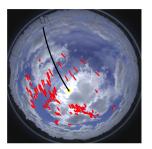


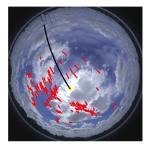
Retrieving direct and diffuse radiation with the use of sky images

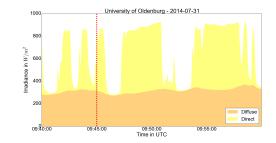
Thomas Schmidt¹ John Kalisch Elke Lorenz Detlev Heinemann

Institute of Physics, Energy Meteorology Group University of Oldenburg


¹t.schmidt@uni-oldenburg.de

Sky Imager based shortest-term solar irradiance forecasts for local solar energy applications


Solar energy applications


- Concentrated solar-thermal (CSP)
- Large grid-connected PV
- Remote area PV with fossil fuel backup
- Energy markets

Sky Imager based shortest-term solar irradiance forecasts for local solar energy applications

are based on surface solar irradiance retrieval

- Aim: Retrieve radiation components from image characteristics
- Approach: Use machine learning algorithms with image features and radiation measurements

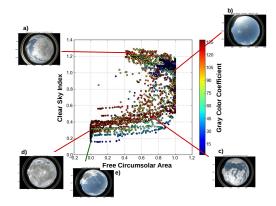


Figure: Sky image features and clear sky index

STSM at Mines ParisTech/EDF R&D, J

Data basis

4/14

One year (2014) of sky images and radiation measurements in Oldenburg

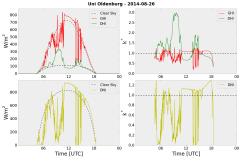
- Images every 10 seconds from sunrise to sunset (Vivotek FE8174, Total: 1 200 000 images)
- Global and diffuse horizontal radiation (Kipp&Zonen CM11, 1s samples)
- Direct normal radiation (Eppley NIP, 1s samples)

Choose several global and local image features as input for machine learning

- Texture properties of the Grey Level Co-occurrence Matrix (GLCM)
- Color statistics (RGB space)
- Inter-color relations (e.g. Red-Blue-Ratio)
- Statistics of saturated pixels in circumsolar area in RGB and HSV color space
- Derived features like cloud coverage
- Solar elevation angle
- Total: 37 possible features

Choose several global and local image features as input for machine learning

- Texture properties of the Grey Level Co-occurrence Matrix (GLCM)
- Color statistics (RGB space)
- Inter-color relations (e.g. Red-Blue-Ratio)
- Statistics of saturated pixels in circumsolar area in RGB and HSV color space
- Derived features like cloud coverage
- Solar elevation angle
- Total: 37 possible features



Task: Train two k nearest neighbour (kNN) models that estimate the clear sky index of diffuse horizontal (k_{DHI}^*) and direct normal (k_{DNI}^*) components.

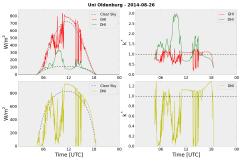
$$DNI_{meas} = k_{DNI}^* = f(x_0, x_1, x_2, ...)$$

Strategy:

- Split dataset
 (70% training + 30% testing)
- Reduce number of features to avoid overfitting and to reduce computation time

Source: www.energiemeteorologie.de ->

aktuelle-messungen


(†

Task: Train two k nearest neighbour (kNN) models that estimate the clear sky index of diffuse horizontal (k_{DHI}^*) and direct normal (k_{DNI}^*) components.

Strategy:

- Split dataset
 (70% training + 30% testing)
- Reduce number of features to avoid overfitting and to reduce computation time

Source: www.energiemeteorologie.de ->

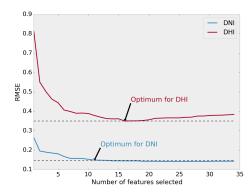
aktuelle-messungen

(†

- 1. Rank features with Decision Tree algorithm
- Forward selection: Train kNN-model with increasing number of features
- 3. Validate on independent data set (Criterion: RMSE)
- Final optimum subset selection is a trade-off between error and computation time

- 1. Rank features with Decision Tree algorithm
- Forward selection: Train kNN-model with increasing number of features
- 3. Validate on independent data set (Criterion: RMSE)
- Final optimum subset selection is a trade-off between error and computation time

- 1. Rank features with Decision Tree algorithm
- 2. Forward selection: Train kNN-model with increasing number of features
- 3. Validate on independent data set (Criterion: RMSE)
- Final optimum subset selection is a trade-off between error and computation time



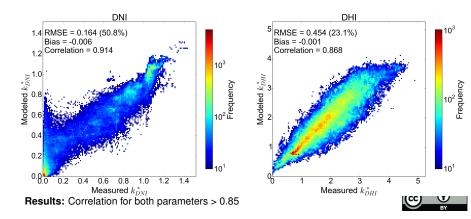
- 1. Rank features with Decision Tree algorithm
- 2. Forward selection: Train kNN-model with increasing number of features
- 3. Validate on independent data set (Criterion: RMSE)
- Final optimum subset selection is a trade-off between error and computation time

- 1. Rank features with Decision Tree algorithm
- 2. Forward selection: Train kNN-model with increasing number of features
- 3. Validate on independent data set (Criterion: RMSE)
- 4. Final optimum subset selection is a trade-off between error and computation time

Feature selection

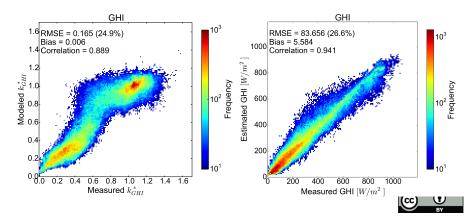
Selected features with ranking from DecisionTree

Feature Ranking


DNI	DHI
1. Average circumsolar pixel intensity (<7°) 2. Red – Blue 3. Gray coefficient 4. Ratio of saturated pixels to all pixels (HSV) 5. Ratio of saturated pixel in circumsolar area (<5°) 6. Contrast 7. Correlation 8. Average circumsolar pixel intensity(<10°) 9. Average circumsolar pixel intensity(<20°) 10. Ratio of saturated pixels to all pixels (RGB) 11. Cloud Coverage	1. Red – Green 2. Ratio of saturated pixel in circumsolar area (<10°) 3. Average circumsolar pixel intensity (<15°) 4. Correlation 5. Average circumsolar pixel intensity (<20°) 6. Cloud Coverage 7. Ratio of saturated pixels to all pixels (RGB) 8. Number of saturated pixels in circumsolar area (<20°) 9. Mean blue color 10. Contrast 11. Homogenity 12. Skewnees Blue 13. Overall Red-Blue-Ratio 14. Dissimilarity 15. cos(SZA) 16. Ratio of saturated pixel in circumsolar area (<10°)

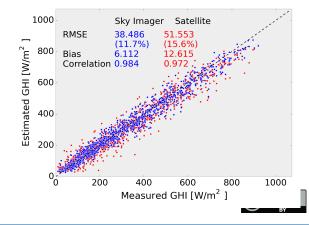
Performance kNN-model

Validation:


test data set: 30% of all data; high-resolution data (instantaneous samples every 10s)

GHI = DHI + DNI * cos(SZA)

SZA = solar zenith angle


Sky imager vs. satellite retrieval

Motivation Methods Model configuration Results Forecasting Summary & Outlook

000

Global horizontal radiation (GHI) 1-hour average values

- GHI_{skyimager} = DHI_{model} + DNI_{model} * cos(SZA)
- GHI_{satellite} : retrieved with Heliosat method (Hammer et al, 2003) from MSG2 images

11/14

Motivation Methods Model configuration Results Forecasting Summary & Outlook

Application

12/14

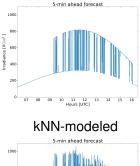
Original Image

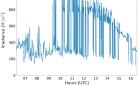
Binary cloud map

Sky imager based forecasting

universität OLDENBURG

Use modeled diffuse and direct radiation for an advanced mapping of binary information from image to surface irradiance

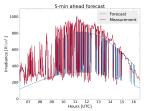

Sky imager based forecasting

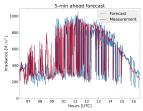

Use modeled diffuse and direct radiation for an advanced mapping of binary information from image to surface irradiance

- Reference model: simple mapping of binary pixel information to two clear sky index levels
- kNN-based model: more realistic retrieval of current radiation levels

Application

Reference




Application

12/14

Reference

Sky imager based forecasting

universität oldenburg

Use modeled diffuse and direct radiation for an advanced mapping of binary information from image to surface irradiance

- Reference model: simple mapping of binary pixel information to two clear sky index levels
- kNN-based model: more realistic retrieval of current radiation levels

Summary

- Machine learning useful tool for irradiance retrievals from sky images
- High correlation with measurements for high-resolution instantaneous data
- Lower RMSE than satellite retrievals on hourly average GHI data

Outlook

- Further research on generalization of model for different cameras / camera settings
- Implement model in forecast chain

Summary

- Machine learning useful tool for irradiance retrievals from sky images
- High correlation with measurements for high-resolution instantaneous data
- Lower RMSE than satellite retrievals on hourly average GHI data

Outlook

- Further research on generalization of model for different cameras / camera settings
- Implement model in forecast chain

Thanks for your attention!

We would like to thank

EU which has funded this work in

Performance Plus (grant agreement no: 308991)

- COST Wire Action for funding STSM at Mines ParisTech and EDF R&D
- Philipe Blanc (Mines ParisTech), Charlotte Gauchet (EDF R&D) and colleagues

