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Abstract
 

Large-scale offshore wind farms need to be operated as power plants for renewable energy in the near future. 

The dependency of energy production on highly fluctuating weather systems is inherent but will become 

manageable due to accurate wind power forecasting. The quality of statistical wind power forecasting algorithms 

can be optimized by proper selection of appropriate weather parameters and consideration of their natural 

characteristics like spatial-temporal evolution, uncertainty and error correlation. 

We investigate in this study whether the uncertainty in Numerical Weather Prediction shall be included in the 

algorithm development. We found that Neural Networks are perfect to retrieve smooth wind power forecasting 

algorithms from noisy input data. It is shown that algorithms developed with wind speeds from weather analysis 

or predicted wind speeds are equivalent. Special attention must be paid to systematic differences in wind speeds 

used for training and application, as different wind statistics are responsible for systematic forecast errors. This 

problem can be solved by an adaptive system approach. 

 

 

1. Introduction 
 

The accuracy of short-term (72 hours) wind power 

forecasts will trigger the economic success of large-

scale on- and offshore wind farms in a liberalized 

electricity market. High accuracy on estimated 

power production is needed for the efficient 

integration of large scale wind power into the UTCE 

grid in terms of reliability and stability but also with 

respect to energy trading. The demand for valuable 

regulative power must be kept to an absolute 

minimum, in particular when challenging scenarios 

(e.g. 12% of Europe’s electricity production from 

wind power by 2020 [1]) shall be met.  

 

High-Resolution Numerical Weather Predictions 

(NWP) of wind play the key role for excellent wind 

power forecast [2] and are issued from several NWP 

Centers worldwide. In general, deficiencies in the 

predicted wind power are supposed to be related to 

the uncertainty in NWP. But also wind power 

algorithms themselves (either physical or statistical) 

that are used to predict the wind power at a single 

site contribute to the observed discrepancies 

between forecasted and produced power. Further-

more unconsidered outages of single turbines reflect 

a higher forecast error than expected from NWP. 

 

Wind power algorithms are responsible for the 

following steps to transfer large-scale wind forecasts 

into local wind power predictions at an individual 

wind farm site: i) spatial refinement (e.g. horizontal 

interpolation), ii) calculation of the wind speed at 

hub height (e.g. extrapolation of 10m surface wind 

considering thermal stability or use of high level 

NWP model fields), iii) consideration of orography 

effects and iv) surface roughness, v) losses due to 

turbine wakes in the wind park and vi) accounting 

the availability of turbines with respect to damages, 

maintenance or cut-off at high wind speeds. 

 

The key advantage of statistical algorithms is that at 

least three of the above mentioned important impacts 

on power production do not require any physical 

modeling, i.e. orography effect, surface roughness 

and turbine wakes. In general, these effects can be 

accounted as wind directional dependent effects on 

the power curve of the entire wind farm. 

The use of Neural Networks in statistical algorithm 

development is very common, i.e. satellite 



meteorology [3, 4] and also wind power forecasting 

[5]. Differences exist in i) used input data, i.e. 

different NWP data and number of variables, but 

also ii) in application, e.g. regional forecasts [5] or 

single site forecast [6, 7]. 

This study investigates the impact of input (training) 

data for single wind farm sites using Neural 

Networks. In particular, we study the effect of 

uncertain weather data in the algorithm development 

phase. This approach will be explained in the 

following section. Section 3 and 4 describe data and 

the Neural Network approach, respectively. A new 

way to visualize wind power curves is presented. 

Results are shown in Section 5, while Section 6 

discus the problem of systematic forecast errors. 

Conclusions are given in Section 7. 

 

2. Approach to integrate uncertainty from 

Numerical Weather Prediction 
 

Three different kinds of wind speeds can be used for 

the development of statistical wind power 

algorithms: i) Measured wind speeds at hub height, 

ii) wind speeds from weather analysis and iii) wind 

speeds from weather forecasts. While measured and 

analysed wind speeds have a very strong relation 

with produced power of the wind turbine, large 

scatter exists between predicted wind speeds and 

measured wind power, because of the uncertainty in 

the Numerical Weather Prediction (NWP 

uncertainty). 

The algorithm developed with predicted wind speeds 

is called a ‘non-sharp’ algorithm because it copes 

with uncertain wind data, i.e. uncertainty was 

integrated during the development phase. On the 

other hand we call the algorithm retrieved from 

analysed/measured wind speed ‘sharp’, as it 

represents the best relation between wind speed and 

wind power.  This is comparable to the classical 

power curve of a wind turbine or wind farm 

retrieved from measurements. 

In order to answer the question which of these 

algorithms is superior and if the integration of NWP 

uncertainty is possible or worthwhile, they are 

applied to independent wind speed forecasts. 

Measured wind power output from single wind 

farms is used as validation. 

  

Obviously the “sharp” and “non-sharp” algorithms 

will be different when systematic differences 

between analysed and forecasted exist. In general, a 

Neural Network is determined to remove any bias 

from the result for the training data. Consequently a 

systematic error will occur when the new input data 

is biased against the training input data or the 

distributions are different. Furthermore it is crucial 

that no biases or shifts in distribution occur between 

wind speeds in the training and application study 

period. We will address this problem in Section 6. 

The predominant uncertainty in current NWP 

models in the time scales of interest (24-72h) are 

driven by upstream initial condition errors at the 

start of the model integration [8,9]. These errors in 

the analysis of the state of the atmosphere influence 

the phase and intensity of synoptic fronts to a much 

larger extent than local conditions. The later are 

important at time scales up to 24 hours and 

horizontal scales of less than 10 km and can be 

accounted by mesoscale modeling that different 

NWP centers do (e.g. [10]). As already mentioned 

our technique is able to overcome effects on the 

wind field by local conditions, i.e. large scale winds 

are the ideal input. 

 

 

3. Data for the Algorithm Development 
 
The proposed approach for integrating NWP 

uncertainties is investigated for two test cases (wind 

farms) in North-West Germany. One case can be 

considered as an in-land case while the other is near-

shore. The original wind power production data has 

a time resolution of 15 minutes, but was smoothed 

with a linear kernel to 1h resolution. All wind power 

data is normalized with the rated power, 

respectively. 

Operational forecast and weather analysis data of the  

European Centre for Medium-Range Weather 

Forecasts is used. Model fields are interpolated 

using directional Bessel Interpolation to the required 

wind park position. Wind components are available 

approximately at 30, 60, 90 and 120 m height and 

are interpolated to hub height of about 80m. 

 

In case of wind analysis data all available synoptic 

times at 0, 6, 12, 18 UTC are considered. Forecast 

data for the 0 and 12 UTC forecast run are taken 

with forecast steps ranging from 3 to 72 hours 

ahead. The time resolution is 3 hours. 

Data of the year 2004 serves as training in the 

development phase, while Jan-Mar 2005 is available 

for independent validation with production data. 

 

 

4. Neural Network Approach and 3-

dimensional Power Curves 

 

The used Neural Network was developed at the 

Institute for Physics of the University Kiel [11] and 

belongs to the group of fully interconnected 

Networks. The minimization is done using a variable 

metric method in combination with the Davidon-

Fletcher-Powell technique, i.e. to account the 

information of second derivatives in the cost 

function in order to accelerate the convergence.  

The meridional and zonal wind components in 

turbine hub height are used as input variables. The 

normalized produced wind power is the output. 
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Three hidden neurons serve as connectors between 

input and output with certain weights (Fig. 1).  

 

     
Figure 1: Architecture of the Neural Network 

with two input neurons (wind components), three 

hidden neurons and a single output neuron 

(normalized wind power).  

 

Starting from the linear solution two additional 

combinations of initial weights are considered to 

avoid trapping into local minima. 

The two data sets containing analysed and forecasted 

winds merged with wind power, respectively, are 

randomly split into training and generalization data 

sets with same size. Generalization data is absolutely 

necessary to prevent the Neural Network to learn the 

training pairs by heart. Otherwise any data not 

presented before, would immediately overcharge the 

retrieved algorithm as no generalization is possible. 

In our case training is stopped, whenever results for 

the generalization data set get worse than in the 

previous iteration step. 

The generalization data set is not suited for 

evaluating the performance of the Neural Network. 

A concluding validation is only possible with 

completely independent data, e.g. from another time 

period. We use January to March 2005 to do so.  

 

As a retrieved Neural Network algorithm is a linear 

combination of weighted input variables, a 

hypercurve (Fig. 2) of wind power for the whole 

wind farm can be drawn. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2: 3-dimensional wind farm power curve 

(in-land test case) retrieved by a Neural network 

algorithm depending from u and v wind component. 

Values are normalized with the installed capacity.  

This wind power can be depicted as a surface in a 3-

dimensional plot and represents the power curve 

(Fig. 2) that is depending on u wind component and 

v wind component. It is possible to adjust the plot in 

a north-south direction with the wind park in the 

middle of the plot. Together with a topography map, 

and a map of indicated obstacles it is straight 

forward to identify and explain regions of 

suboptimal flow and performance of the wind farm. 

Even turbine wake effects can be checked and 

explained by comparing the wind park power curve 

with the wind farm layout. 

In our case a flattening of performance in the wind 

farm power curve can be seen at around 150°. This 

will be addressed in more detail in the next section. 

 

 

5. Results 
 
The training pairs of wind power and wind speeds 

are normally visualized in two dimensional scatter 

plots. In Figure 3 this is done for the wind direction 

sectors 230° and 150°. Much more training pairs are 

available for forecasted wind speeds as in total 24 

 
 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Cross section through a 3-d wind farm 

power curve (in-land test case) for wind directions 

230° (top) and 150° (bottom). Gray bullets represent 

training pairs with forecasted wind speeds while 

blue stars mark analysed wind speeds. The retrieved 

Neural Network algorithm with forecasted winds 

(“non-sharp”) is shown in black (solid line), using 

analysed wind speeds (“sharp”) in blue (dashed 

line). Sector width is 20°.  
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forecast steps had been used per forecast run. As 

expected, their scatter is much larger than for 

analysed wind speeds as the wind forecasts have a 

certain degree of uncertainty. Nevertheless the two 

algorithms that were retrieved by the Neural 

Network are very similar in the 230° wind direction 

sector (Figure 3, top).  

The wind park has poorer performance in the 150° 

wind sector (Figure 3, bottom). On one hand no 

wind speeds higher than 11 m/s occur, but 

furthermore the power output for 10 m/s is 

considerably lower compared to the 230° sector, as 

indicated by the red lines. The deviation between the 

“non-sharp” and the “sharp” algorithm for speeds 

larger than 11 m/s is not critically as no wind 

observations exist. 

 

As it can be already guessed from Fig. 3 the “sharp” 

and the “non-sharp” algorithm look in a 3-d power 

curve plot very similar. In order to decide which of 

the two algorithms performs better, they are applied 

to forecasted wind in the training period and 

validated with produced wind power. The root mean 

square error is shown against forecast time (Fig. 4).  

 

 

  
Figure 4: Root mean square error of predicted 

wind power for the in-land test case for the training 

period (year 2004, top figure) and test period (Jan-

Mar 2005, lower figure). “Non-sharp” algorithm in 

black (solid) and the “sharp” in blue (dashed). The 

error is normalized with the installed capacity. 

In 2004 the „non-sharp“ algorithm (black solid line 

in Fig. 4), that integrated NWP uncertainty in the 

training phase, is slightly better than the “sharp” 

algorithm that was retrieved with analysed winds.  

In the independent study period Jan-Mar 2005 the 

“sharp” algorithm (blue dashed line) has little 

advantages. Both algorithms got affected by a strong 

diurnal cycle, which repeats every 12 hours as two 

forecast runs are used per day. 

We believe that the pronounced diurnal cycle is an 

effect of the different periods in time, i.e. the 

algorithm has adopted to characteristics in the wind 

speed distribution that is representative for the entire 

year 2004, but are not presentative for the first three 

month of 2005. The problem of representativeness 

of training and testing data period will be studied in 

the next chapter, e.g. the effect of systematic wind 

speed differences. 

 

 

6. Effect of systematic wind speed differences 
 

Figure 5 shows the wind power forecast error for the 

near-shore test case. The forecast error is split into 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Standard deviation (rms, upper lines) and 

systematic difference (bias, lower lines) of predicted 

wind power forecast error for the near-shore test 

case. Training period (year 2004, top figure) and test 

period (Jan-Mar 2005, lower figure). “Non-sharp” 

algorithm (black, solid) and “sharp” (blue, dashed). 
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standard deviation (rms) and systematic difference 

(bias).  

As for the in-land test case no clear difference can 

be noted for results with the “non-sharp” (black, 

solid line) and the “sharp” (blue, dashed line) 

algorithm during the training period (Fig. 5 upper 

panel). The bias is between ±2% of installed 

capacity following a diurnal cycle. The overall bias 

is zero. The forecast error is considerably larger than 

for the in-land test case (Fig. 4, upper panel), which 

is a fact of the higher load factor for the near-shore 

wind farm. The averaged wind power production in 

the year 2004 was 30?% of the installed capacity at 

the in-land site, but 60?% at the near-shore site.  

 

For the test period (Jan-Mar 2005) the standard 

deviation of the forecast error at the near-shore site 

is less than for the training period (Fig. 5). The 

algorithm that was retrieved with integrated 

uncertainty in 2004 slightly outperforms the “sharp” 

algorithm.  

Very notable is the systematic overestimation of 

wind power of about 5 % (Fig. 5, lower panel) 

during the test period. As this happens for both types 

of algorithms the nature is believed to lie in different 

wind statistics for 2004 and the beginning of 2005. 

 

We also trained a Neural Network with analysed 

wind speeds for the first three month of 2005 and 

found an algorithm that has no systematic error. A 

considerable difference in 3-dimensional power 

curve for the entire wind farm exists between the 

algorithm for 2004 and 2005 (Fig. 6). In particular 

for westerly winds the park performance is higher in 

2004 than in 2005 as can be seen by the positive 

difference. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Difference between 3-dimensional power 

curves for the near-shore test case. Wind park power 

curve of 2004 minus 2005. The dashed line shows 

the cross section for a power curve for zonal winds 

that is depicted in Figure 7. 

The wind park power curve for zonal winds is 

shown in Figure 7 for the period 2004 (top) and Jan-

Mar 2005 (bottom).   

 

 
 

 
 

Figure 7: Power curve for the near-shore wind park 

valid for zonal winds. Analysed wind speeds for 

2004 (top) and for Jan-Mar 2005 (bottom) are used 

for training the Neural Network.  

 

It can be seen that for west wind with 12 m/s the 

park performance is 0.87 in the year 2004, while it is 

only 0.8 in the first three months of 2005 as 

indicated by the dotted lines, i.e. the same wind 

speed leads to about 10 % more wind power as if the 

algorithm developed for 2005 is used. It is obvious 

that if in the beginning of the year 2005 considerably 

higher wind speeds prevail than on average in 2004, 

a significant overestimation occurs. 

Figure 8 that shows wind speed distributions, 

confirms this hypothesis in a way that more 

moderate to strong (> 8m/s) wind speeds in Jan-Mar 

2005 than in 2004 occur at the near-shore test site. 

The reason is natural variability. However, as a 

result the forecasted wind power in the first three 

months of 2005 is overestimated by about 5 % as 

mentioned earlier (Fig. 5, bottom).  

 

Just by the fact that the wind speed distributions in 

2004 and in the beginning of 2005 are not 

equivalent, it can not be explained why the 3-
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dimensional wind park power curves are different 

for the two time periods (Fig. 6, 7).  

 

 
Figure 8: Distribution of wind speeds for the year 

2004 (black line) and Jan-Mar 2005 (blue) in hub 

height at the near-shore test site. 

 

 

As a first step it is essential to check whether time or 

seasonal dependent systematic forecast errors exist 

in 2004. The low pass filtered wind power forecast 

error for the near-shore test site is shown in Figure 9 

for the whole year 2004. A very pronounced 

seasonal dependency can be seen, i.e. about the first 

half of 2004 the wind power is always 

underestimated while in the second half of the year 

2004 strong overestimations occur in three cycles. It 

can be already seen that under- and overestimation 

are very much balanced, i.e. the overall bias for the 

whole year is zero (Fig. 5, top).  

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 9: Low pass filtered error in forecasted wind 

power for 2004 using the “sharp” algorithm (solid) 

and the “non-sharp” (dotted) Neural Network 

algorithm. 

 

The solution to the problem can be time dependent 

power curves. In our case the power curve 

underestimation (day 1-180) could be alleviated by a 

power curve that has higher performance, i.e. gives 

higher wind power at a certain wind level. While for 

day 181-360) the retrieved power curve is too steep 

and needs to be broadened. Apparently the same 

effect as in the beginning of 2005 happens, i.e. 

higher wind speeds than on average during 2004 

occur. This means on the other hand that during day 

1-180 lower wind speeds occurred compared to the 

whole year 2004.  

 

 

7. Conclusions 

 

The motivation for this study was the question 

whether wind power forecasting can be improved by 

integrating the uncertainty in forecasted wind speeds 

in the algorithm. For two single wind farms a Neural 

Network was trained with u and v wind components 

in hub height as input and historic produced wind 

power data as output. We found that it is equivalent 

if analysed or forecasted wind speeds are used for 

the training as long as no biases or differences in 

distribution exist. However, the larger scatter in 

forecasted wind speeds related to produced power is 

smoothed very well by the Neural Network.  

Directional power curve modelling can be done very 

efficiently and is useful to visualize orographic 

effects on the large scale flow and to determine 

turbine wake effects in the wind farm. 

 

In general, the entire algorithm development 

approach using Neural Networks is hampered by the 

problem of systematic wind power forecast errors 

that can occur for time periods outside the training 

period. This is equivalent to be fact that retrieved 

power curves can change from time to time. On the 

other hand the overall results with retrieved wind 

power algorithms for single sites are very good 

ranging between 10% and 20% of installed power 

for forecast day 1 and day 3, respectively.   

So far we found one explanation for the bias 

problem that is inherent for algorithms that are based 

on Neural Networks: the distribution of input 

variables to the Neural Network must stay constant 

as otherwise the training data looses its 

representativeness. Biases in input data between 

training and application time are very severe. We 

believe that time dependent power curve can be the 

solution to this problem. Test will show how often 

re-training is necessary and how much historic data 

is useful in such an adaptive algorithm/system. 

 

It is definitely necessary to investigate if there is a 

physical explanation to time dependent power 

curves. Therefore the behaviour of two wind data 

sets from different seasons that have the same 

distribution in speed and direction have to tested 

carefully with the Neural Network. Possible findings 

are that despite similar winds in hub height the 

performance of the whole park differs by season 

because of different thermal stratification or 

different turbulence intensity. If this is the case 

additional input variables for the Neural Network 

algorithms are needed. 
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