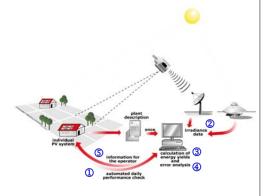


PVSAT-2 An automated performance check for photovoltaic systems based on solar irradiance information from satellite data


A. Drews*, E. Lorenz, J. Betcke, D. Heinemann, A.C. de Keizer, W.G.J.H.M. van Sark, M. Schneider, G. Heilscher, S. Stettler, P. Toggweiler, E. Wiemken, W. Heydenreich, H.G. Beyer *Corresponding author: Anja Drews, Oldenburg University, Energy and Semiconductor Research Laboratory, D-26111 Oldenburg, Email: anja.drews@uni-oldenburg.de, Phone: +49 441 7983929, www.pvsat.com

Introduction

Within the EU project PVSAT-2, a fully automated performance check for grid-connected photovoltaic (PV) systems has been developed to assure maximum energy yields and to optimize system maintainance. Aim is the early detection of system faults and therefore, the prevention from energy and lastly from financial losses. System failures can be hard to detect; solar irradiance information are necessary to calculate reference values of the expected energy yield.

Solar radiation derived from data of the METEOSAT satellites play a major role in PV system surveillance. They are a costeffective alternative for small PV systems (up to 5kW) compared to expensive on-site measurements.

The PVSAT-2 procedure

The actual power output of a PV system is automatically recorded on-site and transfered daily to a central server.

Solar irradiance is determined from METEOSAT images on an hourly basis (2) and refined by combination with ground measurements from weather stations by kriging-of-differences.

Based on the derived irradiance values, an individual yield calculation for the PV system is performed daily by a PV simulation.

To detect system failures, the central system compares daily the actual and the simulated yield. The fully

④ automated failure detection routine searches for causes of occured malfunctions.

Information about the performance, detected system failures, and the brobable causes for the malfunction are submitted to the operator.

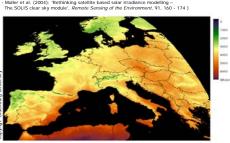
Results and conclusion

During a one-year test phase the functionality and applicability of the developed PVSAT-2 procedure is evaluated and improvements are introduced.

The first results prove the usability of satellite-derived solar irradiance data for the surveillance of PV systems.

Malfunctions of a system as well as their most probable causes can be identified fast.

PVSAT-2 will provide a cost-effective and user-friendly service.

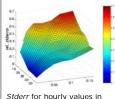

Irradiance data from satellite measurements

Satellite Data:

	METEOSAT -7	MSG-1
Channel:	VIS (0.45-1.0 µm)	HRV (0.6–0.9 µm)
Temporal Res.	30 minutes	15 minutes
	2.5 x 2.5 km (sub-satellitepoint)	1.0 x 1.0 km (sub-satellitepoint)

Method:

The solar irradiance for Europe at ground level is derived by the HELIOSAT-Method.



xample: monthly mean daily sums for April, 2001 derived from Meteosat-7 data

Accuracy:

Overall accuracy of the RMSE, monthly 4.7 % satellite data (Meteosat-7) RMSE, daily 9.9 % compared to ground RMSE, hourly 21.3 % measurements of 20 DWD MBE 0.6 %

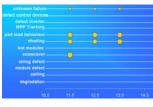
stations for the year 2000.

dependence of sun elevation

and variability of cloud cover.

Weather-dependend accuracy:

The accuracy of the satellite-derived irradiance data is strongly dependent of sun elevation and the predominant weather situation. Errors decrease with higher irradiance.


 Kriging-of-differences: The accuracy can be improved significantly for cloudy sky situations.

> Results of a well working system: The simulated PV output is within the error margins of the measured values. System with partial

energy loss: Different possible failures

are extracted -their probability is indicated by the size of the bubbles. Certain failures can be excluded while the probability of other malfunctions rises with time.

are determined.

CARL VON OSSIETZKY UNIVERSITÄT OLDENBURG

Contributing partners: Oldenburg University, Oldenburg, Germany; Meteocontrol Gmbh, Augsburg, Germany; Enecolo AG, Moenchaltorf, Switzerland, Fraunhofer ISE, Freiburg, Germany, Utrocht University, Utrocht, The Netherlands. This project is supported by the EC under the contract number EMKS-CT-2-2-00631.

Simulating PV power output and automated failure detection

• PV simulation:

The irradiance data and a technical specification of the PV system are the basic input for the daily estimation of the expected power output. The quality of the PV simulation output depends highly on the accuracy of the irradiance data. Under clear sky conditions with low errors system faults can be detected fast.

Automated failure detection routine:

List of detectable malfunctions

Module/ cable related	String defect	
failures	Module defect	
Power limitation of	MPP tracking	
inverter	Part load behaviour	
Shutdown; total blackout	Defect control devices	
	Defect inverter	
	Grid outage	
Failures related to	Shading	
ambient conditions	High temperature	
1	Snow cover	

Principles of the failure detection routine

If the monitored energy yield is significantly lower than the simulated yield, the failure detection routine will search for the most possible cause of the system's malfunction. To reduce the uncertainties of the simulated power output by averaging, the system's performance is evaluated for different periods (1 day,7 days, 30 days). The characteristics of the fault for each period are explored and a failure pattern is extracted. This is compared to the predefined failure patterns of the above listed malfunctions.

Finally, the likelihood of possible system faults