REDUCTION OF WINDPOWER PREDICTION ERROR BY SPATIAL
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We discuss the statistical effects of predicting the power output of spatially distributed wind farms. Our forecasting
procedure provides the expected power output for a time horizon up to 48 hours. Itis based on the large scale wind
field prediction which is generated operationally by the German weather service.

In this paper we focus on the reduction of the forecast error for the aggregated power output of wind farms in a
spatially extended region. Due to spatial smoothing effects the error decreases considerably compared to a single
site. This reduction strongly depends on the size of the region rather than on the number of wind farms it contains.
We investigate the spatial smoothing effect using measured data from 30 sites in Germany. To generalize the result
we consider several model ensembles of wind farms and the current distribution of wind turbines in Germany based

on a statistical approach.
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1 Introduction

The development of wind energy use has led to a notice-
able contribution to the energy supply in Germany. At the
moment, for some regional utilities the installed capacity of
wind turbines is of the order of magnitude of the minimal
load (approx. 30 % of max. load). The feed in of electricity
by wind energy acts as a negative load leading to an in-
crease in fluctuations of net load patterns. The insecurity of
the temporal development of wind speed may have conse-
quences for the operation of conventional power plants or
load management, respectively. For a time scale from some
hours to two days adiibnal conventional reserves have to
be kept ready to replace the wind energy share in case of
decreasing wind speeds.

In this paper we concentrate on the reduction of the error of
a wind power prediction by spatial smoothing effects con-
tinuing our work in [1]. We focus on two major variables
determining the magnitude of this statistical effect, namely
the spatial extension of the region and the number of wind
farms it contains. For a large region the mean distance be-
tween the sites is larger than for a small region such that
on average the correlation of the prediction error is weaker.
Thus, the regional error is expected to decrease with in-
creasing size of the region. Moreover, we look at the in-
fluence of the number of sites on the regional prediction
error.

We use data from 30 wind farms in Germany to form typ-
ical regions with different extensions corresponding to a
medium and large utilitywpply area and sum up the accord-
ing measured power output. Fictious model ensembles to-
gether with the correlation function based on the measured
data allows us to shed some light on the general statistical
behaviour of distributed wind farms regarding the predic-
tion error. Our investigation is concluded by calculating the
error reduction for the distribution of all wind farms in Ger-
many.

2 Forecasting method

The wind power prediction method we use and its perfor-
mance are described in detail in [2,3]. The principle scheme
of the prediction system can be seen in figure 1. As input
the result of an operational numerical weather prediction
model is used. The German weather service (DWD)
currently operates the “Lokalmodell” which replaced the
“Deutschlandmodell”in November 1999. Our calculations
are based on the windspeed and direction forecast up to 48
hours. The resolution of the data is %414 knt, i.e. rather
sparse, so a spatial refinement is necessary to predict the
wind power at a specific site. We calculate the windspeed
at hubheight under condsideration of roughness, orography
and farm effects.
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Figure 1: Principle of the spatial refinement of the numeri-
cal weather prediction leading to a local prediction of wind
conditions.
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3 Prediction error of single sites

The quality of the power prediction for a single site is deter-
mined by comparing the results of the locally refined pre-
diction and measured data [3].

For this purpose archived prediction data for the years 1996
to 1999 was provided by the German weather service. In
particular, we use the 6, 12, 18, 24, 36, and 48 hours pre-
dictions from the 00 UTC run. The measured data was col-
lected from the same period of time in the framework of
the German Scientific Measuring and Evalution Programme
(WMEP) carried out by ISET, Kassel [4].

Figure 2 shows a comparison between prediction and mea-
surement for the power output of a wind turbine in the North
German coastal region. In general the predicted and the
measured time series correspond rather well. Significant
differences can be seen mainly for the 36 and 48 hours pre-
diction. In particular, the beginning of a storm on day 326 is
not correctly predicted and on day 330 the prediction shows
a time shift of several hours.
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Figure 2: Typical timeseries of measured and predicted

power output for one site.
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In order to quantify the difference between power prediction
and measurement we use the root mean square error (rmse)
normalized to the installed powé¥,,.: of the wind turbines

in the period of time to be considered (equation (1)).

M
1 N
IMS&.orm = M g (Ppred - Pmeas)2/Pinst (1)
=1

Pyrea is the predicted power outpuk),... the measure-
ment and}M the number of data points.

Table 1 summarizes the results of the comparison between
measured data and predictions for single sites. The rmse
rises from 13% for the 6 hours prediction to 19% for 48
hours. The increase of the prediction error with increasing
time horizon might be due to the growing systematic error in
the numerical weather forecast for longer prediction times.
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Table 1: Rmse between prediction and measurement of
power ouput normalized to installed power (1996). The val-
ues are averaged over 30 sites in Germany.

4 Spatial smoothing

Under operational conditions a prediction for the combined
power output of many wind farms distributed over a large
region is needed, e.g. the supply area ofiktys By inte-
grating over a region the errors underlying the measurement

2

and the forecast at single sites cancel out partly. These sta-
tistical smoothing effects lead to a reduced prediction er-
ror for a region compared to a local forecast. The size of
the region and the number of sites it contains are the main
parameters that influence the magnitude of the error reduc-
tion. The analysis of measured data shows this effect but is
constrained to a fixed ensemble of sites. To generalize our
findings we use model ensembles which require a statisti-
cal description of the regional prediction error in terms of
spatial correlations.

4.1 Ensemble of Measurement Sites

Our first approach is to investigate the spatial smoothing ef-
fect using data from an ensemble of 30 wind farms in the
Northern part of Germany. The sites are divided into re-
gions of two different types according to typical areas cov-
ered by a medium and a large utility. The smaller regions
with a diameter of approximately 140 km (see figure 3) con-
tain three to five measurement sites each. The bigger re-
gions are about 350 km in diameter with five to seven sites
each. For comparison we form a very large region contain-
ing all sites which has a size of about 730 km.

The predicted and measured power output of a region is cal-
culated by adding up the time series for every wind farm
located in the region and dividing them by the number of
wind farms. The rmse between these two ensemble time se-
ries gives the regional prediction error. Table 2 shows the
results for the different region sizes and various prediction
times. The rmse of the ensemble, i.e. the regional predic-
tion error, is normalized to the mean rmse of the single sites
and averaged over regions of the same size. For the given
ensemble this ratio decreases with increasing region size,
e.g. the six hours prediction gives an average ratio of 0.77
for the 140 km region, 0.65 for the 350 km region, and 0.49
for the 730 km region. In all cases the reduction of the
regional prediction error is less pronounced for larger pre-
diction times.

predictiontime [h]| 6 12 | 36 | 48
140kmregion | 0.77] 0.78 | 0.83| 0.82
350kmregion | 0.65| 0.64| 0.72| 0.74
730kmregion | 0.49] 0.46| 0.58] 0.62

Table 2: Ratio between regional error and mean error of
single site (rmMsg,:cmuie/fMSse;ngic) for different regions
and forecast horizons.

Figure 3: Regions with 140 km in diameter. The points
denote the measurement sites.

4.2 Model ensembles

The analysis for the specific set of measurement sites shows
a significant decrease of the prediction error compared to a
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single site. In order to draw general conclusions about other
configurations of wind farms we use random ensembles of
sites. This allows us to vary the size of the regions and the
number of wind farms over large ranges to see how the re-
duction of the error depends on these parameters. For this
purpose we need a statistical description of the regional pre-
diction error.

The key element connecting the spatial distribution of sites
with the regional prediction error is the crosscorrelation
functionr., of the difference between prediction and mea-
surement, i.e Ppred(t) — Preas(t), for the single sites. If

rzy IS known, the standard deviati@n, ;e Of the dif-
ferences between measurementand prediction, i.e. the rmse
centred with the mean bias, can easily be calculated using
theo, of the individual sites by

2 1
Tensemble = N2 E E Ox0yTay
x y

whereN is the number of sites in the regiofe < cmasie Will
now play the role of the regional prediction error.

At first the crosscorrelation of the measured data is deter-
mined. For each pair of the 30 wind farms, is calculated

and ordered according to the distance between the two sites
x andy. Figure 4 shows crosscorrelation versus distance for
the 36 hours forecast where the pairwise data points have
been averaged over 25 km bins. The curve decreases rather
rapidly for distances below 100 km.
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Figure 4: Spatial correlation of prediction deviations for
36 hours forecast.

Crosscorrelation

We obtain a proper correlation function allowing the appli-
cation of equation (2) by fitting analytic functions of the
form r,, = a-e~%" (a andb are fitparameters andlis

the distance between the two sites) to the crosscorrelation
derived from the measured data. It turns out that piecewise
exponentials lead to a suitable fit to the data points.

The geographical coordinates of the model ensembles are
chosen randomly. Each result given in the following rep-
resents an average value over ten realizations of ensembles
with fixed size and number of sites.

With the correlation functiom, based on the fitted data
we can now use equation (2) to calculate the prediction er-
ror o.nsempte Of the model regions. We set the of the
wind farms to one which means that they all have the same
weight. Figure 5 shows the ratio between the regional error
and the mean of single SiteS,semsie/Tsingie fOr two re-
gions with different sizes versus the number of sites in the
region. Obviouslygcnsembie/Tsingle @pproaches a satura-
tion level for increasing number of wind farms. This limit
is already reached for a rather small number of wind farms.
After that the error reduction does practically not depend on
the number of sites, e.g. for the size of a typical large utility
(approx. 370 km) less than 50 sites are sufficient to tell the
constant level of 0.63.

3

The saturation level decreases with increasing size of the re-
gion. Thisis illustrated in figure 6 where the limit values for
regions with different extensions containing 4000 sites are
shown. There is a rapid decay for extensions below 500 km.
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Figure 5: Ratiorcnsempic/osingle VErsus number of sites
for 36 hours forecast.
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Figure 6: Saturation values @f.psempic/osingie (4000

sites) for the 36 hours forecast.

4.3 Distribution of German wind farms

Finally, we consider the real distribution of the wind farms
in Germany (in 1999) as a special model ensemble and
calculate the ratio between the regional error to a sin-
gle site as above. For the 36 hours prediction this gives
Gensemble/Tsingle = 0.43. Note that this ratio for an
equivalentregion of the size of Germany with randomly dis-
tributed wind farms would be lower because the real distri-
bution shows a strong imbalance of sites in the North and
South (figure 7).

oty
3

:
he

Figure 7: Distributioﬁ of wind turbines in Germany in 1999.



Wind Power for the 21st Century, Kassel 2000

5 Analysis of the temporal structure of the fore-
cast errors

For a further improvement of the forecast tityamethods
to correct the actual forecasts using knowledge of previ-

ous errors (model output statistics) are discussed (see e.g.

[3]). A basic approach in this context is the analysis of

the autocorrelation structure of the errors. A typical scat-
ter diagram for the single site forecast errors of consecutive
days is shown in figure 8 (left) The respective inspection

shows that the autocorrelation coefficient is about 0.2 only.
Thus the application of a simple linear correction procedure
based on the previous error will not lead to any remarkable
improvements of the forecast.

Looking again for the change of the structure of the fore-
cast errors when going from single sites to ensemble data
gives the result that the temporal correlation of the errors
is slightly but remarkably increased. In figure 8 (right) the
scatterplot for the errors of ensemble forecast for all sites
under investigation is represented. For this set a correlation
coefficientis increased to about 0.4. It has to be remarked,
that due to missing values in the data sets these do not al-
ways refer to identical ensembles.
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Figure 8: Left: Example for a scatter diagram of normalized
single site forecast errors for pairs of 2 consecutive days.
Right: Corresponding scatter diagram for normalized en-
semble data. Each point refers to the ensemble output of
15-30 sites, depending on data availability.

To approve the range of the autocorrelation value for the
ensemble the same type of statistical modelling as applied
above for the inspection of the standard deviation of the
forecast errors as presented in the previous section is used
As additional parameter the crosscorrelation value for a
time lag of one day for pairs of stations has to be used here.
From this information the autocorrelation of the forecast er-
rors for the ensemble of 30 sites is recalculated. For the 6
hours forecast this value is in a good accordance with the
respective parameter gained from the scatter plot as men-
tioned above. The autocorrelation values for the ensemble
resulting for the various feccast horizons is given in fig-
ure 9 together with a typical result for a single site.

Summing up these findings, it may be stated that, again due
to the levelling out of purely stochastic contributions to the
single site forecast errors, at least for the 6 hours forecasts
a somewhat stronger linear link between the ensemble fore-
cast errors of subsequent days exists. For the basic ensem
ble of 30 sites, the respective autocorrelation coefficients
are however small (below 0.5). As this is still a small value
the procedures for an exploitation of this effect have to be
refined ones.

6 Resume

We investigate the statistical smoothing effects that arise if
a wind power prediction is made for a region with spatially

distributed sites. As expected we find a reduction of the pre-
diction error of the aggregated power prediction compared
to a single site. For an ensemble of wind farms where the
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Figure 9: Autocorrelation coefficients of single site (lower
line) and ensemble errors for forecast horizons of 6-48h.
The data for the ensemble are based on pairwise correlation

caracteristics.

36 48

analysis is based on measured data the improvement of the
prediction is noticeable even for rather small regions and
only few sites. Using model ensembles with randomly cho-
sen locations allows us to generalize the results to identify
the impact of the two main parameters, namely the spatial
extension of the region and the number of sites it contains.
We find that the magnitude of the reduction does strongly
depend on the size of region, i.e. the larger the region the
larger the reduction. Concerning the number of sites con-
tained in the area we observe a saturation level which is
already reached for a small number of wind farms. This
means that only few sites are sufficient to determine the
magnitude of the improvement of the power prediction.

With the results of our analysis it is now possible to estimate
the regional smoothing effect of the wind power prediction
error very easily by just considering the size of the region
in question.

As an additional effect of regarding regionally averaged
power forecasts a somewhat stronger link between the fore-
cast errors of consecutive days can be identified. This may
be beneficially used in the refinement of procedures to cor-
rect the actual ensemble power forecast using kowledge on
previous errors.
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