Exercise 1 (Unbounded+continuous). In this exercise, by the sum A + B of a linear operator A with a *continuous* operator B (both acting in a Hilbert space \mathcal{H}), we mean the operator defined by $A + B : u \mapsto Au + Bu$ on the domain D(A + B) = D(A).

- 1. Assume that A is closable. Show that A + B is closable with $\overline{A + B} = \overline{A} + B$.
- 2. Assume, in addition, that A is densely defined. Show that $(A+B)^* = A^* + B^*$.

Exercise 2 (Maximality). Let A and B be self-adjoint operators in a Hilbert space \mathcal{H} such that $D(A) \subset D(B)$ and Au = Bu for all $u \in D(A)$. Show that D(A) = D(B). (This property is called the *maximality* of self-adjoint operators.)

Exercise 3 (Unitary equivalence).

1. Let \mathcal{H}_1 and \mathcal{H}_2 be Hilbert spaces. Recall that a linear operator $U : \mathcal{H}_1 \to \mathcal{H}_2$ is called *unitary* if it is bijective and ||Uf|| = ||f|| for all $f \in \mathcal{H}_1$ (which is equivalent to $U^* = U^{-1}$).

Let A be a linear operator in \mathcal{H}_1 , B be a linear operator in \mathcal{H}_2 . Assume that there exists a unitary operator $U : \mathcal{H}_1 \to \mathcal{H}_2$ such that UD(A) = D(B) and $UAU^{-1}f = Bf$ for all $f \in D(B)$: such A and B are called *unitary equivalent*, one uses the writing $B = UAU^{-1}$.

Let A and B be as above. Show:

- (a) if A is closable then B is closable too, and in that case $\overline{B} = U\overline{A}U^{-1}$.
- (b) if A is closable and densely defined, then also B is closable and densely defined and $B^* = UA^*U^{-1}$.
- (c) If A is closed/symmetric/self-adjoint, then also B has the respective property.

(Remark that in all questions the roles of A and B can be interchanged.)

2. Let (λ_n) be an arbitrary sequence of complex numbers, $n \in \mathbb{N}$. In the Hilbert space $\ell^2(\mathbb{N})$ consider the following linear operator S:

$$D(S) = \{(x_n) : \text{there exists } N \text{ such that } x_n = 0 \text{ for all } n > N \},\$$
$$S(x_n) = (\lambda_n x_n).$$

Describe \overline{S} and S^*

3. Let \mathcal{H} be a separable Hilbert space and (e_n) be an orthonormal basis in \mathcal{H} . Consider the linear operator T with

D(T) := the set of the finite linear combinations of e_n

and assume that there exist $\lambda_n \in \mathbb{C}$ such that $Te_n = \lambda_n e_n$ for all n.

- (a) Describe \overline{T} and T^* .
- (b) Let all λ_n be real. Show that T is essentially self-adjoint.

Exercise 4 (Harmonic oscillator in 1D). Consider the following differential expressions on \mathbb{R} :

$$L^+ := -\frac{d}{dx} + x, \quad L^- := \frac{d}{dx} + x, \quad H := -\frac{d^2}{dx^2} + x^2.$$

For the moment we consider them as linear maps on $C^{\infty}(\mathbb{R})$,

$$(L^+f)(x) = -f'(x) + xf(x)$$
 etc.

- 1. Show the identities $H = L^+L^- + I$ and $L^+(H + 2I) = HL^+$, with I being the identity map.
- 2. Consider the function $\phi_1 : x \mapsto e^{-x^2/2}$. Show that ϕ_1 is an eigenfunction of H and find the corresponding eigenvalue λ_1 .
- 3. For $n \ge 2$ define recursively $\phi_n := L^+ \phi_{n-1}$. Show that all ϕ_n are eigenfunctions of H and find the corresponding eigenvalues λ_n .

Now consider $\mathcal{H} := L^2(\mathbb{R})$ and the linear operator S:

$$S: f \mapsto Hf, \quad D(S) := C_c^{\infty}(\mathbb{R}).$$

- 4. Is S closable? symmetric?
- 5. Let f be a finite linear combination of ϕ_n . Show that $f \in D(S)$. Hint: Let $\chi \in C_c^{\infty}(\mathbb{R})$ with $\chi(x) = 1$ for $|x| \leq 1$ and $\chi(x) = 0$ for $|x| \geq 2$. Consider the functions $\chi_N : x \mapsto \chi(\frac{x}{N})$ and $f_N := \chi_N f$ with large N.
- 6. Show that (ϕ_n) are mutually orthogonal in \mathcal{H} .
- 7. Let $f \in \mathcal{H}$ with $f \perp \phi_n$ for all n.
 - (a) Show that f is orthogonal to all functions of the form $x^n e^{-x^2/2}$ with $n \in \mathbb{N}_0$.
 - (b) Show that the function

$$F: \mathbb{C} \ni z \mapsto \int_{\mathbb{R}} f(x) e^{-x^2/2} e^{-izx} \, \mathrm{d}x \in \mathbb{C}$$

is holomorph and compute $F^{(n)}(0)$ for all $n \in \mathbb{N}_0$.

- (c) Deduce that f = 0.
- (d) Deduce that there exists an orthonormal basis of \mathcal{H} consisting of eigenfunctions of \overline{S} .
- 8. Show that S is essentially self-adjoint.

Exercise 5. Consider the operator M_f from the lecture: $\Omega \subset \mathbb{R}^d$ is an open set, $\mathcal{H} := L^2(\Omega)$, pick $f \in C^0(\Omega)$, then

$$M_f: u \mapsto fu \text{ for } u \in D(M_f) = \left\{ u \in L^2(\Omega) : fu \in L^2(\Omega) \right\}.$$

Give a detailed proof for $M_f^* = M_{\overline{f}}$.

Exercise 6. Let $\mathcal{H} := L^2(0, 1)$. For $\lambda \in \mathbb{C}$ consider the linear operator

$$T: f \mapsto if', \quad D(T) := \{ f \in C^{\infty}([0,1]) : f(1) = \lambda f(0) \}.$$

- 1. For which λ is T symmetric?
- 2. For which λ is T closable?

Exercise 7. Consider

$$\Omega = \left\{ (x_1, x_2) : x_2 > 0 \right\} \subset \mathbb{R}^2, \quad P = \Delta.$$

Choose $\chi \in C_c^{\infty}(\mathbb{R}^2)$ with $\chi(x) = 1$ for |x| < 1 and consider the function

$$u: \Omega \ni x \mapsto \chi(x) \log |x| \in \mathbb{C}.$$

Show that $u \in D(P_{\max})$ but $u \notin H^2(\Omega)$.

Exercise 8.

- 1. Let $f \in L^1_{\text{loc}}(\mathbb{R}^d)$ and $\varphi \in C^{\infty}_c(\mathbb{R}^d)$. Recall why the convolution $f * \varphi$ is well-defined and belongs to $C^{\infty}(\mathbb{R}^d)$.
- 2. Let $k \in \mathbb{N}$ and $f \in H^k(\mathbb{R}^n)$.
 - (a) Let $\varphi \in C_c^{\infty}(\mathbb{R}^n)$. Show that $f * \varphi \in H^k(\mathbb{R}^n)$.
 - (b) Let ρ_{δ} be as in the lectures. Show that $f * \rho_{\delta}$ converges to f in $H^k(\mathbb{R}^n)$ for $\delta \to 0^+$.
 - (c) Let $\chi \in C_c^{\infty}(\mathbb{R}^n)$ such that $\chi(x) = 1$ for $|x| \le 1$ and $\chi(x) = 0$ for $|x| \ge 2$. For N > 0 define $\chi_N : x \mapsto \chi(\frac{x}{N})$. Show that $\chi_N f$ converges to f in $H^k(\mathbb{R}^n)$ for $\varepsilon \to 0^+$.
- 3. Show that $C_c^{\infty}(\mathbb{R}^n)$ is dense in $H^k(\mathbb{R}^n)$ for any $k \in \mathbb{N}$.

Exercise 9 (Sobolev embedding theorem). Let $k, d \in \mathbb{N}$ and $m \in \mathbb{N}_0$ with $k > m + \frac{d}{2}$.

1. Show: there exists c > 0 such that $\|\partial^{\alpha}\varphi\|_{\infty} \leq c\|\varphi\|_{H^{k}(\mathbb{R}^{d})}$ for all $\alpha \in \mathbb{N}_{0}^{d}$ with $|\alpha| \leq m$ and all $\varphi \in C_{c}^{\infty}(\mathbb{R}^{d})$.

Hint: Write the Fourier inversion formula for $\partial^{\alpha}\varphi$, multiply the subintegral function by $1 \equiv \langle \xi \rangle^{-k} \langle \xi \rangle^{k}$ and use the Cauchy-Schwarz inequality.

2. Equip

$$C_{L^{\infty}}^{m}(\mathbb{R}^{d}) := \left\{ u \in C^{\infty}(\mathbb{R}^{d}) : \partial^{\alpha} u \in L^{\infty}(\mathbb{R}^{d}) \text{ for all } \alpha \in \mathbb{N}_{0}^{d} \text{ with } |\alpha| \leq m \right\}$$

with the norm $||u||_{m,\infty} := \sum_{|\alpha| \le m} ||\partial^{\alpha} u||_{\infty}$.

Show that $H^k(\mathbb{R}^d) \subset C^m_{L^{\infty}}(\mathbb{R}^d)$ and that the embedding is continuous.

Exercise 10 (Sobolev spaces H_0^k). For a non-empty open set $\Omega \subset \mathbb{R}^n$ and $k \in \mathbb{N}$ define

 $H_0^k(\Omega) :=$ the closure of $C_c^{\infty}(\Omega)$ in $H^k(\Omega)$.

Let $\Omega \subset \widetilde{\Omega} \subset \mathbb{R}^n$ be non-empty open sets. For a function u defined on Ω we denote by \widetilde{u} its extension by zero to $\widetilde{\Omega}$.

Show: if $u \in H_0^k(\Omega)$, then $\widetilde{u} \in H^k(\widetilde{\Omega})$ with $\|\widetilde{u}\|_{H^k(\widetilde{\Omega})} = \|u\|_{H^k(\Omega)}$.

Exercise 11 (Sesquilinear forms and bounded operators). Let t be a closed sesquilinear form in \mathcal{H} and T be the operator generated by t. Furthermore, let $B = B^* \in \mathcal{B}(\mathcal{H})$. Show:

1. the sesquilinear form

$$t_B: (u, v) \mapsto t(u, v) + \langle u, Bv \rangle_{\mathcal{H}}, \quad D(t_B) = D(t),$$

is closed,

2. the operator T_B generated by t_B is

$$T_B: u \mapsto Tu + Bu, \quad D(T_B) = D(T).$$

Exercise 12 (Direct sums of forms and operators). Let t_j be closed sesquilinear forms in Hilbert spaces \mathcal{H}_j and T_j be the associated operators in \mathcal{H}_j , $j \in \{1, 2\}$. Recall that $\mathcal{H} := \mathcal{H}_1 \times \mathcal{H}_2$ is a Hilbert space for the scalar product

$$\langle (u_1, u_2), (v_1, v_2) \rangle_{\mathcal{H}_1 \times \mathcal{H}_2} := \langle u_1, v_1 \rangle_{\mathcal{H}_1} + \langle u_2, v_2 \rangle_{\mathcal{H}_2}.$$

1. Show that the sesquilinear form t in \mathcal{H} ,

 $D(t) = D(t_1) \times D(t_2), \quad t((u_1, u_2), (v_1, v_2)) = t_1(u_1, v_1) + t_2(u_2, v_2)$

is closed. We write $t = t_1 \oplus t_2$ and say that t is the *direct sum* of t_1 and t_2 .

2. Show that the operator T generated by t is the direct sum, $T = T_1 \oplus T_2$, which is defined by

$$D(T) = D(T_1) \times D(T_2), \quad T(u_1, u_2) = (T_1 u_1, T_2 u_2).$$

Exercise 13 (Sesquilinear forms and unitary equivalence).

1. Let $\Theta : \mathcal{H}' \to \mathcal{H}$ be a unitary operator between Hilbert spaces \mathcal{H}' and \mathcal{H} . Let t be a closed sesquilinear form in \mathcal{H} and T be the operator in \mathcal{H} generated by t. Define a sesquilinear form t' in \mathcal{H}' by

$$D(t') = \Theta^{-1}D(t), \quad t'(u,v) = t(\Theta u, \Theta v).$$

Show that t' is closed and that the operator T' in \mathcal{H}' generated by t' is unitarily equivalent to T.

2. Let $\Omega, \Omega' \subset \mathbb{R}^d$ be open subsets and $\Phi : \Omega \to \Omega'$ be a C^{∞} -diffeomorphism. Show that the weak derivatives on Ω and Ω' satisfy the usual composition rule

$$\nabla(u \circ \Phi) = \big((\nabla u) \circ \Phi \big) D\Phi$$

(if one writes ∇u as a line).

3. Let $\Omega, \Omega' \subset \mathbb{R}^d$ be open subsets such that $\Omega' = \Phi(\Omega)$ for some isometry $\Phi : \mathbb{R}^d \to \mathbb{R}^d$. Show that the Dirichlet/Neumann Laplacian in Ω' is unitarily equivalent to the Dirichlet/Neumann Laplacian in Ω .

Hint: Any isometry Φ acts as $\Phi : x \mapsto Ax + b$ with a unitary matrix A and $b \in \mathbb{R}^d$. Consider the map

$$\Theta: L^2(\Omega') \to L^2(\Omega), \quad \Theta u = u \circ \Phi,$$

and use the first two parts of this exercise.

4. Is there any link between the Dirichlet/Neumann Laplacians in Ω and $\lambda \Omega$ with arbitrary $\lambda > 0$?

Exercise 14 (Lower semiboundedness in one dimension).

1. Check if the operator T,

$$D(T) = C_c^{\infty}(0, \infty), \quad Tf = -if',$$

is semibounded from below in $\mathcal{H} = L^2(0, \infty)$.

Hint: consider $f: x \mapsto \chi(x)e^{ikx}$ with suitable $k \in \mathbb{R}$ and $\chi \in C_c^{\infty}(0, \infty)$.

2. Show the inequality

$$||f||_{\infty}^{2} \leq \varepsilon \int_{\mathbb{R}} |f'|^{2} \,\mathrm{d}x + \frac{1}{\varepsilon} \int_{\mathbb{R}} |f|^{2} \,\mathrm{d}x \text{ for all } f \in H^{1}(\mathbb{R}) \text{ and } \varepsilon > 0.$$

Hint: One can start with $|f(x)|^2 = \int_{-\infty}^x (|f|^2)'$ for $f \in C_c^{\infty}(\mathbb{R})$.

3. Let $V \in L^2(\mathbb{R})$ be real-valued. Show that the operator

$$T: f \mapsto -f'' + Vf, \quad D(T) = C_c^{\infty}(\mathbb{R}).$$

is semibounded from below in $\mathcal{H} = L^2(\mathbb{R})$.

4. Show that for any $f \in C_c^{\infty}(0,\infty)$ one has the Hardy inequality

$$\int_0^\infty |f'(x)|^2 \, \mathrm{d}x \ge \int_0^\infty \frac{|f(x)|^2}{4x^2} \, \mathrm{d}x.$$

Hint: represent $f(x) = \sqrt{x} g(x)$.

5. Let $V \in L^2(0,\infty)$ be real-valued and $\alpha \in \mathbb{R}$. Show that the operator T,

$$D(T) = C_c^{\infty}(0,\infty), \quad \left(Tf\right)(x) = -f''(x) + \left(\frac{\alpha}{x} + V(x)\right)f(x)$$

is semibounded from below in $\mathcal{H} = L^2(0, \infty)$.

Exercise 15 (Lower semiboundedness in higher dimensions). We will use the following assertion without proof: If $X \subset \mathbb{R}^d$ is closed and $f: X \to \mathbb{R}$ is a bounded continuous function, then f can be extended to a bounded continuous function on the whole of \mathbb{R}^d . (The assertion holds in a much more general setting of topological spaces and is known as Tietze extension theorem.)

Let $\Omega \subset \mathbb{R}^d$ be a bounded open set with C^1 boundary and $n : \partial \Omega \to \mathbb{R}^d$ be the outer unit normal on $\partial \Omega$. Show:

- 1. *n* can be extended to a bounded continuous function $N : \mathbb{R}^d \to \mathbb{R}^d$.
- 2. there exists a bounded C^{∞} function $\widetilde{N}: \mathbb{R}^d \to \mathbb{R}^d$ with $\|\widetilde{N} N\|_{\infty} < \frac{1}{2}$.
- 3. there holds $\widetilde{N} \cdot n \geq \frac{1}{2}$ on $\partial \Omega$.
- 4. for any $u \in C^{\infty}(\overline{\Omega})$ there holds

$$\int_{\partial\Omega} |u|^2 \widetilde{N} \cdot n \, \mathrm{d}s = \int_{\Omega} \left[(\overline{u} \nabla u + u \overline{\nabla u}) \cdot \widetilde{N} + |u|^2 \, \mathrm{div} \, \widetilde{N} \right] \mathrm{d}x.$$

5. for any $\varepsilon > 0$ there exists $C_{\varepsilon} > 0$ such that for any $u \in C^{\infty}(\overline{\Omega})$ there holds

$$\int_{\partial\Omega} |u|^2 \,\mathrm{d}s \le \varepsilon \int_{\Omega} |\nabla u|^2 \,\mathrm{d}x + C_{\varepsilon} \int_{\Omega} |u|^2 \,\mathrm{d}x.$$

6. for any bounded measurable function $\alpha : \partial \Omega \to \mathbb{R}$ the operator T

$$T: u \mapsto -\Delta u, \quad D(T) = \left\{ u \in C^{\infty}(\overline{\Omega}) : \partial_n u = \alpha u \text{ on } \partial\Omega \right\}$$

is semibounded from below in $\mathcal{H} = L^2(\Omega)$.

Remark: the boundary condition $\partial_n u = \alpha u$ is called *Robin boundary condition*.

There exists an alternative terminology (sometimes considered as obsolete but still in use): the Dirichlet/Neumann/Robin boundary conditions are referred to as the first/second/third type boundary conditions.

Exercise 16 (Spectrum, direct sums, matrix operators).

1. Let T_j be linear operators in Hilbert spaces $\mathcal{H}_j, j \in \{1, 2\}$. Show:

$$\operatorname{spec}(T_1 \oplus T_2) = \operatorname{spec} T_1 \cup \operatorname{spec} T_2, \quad \operatorname{spec}_p(T_1 \oplus T_2) = \operatorname{spec}_p T_1 \cup \operatorname{spec}_p T_2.$$

2. Let $\Omega \subset \mathbb{R}^d$ be a non-empty open set and let $L : \Omega \to M_2(\mathbb{C})$ be a continuous 2×2 matrix function such that $L(x)^* = L(x)$ for all $x \in \Omega$. Define an operator A in $\mathcal{H} = L^2(\Omega, \mathbb{C}^2)$ (L^2 -functions with values in \mathbb{C}^2) by

$$Af(x) = L(x)f(x), \quad D(A) = \{f \in \mathcal{H} : \int_{\Omega} \|L(x)f(x)\|_{\mathbb{C}^2}^2 \, \mathrm{d}x < +\infty\}.$$

- (a) Show that A is self-adjoint.
- (b) Let $\lambda_1(x) \leq \lambda_2(x)$ be the eigenvalues of L(x). Show:

$$\operatorname{spec} A = \operatorname{\overline{ran}} \lambda_1 \cup \operatorname{\overline{ran}} \lambda_2$$

and find a similar representation for $\operatorname{spec}_{p} A$.

Hint: For each $x \in \Omega$, let $\xi_1(x)$ and $\xi_2(x)$ be suitably chosen eigenvectors of L(x). Consider the map

$$U: \mathcal{H} \to \mathcal{H}, \quad Uf(x) := \begin{pmatrix} \left\langle \xi_1(x), f(x) \right\rangle_{\mathbb{C}^2} \\ \left\langle \xi_2(x), f(x) \right\rangle_{\mathbb{C}^2} \end{pmatrix}$$

and the operator $B = UAU^{-1}$.

3. Consider the operator T in $\mathcal{H} = l^2(\mathbb{Z})$ given by

$$Tf(n) = f(n-1) + f(n+1) + V(n)f(n), \quad V(n) = \begin{cases} 4, & \text{if } n \text{ is even,} \\ -2, & \text{if } n \text{ is odd.} \end{cases}$$

Compute the spectrum of T.

Hint: Consider the operators

$$\begin{split} U: l^2(\mathbb{Z}) &\to l^2(\mathbb{Z}, \mathbb{C}^2), \quad Uf(n) := \begin{pmatrix} f(2n) \\ f(2n+1) \end{pmatrix}, \quad n \in \mathbb{Z}, \\ F: \ell^2(\mathbb{Z}, \mathbb{C}^2) &\to L^2\big((0, 2\pi), \mathbb{C}^2\big), \quad (Fg)(\theta) = \frac{1}{\sqrt{2\pi}} \sum_{n \in \mathbb{Z}} g(n) e^{in\theta}, \\ S:= UTU^{-1}, \quad \widehat{S} := FSF^{-1}. \end{split}$$

Exercise 17 (Sufficient condition for $[0, \infty) \subset \operatorname{spec} T$).

- 1. Let $\Omega \subset \mathbb{R}^d$ be an open set and T be a linear operator in $\mathcal{H} := L^2(\Omega)$. Assume that there exists an open subset $\Omega' \subset \Omega$ with the following properties:
 - $C_c^{\infty}(\Omega') \subset D(T),$
 - for any $u \in C_c^{\infty}(\Omega')$ one has $Tu = -\Delta u$,
 - for any R > 0 there is a ball of radius R contained in Ω' (open sets with this property are sometimes called *quasiconical*).

For any $n \in \mathbb{N}$ let $r_n \in \Omega'$ such that $B_n(r_n) \subset \Omega'$. Pick $\chi \in C_c^{\infty}(\mathbb{R}^d)$ with $\operatorname{supp} \chi \subset B_1(0)$ and $\chi = 1$ in $B_{\frac{1}{2}}(0)$.

Let $k \in \mathbb{R}$. Define $u_n \in C_c^{\infty}(\Omega')$ by

$$u_n(x) = \chi\left(\frac{x-r_n}{n}\right)e^{ikx_1}.$$

- (a) Show that $||u_n||^2 \ge cn^d$ for some c > 0 independent of n,
- (b) Show that $||(T-k^2)u_n||^2 = O(n^{d-1})$ as $n \to \infty$. Remark: one can control L^2 -norms by controlling the $|| \cdot ||_{\infty}$ -norm and the size of the support.
- (c) Show that $[0, \infty) \subset \operatorname{spec} T$.
- 2. Compute the spectra of the Dirichlet and Neumann Laplacians on $(0, \infty)$.

Exercise 18 (Dirichlet/Neumann Laplacians on intervals/rectangles). Let $\ell \in (0, \infty)$.

- 1. Show that the eigenvalues of the Dirichlet Laplacian on $(0, \ell)$ are simple and given by $\pi^2 n^2/\ell^2$, $n \in \mathbb{N}$,
- 2. Show that for any $\varphi \in C_c^{\infty}(0, \ell)$ one has

$$\int_0^\ell \left|\varphi'(x)\right|^2 \mathrm{d}x \ge \frac{\pi^2}{\ell^2} \int_0^\ell \left|\varphi(x)\right|^2 \mathrm{d}x.$$

- 3. Show that the eigenvalues of the Neumann Laplacian on $(0, \ell)$ are simple and given by $\pi^2 n^2 / \ell^2$, $n \in \mathbb{N}_0 := \mathbb{N} \cup \{0\}$.
- 4. Let $\ell_1, \ell_2 \in (0, \infty)$. Compute the spectra of the Dirichlet and Neumann Laplacians on $(0, \ell_1) \times (0, \ell_2)$.

Exercise 19 (Application of the trace formula for Hilbert-Schmidt operators). Let us recall some constructions from the theory of ordinary differential equations (Green functions for boundary value problems).

Let $a_0, a_1 : [a, b] \to \mathbb{C}$ be continuous functions and $Ly := y'' + a_1y + a_0y$. Let $\alpha_1, \alpha_2, \beta_1, \beta_2 \in \mathbb{C}$ and $R_1y := \alpha_1y(a) + \alpha_2y'(a), R_2y := \beta_1y(b) + \beta_2y'(b)$. Assume that the only solution to Ly = 0 with $R_1y = R_2y = 0$ is the zero function.

Let y_1 be a non-zero solution of Ly = 0 with $R_1y = 0$ and y_2 be a non-zero solution to Ly = 0 with $R_2y = 0$. Consider $W := y_1y_2' - y_1'y_2$ (Wronski determinant) and

$$G(x,s) = \begin{cases} \frac{y_1(x)y_2(s)}{W(s)}, & x < s, \\ \frac{y_1(s)y_2(x)}{W(s)}, & x > s, \end{cases}$$

then for any $f \in C^0([a, b])$ the function

$$y(x) := \int_{a}^{b} G(x,s)f(s) \,\mathrm{d}s$$

is the unique solution to Ly = f with $R_1y = R_2y = 0$.

Now let T be the Dirichlet Laplacian on the interval (0, 1).

- 1. Show that T^{-1} is a Hilbert-Schmidt operator, deduce that it is an integral operator and compute its integral kernel.
- 2. Compute the sum of the series

$$\sum_{n=1}^{\infty} \frac{1}{n^4}$$

Exercise 20 (Perturbations of operators with compact resolvents).

Let $U \in L^2_{loc}(\mathbb{R})$ be real-valued, lower semibounded, $\lim_{|x|\to+\infty} U(x) = +\infty$. In addition, let $W \in L^2_{loc}(\mathbb{R}) \cap L^1(\mathbb{R})$ be real-valued and V := U + W. Show that the operator

$$T = -\frac{d^2}{dx^2} + V$$

(defined through the Friedrichs extension) has compact resolvent.

Hint: Exercise 14 may be useful.

Exercise 21 $(-\Delta + V \text{ with compact resolvent but } V(x) \not\longrightarrow +\infty$ for $|x| \rightarrow +\infty$).

- 1. Let $V, W \in L^2_{loc}(\mathbb{R}^d)$ be real-valued, lower semibounded, with $V \leq W$. Show: if $H^1_V(\mathbb{R}^d)$ is compactly embedded in $L^2(\mathbb{R}^d)$, then also $H^1_W(\mathbb{R}^d)$ is compactly embedded in $L^2(\mathbb{R}^d)$.
- 2. Let a > 0.
 - (a) Compute the spectrum of the operator

$$T_a := -\frac{d^2}{dx^2} + a^2 x^2$$

defined through the Friedrichs extension in $L^2(\mathbb{R})$.

Hint: The case a = 1 is already known (harmonic oscillator). Consider the unitary transform $U_a : L^2(\mathbb{R}) \to L^2(\mathbb{R}), (U_a f)(x) = \sqrt[4]{a}f(\sqrt{a}x)$, and the operators $U_a^{-1}T_aU_a$. (b) Deduce that for any $\varphi \in C_c^{\infty}(\mathbb{R})$ there holds

$$\int_{\mathbb{R}} \left(|\varphi'(x)|^2 + a^2 x^2 |\varphi(x)|^2 \right) \mathrm{d}x \ge a \int_{\mathbb{R}} |\varphi(x)|^2 \,\mathrm{d}x.$$

3. Deduce that for any $\varphi \in C_c^{\infty}(\mathbb{R}^2)$ there holds

$$\begin{split} \int_{\mathbb{R}^2} \left(\left| \nabla \varphi(x,y) \right|^2 + x^2 y^2 \left| \varphi(x,y) \right|^2 \right) \mathrm{d}x \, \mathrm{d}y \\ &\geq \frac{1}{2} \int_{\mathbb{R}^2} \left(\left| \nabla \varphi(x,y) \right|^2 + \left(|x| + |y| \right) \left| \varphi(x,y) \right|^2 \right) \mathrm{d}x \, \mathrm{d}y. \end{split}$$

Hint: if y is fixed, then the function $x \mapsto \varphi(x, y)$ belongs to $C_c^{\infty}(\mathbb{R})$

4. Deduce that the two-dimensional Schrödinger operator $T = -\Delta + x^2 y^2$ has compact resolvent.

Exercise 22 (Dirichlet Laplacians with compact resolvents in unbounded domains).

1. Write the points $x \in \mathbb{R}^d$ as $x = (x', x_d)$ with $x' \in \mathbb{R}^{d-1}$ and $x_d \in \mathbb{R}$. Let $\Omega \subset \mathbb{R}^d$ be an open set which is bounded in the x' direction i.e. for

Let $\Omega \subset \mathbb{R}^d$ be an open set which is bounded in the x'-direction, i.e. for some r > 0 one has $\Omega \subset \{(x', x_d) : |x'| < r\}$ (i.e. Ω

Let $v: \mathbb{R} \to (0, \infty)$ be continuous with $\lim_{|t|\to\infty} v(t) = +\infty$. Equip

$$\widetilde{H}^1_v(\Omega) := \{ u \in H^1_0(\Omega) : \int_{\Omega} v(x_d) |u(x)|^2 \, \mathrm{d}x < \infty \}$$

with the norm

$$||u||_v^2 := ||u||_{H^1(\Omega)}^2 + \int_{\Omega} v(x_d) |u(x)|^2 \, \mathrm{d}x.$$

Show that $\widetilde{H}^1_v(\Omega)$ is compactly embedded into $L^2(\Omega)$.

2. Let $f : \mathbb{R} \to (0, \infty)$ be a continuous function with $\lim_{|x|\to\infty} f(x) = 0$. Consider the two-dimensional domain

$$\Omega := \left\{ (x, y) : 0 < y < f(x) \right\} \subset \mathbb{R}^2.$$

(a kind of strip whose width tends to zero at infinity).

(a) Show that for any $\varphi \in C_c^{\infty}(\Omega)$ there holds

$$\int_{\Omega} |\nabla \varphi(x,y)|^2 \, \mathrm{d}x \ge \frac{1}{2} \int_{\Omega} \left(\left| \nabla \varphi(x,y) \right|^2 + \frac{\pi^2}{f(x)^2} \left| \varphi(x,y) \right|^2 \right) \, \mathrm{d}x \, \mathrm{d}x.$$

Hint: for each fixed x the function $y \mapsto \varphi(x, y)$ is in $C_c^{\infty}(0, f(x))$.

(b) Deduce that the Dirichlet Laplacian in Ω has compact resolvent.

Exercise 23 (Abstract Schrödinger equation). Let A be a self-adjoint operator in a separable Hilbert space \mathcal{H} . Given $t \in \mathbb{R}$ we define e^{-itA} to be $f_t(A)$ for the function $f_t : \mathbb{R} \ni x \mapsto e^{-itx} \in \mathbb{C}$. Show:

- 1. for each $t \in \mathbb{R}$ the operator e^{-itA} is unitary,
- 2. $e^{-i(t+s)A} = e^{-itA}e^{-isA}$ for all $t, s \in \mathbb{R}$,
- 3. for any $v \in \mathcal{H}$ and $t \in \mathbb{R}$ there holds $e^{-itA}v = \lim_{s \to t} e^{-isA}v$,
- 4. $e^{itA}D(A) \subset D(A)$ and $Ae^{-itA} = e^{-itA}A$ on D(A) for any $t \in \mathbb{R}$.

For $v \in D(A)$ consider the initial value problem

$$iu'(t) = Au(t)$$
 for all $t \in \mathbb{R}$, $u(0) = v$, (1)

to be satisfied by a differentiable function $u : \mathbb{R} \ni t \mapsto u(t) \in \mathcal{H}$ such that $u(t) \in D(A)$ for any $t \in \mathbb{R}$. Show:

- 5. if u is a solution of (1), then ||u|| is constant.
- 6. the function $u : \mathbb{R} \ni t \mapsto e^{-itA}v \in \mathcal{H}$ is a solution of (1).
- 7. this solution is unique.

Exercise 24 (Domains). Let T be a self-adjoint operator in a separable Hilbert space \mathcal{H} and let X, μ, h be as in the spectral theorem.

- 1. For $n \in \mathbb{N}$ with $n \geq 2$ define $D_n(T) := \{x \in D(T) : Tx \in D_{n-1}(T)\}$, where we set $D_1(T) := D(T)$.
 - (a) Show that $D_n(T)$ is dense in \mathcal{H} .
 - (b) Let T_n be the restriction of T on $D_n(T)$. Show that T_n is essentially self-adjoint.
- 2. For any Borel function $f : \mathbb{R} \to \mathbb{C}$ define $f(T) := \Theta M_{f \circ h} \Theta^{-1}$. Show: if T is semibounded from below, then $Q(T) = D(\sqrt{|T|})$. Recall that the form domain Q(T) was defined in the chapter dealing with the Friedrichs extension.

Exercise 25 (Abstract wave equation). Let A be a self-adjoint operator in a separable Hilbert space \mathcal{H} such that $A \geq 0$ and ker $A = \{0\}$. We say that a function $u : \mathbb{R} \to \mathcal{H}$ is a solution of the wave equation

$$u''(t) + Au(t) = 0, (2)$$

if $u \in C^2(\mathbb{R}, \mathcal{H})$ and the inclusion $u(t) \in D(A)$ and the equality (2) hold for any $t \in \mathbb{R}$.

For $t \in \mathbb{R}$ we define $C_t, S_t : \mathbb{R} \to \mathbb{R}$ by

$$C_t(x) = \cos(t\sqrt{x})$$
 and $S_t(x) = \frac{\sin(t\sqrt{x})}{\sqrt{x}}$ for $x > 0$, $C_t(x) = S_t(x) = 0$ for $x \le 0$.

Let $u_0 \in D(A)$ and $u_1 \in D(\sqrt{A})$ and define $\varphi, \psi : \mathbb{R} \to \mathcal{H}$ by

$$\varphi(t) = C_t(A)u_0, \quad \psi(t) = S_t(A)u_1.$$

- 1. Show that $\varphi(t)$ and $\psi(t)$ belong to D(A) for any $t \in \mathbb{R}$.
- 2. Show that $\varphi \in C^1(\mathbb{R}, \mathcal{H})$ and that $\varphi'(t) = -AS_t(A)u_0$ for any $t \in \mathbb{R}$.
- 3. Show that $\psi \in C^1(\mathbb{R}, \mathcal{H})$ and that $\psi'(t) = C_t(A)u_1$ for any $t \in \mathbb{R}$.
- 4. Show that both φ and ψ are solutions of (2).

Now we would like to show that $u(t) = \varphi(t) + \psi(t)$ is the unique solution to (2) satisfying the initial conditions $u(0) = u_0$ and $u'(0) = u_1$. Let w be any solution satisfying the same initial conditions. Set v(t) := u(t) - w(t), $t \in \mathbb{R}$.

5. Show the equality

$$\frac{d}{dt}\left\langle v(t), Av(t)\right\rangle = \left\langle v'(t), Av(t)\right\rangle + \left\langle Av(t), v'(t)\right\rangle.$$

Hint: use the classical definition of the derivative.

- 6. Show that the value $E(t) = \langle v'(t), v'(t) \rangle + \langle v(t), Av(t) \rangle$ is independent of t.
- 7. Show that v(t) = 0 for all $t \in \mathbb{R}$.

Let A := the free Laplacian in $\mathcal{H} := L^2(\mathbb{R})$.

8. Show that for $f \in C_c^{\infty}(\mathbb{R})$ one has

$$C_t(A)f(x) = \frac{f(x+t) + f(x-t)}{2}, \quad S_t(A)f(x) = \frac{1}{2}\int_{x-t}^{x+t} f(s) \,\mathrm{d}s, \quad x \in \mathbb{R}.$$

Exercise 26 (Essential self-adjointness for semibounded operators). Let T be a densely defined symmetric operator in a Hilbert space \mathcal{H} with $T \geq 0$. Let a > 0.

1. Show that for any $x \in D(T)$ there holds

$$||Tx||^{2} + a^{2}||x||^{2} \le ||(T+a)x||^{2} \le 2(||Tx||^{2} + a^{2}||x||^{2}).$$

- 2. Show that $\overline{\operatorname{ran}(T+a)} = \operatorname{ran}(\overline{T}+a)$.
- 3. Show that the following three assertions are equivalent:
 - (a) T is essentially self-adjoint,
 - (b) $\ker(T^* + a) = \{0\},\$
 - (c) $\operatorname{ran}(T+a)$ is dense in \mathcal{H} .

Exercise 27 (Kato-Rellich theorem). We are going to complete the proof of the Kato-Rellich theorem.

Let A be a self-adjoint operator in a separable Hilbert space \mathcal{H} and B be a symmetric operator in \mathcal{H} which is A-bounded with relative bound < 1.

- 1. Let $\mathcal{D} \subset D(A)$ be a subspace on which A is essentially self-adjoint. Show that A + B is also essentially self-adjoint on \mathcal{D} .
- 2. Now assume additionally that A is semibounded from below.
 - (a) Show that $||B(A + \lambda)^{-1}|| < 1$ for all sufficiently large $\lambda > 0$.
 - (b) Deduce that A + B is semibounded from below.

Exercise 28. Let $V \in L^{\infty}_{loc}(\mathbb{R}^d)$ be real-valued and consider the associated multiplication operator M_V in $\mathcal{H} = L^2(\mathbb{R}^d)$.

- 1. Show that the spectrum of M_V is purely essential.
- 2. Show that M_V is essentially self-adjoint on $C_c^{\infty}(\mathbb{R}^d)$.

Exercise 29.

- 1. Let T be the free Laplacian in $\mathcal{H} := L^2(\mathbb{R}^d)$.
 - (a) Show that ∂_j is infinitesimally small with respect to T.
 - (b) Show that ∂_j is not *T*-compact. Hint: compute the spectrum of $T + i\partial_j$.
 - (c) Let $a \in C_c^{\infty}(\mathbb{R}^d)$. Show that $a\partial_j$ is *T*-compact. Hint: Use compact embeddings of H_0^1 in L^2 on bounded domains.
 - (d) Let $a \in C^{\infty}(\mathbb{R}^d)$ such that $\lim_{|x|\to\infty} a(x) = 0$. Show that $a\partial_j$ is *T*-compact.
- 2. Let $A \in C^{\infty}(\mathbb{R}^d, \mathbb{R}^d)$ such that A and ∇A are bounded. Consider the operator $T_A := (i\nabla + A)^2$ on $D(T_A) = C_c^{\infty}(\mathbb{R}^d)$,

$$T_A: u \mapsto \sum_{j=1}^d (i\partial_j + A_j)^2 u, \quad (i\partial_j + A_j)u := i\partial_j u + A_j u.$$

Such operators are usually called *magnetic Schrödinger operators*.

- (a) Show that T_A is essentially self-adjoint and determine the domain of its closure. We denote the closure again by T_A .
- (b) Assume that $\lim_{|x|\to\infty} |\nabla A(x)| + |A(x)| = 0$. Compute the essential spectrum of T_A , then the whole spectrum of T_A .

Exercise 30 (Existence of several eigenvalues).

1. Let T be a lower semibounded self-adjoint operator in a Hilbert space \mathcal{H} . Assume that the essential spectrum of T is non-empty and denote

$$\Sigma := \inf \operatorname{spec}_{\operatorname{ess}} T.$$

Furthermore, assume that there exist N linearly independent vectors f_1, \ldots, f_N in D(T) such that all eigenvalues of the $N \times N$ matrix

$$\left(\left\langle f_j, (T-\Sigma)f_k\right\rangle\right)_{j,k=1}^N$$

are strictly negative. Show that T has at least N eigenvalues in $(-\infty, \Sigma)$.

2. Consider the following operator T in $\mathcal{H} = L^2(\mathbb{R})$:

$$T = \frac{d^4}{dx^4} + 2\frac{d^2}{dx^2} + 1, \quad D(T) = H^4(\mathbb{R}).$$

- (a) Show that T is self-adjoint and compute its spectrum. Hint: Use the Fourier transform.
- (b) Let $V \in L^{\infty}(\mathbb{R}) \cap L^{1}(\mathbb{R})$ be real-valued. Show that the operator

$$S := T + V, \quad D(S) = H^4(\mathbb{R}),$$

is self-adjoint and compute its essential spectrum.

- (c) Let \mathcal{F} be the Fourier transform in $L^2(\mathbb{R})$ and $\widehat{V} := \mathcal{F}V$. Give an explicit expression for the operator $\widehat{S} := \mathcal{F}S\mathcal{F}^{-1}$ and describe its domain.
- (d) Let $\varphi \in C_c^{\infty}(\mathbb{R})$ with $\varphi \geq 0$ and $\|\varphi\|_{L^1(\mathbb{R})} = 1$. For $\varepsilon > 0$ and $q \in \mathbb{R}$ consider the following functions:

$$\varphi_{q,\varepsilon}: \mathbb{R} \ni \xi \mapsto \frac{1}{\varepsilon} \varphi\Big(\frac{\xi-q}{\varepsilon}\Big).$$

Show that these functions belong to $D(\widehat{S})$ and that

$$\lim_{\varepsilon \to 0+} \left\langle \varphi_{q,\varepsilon}, \widehat{S}\varphi_{r,\varepsilon} \right\rangle = \widehat{V}(q-r) \quad \text{for } q, r = \pm 1.$$

(e) Assume that $\widehat{V}(0) < 0$ and $|\widehat{V}(2)| < |\widehat{V}(0)|$. Show that the operator S has at least two negative eigenvalues.

Exercise 31. Let $\alpha \in \mathbb{R}$. Consider the following sesquilinear form t in $L^2(\mathbb{R})$:

$$t(u, u) = \int_{\mathbb{R}} |u'(x)|^2 dx + \alpha |u(0)|^2, \quad D(t) = H^1(\mathbb{R}).$$

1. Show that t is closed. (Hint: Exercise 14.)

Denote

- T := the self-adjoint operator generated by t,
- S := the restriction of T on $C_c^{\infty}(\mathbb{R} \setminus \{0\}),$
- $T_0 :=$ the free Laplacian on \mathbb{R} ,
- $S_0 :=$ the restriction of T_0 on $C_c^{\infty}(\mathbb{R} \setminus \{0\}),$
- 2. Show that $S = S_0$.
- 3. Let $\lambda \in \mathbb{C}$. Show that ker $(S^* \lambda)$ is contained in $C^{\infty}((-\infty, 0]) \cap C^{\infty}([0, \infty))$ and is finite-dimensional.
- 4. Deduce that $(T+i)^{-1} (T_0+i)^{-1}$ is a compact operator.
- 5. Compute the essential spectrum of T.
- 6. Compute the discrete spectrum of T.

Exercise 32 (Bottom of the spectrum). Let T be a lower semibounded self-adjoint operator and t be its closed sesquilinear form.

1. Show that the following two conditions are equivalent:

(a)
$$u \in \ker (T - \Lambda_1(T)),$$

- (b) $u \in D(t)$ and $t(u, u) = \Lambda_1(T) ||u||^2$.
- 2. Let T be the Dirichlet Laplacian on an open set Ω . Show: if inf spec T is an eigenvalue, then it is strictly positive.

Exercise 33 (Poincaré-Wirthinger inequality).

1. Let T be a lower sembounded self-adjoint operator and t be its closed sesquilinear form. Assume that $\Lambda_1(T)$ is an isolated point of spec T and denote by P the orthogonal projector on ker $(T - \Lambda_1(T))$. Show that for any $u \in D(t)$ one has the inequality

$$t(u, u) \ge \Lambda_1(T) ||Pu||^2 + \Lambda_2(T) ||(I - P)u||^2.$$

2. Let $\Omega \subset \mathbb{R}^d$ be a bounded connected open set with Lipschitz boundary and T be the Neumann Laplacian in Ω . Show that for any $u \in H^1(\Omega)$ one has

$$\int_{\Omega} |\nabla u(x)|^2 \, \mathrm{d}x \ge E_2(T) \int_{\Omega} \left| u(x) - \frac{1}{|\Omega|} \int_{\Omega} u(y) \, \mathrm{d}y \right|^2 \, \mathrm{d}x.$$

Exercise 34 (0 is always in the Neumann spectrum).

Let $\Omega \subset \mathbb{R}^d$ be an arbitrary open set and T be the Neumann Laplacian in Ω . We want to show that $0 \in \operatorname{spec} T$.

For $n \in \mathbb{N}$ denote $\Omega_n := \Omega \cap \{x \in \mathbb{R}^d : |x| < n\}.$

1. Show that for some $n_k \to +\infty$ one has

$$\frac{|\Omega_{n_k}| - |\Omega_{n_k-1}|}{|\Omega_{n_k-1}|} \xrightarrow{k \to \infty} 0.$$

2. Let $\chi : \mathbb{R} \to \mathbb{R}$ be a C^{∞} -function with $\chi(t) = 1$ for t < 0 and $\chi(t) = 0$ for $t \ge 1$. Consider the functions

$$\varphi_n: \Omega \to \mathbb{R}, \quad \varphi_n(x) = \chi (|x| - (n-1)), \quad n \in \mathbb{N}.$$

Show that there exist K > 0 and $N \in \mathbb{N}$ such that

$$\frac{\int_{\Omega} |\nabla \varphi_n|^2 \,\mathrm{d}x}{\int_{\Omega} |\varphi_n|^2 \,\mathrm{d}x} \le K \,\frac{|\Omega_n| - |\Omega_{n-1}|}{|\Omega_{n-1}|} \text{ for any } n \ge N.$$

3. Deduce that $0 \in \operatorname{spec} T$.

Exercise 35 (Neumann Laplacians: rooms and passages). Let $\Omega \subset \mathbb{R}^2$ be an open set that can be decomposed in infinitely many rectangles as shown on the picture:

Namely let $a_j, b_j, c_j, d_j > 0$. Define

$$A_k := c_0 + \sum_{j=1}^{k-1} (a_j + c_j), \quad k \in \mathbb{N}, \qquad A'_k := A_{k+1} - c_k, \quad k \in \mathbb{N}_0, \qquad L := \lim_{k \to \infty} A_k.$$

Consider the function $h: (0, L) \to (0, \infty)$,

$$h(x) := \begin{cases} d_j, & A'_j < x \le A_{j+1} \text{ for some } j \in \mathbb{N}_0, \\ b_j, & A_j < x \le A'_j \text{ for some } j \in \mathbb{N}, \end{cases}$$

and the open set

$$\Omega := \{ (x, y) : 0 < x < L, \ 0 < y < h(x) \}.$$

Pick any C^{∞} function $\chi : \mathbb{R} \to \mathbb{R}$ with $\chi(t) = 0$ for $t < -\frac{1}{2}$ and $\chi(t) = 1$ for $t \ge 0$ and consider the functions φ_n on Ω defined by

$$\varphi_n(x,y) = \chi\left(\frac{x-A_n}{c_{n-1}}\right)\chi\left(\frac{A'_n-x}{c_n}\right), \quad n \in \mathbb{N}.$$

- 1. Show that φ_n have disjoint supports.
- 2. Show: there exists a constant K > 0 such that

$$\frac{\int_{\Omega} \left| \nabla \varphi_n(x, y) \right|^2 \mathrm{d}x \,\mathrm{d}y}{\int_{\Omega} \left| \varphi_n(x, y) \right|^2 \mathrm{d}x \,\mathrm{d}y} \le K \frac{\frac{d_{n-1}}{c_{n-1}} + \frac{d_n}{c_n}}{a_n b_n} \text{ for any } n \in \mathbb{N}.$$

3. Use this computation to construct a bounded open set Ω such that the embedding $H^1(\Omega) \hookrightarrow L^2(\Omega)$ is not compact and the Neumann Laplacian in Ω has non-empty essential spectrum.

Exercise 36 (Continuity of Dirichlet eigenvalues with respect to domain).

1. Let $d \geq 2$ and $\Omega \subset \mathbb{R}^d$ be a bounded open set. For $\lambda > 0$ define

$$\Omega_{\lambda} := \left\{ (\lambda x_1, x_2, \dots, x_d) : (x_1, \dots, x_d) \in \Omega \right\}.$$

Let $n \in \mathbb{N}$ be fixed. Show that the *n*-th eigenvalue of the Dirichlet Laplacian in Ω_{λ} is continuous with respect to λ .

2. Let $\Omega_j, \Omega \subset \mathbb{R}^d$ be bounded open sets such that

$$\Omega_j \subset \Omega_{j+1} \text{ for all } j \in \mathbb{N}, \qquad \Omega = \bigcup_{j=1}^{\infty} \Omega_j.$$

Let $n \in \mathbb{N}$ be fixed. Show that the *n*-th Dirichlet eigenvalue of Ω_j converges to the *n*-th Dirichlet eigenvalue of Ω as $j \to \infty$.

Exercise 37 (Weyl asymptotics for Schrödinger operators). For any function $F : \mathbb{R}^2 \to \mathbb{R}$ we define its negative part $F_- := \max\{0, -F\}$.

Let $V : \mathbb{R}^2 \to \mathbb{R}$ be real-valued, continuous, such that $V \ge 0$ outside a compact set. Consider the parameter-dependent Schrödinger operator

$$T = -\Delta + \lambda V$$
 in $L^2(\mathbb{R}^2)$, $\lambda > 0$.

and denote

$$\mathcal{N}(\lambda) :=$$
 the number of negative eigenvalues of T

(which is finite as shown in the lectures). We are going to show that

$$\lim_{\lambda \to +\infty} \frac{\mathcal{N}(\lambda)}{\lambda} = \frac{1}{4\pi} \int_{\mathbb{R}^2} V_{-}(x) \,\mathrm{d}x.$$
(3)

Choose R > 0 such that $V(x) \ge 0$ for all $x \notin (-R, R) \times (-R, R)$. Let $n \in \mathbb{N}$. For $m = (m_1, m_2) \in (1, \dots, n) \times (1, \dots, n)$ consider the open squares

$$S_{n,m} = \left(-R + 2R\frac{m_1 - 1}{n}, -R + 2R\frac{m_1}{n}\right) \times \left(-R + 2R\frac{m_2 - 1}{n}, -R + 2R\frac{m_2}{n}\right),$$

and denote $S_n := \bigcup_{m_1, m_2 = 1}^n S_{n,m}, \quad \widetilde{S}_n := \mathbb{R}^2 \setminus \overline{S_n}.$

Introduce $U_n^{\pm} : \mathbb{R}^2 \to \mathbb{R}$ by:

$$U_{n}^{-}(x) = \begin{cases} U_{n,m}^{-} := \inf_{x \in S_{n,m}} V, & x \in S_{n,m} \text{ with some } m, \\ 0, & x \notin S_{n}, \end{cases}$$
$$U_{n}^{+}(x) = \begin{cases} U_{n,m}^{+} := \sup_{S_{n,m}} V, & x \in S_{n,m} \text{ with some } m, \\ 0, & x \notin S_{n}, \end{cases}$$

and denote by

• $T_n^+ :=$ the self-adjoint operator in $L^2(S_n)$ given by the sesquilinear form

$$t_n^+(u,u) = \int_{S_n} |\nabla u(x)|^2 \, \mathrm{d}x + \lambda \int_{S_n} U_n^+ |u(x)|^2 \, \mathrm{d}x, \quad D(t_n^+) = H_0^1(S_n)$$

• $T_n^- :=$ the self-adjoint operator in $L^2(\mathbb{R}^2)$ given by the sesquilinear form

$$t_n^-(u,u) = \int_{S_n \cup \widetilde{S}_n} \left| \nabla u(x) \right|^2 \mathrm{d}x + \lambda \int_{\mathbb{R}^2} U_n^- \left| u(x) \right|^2 \mathrm{d}x, \quad D(t_n^-) = H^1(S_n \cup \widetilde{S}_n).$$

- 1. Show that T_n^{\pm} can be represented as direct sums of operators $A_{n,m}^{\pm}$ in $L^2(S_{n,m})$ and \widetilde{A}_n in $L^2(\widetilde{S}_n)$ whose spectra can be computed explicitly.
- 2. Let $\mathcal{N}_n^{\pm}(\lambda)$ be the number of negative eigenvalues of T_n^{\pm} . Show that both numbers are finite and that

$$\mathcal{N}_n^+(\lambda) \leq \mathcal{N}(\lambda) \leq \mathcal{N}_n^-(\lambda)$$
 for all $n \in \mathbb{N}$ and $\lambda > 0$

3. Show that

$$\lim_{\lambda \to +\infty} \frac{\mathcal{N}_n^{\pm}(\lambda)}{\lambda} = \frac{1}{4\pi} \int_{\mathbb{R}^2} \left(U_n^{\pm} \right)_{-}(x) \, \mathrm{d}x.$$

4. Let $\varepsilon > 0$. Show: one can find $n_{\varepsilon} \in \mathbb{N}$ such that

$$\left| \int_{\mathbb{R}^2} \left(U_n^{\pm} \right)_{-}(x) \, \mathrm{d}x - \int_{\mathbb{R}^2} V_{-}(x) \, \mathrm{d}x \right| < \varepsilon \text{ for all } n \ge n_{\varepsilon}..$$

5. Show the relation (3).

Exercise 38 (Rapidly decaying potentials produce finitely many eigenvalues). Let $d \ge 3$ and $V \in L^{\infty}(\mathbb{R}^d)$ real-valued with

$$V(x) = o\left(\frac{1}{|x|^2}\right)$$
 for $|x| \to \infty$.

Consider the Schrödinger operator $T = -\Delta + V$ in $L^2(\mathbb{R}^d)$.

1. Compute the essential spectrum of T.

Let H be the Hardy potential,

$$H: \mathbb{R}^d \ni x \mapsto \frac{(d-2)^2}{4|x|^2} \in \mathbb{R}.$$

- 2. Show: for some $a \in (0,1)$ one has $V \geq -aH + W$, where W is a bounded real-valued potential vanishing outside a compact set.
- 3. Show that $T \ge -(1-a)\Delta + W$.
- 4. Deduce that T has at most finitely many negative eigenvalues.

Exercise 39 (Dirichlet Laplacians in infinite cylinders).

Let $\omega \subset \mathbb{R}^d$ be a bounded open set and

$$\Omega := \omega \times \mathbb{R} \subset \mathbb{R}^{d+1}.$$

We denote the points of $x \in \mathbb{R}^{d+1}$ as x = (x', y) with $x' \in \mathbb{R}^d$ and $y \in \mathbb{R}$. Denote by T_{ω} and T_{Ω} the Dirichlet Laplacians in ω and Ω respectively and denote

$$\Lambda := E_1(T_\omega).$$

- 1. Show that $T_{\Omega} \geq \Lambda$.
- 2. Show: if $u \in D(T_{\omega})$ and $\varphi \in C_c^{\infty}(\mathbb{R})$, then the function $v : (x', y) \mapsto u(x')\varphi(y)$ belongs to $D(T_{\Omega})$, and compute $T_{\Omega}v$.

3. Let u be an eigenfunction of T_{ω} for the first eigenvalue. Furthermore, let $\chi \in C_c^{\infty}(\mathbb{R})$ with $\chi(t) = 1$ for $|t| \leq 1$ and $\chi(t) = 0$ for $|t| \geq 2$. Let $k \geq 0$. Show that the functions

$$v_n: (x', y) \mapsto u(x')e^{iky}\chi\left(\frac{y}{n}\right)$$

form a Weyl sequence for T_{Ω} and $\Lambda + k^2$.

4. Show that spec $T_{\Omega} = [\Lambda, \infty)$.

Let $V \in C^0(\overline{\Omega})$ be real-valued with $V(x) \to 0$ as $|x| \to \infty$.

5. Recall why $T_{\Omega} + V$ is a well-defined self-adjoint operator, and show that its essential spectrum is $[\Lambda, \infty)$.

Hint: Take the above functions v_n and consider $w_n : (x, y) \mapsto v_n(x, y - 3n)$. One may also use Persson's theorem.

- 6. Assume in addition that
 - there exists $W \in L^1(\mathbb{R})$ with $|V(x', y)| \leq W(y)$ for all $(x', y) \in \Omega$,
 - $V \leq 0$,
 - there exists a non-empty interval $(a, b) \subset \mathbb{R}$ such that V(x', y) < 0 for all $(x', y) \in \omega \times (a, b)$.

Show that $T_{\Omega} + V$ has at least one eigenvalue in $(-\infty, \Lambda)$.

Exercise 40 (Dirichlet Laplacians in half-infinite cylinders and perturbations). Let $\omega \subset \mathbb{R}^d$ be a bounded open set and

$$\Omega := \omega \times (0, \infty) \subset \mathbb{R}^{d+1}.$$

We denote the points of $x \in \mathbb{R}^{d+1}$ as x = (x', y) with $x' \in \mathbb{R}^d$ and $y \in \mathbb{R}$. Denote

$$\Lambda := E_1(T_\omega)$$

and let T be the Dirichlet Laplacian in Ω . Let $V \in C^0(\overline{\Omega})$ be real-valued with $V(x) \to 0$ as $|x| \to \infty$.

- 1. Show that spec $T = [\Lambda, \infty)$.
- 2. Show that $\operatorname{spec}_{\operatorname{ess}}(T+V) = [\Lambda, \infty)$. Hint: one may proceed very similarly to Exercise 39.
- 3. Assume that $V(x) = o(|x|^{-2})$ as $|x| \to \infty$. Show: there exists $\lambda_0 > 0$ such that one has $\operatorname{spec}(T + \lambda V) = [\Lambda, \infty)$ for all $\lambda \in (-\lambda_0, \lambda_0)$.

Hint: one may use the one-dimensional Hardy inequality (Exercise 14).

Now let $\widetilde{\Omega} \subset \mathbb{R}^{d+1}$ be an open set such that:

- $\Omega_+ := \widetilde{\Omega} \cap \{(x', y) : y > 0\} = \Omega,$
- $\Omega_{-} := \widetilde{\Omega} \cap \{(x', y) : y < 0\}$ is bounded,

in other words, $\widetilde{\Omega}$ is obtained by attaching a bounded open set to the left end of Ω . Denote by \widetilde{T} the Dirichlet Laplacian in $\widetilde{\Omega}$.

4. Show that $\operatorname{spec}_{\operatorname{ess}} \widetilde{T} = [\Lambda, \infty).$

For open $U \subset \widetilde{\Omega}$ denote

$$\widetilde{C}^{\infty}_{c}(U) = \left\{ u: U \to \mathbb{C} : u \text{ can be extended to a function in } C^{\infty}_{c}(\widetilde{\Omega}) \right\}$$

and consider the sesquilinear forms t_{\pm} in $L^2(\Omega_{\pm})$ given by

$$t_{\pm}(u,u) = \int_{\Omega_{\pm}} |\nabla u|^2 \, \mathrm{d}x, \quad D(t_{\pm}) = \widetilde{C}_c^{\infty}(\Omega_{\pm}).$$

5. Show that both t_{\pm} are closable.

We denote their closures again by t_{\pm} and the associated self-adjoint operators in $L^2(\Omega_{\pm})$ by T_{\pm} .

6. Show that T_{-} has compact resolvent.

Hint: Let R > 0 such that $\Omega_{-} \subset (-R, R)^{d} \times (-R, 0) =: B_{R}$. Show that the embedding $D(t_{-}) \hookrightarrow H^{1}(B_{R})$ is continuous.

- 7. Show that spec $T_+ = [\Lambda, \infty)$.
- 8. Show that \widetilde{T} has at most finitely many eigenvalues in $(-\infty, \Lambda)$. Hint: Compare \widetilde{T} with $T_{-} \oplus T_{+}$.
- 9. Propose an explicit example of $\widetilde{\Omega}$ of the above type such that \widetilde{T} actually has at least one eigenvalue in $(-\infty, \Lambda)$.