
Comparison of Parameter Estimation Methods for
Single-Microphone Multi-Frame Wiener Filtering

Dörte Fischer, Klaus Brümann, Simon Doclo
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Abstract—The multi-frame Wiener filter (MFWF) for single-
microphone speech enhancement is able to exploit speech corre-
lation across consecutive time-frames in the short-time Fourier
transform (STFT) domain. To achieve a high speech corre-
lation, typically an STFT with a high time-resolution but a
low frequency-resolution is applied. The MFWF can be decom-
posed into a multi-frame minimum power distortionless response
(MFMPDR) filter and a single-frame Wiener postfilter. To imple-
ment the MFWF using this decomposition, estimates of several
parameters are required, namely the speech correlation vector,
the noisy speech correlation matrix, and the power spectral
densities at the output of the MFMPDR filter. Correlations
can be estimated either directly in the low frequency-resolution
STFT filterbank, indirectly by estimating periodograms in a
high frequency-resolution filterbank and applying the Wiener-
Khinchin theorem, or in a combined way. In this paper, we
compare the performance of different estimators for the required
parameters. Experimental results for different speech material,
noise conditions, and signal-to-noise ratios show that using a
combined estimator for the speech correlation vector yields the
best results in terms of speech quality compared to existing direct
and indirect estimators.

I. INTRODUCTION

Speech signals recorded in communication devices are
frequently corrupted by undesired additive noise. To improve
the speech quality, single-microphone noise reduction is often
applied in the short-time Fourier transform (STFT) domain
[1]. In contrast to single-frame approaches, where a (real-
valued) gain is applied to each noisy STFT coefficient in-
dependently, multi-frame approaches aim to exploit speech
correlation across consecutive time-frames [1]–[7]. To achieve
a high speech correlation, typically an STFT with a high
time-resolution but a low frequency-resolution is applied. In
[1], [3], a complex-valued multi-frame Wiener filter (MFWF)
was proposed which minimizes the mean square error (MSE)
between the desired and estimated speech coefficients. In [4],
[6], [8], it was reported that in practice the MFWF is very
sensitive to estimation errors and more robust results can
be obtained by decomposing the MFWF into a multi-frame
minimum power distortionless response (MFMPDR) filter [3]
and a single-frame Wiener postfilter [8].

The MFMPDR filter requires estimates of the speech cor-
relation vector and noisy speech correlation matrix, where it
was shown in [5] that the MFMPDR filter is more sensitive
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to estimation errors in the speech correlation vector. In [4],
the noisy speech correlation matrix and the speech corre-
lation vector were estimated directly in the low frequency-
resolution STFT filterbank, where for the estimation of the
speech correlation vector a fixed (i.e., time- and frequency-
independent) average noise correlation vector was assumed.
In [6], it was proposed to estimate the noisy speech cor-
relation matrix and speech correlation vector indirectly by
first estimating the noisy speech and speech periodograms
in a high frequency-resolution filterbank and then applying
the Wiener-Khinchin theorem. In this paper, we compare the
performance of different estimators for the required parameters
of the MFMPDR filter with single-frame Wiener postfilter,
i.e., the speech correlation vector, the noisy speech correlation
matrix, and the power spectral densities (PSDs) at the output of
the MFMPDR filter. In addition to existing direct and indirect
estimators, we also propose combined estimators using both
the low and high frequency-resolution filterbank.

Experimental results for different speech signals, noise
types, and signal-to-noise ratios (SNRs) show that using a
combined estimator for the speech correlation vector can
improve speech quality compared to using a direct or indirect
estimator. Furthermore, the results show that a Wiener post-
filter improves the speech quality compared to the MFMPDR
filter, but independently estimating the PSDs at the output of
the MFMPDR does not yield an improvement.

II. MULTI-FRAME SIGNAL MODEL

By applying an STFT with frame length K and analysis
window hK to the noisy microphone signal y[n] at time n, the
noisy speech coefficient Y [k,l] at time-frame l and frequency-
bin k is obtained, i.e.,

Y [k,l]=S[k,l]+N [k,l], k∈
{
−K

2
+1,−K

2
+2,...,

K

2

}
,

(1)
where S[k, l] and N [k, l] denote the speech and the noise
coefficients, respectively. The noisy speech vector yyy[k, l] is
defined by considering M consecutive time-frames, i.e.,

yyy[k,l]=
[
Y [k,l],Y [k,l−1],...,Y [k,l−M+1]

]T
, (2)

where T denotes the transpose operator. Using (1), this vector
can be written as

yyy[k,l]=sss[k,l]+nnn[k,l], (3)
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where the speech vector sss[k, l] and the noise vector nnn[k, l]
are defined similarly as in (2). In multi-frame approaches the
speech coefficient S[k, l] is estimated by applying an M -
dimensional (complex-valued) finite impulse response filter
hhh[k,l] to the noisy speech vector, i.e.,

Ŝ[k,l]=hH [k,l] y[k,l], (4)

where H denotes the Hermitian operator. For conciseness, in
the remainder of this paper the indices k and l will be omitted
wherever possible.

Assuming that the speech and noise signals are uncorrelated,
the M×M -dimensional noisy speech correlation matrix
RRRyyy=E

[
yyyyyyH

]
, with E[·] the expectation operator, is given by

RRRyyy=RRRsss+RRRnnn, (5)

where RRRsss=E
[
ssssssH

]
and RRRnnn=E

[
nnnnnnH

]
denote the speech and

noise correlation matrices, respectively.
Considering the speech correlation across time-frames, it

was proposed in [3] to decompose the speech vector sss into a
temporally correlated speech component xxx and a temporally
uncorrelated speech component xxx′ with respect to the speech
coefficient S, i.e.,

sss=xxx+xxx′=γγγsssS+xxx
′, (6)

where γγγsss denotes the normalized speech correlation vector,
which is defined as

γγγsss=
E[sssS∗]
E[|S|2]

=
rrrsss

φS
, (7)

where ∗ denotes the complex-conjugate operator and rrrsss de-
notes the speech correlation vector. Due to the normalization
with the speech PSD φS =E

[
|S|2

]
=rsrsrs(1), the first element

of γsγsγs is equal to 1.
Using (5), (6) and (7), the speech correlation matrix RsRsRs

can be decomposed into the rank-1 correlation matrix RxRxRx =
φSγsγsγsγγγ

H
s and the correlation matrix RRRxxx′ =E

[
xxx′xxx′

H
]
. Hence,

the speech correlation vector rsrsrs and the speech PSD φS in (7)
can be computed as

rsrsrs=RxRxRxeee, φS=eee
TRxRxRxeee, (8)

with eee =
[
1, 0, ..., 0

]T
an M -dimensional selection vector.

Considering the uncorrelated speech component x′x′x′ in (6) as
an interference, the multi-frame signal model is given by

yyy=γγγsssS+uuu, (9)

where the undesired signal vector uuu=xxx′+nnn and the correlated
speech vector γsγsγsS are uncorrelated. Using (9), the noisy
speech correlation matrix can therefore be written as

RRRyyy=φSγγγsssγγγ
H
sss +RRRuuu, (10)

with the undesired correlation matrix RRRuuu =RRRxxx′ +RRRnnn. Since
eeeTRRRx′x′x′eee=0, the undesired PSD φU =eeeTRRRuuueee=φN .

Similarly to (7), the normalized noisy speech correlation
vector γγγyyy and the normalized noise correlation vector γγγnnn are
defined as

γγγyyy=
rrryyy

φY
=

RRRyyyeee

eeeTRRRyyyeee
, γγγnnn=

rrrnnn

φN
=

RRRnnneee

eeeTRRRnnneee
. (11)

Using (5) and (11), it can be easily shown that

φY γγγyyy=φSγγγsss+φNγγγnnn, (12)

such that the normalized speech correlation vector can be
obtained as

γγγsss=
φS+φN
φS

γγγyyy−
φN

φS
γγγnnn. (13)

III. MULTI-FRAME WIENER FILTER

The aim of the MFWF is to minimize the MSE between
the desired speech coefficient S and the estimated speech
coefficient Ŝ in (4), i.e.,

ĥ̂ĥh=argmin
hhh

E
{
|hhhHyyy−S|2

}
. (14)

Solving this optimization problem using the multi-frame signal
model in (9) leads to the MFWF [3]

hhhMFWF =RRR
−1
yyy γγγsssφS . (15)

In [4], [6], [8] it was reported that in practice the MFWF is
very sensitive to estimation errors and more robust results can
be obtained by decomposing the MFWF into an MFMPDR
filter [3] and a single-frame Wiener postfilter [8], i.e.,

hhhMFMPDR-WG =
RRR−1yyy γγγsss

γγγHsss RRR
−1
yyy γγγsss︸ ︷︷ ︸

hhhMFMPDR

φS

φout
Y

,︸︷︷︸
GWG

(16)

where φout
Y =

(
γγγHsss RRR

−1
yyy γγγsss

)−1
denotes the signal PSD at the

output of the MFMPDR filter.
As can be observed from (16), the MFWF requires estimates

of the noisy speech correlation matrix RyRyRy , the normalized
speech correlation vector γsγsγs, the speech PSD φS and the signal
output PSD φout

Y . In Section IV ,we present an indirect method
to estimate the correlation vectors ryryry , rsrsrs, and rnrnrn. In Section V,
we present different estimators (direct, indirect, and combined)
for the noisy speech correlation matrix, the normalized speech
correlation vector, and the signal output PSD.

IV. INDIRECT CORRELATION VECTOR ESTIMATION

The Wiener-Khinchin theorem states that the correlation of
a wide-sense stationary process is given by the inverse discrete
Fourier transform (IDFT) of the PSD. To accurately estimate
the correlation based on the Wiener-Khinchin theorem, it was
proposed in [6] to estimate the periodogram in a filterbank with
a 2M/O higher frequency-resolution than the (processing)
STFT filterbank, where O denotes the oversampling factor. In
the following, the parameters in the high frequency-resolution
filterbank will be denoted with a superscript {}F . An overview
of the indirect estimation of the correlation vectors is depicted
in Fig. 1.
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y[n]

High Frequency-
Resolution STFT

Y [f,l] Gain (21) P̂FS [f,l]

P̂FN [f,l]

|.|2 (17) PFY [f,l]

Window (18)
&

IDFT (19)

r̂̂r̂rWK
sss [k,l]

r̂̂r̂rWK
nnn [k,l]

r̂̂r̂rWK
yyy [k,l] Toeplitz (24) R̂̂R̂RWK

yyy [k,l]

Low Frequency-
Resolution STFT

Y [k,l]
Recursive
Smoothing (23) R̂̂R̂RRS

yyy [k,l]

Fig. 1. Block diagram of parameter estimation from Sections IV and V-A.

In the high frequency-resolution filterbank, the noisy speech
periodogram is given by

PFY [f,l]= |Y F [f,l]|2, f ∈
{
−F

2
+1,−F

2
+2,...,

F

2

}
, (17)

with Y F [f,l] the noisy speech coefficient at time-frame l and
frequency-bin f . An estimate of the 2M -dimensional noisy
speech PSD vector φ̂̂φ̂φY [k, l] in the low frequency-resolution
filterbank is obtained by applying a windowing operation, i.e.,

φ̂̂φ̂φY [k,l](τ)=
1

O
|HF [τ ]|2PFY

[
2Mk

O
+τ,l

]
,

τ=−M+1,−M+2,...,M, (18)

where φ̂̂φ̂φY [k, l](τ) denotes the τ -th element of φ̂̂φ̂φY [k, l] and
HF denotes the Fourier transform of the zero-padded analysis
window hK of length F = 2MK/O. Using the Wiener-
Khinchin theorem, an estimate of the M -dimensional noisy
speech correlation vector r̂̂r̂rWK

yyy [k,l] is obtained by applying the
IDFT to φ̂̂φ̂φY [k,l] in (18), i.e.,

r̂̂r̂rWK
yyy [k,l](m)=

1

2M

M∑
τ=−M+1

φ̂̂φ̂φY [k,l](τ)e
−j2πτm/2M ,

m=0,1,...,M−1. (19)

Similarly, it was proposed in [6] to estimate the speech cor-
relation vector rsrsrs using an estimate of the speech periodogram
PFS in the high frequency-resolution filterbank. The speech
periodogram can be estimated by applying power subtraction
to the noisy speech periodogram, i.e.,

P̂FS =ĜFPFY , (20)

where the Wiener gain ĜF is computed as

ĜF =
ξ̂F

ξ̂F+1
, (21)

with ξ̂F denoting an estimate of the a-priori SNR. The a-priori
SNR is estimated using the decision-directed approach (DDA)
[9] with the noise PSD estimator in [10]. Replacing PFY with
P̂FS in (18), followed by (19), yields an estimate of the speech
correlation vector r̂̂r̂rWK

sss .
To estimate the noise correlation vector rnrnrn, we propose a

similar approach, namely by estimating the noise periodogram
PFN in the high frequency-resolution filterbank as

P̂FN =(1−ĜF )PFY . (22)

Replacing PFY with P̂FN in (18), followed by (19), yields an
estimate of the noise correlation vector r̂̂r̂rWK

nnn .

V. PARAMETER ESTIMATION

In this section, we present several existing and novel es-
timators for the required parameters of the MFWF, specifi-
cally, estimating the parameters directly in the low frequency-
resolution filterbank, indirectly using the estimated correlation
vectors from Section IV or in a combined approach.

A. Noisy Speech Correlation Matrix

The noisy speech correlation matrix RRRyyy can be estimated
directly using first-order recursive smoothing as

R̂̂R̂RRS
yyy [k,l]=λR̂̂R̂RRS

yyy [k,l−1]+(1−λ)yyy[k,l]yyyH [k,l] (23)

with λ a forgetting factor.
Alternatively, since RRRyyy can be assumed to be a Hermitian

Toeplitz matrix, this matrix can be fully defined by the noisy
speech correlation vector rrryyy . Hence, using the estimate in (19),
the noisy speech correlation matrix can be estimated indirectly
as in [6]

R̂̂R̂RWK
yyy =Toeplitz

(
r̂̂r̂rWK
yyy

)
(24)

B. Normalized Speech Correlation Vector

Based on (13), a maximum-likelihood estimator has been
proposed in [4] to directly estimate the normalized speech
correlation vector γγγsss by replacing the normalized noise corre-
lation vector γγγnnn with a long-term estimate µ̂γγγnnn , i.e.,

γ̂̂γ̂γ�-ML
sss =

φ̂S+φ̂N

φ̂S
γ̂̂γ̂γ�yyy−

φ̂N

φ̂S
µ̂γγγnnn (25)

where µ̂γγγnnn is defined by the STFT frame overlap and the
analysis window hK [4]. The parameter γ̂̂γ̂γ�yyy denotes an estimate
of γγγyyy , computed similarly to (11) using R̂̂R̂R�yyy , where � denotes
either (23) or (24). The parameters φ̂N and φ̂S are estimates
of the noise and speech PSDs in the low frequency-resolution
filterbank, respectively. The noise PSD is estimated using [10]
and the speech PSD is estimated similarly as the speech
periodogram in the high frequency-resolution filterbank in
(20), by applying a Wiener gain G to the noisy PSD, i.e.,
φ̂S=G eeeT R̂̂R̂R�yyyeee.

Alternatively, it has been proposed in [6] to indirectly
estimate the normalized speech correlation vector based on
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the estimated speech correlation vector r̂̂r̂rWK
sss from Section IV,

i.e.,

γ̂̂γ̂γWK
sss =

r̂̂r̂rWK
sss

r̂̂r̂rWK
sss (1)

(26)

In addition, in this paper we propose a combined estimator
by replacing the (time- and frequency-independent) long-
term estimate µ̂γγγnnn by the (time- and frequency-dependent)
estimated noise correlation vector r̂̂r̂rWK

nnn from Section IV,
normalized similarly as in (26), i.e.,

γ̂̂γ̂γ�-WK
sss =

φ̂S+φ̂N

φ̂S
γ̂̂γ̂γ�yyy−

φ̂N

φ̂S

r̂̂r̂rWK
nnn

r̂̂r̂rWK
nnn (1)

(27)

C. Signal Output PSD

The MFMPDR filter is designed to prevent speech distortion
such that in theory, the speech PSD at the output of the
MFMPDR filter is equal to the input speech PSD. Using this
assumption, the speech PSD estimate φ̂S can be applied at the
output of the MFMPDR filter.

The signal PSD φout
Y at the output of the MFMPDR filter

can be estimated in several ways. The most straightforward
way is to estimate this PSD as

φ̂
out,RRRyyy

Y =
(
γ̂̂γ̂γHsss R̂̂R̂R

−1
yyy γ̂̂γ̂γsss

)−1
(28)

using the previously presented estimators for γ̂̂γ̂γsss and R̂̂R̂Ryyy .
Alternatively, by substituting (10) into (28) and applying

the matrix inversion lemma, the signal output PSD can be
estimated as

φ̂out,RRRuuu

Y = φ̂S+
(
γ̂̂γ̂γHsss R̂̂R̂R

−1
uuu γ̂̂γ̂γsss

)−1
(29)

with
(
γ̂̂γ̂γHsss R̂̂R̂R

−1
uuu γ̂̂γ̂γsss

)−1
an estimate of the undesired output PSD

φout
U . According to (10), the correlation matrix R̂̂R̂Ruuu can be

determined as R̂̂R̂Ruuu = R̂̂R̂Ryyy − φ̂Sγ̂γγsssγ̂γγ
H
sss . Since R̂̂R̂Ruuu may not be

positive semi-definite due to estimation errors, we set the
negative eigenvalues of R̂̂R̂Ruuu to zero.

The undesired output PSD can also be estimated indepen-
dently of the previously estimated parameters. Since φU =φN ,
we can replace φ̂out

U in (29) with an estimate of the noise output
PSD φ̂out

N , i.e,

φ̂out,φN

Y = φ̂S+φ̂
out
N (30)

where φ̂out
N is determined at the output of the MFMPDR filter

using [10].

VI. EXPERIMENTAL RESULTS

In this section, we compare the performance of the different
presented estimators for the parameters of the MFWF. In
Section VI-A we describe the used speech and noise material
and the algorithmic implementation details. In Section VI-B
we compare the performance of different MFMPDR filters.
Using the best MFMPDR filter, in Section VI-C we compare
the performance of different Wiener postfilters.

TABLE I
OVERVIEW OF THE EVALUATED PARAMETER ESTIMATORS IN THE

MFMPDR FILTER.

Label Estimation of RRRy Estimation of γγγsss
R̂̂R̂RRS

yyy − γ̂̂γ̂γRS-ML
sss (23) γ̂̂γ̂γ�-ML

sss : (25) using γ̂̂γ̂γRS
yyy : (23)

R̂̂R̂RRS
yyy − γ̂̂γ̂γWK

sss (23) γ̂̂γ̂γWK
sss : (26)

R̂̂R̂RRS
yyy − γ̂̂γ̂γRS-WK

sss (23) γ̂̂γ̂γ�-WK
sss : (27) using γ̂̂γ̂γRS

yyy : (23)

R̂̂R̂RWK
yyy − γ̂̂γ̂γWK-ML

sss (24) γ̂̂γ̂γ�-ML
sss : (25) using γ̂̂γ̂γWK

yyy : (24)

R̂̂R̂RWK
yyy − γ̂̂γ̂γWK

sss (24) γ̂̂γ̂γWK
sss : (26)

R̂̂R̂RWK
yyy − γ̂̂γ̂γWK-WK

sss (24) γ̂̂γ̂γ�-WK
sss : (27) using γ̂̂γ̂γWK

yyy : (24)

A. Algorithm Implementation and Performance Measures

The performance is evaluated in terms of the perceptual
evaluation of speech quality (PESQ) [11] improvement over
the noisy speech signal, using the clean speech signal as the
reference signal. We used audio material from [12] sampled at
16 kHz and we evaluated the average performance over 176 s
of speech material (92 s female, 84 s male) under five different
noise conditions (babble, white Gaussian noise (WGN), traffic,
modulated WGN, crossroad) at three different input SNRs (0,
5, and 10 dB).

To achieve a high speech correlation, we use a frame length
of K = 64 samples (4 ms) and a frame shift of 16 samples
(1 ms) in the low frequency-resolution STFT filterbank. As
analysis and synthesis window hK we use a Hann window.
In the high frequency-resolution STFT filterbank, we use a
four-times higher frequency-resolution, i.e. a frame length of
F =256 samples (16 ms), a frame shift of 16 samples (1 ms),
and apply an asymmetric analysis window similarly to [6].
The number of the consecutive time-frames is M = 8 as in
[6], resulting in 11 ms of analysis data in the low frequency-
resolution filterbank. In the high and low frequency-resolution
filterbanks, the weighting parameter for the DDA [9] is set to
0.97 and to reduce the amount of musical noise the Wiener
gain is limited to -17 dB. The forgetting factor in (23) is
experimentally set to λ=0.9, resulting in a smoothing window
of 10 ms. Before computing the inverse of R̂̂R̂Ryyy estimated
using (23) or (24) regularization based on diagonal loading
is performed with a regularization parameter of 0.04 as in [4].

B. Comparison of MFMPDR Filters

In this section, we compare the performance of the MFM-
PDR filter for different direct, indirect, and combined esti-
mators of the noisy speech correlation matrix RRRyyy and the
normalized speech correlation vector γγγsss (see Table I).

For different SNRs, Fig. 2 depicts the average PESQ im-
provements of the considered MFMPDR filters. Using the di-
rect estimate R̂̂R̂RRS

yyy in (23) leads to a higher PESQ improvement
than using the indirect estimate R̂̂R̂RWK

sss in (24). In combination
with either R̂̂R̂RRS

yyy or R̂̂R̂RWK
yyy , using the indirect estimate of the

normalized speech correlation vector γ̂̂γ̂γ�-WK
sss in (26) leads to

a degradation (or minor improvement) of the PESQ scores.
The best PESQ improvements are obtained by combining
the direct estimate R̂̂R̂RRS

yyy in (23) with the proposed combined
estimate γ̂̂γ̂γRS-WK

sss in (27). This suggest that using the (time- and
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Fig. 2. Average PESQ improvement of the MFMPDR filters using the
parameters in Table I at different SNRs.

Fig. 3. Average PESQ improvement of the postfilters using the parameters
from Section V-C at different SNRs, in reference to the MFMPDR filter R̂̂R̂RRS

yyy −
γ̂̂γ̂γRS-WK
sss .

frequency-dependent) indirect estimate r̂̂r̂rWK
nnn is more effective

to estimate the normalized speech correlation vector than using
the (time- and frequency-independent) long-term estimate µ̂γγγnnn .

C. Comparison of Single-Frame Wiener Postfilters

In this section we compare the performance of different
Wiener postfilters using the signal output PSD estimators from
Section V-C at the output of the best MFMPDR filter, i.e.
using R̂̂R̂RRS

yyy and γ̂̂γ̂γRS-WK
sss . For different SNRs, Fig. 3 depicts

the average PESQ improvements of the different parameter
estimators in the Wiener postfilter, in reference to the MFM-
PDR filter. From these results it can be observed that the
best PESQ improvements are obtained using the signal output
PSD estimate φ̂out,RuRuRu

Y in (29). It can also be observed that
independently estimating the undesired PSD at the output of
the MFMPDR filter, i.e., using φ̂out,φN

Y in (30), does not yield
a PESQ improvement compared to the MFMPDR filter. This
can presumably be explained by the used noise PSD estimator
[10], which assumes that the noise is more stationary than the
speech, whereas the output of the MFMPDR filter may contain
highly fluctuating residual noise leading to an underestimation
of the noise output PSD.

VII. CONCLUSION

In this paper, we compare the noise reduction performance
of different estimators for the required parameters of the
single-microphone MFMPDR filter with single-frame Wiener
postfilter, i.e., the noisy speech correlation matrix, the speech
correlation vector and the signal output PSD. Existing estima-
tion methods estimate the required parameters either directly

in the low frequency-resolution STFT filterbank or indirectly
by estimating periodograms in a high frequency-resolution
filterbank and applying the Wiener-Khinchin theorem. We
compare these existing estimators with proposed combined es-
timators using both the low and the high frequency-resolution
filterbank. The results show that combining the direct estimate
of the noisy speech correlation matrix with the proposed
combined estimate of the speech correlation vector achieves
the best speech quality improvement. Furthermore, the results
show that with the Wiener postfilter the speech quality can be
improved in reference to the MFMPDR filter. However, when
estimating the signal output PSD independently to the output
of the MFMPDR filter, no speech quality improvement can be
predicted.
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