29.09.2023

Computations in wind energy research, an overview

Neeraj Paul Manelil, Johannes Nicolaas Theron, Leo Höning

Scales of simulations

From 10⁻⁵ m to 3 km

Microscale

- Microscale covering scales from few meters to several kilometers
- Resolutions in the order of 10⁻⁵ m
- Used for optimization of turbine blade design and acoustics
- We use OpenFOAM, CFL3D

Mesoscale

- Mesoscale covering scales from some tens to several hundreds of kilometers
- Resolutions in the order of 1-3 km
- Used in wind energy applications in the last 10-15 years focusing on wind atlas or cluster wake modelling applications
- We use the WRF model (MPAS under investigation), FIWIND, PALM LES, FOXES

Wind farm optimization

15000 17500 20000 22500 25000 27500 30000 32500 35000

Relative local mesoscale wind and power analysis of time series calibrated by wind farm data

Fraunhofer

Scope Microscale modeling

Vortex induced vibration

Dose, B., Rahimi, H., Herráez, I., Stoevesandt, B., & Peinke, J. (2016, September). Fluid-structure coupled computations of the NREL 5MW wind turbine blade during standstill. In *Journal of Physics: Conference Series* (Vol. 753, No. 2, p. 022034). IOP Publishing.

© Fraunhofer IWES

and the states and a state and a state of the states of th

Microscale Modelling

A LOCAL DESIGNATION OF A REAL PROPERTY OF A

Scope of microscale modeling

Aerodynamics

- Fluid-Structure Interaction (FSI) simulations of rotor blade
- Airfoil simulations for various applications:
 - Transition, stall, pitch, yaw and tilt
 - Blade Add-ons
 - Extrapolation Methods
- Turbulent inflow simulations
- Extreme operating scenarios
- Turbine acoustics
- Icing, rain erosion

Full turbine simulations

High fidelity for complex flow situations

NREL 5MW subjected to yawed inflow (30°, rated conditions)

IEA Task 40 Downwind

Rahimi, H., Martinez Garcia, A., Stoevesandt, B., Peinke, J., & Schepers, G. (2018). An engineering model for wind turbines under yawed conditions derived from high fidelity models. *Wind Energy*.

Extreme operating condition

High fidelity for complex flow situations

Detailed airfoil aerodynamics / add-ons

Challenging aerodynamics, up to Re = 15 million

- Airfoils are the backbone of wind turbine design
- Slats increase maximum CL
- Effect of aerodynamic sensors on airfoil performance
- Laminar-turbulent transition

Acoustics from wind turbine

Far field propagation

Scalablity

exaFOAM project

Older generation CPUs had an optimum of about 100k cells per core The newer AMD EPYC solvers work best with about 8,200 cells per core

Scalability study-eddy

Onshore Siting CFD Process

Mesh cylindrical domain: One mesh, many wind directions

Onshore Siting CFD Process

Mesh cylindrical domain: One mesh, many wind directions

terrainMesher: Automatic meshing from STL, MAP, XYZ...

- -< Automatic inclusion of roughness and forest data
- < Damping in outer regions
- < OpenFOAM's checkMesh OK

Urban wind flow

- Pedestrian comfort
- Highway safety
- VAWT wind resource assessment

Wind Farm Control Optimization

Optimizing wind farm control by wake steering and induction control

Mesoscale Wake Modelling

Future Scenarios

- Time-dependent development of wind fields according to planned wind farm expansion
- Decrease of wind conditions also in larger areas clearly visible
- Expansion of the wind farms from 2023 until 2030
- Currently data from 20+ scenarios future scenarios for the German Bight available also for further analyses
- Results of scenario calculations can be considered for yield and wind farm layout calculations in open-source tool FOXES

Computational expense

HPC specificatior	ו
-------------------	---

Eddy	5,800 cores	200 teraflops
Storm	20,000 cores	900 teraflops

Blade-resolved microscale simulations

	5MW	15MW
Number of cells	20 million	80 million
Number of cores	240	840
Wall time	7 days	15-90 days

FIWIND terrain simulations

Number of cells	80 million
Number of cores	840
Wall time	7 days

Computational issues

- File sizes
- Number of files generated: 100+ per timestep (not including flow field). Collated approach does not help here.
- HPC Scaling limited to about 1,000 cores. Expecting significant improvement from exaFOAM project
- Long simulations (up to three months)

