## Spectral theory of differential operators Exercise set 1

Exercise 1 (Unbounded+continuous). In this exercise, by the sum $A+B$ of a linear operator $A$ with a continuous operator $B$ (both acting in a Hilbert space $\mathcal{H}$ ), we mean the operator defined by $A+B: u \mapsto A u+B u$ on the domain $D(A+B)=$ $D(A)$.

1. Assume that $A$ is closable. Show that $A+B$ is closable with $\overline{A+B}=\bar{A}+B$.
2. Assume, in addition, that $A$ is densely defined. Show that $(A+B)^{*}=A^{*}+B^{*}$.

Exercise 2 (Maximality). Let $A$ and $B$ be self-adjoint operators in a Hilbert space $\mathcal{H}$ such that $D(A) \subset D(B)$ and $A u=B u$ for all $u \in D(A)$. Show that $D(A)=D(B)$. (This property is called the maximality of self-adjoint operators.)

Exercise 3 (Unitary equivalence).

1. Let $\mathcal{H}_{1}$ and $\mathcal{H}_{2}$ be Hilbert spaces. Recall that a linear operator $U: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ is called unitary if it is bijective and $\|U f\|=\|f\|$ for all $f \in \mathcal{H}_{1}$ (which is equivalent to $U^{*}=U^{-1}$ ).
Let $A$ be a linear operator in $\mathcal{H}_{1}, B$ be a linear operator in $\mathcal{H}_{2}$. Assume that there exists a unitary operator $U: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ such that $U D(A)=D(B)$ and $U A U^{-1} f=B f$ for all $f \in D(B)$ : such $A$ and $B$ are called unitary equivalent, one uses the writing $B=U A U^{-1}$.
Let $A$ and $B$ be as above. Show:
(a) if $A$ is closable then $B$ is closable too, and in that case $\bar{B}=U \bar{A} U^{-1}$.
(b) if $A$ is closable and densely defined, then also $B$ is closable and densely defined and $B^{*}=U A^{*} U^{-1}$.
(c) If $A$ is closed/symmetric/self-adjoint, then also $B$ has the respective property.
(Remark that in all questions the roles of $A$ and $B$ can be interchanged.)
2. Let $\left(\lambda_{n}\right)$ be an arbitrary sequence of complex numbers, $n \in \mathbb{N}$. In the Hilbert space $\ell^{2}(\mathbb{N})$ consider the following linear operator $S$ :

$$
\begin{gathered}
D(S)=\left\{\left(x_{n}\right): \text { there exists } N \text { such that } x_{n}=0 \text { for all } n>N\right\}, \\
S\left(x_{n}\right)=\left(\lambda_{n} x_{n}\right)
\end{gathered}
$$

Describe $\bar{S}$ and $S^{*}$
3. Let $\mathcal{H}$ be a separable Hilbert space and $\left(e_{n}\right)$ be an orthonormal basis in $\mathcal{H}$. Consider the linear operator $T$ with

$$
D(T):=\text { the set of the finite linear combinations of } e_{n}
$$ and assume that there exist $\lambda_{n} \in \mathbb{C}$ such that $T e_{n}=\lambda_{n} e_{n}$ for all $n$.

(a) Describe $\bar{T}$ and $T^{*}$.
(b) Let all $\lambda_{n}$ be real. Show that $T$ is essentially self-adjoint.

Exercise 4 (Harmonic oscillator in 1D). Consider the following differential expressions on $\mathbb{R}$ :

$$
L^{+}:=-\frac{d}{d x}+x, \quad L^{-}:=\frac{d}{d x}+x, \quad H:=-\frac{d^{2}}{d x^{2}}+x^{2} .
$$

For the moment we consider them as linear maps on $C^{\infty}(\mathbb{R})$,

$$
\left(L^{+} f\right)(x)=-f^{\prime}(x)+x f(x) \text { etc. }
$$

1. Show the identities $H=L^{+} L^{-}+I$ and $L^{+}(H+2 I)=H L^{+}$, with $I$ being the identity map.
2. Consider the function $\phi_{1}: x \mapsto e^{-x^{2} / 2}$. Show that $\phi_{1}$ is an eigenfunction of $H$ and find the corresponding eigenvalue $\lambda_{1}$.
3. For $n \geq 2$ define recursively $\phi_{n}:=L^{+} \phi_{n-1}$. Show that all $\phi_{n}$ are eigenfunctions of $H$ and find the corresponding eigenvalues $\lambda_{n}$.

Now consider $\mathcal{H}:=L^{2}(\mathbb{R})$ and the linear operator $S$ :

$$
S: f \mapsto H f, \quad D(S):=C_{c}^{\infty}(\mathbb{R})
$$

4. Is $S$ closable? symmetric?
5. Let $f$ be a finite linear combination of $\phi_{n}$. Show that $f \in D(\bar{S})$.

Hint: Let $\chi \in C_{c}^{\infty}(\mathbb{R})$ with $\chi(x)=1$ for $|x| \leq 1$ and $\chi(x)=0$ for $|x| \geq 2$. Consider the functions $\chi_{N}: x \mapsto \chi\left(\frac{x}{N}\right)$ and $f_{N}:=\chi_{N} f$ with large $N$.
6. Show that $\left(\phi_{n}\right)$ are mutually orthogonal in $\mathcal{H}$.
7. Let $f \in \mathcal{H}$ with $f \perp \phi_{n}$ for all $n$.
(a) Show that $f$ is orthogonal to all functions of the form $x^{n} e^{-x^{2} / 2}$ with $n \in \mathbb{N}_{0}$.
(b) Show that the function

$$
F: \mathbb{C} \ni z \mapsto \int_{\mathbb{R}} f(x) e^{-x^{2} / 2} e^{-i z x} \mathrm{~d} x \in \mathbb{C}
$$

is holomorph and compute $F^{(n)}(0)$ for all $n \in \mathbb{N}_{0}$.
(c) Deduce that $f=0$.
(d) Deduce that there exists an orthonormal basis of $\mathcal{H}$ consisting of eigenfunctions of $\bar{S}$.
8. Show that $S$ is essentially self-adjoint.

Exercise 5. Consider the operator $M_{f}$ from the lecture: $\Omega \subset \mathbb{R}^{d}$ is an open set, $\mathcal{H}:=L^{2}(\Omega)$, pick $f \in C^{0}(\Omega)$, then

$$
M_{f}: u \mapsto f u \text { for } u \in D\left(M_{f}\right)=\left\{u \in L^{2}(\Omega): f u \in L^{2}(\Omega)\right\}
$$

Give a detailed proof for $M_{f}^{*}=M_{\bar{f}}$.
Exercise 6. Let $\mathcal{H}:=L^{2}(0,1)$. For $\lambda \in \mathbb{C}$ consider the linear operator

$$
T: f \mapsto i f^{\prime}, \quad D(T):=\left\{f \in C^{\infty}([0,1]): f(1)=\lambda f(0)\right\}
$$

1. For which $\lambda$ is $T$ symmetric?
2. For which $\lambda$ is $T$ closable?

Exercise 7. Consider

$$
\Omega=\left\{\left(x_{1}, x_{2}\right): x_{2}>0\right\} \subset \mathbb{R}^{2}, \quad P=\Delta .
$$

Choose $\chi \in C_{c}^{\infty}\left(\mathbb{R}^{2}\right)$ with $\chi(x)=1$ for $|x|<1$ and consider the function

$$
u: \Omega \ni x \mapsto \chi(x) \log |x| \in \mathbb{C}
$$

Show that $u \in D\left(P_{\max }\right)$ but $u \notin H^{2}(\Omega)$.

## Exercise 8.

1. Let $f \in L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{d}\right)$ and $\varphi \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$. Recall why the convolution $f * \varphi$ is well-defined and belongs to $C^{\infty}\left(\mathbb{R}^{d}\right)$.
2. Let $k \in \mathbb{N}$ and $f \in H^{k}\left(\mathbb{R}^{n}\right)$.
(a) Let $\varphi \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$. Show that $f * \varphi \in H^{k}\left(\mathbb{R}^{n}\right)$.
(b) Let $\rho_{\delta}$ be as in the lectures. Show that $f * \rho_{\delta}$ converges to $f$ in $H^{k}\left(\mathbb{R}^{n}\right)$ for $\delta \rightarrow 0^{+}$.
(c) Let $\chi \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ such that $\chi(x)=1$ for $|x| \leq 1$ and $\chi(x)=0$ for $|x| \geq 2$. For $N>0$ define $\chi_{N}: x \mapsto \chi\left(\frac{x}{N}\right)$. Show that $\chi_{N} f$ converges to $f$ in $H^{k}\left(\mathbb{R}^{n}\right)$ for $\varepsilon \rightarrow 0^{+}$.
3. Show that $C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ is dense in $H^{k}\left(\mathbb{R}^{n}\right)$ for any $k \in \mathbb{N}$.

Exercise 9 (Sobolev embedding theorem). Let $k, d \in \mathbb{N}$ and $m \in \mathbb{N}_{0}$ with $k>m+\frac{d}{2}$.

1. Show: there exists $c>0$ such that $\left\|\partial^{\alpha} \varphi\right\|_{\infty} \leq c\|\varphi\|_{H^{k}\left(\mathbb{R}^{d}\right)}$ for all $\alpha \in \mathbb{N}_{0}^{d}$ with $|\alpha| \leq m$ and all $\varphi \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$.
Hint: Write the Fourier inversion formula for $\partial^{\alpha} \varphi$, multiply the subintegral function by $1 \equiv\langle\xi\rangle^{-k}\langle\xi\rangle^{k}$ and use the Cauchy-Schwarz inequality.
2. Equip

$$
C_{L^{\infty}}^{m}\left(\mathbb{R}^{d}\right):=\left\{u \in C^{\infty}\left(\mathbb{R}^{d}\right): \partial^{\alpha} u \in L^{\infty}\left(\mathbb{R}^{d}\right) \text { for all } \alpha \in \mathbb{N}_{0}^{d} \text { with }|\alpha| \leq m\right\}
$$

with the norm $\|u\|_{m, \infty}:=\sum_{|\alpha| \leq m}\left\|\partial^{\alpha} u\right\|_{\infty}$.
Show that $H^{k}\left(\mathbb{R}^{d}\right) \subset C_{L^{\infty}}^{m}\left(\mathbb{R}^{d}\right)$ and that the embedding is continuous.
Exercise 10 (Sobolev spaces $\boldsymbol{H}_{\mathbf{0}}^{\boldsymbol{k}}$ ). For a non-empty open set $\Omega \subset \mathbb{R}^{n}$ and $k \in \mathbb{N}$ define

$$
H_{0}^{k}(\Omega):=\text { the closure of } C_{c}^{\infty}(\Omega) \text { in } H^{k}(\Omega) .
$$

Let $\Omega \subset \widetilde{\Omega} \subset \mathbb{R}^{n}$ be non-empty open sets. For a function $u$ defined on $\Omega$ we denote by $\widetilde{u}$ its extension by zero to $\widetilde{\Omega}$.

Show: if $u \in H_{0}^{k}(\Omega)$, then $\widetilde{u} \in H^{k}(\widetilde{\Omega})$ with $\|\widetilde{u}\|_{H^{k}(\widetilde{\Omega})}=\|u\|_{H^{k}(\Omega)}$.

## Spectral theory of differential operators Exercise set 2

Exercise 11 (Sesquilinear forms and bounded operators). Let $t$ be a closed sesquilinear form in $\mathcal{H}$ and $T$ be the operator generated by $t$. Furthermore, let $B=B^{*} \in \mathcal{B}(\mathcal{H})$. Show:

1. the sesquilinear form

$$
t_{B}:(u, v) \mapsto t(u, v)+\langle u, B v\rangle_{\mathcal{H}}, \quad D\left(t_{B}\right)=D(t),
$$

is closed,
2. the operator $T_{B}$ generated by $t_{B}$ is

$$
T_{B}: u \mapsto T u+B u, \quad D\left(T_{B}\right)=D(T)
$$

Exercise 12 (Direct sums of forms and operators). Let $t_{j}$ be closed sesquilinear forms in Hilbert spaces $\mathcal{H}_{j}$ and $T_{j}$ be the associated operators in $\mathcal{H}_{j}, j \in\{1,2\}$. Recall that $\mathcal{H}:=\mathcal{H}_{1} \times \mathcal{H}_{2}$ is a Hilbert space for the scalar product

$$
\left\langle\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right)\right\rangle_{\mathcal{H}_{1} \times \mathcal{H}_{2}}:=\left\langle u_{1}, v_{1}\right\rangle_{\mathcal{H}_{1}}+\left\langle u_{2}, v_{2}\right\rangle_{\mathcal{H}_{2}} .
$$

1. Show that the sesquilinear form $t$ in $\mathcal{H}$,

$$
D(t)=D\left(t_{1}\right) \times D\left(t_{2}\right), \quad t\left(\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right)\right)=t_{1}\left(u_{1}, v_{1}\right)+t_{2}\left(u_{2}, v_{2}\right)
$$

is closed. We write $t=t_{1} \oplus t_{2}$ and say that $t$ is the direct sum of $t_{1}$ and $t_{2}$.
2. Show that the operator $T$ generated by $t$ is the direct sum, $T=T_{1} \oplus T_{2}$, which is defined by

$$
D(T)=D\left(T_{1}\right) \times D\left(T_{2}\right), \quad T\left(u_{1}, u_{2}\right)=\left(T_{1} u_{1}, T_{2} u_{2}\right)
$$

Exercise 13 (Sesquilinear forms and unitary equivalence).

1. Let $\Theta: \mathcal{H}^{\prime} \rightarrow \mathcal{H}$ be a unitary operator between Hilbert spaces $\mathcal{H}^{\prime}$ and $\mathcal{H}$. Let $t$ be a closed sesquilinear form in $\mathcal{H}$ and $T$ be the operator in $\mathcal{H}$ generated by $t$. Define a sesquilinear form $t^{\prime}$ in $\mathcal{H}^{\prime}$ by

$$
D\left(t^{\prime}\right)=\Theta^{-1} D(t), \quad t^{\prime}(u, v)=t(\Theta u, \Theta v)
$$

Show that $t^{\prime}$ is closed and that the operator $T^{\prime}$ in $\mathcal{H}^{\prime}$ generated by $t^{\prime}$ is unitarily equivalent to $T$.
2. Let $\Omega, \Omega^{\prime} \subset \mathbb{R}^{d}$ be open subsets and $\Phi: \Omega \rightarrow \Omega^{\prime}$ be a $C^{\infty}$-diffeomorphism. Show that the weak derivatives on $\Omega$ and $\Omega^{\prime}$ satisfy the usual composition rule

$$
\nabla(u \circ \Phi)=((\nabla u) \circ \Phi) D \Phi
$$

(if one writes $\nabla u$ as a line).
3. Let $\Omega, \Omega^{\prime} \subset \mathbb{R}^{d}$ be open subsets such that $\Omega^{\prime}=\Phi(\Omega)$ for some isometry $\Phi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$. Show that the Dirichlet/Neumann Laplacian in $\Omega^{\prime}$ is unitarily equivalent to the Dirichlet/Neumann Laplacian in $\Omega$.
Hint: Any isometry $\Phi$ acts as $\Phi: x \mapsto A x+b$ with a unitary matrix $A$ and $b \in \mathbb{R}^{d}$. Consider the map

$$
\Theta: L^{2}\left(\Omega^{\prime}\right) \rightarrow L^{2}(\Omega), \quad \Theta u=u \circ \Phi
$$

and use the first two parts of this exercise.
4. Is there any link between the Dirichlet/Neumann Laplacians in $\Omega$ and $\lambda \Omega$ with arbitrary $\lambda>0$ ?

## Exercise 14 (Lower semiboundedness in one dimension).

1. Check if the operator $T$,

$$
D(T)=C_{c}^{\infty}(0, \infty), \quad T f=-i f^{\prime}
$$

is semibounded from below in $\mathcal{H}=L^{2}(0, \infty)$.
Hint: consider $f: x \mapsto \chi(x) e^{i k x}$ with suitable $k \in \mathbb{R}$ and $\chi \in C_{c}^{\infty}(0, \infty)$.
2. Show the inequality

$$
\|f\|_{\infty}^{2} \leq \varepsilon \int_{\mathbb{R}}\left|f^{\prime}\right|^{2} \mathrm{~d} x+\frac{1}{\varepsilon} \int_{\mathbb{R}}|f|^{2} \mathrm{~d} x \text { for all } f \in H^{1}(\mathbb{R}) \text { and } \varepsilon>0
$$

Hint: One can start with $|f(x)|^{2}=\int_{-\infty}^{x}\left(|f|^{2}\right)^{\prime}$ for $f \in C_{c}^{\infty}(\mathbb{R})$.
3. Let $V \in L^{2}(\mathbb{R})$ be real-valued. Show that the operator

$$
T: f \mapsto-f^{\prime \prime}+V f, \quad D(T)=C_{c}^{\infty}(\mathbb{R})
$$

is semibounded from below in $\mathcal{H}=L^{2}(\mathbb{R})$.
4. Show that for any $f \in C_{c}^{\infty}(0, \infty)$ one has the Hardy inequality

$$
\int_{0}^{\infty}\left|f^{\prime}(x)\right|^{2} \mathrm{~d} x \geq \int_{0}^{\infty} \frac{|f(x)|^{2}}{4 x^{2}} \mathrm{~d} x
$$

Hint: represent $f(x)=\sqrt{x} g(x)$.
5. Let $V \in L^{2}(0, \infty)$ be real-valued and $\alpha \in \mathbb{R}$. Show that the operator $T$,

$$
D(T)=C_{c}^{\infty}(0, \infty), \quad(T f)(x)=-f^{\prime \prime}(x)+\left(\frac{\alpha}{x}+V(x)\right) f(x)
$$

is semibounded from below in $\mathcal{H}=L^{2}(0, \infty)$.

Exercise 15 (Lower semiboundedness in higher dimensions). We will use the following assertion without proof: If $X \subset \mathbb{R}^{d}$ is closed and $f: X \rightarrow \mathbb{R}$ is a bounded continuous function, then $f$ can be extended to a bounded continuous function on the whole of $\mathbb{R}^{d}$. (The assertion holds in a much more general setting of topological spaces and is known as Tietze extension theorem.)

Let $\Omega \subset \mathbb{R}^{d}$ be a bounded open set with $C^{1}$ boundary and $n: \partial \Omega \rightarrow \mathbb{R}^{d}$ be the outer unit normal on $\partial \Omega$. Show:

1. $n$ can be extended to a bounded continuous function $N: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$.
2. there exists a bounded $C^{\infty}$ function $\widetilde{N}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ with $\|\widetilde{N}-N\|_{\infty}<\frac{1}{2}$.
3. there holds $\widetilde{N} \cdot n \geq \frac{1}{2}$ on $\partial \Omega$.
4. for any $u \in C^{\infty}(\bar{\Omega})$ there holds

$$
\int_{\partial \Omega}|u|^{2} \widetilde{N} \cdot n \mathrm{~d} s=\int_{\Omega}\left[(\bar{u} \nabla u+u \overline{\nabla u}) \cdot \tilde{N}+|u|^{2} \operatorname{div} \tilde{N}\right] \mathrm{d} x .
$$

5. for any $\varepsilon>0$ there exists $C_{\varepsilon}>0$ such that for any $u \in C^{\infty}(\bar{\Omega})$ there holds

$$
\int_{\partial \Omega}|u|^{2} \mathrm{~d} s \leq \varepsilon \int_{\Omega}|\nabla u|^{2} \mathrm{~d} x+C_{\varepsilon} \int_{\Omega}|u|^{2} \mathrm{~d} x .
$$

6. for any bounded measurable function $\alpha: \partial \Omega \rightarrow \mathbb{R}$ the operator $T$

$$
T: u \mapsto-\Delta u, \quad D(T)=\left\{u \in C^{\infty}(\bar{\Omega}): \partial_{n} u=\alpha u \text { on } \partial \Omega\right\}
$$

is semibounded from below in $\mathcal{H}=L^{2}(\Omega)$.
Remark: the boundary condition $\partial_{n} u=\alpha u$ is called Robin boundary condition.
There exists an alternative terminology (sometimes considered as obsolete but still in use): the Dirichlet/Neumann/Robin boundary conditions are referred to as the first/second/third type boundary conditions.

## Spectral theory of differential operators Exercise set 3

## Exercise 16 (Spectrum, direct sums, matrix operators).

1. Let $T_{j}$ be linear operators in Hilbert spaces $\mathcal{H}_{j}, j \in\{1,2\}$. Show:

$$
\operatorname{spec}\left(T_{1} \oplus T_{2}\right)=\operatorname{spec} T_{1} \cup \operatorname{spec} T_{2}, \quad \operatorname{spec}_{\mathrm{p}}\left(T_{1} \oplus T_{2}\right)=\operatorname{spec}_{\mathrm{p}} T_{1} \cup \operatorname{spec}_{\mathrm{p}} T_{2}
$$

2. Let $\Omega \subset \mathbb{R}^{d}$ be a non-empty open set and let $L: \Omega \rightarrow M_{2}(\mathbb{C})$ be a continuous $2 \times 2$ matrix function such that $L(x)^{*}=L(x)$ for all $x \in \Omega$. Define an operator $A$ in $\mathcal{H}=L^{2}\left(\Omega, \mathbb{C}^{2}\right)\left(L^{2}\right.$-functions with values in $\left.\mathbb{C}^{2}\right)$ by

$$
A f(x)=L(x) f(x), \quad D(A)=\left\{f \in \mathcal{H}: \int_{\Omega}\|L(x) f(x)\|_{\mathbb{C}^{2}}^{2} \mathrm{~d} x<+\infty\right\}
$$

(a) Show that $A$ is self-adjoint.
(b) Let $\lambda_{1}(x) \leq \lambda_{2}(x)$ be the eigenvalues of $L(x)$. Show:

$$
\operatorname{spec} A=\overline{\operatorname{ran} \lambda_{1}} \cup \overline{\operatorname{ran} \lambda_{2}}
$$

and find a similar representation for $\operatorname{spec}_{\mathrm{p}} A$.
Hint: For each $x \in \Omega$, let $\xi_{1}(x)$ and $\xi_{2}(x)$ be suitably chosen eigenvectors of $L(x)$. Consider the map

$$
U: \mathcal{H} \rightarrow \mathcal{H}, \quad U f(x):=\binom{\left\langle\xi_{1}(x), f(x)\right\rangle_{\mathbb{C}^{2}}}{\left\langle\xi_{2}(x), f(x)\right\rangle_{\mathbb{C}^{2}}}
$$

and the operator $B=U A U^{-1}$.
3. Consider the operator $T$ in $\mathcal{H}=l^{2}(\mathbb{Z})$ given by

$$
T f(n)=f(n-1)+f(n+1)+V(n) f(n), \quad V(n)= \begin{cases}4, & \text { if } n \text { is even } \\ -2, & \text { if } n \text { is odd }\end{cases}
$$

Compute the spectrum of $T$.
Hint: Consider the operators

$$
\begin{gathered}
U: l^{2}(\mathbb{Z}) \rightarrow l^{2}\left(\mathbb{Z}, \mathbb{C}^{2}\right), \quad U f(n):=\binom{f(2 n)}{f(2 n+1)}, \quad n \in \mathbb{Z}, \\
F: \ell^{2}\left(\mathbb{Z}, \mathbb{C}^{2}\right) \rightarrow L^{2}\left((0,2 \pi), \mathbb{C}^{2}\right), \quad(F g)(\theta)=\frac{1}{\sqrt{2 \pi}} \sum_{n \in \mathbb{Z}} g(n) e^{i n \theta}, \\
S:=U T U^{-1}, \quad \widehat{S}:=F S F^{-1} .
\end{gathered}
$$

## Exercise 17 (Sufficient condition for $[0, \infty) \subset \operatorname{spec} T)$.

1. Let $\Omega \subset \mathbb{R}^{d}$ be an open set and $T$ be a linear operator in $\mathcal{H}:=L^{2}(\Omega)$. Assume that there exists an open subset $\Omega^{\prime} \subset \Omega$ with the following properties:

- $C_{c}^{\infty}\left(\Omega^{\prime}\right) \subset D(T)$,
- for any $u \in C_{c}^{\infty}\left(\Omega^{\prime}\right)$ one has $T u=-\Delta u$,
- for any $R>0$ there is a ball of radius $R$ contained in $\Omega^{\prime}$ (open sets with this property are sometimes called quasiconical).

For any $n \in \mathbb{N}$ let $r_{n} \in \Omega^{\prime}$ such that $B_{n}\left(r_{n}\right) \subset \Omega^{\prime}$. Pick $\chi \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ with $\operatorname{supp} \chi \subset B_{1}(0)$ and $\chi=1$ in $B_{\frac{1}{2}}(0)$.
Let $k \in \mathbb{R}$. Define $u_{n} \in C_{c}^{\infty}\left(\Omega^{\prime}\right)$ by

$$
u_{n}(x)=\chi\left(\frac{x-r_{n}}{n}\right) e^{i k x_{1}}
$$

(a) Show that $\left\|u_{n}\right\|^{2} \geq c n^{d}$ for some $c>0$ independent of $n$,
(b) Show that $\left\|\left(T-k^{2}\right) u_{n}\right\|^{2}=O\left(n^{d-1}\right)$ as $n \rightarrow \infty$. Remark: one can control $L^{2}$-norms by controlling the $\|\cdot\|_{\infty}$-norm and the size of the support.
(c) Show that $[0, \infty) \subset \operatorname{spec} T$.
2. Compute the spectra of the Dirichlet and Neumann Laplacians on $(0, \infty)$.

## Exercise 18 (Dirichlet/Neumann Laplacians on intervals/rectangles).

Let $\ell \in(0, \infty)$.

1. Show that the eigenvalues of the Dirichlet Laplacian on $(0, \ell)$ are simple and given by $\pi^{2} n^{2} / \ell^{2}, n \in \mathbb{N}$,
2. Show that for any $\varphi \in C_{c}^{\infty}(0, \ell)$ one has

$$
\int_{0}^{\ell}\left|\varphi^{\prime}(x)\right|^{2} \mathrm{~d} x \geq \frac{\pi^{2}}{\ell^{2}} \int_{0}^{\ell}|\varphi(x)|^{2} \mathrm{~d} x
$$

3. Show that the eigenvalues of the Neumann Laplacian on $(0, \ell)$ are simple and given by $\pi^{2} n^{2} / \ell^{2}, n \in \mathbb{N}_{0}:=\mathbb{N} \cup\{0\}$.
4. Let $\ell_{1}, \ell_{2} \in(0, \infty)$. Compute the spectra of the Dirichlet and Neumann Laplacians on $\left(0, \ell_{1}\right) \times\left(0, \ell_{2}\right)$.

Exercise 19 (Application of the trace formula for Hilbert-Schmidt operators). Let us recall some constructions from the theory of ordinary differential equations (Green functions for boundary value problems).

Let $a_{0}, a_{1}:[a, b] \rightarrow \mathbb{C}$ be continuous functions and $L y:=y^{\prime \prime}+a_{1} y+a_{0} y$. Let $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2} \in \mathbb{C}$ and $R_{1} y:=\alpha_{1} y(a)+\alpha_{2} y^{\prime}(a), R_{2} y:=\beta_{1} y(b)+\beta_{2} y^{\prime}(b)$. Assume that the only solution to $L y=0$ with $R_{1} y=R_{2} y=0$ is the zero function.

Let $y_{1}$ be a non-zero solution of $L y=0$ with $R_{1} y=0$ and $y_{2}$ be a non-zero solution to $L y=0$ with $R_{2} y=0$. Consider $W:=y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}$ (Wronski determinant) and

$$
G(x, s)= \begin{cases}\frac{y_{1}(x) y_{2}(s)}{W(s)}, & x<s \\ \frac{y_{1}(s) y_{2}(x)}{W(s)}, & x>s\end{cases}
$$

then for any $f \in C^{0}([a, b])$ the function

$$
y(x):=\int_{a}^{b} G(x, s) f(s) \mathrm{d} s
$$

is the unique solution to $L y=f$ with $R_{1} y=R_{2} y=0$.
Now let $T$ be the Dirichlet Laplacian on the interval $(0,1)$.

1. Show that $T^{-1}$ is a Hilbert-Schmidt operator, deduce that it is an integral operator and compute its integral kernel.
2. Compute the sum of the series

$$
\sum_{n=1}^{\infty} \frac{1}{n^{4}}
$$

Exercise 20 (Perturbations of operators with compact resolvents).
Let $U \in L_{\text {loc }}^{2}(\mathbb{R})$ be real-valued, lower semibounded, $\lim _{|x| \rightarrow+\infty} U(x)=+\infty$. In addition, let $W \in L_{\text {loc }}^{2}(\mathbb{R}) \cap L^{1}(\mathbb{R})$ be real-valued and $V:=U+W$. Show that the operator

$$
T=-\frac{d^{2}}{d x^{2}}+V
$$

(defined through the Friedrichs extension) has compact resolvent.
Hint: Exercise 14 may be useful.
Exercise $21(-\Delta+V$ with compact resolvent but $V(x) \nrightarrow+\infty$ for $|x| \rightarrow+\infty)$.

1. Let $V, W \in L_{\mathrm{loc}}^{2}\left(\mathbb{R}^{d}\right)$ be real-valued, lower semibounded, with $V \leq W$. Show: if $H_{V}^{1}\left(\mathbb{R}^{d}\right)$ is compactly embedded in $L^{2}\left(\mathbb{R}^{d}\right)$, then also $H_{W}^{1}\left(\mathbb{R}^{d}\right)$ is compactly embedded in $L^{2}\left(\mathbb{R}^{d}\right)$.
2. Let $a>0$.
(a) Compute the spectrum of the operator

$$
T_{a}:=-\frac{d^{2}}{d x^{2}}+a^{2} x^{2}
$$

defined through the Friedrichs extension in $L^{2}(\mathbb{R})$.
Hint: The case $a=1$ is already known (harmonic oscillator). Consider the unitary transform $U_{a}: L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R}),\left(U_{a} f\right)(x)=\sqrt[4]{a} f(\sqrt{a} x)$, and the operators $U_{a}^{-1} T_{a} U_{a}$.
(b) Deduce that for any $\varphi \in C_{c}^{\infty}(\mathbb{R})$ there holds

$$
\int_{\mathbb{R}}\left(\left|\varphi^{\prime}(x)\right|^{2}+a^{2} x^{2}|\varphi(x)|^{2}\right) \mathrm{d} x \geq a \int_{\mathbb{R}}|\varphi(x)|^{2} \mathrm{~d} x
$$

3. Deduce that for any $\varphi \in C_{c}^{\infty}\left(\mathbb{R}^{2}\right)$ there holds

$$
\begin{aligned}
& \int_{\mathbb{R}^{2}}\left(|\nabla \varphi(x, y)|^{2}+x^{2} y^{2}|\varphi(x, y)|^{2}\right) \mathrm{d} x \mathrm{~d} y \\
& \geq \frac{1}{2} \int_{\mathbb{R}^{2}}\left(|\nabla \varphi(x, y)|^{2}+(|x|+|y|)|\varphi(x, y)|^{2}\right) \mathrm{d} x \mathrm{~d} y
\end{aligned}
$$

Hint: if $y$ is fixed, then the function $x \mapsto \varphi(x, y)$ belongs to $C_{c}^{\infty}(\mathbb{R})$
4. Deduce that the two-dimensional Schrödinger operator $T=-\Delta+x^{2} y^{2}$ has compact resolvent.

## Exercise 22 (Dirichlet Laplacians with compact resolvents in unbounded domains).

1. Write the points $x \in \mathbb{R}^{d}$ as $x=\left(x^{\prime}, x_{d}\right)$ with $x^{\prime} \in \mathbb{R}^{d-1}$ and $x_{d} \in \mathbb{R}$.

Let $\Omega \subset \mathbb{R}^{d}$ be an open set which is bounded in the $x^{\prime}$-direction, i.e. for some $r>0$ one has $\Omega \subset\left\{\left(x^{\prime}, x_{d}\right):\left|x^{\prime}\right|<r\right\}$ (i.e. $\Omega$
Let $v: \mathbb{R} \rightarrow(0, \infty)$ be continuous with $\lim _{|t| \rightarrow \infty} v(t)=+\infty$. Equip

$$
\widetilde{H}_{v}^{1}(\Omega):=\left\{u \in H_{0}^{1}(\Omega): \int_{\Omega} v\left(x_{d}\right)|u(x)|^{2} \mathrm{~d} x<\infty\right\}
$$

with the norm

$$
\|u\|_{v}^{2}:=\|u\|_{H^{1}(\Omega)}^{2}+\int_{\Omega} v\left(x_{d}\right)|u(x)|^{2} \mathrm{~d} x
$$

Show that $\widetilde{H}_{v}^{1}(\Omega)$ is compactly embedded into $L^{2}(\Omega)$.
2. Let $f: \mathbb{R} \rightarrow(0, \infty)$ be a continuous function with $\lim _{|x| \rightarrow \infty} f(x)=0$. Consider the two-dimensional domain

$$
\Omega:=\{(x, y): 0<y<f(x)\} \subset \mathbb{R}^{2}
$$

(a kind of strip whose width tends to zero at infinity).
(a) Show that for any $\varphi \in C_{c}^{\infty}(\Omega)$ there holds

$$
\int_{\Omega}|\nabla \varphi(x, y)|^{2} \mathrm{~d} x \geq \frac{1}{2} \int_{\Omega}\left(|\nabla \varphi(x, y)|^{2}+\frac{\pi^{2}}{f(x)^{2}}|\varphi(x, y)|^{2}\right) \mathrm{d} x \mathrm{~d} x
$$

Hint: for each fixed $x$ the function $y \mapsto \varphi(x, y)$ is in $C_{c}^{\infty}(0, f(x))$.
(b) Deduce that the Dirichlet Laplacian in $\Omega$ has compact resolvent.

## Spectral theory of differential operators Exercise set 4

Exercise 23 (Abstract Schrödinger equation). Let $A$ be a self-adjoint operator in a separable Hilbert space $\mathcal{H}$. Given $t \in \mathbb{R}$ we define $e^{-i t A}$ to be $f_{t}(A)$ for the function $f_{t}: \mathbb{R} \ni x \mapsto e^{-i t x} \in \mathbb{C}$. Show:

1. for each $t \in \mathbb{R}$ the operator $e^{-i t A}$ is unitary,
2. $e^{-i(t+s) A}=e^{-i t A} e^{-i s A}$ for all $t, s \in \mathbb{R}$,
3. for any $v \in \mathcal{H}$ and $t \in \mathbb{R}$ there holds $e^{-i t A} v=\lim _{s \rightarrow t} e^{-i s A} v$,
4. $e^{i t A} D(A) \subset D(A)$ and $A e^{-i t A}=e^{-i t A} A$ on $D(A)$ for any $t \in \mathbb{R}$.

For $v \in D(A)$ consider the initial value problem

$$
\begin{equation*}
i u^{\prime}(t)=A u(t) \text { for all } t \in \mathbb{R}, \quad u(0)=v \tag{1}
\end{equation*}
$$

to be satisfied by a differentiable function $u: \mathbb{R} \ni t \mapsto u(t) \in \mathcal{H}$ such that $u(t) \in$ $D(A)$ for any $t \in \mathbb{R}$. Show:
5. if $u$ is a solution of (1), then $\|u\|$ is constant.
6. the function $u: \mathbb{R} \ni t \mapsto e^{-i t A} v \in \mathcal{H}$ is a solution of (1).
7. this solution is unique.

Exercise 24 (Domains). Let $T$ be a self-adjoint operator in a separable Hilbert space $\mathcal{H}$ and let $X, \mu, h$ be as in the spectral theorem.

1. For $n \in \mathbb{N}$ with $n \geq 2$ define $D_{n}(T):=\left\{x \in D(T): T x \in D_{n-1}(T)\right\}$, where we set $D_{1}(T):=D(T)$.
(a) Show that $D_{n}(T)$ is dense in $\mathcal{H}$.
(b) Let $T_{n}$ be the restriction of $T$ on $D_{n}(T)$. Show that $T_{n}$ is essentially self-adjoint.
2. For any Borel function $f: \mathbb{R} \rightarrow \mathbb{C}$ define $f(T):=\Theta M_{f \circ h} \Theta^{-1}$. Show: if $T$ is semibounded from below, then $Q(T)=D(\sqrt{|T|})$. Recall that the form domain $Q(T)$ was defined in the chapter dealing with the Friedrichs extension.

Exercise 25 (Abstract wave equation). Let $A$ be a self-adjoint operator in a separable Hilbert space $\mathcal{H}$ such that $A \geq 0$ and $\operatorname{ker} A=\{0\}$. We say that a function $u: \mathbb{R} \rightarrow \mathcal{H}$ is a solution of the wave equation

$$
\begin{equation*}
u^{\prime \prime}(t)+A u(t)=0 \tag{2}
\end{equation*}
$$

if $u \in C^{2}(\mathbb{R}, \mathcal{H})$ and the inclusion $u(t) \in D(A)$ and the equality (2) hold for any $t \in \mathbb{R}$.

For $t \in \mathbb{R}$ we define $C_{t}, S_{t}: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
C_{t}(x)=\cos (t \sqrt{x}) \text { and } \quad S_{t}(x)=\frac{\sin (t \sqrt{x})}{\sqrt{x}} \text { for } x>0, \quad C_{t}(x)=S_{t}(x)=0 \text { for } x \leq 0
$$

Let $u_{0} \in D(A)$ and $u_{1} \in D(\sqrt{A})$ and define $\varphi, \psi: \mathbb{R} \rightarrow \mathcal{H}$ by

$$
\varphi(t)=C_{t}(A) u_{0}, \quad \psi(t)=S_{t}(A) u_{1} .
$$

1. Show that $\varphi(t)$ and $\psi(t)$ belong to $D(A)$ for any $t \in \mathbb{R}$.
2. Show that $\varphi \in C^{1}(\mathbb{R}, \mathcal{H})$ and that $\varphi^{\prime}(t)=-A S_{t}(A) u_{0}$ for any $t \in \mathbb{R}$.
3. Show that $\psi \in C^{1}(\mathbb{R}, \mathcal{H})$ and that $\psi^{\prime}(t)=C_{t}(A) u_{1}$ for any $t \in \mathbb{R}$.
4. Show that both $\varphi$ and $\psi$ are solutions of (2).

Now we would like to show that $u(t)=\varphi(t)+\psi(t)$ is the unique solution to (2) satisfying the initial conditions $u(0)=u_{0}$ and $u^{\prime}(0)=u_{1}$. Let $w$ be any solution satisfying the same initial conditions. Set $v(t):=u(t)-w(t), t \in \mathbb{R}$.
5. Show the equality

$$
\frac{d}{d t}\langle v(t), A v(t)\rangle=\left\langle v^{\prime}(t), A v(t)\right\rangle+\left\langle A v(t), v^{\prime}(t)\right\rangle
$$

Hint: use the classical definition of the derivative.
6. Show that the value $E(t)=\left\langle v^{\prime}(t), v^{\prime}(t)\right\rangle+\langle v(t), A v(t)\rangle$ is independent of $t$.
7. Show that $v(t)=0$ for all $t \in \mathbb{R}$.

Let $A:=$ the free Laplacian in $\mathcal{H}:=L^{2}(\mathbb{R})$.
8. Show that for $f \in C_{c}^{\infty}(\mathbb{R})$ one has

$$
C_{t}(A) f(x)=\frac{f(x+t)+f(x-t)}{2}, \quad S_{t}(A) f(x)=\frac{1}{2} \int_{x-t}^{x+t} f(s) \mathrm{d} s, \quad x \in \mathbb{R}
$$

Exercise 26 (Essential self-adjointness for semibounded operators). Let $T$ be a densely defined symmetric operator in a Hilbert space $\mathcal{H}$ with $T \geq 0$. Let $a>0$.

1. Show that for any $x \in D(T)$ there holds

$$
\|T x\|^{2}+a^{2}\|x\|^{2} \leq\|(T+a) x\|^{2} \leq 2\left(\|T x\|^{2}+a^{2}\|x\|^{2}\right)
$$

2. Show that $\overline{\operatorname{ran}(T+a)}=\operatorname{ran}(\bar{T}+a)$.
3. Show that the following three assertions are equivalent:
(a) $T$ is essentially self-adjoint,
(b) $\operatorname{ker}\left(T^{*}+a\right)=\{0\}$,
(c) $\operatorname{ran}(T+a)$ is dense in $\mathcal{H}$.

Exercise 27 (Kato-Rellich theorem). We are going to complete the proof of the Kato-Rellich theorem.

Let $A$ be a self-adjoint operator in a separable Hilbert space $\mathcal{H}$ and $B$ be a symmetric operator in $\mathcal{H}$ which is $A$-bounded with relative bound $<1$.

1. Let $\mathcal{D} \subset D(A)$ be a subspace on which $A$ is essentially self-adjoint. Show that $A+B$ is also essentially self-adjoint on $\mathcal{D}$.
2. Now assume additionally that $A$ is semibounded from below.
(a) Show that $\left\|B(A+\lambda)^{-1}\right\|<1$ for all sufficiently large $\lambda>0$.
(b) Deduce that $A+B$ is semibounded from below.

Exercise 28. Let $V \in L_{\text {loc }}^{\infty}\left(\mathbb{R}^{d}\right)$ be real-valued and consider the associated multiplication operator $M_{V}$ in $\mathcal{H}=L^{2}\left(\mathbb{R}^{d}\right)$.

1. Show that the spectrum of $M_{V}$ is purely essential.
2. Show that $M_{V}$ is essentially self-adjoint on $C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$.

## Exercise 29.

1. Let $T$ be the free Laplacian in $\mathcal{H}:=L^{2}\left(\mathbb{R}^{d}\right)$.
(a) Show that $\partial_{j}$ is infinitesimally small with respect to $T$.
(b) Show that $\partial_{j}$ is not $T$-compact.

Hint: compute the spectrum of $T+i \partial_{j}$.
(c) Let $a \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$. Show that $a \partial_{j}$ is $T$-compact. Hint: Use compact embeddings of $H_{0}^{1}$ in $L^{2}$ on bounded domains.
(d) Let $a \in C^{\infty}\left(\mathbb{R}^{d}\right)$ such that $\lim _{|x| \rightarrow \infty} a(x)=0$. Show that $a \partial_{j}$ is $T$ compact.
2. Let $A \in C^{\infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ such that $A$ and $\nabla A$ are bounded. Consider the operator $T_{A}:=(i \nabla+A)^{2}$ on $D\left(T_{A}\right)=C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$,

$$
T_{A}: u \mapsto \sum_{j=1}^{d}\left(i \partial_{j}+A_{j}\right)^{2} u, \quad\left(i \partial_{j}+A_{j}\right) u:=i \partial_{j} u+A_{j} u
$$

Such operators are usually called magnetic Schrödinger operators.
(a) Show that $T_{A}$ is essentially self-adjoint and determine the domain of its closure. We denote the closure again by $T_{A}$.
(b) Assume that $\lim _{|x| \rightarrow \infty}|\nabla A(x)|+|A(x)|=0$. Compute the essential spectrum of $T_{A}$, then the whole spectrum of $T_{A}$.

## Exercise 30 (Existence of several eigenvalues).

1. Let $T$ be a lower semibounded self-adjoint operator in a Hilbert space $\mathcal{H}$. Assume that the essential spectrum of $T$ is non-empty and denote

$$
\Sigma:=\inf \operatorname{spec}_{\mathrm{ess}} T
$$

Furthermore, assume that there exist $N$ linearly independent vectors $f_{1}, \ldots, f_{N}$ in $D(T)$ such that all eigenvalues of the $N \times N$ matrix

$$
\left(\left\langle f_{j},(T-\Sigma) f_{k}\right\rangle\right)_{j, k=1}^{N}
$$

are strictly negative. Show that $T$ has at least $N$ eigenvalues in $(-\infty, \Sigma)$.
2. Consider the following operator $T$ in $\mathcal{H}=L^{2}(\mathbb{R})$ :

$$
T=\frac{d^{4}}{d x^{4}}+2 \frac{d^{2}}{d x^{2}}+1, \quad D(T)=H^{4}(\mathbb{R})
$$

(a) Show that $T$ is self-adjoint and compute its spectrum. Hint: Use the Fourier transform.
(b) Let $V \in L^{\infty}(\mathbb{R}) \cap L^{1}(\mathbb{R})$ be real-valued. Show that the operator

$$
S:=T+V, \quad D(S)=H^{4}(\mathbb{R})
$$

is self-adjoint and compute its essential spectrum.
(c) Let $\mathcal{F}$ be the Fourier transform in $L^{2}(\mathbb{R})$ and $\widehat{V}:=\mathcal{F} V$. Give an explicit expression for the operator $\widehat{S}:=\mathcal{F} S \mathcal{F}^{-1}$ and describe its domain.
(d) Let $\varphi \in C_{c}^{\infty}(\mathbb{R})$ with $\varphi \geq 0$ and $\|\varphi\|_{L^{1}(\mathbb{R})}=1$. For $\varepsilon>0$ and $q \in \mathbb{R}$ consider the following functions:

$$
\varphi_{q, \varepsilon}: \mathbb{R} \ni \xi \mapsto \frac{1}{\varepsilon} \varphi\left(\frac{\xi-q}{\varepsilon}\right) .
$$

Show that these functions belong to $D(\widehat{S})$ and that

$$
\lim _{\varepsilon \rightarrow 0+}\left\langle\varphi_{q, \varepsilon}, \widehat{S} \varphi_{r, \varepsilon}\right\rangle=\widehat{V}(q-r) \quad \text { for } q, r= \pm 1
$$

(e) Assume that $\widehat{V}(0)<0$ and $|\widehat{V}(2)|<|\widehat{V}(0)|$. Show that the operator $S$ has at least two negative eigenvalues.

## Spectral theory of differential operators Exercise set 5

Exercise 31. Let $\alpha \in \mathbb{R}$. Consider the following sesquilinear form $t$ in $L^{2}(\mathbb{R})$ :

$$
t(u, u)=\int_{\mathbb{R}}\left|u^{\prime}(x)\right|^{2} \mathrm{~d} x+\alpha|u(0)|^{2}, \quad D(t)=H^{1}(\mathbb{R})
$$

1. Show that $t$ is closed. (Hint: Exercise 14.)

Denote

- $T:=$ the self-adjoint operator generated by $t$,
- $S:=$ the restriction of $T$ on $C_{c}^{\infty}(\mathbb{R} \backslash\{0\})$,
- $T_{0}:=$ the free Laplacian on $\mathbb{R}$,
- $S_{0}:=$ the restriction of $T_{0}$ on $C_{c}^{\infty}(\mathbb{R} \backslash\{0\})$,

2. Show that $S=S_{0}$.
3. Let $\lambda \in \mathbb{C}$. Show that $\operatorname{ker}\left(S^{*}-\lambda\right)$ is contained in $C^{\infty}((-\infty, 0]) \cap C^{\infty}([0, \infty))$ and is finite-dimensional.
4. Deduce that $(T+i)^{-1}-\left(T_{0}+i\right)^{-1}$ is a compact operator.
5. Compute the essential spectrum of $T$.
6. Compute the discrete spectrum of $T$.

Exercise 32 (Bottom of the spectrum). Let $T$ be a lower semibounded selfadjoint operator and $t$ be its closed sesquilinear form.

1. Show that the following two conditions are equivalent:
(a) $u \in \operatorname{ker}\left(T-\Lambda_{1}(T)\right)$,
(b) $u \in D(t)$ and $t(u, u)=\Lambda_{1}(T)\|u\|^{2}$.
2. Let $T$ be the Dirichlet Laplacian on an open set $\Omega$. Show: if $\inf \operatorname{spec} T$ is an eigenvalue, then it is strictly positive.

## Exercise 33 (Poincaré-Wirthinger inequality).

1. Let $T$ be a lower sembounded self-adjoint operator and $t$ be its closed sesquilinear form. Assume that $\Lambda_{1}(T)$ is an isolated point of $\operatorname{spec} T$ and denote by $P$ the orthogonal projector on $\operatorname{ker}\left(T-\Lambda_{1}(T)\right)$. Show that for any $u \in D(t)$ one has the inequality

$$
t(u, u) \geq \Lambda_{1}(T)\|P u\|^{2}+\Lambda_{2}(T)\|(I-P) u\|^{2}
$$

2. Let $\Omega \subset \mathbb{R}^{d}$ be a bounded connected open set with Lipschitz boundary and $T$ be the Neumann Laplacian in $\Omega$. Show that for any $u \in H^{1}(\Omega)$ one has

$$
\int_{\Omega}|\nabla u(x)|^{2} \mathrm{~d} x \geq E_{2}(T) \int_{\Omega}\left|u(x)-\frac{1}{|\Omega|} \int_{\Omega} u(y) \mathrm{d} y\right|^{2} \mathrm{~d} x .
$$

Exercise 34 ( 0 is always in the Neumann spectrum).
Let $\Omega \subset \mathbb{R}^{d}$ be an arbitrary open set and $T$ be the Neumann Laplacian in $\Omega$. We want to show that $0 \in \operatorname{spec} T$.

For $n \in \mathbb{N}$ denote $\Omega_{n}:=\Omega \cap\left\{x \in \mathbb{R}^{d}:|x|<n\right\}$.

1. Show that for some $n_{k} \rightarrow+\infty$ one has

$$
\frac{\left|\Omega_{n_{k}}\right|-\left|\Omega_{n_{k}-1}\right|}{\left|\Omega_{n_{k}-1}\right|} \xrightarrow{k \rightarrow \infty} 0 .
$$

2. Let $\chi: \mathbb{R} \rightarrow \mathbb{R}$ be a $C^{\infty}$-function with $\chi(t)=1$ for $t<0$ and $\chi(t)=0$ for $t \geq 1$. Consider the functions

$$
\varphi_{n}: \Omega \rightarrow \mathbb{R}, \quad \varphi_{n}(x)=\chi(|x|-(n-1)), \quad n \in \mathbb{N} .
$$

Show that there exist $K>0$ and $N \in \mathbb{N}$ such that

$$
\frac{\int_{\Omega}\left|\nabla \varphi_{n}\right|^{2} \mathrm{~d} x}{\int_{\Omega}\left|\varphi_{n}\right|^{2} \mathrm{~d} x} \leq K \frac{\left|\Omega_{n}\right|-\left|\Omega_{n-1}\right|}{\left|\Omega_{n-1}\right|} \text { for any } n \geq N
$$

3. Deduce that $0 \in \operatorname{spec} T$.

Exercise 35 (Neumann Laplacians: rooms and passages). Let $\Omega \subset \mathbb{R}^{2}$ be an open set that can be decomposed in infinitely many rectangles as shown on the picture:


Namely let $a_{j}, b_{j}, c_{j}, d_{j}>0$. Define
$A_{k}:=c_{0}+\sum_{j=1}^{k-1}\left(a_{j}+c_{j}\right), \quad k \in \mathbb{N}, \quad A_{k}^{\prime}:=A_{k+1}-c_{k}, \quad k \in \mathbb{N}_{0}, \quad L:=\lim _{k \rightarrow \infty} A_{k}$.
Consider the function $h:(0, L) \rightarrow(0, \infty)$,

$$
h(x):= \begin{cases}d_{j}, & A_{j}^{\prime}<x \leq A_{j+1} \text { for some } j \in \mathbb{N}_{0} \\ b_{j}, & A_{j}<x \leq A_{j}^{\prime} \text { for some } j \in \mathbb{N}\end{cases}
$$

and the open set

$$
\Omega:=\{(x, y): 0<x<L, 0<y<h(x)\} .
$$

Pick any $C^{\infty}$ function $\chi: \mathbb{R} \rightarrow \mathbb{R}$ with $\chi(t)=0$ for $t<-\frac{1}{2}$ and $\chi(t)=1$ for $t \geq 0$ and consider the functions $\varphi_{n}$ on $\Omega$ defined by

$$
\varphi_{n}(x, y)=\chi\left(\frac{x-A_{n}}{c_{n-1}}\right) \chi\left(\frac{A_{n}^{\prime}-x}{c_{n}}\right), \quad n \in \mathbb{N} .
$$

1. Show that $\varphi_{n}$ have disjoint supports.
2. Show: there exists a constant $K>0$ such that

$$
\frac{\int_{\Omega}\left|\nabla \varphi_{n}(x, y)\right|^{2} \mathrm{~d} x \mathrm{~d} y}{\int_{\Omega}\left|\varphi_{n}(x, y)\right|^{2} \mathrm{~d} x \mathrm{~d} y} \leq K \frac{\frac{d_{n-1}}{c_{n-1}}+\frac{d_{n}}{c_{n}}}{a_{n} b_{n}} \text { for any } n \in \mathbb{N}
$$

3. Use this computation to construct a bounded open set $\Omega$ such that the embedding $H^{1}(\Omega) \hookrightarrow L^{2}(\Omega)$ is not compact and the Neumann Laplacian in $\Omega$ has non-empty essential spectrum..

## Exercise 36 (Continuity of Dirichlet eigenvalues with respect to domain).

1. Let $d \geq 2$ and $\Omega \subset \mathbb{R}^{d}$ be a bounded open set. For $\lambda>0$ define

$$
\Omega_{\lambda}:=\left\{\left(\lambda x_{1}, x_{2}, \ldots, x_{d}\right):\left(x_{1}, \ldots, x_{d}\right) \in \Omega\right\} .
$$

Let $n \in \mathbb{N}$ be fixed. Show that the $n$-th eigenvalue of the Dirichlet Laplacian in $\Omega_{\lambda}$ is continuous with respect to $\lambda$.
2. Let $\Omega_{j}, \Omega \subset \mathbb{R}^{d}$ be bounded open sets such that

$$
\Omega_{j} \subset \Omega_{j+1} \text { for all } j \in \mathbb{N}, \quad \Omega=\bigcup_{j=1}^{\infty} \Omega_{j}
$$

Let $n \in \mathbb{N}$ be fixed. Show that the $n$-th Dirichlet eigenvalue of $\Omega_{j}$ converges to the $n$-th Dirichlet eigenvalue of $\Omega$ as $j \rightarrow \infty$.

Exercise 37 (Weyl asymptotics for Schrödinger operators). For any function $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ we define its negative part $F_{-}:=\max \{0,-F\}$.

Let $V: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be real-valued, continuous, such that $V \geq 0$ outside a compact set. Consider the parameter-dependent Schrödinger operator

$$
T=-\Delta+\lambda V \text { in } L^{2}\left(\mathbb{R}^{2}\right), \quad \lambda>0
$$

and denote

$$
\mathcal{N}(\lambda):=\text { the number of negative eigenvalues of } T
$$

(which is finite as shown in the lectures). We are going to show that

$$
\begin{equation*}
\lim _{\lambda \rightarrow+\infty} \frac{\mathcal{N}(\lambda)}{\lambda}=\frac{1}{4 \pi} \int_{\mathbb{R}^{2}} V_{-}(x) \mathrm{d} x \tag{3}
\end{equation*}
$$

Choose $R>0$ such that $V(x) \geq 0$ for all $x \notin(-R, R) \times(-R, R)$. Let $n \in \mathbb{N}$. For $m=\left(m_{1}, m_{2}\right) \in(1, \ldots, n) \times(1, \ldots, n)$ consider the open squares

$$
\begin{gathered}
S_{n, m}=\left(-R+2 R \frac{m_{1}-1}{n},-R+2 R \frac{m_{1}}{n}\right) \times\left(-R+2 R \frac{m_{2}-1}{n},-R+2 R \frac{m_{2}}{n}\right), \\
\text { and denote } S_{n}:=\bigcup_{m_{1}, m_{2}=1}^{n} S_{n, m}, \quad \widetilde{S}_{n}:=\mathbb{R}^{2} \backslash \overline{S_{n}} .
\end{gathered}
$$

Introduce $U_{n}^{ \pm}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by:

$$
\begin{aligned}
& U_{n}^{-}(x)= \begin{cases}U_{n, m}^{-}:=\inf _{x \in S_{n, m}} V, & x \in S_{n, m} \text { with some } m, \\
0, & x \notin S_{n},\end{cases} \\
& U_{n}^{+}(x)= \begin{cases}U_{n, m}^{+}:=\sup _{S_{n, m}} V, & x \in S_{n, m} \text { with some } m \\
0, & x \notin S_{n},\end{cases}
\end{aligned}
$$

and denote by

- $T_{n}^{+}:=$the self-adjoint operator in $L^{2}\left(S_{n}\right)$ given by the sesquilinear form

$$
t_{n}^{+}(u, u)=\int_{S_{n}}|\nabla u(x)|^{2} \mathrm{~d} x+\lambda \int_{S_{n}} U_{n}^{+}|u(x)|^{2} \mathrm{~d} x, \quad D\left(t_{n}^{+}\right)=H_{0}^{1}\left(S_{n}\right)
$$

- $T_{n}^{-}:=$the self-adjoint operator in $L^{2}\left(\mathbb{R}^{2}\right)$ given by the sesquilinear form

$$
t_{n}^{-}(u, u)=\int_{S_{n} \cup \widetilde{S}_{n}}|\nabla u(x)|^{2} \mathrm{~d} x+\lambda \int_{\mathbb{R}^{2}} U_{n}^{-}|u(x)|^{2} \mathrm{~d} x, \quad D\left(t_{n}^{-}\right)=H^{1}\left(S_{n} \cup \widetilde{S}_{n}\right)
$$

1. Show that $T_{n}^{ \pm}$can be represented as direct sums of operators $A_{n, m}^{ \pm}$in $L^{2}\left(S_{n, m}\right)$ and $\widetilde{A}_{n}$ in $L^{2}\left(\widetilde{S}_{n}\right)$ whose spectra can be computed explicitly.
2. Let $\mathcal{N}_{n}^{ \pm}(\lambda)$ be the number of negative eigenvalues of $T_{n}^{ \pm}$. Show that both numbers are finite and that

$$
\mathcal{N}_{n}^{+}(\lambda) \leq \mathcal{N}(\lambda) \leq \mathcal{N}_{n}^{-}(\lambda) \text { for all } n \in \mathbb{N} \text { and } \lambda>0
$$

3. Show that

$$
\lim _{\lambda \rightarrow+\infty} \frac{\mathcal{N}_{n}^{ \pm}(\lambda)}{\lambda}=\frac{1}{4 \pi} \int_{\mathbb{R}^{2}}\left(U_{n}^{ \pm}\right)_{-}(x) \mathrm{d} x .
$$

4. Let $\varepsilon>0$. Show: one can find $n_{\varepsilon} \in \mathbb{N}$ such that

$$
\left|\int_{\mathbb{R}^{2}}\left(U_{n}^{ \pm}\right)_{-}(x) \mathrm{d} x-\int_{\mathbb{R}^{2}} V_{-}(x) \mathrm{d} x\right|<\varepsilon \text { for all } n \geq n_{\varepsilon} .
$$

5. Show the relation (3).

Exercise 38 (Rapidly decaying potentials produce finitely many eigenvalues). Let $d \geq 3$ and $V \in L^{\infty}\left(\mathbb{R}^{d}\right)$ real-valued with

$$
V(x)=o\left(\frac{1}{|x|^{2}}\right) \text { for }|x| \rightarrow \infty .
$$

Consider the Schrödinger operator $T=-\Delta+V$ in $L^{2}\left(\mathbb{R}^{d}\right)$.

1. Compute the essential spectrum of $T$.

Let $H$ be the Hardy potential,

$$
H: \mathbb{R}^{d} \ni x \mapsto \frac{(d-2)^{2}}{4|x|^{2}} \in \mathbb{R}
$$

2. Show: for some $a \in(0,1)$ one has $V \geq-a H+W$, where $W$ is a bounded real-valued potential vanishing outside a compact set.
3. Show that $T \geq-(1-a) \Delta+W$.
4. Deduce that $T$ has at most finitely many negative eigenvalues.

## Exercise 39 (Dirichlet Laplacians in infinite cylinders).

Let $\omega \subset \mathbb{R}^{d}$ be a bounded open set and

$$
\Omega:=\omega \times \mathbb{R} \subset \mathbb{R}^{d+1}
$$

We denote the points of $x \in \mathbb{R}^{d+1}$ as $x=\left(x^{\prime}, y\right)$ with $x^{\prime} \in \mathbb{R}^{d}$ and $y \in \mathbb{R}$. Denote by $T_{\omega}$ and $T_{\Omega}$ the Dirichlet Laplacians in $\omega$ and $\Omega$ respectively and denote

$$
\Lambda:=E_{1}\left(T_{\omega}\right) .
$$

1. Show that $T_{\Omega} \geq \Lambda$.
2. Show: if $u \in D\left(T_{\omega}\right)$ and $\varphi \in C_{c}^{\infty}(\mathbb{R})$, then the function $v:\left(x^{\prime}, y\right) \mapsto u\left(x^{\prime}\right) \varphi(y)$ belongs to $D\left(T_{\Omega}\right)$, and compute $T_{\Omega} v$.
3. Let $u$ be an eigenfunction of $T_{\omega}$ for the first eigenvalue. Furthermore, let $\chi \in C_{c}^{\infty}(\mathbb{R})$ with $\chi(t)=1$ for $|t| \leq 1$ and $\chi(t)=0$ for $|t| \geq 2$. Let $k \geq 0$. Show that the functions

$$
v_{n}:\left(x^{\prime}, y\right) \mapsto u\left(x^{\prime}\right) e^{i k y} \chi\left(\frac{y}{n}\right)
$$

form a Weyl sequence for $T_{\Omega}$ and $\Lambda+k^{2}$.
4. Show that $\operatorname{spec} T_{\Omega}=[\Lambda, \infty)$.

Let $V \in C^{0}(\bar{\Omega})$ be real-valued with $V(x) \rightarrow 0$ as $|x| \rightarrow \infty$.
5. Recall why $T_{\Omega}+V$ is a well-defined self-adjoint operator, and show that its essential spectrum is $[\Lambda, \infty)$.
Hint: Take the above functions $v_{n}$ and consider $w_{n}:(x, y) \mapsto v_{n}(x, y-3 n)$. One may also use Persson's theorem.
6. Assume in addition that

- there exists $W \in L^{1}(\mathbb{R})$ with $\left|V\left(x^{\prime}, y\right)\right| \leq W(y)$ for all $\left(x^{\prime}, y\right) \in \Omega$,
- $V \leq 0$,
- there exists a non-empty interval $(a, b) \subset \mathbb{R}$ such that $V\left(x^{\prime}, y\right)<0$ for all $\left(x^{\prime}, y\right) \in \omega \times(a, b)$.

Show that $T_{\Omega}+V$ has at least one eigenvalue in $(-\infty, \Lambda)$.

## Exercise 40 (Dirichlet Laplacians in half-infinite cylinders and perturba-

 tions). Let $\omega \subset \mathbb{R}^{d}$ be a bounded open set and$$
\Omega:=\omega \times(0, \infty) \subset \mathbb{R}^{d+1}
$$

We denote the points of $x \in \mathbb{R}^{d+1}$ as $x=\left(x^{\prime}, y\right)$ with $x^{\prime} \in \mathbb{R}^{d}$ and $y \in \mathbb{R}$. Denote

$$
\Lambda:=E_{1}\left(T_{\omega}\right)
$$

and let $T$ be the Dirichlet Laplacian in $\Omega$. Let $V \in C^{0}(\bar{\Omega})$ be real-valued with $V(x) \rightarrow 0$ as $|x| \rightarrow \infty$.

1. Show that $\operatorname{spec} T=[\Lambda, \infty)$.
2. Show that $\operatorname{spec}_{\text {ess }}(T+V)=[\Lambda, \infty)$.

Hint: one may proceed very similarly to Exercise 39.
3. Assume that $V(x)=o\left(|x|^{-2}\right)$ as $|x| \rightarrow \infty$. Show: there exists $\lambda_{0}>0$ such that one has $\operatorname{spec}(T+\lambda V)=[\Lambda, \infty)$ for all $\lambda \in\left(-\lambda_{0}, \lambda_{0}\right)$.
Hint: one may use the one-dimensional Hardy inequality (Exercise 14).

Now let $\widetilde{\Omega} \subset \mathbb{R}^{d+1}$ be an open set such that:

- $\Omega_{+}:=\widetilde{\Omega} \cap\left\{\left(x^{\prime}, y\right): y>0\right\}=\Omega$,
- $\Omega_{-}:=\widetilde{\Omega} \cap\left\{\left(x^{\prime}, y\right): y<0\right\}$ is bounded,
in other words, $\widetilde{\Omega}$ is obtained by attaching a bounded open set to the left end of $\Omega$. Denote by $\widetilde{T}$ the Dirichlet Laplacian in $\widetilde{\Omega}$.


4. Show that $\operatorname{spec}_{\text {ess }} \widetilde{T}=[\Lambda, \infty)$.

For open $U \subset \widetilde{\Omega}$ denote

$$
\widetilde{C}_{c}^{\infty}(U)=\left\{u: U \rightarrow \mathbb{C}: u \text { can be extended to a function in } C_{c}^{\infty}(\widetilde{\Omega})\right\}
$$

and consider the sesquilinear forms $t_{ \pm}$in $L^{2}\left(\Omega_{ \pm}\right)$given by

$$
t_{ \pm}(u, u)=\int_{\Omega_{ \pm}}|\nabla u|^{2} \mathrm{~d} x, \quad D\left(t_{ \pm}\right)=\widetilde{C}_{c}^{\infty}\left(\Omega_{ \pm}\right) .
$$

5. Show that both $t_{ \pm}$are closable.

We denote their closures again by $t_{ \pm}$and the associated self-adjoint operators in $L^{2}\left(\Omega_{ \pm}\right)$by $T_{ \pm}$.
6. Show that $T_{-}$has compact resolvent.

Hint: Let $R>0$ such that $\Omega_{-} \subset(-R, R)^{d} \times(-R, 0)=: B_{R}$. Show that the embedding $D\left(t_{-}\right) \hookrightarrow H^{1}\left(B_{R}\right)$ is continuous.
7. Show that spec $T_{+}=[\Lambda, \infty)$.
8. Show that $\widetilde{T}$ has at most finitely many eigenvalues in $(-\infty, \Lambda)$.

Hint: Compare $\widetilde{T}$ with $T_{-} \oplus T_{+}$.
9. Propose an explicit example of $\widetilde{\Omega}$ of the above type such that $\widetilde{T}$ actually has at least one eigenvalue in $(-\infty, \Lambda)$.

