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Preface

These are lecture notes for the graduate course ’Singular Analysis’ which I give
at University of Oldenburg – and online – in the winter term 2020/2021. The
plan is to introduce in some detail the basic concepts of R. Melrose’s geomet-
ric and unifying approach to microlocal analysis on singular and non-compact
spaces – manifolds with corners, blow-ups, resolutions, polyhomogeneous func-
tions, push-forward theorem etc. – and to illustrate the power of these concepts
for the analysis of PDE in some settings, probably including infinite cylindrical
ends/conical singularities (b-calculus) and others, to be determined. The lec-
ture notes will trickle out by and by as we go on. My intention is also that these
lecture notes should later become part of a book on the subject (coauthored
with Pierre Albin). I am grateful if you send me your suggestions/corrections if
you have any, at daniel.grieser@uni-oldenburg.de.
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Chapter 1

Introduction

1.1 What is a singularity? . . . . . . . . . . . . . . . . . 5

1.2 A PDE example, and an outlook . . . . . . . . . . 8

1.3 A few words on the literature . . . . . . . . . . . . 15

What is singular analysis? Analysis is full of singularities of various kinds.
Some examples of this are given below. The goal in this course is to introduce
a systematic theory for analyzing PDEs having some sort of singularity. You
may think of this as a singularity (non-smoothness) in the coefficients, or as a
degeneracy in the coefficients, or as the PDE acting on functions on a singular
space, or on a non-compact space.

In fact, these are all just different perspectives of the same thing. As a simple
illustration for this claim we consider the Laplacian on a plane sector given by
r > 0, 0 < θ < α in polar coordinates (r, θ), where α ∈ (0, 2π) is a given opening
angle. The sector is a singular space, having a conical singularity at r = 0, and
its closure is non-compact, as r may go to infinity. In polar coordinates the
Laplacian is

∆ = ∂2
r +

1

r
∂r +

1

r2
∂2
θ

whose coefficients are singular at r = 0. We could rewrite this as

∆ = r−2P , P = r2∂2
r + r∂r + ∂2

θ

and the coefficients of P degenerate at r = 0, in the sense that P is elliptic, but
not uniformly elliptic as r → 0. Note that ∆u = f is equivalent to Pu = r2f , so
analyzing ∆ is equivalent to analyzing P . Finally, the substitution r = 1

s turns
∆ into

∆ = (s2∂s)
2 − s3∂s + s2∂2

θ

which is again degenerate at s = 0, i.e. r = ∞, even after taking out a factor
of s2. This shows that non-compactness and singularity/degeneration are very
closely related.
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A very similar example is analyzed in some detail in Section 1.2, to introduce
some important ideas that will guide us throughout the course.

The point of view taken in this course is that the central object to analyze is
an operator with smooth but possibly degenerate coefficients, on a non-singular
compact space. In the example above the space is [0,∞]r × [0, α]θ – a simple
example of a manifold with corners – and the operator is P . This will yield a
very systematic theory that unifies many different sorts of problems.

We generally assume that this degeneration has some sort of finite structure.
In the example above it could be described by saying that ∂r always occurs in
the combination r∂r. A general definition of ’finite structure’ is R. Melrose’s
notion of boundary fibration structure. Besides the conical singularity and ’large
end of a cone’ non-compactness in the example above, these structures include,
for example, polyhedral (iterated edge) singularities, hyperbolic funnels and
cusps, also iterated versions of these. Conjecturally they also include suitable
resolutions of algebraic varieties, equipped with the Fubini-Study metric, but
this has been proven only in low dimensions.

Besides PDE with singular/degenerate coefficients the same set of ideas can
be used to analyze families of PDE depending on a parameter, and degener-
ating as the parameter approaches some limit (so-called singular perturbation
problems). I have not decided yet whether to include examples of this in the
course.

Note that we do not consider problems involving finite orders of smoothness
in the coefficients, e.g. elliptic operators with L∞ or Hölder continuous coeffi-
cients. This is an important field of study with many applications especially to
non-linear PDE. Assuming smooth (infinitely often differentiable) coefficients
allows us to focus on the effects of degeneration. The restriction to smooth
objects also allows us to use the tools of microlocal analysis.

Note that we only deal with linear PDE. The reason is that most of the
problems treated here are already hard enough for these, and anyway they form
the basis for the study of non-linear PDE. The theory has been applied to
non-linear problems by several authors, e.g. for geometric flows or in relativity.

The theory presented in this course is essentially due to Richard Melrose,
and has been developed further by many others, often in collaboration with
him. See Section 1.3 for a few pointers to the literature. I am very grateful to
Richard Melrose for enriching mathematics with these beautiful ideas and for
introducing me to this world.

1.1 What is a singularity?

Singularities appear in many parts of mathematics, but there is no general
definition. As a rough idea, a singularity is a place where a mathematical
object behaves differently than at most other places. Put differently, singular
is the opposite of regular, and regular means well-behaved in some way, usually
expressible by the existence of a simple local model. Let us look at various types
of objects that may exhibit singularities.
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• Spaces.

As a first idea, for a space regularity means being a smooth (C∞) man-
ifold. The local model is Rn (by definition of a manifold). For a space
sitting inside a larger (regular) space we may define regularity as being a
submanifold, then the local model is a vector subspace in Rn. The space
may also carry a metric, then the singularity may reside in the metric.
Here are some ways how singular spaces arise:

– Level sets of maps/solution sets of equations. For example, the set
of (x, y, z) ∈ R3 satisfying x2 + y2 − z2 = 0 is a double cone. A little
more interesting is the Whitney umbrella, obtained from x2 = y2z.
In general, polynomial equations define algebraic varieties, a very
rich source of singular spaces of great significance in mathematics.

– Quotients of non-free group actions. For example, the orbits of the
rotation action of S1 on R2 are the sets {|x| = r} where r ≥ 0. This
is a circle if r > 0 and a point if r = 0. So the quotient R2/S1,
i.e. the space of orbits, can be identified with the closed half line
[0,∞). The fact that this is not a manifold at 0 corresponds to the
fact that the action behaves differently at 0 ∈ R2 (it is not free) than
everywhere else.

– Solutions of geometric PDE. For example, the Schwarzschild space-
time is a solution of Einstein’s equation of general relativity, and it
has a singularity at the origin. Solutions of the Ricci flow equation
usually develop singularities after a finite time interval, and this was
a major stumbling block in the proof of Poincar’s conjecture, finally
overcome by Perelman.

– There are good reasons to consider only compact manifolds as regular,
so the idea of regularity has a flavor of finite structure. Here is an
example why this may be reasonable: Consider the graph of the
function sinx on R. While it is perfectly smooth, its behavior at
infinity is, after the change of variables x 7→ 1

x , the same as that
of sin 1

x near zero, which you would probably think of as singular.
So the non-compactness of R allows that a nice smooth function has
’singular’ behavior.

The example in the beginning of the introduction also shows why it
may be reasonable to consider the non-compactness of the sector at
r =∞ as a singularity.

– A more sophisticated example of current interest are moduli spaces.
For example, the Riemann moduli space, i.e. the space of conformal
structures on a given compact Riemann surface, has natural com-
pactifications which are singular spaces.

In this book, also manifolds with corners are considered as regular, for
reasons that will become clear by and by.
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• Smooth maps.

Recall that for a smooth map f : Ω → Ω′, where Ω ⊂ Rn, Ω′ ⊂ Rk are
open, a point p ∈ Ω is called a regular point if df|p : Rn → Rk is surjective,
and a point q ∈ Ω′ is called a regular value if all p ∈ f−1(q) are regular
points. If q is a regular value then f−1(q) is a submanifold, so this is
closely related to the first example above of singular spaces. The opposite
is then a singular point or singular value.

The local model at a regular point is a projection, by the implicit func-
tion theorem: If p ∈ Ω is regular then one can introduce coordinates on
neighborhoods of p and f(p) in terms of which f is projection to the first
k coordinates.

• Smooth vector fields.

If V : Ω → Rn is a smooth vector field on an open subset Ω ⊂ Rn then
p ∈ Ω is called a singular point of V if V (p) = 0.

The local model near a regular point is a constant vector field: coordinates
near p can be introduced in terms of which V = ∂

∂x1
. In particular, the

flow of V near a regular point is simple to understand. On the other
hand, the flow near a singular point can be quite wild. This is one major
stumbling block in the resolution of Hilbert’s 16th problem, which is still
outstanding.

• Functions.

In complex analysis, one classifies isolated singularities as removable, pole
or essential. While poles still have simple models (zn), essential singular-
ities can be wild.

In distribution theory there is the notion of singular support – the set of
points where a distribution is not locally given by a smooth function. (So
the local model is smoothness.) The singular support, and the distribu-
tion, can be quite tame (as e.g. in the case of conormal distributions), or
arbitrarily wild.

These first two examples are less relevant for this book (conormal distri-
butions will appear, but will be thought of as rather regular objects).

More along the lines of this book is the following example: Consider
f(x, y) = x

x+y on R2
+ \ {0}. Then f is 0 on the y-axis and 1 on the

x-axis. So it cannot have a continuous extension to x = y = 0. However,
as we will see, when we blow up this point a continous extension to the
boundary exists.

• Differential operators. For a linear ordinary differential operator of
order m

P = am(x)∂mx + . . . a1(x)∂x + a0(x)
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with smooth coefficients aj a point x is called regular if am(x) 6= 0 and sin-
gular otherwise. The Picard-Lindelöf theorem guarantees that the equa-
tion Pu = 0 has m independent smooth solutions in a neighborhood of a
regular point. A simple example of a singular point is the point zero for

P = x∂x − c , c ∈ C

and Pu = 0 has the solution u(x) = xc, which is non-smooth at zero if
c 6∈ N0. This example is fundamental for the b-calculus.

1.2 A PDE example, and an outlook

To get an idea where we are heading, consider the cone

M = {(x, y, z) ∈ R3 : z >
√
x2 + y2}

(see Figure xxx). Its boundary ∂M has a conical singularity at 0. Denote the
regular part of the boundary by ∂regM = ∂M \ {0}. We consider the PDE
problem

∆u = f on M, u = 0 on ∂regM , (1.1)

where ∆ is the Euclidean Laplacian and f is a given function on M . Here are
some typical questions we might ask:

1. What is the behavior of solutions u near the singularity 0?

2. What is the behavior of solutions u at infinity?

3. What are properties of solution operators f 7→ u?

4. Existence, uniqueness of solutions?

These questions can be answered quite explicitly due to the special structure
of the problem, which allows us to separate variables. However, some of the
insights gained from doing this can be transferred to more general problems
where separation is not possible. This will lead us naturally to some of the
fundamental concepts used in this book, as we explain below. We will return to
this model problem in later chapters to illustrate the progress we make.

Polar coordinates and separation of variables

It is natural to introduce spherical polar coordinates: write p ∈ M as p = rω
with r > 0 and ω ∈ Ω ⊂ S2, where S2 = {ω ∈ R3 : |ω| = 1} and Ω = M ∩ S2.
We write u in polar coordinates, i.e. we set ũ(r, ω) = u(rω) and similarly for f .
In these coordinates ∆ turns into

∆̃ = ∂2
r +

2

r
∂r +

1

r2
∆S (1.2)
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with ∆S the Laplace-Beltrami operator on the sphere S2.1 Note that

∆̃ = r−2P , P = (r∂r)
2 + r∂r + ∆S . (1.3)

So we have
∆u = f ⇐⇒ ∆̃ũ = f̃ ⇐⇒ Pũ = r2f̃ .

The form of P in (1.3) cries out for using separation of variables, and this
leads us to first consider the eigenvalue problem

−∆Sφ = λφ in Ω, φ = 0 in ∂Ω .

It is a standard fact that there is a sequence of solutions (λj , φj) where 0 <
λ1 < λ2 ≤ λ3 ≤ · · · → ∞, the φj are smooth and form an orthonormal basis of

L2(Ω). We expand ũ(r, ·) and r2f̃(r, ·) in this basis:

ũ(r, ω) =
∑
j

aj(r)φj(ω) , r2f̃(r, ω) =
∑
j

bj(r)φj(ω) (1.4)

Ignoring questions of convergence for the moment, we obtain that ∆̃ũ = f̃ is
equivalent to the set of ODEs

Pjaj = bj , Pj = (r∂r)
2 + r∂r − λj (1.5)

for all j. The solutions of the homogeneous equation (i.e. bj = 0) are2 linear
combinations of

a±j (r) = rz
±
j , z±j = − 1

2 ±
√

1
4 + λj . (1.6)

Behavior near 0 and near ∞

From (1.6) we can read off the behavior of solutions u of (1.1) as r → 0: If

f vanishes near 0 then u is a sum of terms rz
±
j φj(ω), when written in polar

coordinates. Note two things about this:

• The z±j need not be integers. So the asymptotics of u as r → 0 is similar
to, but more general than a Taylor expansion.

• z−j < 0, so solutions can blow-up as r → 0. If we impose additional
conditions on u (e.g. boundedness) then this rules out these terms.

More generally, if f̃ behaves like a sum of terms rzφj(ω) as r → 0, then u will,
in addition, have terms rz and rz log r (if z equals some z±j ) times φj .

Analogous remarks apply for r →∞.

1One could write ∆S explicitly in terms of spherical coordinates as 1
sin θ

∂θ sin θ ∂θ +
1

sin2 θ
∂2φ, but this introduces artificial singularities at the poles, and in any case we don’t

need this.
2This is an Euler type equation, make the ansatz a(r) = rz . Alternatively, substitute

r = es, then it becomes a constant coefficient ODE.



10 CHAPTER 1. INTRODUCTION

Solution operators

Let us look for a solution operator in the form

(Qf)(p) =

∫
M

K(p; p′)f(p′) dp′ . (1.7)

That is, u = Qf should be a solution of (1.1) for any f . Of course this can only
work if we impose some restrictions on f to ensure that the integral converges.
In fact, there will be many such operators, and separation of variables allows us
to write them down quite explicitly: In polar coordinates (1.7) reads

(Q̃f̃)(r, ω) =

∫ ∞
0

∫
Ω

K̃(r, ω; r′, ω′)f̃(r′, ω′)dω′ (r′)2dr′

where dω′ is surface measure on the sphere. Now take3

K̃(r, ω; r′, ω′) =
∑
j

Kj(r, r
′)φj(ω)φj(ω′) (1.8)

where

(Qjb)(r) =

∫ ∞
0

Kj(r, r
′)b(r′) (r′)2dr′

is a solution operator for the ODE (1.5) for each j. To find Kj simply solve
PjKj = δ(r − r′) for each fixed r′ > 0. Substituting t = r

r′ and using the Euler
structure of Pj we get a solution

Kj(r, r
′) =

1

r′
kj(

r

r′
) (1.9)

where kj solves Pjkj = δ1 and can be explicitly determined.

Existence, uniqueness

Again, this is easy to understand using separation of variables (1.4). Since

functions u with coefficients a±j (r) = rz
±
j solve the homogeneous equation ∆u =

0 there is a high degree of non-uniqueness. However, since each rz
±
j tends to

infinity as r → 0 or as r →∞, uniqueness can be achieved by imposing suitable
growth conditions on u at both ends. Similarly, a solution of the equation
∆u = f exists within a class of such restricted u if corresponding restrictions
are imposed on f .

More generally, ∆ has finite-dimensional kernel and cokernel if considered
as acting between spaces with polynomial growth conditions.

The non-uniqueness can also be seen for the solution operators: for each j

one can add rz
+
j α+(r′)+rz

−
j α−(r′) to Kj for arbirary functions α±, at the price

of getting growth at r = 0 or r =∞.

3Ignoring convergence again; the sum does converge, in the sense of distributions, for
reasonable choices of the Kj .
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How to generalize this?

Separation of variables is a rather rigid method: it is limited to problems with
some symmetry (in our case, dilation invariance). However, many of the results
obtained above can be extended to more general problems, but this requires
more flexible methods. We now give a sketch of such methods for the prob-
lem (1.1) with the same cone M and with ∆ replaced by an elliptic variable
coefficient operator

A =

n∑
i,j=1

aij(x)∂xi
∂xj

+

n∑
i=1

bi(x)∂xi
+ c(x)

where all coeffients are smooth on Rn and

aij(x)→ δij , bi(x)→ 0 , c(x)→ 0 as x→∞ (1.10)

sufficiently fast.4 This still has the salient features of the original problem (a
conical singularity at 0, an infinite cone type of non-compactness, and uniform
ellipticity up to the boundary) but lacks the dilation invariance. Then we will
identify which structures of the problem are essential for these methods to work,
and how these lead to the main ingredients of the theory to be developed in this
book.

Let us consider the questions above:

• Behavior of solutions at 0: Although separation of variables won’t work
for our generalized problem, it will work to leading order at r = 0, and
this is enough for finding the complete asymptotic expansion of solutions.
This will lead us to the idea of model operator.

When writing A in polar coordinates we get (exercise!)

Ã = r−2P , P = P0 + rP1 , P0 = (r∂r)
2 + r∂r + ∆S′

where ∆S′ is the spherical Laplacian after a linear change of coordinates5

in R3 and P1, like P0, is built from

r∂r , ∂ωi (1.11)

where ∂ωi denote angular derivatives, with coefficients smooth in r ≥ 0.
We can now formally construct a solution of Pu = 0: Note that for any
z ∈ C and v ∈ C∞(S2)

P0(rzv) = rzw w = w(ω) = P z0 v , P
z
0 = z2 + z + ∆S′

rP1(rzv) = rz+1w′ w′ = w′(r, ω) smooth in r ≥ 0.

4Ellipticity here means that the matrix (aij(x))i,j is positive definite for each x, and
sufficiently fast you can take to mean that the errors in (1.10) are O(|x|−2), though weaker
conditions suffice. We will also impose similar conditions on the derivatives. Geometrically,
A could be the Laplace-Beltrami operator for a metric with conical singularity at one point
and asymptotically conic behavior at ∞, where the base of the cone has a boundary.

5∆S′ = ∆S if aij(0) = δij .
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Therefore, we can find a formal solution6

u = rzv0 + rz+1v1 + . . . (1.12)

(with v0, v1, · · · ∈ C∞(S2)) by solving P z0 v0 = 0, P z+1
0 v1 = −w′0(0, ·) etc.

The first of these equation requires that v0 be an eigenfunction of ∆S′ and
that z solve z2 + z − λ = 0 where λ is the eigenvalue.7

Note that P0 encodes the leading behavior of A at r = 0, so it is called the
model operator of A at r = 0.8 Important: all the equations that need
to be solved here only involve inverting P0. This can be done since P0 is
dilation invariant in r, so it reduces to inverting the ordinary differential
operators P z+k0 .

Again, the inhomogeneous problem can be formally solved in a similar
way.

• Behavior of solutions at ∞: We substitute s = 1
r , then r → ∞ corre-

sponds to s→ 0. Then ∂r = −s2∂s, so for A = ∆ we get from (1.2)

∆̃ = (s2∂s)
2 − 2s3∂s + s2∆S (1.13)

If the coefficients of A are ’smooth at infinity’ (i.e. smooth in s, ω at
s = 0)9 and if (1.10) holds then we can write Ã = P ′0 + sP ′1 where now
P ′0 = ∆̃ and P ′1, like P ′0, is built from

s2∂s , s∂ωi (1.14)

with coefficients smooth in s ≥ 0. So ∆̃ is the model operator at ∞.
Observe two things about this:

1. We can factor out s2; then Ã = s2B̃ where B̃ has the same structure
as s→ 0 as Ã had for r → 0. So the analysis above applies, and we
get formal solutions behaving as in (1.12) with r replaced by r−1.

2. If the last condition in (1.10) is replaced by c(x) → C for x → ∞,
where C may be non-zero, then we cannot factor out s2 from Ã. The
model operator will now be ∆̃ +C, and as we will see in the chapter
on the scattering calculus the solution behavior for this operator is
completely different from that in the case C = 0 (and depends heavily
on the sign of C as well).

• Solution operators: Of course integral kernels K of solution operators Q
as in (1.7) cannot be calculated explicitly. However, the classical pseudod-
ifferential operator (ΨDO) calculus10 yields parametrices (approximate

6Meaning that for any N ∈ N, if uN is the sum of the first N terms, Ãũ = O(rz+N ) as
r → 0.

7The next equation, P z+1
0 v1 = −w′(0, ·), is solvable in general only if (z + 1)2 + (z + 1) is

not an eigenvalue of ∆S′ . However, even if it is then we can get formal solutions in the more
general form u = rzv0 + rz+1(log r)v1 + . . . . This will be discussed in detail in the chapter
on the b-calculus.

8In this specific context it will be called the indicial operator of Ã.
9This corresponds to similar conditions as (1.10) for all derivatives of the coefficients.

10This will be reviewed in Chapter XXX.
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solution operators) with a precise description of the behavior of K(p, p′)
at the diagonal, i.e. as p → p′, uniformly for p, p′ in any compact subset
of M , i.e. staying away from 0, ∞ and ∂0M : at the diagonal K has a
singularity whose leading term is the Newton potential 1

|p−p′| , and with a

full asymptotic expansion as p → p′ (most efficiently expressed in terms
of the Fourier transform). Outside of the diagonal K is smooth.

The question then is how to refine the construction of the parametrix
so that it correctly models the behavior uniformly as p, p′ approach 0
(or ∞ or ∂0M).11 A natural guess is that the leading order behavior
should be that of the model operator, i.e. as in (1.8), (1.9). Thus, the
pseudodifferential calculus needs to be extended to encode this kind of
behavior, and similarly at ∞ or ∂0M .

• Existence and uniqueness: These are global questions and usually
cannot be answered directly.12 For example, in the case of ∆ we used the

fact that rz
±
j φj(ω) are global solutions, and uniqueness depended on the

behavior of rz
±
j at both 0 and ∞. For general A we don’t know global

solutions like this.

We sketched how to obtain formal solutions at 0 and ∞ and parametrices (ap-
proximate solution operators). This leaves open the question whether all solu-
tions have to behave like this, and whether there are actual solution operators
having a similar behavior as the parametrices. See below for more on this.

Essential structures and outlook

We now identify the essential structures that allowed us to carry out these steps,
and point out how they lead to some of the fundamental concepts used in this
book.

(a) Separation of variables or its generalization, the iterative solution using
the model operator, only work because we introduced polar coordinates.
Using these we transferred the problem from M to M̃ = (0,∞)r×Ω. Since
we are interested in the behavior at r = 0, r =∞ and ∂0M̃ = (0,∞)×∂Ω,
it is natural to compactify and consider X = [0,∞]×Ω̄ as underlying space
of the problem.13

The main point is that X has a local product structure near r = 0 and
r =∞.14

11Technically, this means that the (integral kernels of the) error terms R,R′ in the ’approx-
imate inverse equations’ AQ = I +R, QA = I +R′ should be small uniformly in p, p′.

12In some special circumstances special arguments like positivity/maximum principle can
be used to prove uniqueness.

13The notation [0,∞] requires explanation. In this context smoothness of functions at ∞
means smoothness in terms of s = 1

r
up to s = 0. In this way [0,∞] becomes a smooth

manifold with boundary.
14In fact, it has a global product structure, but this is not essential.
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Spaces that locally near the boundary have product structures are called
manifolds with corners. So the first step in our solution was to replace
the singular space M by the manifold with corners X.

The transition fromM toX has two non-trivial aspects: at r = 0 it is given
by blowing up the point 0; at r = ∞ it is given by the socalled radial
compactification. These are closely related since both correspond to
adding an endpoint (r = 0 or r =∞) for each direction ω. Blow-up is one
of the fundamental operations of singular analysis. 15

(b) By replacing M by X we removed the singularity (and non-compactness)
from the underlying space. But the singularity lives on in the structure
of the operator ∆̃, which is encoded in the expressions (1.11) near r = 0,
resp. (1.14) near r =∞.16

These expressions, and their linear combinations with smooth coefficients,
are vector fields, and in general we will encode singular (or degeneration)
structures of operators by such spaces of vector fields, usually denoted
V.17

The pair (X,V) is really the central object of interest. It is called a
boundary fibration structure.

(c) We have seen the occurence of functions having expansions as r → 0
involving terms like rza(ω) (and possibly logarithms of r). This will lead
to the notion of polyhomogeneous function.

(d) We observed the central role of model operators. So we need tools to
invert these. Above we used separation of variables, and for the conical
singularity we got power type (rz) behavior. We will redo this in a slightly
different way that fits better into the general framework, using the Mellin
transform. In addition to the model operators at r = 0 and r =∞, the
operator Ap obtained by freezing the coefficients of A at a point p and just
taking the leading part should also be considered as a model operator.
Since it has constant coefficients, it can be inverted using the Fourier
transform. This is the starting idea for the ΨDO calculus since putting
together all these inverses we obtain an (interior) ΨDO parametrix.

(e) Since the integral kernel K of a parametrix depends on two spatial vari-
ables p, p′, it will be defined on the (interior of the) double space X2 :=
X × X. We saw that it is essential to understand the expected behav-
ior of K(p, p′) when (p, p′) approaches the boundary of X2. Equation

15To rename ’introducing polar coordinates’ to ’blow-up’ may seem superfluous, but is
actually very useful since it diverts attention from coordinates to the essential geometric
structures. Also, sometimes we have to iterate blow-ups, and expressing that in coordinates
would easily drive you insane.

16The behavior near the regular boundary ∂0M could be encoded similarly, we will get back
to this in the chapter on the 0-calculus.

17Since they are closed under the Lie bracket of vector fields – and this is quite funda-
mental –, they are usually called Lie algebras of vector fields. Depending on the type of
degeneration V is adorned with extra letters, like Vb, Vsc etc.
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(1.9) shows that we cannot expect it to have ’product type’ behavior near
r = r′ = 0, and we will see that this means that we need to blow up the
corner r = r′ = 0 of X2. After a similar blow-up at r = r′ =∞ we obtain
the resolved double space, which is the natural carrier of the integral
kernels of the calculus.

Then the power of the ΨDO calculus kicks in: once we have constructed
a sufficiently good parametrix, we can use it to show that all solutions
have expansions like the formal solutions, that the operator A is Fred-
holm on suitable function spaces, i.e. has finite dimensional kernel and
cokernel, and that its Fredholm inverse (a solution operator) has the same
asymptotic behavior as the parametrix.

Summarizing, our analysis of a singular (or non-compact) problem will pro-
ceed as follows (for elliptic problems):18

1. Preparation: resolve the singularities and compactify to transfer the prob-
lem to a regular space X (a manifold with corners) so that both X and
the operator have a local product structure; identify the underlying space
V of vector fields encoding the singularity.

2. Identify the relevant model problems, and solve them.

3. Build a pseudodifferential calculus adapted to (X,V). This involves several
steps, starting with finding a ’resolution’ of the double space X2.

Then use the ΨDO calculus to derive solvability, regularity, asymtpotics,
Fredholmness etc. results.

Of course sometimes you may not be so ambitious to actually aim to under-
stand the Schwartz kernels of solution operators in detail. Maybe you just want
to understand the structure of formal expansions of solutions. In this case you
can leave out the third step.

Remark 1.2.1. The same discussion applies when M in problem (1.1) is re-
placed by an open conical subset in any Rn (and also for more general ’cone
type’ operators). In two dimensions, if M is a sector of opening angle α < π
then it may appear that the sector is already resolved since it is a manifold with
corners. However, this is not so: it is the joint product structure of space and
operator which is needed, and the operator ∆ does not have product structure
(except if α = π/2). In particular our use of the word ’corner’ differs somewhat
from other uses in the literature, e.g. in M. Dauge’s ’corner domains’.

1.3 A few words on the literature

These lecture notes give an introduction to the manifolds with corners frame-
work for singular analysis introduced by R. Melrose. There are lots of papers

18A similar procedure applies to the heat equation.
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by now where this has been used in various contexts of PDE and global analy-
sis, and where the theory has been extended to more and more settings. I will
not even try to give a full account here but will only mention a few: Some of
the early papers from the 1980s are [Mel81], [MM83] and [MM87]. Melrose’s
ICM lecture [Mel91] gives an overview of where the theory is supposed to go.
Many details are worked out in [Mel93] (in the case of the b-calculus), and in
great generality in the online book [Mel96]. [Mel08] is very readable. [Gri01]
is an attempt at an easily accessible introduction to some of the fundamental
ideas of the subject (and provides some more links to the literature of the last
millenium). A core element in most of these works is the construction of a
pseudo-differential calculus (or a related ’heat calculus’) adapted to the singu-
lar structure. [Gri17] is a survey emphasizing applications that do not involve
pseudo-differential operators. One of the many exciting recent developments is
the extension of the theory to so-called iterated spaces (see e.g. [ALMP18]).

There are many other approaches to singular analysis problems, usually
dealing with more restricted classes of singularities. One of the earliest papers
is by V. Kondratyev [Kon63], and a systematic pseudo-differential theory for
cones and iterated cones was developed by B.-W. Schulze and his collaborators,
see e.g. [Sch91] (see also [LS00] for a comparison with the b-calculus, and for
more references).
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In this chapter we introduce the basic geometric objects which we need:
manifolds with corners, b-maps, vector fields, blow-ups.

You might ask yourself: ‘Why manifolds, why geometry? I only care about
PDEs on domains in Euclidean space!’ The short answer is that even for those we
will naturally be lead to work with manifolds, once the domain has singularities
or is non-compact. But don’t worry: these manifolds will be very concrete
objects, and most of the time we will be able to visualize them easily.

Thinking of a function as being defined on a manifold (rather than on Rn)
means thinking of it not as an expression in coordinates but as a geometric
object: it associates a value to each point, rather than to each n-tuple of co-
ordinates. Thinking like this, we are then free to choose a suitable coordinate
system for any given purpose. Often no specific coordinates are distinguished a
priori (and choosing some would distract us from more important things); we
saw this in the case of the sphere in the example in Section 1.2.

Another concept, central to singular analysis, where this way of thinking
is extremely useful, is blow-up: while you might say that blow-up is nothing
but introducing polar coordinates, it is better to think of it as a geometric
construction on manifolds (with corners) since this liberates us from polar coor-
dinates – these are quite cumbersome for calculations, compared to projective
coordinates, say.

As explained in the introduction, manifolds with corners are the ’regular’
spaces on which all our objects (functions, differential operators etc.) live. They
appear because they have a local product structure everywhere, and compared
to manifolds (without corners or boundary) some of the coordinates may be
restricted to be non-negative – like the radial variable in polar coordinates. We

17
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emphasize again that manifolds with corners are not the singular spaces on
which we consider PDEs, see Remark 1.2.1.

Manifolds with corners appear at many places in the theory: not just as
carriers of functions, but also, for example, as carriers of Schwartz kernels of
operators. The fact that the class of manifolds with corners is closed under
product and blow-up makes this a very round and useful theory.

2.1 Manifolds with corners and smooth maps

To get a first impression of what a manifold with corners is, the reader should
look at Figure xxx. Manifolds are spaces that are locally like Rn. Manifolds
with corners are locally like the model corners

Rnk := Rk+ × Rn−k R+ = [0,∞), 0 ≤ k ≤ n.

In order to make this precise we need to clarify what smoothness means for a
function on such a space. The issue is that the standard definition of smoothness
requires the domain of the function to be an open subset of Rn, but Rnk is not
open if k > 0.

First, consider the notion of open subset. By definition, a subset Ω ⊂ Rnk
is relatively open, or open in Rnk , if for each p ∈ Ω there is ε > 0 so that
{q ∈ Rnk : |p − q| < ε} ⊂ Ω. Of course Ω then need not be open as a subset of
Rn. But it is a standard fact that Ω is open in Rnk if and only if there is an open
subset Ω′ ⊂ Rn such that Ω = Ω′ ∩ Rnk . Such an Ω′ is called an extension of
Ω. See Figure xxx.

We use the notation

(Rnk )
o

:= (0,∞)k × Rn−k , Ωo := Ω ∩ (Rnk )o

for any subset Ω ⊂ Rnk . If Ω is open in Rnk then Ωo is the interior of Ω considered
as a subset of Rn, and it is dense in Ω.

We define smoothness of functions defined on relatively open subsets of Rnk .

Definition 2.1.1. Let Ω ⊂ Rnk be relatively open and u : Ω → C. We say that
u is smooth if

(a) uo := u|Ωo is smooth, i.e. in C∞(Ωo).

(b) Dαuo extends continuously to Ω for all multiindices α.

Clearly, if (b) holds then u is uniquely determined by uo. So we usually do
not distinguish between u and uo in notation.

There are two equivalent characterizations of smoothness:

1. A function uo ∈ C∞(Ωo) on Ωo extends to a smooth function on Ω if and
only if Dαuo is bounded on K ∩ Ωo for all compact subsets K ⊂ Ω.1

1E.g., for Ω = R+, to obtain u(0) simply integrate u′ from 1 to 0 and add u(1).
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2. (Extension theorem)2 Let Ω′ be an extension of Ω. Then u is smooth if
and only if u has a smooth extension to Ω′, i.e. if there exists u′ ∈ C∞(Ω′)
so that u′|Ω = u. (See Exercise ??.)

We say that a map F : Ω → RN is smooth if F = (F1, . . . , FN ) with each
Fj : Ω→ R smooth. A map

F : Ω1 → Ω2, Ω1 ⊂ Rnk1 , Ω2 ⊂ Rnk2 relatively open, (2.1)

is called a diffeomorphism if it is bijective and F and F−1 are smooth. For
a smooth map F , the differential dFp, a linear map Rn → Rn, is defined for
any p ∈ Ω1, and it is an isomorphism if F is a diffeomorphism, see Exercise ??.
Note that k1, k2 can be different here as in Figure xxx. However, there is an
important invariant:

Definition 2.1.2. If p ∈ Rnk then the codimension of p = (x1, . . . , xk, y1, . . . , yn−k)
is defined as

codim p := #{i : xi = 0}.
See Figure xxx for examples. Here we use the general convention for co-

ordinates: write xi for the non-negative coordinates and yj for the unrestricted
coordinates of Rnk . We have:

Lemma 2.1.3. Diffeomorphisms preserve codimension: For the map F in (2.1)
and any p ∈ Rnk1 we have

codim p = codimF (p) .

So for example the corner (0, 0) ∈ R2
+ has to be mapped to itself by a

diffeomorphism.

Proof. Define the inward pointing tangent space at a point p ∈ Ω1 as

T+
p Ω1 := {v ∈ Rn : ∃ε > 0 ∃γ : [0, ε)→ Ω1 smooth, γ(0) = p, γ̇(0) = v} .

This is itself a model subspace of Rn, and codim p equals the codimension of
the largest vector subspace of Rn contained in T+

p Ω1. Since F maps Ω1 to Ω2,

its differential dFp maps T+
p Ω1 → T+

F (p)Ω2. Now the claim follows from the fact

that dFp : Rn → Rn is an isomorphism.

We can now – almost – define manifolds with corners:

Definition 2.1.4. (a) A weak manifold with corners3 of dimension n ∈
N0 is a topological space X which is Hausdorff and paracompact, together
with an open cover (Ui)i∈I and for each i ∈ I a homeomorphism

φi : Ũi → Ui , Ũi ⊂ Rnk relatively open, for some k, (2.2)

so that all the coordinate change maps φ−1
j ◦ φi are diffeomorphisms.

2This is a special case of Whitney’s extension theorem [Whi34]. Seeley [See64] proved,
for the half space, that the extension operator can be chosen linear and continuous; see
also [Mit61]. See [Mel96, 1.4] for the case with corners.

3R. Melrose uses the term t-manifold, where t is for ’tied’ – or for teardrop, the simplest
example of a weak mwc which is not a mwc.
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(b) A manifold with corners (mwc) is a weak manifold with corners all of
whose boundary hypersurfaces are p-submanifolds.

Part (a) mimics the definition of a manifold, with Rn replaced by Rnk (for
various k). The terms in (b) are explained below, see Definitions 2.1.6 and 2.2.1.
Figure xxx shows a mwc and a weak mwc which is not a mwc, so you may try
to come up with the definitions yourself. See also Figure xxx for more examples
and non-examples, and Exercise ??.

Remark 2.1.5. Some authors define manifolds with corners differently. Some
use the term mwc for weak mwc, which may seem more natural. However, we
impose the submanifold hypothesis since it turns out to be extremely useful and
not too restrictive. A slightly different definition of mwc is used by D. Joyce
(TODO reference).

As usual, we call φi, or Ui, a local chart and φ−1
i a local coordinate

system. The collection of all φi is called an atlas. Smoothness of functions on
X and of maps between weak manifolds with corners is defined as usual using
the charts, i.e. as smoothness in coordinates. Any other diffeomorphism as in
(2.2) is also called a local chart.4

We often denote coordinate systems as (x, y) where x = (x1, . . . , xk), y =
(y1, . . . , yn−k), and if a coordinate system is fixed then we often identify a point
p with its coordinates (x(p), y(p)). We call a coordinate system centered at
p ∈ X if p has coordinates 0 ∈ Rnk . Clearly, for any p ∈ X there is a coordinates
system centered at p.

By Lemma 2.1.3, the following definition makes sense.

Definition 2.1.6. Let X be a weak manifold with corners.

(a) The codimension of p ∈ X is defined as the codimension of φ−1
i (p), for

any local chart containing p.

(b) A face of codimension k of X is the closure of a connected component of
{p ∈ X : codim p = k}.

(c) A boundary hypersurface of X is a face of codimension one.

See Figure xxx. We denote

Mk(X) = the set of faces of X having codimension k

M(X) =
⊔
k≥0

Mk(X)

∂X =
⋃

H∈M1(X)

H , Xo = X \ ∂X

Note that M0(X) is the set of connected components of X. Example 2.3.6 shows
why it is a useful convention to count them among the faces of X.

4All these charts then define a maximal atlas, and a weak mwc is, strictly speaking, defined
by a maximal atlas.
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2.2 Submanifolds

Recall that a subset Y of a manifold X is called a submanifold if locally it is a
coordinate subspace in suitable coordinates. This has an obvious generalization
to manifolds with corners.

Definition 2.2.1. Let X be a weak manifold with corners. A connected subset
Y ⊂ X is called a p-submanifold if for each p ∈ Y there are coordinates
centered at p so that Y is a coordinate subspace in these coordinates.

If Y ⊂ ∂X then Y is a boundary p-submanifold, otherwise it is an in-
terior p-submanifold.

Explicitly, the condition is that coordinates x1, . . . , xk, y1, . . . , yn−k centered
at p can be chosen on a neighborhood U of p so that

Y ∩ U = {(x, y) : xi = 0∀i ∈ I , yj = 0∀j ∈ J} (2.3)

for some subsets I ⊂ {1, . . . , k}, J ⊂ {1, . . . , n−k}. For an interior submanifold
I is always empty.

Remarks 2.2.2.

• p is for product: the condition may be restated as saying that locally Y is
the zero section in a product neighborhood: after shrinking U if necessary
we have U = UI,J×UIc,Jc where UI,J denotes the set on the right in (2.3),
and Y ∩ U = UI,J × {0}.

• We assume that Y is connected for simplicity. It ensures that either Y is
’everywhere interior’ or nowhere.

• There are more general notions of submanifolds of a manifold with corners,
see [Mel96].

• It is easy to see that p-submanifolds are weak mwc themselves.

• There is a characterization as local level sets of p-maps, see Exercise ...

If p ∈ X has codimension 1 then the unique boundary hypersurface con-
taining p is, near p, a p-submanifold; but the teardrop example shows that it
need not globally be a p-submanifold. This issue is closely related to another
important concept:

Definition 2.2.3. Let X be a weak manifold with corners and H a boundary
hypersurface. A boundary defining function for H is a smooth function
ρ : X → R+ satisfying

ρ−1(0) = H , dρp 6= 0 for all p ∈ H .

As a simple example, take X = R+ and H = {0}. Then the conditions are
equivalent to ρ(0) = 0, ρ(x) > 0 for x > 0, and ρ′(0) > 0. So ρ(x) = x is a
boundary defining function but ρ(x) = x2 is not.



22 CHAPTER 2. BASIC NOTIONS: GEOMETRY

Note that if the first condition is satisfied then ρ ≡ 0 on H, so the second
condition means that the directional derivative dρp(v) be strictly positive for
every strictly inward pointing vector v ∈ TpX.

Lemma 2.2.4. Let X be a weak manifold with corners and H ∈M1(X).

(a) A boundary defining function (bdf) for H can be taken as local coordinate
x1 near any point of H.

(b) If ρ is a bdf for H and a ∈ C∞(X) is strictly positive then aρ is a bdf for
H, and every bdf for H is of this form.

Proof. (a) Let ρ be a bdf for H and p ∈ H. Choose any local coordinate system
x1, . . . , xk, y1, . . . , yn−k centered at p. Then H is locally given by the vanishing
of one of the xi, say x1. Write ρ as a function of x, y, then dρp 6= 0 is equivalent to
∂ρ
∂x1

(p) 6= 0. So by the inverse function theorem the set ρ, x2, . . . , xk, y1, . . . , yn−k
is a coordinate system near p again.

(b) Clearly, ρ̃ := aρ ≥ 0 and ρ̃(p) = 0 ⇐⇒ ρ(p) = 0 ⇐⇒ p ∈ H; also,
dρ̃ = (da)ρ+ a(dρ) = a(dρ) 6= 0 at H, so ρ̃ is a bdf. Conversely, if ρ̃ is any bdf
for H then define a = ρ̃

ρ in X \H. The function a is smooth and positive, and
we need to check that it extends to a smooth and positive function on all of X.
This is a local statement near H, so it suffices to check it in local coordinates
(x, y), where we may assume ρ = x1 by (a). Writing ρ̃ as a function of x, y we
get that ρ̃(x, y) = 0 if x1 = 0, and Taylor’s theorem implies that ρ̃ = b · x1 = bρ
with b smooth in x1 ≥ 0. Then b = a in x1 > 0, so b is a smooth extension of
a, and 0 6= dρ̃ = bdρ implies b 6= 0, so b > 0 at H also.

Lemma 2.2.5. Let X be a weak manifold with corners and H ∈ M1(X). The
following are equivalent:

(i) H is a p-submanifold.

(ii) H has a boundary defining function.

Proof. (ii)⇒(i) follows from Lemma 2.2.4(a) since taking the bdf as x1 we get
that H is locally given by x1 = 0.

To prove (i)⇒(ii) we use a partition of unity: cover H by coordinate neigh-
borhoods Ui ⊂ X, i ∈ I, and let ρi be the coordinate vanishing on H ∩ Ui.
Choose an open subset U0 of X disjoint from H and containing X \

⋃
i∈I Ui,

and let ρ0 ≡ 1 on U0. Choose a partition of unity (φi) subordinate to the cover
of X by the Ui, i ∈ I ∪ {0}, and set ρ =

∑
i∈I∪{0} φiρi. Then ρ is a bdf for

H.

From Definition 2.1.4 we get:

Proposition 2.2.6. Let X be a weak manifold with corners. Then X is a
manifold with corners if and only if every H ∈M1(X) has a boundary defining
function.
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If X is a mwc then every face of X is a mwc.5 An intersection of k boundary
hypersurfaces of X is either empty or a disjoint union of faces of codimension
k.

2.3 b-maps

A b-map is a smooth map between manifolds with corners that respects the
boundary in a certain sense. To give an idea in which sense we first consider
the local model:

Definition 2.3.1. Let Ω ⊂ Rnk , Ω′ ⊂ Rn′k′ be open and f : Ω → Ω′ smooth.
Write f(x, y) = (f1(x, y), . . . , fk′(x, y), . . . ). Then f is called a b-map if for
each j = 1, . . . , k′ either

(i) fj ≡ 0 or

(ii) fj(x, y) = aj(x, y)

k∏
i=1

x
eij
i

with eij ∈ N0 and aj > 0 smooth.

(2.4)

Note that this is only a condition on the first k′ components of f , i.e. those
corresponding to the x′j-variables in Rn′k′ = Rk′+×Rn

′−k′ , which define the bound-
aries.

Example 2.3.2. Consider the maps R2
+ → R+ given by

f(x1, x2) = x1x2 , g(x1, x2) = x1 + x2 .

f is a b-map but g is not.

In which way is f ’better’ than g? One answer is this: We will be interested
in functions like log t or tz on R+, and we will need to pull them back under
smooth maps, i.e. consider log f , log g or fz, gz. Now

log f(x1, x2) = log x1 + log x2 , log g(x1, x2) = log(x1 + x2)

and fz(x1, x2) = xz1x
z
2. So log f and fz are sums or products of functions of x1

and of x2 separately, but log g is not even a sum of such products, and neither
is gz if z 6∈ N0. The generalization of this property of f is the pull-back theorem
for polyhomogeneous functions, see XXX.

To globalize the condition on b-maps note that the coordinates xi are bound-
ary defining functions for Rnk , and if x′j denote the boundary defining coordinates

for Rn′k′ then fj(x, y) = x′j(f(x, y)) = (f∗x′j)(x, y), so fj = f∗x′j . So a natural
global version of Definition 2.3.1 is this:

5Proof by induction on the codimension. Use that if F is a face of X then the boundary
hypersurfaces of F are components of intersections F ∩ H where H ∈ M1(X). If ρ is a
boundary defining function for H ⊂ X then its restriction to F is a boundary defining for
each such component.
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Definition 2.3.3. Let X,Y be manifolds with corners and f : X → Y a smooth
map. Choose boundary defining functions ρG for all G ∈M1(X) and ρ′H for all
H ∈M1(Y ).

Then f is called a b-map if for each H ∈M1(Y ) either

(i) f∗ρ′H ≡ 0 or

(ii) f∗ρ′H = aH
∏

G∈M1(X)

ρ
e(G,H)
G

with e(G,H) ∈ N0 and aH > 0 smooth.

(2.5)

If case (ii) occurs for all H ∈ M1(Y ) then f is called an interior b-map,
otherwise it is a boundary b-map.

By Lemma 2.2.4 the condition is independent of the choice of boundary
defining functions, and it is in fact equivalent to the local condition holding
everywhere, see Exercise ??. In concrete situations we usually check the local
condition in Definition 2.3.1.

Simple examples of b-maps are projections X × Y → X where X,Y are
manifolds with corners, and embeddings of p-submanifolds. More interesting
examples are blow-down maps, to be introduced in Section ??.

The composition of b-maps is a b-map again.

Boundary geometry of b-maps

First consider the meaning of (i) in Definition 2.3.3. If p ∈ X then (f∗ρ′H)(p) =
ρ′H(f(p)), and this is zero iff f(p) ∈ H. This implies:

Lemma 2.3.4 (Boundary b-maps). Let f : X → Y be a b-map. Let H0 =
{H ∈M1(Y ) : f∗ρ′H ≡ 0}. Then

f(X) ⊂ Y ′ :=
⋂

H∈H0

H

and the map f : X → Y ′ is an interior b-map.

So we only need to study interior b-maps. Note that if f : X → Y is an
interior b-map then e(G,H) is defined for all G ∈M1(X), H ∈M1(Y ). Then

E = {(G,H) : e(G,H) > 0} ⊂M1(X)×M1(Y )

defines a relation between M1(X) and M1(Y ).

Proposition 2.3.5 (Boundary geometry of interior b-maps). Let f : X → Y
be an interior b-map.

(a) f−1(H) is a union of boundary hypersurfaces for each H ∈M1(Y ). More
precisely

f−1(H) =
⋃

G∈E(H)

G , E(H) = {G : (G,H) ∈ E} (2.6)
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(b) For every face F of X there is a unique face F ′ of Y so that

p ∈ F o =⇒ f(p) ∈ F ′o

We leave the proof as an exercise. Therefore, an interior b-map f : X → Y
induces a map

f̄ : M(X)→M(Y )

mapping F to F ′ as in (b). Recall that X is also considered as face of X (if X
is connected).

Example 2.3.6. The map f : R2
+ → R+, f(x, y) = x is a b-map, and f̄(x −

axis) = R+, f̄(y − axis) = f̄({(0, 0)} = {0}.
The map g in Example 2.3.2 cannot be a b-map since g−1(0) = {(0, 0)} is

not a union of boundary hypersurfaces.

Note that (2.6) implies that, for any G ∈M1(X), H ∈M1(Y ),

e(G,H) > 0 ⇐⇒ f(G) ⊂ H

and that in the opposite case f(Go) is disjoint from H. What is the meaning
of the number e(G,H)? It describes the rate at which f(p) approaches H when
p ∈ X approaches an interior point p0 ∈ G: roughly, if p has distance δ > 0
from p0 then f(p) has distance ≈ δe(G,H) from H.
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