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Abstract—Multi-channel short-time Fourier transform (STFT)
domain-based processing of reverberant microphone signals com-
monly relies on power-spectral-density (PSD) estimates of early
source images, where early refers to reflections contained within
the same STFT frame. State-of-the-art approaches to multi-source
early PSD estimation, given an estimate of the associated relative
early transfer functions (RETFs), conventionally minimize the
approximation error defined with respect to the early correlation
matrix, requiring non-negative inequality constraints on the PSDs.
Instead, we here propose to factorize the early correlation matrix
and minimize the approximation error defined with respect to the
early-correlation-matrix square root. The proposed minimization
problem—constituting a generalization of the so-called orthogonal
Procrustes problem—seeks a unitary matrix and the square roots
of the early PSDs up to an arbitrary complex argument, whereby
non-negative inequality constraints become redundant. A solution
is obtained iteratively, requiring one singular value decomposition
(SVD) per iteration. The estimated unitary matrix and early PSD
square roots further allow to recursively update the RETF estimate,
which is not inherently possible in the conventional approach. An
estimate of the said early-correlation-matrix square root itself is
obtained by means of the generalized eigenvalue decomposition
(GEVD), where we further propose to restore non-stationarities by
desmoothing the generalized eigenvalues in order to compensate
for inevitable recursive averaging. Simulation results indicate fast
convergence of the proposed multi-source early PSD estimation
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approach in only one iteration if initialized appropriately, and
better performance as compared to the conventional approach. A
MATLAB implementation is available.

Index Terms—Early PSD estimation, RETF estimation,
orthogonal Procrustes problem, unitary constraint, singular value
decomposition (SVD), generalized eigenvalue decomposition
(GEVD).

I. INTRODUCTION

IN MANY multi-microphone signal processing applications,
the recorded microphone signals constitute a mixture of

several spatially diverse components, originating from different
sources, bearing reverberation and noise. As far as speech is
concerned, early reflections are perceived jointly with the direct
component and are said to colorize and reinforce it, while late
reverberant components deteriorate the perceived quality and
intelligibility [1]. In order to process the mixture, e.g., for the
purpose of speech enhancement [2]–[5], many techniques heav-
ily rely on power spectral density (PSD) estimates [6]–[16] of
the various mixture components or the direct-to-reverberant ratio
(DRR) [17], [18], for instance in the spectral gain computation
of the multi-channel Wiener filter (MWF) [4].

In recent years, a number of multi-microphone approaches
to PSD estimation have been proposed, which rely on a spatial
correlation matrix model in the short-time Fourier transform
(STFT) domain [6]–[18]. In order to estimate the PSDs of the
mixture components, i.e. the early speech PSDs, late reverberant
PSDs, and/or noise PSDs, the associated spatial parameters of
the correlation matrix model are assumed to be known or esti-
mated beforehand, namely the direction(s) of arrival (DoA(s))
or alternatively the relative early transfer function(s)1 (RETF(s))
associated to the source(s) [6]–[14], [18], the spatial coherence
matrix of the noise and/or the late reverberant component, where
in particular the latter is commonly modeled as a spatially
diffuse sound field [7]–[9], [11]–[19]. It should be noted that the
majority of these approaches consider a single source [6], [9],
[11]–[15], [18], while only some consider multiple sources [7],
[8], [10], [16], which is the focus of this paper.

1The RETF vector can be thought of as a generalization of the DoA steering
vector in reverberant environments, which models level and phase differences
across microphones due to both the direct component and early reflections.
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Given such spatial knowledge, different estimation ap-
proaches may be taken. In [9], [11], the early speech and late
reverberant PSD estimates are obtained by maximum-likelihood
estimation, where in [9], both are estimated jointly, and in [11],
the late reverberant PSD estimation relies on blocking the early
speech component. Other estimators seeking the PSD of a partic-
ular mixture component rely on Frobenius-norm minimization
of the approximation error defined with respect to the associated
correlation matrix component [6]–[8], [10], [12], [13], [16], [18].
Specifically, in [6], the speech PSD is estimated by minimizing
the approximation error to the speech-only correlation matrix
component (while reverberation is not considered). In a similar
manner, in [7], considering multiple sources, the early PSDs are
estimated from the early correlation matrix component. In [8],
the late reverberant PSD is estimated from a blocking-based
correlation matrix, generated by blocking the direct components,
while the multiple early PSDs are estimated according to [7].
Likewise, one may also jointly estimate the PSDs of multiple
mixture components, i.e. one may jointly estimate early speech
PSD(s), the late reverberant PSD, and/or the noise PSD(s) [10],
[12], [13], [18]. In [16], joint estimation of all mixture compo-
nent PSDs and the RETFs is proposed by jointly minimizing
a number of approximation errors defined over several frames,
during which the RETFs are assumed to be stationary. Note that
the PSD estimates based on these optimization problems are not
inherently guaranteed to be non-negative, requiring either non-
negative thresholding, or, alternatively, non-negative inequality
constraints. In [15] instead, the estimation of the late reverberant
PSD is based on a subspace decomposition, outperforming the
late reverberant PSD estimators in [8], [9], [11].

In this contribution, we are mainly concerned with early PSD
estimation and recursive RETF updates for multiple sources in
reverberant environments, given initial estimates of the asso-
ciated RETFs. Instead of minimizing the approximation error
defined with respect to the early correlation matrix as in the
manner of [7], [10], [12], [13], however, we propose to factorize
the early correlation matrix and minimize the approximation
error defined with respect to the early-correlation-matrix square
root. Instead of directly estimating the early PSDs, the pro-
posed minimization problem seeks a unitary matrix and the
square roots of the early PSDs up to an arbitrary complex
argument, making non-negative thresholding or non-negative
inequality constraints redundant. The proposed minimization
problem constitutes a generalization [23] of the so-called or-
thogonal Procrustes problem [24], [25] and may be solved
iteratively, requiring one singular value decomposition (SVD)
per iteration. The estimated unitary matrix and early PSD square
roots further allow us to recursively update the RETF estimate,
which is not inherently possible in the conventional approach.
An estimate of the said early-correlation-matrix square root
itself is obtained from an estimate of the microphone signal
correlation matrix and the diffuse coherence matrix by means
of the generalized eigenvalue decomposition (GEVD). Hereat,
in order to compensate for the inevitable recursive averag-
ing in the microphone-signal-correlation-matrix estimation, we
further propose to restore non-stationarities by desmoothing
the generalized eigenvalues. Simulation results indicate fast
convergence of the proposed multi-source early PSD estimation

approach in only one iteration if initialized appropriately, and
better performance as compared to the conventional approach in
terms of the relative squared PSD estimation error and the signal-
to-interference ratio [26] measuring the source-component sep-
aration. A MATLAB implementation is available at [27]. An
application of the proposed algorithm in a Kalman filter-based
speech enhancement approach can be found in [28].

The remainder of this paper is organized as follows. In
Section II, we introduce the signal model. Given an estimate
of the early correlation matrix component, some state-of-the-art
approaches to early PSD estimation are reviewed in Section III,
while the proposed approach, given an estimate of the early-
correlation-matrix square root, is presented in Section IV. In
Section V, we discuss the estimation of the required early cor-
relation matrix component and its factorization. The proposed
approach is evaluated in Section VI, followed by a conclusion
in Section VII.

II. SIGNAL MODEL

Throughout the paper, we use the following notation: vec-
tors are denoted by lower-case boldface letters, matrices by
upper-case boldface letters, I and 0 denote identity and zero
matrices, i and 1 denote the first column of I and a vector of
ones, respectively, AT , AH , E[A], and Â denote the transpose,
the complex conjugate transpose or Hermitian, the expected
value and an estimate of a matrix A. The operation diag[A]
creates a column vector from the diagonal elements of a square
matrix A, Diag[a] and Diag[aT ] create a diagonal matrix with
the elements of a on its diagonal, Diagg[A] = Diag

[
diag[A]

]

zeros the off-diagonal elements ofA, and tr[A] denotes the trace
ofA. For non-negative a ∈ R

N , a1/2 ∈ C
N and aH/2 = (a1/2)H

denote a complex vector with arbitrary complex argument that
satisfy Diag[aH/2]a1/2 = a, and hence

∣
∣a1/2

∣
∣ =

√
a, with abso-

lute value and non-negative square-root applied element-wise.
The operation max[a1,a2] returns a vector of the element-wise
maxima of a1 and a2. ‖A‖F denotes the Frobenius norm of
A, whereas ‖a‖2 denotes the Euclidian norm of a. Row i and
column j of A are denoted as [A]i,: and [A]:,j , respectively, the
element at their intersection as [A]i,j , and submatrices spanning
rows i1 to i2 or columns j1 to j2 as [A]i1:i2,: and [A]:,j1:j2 ,
respectively. �[a] and �[a] denote the real and imaginary part
of a ∈ C.

In the STFT domain, with l and k indexing the frame and
the frequency bin, respectively, let xm(l, k)withm = 1, . . . ,M
denote the mth microphone signal, with M the number of
microphones. In the following, we treat all frequency bins in-
dependently and hence omit the frequency index. We define the
stacked microphone signal vector x(l) ∈ C

M ,

x(l) = (x1(l) · · · xM (l))T (1)

composed of the reverberant signal components xn(l) with n =
1, . . . , N originating fromN point sources, defined equivalently
to (1), i.e.

x(l) =

N∑

n=1

xn(l). (2)
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Each reverberant signal component xn(l) may be decomposed
into the early component xn|e(l) containing the direct compo-
nent and early reflections and the late reverberant component
xn|�(l) containing late reflections, i.e.

xn(l) = xn|e(l) + xn|�(l), (3)

which are assumed to have distinct spatial properties as outlined
below. Early reflections are assumed to arrive within the same
frame, with the early components inxn|e(l) related by the RETF
in hn(l) ∈ C

M , i.e.

xn|e(l) = hn(l)sn(l). (4)

Here, without loss of generality, the RETF hn(l) is assumed to
be relative to the first microphone, i.e. iThn(l) = [hn(l)]1 = 1,
and sn(l) = [xn|e(l)]1 denotes the early component in the first
microphone originating from the nth source, in the following
referred to as early source image. We define the stacked RETF
matrix H(l) ∈ C

M×N , yielding

H(l) = (h1(l) · · · hN (l)) , (5)

iTH(l) = [H(l)]1,: = 1T . (6)

Similarly, we stack sn(l) into s(l) ∈ C
N , i.e.

s(l) = (s1(l) · · · sN (l))T , (7)

such that the sum of the early components xn|e(l) is expressed
more compactly as

N∑

n=1

xn|e(l) = H(l)s(l). (8)

Further, we assume that xn|e(l) and xn|�(l) are mutually un-
correlated within frame l. Let Ψx(l) = E[x(l)xH(l)] ∈ C

M×M

denote the microphone signal correlation matrix, and let the early
and late reverberant correlation matrix Ψxe

(l) and Ψx�
(l) be

similarly defined. With (3)–(8), we then find

Ψx(l) = Ψxe
(l) +Ψx�

(l), (9)

wherein Ψxe
(l) generally has rank N and is expressed by

Ψxe
(l) = H(l)Φs(l)H

H(l), (10)

Φs(l) = Diag[ϕs(l)], (11)

ϕs(l) = (ϕs1(l) · · ·ϕsN (l))T , (12)

with ϕsn(l) denoting the PSD of the early source image sn(l).
Note that applying (6) to (10)–(11) while using 1TΦs(l)1 =
1T ϕs(l), we find that

iTΨxe
(l)i = [Ψxe

(l)]1,1 = 1T ϕs(l), (13)

i.e. the sum of the early PSDsϕsn(l) equals [Ψxe
(l)]1,1. Assum-

ing that xn|�(l) may be modeled as diffuse [7]–[9], [11]–[16],
[19] with coherence matrix Γ ∈ C

M×M , which can be com-
puted from the microphone array geometry [19] and is therefore
considered to be known in the remainder, we write Ψx�

(l) as

Ψx�
(l) = ϕx�

(l)Γ, (14)

with ϕx�
(l) =

N∑

n=1

ϕxn|�(l), (15)

and ϕxn|�(l) denoting the PSD of the late reverberant com-
ponent xn|�(l). The PSDs ϕs(l) and ϕx�

(l) may be highly
non-stationary, especially if the point sources are speech sources,
while the associated coherence matrices hn(l)h

H
n (l) and Γ are

commonly assumed to be comparably slowly time-varying or
even time-invariant.

Note that with (14)–(15), one could easily include further
diffuse components, e.g., diffuse babble noise, without formally
changing the signal model. However, since in this paper, we are
mainly concerned with the estimation of the early PSDs ϕs(l)
and the recursive updating of the estimate of the RETFs H(l),
we restrict the discussion and simulations, cf. Section VI, to the
example of late reverberation for the sake of conciseness.

Further, note that while the above signal model is commonly
and effectively used [7]–[9], [11]–[16] due to its simplicity,
it may be said to be deficient in a number of aspects. The
assumption that xn|e(l) and xn|�(l) are mutually uncorrelated
within frame l may be violated due to overlapping windows in
the STFT-processing or source signals remaining correlated over
several frames. The assumption that Ψxe

(l) in (10) has rank N
implicitly relies on the assumption that the frequency bins can
be treated independently, ignoring cross-bin dependencies [29].
Finally, related to that, there may be components that can be
modeled neither by the rank-N component Ψxe

(l) in (10) nor
by the diffuse component Ψx�

(l) in (14), depending on the
geometry and physical properties of the acoustic environment.

In the remainder, as we mostly consider the single frame l
only, we also drop the frame index for conciseness and refer
back to it only where necessary, namely when we differentiate
the frames l and l − 1 in recursive equations.

III. EARLY PSD ESTIMATION BASED ON THE EARLY

CORRELATION MATRIX

In this section, we discuss some state-of-the-art ap-
proaches [7], [10], [12], [13], [16] to the estimation of the early
PSDs ϕs based on the signal model in (10)–(13). In the fol-
lowing, we refer to (10)–(13) as the conventional signal model.
We develop our discussion from the premise that estimates Ψ̂xe

and Ĥ of the early correlation matrix Ψxe
and the RETFs H

in (10) are readily available. Throughout the paper, despite
being irrelevant to the approaches discussed in this section,
we consider Ψ̂xe

to generally have rank N , similar to Ψxe
.

A rank-N estimator of Ψxe
is described in Section V. Further,

we assume that Ĥ satisfies iT Ĥ = 1T , cf. H in (6).
Given the estimates of an early correlation matrix Ψ̂xe

and
the therein superimposed coherence matrices ĥnĥ

H
n , one can

estimate the associated PSDsϕsn , cf. (5), (10)–(11), as described
in [7], [10], [12], [13].2 Adopting this approach, we define the

2In [7] as in our case, point-source coherence matrices of rank one are
considered, while in [10], [12], [13], without rendering a difference in the
principle approach, general coherence matrices are considered.
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approximation error as a function of ϕs as

Ec(ϕs) = Ψ̂xe
− ĤDiag[ϕs]Ĥ

H , (16)

where the subscript c stands for conventional. The early PSDs
ϕs can then be estimated by Frobenius-norm minimization of
the approximation error followed by non-negative thresholding,
i.e.

ϕ̂′
s = argmin

ϕs

∥
∥Ec(ϕs)

∥
∥2
F
, (17)

ϕ̂s = max[ϕ̂′
s, 0]. (18)

The non-negative thresholding in (18) is necessary as the ele-
ments of ϕ̂′

s in (17) may in fact be negative, conflicting with
the notion of ϕs being a vector of PSDs. If ĤHĤ has full rank,
which (without sufficiency) requires N ≤ M , the problem in
(17) has a unique solution given by

ϕ̂′
s = A−1

c0
bc0 , (19)

where Ac0 ∈ R
N×N and bc0 ∈ R

N are defined by

[Ac0 ]n,n′ = |ĥH

n ĥn′ |2, (20)

bc0 = diag[ĤHΨ̂xe
Ĥ]. (21)

Alternatively, instead of simple thresholding after solving (17),
one can solve the minimization problem subject to the non-
negative inequality constraint ϕs ≥ 0, as proposed in [16]. In
addition to this, one can further impose a soft constraint on 1T ϕs

corresponding to (13), i.e. one can define the soft-constraint error
as a function of ϕs,

ec(ϕs) = [Ψ̂xe
]1,1 − 1T ϕs

= [Ec(ϕs)]1,1. (22)

Note that ec(ϕs) in (22) is independent of Ĥ, and so its penal-
ization may be useful in case of RETF estimation errors. The
resulting minimization problem can then be written as

ϕ̂s = argmin
ϕs

∥
∥Ec(ϕs)

∥
∥2
F
+ α

∣
∣ec(ϕs)

∣
∣2

s.t. ϕs ≥ 0, (23)

where α is the penalty factor. For α → ∞, a hard constraint
1T ϕs = [Ψ̂xe

]1,1 is introduced, which is however not desirable
due to potential estimation errors in [Ψ̂xe

]1,1. Note that in [16],
instead of a soft constraint, a box constraint on 1T ϕs has been
used. For the sake of comparison to the algorithm proposed
in Section IV, however, we restrict our discussion to the soft
constraint. The problem in (23) is convex, but does not have a
closed-form solution due to the inequality constraint ϕs ≥ 0.
A well-suited but computationally simple solver for problems
of this kind is the proximal gradient method [30], [31], which
obtains a solution by iterating the below set of equations until
convergence is reached,

ϕ̂′(i)
s = ϕ̂(i−1)

s + μ
(
bc −Acϕ̂(i−1)

s

)
, (24)

ϕ̂(i)
s = max[ϕ̂′(i)

s ,0], (25)

where i is the iteration index,μ the step-size, andbc −Acϕ̂
(i−1)
s

the gradient with Ac ∈ R
N×N and bc ∈ R

N defined by

Ac = Ac0 + α11T , (26)

bc = bc0 + α[Ψ̂xe
]1,11, (27)

and Ac0 and bc0 defined in (20)–(21). As initial value, it

is straight-forward to choose ϕ̂
(0)
s = A−1

c bc, which yields the
global minimum if ϕ̂

(0)
s ≥ 0. In this case therefore, conver-

gence is reached after one iteration of (24)–(25). In any case,
for ϕ̂

(0)
s = A−1

c bc and α = 0, the estimate obtained after one
iteration of (24)–(25) corresponds to the estimate defined by
(17)–(19). We therefore use (23) as a reference for comparison
in the remainder. In the following, we refer to (23) as the
conventional minimization problem (conventional MP).

IV. EARLY PSD ESTIMATION AND RECURSIVE RETF UPDATE

BASED ON THE EARLY-CORRELATION- MATRIX SQUARE ROOT

In this section, in order to estimate the early PSDs ϕs, instead
of defining the approximation error to be minimized with respect
to Ψ̂xe

as in (16), we propose to define the approximation error

with respect to the square root Ψ̂
1/2
xe ∈ C

M×N of Ψ̂xe
, satisfying

Ψ̂xe
= Ψ̂

1/2
xe Ψ̂

H/2
xe . As to be shown, instead of directly estimat-

ing the diagonal of Φs = Diag[ϕs], the resulting minimization
problem now consists in estimating a unitary matrixΩ ∈ C

N×N

and the diagonal of Φ
1/2
s = Diag[ϕ

1/2
s ], which constitutes a

generalization [23] of the so-called orthogonal Procrustes prob-
lem [24], [25]. Since the early PSDs herein are represented by
ϕs = Diag[ϕ

H/2
s ]ϕ

1/2
s , the corresponding estimate ϕ̂s is guar-

anteed to be non-negative, such that a non-negative inequality
constraint as in (23) is not required. Further, we show that the
obtained estimates Ω̂ and ϕ̂

1/2
s can be used to recursively update

the RETF estimate Ĥ, which is not inherently possible from the
estimate ϕ̂s given by (23).

In Section IV-A, as a pre-requisite to our derivation, we dis-
cuss the factorization of the conventional signal model in (10)–
(13), yielding the square-root signal model. In Section IV-B,
based upon the square-root signal model and given the estimates
Ψ̂

1/2
xe and Ĥ, we then define and solve the square-root minimiza-

tion problem (square-root MP). In Section IV-C, we discuss the
recursive updating of the RETF estimate Ĥ.

A. Early-Correlation-Matrix Factorization

We consider the factorization of the rank-N matrices on
both sides of (10). On the left-hand side of (10), we define
the square root Ψ

1/2
xe ∈ C

M×N such that Ψ
1/2
xe Ψ

H/2
xe = Ψxe

.
Note that the product is invariant to right-multiplication of a
particular square root with any unitary matrix, and so Ψ

1/2
xe is

not unique. On the right-hand side of (10), with ϕ
1/2
s ∈ C

N

and Diag[ϕ
H/2
s ]ϕ

1/2
s = ϕs, we define the square roots Φ

1/2
s =

Diag[ϕ
1/2
s ] and HΦ

1/2
s such that HΦ

1/2
s Φ

H/2
s HH = HΦsH

H .
Note that while the magnitude of the elements in ϕ

1/2
s ∈ C

N
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is well-defined, namely by
∣
∣ϕ

1/2
s

∣
∣ =

√
ϕs, their complex argu-

ment can be chosen arbitrarily, and so Φ
1/2
s is not unique. The

non-uniqueness of both square roots implies that while their re-
spective products on both sides of (10) coincide, the said square
roots themselves generally do not, i.e. we have Ψ

1/2
xe �= HΦ

1/2
s .

Hence, for a particular Ψ
1/2
xe and Φ

H/2
s , we introduce the unitary

matrix Ω ∈ C
N×N , which is such that Ψ

1/2
xe Ω and HΦ

1/2
s do

coincide, i.e. we summarize

Ψ
1/2
xe Ω = HΦ

1/2
s , (28)

Φ
1/2
s = Diag[ϕ

1/2
s ], (29)

ΩΩH = I, (30)

where right-multiplying each side of (28) with its Hermitian
yields (10). At this point, in order to stress the meaning of (28)–
(30), we add that the column vectors [Ψ

1/2
xe ]:,n and [HΦ

1/2
s ]:,n =

hnϕ
1/2
s form generally different bases3 of the same vector space,

and hence Ω implements a change of basis.
Applying (6) to (28)–(29) and noting that 1T Diag[ϕ

1/2
s ] =

ϕ
T/2
s , we find that ϕ

1/2
s and Ω satisfy

iTΨ
1/2
xe Ω = [Ψ

1/2
xe Ω]1,: = ϕ

T/2
s , (31)

where right-multiplying each side of (31) with its Hermitian
yields (13). We further note that if Ω was known for a given
square root Ψ

1/2
xe , then ϕ

1/2
s could be obtained from (31) imme-

diately. In the following, we refer to (28)–(31) as the square-root
signal model.

B. Orthogonal Procrustes-Based Early PSD Estimate

In this section, based on the square-root signal model in (28)–
(31), we seek unitary and diagonal estimates Ω̂ and Diag[ϕ̂

1/2
s ]

of Ω and Diag[ϕ
1/2
s ]. Similarly to Section III, we develop our

discussion from the premise that estimates Ψ̂
1/2
xe and Ĥ of the

early-correlation-matrix square root Ψ
1/2
xe and the RETF H in

(28) are readily available, with Ψ̂
1/2
xe generally of rank N and

iT Ĥ = 1T . An estimator of Ψ
1/2
xe is described in Section V-B,

while Section IV-C describes a recursive update scheme for Ĥ.
Similarly to Section III, now based on the square-root signal

model in (28)–(30) instead of the conventional signal model in
(10), we define the approximation error as a function of Ω and
ϕ

1/2
s , i.e.

Esq(Ω,ϕ
1/2
s ) = Ψ̂

1/2
xe

Ω− ĤDiag[ϕ
1/2
s ], (32)

which is akin to Ec(ϕs) in (16), and where the subscript sq
stands for square root. Further, now based on the square-root

3A particular case is obtained for N = 1, where Ω and Φ
1/2
s are scalar,

while H = h and Ψ
1/2
xe = ψ

1/2
xe are proportional column vectors. In this case,

given an estimate ψ̂1/2
xe , we may even estimate h by ĥ = ψ̂

1/2
xe /[ψ̂

1/2
xe ]1,

satisfying [ĥ]1 = 1, cf. (6). In essence, despite somewhat different derivation
and terminology, this is equivalent to the approach taken in subspace-based
single-source RETF estimation [20].

signal model in (31) instead of the conventional signal model in
(13), we define a soft-constraint error as a function ofΩ and ϕ

1/2
s ,

eT

sq(Ω,ϕ
1/2
s ) = [Ψ̂

1/2
xe

Ω]1,: − ϕ
T/2
s

= [Esq(Ω,ϕ
1/2
s )]1,:, (33)

which is akin to ec(ϕs) in (22). Similarly to ec(ϕs), also
esq(Ω,ϕ

1/2
s ) in (33) is independent of Ĥ, and so its penalization

may be useful in case of RETF estimation errors. While
ec(ϕs) defines an error on the sum of the early PSDs, however,
esq

(
Ω,ϕ

1/2
s

)
instead defines an error on each of the early

PSD square roots and is therefore more informative. Based
on (32), (33), and the unitary constraint in (30), we define the
minimization problem,

{Ω̂, ϕ̂
1/2
s } =

argmin
Ω,ϕ

1/2
s

∥
∥Esq(Ω,ϕ

1/2
s )

∥
∥2
F
+ α

∥
∥esq(Ω,ϕ

1/2
s )

∥
∥2
2

s.t. ΩΩH = I, (34)

which is akin to the conventional MP in (23) and referred to as
the square-root minimization problem (square-root MP) in the
following. While the unitary constraint in (34) does not have an
equivalent in (23), the inequality constraint ϕs ≥ 0 used in (23)
is not required in (34), as in the square-root signal model, we
find that ϕs = Diag[ϕ

H/2
s ]ϕ

1/2
s , and therefore the corresponding

estimate ϕ̂s is guaranteed to be non-negative. Problems of the
kind as in (34), i.e. Frobenius-norm minimization problems
seeking a unitary and a diagonal matrix, here Ω and Diag[ϕ

1/2
s ],

constitute a generalization [23] of the so-called orthogonal Pro-
crustes problem [23]–[25], which seeks a unitary matrix only. As
outlined in the following, under a specific rank condition, the or-
thogonal Procrustes problem has a unique closed-form solution,
which is found by means of the SVD [24], [25]. The generalized
orthogonal Procrustes problem, on the contrary, does not have a
unique closed-form solution, but can be solved iteratively [23].
In particular, along the lines of [23], we propose to solve (34)
by alternatingly (re-)estimating Ω and ϕ

1/2
s until convergence is

reached, namely by solving the orthogonal Procrustes problem
and the soft-constrained convex problem, respectively,

Ω̂(i) = argmin
Ω

∥
∥Esq(Ω, ϕ̂

1/2|(i−1)
s )

∥
∥2
F

s.t. ΩΩH = I, (35)

ϕ̂
1/2|(i)
s = argmin

ϕ
1/2
s

∥
∥Esq(Ω̂

(i),ϕ
1/2
s )

∥
∥2
F

+ α
∥
∥esq(Ω̂(i),ϕ

1/2
s )

∥
∥2
2
, (36)

where the soft constraint is applied in (36) only, i.e. once per
iteration. Using (32), by expansion of the Frobenius norm in
(35), it is easily shown [24], [25] that (35) is equivalent to

Ω̂(i) = argmax
Ω

�[tr[ΩC(i−1)
sq ]

]

s.t. ΩΩH = I, (37)
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with C(i−1) = Diag[ϕ̂
H/2|(i−1)
s ]ĤHΨ̂

1/2
xe

. (38)

If C(i−1) has full rank, which (without sufficiency) requires
N ≤ M , the problem in (35) has a unique closed-form solution,
which is based on the SVD of CH|(i−1). Precisely, if we
decompose CH|(i−1) as

CH|(i−1) = ULΣUH

R, (39)

where Σ ∈ R
N×N is a diagonal matrix of singular values and

both UL ∈ C
N×N and UR ∈ C

N×N are unitary, then Ω̂(i) is
given by

Ω̂(i) = ULU
H

R. (40)

With (32) and (33), the solution to (36) is easily found as

ϕ̂
1/2|(i)
s = A−1

sqb
(i)
sq , (41)

with Asq ∈ R
N×N and b

(i)
sq ∈ C

N defined by

Asq = Diagg[ĤHĤ] + αI, (42)

b(i)
sq = diag[ĤH(I+ αiiT )Ψ̂

1/2
xe

Ω̂(i)]

= diag[ĤHΨ̂
1/2
xe

Ω̂(i)] + α[Ψ̂
1/2
xe

Ω̂(i)]T1,:. (43)

The set of equations (42)–(43) is akin to (26)–(27) for the
conventional MP. Note that forα → ∞, the soft constraint in the
square-root MP in (36) becomes a hard constraint and, moreover,
solely determines ϕ̂

1/2|(i)
s , namely as ϕ̂

1/2|(i)
s = [Ψ̂

1/2
xe Ω̂

(i)]T1,:
according to (41)–(43). This is not the case for the soft constraint
in the conventional MP in (23).

Note that since the problem in (34) is non-convex, the it-
eration in (35)–(36) is not guaranteed to converge to a global
minimum [23]. The initial value ϕ̂

1/2|(0)
s of the iteration can,

e.g., be chosen based on the sum constraint in (13) as ϕ̂
1/2|(0)
s =√

[Ψ̂xe
]1,1/N 1, or based on the comparably lowly complex

estimator in (17)–(18), here denoted by ϕ̂s|c0 , as ϕ̂
1/2|(0)
s =√

ϕ̂s|c0 . Here, the latter provides faster convergence, cf.
Section VI-A4.

C. Recursive RETF Update

Based upon the square-root model in (28), the estimates Ω̂

and ϕ̂
1/2
s obtained as discussed in Section IV-B can also be used

to recursively update the RETF estimate Ĥ. Note that in doing
so, the quality of the estimates Ω̂ and ϕ̂

1/2
s on the one hand and

Ĥ on the other hand depend upon each other, such that particular
means (as outlined below) have to be taken in order to limit error
amplification from frame to frame and thereby avoid divergence.

In the following, we differentiate the prior and posterior esti-
mates Ĥ and Ĥ+, and propose to simply propagate the posterior
in the previous frame to the prior in the current frame, i.e.

Ĥ(l) = Ĥ+(l−1). (44)

In each frame, we use Ĥ to obtain Ω̂ and ϕ̂
1/2
s with (35)–(36),

and then use Ω̂ and ϕ̂
1/2
s to obtain Ĥ+, where we again resort to

the square-root signal model in (28). To this end, we define the
approximation error as a function of H,

Esq(H) = Ψ̂
1/2
xe

Ω̂−HDiag[ϕ̂
1/2
s ] (45)

which is similar to (32). Based upon (45) and the constraint in
(6), we define the minimization problem,

Ĥ+= argmin
H

∥
∥Esq(H)

∥
∥2
F
+
∥
∥(Ĥ−H)Diag

[√
β
]∥∥2

F

s.t. iTH = 1T , (46)

where the penalty term
∥
∥(Ĥ−H)Diag

[√
β
]∥∥2

F
relates to

Levenberg-Marquardt regularization [32], [33] in that it penal-
izes deviation from the previous (i.e., the prior) estimate Ĥ and
thus limits error amplification from frame to frame. Here, we
leave β subject to tuning as described in the following. In this
respect, recall that according to (28), both Ψ

1/2
xe and H span the

same column space. However, due to modeling and estimation
errors, this is not necessarily true for the corresponding estimates
Ψ̂

1/2
xe and Ĥ. In particular, if the nth source image has a com-

parably low early PSD ϕsn or is inactive, then the associated
subspace dimension will not be well or not at all be represented
in Ψ̂

1/2
xe , and both [Ω̂s]:,n and ϕ̂

1/2
sn may exhibit comparably large

estimation errors. Further, the estimate ϕ̂
1/2
sn may contain residual

late reverberation due to erroneous separation of Ψ̂x into Ψ̂xe

and Ψx�
, cf. (9), Section V and Section VI. In such a case,

one would preferably rely on the prior estimate ĥn instead of
updating based on [Ω̂s]:,n and ϕ̂

1/2
sn . Considering the solution to

(46), which is given by

[Ĥ+]1,: = 1T , (47)

[Ĥ+]2:M,: = l[(Ψ̂
1/2
xe

Ω̂Diag[ϕ̂
H/2
s ] + ĤDiag[β]

)

·Diag−1[ϕ̂s + β]
]
2:M,:

, (48)

we indeed find that the smaller ϕ̂sn as compared to βn = [β]n,
the more ĥ+

n relies on ĥn, as desired. In order to further increase
robustness against modeling and estimation errors, source inac-
tivity and residual late reverberation in ϕ̂sn , we propose to make
βn time-varying with binary values. More precisely, we base βn

on the power ratio

ξ = ϕ̂s/(1
T ϕ̂s + ϕreg), (49)

where ξn = [ξ]n ∈ [0, 1]. Here, ϕreg can be used for regular-
ization, e.g., we may choose ϕreg = ϕx�

in order to limit ξn
in frames where pre-dominantly late reverberation is estimated.
Given ξn, we set βn as

βn

{
= β if ξn ≥ ξth,

→ ∞ else,
(50)

and thereby resort to ĥ+
n = ĥn if ξn is smaller than the pre-

defined threshold ξth. The value β, used if ξn ≥ ξth, should
scale in relation to the dynamic range of ϕsn and can be chosen
depending on the (estimated) probability density function of the
complex STFT coefficients sn, cf. Section VI.
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Note that in order to start the recursion defined by (44), (35)–
(36), and (46), an initial estimate Ĥ(0) is required, which may
be based on, e.g., initial single-source RETF estimates acquired
from segments with mutual-exclusively active sources [20], or
some initial knowledge or estimates of the associated DoAs [7],
[21], [22].

V. SUBSPACE-BASED EARLY CORRELATION

MATRIX ESTIMATION

In Section III and Section IV, we respectively assumed that
the early-correlation-matrix estimate Ψ̂xe

and its square root

Ψ̂
1/2
xe of rank N are available. In this section, we discuss how

to obtain these estimates from the microphone signals x. We
estimate Ψx = E[xxH ] by recursively averaging xxH , yielding
the smooth estimate Ψ̂x|sm and its equally smooth subspace rep-
resentation based on the GEVD. From the latter, we first define
a desmoothed estimate Ψ̂x based on desmoothed generalized
eigenvalues, and second extract the early component Ψ̂xe

and

its square root Ψ̂
1/2
xe .

In Section V-A, we introduce the subspace model of Ψx. In
Section V-B, we obtain the smooth and desmoothed estimates
Ψ̂x|sm and Ψ̂x, respectively. In Section V-C, given Ψ̂x, we then

retrieve subspace-based rank-N estimates Ψ̂xe
and Ψ̂

1/2
xe .

A. Correlation Matrix Subspace Decomposition

In each frame l, we define the GEVD [34] of Ψx and the
diffuse coherence matrix Γ, cf. (14), i.e.

ΨxP = ΓPΛx, (51)

with Λx = Diag[λx], (52)

whereλx ∈ R
M comprises the generalized eigenvalues, and the

columns of P ∈ C
M×M comprise the associated generalized

eigenvectors. In the GEVD, the generalized eigenvectors in
P are uniquely defined up to a scaling factor, and for any
factorization Γ = Γ

1/2Γ
H/2, we find that ΓH/2P is column-wise

orthogonal due to Ψx= E[xxH ] being Hermitian. In the follow-
ing, without loss of generality, we assume the eigenvectors to be
scaled such that ΓH/2P is unitary, i.e.

PHΓP = I, (53)

and therefore, combining (51) and (53),

PHΨxP = Λx. (54)

An alternative, but mathematically equivalent formulation to
the GEVD in (51) is given by the EVD of the pre-whitened
matrix Ψ′

x = Γ−1/2ΨxΓ
−H/2 [15], [20], [35], which is defined

by Ψ′
xP

′ = P′Λ′
x. By comparison with (51), we find Λ′

x = Λx

and P′ = Γ
H/2P, provided that the respective (generalized)

eigenvalues are sorted in the same order, and the (generalized)
eigenvectors are scaled accordingly.

For convenience of presentation, assume that the generalized
eigenvalues in λx are sorted in a descending order, and the
generalized eigenvectors in P are sorted accordingly. Then,
inserting Ψx = Ψxe

+Ψx�
with Ψx�

= ϕx�
Γ, cf. (9) and (14),

into (54) while making use of (53) yields

Λx = PHΨxe
P+ ϕx�

I, (55)

wherein Ψxe
and in consequence PHΨxe

P generally have rank
N , and the latter in addition is diagonal, i.e. if N < M we have

PHΨxe
P =

(
Λxe

0

0 0

)

, (56)

with Λxe
= Diag[λxe

], (57)

and λxe
∈ R

N .

B. Recursive Correlation Matrix Estimation and Desmoothing

We compute a smooth estimate Ψ̂x|sm of Ψx by recursively
averaging xxH using some pre-defined forgetting factor ζ ∈
(0, 1), i.e.

Ψ̂x|sm(l) = ζΨ̂x|sm(l−1) + (1−ζ)x(l)xH(l), (58)

and perform the GEVD Ψ̂x|smP̂ = ΓP̂Λ̂x|sm similar to (51)–

(54), with P̂ an estimate of P and Λ̂x|sm = Diag[λ̂x|sm] a
smooth estimate of Λx. Note that in order to excite all sub-
space dimensions and the associated generalized eigenvalues
and hence to achieve a meaningful decomposition, Ψ̂x|sm needs
to be well-conditioned, and so ζ must be sufficiently close to one.
As discussed in Section II, the PSDs ϕsn and ϕx�

may be highly
non-stationary, while the associated coherence matrices hnh

H
n

and Γ are commonly assumed to be comparably slowly time-
varying or even time-invariant. In theory, a linear combination of
the PSDs ϕsn and ϕx�

is rendered by the unknown generalized
eigenvalues λx of Ψx and Γ, i.e. also λx may be highly non-
stationary. In contrast, due to the (inevitable) recursive averaging
in (58), the computed generalized eigenvalues λ̂x|sm of Ψ̂x|sm
and Γ are slowly time-varying if ζ is sufficiently large, i.e.
non-stationarities are to some extent smoothed, and so would
be PSD estimates based on λ̂x|sm or Ψ̂x|sm. While smooth PSD
estimates are commonly used in some applications (e.g., in the
computation of spectral gains in speech enhancement [2]), others
exploit non-stationarities (such as, e.g., the Kalman filter [36],
where PSD estimates of the observation noise act as a regular-
ization term in the recursive update of the state estimate [28]).
Depending on the application, we therefore propose to restore
non-stationarities by desmoothing λ̂x|sm, yielding an estimate

λ̂x of λx.
To this end, we note that the recursive averaging in (58)

can be considered an element-wise filtering operation with
x(l)xH(l) as the input, Ψ̂x|sm(l) as the output, and the (all-
pole) z-domain transfer function given by (1− ζ)/(1− ζz−1).
Therefore, in order to desmooth λ̂x|sm(l), we propose to apply
the corresponding (all-zero) inverse transfer function given by
(1− ζz−1)/(1− ζ) followed by non-negative thresholding, i.e.

λ̂′
x(l) =

λ̂x|sm(l)− ζλ̂x|sm(l−1)

1− ζ
, (59)

λ̂x(l) = max[λ̂′
x(l), 0], (60)
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where the thresholding in (60) avoids negative eigenvalue es-
timates, which otherwise may appear in a limited number
of frames due to modeling and estimation errors. Note that
the desmoothing operation requires the associated generalized
eigenvalues in λ̂x|sm(l) and λ̂x|sm(l−1) to be sorted corre-

spondingly. This can be ensured by sorting P̂(l) such that
P̂H(l−1)ΓP̂(l) ≈ I, cf. (53), and λ̂x|sm(l) accordingly, which
can be done easily for large ζ and the therewith slowly time-
varying GEVD [27]. Alternatively, recursive sorting can be
avoided if the GEVD is estimated recursively, e.g., by means
of the power method [37], [38]. One may then define the corre-
sponding desmoothed estimate Ψ̂x via its decomposition

Ψ̂xP̂ = ΓP̂Λ̂x, (61)

with Λ̂x = Diag[λ̂x], (62)

where P̂ remains unchanged.

C. Early Correlation Matrix Estimation and Factorization

Given P̂ and Λ̂x in (61)–(62), we now retrieve the subspace-
based rank-N estimates Ψ̂xe

and Ψ̂
1/2
xe . To this end, based on

(55)–(57), we note that λxe
can be estimated as

λ̂xe
= [λ̂x]1:N − ϕ̂x�

1, (63)

where ϕ̂x�
in turn is obtained by averaging the last M −N

generalized eigenvalues in [λ̂x]N+1:M [15]. Considering (56)–
(57), given Λ̂xe

= Diag[λ̂xe
] from (63) and P̂−1 = P̂HΓ from

(53), we can define a rank-N estimate of Ψxe
as

Ψ̂xe
= ΓP̂

(
Λ̂xe

0

0 0

)

P̂HΓ

= Γ[P̂]:,1:N Λ̂xe
[P̂]H:,1:NΓ. (64)

From (64), we can further easily derive a square root Ψ̂
1/2
xe as

Ψ̂
1/2
xe

= Γ[P̂]:,1:N Λ̂
1/2
xe

(65)

with Λ̂
1/2
xe

= Diag[λ̂
1/2
xe

], (66)

with arbitrary complex arguments of the elements in λ̂
1/2
xe .

Note that as opposed to the order presented in Section V-B
and this section, we may also apply desmoothing only after
obtaining a smooth estimate of the early correlation matrix and
its square root, which showed to yield comparable results in our
simulations.

VI. SIMULATIONS

In this section, we compare the algorithms based on the
conventional and the square-root MP as presented in Section III
and Section IV, respectively. We assume that an (initial) RETF
estimate Ĥ is available, and that Ψ̂xe

and Ψ̂
1/2
xe are obtained as

described in Section V.
Apart from estimation errors in Ψ̂xe

, Ψ̂
1/2
xe , and Ĥ, the

performance of both algorithms is subject to modeling errors,
cf. Section II. Unfortunately, due to the model deficiencies in
(9)–(15), exact and observable ground truth early PSDs ϕs

and ground truth RETFs H do not exist in a practical setup
based on realistic acoustic data. Therefore, in order to yield a
broader understanding of the algorithms’ behavior, we perform
two kinds of simulations. In the first kind, instead of generating
time-domain data and estimating Ψx in the STFT domain, we
generate Ψ̂x = Ψx directly based on (9)–(14) and assumed
geometric and physical properties, i.e. Ψ̂x is free of modeling
and estimation errors. This way, we are able to define exact
ground truth early PSDs ϕs and ground truth RETFs H that
can be used to define exact performance measures. Further, the
estimates Ψ̂xe

and Ψ̂
1/2
xe obtained as described in Section V

will be free of estimation errors, such that the performance of
both algorithms depends on the RETF estimation error in Ĥ
and the algorithmic settings in Section III and Section IV only.
We refer to these simulations as the model-based-data case. In
the second kind of simulations, we generate acoustic data in the
time domain from recorded speech signals and measured room
impulse responses (RIRs), and estimateΨx in the STFT domain.
This way, the setup becomes more practical, however, evaluation
becomes less trivial in terms of the definition of performance
measures, such that we need to define and rely on an approximate
ground truth early PSD ϕ̃s as a reference. We refer to these
simulations as the acoustic-data case. The model-based-data
case and the acoustic-data case are discussed in Section VI-A
and Section VI-B, respectively.

A. Model-Based Data

We define our performance measures in Section VI-A1,
discuss the data-generation in Section VI-A2, the algorith-
mic settings in Section VI-A3, and the evaluation results in
Section VI-A4.

1) Performance Measures: We define the RETF estimation
error,

EH = Ĥ−H, (67)

where iTEH = [EH ]1,: = 0T since both H and Ĥ satisfy (6),
and based on that the relative squared RETF estimation error,

εH = 10 log10
tr[EH

HEH]

tr[HHH]−N
dB, (68)

where we subtract N in the denominator in order to compensate
for the fact that the first row of H is known. Since the early
PSDs ϕs are already a second-order property of the underlying
signal s, we define the PSD estimation error with respect to the
non-negative square root of ϕ̂s and ϕs, i.e.

eϕs
=

√
ϕ̂s −

√
ϕs, (69)

and based on that the relative squared PSD estimation error,

εϕs
= 10 log10

eT
ϕs
eϕs

1T ϕs
dB. (70)

2) Data Generation: Let Ψ̂x be available and free of mod-
eling and estimation errors, i.e. we have Ψ̂x = Ψx with Ψx

adhering to (9)–(14). We generate Ψx based on assumed geo-
metric and physical properties. We assume a linear microphone
array of M = 5 microphones with inter-microphone distance
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of 8 cm and the speed of sound to be 340 m/s. Further, we
assume N = 3 sources, positioned at (−30, 0, 60)◦ relative to
the broadside direction of the microphone array. The RETFs H
are generated assuming omnidirectional microphones of equal
gain as well as free- and far-field propagation for the early
components, i.e. H depends on the DoAs only and is fully
defined by the corresponding phase shifts between microphones.
The estimate Ĥ is generated by adding an error component EH

according to (67), where the elements [EH ]:,2:M are drawn from
independent complex Gaussian distributions, yielding a partic-
ular εH according to (68). The diffuse coherence matrix Γ is
computed assuming a spherical-isotropic sound field. The early
PSDs ϕs are generated in the following manner. We draw the
real and imaginary parts of the elements of s from independent
Laplace distributions, which is a commonly assumed distribu-
tion for STFT coefficients of speech [39], [40], i.e. we have
�[sn] ∼ (1/b)e−2|�[sn]|/b and �[sn] ∼ (1/b)e−2|�[sn]|/b, where
the scaling parameter b is referred to as diversity. Then, we define
ϕs = Diag[sH ]s, i.e. ϕs is the squared magnitude of s. Given
the above, we set Ψxe

= HϕsH
H according to (10). Note

that since Ψ̂x = Ψx is free of modeling errors, where Ψx =
Ψxe

+Ψx�
with Ψx�

= ϕx�
Γ, cf. (9) and (14), the component

Ψxe
can be perfectly estimated from Ψ̂x by means of the GEVD

as described in Section V-C, yielding Ψ̂xe
= Ψxe

independently
ofϕx�

. Further, note that next toH and ϕs, via the GEVD, alsoΓ

influences the shape of the square root Ψ̂
1/2

xe
= Ψ

1/2
xe

in the sense
of defining the basis for a given vector space, cf. Section V-C.
For each data-point in the evaluation, cf. Section VI-A4, we

simulate 214 realizations of Ψ̂xe
, Ψ̂

1/2

xe
and Ĥ.

3) Algorithmic Settings: In the model-based-data case, as op-
posed to the acoustic-data case, cf. Section VI-B3, the sampling
frequency and STFT-processing parameters are irrelevant since
we generate Ψ̂x directly in the STFT-domain, cf. Section VI-A2.
Regardless, we simulate frequencies up to f = 8 kHz, cor-
responding to a virtual sampling frequency of fs = 16 kHz.
The soft-constraint penalty factor α in the conventional MP in
(23) and the square-root MP in (34) is simulated in the range
α ∈ [10−3, 105]. We perform at most imax = 20 iterations of the
associated iterative algorithms in (24)–(25) and (35)–(36). All
but one of our simulations consider a single frame l only. In the
one simulation considering recursive behavior, we do not update
Ĥ for the conventional MP, but we do update Ĥ recursively for
the square-root MP as described in Section IV-C. In the latter
case, in (49), since Ψ̂

1/2
xe = Ψ

1/2
xe is free of modeling and esti-

mation errors and therefore free of residual late reverberation,
cf. Section VI-A2, we set ϕreg = 0. In (50), the threshold ξth is
set as 10 log10 ξth = −2 dB and β is set as β = 20b2, with b the
diversity of the Laplace distributions used in the generation of
ϕs, cf. Section VI-A2.

4) Results: Fig. 1 shows the PSD estimation performance
in terms of the relative squared PSD estimation error εϕs

for
different values of the relative squared RETF estimation error
εH for the algorithms based on the conventional MP and
the square-root MP with α = 103 at f = 2 kHz within a
single frame l. In this figure and similar ones in the follow-
ing, the graphs denote medians over all 214 realizations, cf.

Fig. 1. εϕs versus εH for conventional MP and square-root MP
with α = 103 at f = 2 kHz.

Fig. 2. εϕs versus α for conventional MP and square-root MP
at εH = −10 dB and f = 2 kHz.

Section VI-A2, and the shaded areas denote the range from the
first to the third quartile. As can be seen, for both the conventional
MP and the square-root MP, εϕs

increases at a rate of about
10 dB per 10 dB increase in εH until roughly εH = 0 dB and
εH = 5 dB is reached, respectively, after which εϕs

begins to
saturate. This saturation is due to the fact that both algorithms
yield non-negative estimates ϕ̂s ≥ 0, which limits the estimation
error at high values of εH . The square-root MP outperforms
the conventional MP by at least 5.7 dB for εH ≤ 0 dB, and by
somewhat less for εH ≥ 5 dB.

Fig. 2 illustrates εϕs
for different values of the soft constraint

penalty factor α for the conventional MP and the square-
root MP at εH = −10 dB and f = 2 kHz within a single
frame l. We note that while α hardly impacts the performance of
the conventional MP, we generally reach larger improvements
for higher values of α in the square-root MP. Recall that the
soft constraint in the conventional MP is scalar-based, cf. (22),
while the soft constraint in the square-root MP is vector-based,
cf. (33), and is therefore more informative. The square-root MP
outperforms the conventional MP by 2.5 dB at low values of
α, and by 5.7 dB at high values of α. Interestingly, for both
algorithms, despite Ψ̂xe

and Ψ̂
1/2
xe being free of estimation errors,

the minimum of εϕs
does not occur at the highest values of

α, but at around α = 101. As compared to higher values, the
improvement is however mild.

Fig. 3 illustrates εϕs
for different frequenciesf for the conven-

tional MP and the square-root MP with α = 103 at
(a) εH = 0 dB, (b) εH = −10 dB, and (c) εH = −20 dB within
a single frame l. Note that at some frequencies, due to spatial
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Fig. 3. εϕs versus f for conventional MP and square-root MP
with α = 103 at (a) εH = 0 dB, (b) εH = −10 dB, and (c) εH = −20 dB. The
graphs denoted by correspond to 10 log10 |hH

n hn′ |/M dB for n′ �= n.

aliasing, which occurs for two different DoAs if their phase
difference in each microphone is a multiple of 2π, the two
corresponding DoA-based RETFs in H, cf. Section VI-A2, will
be identical, and therefore H itself and consequently also Ψxe

andΨ1/2
xe

will be rank-deficient. In our setup, this situation occurs
for f ∈ {3.11, 4.91, 6.22} kHz, cf. also the dotted lines
corresponding to 10 log10 |hH

nhn′ |/M dB for n′ �= n, which
reach 0 dB if hn′ = hn. As expected, by comparing Fig. 3(a)
to Fig. 3(c), neither of the two algorithms performs well in the
proximity of these frequencies, independent of εH . At other
frequencies, however, the square-root MP outperforms the con-
ventional MP by roughly 5 to 7 dB.

Fig. 4 demonstrates the effect in the median of the initial
estimate ϕ̂

1/2|(0)
s on the convergence behavior in terms of the

relative squared PSD estimation error ε
(i)
ϕs at iteration i for

different values of εH of the iterative algorithm in (35)–(36)
solving the square-root MP with α = 103 at f = 2 kHz. The
initial value is based on (a) the sum constraint in (13) as

ϕ̂
1/2|(0)
s =

√
[Ψ̂xe

]1,1/N 1, and (b) the estimator in (17)–(18),

here denoted by ϕ̂s|c0 , as ϕ̂
1/2|(0)
s =

√
ϕ̂s|c0 . In both cases, the

algorithm converges to almost the same final value of εϕs
.

However, we find that in (a), convergence is reached at around
i = 3 to i = 4, while in (b), due to the improved initial esti-
mate, convergence is reached at i = 1 already. Hence, while
the computation of the initial estimate in (b) is somewhat more
expensive, we save 2 to 3 iterations as compared to (a).

Fig. 5 demonstrates the recursive behavior in terms of (a)
εH(l + r) and (b) εϕs

(l + r) with r the recursion index for the
conventional MP and the square-root MP with α =
103 at f = 2 kHz and εH(l) = 0 dB. Here, the source positioned
at −30◦ transitions to −40◦ at r = 32, resulting in a transient
change in the otherwise constant RETF H. While no update

Fig. 4. ε
(i)
ϕs versus εH and i for square-root MP with α = 103 and ϕ̂

1/2|(0)
s

based upon (a) the sum constraint in (13) and (b) the estimator in (17)–(18) at
f = 2 kHz.

Fig. 5. (a) εH(l+ r) and (b) εϕs (l+ r) versus r for conventional MP
and square-root MP with α = 103 at f = 2 kHz and εH(l) = 0 dB if
H changes at r = 32 and remains constant otherwise.

of the estimate Ĥ is performed for the conventional MP, we
do update Ĥ recursively for square-root MP as described in
Section IV-C. For the conventional MP, we expectably find that
εH(l + r) and εϕs

(l + r) remain constant except for a transient
increase of 6.8 dB and 3.2 dB at r = 33, respectively. For the
square-root MP, due to the recursive update of Ĥ, we find that
εH(l + r) and εϕs

(l + r) decrease by 5.2 dB and 4.7 dB over
the course of the first 32 recursions, followed by an increase
of 11.2 dB and 6.1 dB at r = 33, respectively, and a subsequent
decrease at roughly the same rate.

B. Acoustic Data

We define the performance measures in Section VI-B1,
discuss the acoustic scenario in Section VI-B2, the algorith-
mic settings in Section VI-B3, and the evaluation results in
Section VI-B4.

1) Performance Measures: In the acoustic-data case, due to
the model deficiencies in (9)–(15), cf. Section II, exact and
observable ground truth early PSDs ϕs and ground truth RETFs
Hdo unfortunately not exist, and so the performance measures in
(67)–(70) cannot be used. However, one may define approximate
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Fig. 6. Exemplary spectrograms depicting ϕ̂sn in (a.n), ϕ̄sn in (b.n), e2|int
ϕsn

in (c.n), and e
2|art
ϕsn

in (d.n), with ϕ̄sn , e2|int
ϕsn

, and e
2|art
ϕsn

obtained from the

decomposition of
√

ϕ̂sn , cf. Section VI-B1. The reference PSDs ϕ̃s1 and ϕ̃s2 originate from a female and a male speaker at −30◦ and 60◦, respectively, and the
estimate ϕ̂sn is obtained by means of the square-root MP.

ground truth early PSDs ϕ̃s as a reference for evaluation. To this
end, given the source signals and RIRs of a particular acoustic
scenario, cf. Section VI-B2, we convolve the source signals with
only the early part of the RIR to the first microphone and trans-
form to the STFT-domain, yielding s̃, and set ϕ̃s = Diag[s̃H ]s̃,
i.e. ϕ̃s is the squared magnitude,4 of s̃. Note that the definition
of the early part of the RIR is somewhat arbitrary due to the
weighted and overlapping windows in the STFT-processing.
For STFT windows of NSTFT samples with 50% overlap, one
may, e.g., choose the first NSTFT or the first NSTFT /2 taps
of the RIR. Here, we have chosen the first NSTFT samples
corresponding to 32 ms, cf. Section VI-B3. In our setup, we
have found that different choices result in quantitatively different
performance, but not qualitatively different conclusions.

Given a segment of L frames of ϕ̃s and ϕ̂s, we decompose√
ϕ̂s according to [26] as

√
ϕ̂s =

√
ϕ̄s + eintϕs

+ eartϕs
, (71)

where
√
ϕ̄sn is the component of

√
ϕ̂sn associated to

√
ϕ̃sn ,

i.e. the correctly estimated component, eintϕsn
= [eintϕs

]n contains
components associated to

√
ϕ̃sn′ with n′ �= n, i.e. erroneously

estimated leakage or interference components across sources,
and eartϕsn

= [eartϕs
]n contains components not associated to

any
√
ϕ̃sn , i.e. erroneously estimated artifact components.

Exemplary spectrograms illustrating the decomposition in (71)
are shown in Fig. 6, cf. also the discussion in Section VI-B4.

Given L frames of
√

ϕ̄s, eintϕs
and eartϕs

, we define the
signal-to-interference ratio SIR(κ), the signal-to-artifacts ratio

4If subspace-based desmoothing, cf. Section V-B is not applied in the com-
putation of ϕ̂s, one can instead choose a recursively averaged version of the
squared magnitude as a reference.

SAR(κ), and the signal-to-distortion ratio SDR(κ) per third-
octave band κ along the lines of [26] as

SIR(κ) = 10 log10

∑
k,l

∥
∥
√

ϕ̄s(k, l)
∥
∥2
2∑

k,l

∥
∥eintϕs

(k, l)
∥
∥2
2

dB, (72)

SAR(κ) = 10 log10

∑
k,l

∥
∥
√

ϕ̄s(k, l) + eintϕs
(k, l)

∥
∥2
2∑

k,l

∥
∥eartϕs

(k, l)
∥
∥2
2

dB,

(73)

SDR(κ) = 10 log10

∑
k,l

∥
∥
√

ϕ̄s(k, l)
∥
∥2
2∑

k,l

∥
∥eintϕs

(k, l) + eartϕs
(k, l)

∥
∥2
2

dB,

(74)

with k = k−
κ, . . . , k

+
κ and k−

κ and k+
κ the frequency-bin indices

of the lower and upper band limits of third-octave-band κ, and
l = 0, . . . , L− 1.

The decomposition in (71) relies on a segment of L frames
of ϕ̃s and ϕ̂s and is done in the following manner. Let ϕ̂sn be a
vector stacking the early PSD estimates ϕsn of source n over L
observed frames, i.e. ϕ̂sn = (ϕ̂sn(0) · · · ϕ̂sn(L−1))T , and
let ϕ̃sn , ϕ̄sn , eintϕsn

and eartϕsn
be defined equivalently, such that

√
ϕ̃sn =

√
ϕ̄sn + eintϕsn

+ eartϕsn
, similarly to (71). Then, we

perform the orthonormal projection of each individual vector√
ϕ̂sn onto the one-dimensional subspace spanned by the cor-

responding vector
√

ϕ̃sn , yielding
√

ϕ̄sn with
√

ϕ̄sn ∝
√

ϕ̃sn ,

as well as onto the N -dimensional subspace spanned by all N

vectors
√

ϕ̃sn , yielding
√

ϕ̄sn + eintϕsn
, which then allows us to
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explicitly compute eintϕsn
and eartϕsn

. For further details, we refer
the interested reader to [26].

2) Acoustic Scenario: We use RIRs of 0.61 s reverberation
time to a physical linear microphone array of M = 5 micro-
phones with an inter-microphone distance of 8 cm [41], similar
to the assumed microphone array in Section VI-A2. We simulate
N = 2 sources, using female and male speech [42] as source
signals. The sources are assigned to two out of three possible
source positions in 2 m distance of the microphone array at
{−30, 0, 60}◦ relative to the broad-side direction, yielding six
different speaker-source-position combinations. From the two
source signal files, we randomly select 32 segments of 5 s each.
Per segment-pair, we generate microphone signals for each
speaker-source-position combination.

3) Algorithmic Settings: In the acoustic-data case, the sam-
pling frequency is fs = 16 kHz, and the STFT-analysis and syn-
thesis is based on square-root Hann windows of NSTFT = 512
samples (corresponding to 32ms) with 50% overlap, resulting
in L = 312 frames per segment. The desmoothed correlation
matrix estimate Ψ̂x (cf. Section V-A and Section V-B) is
computed using ζ = e−NSTFT /2fsτ with τ = 160 ms. As in
Section VI-A2, Γ is computed assuming a spherical-isotropic
sound field. Given Ψ̂x and Γ, we compute the estimates ϕ̂x�

,

Ψ̂xe
and Ψ̂

1/2
xe as described in Section V-C. We assume that

the DoAs are known [7], [21], [22], and compute the (initial)
estimate Ĥ based on that. Note that in a reverberant environ-
ment, where the free-field assumption does not hold, the RETFs
are generally not only defined by the DoA, but also by early
reflections, and therefore we generally have Ĥ �= H in our setup.
Similarly to the model-based data case, cf. Section VI-A3, the
penalty factor α in the conventional MP in (23) and the square-
root MP in (34) is simulated in the range α ∈ [10−3, 105]. We
perform at most imax = 20 iterations of the associated iterative
algorithms in (24)–(25) and (35)–(36). While we do not update
Ĥ for the conventional MP in Section III, we consider two cases
for the square-root MP in Section IV, namely first where we
do not update Ĥ, and second where we update Ĥ recursively as
described in Section IV-C. In the latter case, in (49), since Ψ̂

1/2
xe is

subject to modeling and estimation errors and contains residual
late reverberation, we set ϕreg = ϕ̂x�

. In (50), the threshold ξth
is again set as 10 log10 ξth = −2 dB and β is set per third-octave
bandκ asβ(κ) = 20b̂2(κ), with b̂(κ) pre-defined as the diversity
of the Laplace distributions fitted to the real and imaginary parts
of the STFT coefficients of a training signal within third-octave
band κ. Here, the training signal is generated from the entire
female and male speech source signals, cf. Section VI-B2, by
convolving the early part of the RIR of the first microphone
corresponding to a source at 2 m distance at 0◦ relative to the
broadside direction, cf. also the similar segment-wise definition
of the reference signal s̃n in Section VI-B1. Note that while
b̂(κ) is pre-computed using all STFT coefficients of both male
and female speech within third-octave band κ, the actual dis-
tributions vary across speakers, across source positions, across
individual frequency bins, and across individual segments, cf.
also Section VI-B2.

4) Results: Before discussing the performance of the con-
ventional MP and the square-root MP in terms of the measures

Fig. 7. (a) SIR, (b) SAR, and (c) SDR in third-octave bands for conventional
MP , square-root MP without recursive RETF update , and square-
root MP with recursive RETF update .

SIR, SAR, and SDR, we first consider the examplary spec-
trograms in Fig. 6 visualizing the decomposition of

√
ϕ̂s upon

which these measures are based. In this example, the microphone
signals x and the reference PSDs ϕ̃s1 and ϕ̃s2 originate from
a female and a male speaker at −30◦ and 60◦, respectively,
and the estimates ϕ̂s1 and ϕ̂s2 in Fig. 6(a.1) and Fig. 6(a.2)
are obtained by means of the square-root MP. The correctly
estimated components ϕ̄s1 and ϕ̄s2 in Fig. 6(b.1) and Fig. 6(b.2)
are frequency-bin-wise scaled versions of the reference PSDs
ϕ̃s1 and ϕ̃s2 , respectively, cf. Section VI-B1. As can be seen,

the leakage or interference components in e
2|int
ϕs1

and e
2|int
ϕs2

in
Fig. 6(c.1) and Fig. 6(c.2) relate to the opposing reference PSDs,
cf. Fig. 6(b.2) and Fig. 6(b.1), respectively. Finally, the artifact
components e

2|art
ϕs1

and e
2|art
ϕs2

in Fig. 6(d.1) and Fig. 6(d.2) do
not relate to any of the reference PSDs, but rather to residual late
reverberation in the estimate Ψ̂

1/2
xe , cf. also Section V-C, which

is due to modeling errors in (9)–(14) and a potential deviation of
the late reverberant sound field from the spatial coherence matrix
Γ. Note that in e

2|art
ϕs1

and e
2|art
ϕs2

, the energy is concentrated in
the same spectro-temporal regions, indicating a similar spatial
sound field of these components.

Fig. 7 shows the median over all segments and speaker-source-
combinations, cf. Section VI-B2, of (a) SIR, (b) SAR, and (c)
SDR in third-octave bands for the conventional MP , the
square-root MP without recursive RETF update , and the
square-root MP with recursive RETF update . Here, in each
third-octave band κ, we have selected α(κ) such that SIR(κ)
is maximized for each algorithm, i.e. the figure indicates their
upper performance limit in terms of SIR(κ) with respect to
the tuning of α(κ). Note that in our setup, selecting α(κ) to
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maximize SAR(κ) or SDR(κ) does not lead to qualitatively
substantial differences. For the conventional MP, we have found
values of α(κ) � 1 to be preferable in all third-octave bands
κ, indicating that the soft-constraint penalty in (23) is not very
useful in practice. For the square-root MP, with and without
recursive RETF update, we have found α(κ) � 1 to be prefer-
able in third-octave bands below 0.5 kHz, and α(κ) ≤ 1 to be
preferable above 0.5 kHz. From Fig. 7(a), we find that the square-
root MP clearly outperforms the conventional MP in terms of
SIR in third-octave bands above 0.25 kHz, with improvements
of 1 dB to 6 dB, indicating better source-component separation
performance. Further, for the square-root MP, we find that the
recursive RETF update mildly improves the performance by up
to 1 dB. Recall that the initial RETF estimate Ĥ is based on
the correct DoAs, but does not consider early reflections, cf.
Section VI-B3. From Fig. 7(b), we note that for all algo-
rithms, we have SAR(κ) < SIR(κ) in third-octave bands above
0.5 kHz, indicating comparably strong residual late reverber-
ation. The square-root MP performs slightly worse than the
conventional MP in terms of SAR in third-octave bands above
0.25 kHz, with degradations of less than 1 dB. In the square-root
MP, recursive RETF updating results in minor differences only.
As can be seen from Fig. 7(c), we find that the square-root MP
outperforms the conventional MP in terms ofSDR, however, due
to the comparably strong residual late reverberation, by much
less than in terms ofSIR. Again, in the square-root MP, recursive
RETF updating results in minor differences only.

VII. CONCLUSION

We have discussed early PSD estimation and recursive RETF
updates in the STFT domain for multiple sources in reverberant
environments, based on a commonly used multi-microphone
correlation matrix model, given (initial) RETF estimates. State-
of-the-art approaches to early PSD estimation minimize the
approximation error with respect to an estimate of the early
correlation matrix, referred to as conventional MP. Instead, we
here have factorized the early correlation matrix model and
minimized the approximation error with respect to an estimate
of the early-correlation-matrix square root, which we referred
to as the square-root MP. The square-root MP seeks a unitary
matrix and the square roots of the early PSDs up to an arbi-
trary complex argument, and therewith constitutes a generaliza-
tion of the orthogonal Procrustes problem. As opposed to the
conventional MP, non-negative inequality constraints are not
required in the square-root MP. The square-root MP may be
solved iteratively, requiring one SVD per iteration. Based on
the estimated unitary matrix and early PSD square roots, we are
further able to recursively update the RETF estimate, which
is not inherently possible in the conventional approach. The
respectively required estimates of the early correlation matrix
and the early-correlation-matrix square root may be obtained
from an estimate of the microphone signal correlation matrix
and the diffuse coherence matrix by means of the GEVD. Hereat,
in order to compensate for inevitable recursive averaging, we
have restored non-stationarities by desmoothing the generalized
eigenvlaues.

In order to evaluate the proposed approach, we have per-
formed two kinds of simulations. In the first kind, the data
is generated based on the microphone signal correlation ma-
trix model and assumed geometric and physical properties,
excluding modeling errors from the evaluation. This is referred
to as model-based-data case. In the second kind, the data is
generated from recorded speech and measured RIRs, creating a
more practical setup. This is referred to as acoustic-data case.
In the model-based-data case, the simulation results indicate
better performance of the square-root MP as compared to the
conventional MP in terms of the relative squared PSD estimation
error. If initialized accordingly, the square-root MP can be solved
in only one iteration. In the acoustic-data case, the simulation re-
sults indicate better performance of the square-root MP as com-
pared to the conventional MP in terms of the source-component
separation measured by the signal-to-interference ratio. Both
the square-root MP and the conventional MP suffer somewhat
from residual late reverberation in the early-correlation-matrix
estimate.
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