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Abstract—Large-scale offshore wind farms need to be 

operated as power plants for renewable energy. The dependency 

of energy production on highly fluctuating weather systems is 

inherent but will become manageable due to accurate wind power 

forecasting. The performance of statistical wind power 

forecasting algorithms can be optimized by combination of wind 

forecasts from different Numerical Weather Prediction (NWP) 

models.  

The use of Neural Networks is superior as a statistical tool to 

make accurate wind power forecast for single offshore sites. A 

new approach is presented to combine input data from four 

Numerical Weather Predictions for the Danish offshore wind 

farm Middelgrunden. The approach is divided into three 

independent steps: It starts with the fit of the overall wind farm 

power output to the nacelle wind speed. In a second step wind 

sector dependent Model Output Statistics (MOS) using a Neural 

Network are used to fit the forecasted winds to the site of 

Middelgrunden. In a third step MOS corrected wind speeds from 

four different predictions are combined and finally applied to the 

power curve that had been computed in the first step. 

The forecast error at day 2 can be reduced from 18 % to 15%.  

 

 
Index Terms—wind power predictions, offshore, combination, 

Numerical Weather Prediction, neural network 

I.  INTRODUCTION 

HE accuracy of short-term wind power forecasts is besides 

other factors very important to support large-scale 

offshore wind farming  on its way to repeat the success 

story of onshore wind power over the last decade. High 

accuracy on estimated power production is needed for the 

efficient integration of large scale wind power into the UTCE 

grid in terms of reliability and stability but also with respect to 

energy trading. The demand for valuable regulative power 

must be kept to an absolute minimum, in particular when 

challenging scenarios (e.g. 12% of Europe’s electricity 

production from wind power by 2020 [1]) shall be met. 

Day-to-day trading of offshore wind power at the spot market 

is suspected to become an attractive additional part of the 

earnings for wind park investors besides guaranteed fixed 

feed-in tariffs.  
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High-Resolution Numerical Weather Predictions (NWP) of 

wind play the key role for excellent wind power forecast [2]. 

They are issued from several NWP Centers worldwide. In 

general, deficiencies in the predicted wind power are 

suspected to be related to the uncertainty in NWP. But also 

wind power algorithms themselves (either physical or 

statistical) that are used to predict the wind power at a single 

site contribute to the observed discrepancies between 

forecasted and produced power. Furthermore unconsidered 

outages of single turbines reflect a higher forecast error than 

expected from NWP. 

 

Wind power algorithms compute in the following steps local 

wind power from large-scale wind forecasts (typically between 

7 to 40km horizontal resolution): i) spatial refinement (e.g. 

horizontal interpolation), ii) calculation of the wind speed at 

hub height (e.g. extrapolation of 10m surface wind considering 

thermal stability or use of high level NWP model fields), iii) 

consideration of orography effects and iv) surface roughness, 

v) losses due to turbine wakes in the wind park and vi) 

accounting the availability of turbines with respect to damages, 

maintenance or cut-off at high wind speeds. 

 

The key advantage of statistical algorithms is that at least three 

of the above mentioned important aspects of wind power 

prediction do not require physical modeling, i.e. orography 

effect, surface roughness and turbine wakes. These effects can 

be accounted as wind directional dependent effects on the 

power curve of the entire wind farm [3]. 

The use of Neural Networks (NN) in statistical algorithm 

development is very common, i.e. satellite meteorology [4, 5] 

and also wind power forecasting [6]. Differences exist in i) 

used input data, i.e. different NWP data and number of 

variables, but also ii) in application, e.g. regional forecasts [7] 

or single site forecast [8]. 

This study describes two approaches to combine several wind 

speed forecasts to predict the wind power for the Danish wind 

farm Middelgrunden up to two days-ahead. Neural Networks 

are used at different steps in the computation, e.g. Model 

Output Statistics (MOS) and combination.  

The combination of forecasts is an often applied technique in 

meteorology to increase the skill of long-term (seasonal and 

even longer-term) forecasts and is called multi-model 

approach [9]. In case ensembles of several models are used, 

the terminology is multi-model ensembles.  

The application of multi-model techniques in short-term 

prediction is not very developed. However, first studies for 
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wind power forecasting are done [10, 11]. More work was 

already done with single model ensembles [11], [12] and [13]. 

Not multi-model, but multi-scheme ensemble prediction is 

suspected to overcome the underestimation of spread for wind 

power forecasting in single-model ensemble [14].  

 

The two investigated approaches to increase the forecast skill 

in wind power forecasting with up to four NWP model runs 

are explained in Section 3. In Section 2 the site, observational 

data and available wind forecasts are described. Results are 

shown and discussed in Section 4. Conclusions and an outlook 

are given in Section 5. 

 

II.  SITE AND WIND DATA DESCRIPTION 

A.  Wind farm Middelgrunden 

The Danish wind farm Middelgrunden is located 2km east of 

Copenhagen (Fig. 1) and was built in 2000. Twenty BONUS 

(now Siemens Wind Power) SWT-2.0-76 turbines each 2MW 

nominal power were rated with a hub height of 64m. The park 

geometry is a slight concave line in north-south direction. 

 

 
 

 
 
Fig. 1. Wind farm Middelgrunden 2km east of Copenhagen. 
 

The wind farm was in the commissioning phase in early 2001, 

when gradually more and more turbines became available. Our 

raw data are the 10-minute averages of Scada data for power 

production from January 2001 to October 2002. These data 

and also the 10-minute averages of nacelle anemometer wind 

speeds are available for each individual turbine. This allows an 

intrinsic quality control, i.e. to account for situations when 

individual turbines are regulated to produce less than their 

nominal power. 

Mean values of wind speed and power have been calculated 

for the entire find farm. The power values are normalized with 

the instantaneous available capacity, e.g. to account for 

outages of individual turbines. In a last step wind speeds and 

power data are averaged to hourly values in order to make the 

variance of forecasted wind speeds (3 hourly) and observed 

wind speeds (and power) comparable. Fig. 2 shows the 

observed mean wind speeds versus the wind production data 

for the entire wind farm. We therefore call this curve the wind 

farm power curve.  

The direction of the observed wind (approximated from the 

yaw angel of the turbines) is not considered in this study as the 

scatter between wind speed and power is very little and 

indicates that the directional dependence is marginal. 
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Fig. 2.  Normalized power curve for the wind farm Middelgrunden as 

fitted with the Neural Network (solid line) and observed in the years 

2001 and 2002. The data is averaged over one hour and the power 

data is normalized with the rated capacity of 40MW. 

 

B.  Wind forecast data 

Wind forecast data (u, v component) is used as point 

predictions from two Weather Services. The original 

horizontal grid resolution is 40 km for ECMWF forecasts. 

ECMWF is the European Centre for Medium-Range Weather 

Forecasts in Reading (U.K.) and provides two forecasts per 

day (00UTC and 12UTC). Wind speeds have been 

interpolated to the turbine hub height of 64m and were taken 

from the original model level fields of wind. The height of 

these model levels is approximately 10, 33, 60, 90 meters 

above ground.  

HIRLAM forecasts from the Danish Meteorological Institute 

(DMI) are also available twice per day. The original horizontal 

resolution (16km) is considerably higher than for ECMWF. 

Winds from the model level 30 are used. 

Forecasts from both models are available till forecast step 48h, 

i.e. our study focus on wind power predictions for the day-

ahead (forecast day 2). 

As forecasts are available twice daily, we use two model runs 

as a kind of ‘poor man’s ensemble’, resulting in four model 

runs that can be combined. 
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III.  APPROACHES 

A.  Direct combination of wind components 

In the first approach wind components (u, v) interpolated to 

the site of Middelgrunden are used directly as input to the 

Neural Network to derive a relation between wind (speed and 

direction) and the power output of the wind farm. A sketch of 

this approach is given in Fig. 2 (left). The training and 

application of the Neural Network is done in the following 

way: historic data pairs of forecasted winds and 

complementary normalized production data of the last 150 

days are divided randomly into to sets. One set is used for the 

internal minimization of the cost function in the Neural 

Network, e.g. adjusting the weights related to the neurons, 

while the second set is used for controlling the solution on 

generalization. Once a solution for the weight of the three 

hidden neurons is found by three independent searches 

(starting points of the minimization), this solution is applied to 

the wind forecasts issued the following 15 days. After that time 

the training of the Neural Network is repeated to account for 

seasonal changes that affect the Numerical Weather 

Prediction. Earlier studies for the Irish offshore wind farm 

Arklow Banks showed that even 120 days of historic training 

data is sufficient and that the same algorithm can be used up to 

60 ? days in the future.  

In the simple case of one NWP model, we have two input 

neurons. In case two NWP models are used, four input 

variables are fed in the Neural Network, i.e. two u-components 

and two v-components. 

 

 
Fig. 3.  Overview of the two investigated approaches: Direct 

combination of wind components ui, vi (left) and combination of 

MOS wind speeds ffc
mos. 

 

B.  Combination of MOS wind speeds 

This approach comprises three steps as can be seen in Fig. 2 

(right). Each will be explained in detail. 

 

I.) In the first step the transfer function between the mean 

observed nacelle wind speed and the mean power production 

on hourly averaged values is derived, i.e. fitting the power 

curve for the entire wind farm with the Neural Network. Two 

hidden neurons are used. The derived algorithm is drawn as a 

solid line in Fig. 2 together with all observed data pairs. 

Fig. 4 shows the verification how good the non-linear power 

curve is represented by the nacelle wind speed. In the 

independent test data set the root mean square (RMS) 

difference between parameterized/estimated power output 

(ordinate) and produced power (abscissae) is only 1.7 % of the 

nominal power. The systematic error (bias) is less than 1% and 

the correlation is with 99.8% very high. It can be therefore 

suspected that the transformation of a predicted wind speed in 

hub-height into power output is only introducing a marginal 

additional error. 

 

 
 

Fig. 4.  Verification of the parameterized wind farm power curve 

(normalized) for the wind farm Middelgrunden with independent 

observations, that had not been used in the training of the Neural 

Network. 

 

 

II.) The second step is a sectoral MOS system that is derived 

for each NWP model. With the help of the Neural Network the 

predicted wind components are related to the observed nacelle 

wind speed using three hidden Neurons. 90 days of historic 

data are used and the training was repeated every 15 days. To 

take diurnal changes in the atmospheric flow at the wind farm 

into account the MOS was done for different hours of the day. 

Four groups are pooled that are characterized by roughly the 

same local wind behavior at the site. The group 0, 6 UTC is 

characterized by less turbulent flow as radiative cooling of the 

sea surface and near-surface layers occur. Consequently the 

stratification of the atmosphere is getting on average more 

stable during night and wind shear increases. One other 

important group is 12 and 15 UTC where radiative heating is 

strongest and the wind shear is smallest. A local land-sear 

circulation is possible. Two intermediate groups 18, 21 UTC 

and 6, 9UTC are formed. 

As an example the sectoral MOS for Jul–Oct 2002 (0,3 UTC) 

is visualized in Fig. 4.The rim of the circle represent the 18 

m/s wind speed as it comes from the NWP model. It is related 

two 14 m/s observed wind speed for easterly directions. Two 

minima can be seen for SW and NW winds, when the local 

wind speeds drops to about 11m/s. It is inevitable to say that 

the city of Copenhagen has a significant impact on the MOS. 
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Fig. 5.  Sectoral MOS (Model Output Statistics) for the observed 

wind speed [m/s] at the wind farm Middelgrunden as calculated for 

wind components (u, v) forecasted by ECMWF. The city of 

Copenhagen is located westwards of the wind farm. 

 

III). The linear combination of MOS wind speeds is done in 

step III. The weighting coefficients of each individual forecast 

member depend on the quality of the individual forecast to the 

observed wind speed. A common measure is the root mean 

square error between the predicted wind speed and the 

observation [15]. The weight wi for forecast i is calculated as 

 

1

RMSEi

N∑

i=1

1

RMSEi

(1)

 
and N denotes the number of available forecasts. In our case N 

is either 2 or 4. As the relative performance of one NWP to 

another one can be better for short look-ahead times but worse 

on longer forecast steps, the weighting is a function of forecast 

step. The calculation of wi is repeated every 12 hours of the 

forecast range.  

 

Table I gives an overview of the conducted combination 

experiments. 

 

 

Symbol N Model Forecast run 

◊◊◊◊ 2 HIRLAM 00,12 UTC 

×××× 2 HIRLAM,ECMWF 00 UTC 

∆∆∆∆ 2 ECMWF 00,12 UTC 

 4 HIRLAM,ECMWF 00,12 UTC 

 

Table I.  Conducted wind speed combination experiments 

IV.  RESULTS  

The study period for validation is July 2001 to mid of October 

2002. The months before July 2001 have been excluded from 

validation as they have been used in the first training cycles of 

the NN and the combination process to find the best set of 

weightings of forecasts.  

The results are shown as RMSE between predicted wind 

power and observed wind power against look-ahead time. The 

RMSE is normalized with the nominal capacity (40 MW).  

 

Fig. 5 compares the two investigated approaches (A, B). As a 

reference the result for only one NWP model run (*) is shown, 

where u and v of the 00UTC ECMWF run are the only 

predictors (input) into the NN. The additional use of the 

12UTC ECMWF run (◊) gives slight improvements, in 

particular at day 2 where the mean error is decreased from 18 

% to 17.3%. There is no improvement at day 1, i.e. the 

combination of forecasts has no benefit on very short 

timescales. The impact of analysis errors is marginal on these 

timescales and becomes only crucial in the medium-range [16, 

17]. As a consequence the benefit of combination of forecasts 

pays off much more at forecast steps beyond day 1. At forecast 

day 1 model errors in the physical parameterizations are 

predominate and are responsible for discrepancies between 

forecast and observation. 

 

A more considerable improvement at day 2 is obtained with 

approach B (∆) that uses also ECMWF run 00 and 12 UTC. 

The average prediction error at day 2 is 15.8% and has to be 

compared to the mentioned 17.3% that were obtained with the 

first approach but the same input data. It is much more 

worthwhile to combine the MOS wind speeds in a separate 

step, than to give this task to the Neural Network. Apparently 

the NN has problems in approach A to fulfill the three steps of 

approach B in one go: transferring wind components to the 

local site (MOS), combination of forecasts and representation 

of the wind farm power curve. 
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Fig. 6.  Root mean square error (RMSE) of wind power forecast 

(normalized with the rated capacity) against look-ahead time. Three 

different algorithms are used: (*) u, v wind components from 

ECMWF 00UTC, (◊) u, v from ECMWF 00UTC and 12 UTC are 

used as predictors in the Neural Network. A better result (∆) is 

obtained by first applying a local wind speed MOS to ECMWF 

00UTC and 12UTC separately and then combining the resulted wind 

speeds. Finally the derived wind farm power curve (Fig. 2) is applied. 
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The impact of different combinations of forecasts using 

approach B is shown in the following part. Four combination 

experiments have been conducted (Tab. I). Fig. 7 shows the 

results in RMSE of the combined forecasted wind speed to the 

observation. It can be seen that the combination of both 

HIRLAM forecasts has the lowest skill with an average RMSE 

of 1.9 m/s at day 2. Compared to this the combination of 

HIRLAM and ECMWF 00UTC forecasts is slightly 

performing better, although the difference was expected to be 

larger, as two independent models are combined.  

The best performance shows the combinations of all four 

model runs with a RMSE in wind speed of 1.7 m/s. The result 

is slightly better than two ECMWF runs alone.  
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Fig. 7.  Root mean square error (RMSE) of forecasted wind speed at 

Middelgrunden wind farm against look-ahead time. Four different 

combinations of MOS wind speeds predicted by several NWP models 

are shown: ◊ HIRLAM 00UTC and 12 UTC forecast, × HIRLAM 

and ECMWF 00UTC forecasts, ∆ ECMWF 00UTC and 12 UTC 

forecasts and () forecasts from all mentioned NWP models and 

runs. 

 

According to step III of approach B (Fig. 3, right) the 

combined wind speed is used in the power curve algorithm 

(Fig. 2) to calculate the wind power prediction.  

For reference purposes the result with the ECMWF 00UTC 

run in approach A is also depicted (*). Following the similar 

performance of two HIRLAM (◊) forecasts and the 

combination of HIRLAM with ECMWF 00UTC (×) with 

respect to wind speed, the results in RMSE of predicted wind 

power are very close. 

 

The best result is obtained when combing all available forecast 

runs (). The RMSE is on average 15 % at day 2, which is a 

considerable improvement compared to the reference forecast 

(18 % RMSE). 

The combination of the two ECMWF forecast runs (∆) is by 

far the best choice when only two forecasts are considered and 

shows that the ECMWF forecasts are in particular superior to 

the HIRLAM forecasts. However, the HIRLAM forecasts are 

carrying information that is useful to increase the quality of the 

combined forecast. 

 

 

0 10 20 30 40 50
fcstep [h]

0.10

0.12

0.14

0.16

0.18

0.20

0.22

p
re

d
. 

w
in

d
 p

o
w

er
 R

M
S

E
 [

1
]

 
 

Fig. 8.  Root mean square error (RMSE) of wind power forecast 

(normalized with the rated capacity) against look-ahead time. Five 

different algorithms are shown: u and v wind components by one (*) 

NWP model and different combinations of several MOS wind speeds 

predicted by several NWP models: ◊ HIRLAM 00UTC and 12 UTC 

forecast, × HIRLAM and ECMWF 00UTC forecasts, ∆ ECMWF 

00UTC and 12 UTC forecasts and () all available forecasts. 

V.  CONCLUSIONS 

We showed in this study that the use of several NWP models 

(multi-model) is beneficial for wind power forecasting. The 

RMSE forecast error for the offshore wind farm 

Middelgrunden is about 20% lower when four wind forecasts 

are used as input compared to a single forecast. In particular, 

ECMWF forecasts added big value to the combination results 

as they are superior to the available HIRLAM forecasts.  

 

Two different approaches have been tested and we have found 

that better results are obtained when Model Output Statistics, 

combination and the modeling of the wind farm power curve 

are done in separate and consecutive steps. 

However, for that approach it is inevitable that along with 

historic wind power production complementary wind speed 

measurements are available. This is absolutely necessary to 

allow the proper modeling of the entire wind farm power curve 

and the application of exact Model Output Statistics (MOS). 

Following our results to model the overall wind farm power 

curve for Middelgrunden, we believe that the wind observation 

behind the rotor (nacelle anemometer) is absolutely sufficient 

to provide good measurements of wind speed and direction. 

Future work will focus on the forecast range beyond day 2 and 

the comparison of single-model ensembles against multi-model 

use. Different combination techniques (Bayesian approach 

[18]) will be tested and probalistic forecasts will be studied.  
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