistency between the measures appears when observing the
scores obtained on the real data depicted in Fig. 3.9. Both ANIQUE+ and
SRMR,orm indicate that all algorithms improve the speech quality, that MVDR
is the least beneficial algorithm and that the combined algorithms MVDR+SE; 5
and MVDR+SE; yield better performance than SE; 5 and SE3;. However, P.563
indicates that all algorithms are detrimental when applied to real data, which is in
strong contradiction to the other measures.

By observing all considered signal-based measures, it seems that the proposed
algorithms are beneficial to the speech quality and that, as could be expected,
MVDR+SE3 is the most advantageous. However, due to the lack of consistency
between the measures, perceptual evaluation, i.e., listening tests, is required to reli-
ably assess the performance of these algorithms.

3.4.3 Perceptual evaluation

This subsection presents the results of the perceptual evaluation that we conducted
and first reported in [196] and reproduces the results of the online perceptual eval-
uation conducted by the organisers of the REVERB challenge and reported in [31].
These subjective evaluations are based on MUSHRA tests following the specifica-
tions described in [37]. Four acoustic conditions have been tested, “S2, near”, “S2,
far”, “R1, near” and “R1, far”, as in the work presented in [31].

3.4.3.1 Perceptual evaluation in controlled environment

This perceptual evaluation has been carried out for the unprocessed signals and
for 3 processing algorithms, namely, the single-channel scheme applied to the first
microphone signal (SE3), the MVDR beamformer using 8 microphones (MVDR) and
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Fig. 3.10: MUSHRA scores from our perceptual evaluation, normalized to range between
0 and 1. Higher scores indicate a higher quality (left) or a larger reverberation
suppression (right), diamonds indicate the mean. Scores for the reference, always
labeled as excellent, and of the anchor, assessed as least satisfactory, are not
displayed.

the combination of the MVDR beamformer with the spectral enhancement scheme
(MVDR+SE3). In addition to these signals, a hidden reference and an anchor have
been presented to the assessors. The hidden reference was the anechoic speech signal
in the case of simulated data and the signal recorded by a headset microphone in
the case of real data. The anchor consisted of the first microphone signal, low-pass
filtered with a cut-off frequency of 3.5 kHz.

A total of 21 self-reported normal-hearing listeners participated in the MUSHRA
listening test. The listening test was conducted in a soundproof booth and the as-
sessors listened to diotic signals through headphones (Seinheiser HD 380 pro). Each
assessor evaluated 3 utterances per condition (i.e. 12 utterances per assessor), in
terms of two different attributes: “overall quality” and “perceived amount of rever-
beration”, on a scale ranging from 0 to 100. For each assessor, the utterances to be
evaluated were randomly picked from the REVERB challenge database. All signals
were normalized in amplitude and presented at a sampling frequency of 16 kHz and
a quantization of 16 bit using a Roland sound card (model UA-25EXCW). The
listening test was divided into three stages.

In the first stage, the assessors were asked to listen to all files that would be pre-
sented to them during a training phase. This training phase allowed the assessors to
get familiar with the data to be evaluated and to adjust the sound volume to a com-
fortable level. In the second stage, the assessors had to evaluate the overall quality
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Table 3.1: Results of the Friedman’s test for both tested attributes. The value p < 0.01
indicates the significance of the results and x? denotes the Friedman’s chi square

statistic.
S2, near S2, far RI1, near RI, far
Overall x? 99.6 77.1 98.9 90.6
quality p <001l <001 <00l  <0.01
Amount of x? 93.9 120.8 98.6 104.7
reverberation |, | <001 <001 <001  <0.01

of the signals. Finally, the third stage consisted in the evaluation of the perceived
amount of reverberation. The order of presentation of algorithms and conditions
were randomized between all stages and all assessors.

The obtained MUSHRA scores, normalized to range between 0 and 1, are summa-
rized in Fig. 3.10. The anchor appears to be the least satisfactory for the attribute
“overall quality”, suggesting that the subjects used the full extent of the grading scale.
However, this is not the case for the attribute “perceived amount of reverberation”,
illustrating the difficulty of evaluating this attribute. The three considered process-
ing algorithms yielded an improvement compared to the unprocessed signal both in
terms of “overall quality” and of “perceived amount of reverberation”. As expected,
the largest reduction of the “perceived amount of reverberation” is observed for the
combination MVDR+SE3. The combination MVDR+SE3 improves the overall qual-
ity as well, although the improvement, compared to the single-channel algorithm,
is lower than for the attribute “perceived amount of reverberation”. The use of an
MVDR beamformer alone reduces the “perceived amount of reverberation” but does
not improve the performance compared to SEs.

Since the scores of the MUSHRA test were not normally distributed, a Friedman’s
test [222] was used to examine the significance of the results, excluding the scores
of the anchor and the reference. The results of the Friedman’s test are presented in
Table 3.1. The p-value, p < 0.01, shows that at least one significant pairwise differ-
ence can be observed in all conditions and for all attributes. In order to examine
the significance of the pairwise difference in performance between the algorithms, a
Wilcoxon rank sum test [223] has been used for each condition separately. A Bonfer-
roni correction has been applied resulting in significant effects being considered for
p < 0.05/6. For the attribute “perceived amount of reverberation”, the differences in
performance between the unprocessed signal and all algorithms are significant but
no significant differences were present between the different algorithms. The same
conclusion holds for the attribute “overall quality”, except for the room R1 and the
condition “S2, near”, where the differences between the unprocessed signal and the
output of the MVDR beamformer do not appear to be significant.

Even though the statistical significance criterion is not always satisfied, the trend of
the results confirms the benefits of combining a beamformer with a single-channel
spectral enhancement algorithm for reducing reverberation and noise and for im-
proving the overall speech quality.
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Fig. 3.11: MUSHRA scores for single-channel algorithms obtained during the test con-
ducted online by the REVERB challenge organizers [31]. Higher scores indicate
a higher quality (top) or a larger reverberation suppression (bottom), diamonds
indicate the mean. Reference and anchor are excluded and scores are normalized
between 0 and 1.

3.4.3.2  Online perceptual evaluation

A large scale listening test was conducted as part of the REVERB challenge to mea-
sure, as in the previously describe perceptual evaluation in controlled environment,
the overall speech quality and level of reverberation. As both SE3 and MVDR+SE3
were submitted to this challenge, we present below the results of this listening test
that were published in [31], for which the authors kindly provided the raw scores and
where a more detailed test description can be found. This test was conducted using
crowdsourcing over internet. Compared to perceptual evaluation in controlled envi-
ronment, this method has both drawbacks and advantages. Indeed, though assessors
were instructed to conduct the test over headphones and in a quiet environment,
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Fig. 3.12: MUSHRA scores for multichannel algorithms obtained during the test conducted
online by the REVERB challenge organizers [31]. Higher scores indicate a higher
quality (top) or a larger reverberation suppression (bottom), diamonds indicate
the mean. Reference and anchor are excluded and scores are normalized between
0 and 1.

it was not possible to control that they followed the instructions adequately. Fur-
thermore, one cannot guarantee that the audio system of the assessors, e.g., used
sound card, did not introduce artefacts. However, this test allowed for the compari-
son of a wide range of algorithms by a wide range of participants, which would not
have been feasible in a controlled environment. Though these results should only be
interpreted with caution, some important observations can be made.

In this online perceptual evaluation, single-channel and multichannel algorithms
were evaluated separately. Consequently, only signals processed from the same type
of input, e.g., single-channel, and in the same condition, e.g., “S2, near”, were pre-
sented simultaneously to assessors. In this thesis, the MUSHRA scores from this
evaluation, normalized between 0 and 1, are presented for the single-channel algo-
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rithms (including SE3) in Fig. 3.11 and for the multichannel algorithms (including
MVDR+SE3) in Fig. 3.12. In both figures, the algorithms are denoted by the name
of the first author and reference number of the REVERB challenge paper in which
they were presented, i.e, for single-channel algorithms, [212,224-231]|, and for mul-
tichannel algorithms, [212,226,231-234|. The acronyms in brackets are provided for
algorithms that have been applied in several settings that can be real time (RT),
utterance-based (UB) or full batch (FB) processing [31]. These indicate that the
estimators used in these algorithms have been applied either in real time, using
complete utterances or the complete dataset.

By observing the scores depicted in Fig. 3.11, it appears that many single-channel
algorithms are able to reduce the perceived amount of reverberation but that few
are able to do so while improving the perceived speech quality. However, the pro-
posed SE3 algorithm was able to do both and outperformed all other single-channel
algorithms in terms of perceived speech quality. This shows that SE3 is a robust
baseline to use for future developments of speech enhancement algorithms. In the
multichannel case, for which scores are presented in Fig. 3.12, the combined algo-
rithm MVDR+SEj is as well able to both reduce reverberation and improve speech
quality. Though, using the 8 available channels, MVDR+SEg is not the best of the
considered algorithms, it is only outperformed by the algorithm from Delcroix et al.
that relies on a linear prediction step that can be computationally intensive. Conse-
quently, MVDR+SE3 is a valuable algorithm to be used when multiple microphones
are available but computing power is limited.

3.5 Summary

In this chapter, we have presented the combination of an MVDR beamformer with
a single-channel spectral enhancement algorithm, aiming at joint dereverberation
and noise reduction. In the MVDR beamformer the noise coherence matrix is es-
timated online using a VAD, whereas the DOA of the target speaker is estimated
using the MUSIC algorithm. The output of this beamformer is processed using a
spectral enhancement scheme combining statistical estimators of the speech, noise
and reverberant PSDs and aiming at joint residual reverberation and noise suppres-
sion. The main contribution of this chapter is the combination of several estimators
used in this single-channel spectral enhancement algorithm.

The evaluation of the proposed algorithm was done using both simulated and real
signals. This evaluation showed the ability of the proposed algorithm to improve
both the performance of an ASR system and the quality of speech in communication
applications. Noticeably, the proposed single-channel algorithm is able to reduce the
perceived amount of reverberation while improving the perceived speech quality.
This appears by examining the results of listening tests as well as the considered
signal-based measures. However, this evaluation shows, as well, that signal-based
measures might be difficult to interpret. The challenge of designing a reliable non-
intrusive signal-based measure of the speech quality is addressed in the next chapter.
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NON-INTRUSIVE QUALITY PREDICTION
FOR PROCESSED SPEECH

Many speech enhancement algorithms have been proposed to overcome the speech
degradation that both noise and reverberation often introduce [16,21,23,26]. This
degradation can be quite severe, particularly when using one or even several mi-
crophones to record the speech of a distant user. Fortunately, many algorithms are
able to substantially reduce the amount of noise and reverberation. Among those,
the algorithms presented in Chapter 3 were able to reduce degradation, in this case
focusing on reverberation, while improving the overall speech quality. However, in
many speech communication applications, such as teleconferencing or hearing-aids,
the choice of the algorithm best suited to reach this goal often depends on the
acoustic condition and processing artefacts may result in a degradation of speech
quality [31]. Consequently, speech enhancement algorithms need to be evaluated in
terms of speech intelligibility and quality, the latter being the focus of this chapter.
Perceptual speech quality evaluation based on listening tests requires a group of
human assessors to evaluate the processed speech signals with respect to predefined
attributes, such as overall quality, level of reverberation or residual noise, or col-
oration. Such evaluation is typically performed by grading each attribute on a scale
that consists either of a few values, such as for the mean opinion score (MOS) [235],
or of continuous values, as in the MUSHRA test [37], which was used in the previous
chapter in both a controlled environment and online. Speech intelligibility can be
assessed as the number of speech items, i.e., phonemes or words, identified by asses-
sors in relation to the total number of items present in the signal under test [236].
Speech intelligibility is often reported using the SRT, i.e., the level of degradation
for which only 50 % of the speech items are correctly identified by an assessor [155].

This chapter is partly based on:

[197] B. Cauchi, J. Santos, K. Siedenburg, T. Falk, P. Naylor, S. Doclo, and S. Goetze, “Predicting
the quality of processed speech by combining modulation-based features and model trees,”
in Proc. ITG Conf. on Speech Communication, Paderborn, Germany, Oct. 2016

[198] B. Cauchi, K. Siedenburg, J. Santos, T. Falk, S. Doclo, and S. Goetze, “Non-intrusive speech
quality prediction using modulation energies and LSTM-network,” IEEE Trans. Audio,
Speech, Lang. Process., vol. 27, no. 7, pp. 1151-1163, Jul. 2019
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Perceptual measures are generally considered the most reliable way to assess the
quality or intelligibility of processed speech signals. However, since these measures
are costly and time-consuming, speech enhancement algorithms are often evaluated
using signal-based measures, that, as observed in the previous chapter, might be
difficult to interpret or might give results that are not meaningful for the task.

Signal-based measures, aiming at either speech quality or speech intelligibility pre-
diction, can be categorized as either intrusive or non-intrusive. The computation of
intrusive measures requires a (clean) reference signal in addition to the test signal,
whereas non-intrusive measures can be computed from the test signal only. Among
intrusive measures, the AI [163], the STT [164], the SII [165], the STOI [166] and
mutual-information-based techniques, such as the algorithm proposed in [167], aim
at speech intelligibility prediction, whereas the PESQ [176], the POLQA [177] or
the PEMO-Q [178] are used to predict the speech quality. However, in practice,
a reference signal is not available, e.g., to evaluate algorithms using realistic cor-
pora or to automatically select the best algorithm for a specific acoustic condition.
Consequently, reliable non-intrusive measures are required.

Several measures have been proposed to remove the need for a reference signal. Non-
intrusive measures of the speech intelligibility include the recently proposed non-
intrusive STOI [180], that relies on estimating the amplitude envelope of the clean
speech from the input signal, and the use of a trained speech recognizer as proposed
in [182,237]. To evaluate speech quality, non-intrusive measures such as P.563 [184]
and ANIQUE+ [192] exist, which have not been explicitly developed for the evalua-
tion of speech enhancement algorithms but rather for the evaluation of narrow-band
speech codecs.

Measures such as the SRMR [238] and its extension, SRMRyorm [186], have been
developed for both intelligibility and quality prediction and apply a rather simple
predicting function to a set of time-averaged modulation energies. Though these
measures have shown promising results, e.g., when using SRMR,,o;m to predict in-
telligibility for cochlear implant users in [187], their performance, similarly as for
P.563 and ANIQUE-, can be unpredictable when applied to signals processed with
different categories of algorithms, as reported in [188]. In [191], twin HMMs have
been proposed to generate an estimate of the clean speech before using this estimate
and the signal under test as input to an intrusive measure. The reliability of the
obtained prediction largely depends on the accuracy of the estimated clean signal
such that the method does not outperform the used intrusive measure.

This chapter describes two non-intrusive measures aiming at reliably predicting the
speech quality of processed signals across various acoustic conditions and types of
processing. Both measures are motivated by the idea that, using adequate features
as input and suitable training data, machine learning techniques would be able to
model the perception of speech quality. For this purpose, two different predicting
functions are used. First, a model tree that used time-averaged features as input,
second, a neural network using long short-term memory (LSTM) cells that takes the
time-dependency of the test signal into account. The considered predicting functions
are trained on a perceptually evaluated dataset constructed for this purpose.
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The remainder of this chapter is structured as follows. In Section 4.1, we present
the proposed measures, that combine modulation energy (ME) with either a model
tree or a RNN using LSTM cells. Using such network as predicting function allows
to model the time-dependency of the test signal and to apply the proposed measure
to signals of arbitrary length. In Section 4.2, we describe the perceptually evaluated
dataset of speech signals, representing various acoustic conditions, i.e., RIRs, noise
types and SNRs, and several categories of algorithms, single- and multichannel, with
different settings resulting in various level of interference suppression and process-
ing artefacts. Section 4.3 describes how this dataset is used to train and evaluate
the proposed measures and presents the experimental framework. The results pre-
sented in Section 4.4 show that the LSTM based measure is the most promising and
that, when trained for a single category of algorithms, it outperforms existing non-
intrusive measures and yields similar performance as the intrusive measures. When
considering several categories of algorithms, the LSTM based measure outperforms
both non-intrusive and intrusive measures included in the considered benchmark.

4.1 Proposed approach

The perceived speech quality pz of the processed signal §(n) can be obtained from
a listening test conducted with several assessors (see Section 4.2). This chapter
focuses on two measures, proposed in [197] and [198], that aim at non-intrusively
predicting ps, i.e., at computing an estimate ps of ps from the signal §(n) while
requiring neither a listening test nor a reference signal, i.e., s(n) or dyes(n). This
section first describes the used features, i.e., the extraction of MEs from the test
signal before describing their combination with the considered predicting functions.
In the following, “Tree” refers to the combination of MEs with a model tree and
“LSTM?” refers to the combination of MEs with the considered RNN.

4.1.1 Considered features

Both Tree and LSTM use modulation energies (MEs) as features, which have already
been used in the field of speech quality prediction in [185] and have been further
elaborated in [186]. The computation of these features is depicted in Fig. 4.1 and
can be summarized as follows.

First, the signal under test §(n) is filtered by a gammatone filterbank with J chan-
nels, resulting in J filtered signals §;(n), where j denotes the filter index. The
temporal envelope e;(n) is extracted from §;(n) as

ej(n) = \/52(n) + H {5,(n)}*, (4.1)

where #H {-} denotes the Hilbert transform. The temporal envelopes are divided
into L = [(N — O)/(W — O)] overlapping windowed frames using an overlap of
O samples and a window of length W, with N the signal length. The modulation
spectral energy €;(k, £) is computed as the squared magnitude of the discrete Fourier
transform of the ¢-th frame in the k-th modulation frequency bin.
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Fig. 4.1: Overview of the feature extraction. The test signal is filtered using a gammatone
filterbank and the temporal envelope of each band is extracted. The modulation
energies are extracted from these envelopes and energy thresholding is applied to
compute the used features.

The modulation spectral energies €;(k, ¢), for frequency bins in the interval kmyin to
kmax, are warped into B overlapping modulation bands whose centre frequencies are
set as in [186], resulting in the warped modulation energies €;(b, £), where b denotes
the index of the modulation band. As proposed in [186], thresholding is applied to
€;(b,0), resulting in aepeak < €;(b,£) < epeak, where 0 < a < 1 and where

L—-1
1 .
Cpeak = MAX (L ;_0 é;(b, Z)) . (4.2)

Finally, a feature vector e; of length J - B is constructed for each ¢-th time frame
as

er = [60(0,0),....60(B—=1,0),...,651(0,0),...,é; 1(B—1,0)]". (4.3)

An example of a sequence of MEs extracted from a short speech segment is depicted
in Fig. 4.2.

In this thesis, as in [197,198], the different parameters of the feature extraction have
been set as in [186]. The gammatone filterbank is applied to signals downsampled
to 8 kHz and uses J = 23 channels with center frequencies ranging from 125 Hz
to 4 kHz. The modulation frequency bins are grouped into B = 8 bands. The
temporal envelope e;(n) is divided in frames using a Hamming window of length W
corresponding to 256 ms and an overlap of length O corresponding to 224 ms. The
indices kmin and knax correspond to the range of modulation frequencies between
4 Hz and 40 Hz and « is set to lower bound modulation energies 30 dB below epeak.
These values have been shown to reduce the sensitivity of the extracted features to
speakers and pitch content [186] compared to the settings initially proposed in [185].
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Fig. 4.2: Modulation energies extracted from 320 ms of clean speech. The coefficients in
each frame are used to construct the sequence of vectors described by 4.3.

When using LSTM, the time ordered sequence described by (4.3) is used as input to
the predicting function. However, when using Tree, as in previous use of the ME for
speech quality prediction [185,186], a single feature vector e of length B represents
the signal §(n), i.e,

e=[e(0), e(1), ..., e(B=1)]", (4.4)
where
J—1L-1
Z > (0, 0). (4.5)
j =0 ¢=0

The SRMR [185] and the SRMR,orm [186] differ in the extraction of the vector
e but both compute the estimate p; as the ratio between the lower and higher
coeflicients of e. Tree computes the estimate p; as the output of a model tree, i.e.,
a combination of classification rules and regression but uses the same features as
in [186] and therefore does not take into account time dependencies in the input
signal.

4.1.2  Model tree as predicting function

The estimate p; of the perceived speech quality p; is obtained by applying a pre-
dicting function f(-) to the feature vector e, i.e. p; = f(e). In the case of both
SRMR [185] and SRMRyorm [186], this predicting function is equal to the energy
ratio between the lower and upper modulation frequencies, i.e.

Brow —1
ey e(b)

SRMR0rm = fsrMr(€) = ﬁ
>, €b)

; (4.6)
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with biow and and bpjgn denoting the lowest and highest considered modulation
frequency index, respectively. As in [186], biow = 4 and bpign is determined as the
index for which 90% of the modulation energy is accounted for, as proposed in [185].
When using Tree, the values of the vector e are normalized to range between 0 and
1. Though such normalization would have no influence on the output of (4.6) it is
used for Tree as it is convenient to define decision rules.

Instead of using the energy ratio in (4.6) as the predicting function, Tree relies on a
predicting function trained on a small corpus of (processed) speech data. It is hence
assumed that a set of signals are available for training. In this thesis, we will use a
model tree as the predicting function built using the so-called M5' algorithm [239],
i.e., each leaf node of the decision tree consists of a linear model which predicts a
value from the input features. The construction of the model tree requires a set of
observations which are all associated with a feature vector and a target value. The
set of observations here consists of the signals available in the training set, which
are all associated with a feature vector e and a perceptual score p;. The model tree
is built in two stages. In the first stage, a conventional binary decision tree is built
by recursively splitting the set of observations into subsets in which the variation
of the perceptual scores is maximal. This results in a large binary decision tree
which can be used to predict a value for each observation. In the second stage, each
node, starting from the top of the constructed decision tree, is replaced by a linear
model if the application of this model results in a lower prediction error than the
binary classification. The resulting model tree is finally simplified using pruning and
smoothing as described in [239], and contains D binary decision nodes.

Although small values of D may result in underfitting, D should remain much
smaller than the size of the training set to prevent overfitting, which would make the
resulting predicting function inapplicable to signals not included in the training set.
In addition, it should be noted that the predicting function f(-) resulting from the
model tree is actually not designed to maximize the correlation in (2.13) but rather
to minimize the mean squared error obtained on the training set. The effectiveness
of the resulting predicting function, using the benchmark presented in Section 2.3,
is discussed in Section 4.4.

4.1.3 LSTM network as predicting function

Artificial neural networks are usually composed of several layers. Each A-th layer
applies a non linear mapping to an input vector x*, of length L3, in order to com-
pute an output vector z*, of length L. It should be noted that, in this section,
superscripts denote a layer index and not an exponent. This mapping is applied
by multiplying a weight matrix W,)(:Z of size L) x L3, where subscripts indicate the
connections represented by the matrix, with the input vector x* before summing
the results with a bias vector b) of length L) and applying a non-linear activation
function F (-) to the result, i.e.,

" = F (W x* +b}). (4.7)
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The values of Wy, and by have to be learned during a training phase (see Sec-
tion 4.3.2) and any number of layers can be used by setting x* = z*~!. Layers
described by (4.7) and networks composed exclusively of such layers are commonly

qualified as feed-forward networks.

The use of RNNs is a common extension of (4.7) to take time dependencies into
account. Similarly as feed-forward artificial neural networks (ANNs), RNNs are
composed of several layers. However, the input of the A-th RNN layer is an ordered
sequence X* of T input vectors x;', where t € [0,7* — 1] denotes the sequence
index, i.e.,

X = {x(},xi‘,u' ,x%‘“_l}. (4.8)

Each layer of an RNN computes a sequence H* of hidden vectors h) of length Lﬁ
and a sequence Z* of output vectors zf‘ of length L;‘ , both containing T* vectors
and defined similarly as in (4.8). The vectors in these sequences are computed by
iteratively applying [240]

Y = F (W + Wiyl + bi). (4.9
2) = F (Wi b +12) . (4.10)

where W2, . Wy, and W, , denote weight matrices of size L) x Ly, Lj x L and
L) x Lf“, respectively, and where bf]‘ and b) are bias vectors of length Lﬁ and L2,
respectively.

For our application, i.e. the prediction of speech quality, RNNs have two main advan-
tages over feed-forward networks. First, the sequence of hidden vectors computed by
an RNN allows the prediction to take into account temporal dependencies; second,
the iterative updates can be applied to a sequence of arbitrary length. However, the
values of the weight matrices and of the bias vectors still have to be learned during a
training phase and the formulation in (4.9) and (4.10) can cause instability during
training, leading to overly long training time or even divergence [241]. In order to
avoid these issues, so-called gated units, such as in the LSTM layers used in this
thesis, are used in practice.
Though in a standard RNN layer, the function F (-) in (4.9) is commonly a simple
non-linear function such as a sigmoid, in an LSTM layer, this function relies on
iterative updates of sequences of vectors, I*, 0*, F* and C*, the so-called, input gate,
output gate, forget gate and cell memory, respectively and their mutual influence on
the layer’s output is illustrated in Fig. 4.3. For each step ¢ of the input sequence X*,
the vectors i and f; are computed from the input vector x} and from the memory
cell vector ¢} ; saved at the previous step, i.e.,

it =8 (Weix + Wpsh, + W2ick ; +b)), (4.11)

R =S (W2 +Woghd, + W2, + 7). (1.12)
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Fig. 4.3: Overview of the updates applied by an LSTM-layer. Updates are applied along the
time-ordered sequence of input vectors resulting in a sequence of hidden vectors
used to compute the output of the layer as in (4.10). The value of each hidden
vector depends on the current input as well as on the memory cell and of the
weights applied in the input, output and forget gates.

where S (-) denotes the logistic sigmoid function. The resulting vectors i} and f}
weight the influence of the current and previous input, respectively, to the updated
vector ¢; computed as

) =}, + Dtanh (W) o + W 2 | + b)) (4.13)

The influence of this memory cell vector ¢} to the layer output is weighted by the
output gate 0} computed as

0} =S (Wyox;' +Wpohi y + Woe +b3) (4.14)
and used to compute the hidden vector h},
h} = o}'tanh (c}), (4.15)

from which the ouput vector z} is finally computed as per (4.10).

The LSTM measure uses the stacking of A = 3 layers as the predicting function of
the quality of processed speech. Using this network structure, similar to the one used
in [242] and depicted in Fig. 4.4, the speech quality of a signal §(n) is predicted by
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Fig. 4.4: Overview of the network used as predicting function. The first LSTM-layer com-
putes a sequence of input vectors containing as many vectors as frames available
in the test signal. The second LSTM-layer applies updates along this sequence
and the last vector of its output sequence is input to the feed-forward layer whose
sigmoid activation function results in a prediction bounded between 0 and 1.

using the sequence of L time ordered frames of features as input to the first LSTM
layer, i.e. for A = 0 we have 7Y = L , and

X0 = {x§,x?, -+ ,xJ0_, }, with, (4.16)
x) =e;, t€[0,T°—1]. (4.17)

The output sequence, obtained after iterating (4.11)—(4.15) and (4.10) along the
input sequence, i.e, for all ¢, is used as input to a second LSTM layer, i.e., X! = Z°
and the iterative updates of the second LSTM layer, A = 1, yield the output sequence
Z'. The last vector of this sequence is input to the last, feed-forward, layer, i.e.,
x? = zflpl_l. Aiming at an estimate p; that is bounded between 0 and 1, we replace

F (+) in (4.7) by a sigmoid and compute the estimate of p; as
Ps =S (WZ x> +b}). (4.18)

The values of the multiple weight matrices and bias vectors needed for the compu-
tation of (4.18) can be learned during a training phase using perceptually labeled
training data. Section 4.2 presents the dataset that was collected for this purpose
and the training procedure is described in Section 4.3.

4.2 Dataset

In order to train and evaluate the proposed measures, Tree and LSTM, described
in Section 4.1, we collected a database of noisy and reverberant speech signals
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Table 4.1: Expected behavior of the considered algorithms.

UN SC MVDR | GWPE-MVDR
Denoising Poor | Good Fair Fair
Dereverberation Poor | Poor Poor Good
Speech distortions | Good | Fair Good Fair
Noise distortions Good | Fair Good Poor

processed by several categories of algorithms and labeled in terms of perceived
speech quality. This section provides short descriptions of the considered algorithms
before describing the perceptual evaluation conducted in order to label signals in
terms of perceived speech quality.

4.2.1 Considered algorithms

The algorithms considered in this chapter, as in the rest of the thesis, aim at com-
puting the STFT §(k, £) of the enhanced speech signal §(n) from the M microphone
channels y,,(k, £). In addition to the unprocessed (UN) version of the signal, we
considered three categories of algorithms, namely, single-channel spectral enhance-
ment (SC) presented in Section 3.2 [195,196], the MVDR beamformer, as defined in
Section 3.1, and the application of this beamformer to the output of the generalized
weighted prediction error (GWPE) [136], denoted by GWPE-MVDR and introduced
at the end of this subsection. These algorithms have been chosen for their applica-
bility to realistic scenarios, e.g. real-time applications, as well as to provide a wide
range of processing artefacts typically occurring in different reverberation and noise
conditions. In the case of SC, the algorithm is similar to the single-channel described
in Chapter 3 but is briefly presented here for completeness. The expected behavior
of the algorithms in terms of interference reduction and introduced distortions is
summarized in Table 4.1 and the categories of algorithms are briefly described in
the next subsections.

All signals have a sampling frequency of f; =16 kHz. Noisy and reverberant signals
have been generated by convolving clean speech extracted from the WSJCAMO
database [202] with RIRs and adding noise to the resulting reverberant speech. We
used 3 different RIRs extracted from the ACE challenge dataset [79] recorded us-
ing a 42 cm linear array of M = 8 equidistant microphones, whose characteristics,
summarized in Table 4.2, have been selected to represent a wide range of reverber-
ation levels. We considered two noise types, namely fan noise and babble, for which
noise signals recorded in the same rooms and with the same microphones positions
as for the RIRs are available. We consider two SNRs, namely of 5 dB and 15 dB,
calculated according to [243]. The 12 resulting combinations of RIRs with noise
types and SNRs will be referred to as acoustic conditions in the remainder of this
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Table 4.2: RIRs used to generate the perceptually evaluated signals along with their re-
spective characteristics.

Labels Room Teo [s|] | DRR [dB]|
RIR 1 Office 1 0.35 10.45
RIR 2 | Building Lobby 0.77 5.13
RIR 3 | Lecture Room 2 1.26 3.79

chapter. When referring to UN as an algorithm, we consider §(n) = yyef(n) with ref
arbitrarily set to 1.

4.2.1.1 Single-channel spectral enhancement (SC)

SC algorithms estimate §(k,£) by applying a real valued gain to the STFT of one
of the input channel (see Fig. 3.2), i.e.,

Sk, 8) = gk, O)yret (K, £). (4.19)
The gain g(k,£) is computed as
g(kvg) = max (g(k7£)79min) > (420)

where g, i, as in Subsection 3.2.1, a spectral floor introduced to limit possible
speech distortion and where g(k,¢) is in this chapter computed as the solution to
the MMSE estimator of the speech amplitude proposed in [215] and described from
(3.22) to (3.24). As described in Section 3.2, the computation of the spectral gains
relies on various PSDs that, in practice, are unknown and their estimates, 63ref (k,0),
62 ¢ (k,0) and 62 ; (k,€) have to be used instead.

vref
The choice of the PSD estimators can greatly influence the performance of SC al-
gorithms. In this chapter, we denote by “SCa” the combination described in Chap-
ter 3 [196], which has been shown effective in improving speech quality in reverberant
scenarios [96,162|. The estimates of the PSDs, 02 ;(k,¢), 02 (k,?) and o3 _;(k,£),
are estimated using a modified version of the well-known MS estimator [90], the
Lebart approach [87] and cepstral smoothing [216], respectively, g(k, £) is computed
using (3.22) and gmip iS set to a minimum gain of -10 dB. A detailed description of

the approach is available in [196].

Aiming at measuring the effect of distortions that a poorly tuned SC algorithm
could introduce, we used a modified version of this scheme denoted by “SCb”. In
this case, we estimate o2 ;(k, ¢) and o3 ;(k, £) using the estimators proposed in [94]
and in [98], respectively, and set gmin to a minimum gain of -30 dB.
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4.2.1.2 MVDR beamformer

The MVDR beamformer considered in this chapter estimates $(k,¢), as presented
in Section 3.1, by filtering and summing the STF'T coeflicients of the multichannel
input

5(k,0) = Wl (R)y(k, 0) (4.21)

where w (k) denotes the stacked filter coefficient vector of the beamformer, see (3.7),
and where y(k, £) denotes the M-dimensional stacked vector of the received micro-
phone signals, see (3.2). The computation of wy(k) requires an estimate I (k) of the
noise covariance matrix and a steering vector d;(k) steered towards the estimated
DOA 4.

In this chapter, the estimate f(k) is computed as

[(k) =T (k) + o(k)lar, (4.22)

where T (k) denotes the coherence matrix of a diffuse noise field [213], 1y, denotes
the M x M-dimensional identity matrix and o(k) denotes a frequency-dependent
regularization parameter used to limit potential amplification of uncorrelated noise,
especially at low frequencies. This regularization parameter is computed iteratively
such that

wh (k)w (k) < WNG pax, (4.23)

where WNG,,,.x denotes the so-called white noise gain constraint [218]. In this
chapter we set this constraint to -10 dB, compute the steering vector d;(k) using
a far-field assumption and measure the true # from the main peaks of the used
RIRs. In order to evaluate the impact of steering error on the performance of the
beamformer we consider perfectly steered, i.e. 6 = 0, denoted by “MVDRa”, and
missteered beamformer, i.e. 6=06+ €5 with €; = /4 denoted by “MVDRb”.

4.2.1.3 Combination of GWPE and MVDR

The combination of GWPE and MVDR beamformer (GWPE-MVDR) considered
in this thesis estimates §(k, ¢) as

8k, €) = wi' (k) (y(k, €) — #(k, 0)) (4.24)
where wy (k) is computed as in (3.7) and
t(k, ) = [P1(k, ), 7ok, 0), ... ,Par(k, 0)]T, (4.25)

where #,,,(k, £) denotes an estimate of r,,,(k, ¢), i.e., §(k,£) is estimated by subtract-
ing a complex valued estimate of the late reverberation from the multichannel input
signal before applying an MVDR beamformer.

In this thesis, the estimate ¢(k, £) is computed using the approach described in [136],
ie. as

t(k, 0) = PH(k,0)y(k, 0 — A), (4.26)
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where A denotes a delay introduced to preserve the early reflections, and
P(k,0) = [p1(k,£), -+, pum(k, ()] € CMEr>M (4.27)

where p,, (k, ) € CME# denotes the vector of the prediction filter coefficients applied
to the m-th channel, and where

y(ka€> :[yl(k7€)7 ) yl(kag - LP + 1) Ty
ym(k,0), - sy (k0 — Lp + 1)]7,
denotes a vector of STEFT coefficients of length M - Lp.

For each time-frequency bin, the matrix P(k, ¢) is computed by applying = iterative
updates aiming at solving the optimization problem [136]

(4.28)

argmin tr {PH(k,E)A(k',é)P(k,E)} P {tr {PH(k,E)B(k,E)}}

P(k,£) (4.29)
subject to |PH(k, 0)y(k, £ — A)|> < &2 (k, 1),
where
and 62, (k, ) is computed similarly as in Section 4.2.1.1 and with
~ e .
Ak, 0) = 6" "bp(k,i)y(k,i — Ay (ki — A), (4.31)
i=1
A e .
Bk () = _ 8" tiop(k, D)y (k,i — A)y" (k. i), (4.32)
i=1

where § € [0, 1] denotes a smoothing constant, and wp(k, £) denotes the weight used
to emphasize frames where the the signal to be preserved is expected to have low
power, computed as

-1
. 1.
(i 0) = (37103 (0B +¢) (133)
where € denotes a small regularization constant and where

where 63, (k,€) is an estimate of 03, (k, /) computed from 67, (k,€) and 62, (k, ()
using recursive temporal smoothing.

It can be noted that the optimization problem in (4.29) does not take noise into
account as the approach presented in [136] has been designed aiming at dereverber-
ation in noise-free scenarios. The filtered noise signal resulting from (4.24) might
have different spatial properties than the noise signal recorded by the microphones
and might result in lower noise reduction achieved by GWPE-MVDR compared to
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Table 4.3: Overview of the dataset of perceptually evaluated signals, excluding references
and anchors. Numbers denote the duration in minutes, for each combination
of acoustic condition and algorithm, for a total of 5.23 hours and 1920 percep-
tually evaluated signals. Properties of the considered RIRs are summarized in

Table 4.2.
UN SC MVDR GWPE-MVDR
Noise SNR a b a b a b
Fan 5dB | 6.27 | 3.55 | 3.03 | 3.41 H 3.31 | 3.35 3.45
; 15dB | 6.32 | 3.04 | 3.14 | 3.41 | 349 | 3.14 3.20
= . . . : . . .
Babble 5dB | 6.52 | 3.38 | 3.13 | 3.27 A 3.30  3.14 3.67
15dB | 6.36 | 3.50 | 2.96 | 3.00 | 3.44 | 3.04 3.20
Fan 5dB 6.53 | 3.22 | 2.92 | 3.06 | 3.40 | 2.87 3.17
; 15dB | 6.63 | 2.94 | 3.19 | 3.05 | 3.45 | 3.21 3.52
= B | 652 343 3. : 51| 3. 2
Babble 5d 6.5 3.43 | 3.37 | 3.30 3.5 3.35 3.26
15dB | 6.62 | 3.58 | 3.27 | 3.30 | 3.30 | 3.25 3.32
Fan 5dB 6.88 | 3.40 | 3.26 | 3.34 | 3.33 | 3.55 3.31
; 15dB | 6.64 | 3.29 | 3.27 | 3.09 | 3.44 | 3.06 3.12
= . . . : . . .
Babble 5dB 6.44 | 3.41 | 3.24 | 3.18 | 3.04 | 3.12 3.31
15dB | 6.48 | 3.28 | 3.46 | 3.20 | 3.32 | 3.50 3.01

MVDR alone. In practice, GWPE-MVDR could be combined with spectral suppres-
sion to overcome such drawbacks. Such combination has not been considered in this
chapter in order to obtain processed signals containing a wide range of processing
artefacts. We used prediction filters of length Lp = 5 and a smoothing constant
d = 0.95. Other parameters have been set as in [136]. Similarly as for MVDR, we
consider both perfect steering and steering error and refer to the corresponding
settings as “GWPE-MVDRa” and “GWPE-MVDRD”, respectively.

All STFTs have been computed using a Hamming window. In the case of SC and
MVDR, we used a window of 32 ms and an overlap of 16 ms while in the case of
GWPE-MVDR, we used a window of 64 ms and an overlap of 48 ms, in order to
replicate the implementation from [196] and [136].

4.2.2  Perceptual evaluation

In order to obtain a dataset of processed signals labeled in terms of overall quality, we
conducted a MUSHRA test [37] involving 20 self-reported normal-hearing assessors.
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Fig. 4.5: MUSHRA scores, normalized to range between 0 and 1, for all combinations of
acoustic conditions, algorithms and settings, excluding references and anchors.
The mean, represented by a diamond, is considered the ground truth.

All assessors evaluated all combinations of the algorithm categories SC, MVDR and
GWPE-MVDR, with two settings being considered for each, e.g., SCa and SCb,
with the 12 acoustic conditions described in Section 4.2.1.

For each assessor, this total of 72 combinations was divided into two equally sized
groups assigned to two sessions of listening tests. For each session, the UN algorithm
was added to the group of combinations to be evaluated resulting in a total of
48 combinations per session and per assessor. The 48 combinations were randomly
divided into six partitions and three clean male speech and three clean female speech
utterances were randomly extracted from the WSJCAMO database [202], with a
sanity check insuring that no utterance would have been previously assigned to
another session or assessor. One clean speech utterance was randomly assigned to
each partition and used to generate signals, for the corresponding combinations as
described in Section 4.2.1. Each partition was appended with the clean signal, used
as reference signal, and two anchors, differing in the type of considered noise signal,
either babble or fan noise. These anchors were generated by convolving the clean
signal with the first channel of RIR 3 (see Table 4.1), and adding noise with a SNR
of 5 dB measured according to [243] and band-pass filtering the resulting noisy
and reverberant signal according to [244]. Once all signals were generated, the test
procedure for each assessor was conducted as follows.

The signals under test were normalized to have their maximum level, calculated
over segments of 500 ms, equal to 65 dB SPL. Stimuli were diotically presented
over headphones (Senheiser HD200) in a soundproof booth. The speech material
presented to the assessor was first presented in a training phase during which the
assessor could listen to all stimuli in order to become familiar with the material.
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Subsequently, the signals corresponding to each partition of test conditions were
presented simultaneously on a screen. For each signal, there was a corresponding
slider that the assessor was prompted to use in order to grade the overall quality
of the material on an integer-valued scale between 0 (poor) and 100 (excellent). It
can be noted that these scores are divided by 100 to obtain the score, bounded
between 0 and 1, that the methods presented in Section 4.1 aims at predicting. The
scores assigned to the reference and anchor conditions were used to ensure that
the assessors conducted the task reliably, i.e., that they assigned the highest score
to the hidden reference and a low score to the anchor. The significance of differ-
ences between the 12 acoustic conditions was assessed using a repeated-measures
analysis of variance (ANOVA) and post-hoc analysis, whose details are presented
in Appendix A. An overview of the collected dataset is presented in Table 4.3 and
the scores for all combinations are summarized in Fig. 4.5. In the remainder of this
chapter, we consider the true perceived speech quality of a signal to be the mean
of the scores assigned by the assessors to all signals of the same acoustic condition,
algorithm and algorithm setting and refer to it as the ground truth.

4.3 Experiments
4.3.1 Benchmark and figures of merit

The results presented in Section 4.4 compare the performance of the proposed mea-
sures, e.g., Tree and LSTM, with several measures taken from the literature and
included already in the benchmark described in Chapter 2. Though aiming at non-
intrusive prediction of the speech quality, this benchmark includes three intrusive
measures, namely PESQ [176], POLQA [177] and PEMO-Q [178] as they are com-
monly used to evaluate speech enhancement algorithms. It should however be em-
phasized that, as the computation of these measures requires the clean reference
signal, they are not applicable in all scenarios and have an advantage in terms of
performance compared to non-intrusive measures. Our benchmark includes three
non-intrusive measures, namely P.563 [184], ANIQUE+ [192] and SRMRy0rm [186].
It should be noted that both Tree and LSTM rely on predicting functions trained
using machine-learning techniques and that, contrary to the other considered mea-
sures, their performance depends on the data included in the training set.

We assess the performance of the proposed measure and of the benchmark measures
using the four figures of merit described in Section 2.3. For each measure, the
linear relationship between the predicted quality and the ground truth is quantified
using the Pearson correlation coefficient p, the ranking capability of each measure
is quantified by the Spearman rank correlation coefficient pspear and the correlation
coefficient pgi, is computed similarly as p after applying a sigmoidal mapping, whose
parameters are computed from the training set, to the predicted values as described
in Section 2.3. Finally, e-RMSE is used to represent the error between the predicted
value and the ground truth. This figure of merit is similar to the conventional RMSE
but takes the uncertainty of the subjective ratings into account, i.e., e RMSE will
be lower if the variance of the subjective ratings is high. An ideal measure should
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yield correlation values close to one and an e-RMSE close to zero. Details on the
computation of pge and e-RMSE can be found in [40].

4.3.2  Training framework

The training of the predicting functions used by both Tree and LSTM, as well as
the linear mapping used in the computation of pyj, require a training set of signals
for which the ground truth value of ps is known. In addition, a test set is needed to
assess the performance of these trained measures and of the benchmark measures
listed above. The network described in Section 4.1 was set with Lﬂ = L} =128
and was trained using Keras [245] and the Adam algorithm [246]. Influence of the
network size is examined in Appendix B. During training, zero padding was applied
to ensure that all sequences had same length and a masking layer was added before
the first LSTM layer to ignore time frames containing only zeros. Each training
epoch computed as many iterations as needed to take the entire training set into
account using a batch size of 128 sequences. In our implementation dropout [247]
was applied both to the input of the network and to the output of each LSTM layer,
i.e., 30% of the values input to the network and output by each LSTM layer were
randomly selected and replaced by zeros at each iteration. At each iteration, the
model, i.e. weight matrices and bias vectors, was updated to minimize the mean
squared error (MSE) between the predicted and ground truth value of the speech
quality assigned to each file of the training set. In order to avoid overfitting, 10% of
the training set was set aside prior to each training phase to be used as a validation
set. The training algorithm computed 500 epochs and testing was done using the
model that yielded the lowest MSE over the validation set.

We conducted three experiments that differ in the training and testing sets con-
structed from the dataset presented in Section 4.2. In all experiments, anchors and
reference signals were discarded before training and testing. The first experiment
alms at assessing the ability of the proposed measures to predict the speech quality
from signals processed using a single category of algorithms, e.g., SC, but different
settings, e.g. SCa and SCb. For this purpose, the dataset was divided into 4 subsets
containing only files processed with the same category of algorithm (UN, SC, MVDR
and GWPE-MVDR). For each subset, we used 5-fold cross validation, proceeding as
follows. The 20 assessors have been randomly divided into 5 equally-sized disjoint
groups. For each fold, the signals in one of these groups were considered as the test
set, while the data corresponding to the remaining groups were used for training. Us-
ing this folding, assessors, speech stimuli and noise segments always differ between
training and testing. The second experiment aims at assessing the ability of the pro-
posed measures to predict the speech quality from signals processed with various
categories of algorithms. For this purpose, we use the same 5-fold cross-validation
procedure but apply it to the entire collected dataset. We used the same training
sets and folds for LSTM, Tree, and learning of the parameters of the sigmoid used
in the computation of pgig.

The third experiment examines the behavior of the proposed measures in case of
mismatch between the algorithms included in the training and the testing set. For
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Fig. 4.6: Performance of the considered measures in terms of psiz (top) and eeRMSE (bot-
tom). The labels along the x-axis denote the category of algorithms included
in training and testing sets. Numbers in bold typeface denote the best attained
performance (statistically indifferent) per considered category of algorithm.

this purpose, all signals processed with a single category of algorithms are included
in the testing set while all others are included in the training set. It should be
noted that using such partition yields a larger training set than for the previous
experiments.

The figures of merit reported for the first and second experiments in Section 4.4 are
averaged over all five folds. In the case of the correlation measures, a Fisher Z-test,
at a significance level of 0.05, has been conducted before averaging to ensure that
the values did not differ significantly between folds [248]. A similar Fisher Z-test has
been used to determine if the difference between the correlations measures yielded
by the considered measures were significant. In the case of e-RMSE, significance was
determined using the F-measure criteria suggested by ITU-T in [249] and detailed,
e.g., in [40].
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4.4 Results

This section reports the results obtained considering the different training and test-
ing sets previously described. As the three measures of correlation showed similar
behavior at all of the considered measures we only report pg; and e-RMSE.

The performance obtained when training and testing the proposed measure for a
single category of algorithms at a time are depicted in Fig. 4.6 along with the per-
formance of the considered benchmark measures on the same testing sets. With the
exception of LSTM, non-intrusive measures are consistently outperformed by intru-
sive measures, as could be expected. LSTM, however, yields similar performance as
the intrusive measures for all considered categories of algorithms and, when train-
ing and testing on either unprocessed signals (UN) or signals processed using the
MVDR beamformer, there is no significant difference between LSTM and the in-
trusive measures (indicated by bold typeface in Fig. 4.6). Although for SC and
GWPE-MVDR, LSTM yields a slightly poorer performance than the intrusive mea-
sures, it outperforms all non-intrusive measures, including Tree, in terms of both
psig and e-RMSE, except for GWPE-MVDR where LSTM yields a slightly higher
e-RMSE than the benchmark measures.

The non-intrusive benchmark measures yield similar performance for unprocessed
signals but perform inconsistently across the other categories of algorithms. Notably,
ANIQUE+, SRMR,orm and Tree yield low pgg (0.2 to 0.4) and high e-RMSE (0.2
to 0.3) in the case of SC. As both SRMRy,orm and Tree use ME features which are,
contrary to the case of LSTM, averaged over time, this suggests that taking into
account the time-dependency is beneficial. It can be noted than the difference in
performance along different categories of algorithms is coherent with the results from
previous works such as [188], in which it appeared that existing quality measures
are often reliable when considering only one category of algorithms.

73



NON-INTRUSIVE QUALITY PREDICTION FOR PROCESSED SPEECH

4 SCa v SCb + Others
1 v T T T T HAETE  Ta
Yyv Y + + oo P AT
vy + + +
Vv taoa T s NS o + o+
0.8 it A + aA A
M ++ + AL 4+ + 7t
vV ata + + +
+ A , ++ + A
= +3 +* +
S 0.6 + + + - - " |
= + ¥ +
o ++ 4+ ++ B +
B + + £+ +
5] + + ++ +
£ 04+ ¥ 5 ¥y S ¥ -
+
Cee W bove
0.2 ¥ v !
. i + + - I |
Lt SRMRunorm vy #1 + LSTM
0 N \ \ \ oy \ \ \
02 04 06 08 1 02 04 06 08 1

Ground truth

Ground truth

Fig. 4.8: Scatter plot of the predicted speech quality over ground truth data for SRMRuorm
(left) and the LSTM-based measure (right) when trained and tested for all con-
sidered algorithm categories, for all signals. Values corresponding to signals pro-
cessed using SCa and SCb are highlighted, for readability, scores are normalized
to range between 0 and 1.

The performance obtained when training and testing Tree and LSTM for all cat-
egories of algorithms are depicted in Fig. 4.7 along with the performance of the
considered benchmark measures on the same testing sets. Unsurprisingly, for all
measures, correlations are lower than when considering a single category at a time
and, still with the exception of the proposed measure, non-intrusive measures are
consistently outperformed by intrusive measures. The measure Tree performs poorly
suggesting that, though it had been shown to yield high correlations in [197], it is
not suitable to predict the speech quality in various acoustic conditions or with
algorithms that might produce high levels of distortions. Similarly as in the case of
SC, shown in Fig. 4.6, SRMRorm performs poorly with pg, =0.09, while the pro-
posed LSTM-based measure outperforms all measures, including the intrusive ones,
in terms of both psis and e-RMSE. This behavior is better illustrated in Fig. 4.8. In
terms of ground truth, a clear divide appears between SCa and SCb, illustrating the
clear preference of assessors for the well tuned single-channel scheme (SCa) over the
purposefully poorly tuned (SCb). It appears as well that SRMR,,o;m largely overesti-
mates the speech quality for signals processed with SCb while the proposed measure
is able to adequately reflect the difference in performance between the two settings.
This behavior is to be expected as, by averaging features over time, SRMR,,o;m ef-
fectively discards information about time-varying distortions (such as musical noise)
while the proposed measure is designed to model such time-dependent effects.

As both Tree and the proposed LSTM-based measure are dependent on a training
phase, one might want to consider the performance obtained in case of mismatch
between the algorithms included in the training and the testing set. The performance
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Fig. 4.9: Performance of the considered measures in terms of pig (left) and e-RMSE (right).
The labels along the x-axis denote the category of algorithms included in testing
sets while all other categories were included in training.

of Tree and of LSTM in the presence of such mismatch is depicted in Fig. 4.9. Tt
appears that when using a testing set composed of signals processed using either
UN or MVDR, both Tree and LSTM yield similar performance as in the previous
experiments in terms of pg, and an even lower e-RMSE. Such behavior can be
explained by the fact that MVDR, even misteered, does not introduce large amount
of distortions and that the predicting functions were trained on a larger training
set. However, mismatch between algorithms included in training and testing greatly
deteriorates performance of both Tree and LSTM when the testing set is composed
of signals processed using either GWPE-MVDR or SC.

In the case of GWPE-MVDR, for LSTM, correlation decreases only slightly in
comparison with previous experiments, psi, = 0.75. However, the variance is high,
e-RMSE = 0.31. In the case of SC, both Tree and LSTM fail in their prediction,
with low correlations psig = 0.30 and psig = 0.25 for Tree and LSTM, respectively.
This difference in performance between the two measures and algorithms considered
for testing is better illustrated in Fig. 4.10.

It appears that in the case of GWPE-MVDR, Tree does not yield an accurate
prediction for any of the settings, i.e., GWPE-MVDRa and GWPE-MVDRD, while
LSTM seems to overestimate the quality of signals processed with GWPE-MVDRa.
In the case of SC, Tree fails similarly as in the GWPE-MVDR case but the poor
performance of LSTM seems to come from an overestimation of the quality of signals
processed using SCb. This behavior is unsurprising considering that the distortions
introduced by spectral enhancement, e.g., musical noise, differ greatly from the ones
introduced by the other algorithms and that, using this mismatch training set, the
predicting functions could not take them into account. Consequently, neither Tree
nor LSTM can be reliably used if the algorithm category under test is not included
in the training set.
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Fig. 4.10: Scatter plot of the predicted speech quality over ground truth data for Tree (left)
and the LSTM-based measure (right) when using a testing set of signals pro-
cessed using either GWPE-MVDR (top) or SC (bottom). Scores are normalized
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4.5 Summary

Aiming at non-intrusively predicting the quality of processed signals, in this chapter,
we examined the combination of modulation energies with a model tree and with
an RNN with LSTM cells that takes the time-dependency of the target signal into
account. For this purpose, we collected a large dataset of perceptually evaluated
signals representing a wide range of acoustic conditions and various categories of
algorithms with different settings. We conducted several experiments, differing in



4.5 SUMMARY

terms of training and testing sets used to train and evaluate the proposed measures.
The aim of these experiments was to evaluate the reliability of the proposed mea-
sures when trained and tested for either a single category of algorithms or several
categories, and to investigate the performance of the measures in case of a significant
mismatch between the algorithms included in the training and the testing sets.

Experimental results show that LSTM is the most promising measure and that,
when trained and tested for a single category of algorithms, LSTM outperforms the
considered non-intrusive benchmark measures and yields a similar performance as
the intrusive benchmark measures. When trained and tested for several categories
of algorithms, LSTM even outperforms both intrusive and non-intrusive benchmark
measures. However, as could be expected, both Tree and LSTM can be unreliable
in case of a mismatch in terms of algorithms between the training and testing sets.
Consequently, neither Tree nor LSTM are suitable to assess the performance of
completely new categories of algorithms. However, LSTM could be a useful approach
for the real-time selection of algorithms or algorithm parameters.
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CONCLUSION AND FURTHER RESEARCH

This chapter provides a summary of the main contributions of this thesis and
presents possible directions that could be explored to extend this work.

5.1 Conclusion

Many speech-based applications rely on recording the speech of a distant user using
one or more microphones. Such applications comprise, e.g., hands-free communica-
tion systems, voice-controlled home assistants or hearing aids. In most cases, the
recorded signals are corrupted by both noise, caused by undesired sound sources
as well as reverberation, caused by reflections of the target speech. Both noise and
reverberation can severely degrade the performance of speech-based applications,
e.g., reduce the speech recognition accuracy of ASR systems or degrade the speech
quality in speech communication systems.

This thesis addresses two important aspects of speech-based applications. First, the
enhancement of speech signals recorded in the presence of both noise and reverber-
ation in order to improve the robustness of ASR systems and improve the speech
quality in speech communication systems. Second, the evaluation of speech enhance-
ment algorithms that aim at reducing noise and reverberation while improving the
speech quality.

In Chapter 3, we proposed a speech enhancement algorithm for joint noise and
reverberation reduction. This algorithm can be applied in single-channel scenar-
ios and in multichannel scenarios by including an MVDR beamformer. The main
contribution of this chapter is the single-channel spectral enhancement algorithm
that applies a spectral gain to the input signal. This spectral gain is computed
by combining a statistical room acoustics model, minimum statistics and temporal
cepstrum smoothing. We evaluated the proposed algorithm using an ASR system
trained on either clean or multi-condition data, signal-based speech quality mea-
sures and listening tests. Results show that, although using multiple channels is
always beneficial, the proposed algorithm is able to improve the speech quality and
the performance of ASR systems, even in single-channel scenarios.

In Chapter 4 we proposed two non-intrusive speech quality measures. Both measures
combine perceptually motivated features, more specifically modulation energies, and
predicting functions based on machine learning. The first measure relies on a model
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tree that uses time-averaged features as input, while the second measure relies on
an RNN that takes the time-dependency of the test signal into account by using
time-varying features as input. These predicting functions have been trained using
a dataset of perceptually evaluated signals that we collected for this purpose. This
dataset comprises a wide range of speech enhancement algorithms, settings and
acoustic scenarios. This dataset has been used to benchmark the performance of
the proposed speech quality measures against both intrusive and non-intrusive mea-
sures from the literature. The performance has been evaluated when training the
measures for a single category of algorithms, for several categories of algorithms,
and for a mismatch between the algorithms used for training and testing. When
trained and tested for a single category of algorithms, results show that the mea-
sure using an RNN as predicting function outperforms the non-intrusive measures.
Furthermore, when trained and tested for several categories of algorithms, this mea-
sure outperforms both intrusive and non-intrusive benchmark measures, making it
suitable for the selection of algorithms or algorithm parameters.

5.2 Further research directions

Although the contributions presented in Chapters 3 and 4 yielded promising results
in terms of speech enhancement performance and speech quality prediction, many
directions for further improvement could be explored.

In the field of speech enhancement, approaches based on machine learning, particu-
larly on DNNSs, are increasingly used. This is especially the case for single-channel
algorithms that often rely on empirically determined parameters. Similarly as the
algorithm proposed in Chapter 3, DNN-based speech enhancement algorithms also
often estimate a spectral gain to be applied to the input signal. The DNNs is typ-
ically trained on large datasets for which noisy and reverberant signals as well as
clean signals are available. Though such approaches have led to very promising algo-
rithms that are able to improve speech quality and the performance of ASR systems,
they introduce a new issue for algorithm development. Instead of the performance
depending on empirically defined parameters, it depends on the availability of large
datasets. In addition, the optimal DNN architecture is often the result of a time
and resource consuming trial and error process. Since directly applying the spectral
gain estimated through DNN would discard a large amount of knowledge acquired
over decades of speech enhancement research, further research should ideally bene-
fit from the advantages of both traditional speech enhancement and deep learning.
This could be achieved by combining model-based algorithms, such as the one pro-
posed in Chapter 3, with DNNs used to estimate parameters. Instead of requiring
ground-truth parameters, DNNs could be trained to estimate parameters by mini-
mizing a loss function that is related to speech quality, e.g., using a reliable speech
quality measure.

Although the non-intrusive speech quality measure proposed in Chapter 4 already
showed its ability to outperform state-of-the-art measures when applied to a wide
range of algorithms, settings and acoustic scenarios, several extensions could be
explored. First, aiming at improving the reliability of the measure, different input
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features and predicting functions (i.e., network architectures) could be investigated.

Regardless of the chosen features and predicting function, such approaches based
on machine learning need a suitable training dataset. In a controlled setting, such
as considered in this thesis, labelling a large dataset of signals in term of perceived
speech quality can be a daunting task. However, one may imagine using the feedback
from users of, e.g., a speech communication application, to generate the required
labels. Contrary to the mean opinion score used in most speech quality research,
using personalized quality ratings to train the speech enhancement algorithm may
lead to a personalization of the user experience.
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STATISTICAL ANALYSIS

A repeated-measures analysis of variance (ANOVA) and post-hoc analysis was ap-
plied to the perceptual scores presented in Section 4.2 in order to assess the sig-
nificance of differences between the 12 acoustic conditions. This analysis indicated
that all three acoustic factors, i.e., room impulse response (RIR), noise type and
signal-to-noise ratio (SNR), significantly affected the rating scores.

First, there was a significant effect of RIR (F(2,38) = 11.4,p = 0.0013, 72 = 0.376)
which was mainly due to significantly lower scores for RIR 2 (mean M = 37.2)
compared to RIR 1 (M = 42.8) and RIR 3 (M = 41.6, paired £(19) > 3.6, p < 0.002)
but no significant differences between RIR 1 and RIR 3 (¢(19) = 0.82,p = 0.42).
Second, there was a significant effect of noise type (F(1,19) = 23.2,p < 0.001, 7712) =
0.55) and fan noise (M = 43.2) was rated significantly higher compared to babble
noise (M = 37.9). Third, there was a significant of SNR (F'(1,19) = 204.4,p <
0.001,72 = 0.91) and the 5 dB condition (M = 33.0) was rated significantly lower
compared to 15 dB condition (M = 48.0).

In addition, there was a significant interaction between RIR and SNR (F(2,38) =
409,p < 0.001,7712, = 0.68). At 5 dB this was associated with significantly lower
scores of RIR 1 (M = 32.6) and RIR 2 (M = 28.6) compared to RIR 3 (M = 38.0,
paired ¢(19) > 3.4, p < 0.018, Bonferroni-corrected for multiple comparisons, n = 6)
and only marginal differences between RIR 1 and RIR 2 (£(19) = 2.8,p = 0.0624).
At 15 dB this was associated with significantly higher scores of RIR 1 (M = 53.1)
compared to RIR 2 (M = 45.8) and RIR 3 (M = 45.2, paired ¢(19) > 4.0,p < .001)
but no significant differences between RIR 2 and RIR 3 (¢(19) = 0.4,p = 0.72).

The above two-way interaction appears to be partially driven by the significant three-
way interaction of RIR, noise type, and SNR (F(2,38) = 5.0,p = 0.0119, 77}27 =0.21).
This interaction was due to insignificant differences of RIR 1 at 5 dB fan noise
(M = 33.2) compared to babble noise (M = 32.0, paired ¢(19) = 0.53,p = 0.59)
and insignificant differences of RIR 3 at 15 dB fan noise (M = 47.6) compared to
babble noise (M = 42.9, ¢(19) = 2.2,p = 0.23) but at least marginally significant
differences between the two noise types in all other combinations of conditions
(t(19) > 2.8, p < 0.065, using Bonferroni-correction for multiple comparisons, n=6).
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OBSERVATIONS ON THE LSTM MEASURE

This appendix presents observation on the parameters of the LSTM network and
on the ability of the LSTM measure to be applied to other datasets and to a wider
range of algorithms. In order to examine if reducing the size of the input features,
which could potentially reduce the computational complexity of the measure, could
be beneficial, we use both modulation energy (ME) and averaged modulation energy
(AME) as input features in this appendix.

When using ME, the sequence input to the long short-term memory (LSTM) net-
work is, as in Chapter 4, a feature vector e, of length J - B which for each frame is
constructed as

. . . . T

ey = [BQ(O,E), ey BQ(B — 1,6), PN 7€J_1(0’€)7 ey €J_1(B — 1,5)] . (Bl)
When using AME the feature coefficients in each frame are averaged, i.e., for each
frame the input vector is constructed as

B

e—[le_:l“(bf)le_:l*(b() 12_:3 (M)]T (B.2)
¢ = B €ol(0, ,Bbzoel s E)yeony bZOeJ,l 5 . .

b=0

o]

When using either ME or AME and as in the rest of this thesis, we use J = 23
channels and B = 8 bands.

In addition to these two types of input, in this appendix, we observe the performance
of the LSTM measure in terms of psj; and e-RMSE when varying the width of each
layer from 16 to 256 and the dropout used during training from 0 to 90 %.

The performance is assessed, first, on the dataset collected specifically for our work

and, second, using the dataset resulting from the listening test conducted as part
of the REVERB challenge.

85



86

OBSERVATIONS ON THE LSTM MEASURE

—— 16 32 —e—64 128 —— 256

0.2

| | | I | | | | | | | I | | | |
0 10 20 30 40 50 60 70 80 90 0O 10 20 30 40 50 60 70 80 90
Dropout [%] Dropout [%]

Fig. B.1: Influence of dropout and network size on obtained correlation when using either
ME (left) or AME (right).

B.1 Performance on our dataset

The performance on the dataset described in Chapter 4 obtained by using either
ME or AME with the considered values of dropout and network size are depicted
in Fig. B.1 and in Fig. B.2. These results are obtained by training and testing the
LSTM measure for all considered algorithms. Contrary to the results presented in
Chapter 4, these values are obtained on a single fold.

It appears that the highest correlation among all combinations of dropout and
network width is similar regardless of the choice of input, i.e., ME or AME. However,
for a small sized network such as a width of 16, correlation is higher when using
AME. This suggests that, unsurprisingly, smaller input has to be used if constraint
such as computational power reduces the size of the network that we can use.
Encouragingly, by using AME and a small network, we can see in Fig. B.2 that both
psig and e-RMSE deteriorate only slightly. More importantly LSTM still performs
better that the benchmark measures when using these settings. This suggests that,
if needed, the computational complexity of the measure could be reduced and allow
it to be used in realistic applications.
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Fig. B.2: Performance obtained when using the best dropout rate for each considered net-
work size and compared to the considered benchmark

B.2 Performance on REVERB challenge dataset

We observe the correlation of the proposed measure with the ground truth when
trained using the entirety of our dataset and tested using the signals used in the RE-
VERB challenge listening tests, whose results are reproduced in the end of Chapter 3,
more specifically in Fig. 3.11 and Fig. 3.12. These correlations for the best perform-
ing dropout rate for each network width are depicted in Fig. B.3 when considering
the single-channel algorithms and in Fig. B.4 when considering the multichannel
algorithms.

It appears that, unsurprisingly, the correlation is lower than when training and
testing using cross-validation on the same dataset. However, despite the large variety
of considered algorithms, LSTM remains competitive against the benchmark non-
intrusive measures. This good behavior seems, however, to be largely dependent on
the network parameters. This suggests that the proposed approach is promising but
that more work is needed to improve its robustness.
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Fig. B.3: Correlation obtained using the single-channel part of the REVERB challenge

dataset.
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