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Abstract.
As a software engineering paradigm, Model-Driven Software Engineering (MDSE)
is the modern day style of software development which supports well-suited ab-
straction concepts to software development activities. It intends to improve the
productivity of the software development, maintenance activities, and communi-
cation among various team members and stakeholders. In MDSE, software models
which also comprise source code are the central artifacts. MDSE brings several
main advantages such as a productivity boost, models become a single point of
truth, and they are reusable and automatically kept up-to-date with the code they
represent.

Software models (e.g., in UML) are the key artifacts in MDSE activities. Soft-
ware models are well-suited for designing, developing and producing large-scale
software projects. In order to cope with constantly growing amounts of software
artifacts and their complexity, software systems to be developed and maintained
are initially shifted to abstract forms using modeling concepts. Software models
are the documentation and implementation of software systems being developed
and evolved.

Like the source code of software systems, software models are constantly changed
during their development and evolutionary life-cycle. They are constantly evolved
and maintained undergoing diverse changes such as extensions, corrections, opti-
mization, adaptations and other improvements. All development and maintenance
activities contribute to the evolution of software models resulting in several subse-
quent revisions. During the evolution process, models become large and complex
raising a need for concurrent collaboration of several developers, designers and
stakeholders (i.e., collaborators) on shared models, i.e., Collaborative Modeling.

Constantly modifying software models results in several subsequent revisions of
the same modeling artifact. The differences between subsequent model revisions
are identified and represented in model repositories as modeling deltas. Modeling
deltas serve as information resources in further manipulations and analysis of
software models. Modeling deltas representing changes between the subsequent
revisions of models are the first-class entities in storing the histories of model
changes in model repositories.

As models become large and complex over time, maintaining and developing such
models require the concurrent collaboration of several developers in real-time.
Concurrent collaboration is usually dedicated to instantly creating, modifying and
maintaining huge, shared and centralized models in real-time by a team of collab-
orators. Thus, the changes made by collaborators have to be continually detected
and synchronized among the several concurrent copies of that model. As long
as synchronization has to occur in real-time, performance of interaction matters.
Thus, model changes have to be represented and synchronized using very compact
notations. Concurrent model copies can be differentiated by changes represented
in small modeling deltas. The required performance of synchronization in real-time
can be achieved by exchanging modeling deltas.



In collaborative modeling, modeling deltas are the first-class entities and play an
essential role in storing, exchanging and synchronizing the changes between the
subsequent and parallel revisions of evolving models. Thus, the efficient represen-
tation of changes in modeling deltas is crucial. An efficient change representation
notation is needed for collaborative modeling which serves as the common under-
lying base-technology to represent modeling deltas.

This thesis introduces a Difference Language (DL) to the problem of model dif-
ference representation in collaborative modeling. The proposed DL is meta-model
generic, operation-based, modeling tool generic, reusable, applicable, and exten-
sible. DL is conceptually a family of domain-specific languages. Specific DLs
for specific modeling languages can be generated from the meta-models of these
modeling languages. Then, changes in instance models are described in terms of
DL in modeling deltas. The DL-based modeling deltas consist of the executable
descriptions of model changes.

Associated technical support further focuses on providing a catalog of supplemen-
tary services which allow for reusing and exploiting modeling deltas represented
by DL. The DL-based modeling deltas are calculated, applied and reused by these
DL services. These supplementary services extend the application areas of DL.

As the proof of the concept, the DL approach is applied to several applications
areas in this thesis. Concurrent collaborative modeling, sequential collaborative
modeling and model history analysis applications are taken into account in this
thesis as the application areas of the DL-based difference representation approach.
These applications are built by the specific orchestrations of the DL services fol-
lowing a certain data- and control-flow.

Besides this research work provides the open source, prototypical implementations
of the DL services, applications and present empirical case studies and experiments
for evaluating their usability and applicability.



Kurzfassung.
Als Paradigma der Softwareentwicklung ist Model-Driven Software Engineering
(MDSE) eine moderne Form der Softwareentwicklung, die Softwareentwicklungs-
aktivitäten durch geeignete Abstraktionskonzepte unterstützt. Es zielt darauf
ab, die Produktivität der Softwareentwicklung sowie Wartungsaktivitäten und
Kommunikation zwischen verschiedenen Teammitgliedern und Stakeholdern zu
verbessern. Im Kontext von MDSE sind Modelle, die auch Quellcode umfassen
können, die zentralen Artefakte. MDSE bietet mehrere wichtige Vorteile, u.a.
einen Produktivitätsschub. Modelle werden zum zentralen Entwicklungsmittel.
Sie sind wiederverwendbar und werden automatisch mit dem Code aktualisiert,
den sie repräsentieren.

Softwaremodelle (z. B. in der UML) sind die wichtigsten Artefakte in MDSE-
Aktivitäten. Softwaremodelle eignen sich hervorragend zum Entwerfen und Ent-
wickeln von großen Softwareprojekten. Um die ständig wachsenden Mengen von
Softwareartefakten und deren Komplexität zu bewältigen, werden zu entwickelnde
und zu wartende Softwaresysteme als Modelle abstrahiert. Softwaremodelle kön-
nen zur Dokumentation und Implementierung von Softwaresystemen, die ent-
wickelt und weiterentwickelt werden, erstellt werden.

Wie Quellcode von Softwaresystemen werden Softwaremodelle während ihrer Ent-
wicklung und ihres evolutionären Lebenszyklus ständig verändert. Sie werden
ständig weiterentwickelt und gewartet und durchlaufen diverse Änderungen wie Er-
weiterungen, Korrekturen, Optimierungen, Anpassungen und andere Verbesserun-
gen. Alle Entwicklungs- und Wartungsaktivitäten tragen zur Entwicklung von
Softwaremodellen bei, was zu mehreren sequentiellen Revisionen führt. Während
des Entwicklungsprozesses werden Modelle zu großen und komplexen Artefakten,
was die gleichzeitige (d.h. kollaborative) Zusammenarbeit von mehreren Entwi-
cklern, Designern und Interessensvertretern an gemeinsamen Modellen, d.h. Kol-
laborative Modellierung, erfordert.

Das wiederholte Ändern von Softwaremodellen führt zu mehreren nachfolgen-
den Revisionen desselben Modellierungsartefakts. Die Differenzen zwischen se-
quentiellen Modellrevisionen werden identifiziert und in Repositories als Model-
lierungsdeltas gespeichert. Modellierungsdeltas dienen als Informationsressourcen
bei weiteren Manipulationen und Analysen von Softwaremodellen. Modellierungs-
deltas, die Veränderungen zwischen sequentiellen Revisionen von Modellen darstel-
len, sind zentralen Entitäten zum Speichern der Historien von Modelländerungen
in Repositories.

Da Modelle im Laufe der Zeit groß und komplex werden, erfordert die Wartung
und Entwicklung solcher Modelle die gleichzeitige Zusammenarbeit mehrerer Ent-
wickler in Echtzeit. Daher müssen die von Entwicklern vorgenommenen Än-
derungen kontinuierlich zwischen mehreren Kopien dieses Modells erkannt und
synchronisiert werden. Immer wenn die Synchronisation in Echtzeit stattfinden
muss, spielt die Interaktion zwischen Entwicklern eine wichtige Rolle. Modellän-
derungen müssen daher mit sehr kompakten Notationen dargestellt und synchro-
nisiert werden. Gleichzeitige Modellinstanzen können durch Änderungen in kleinen



Modelldeltas unterschieden werden. Die erforderliche Synchronisationsleistung in
Echtzeit kann durch den Austausch kleiner Modelldeltas erreicht werden.

In der kollaborativen Modellierung sindModellierungsdeltas Entitäten erster Klasse
und spielen eine wesentliche Rolle beim Speichern, Austauschen und Synchro-
nisieren der Änderungen zwischen den sequentiellen und parallelen Revisionen von
sich entwickelnden Modellen. Daher ist die effiziente und kompakte Repräsenta-
tion von Modellierungsdeltas entscheidend. Eine effiziente Repräsentationsnota-
tion für Änderungen wird für die kollaborative Modellierung benötigt, die als die
gemeinsame zugrunde liegende Basistechnologie zur Repräsentation von Model-
lierungsdeltas dient.

Diese Dissertation führt eine Difference Language (DL) ein, um Modelldifferenzen
zu repräsentatieren. Die vorgeschlagene DL ist generisch, operatorbasiert, meta-
modellgenerisch, wiederverwendbar, anwendbar und erweiterbar. DL ist konzep-
tionell eine Familie von domänenspezifischen Sprachen. Spezifische DLs für spezi-
fische Modellierungssprachen können aus den Metamodellen dieser Modellierungs-
sprachen generiert werden. Die DL-basierten Modellierungsdeltas bestehen aus
ausführbaren Beschreibungen von Modelländerungen.

Die zugehörige technische Unterstützung konzentriert sich auch auf die Bereit-
stellung eines Katalogs ergänzender DL Dienste (Services), die die Wiederver-
wendung und Nutzung von Modellierungsdeltas ermöglichen. Es werden Services
zum Berechnen, Ausführen und zur Wiederverwenden von Modellierungsdeltas
bereitgestellt. Diese Services werden wiederum für verschiedene Anwendungsfälle
wiederverwendet.

Modellversionskontrolle, gleichzeitige Modellierung in Echtzeit und Analyse der
Modellhistorie werden in dieser Arbeit als Anwendungsfälle des DL-basierten Dif-
ferenzrepräsentation Ansatzes berücksichtigt. Diese Anwendungen werden durch
spezifische Orchestrierungen der DL-Services sowohl für Daten als auch für den
Kontrollfluss umgesetzt.

Darüber hinaus umfasst die Arbeit eine prototypische Implementierung der DL-
Services als Open Source, Anwendungen und aktuelle empirische Fallstudien und
Experimente zur Bewertung ihrer Relevanz, Nützlichkeit und Anwendbarkeit.
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Part I. Motivation and Challenges 3

As a software engineering paradigm, Model-Driven Software Engineering (MDSE)
has become a novel means of software development which supports well-suited
abstraction concepts to software development activities. It intends to improve the
productivity of the software development, maintenance activities, and communi-
cation among various stakeholders. MDSE is widely used in designing business
processes, work-flows, object-oriented software systems, documentations, and im-
plementations. In MDSE, software models are the central artifact of software
development rather than the source code implementing the systems.

In order to cope with the large-scale and complex software systems to be developed
or maintained, they are initially shifted to abstract forms using modeling concepts.
Software models are usually more abstract representations of the planned or run-
ning software systems. Software models focus on the relevant aspects of the prob-
lem domain to be designed and developed. Simultaneously, software models are
the documentation and implementation of the software systems being developed
and evolved.

Like the source code of software systems, software models constantly evolve and
are maintained in order to meet various user changes such as improvements, ex-
tensions, and optimization. Evolution and maintenance of software models require
a need for collaborative work of several collaborators. There are several tools and
approaches for collaboratively developing and maintaining source code-driven soft-
ware systems, but they are not fully capable of handling model-driven software
projects. There is a strong need for such tool support and novel approaches for
software models. Model change representation lies at the core of collaborative
modeling. Thus, this thesis addresses to the research problem of change represen-
tation for collaborative MDSE.

In general, this thesis is presented in five parts: Part I. Motivation and Chal-
lenges, Part II. Foundations, Part III. Approach, Part IV. Applications and Part
V. Evaluation. This, the first part (Part I), aims at establishing the context of the
work, its motivation and relevance, challenges and core research objectives. The
second part (Part II) explains the basic concepts of MDSE, the main use cases
of collaborative development, the state of the art in collaborative modeling, and
derives several requirements for collaborative modeling and its change represen-
tation. The third, the approach part (Part III), describes the solution for model
change representation by the conceptual idea and motivating example. The fourth
part (Part IV) depicts the several applications of the proposed solution. The thesis
ends up in the evaluation part (Part V) by demonstrating evaluation, validation
results and drawing conclusions.





Chapter 1

Introduction

In the different periods of the software development history, various techniques
and technologies were used to develop and produce software systems. The former
developers used machine level commands such as raw machine code and assembly
language [Kleppe et al., 2003]. Since the late sixties, software development is ex-
tended to more software engineering principles and paradigms [Naur and Randell,
1969] in order to form complex and large software systems with more structured,
abstraction, and reusable technologies. It was a time of procedural programming
languages [Dahl et al., 1972], which were built on top of the assembly language
and were more easy to understand. From the mid-eighties, more structured and
powerful object-oriented programming languages [Meyer, 1988, Kay, 1996, Dahl,
2004] started to play an essential role in software development. These program-
ming languages follow code-driven concepts and technologies where programs are
plain text documents [Kleppe et al., 2003].

The diversity of programming languages and the complexity of software systems
has been raising more and more difficulties during the software development pro-
cess. Hence, the variety of the programming languages and a vast capacity of
software projects made the software development process too expensive and a far
traceable task. In order to either partly or entirely deal with these challenges, soft-
ware systems had to be formed by more abstraction concepts by taking advantages
of model-driven technologies, principles, and concepts that software engineering
offers. In order to cope with the large size and complexity of software systems,
software engineering has long since become an integral and indispensable part of
software development and production. It has been widely used over all phases of
software development, starting from requirements elicitation and management, to
software specification, architecture, design, and implementation, as well as testing
and verification, maintenance and evolution.

In the late eighties, early software engineering activities started using computer-
aided software engineering (CASE) tools, which focused on software development
methods using general-purpose graphical programming technologies such as meta-
modeling tools [Tolvanen, 2016, Ebert et al., 1997] and UML-based development
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[Raumbaugh et al., 2004] including state machines, structure diagrams and ac-
tivity diagrams. The CASE tools enabled developers to use graphical programs
that provide more abstraction features than general-purpose programming lan-
guages. It also allowed for reducing the effort of manually coding software systems
[Schmidt, 2006]. The CASE tools are the type of software development tools that
are often entitled as a predecessor of Model-Driven Software Engineering (MDSE)
(also known as Model-Driven Development (MDD) and Model-Driven Engineering
(MDE)). MDSE has been strongly influenced by the Model-Driven Architecture
(MDA) standardization [Miller and Mukerji, 2003] efforts driven by the Object
Management Group [OMG, 2014]. The main concept of "model-driven" technolo-
gies is to make software models the primary artifact of software development and
evolution.

In MDSE, software models are the central artifact of software development rather
than the source code implementing the systems. Moreover, model-driven ap-
proaches aim at generating either fully or partly executable software from higher-
level models by means of the model transformations, in order to avoid the redun-
dancies involved in manual implementations. This leads to the several advantages
of MDSE according to [Kleppe et al., 2003, pp. 9ff]: the productivity boost, mod-
els become a single point of truth and are automatically kept up-to-date with the
code they modeled.

Software modeling (e.g., in UML – Unified Modeling Language [Raumbaugh et al.,
2004]) is becoming one of the key fields of modern day software development ac-
tivities which is well-suited to design, develop and produce large-scale software
projects. In order to cope with the constantly growing amount of software arti-
facts and their complexity, software systems to be developed or maintained are
initially shifted to abstract forms using modeling concepts. Software models are
usually more abstract representations of the planned or running software systems.
Software models can represent the more relevant aspects of the problem domain
to be designed and developed. Simultaneously, software models are the docu-
mentation and implementation of software systems. Software models also help to
understand the different aspects of the existing or planned software systems faster
[Kleppe et al., 2003]. The further concepts of MDSE are explained in Section 2.1
in detail.

Like the source code of software systems, software models are constantly main-
tained in order to meet various user changes such as improvements, extensions,
and optimization.

Software Evolution and Maintenance. Software systems including software
source code and models are initially developed, thereafter they continue to evolve
after their initial deployment. All maintenance activities after initial deployment
contribute to their evolution. These activities may include adding new features
or removing existing ones, fixing bugs, optimizing the existing components, etc
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[Bourque et al., 2014] (discussed in Chapter 3 in detail). One of the today’s soft-
ware production challenge is to maintain existing, running software systems fulfill-
ing user needs and requirements, as well as adapting to the new user and techno-
logical environments. Thus, the existing software systems are usually changed to
meet new user needs and requirements. They have to be continually adapted, op-
timized, corrected to remain useful, operational, simple, high qualitative [Lehman,
1996]. Any type of the aforementioned changes that may occur during the initial
development and evolution of software systems is referred to as software changes
in this thesis.

Software systems usually possess several thousands of software artifacts such as de-
sign documents, software modeling artifacts, implementation artifacts, test cases,
and associated datasets. Therefore, the initial development and evolution of such
large-scale and complex software systems require the combined teamwork of project
managers, software designers, developers, testers, and maintainers (i.e., collabora-
tors). Designing, developing and maintaining the large-scale software systems
entails the need for collaboration of a large number of developers in order to
accomplish successful results [Herbsleb and Moitra, 2001]. Several collaborators
involved in the software production process apply changes to the shared software
systems.

The rough idea and scenario behind collaborative software development are as
follows: Large and complex software systems, i.e., all artifacts produced during
evolution and maintenance are usually placed in the central software repositories.
A group of collaborators is assigned to that repository and each collaborator is
responsible for development and maintenance of (a part of) shared software ar-
tifacts. Then, each collaborator checks out a copy of the central repository (i.e.,
development branch) or joins the shared repository, applies changes to the own
copy and combines these changes back to the central repository or applies changes
to the shared artifacts in real-time.

Depending on the nature of interaction, collaborative development systems can
be divided into two main forms, namely concurrent collaborative modeling and
sequential collaborative modeling [Clarence et al., 1991], [Booch and Brown, 2003].

Concurrent Collaboration. The concurrent collaboration is usually dedicated
to creating, modifying and maintaining the huge, shared and centralized docu-
ments and software artifacts in real-time. The collaborators of the shared doc-
uments or software systems can access to the centralized and shared repository,
and directly modify the software projects on the central repository or their local
copies. There exist several approaches widely used in the concurrent collabora-
tive editing of textual documents, e.g., Google Docs [Google Inc., 2017], Etherpad
[AppJet Inc., 2017], Firepad [Firebase Inc., 2017] and many more. As long as syn-
chronization of changes occur in real-time, performance of interaction matters. In
concurrent collaboration, the changes can be constantly detected by listening users
actions on a particular software project and produced in form of the small differ-
ence documents consisting of only small set of changes. These changes are usually
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not stored, yet synchronized among collaborators. Concurrent collaborative de-
velopment support is needed for model-driven software projects, as well. Unlike
textual document editing, the increased performance of change synchronization is
very crucial in concurrent collaborative modeling because of the graph-like com-
plex structures of software models. Thus, model changes have to be identified
continually, represented and synchronized using very compact notations. Con-
current collaborative modeling is enabled by micro-versioning [Appeldorn et al.,
2018, Kuryazov et al., 2018] (Chapter 5) in this thesis.

Sequential Collaboration. Sequential collaboration intends to identify changes
between the subsequent revisions of software artifacts, store and reuse these changes
when needed. There exist several source code-driven sequential collaborative de-
velopment approaches (also known as version control systems) such as Subversion
[Collins-Sussman et al., 2004], Git [Swicegood, 2008], VCS [Baudivs, 2014], Mono-
tone [Hoare et al., 2005], etc. These sequential collaborative development systems
for the source code are the best aid in handling development and evolution of
large-scale, complex and continually evolving software systems. The same sup-
port is needed for software models. For instance, while designing software models
in concurrent collaboration, collaborators intend to store the correct and com-
plete revision of their model and reopen it after a while to continue development
and maintenance. These model management activities are facilitated by macro-
versioning [Appeldorn et al., 2018, Kuryazov et al., 2018] in this thesis.

Model History Analysis. Typically, the concurrent and sequential collabo-
rative development approaches for document editing and source code-driven de-
velopment provide features for mining, browsing and visualizing their software
repositories. These features allow collaborators to analyse and trace the histories
of their evolving software systems. Likewise, software models evolve undergoing
different changes resulting in several different revisions. In the same vein, the
history analysis of evolving software models is quite interesting and important.
Thus, both, concurrent and sequential, collaborative modeling should provide his-
tory analysis support by mining, browsing and visualizing models under evolution.
As the present of models is often understandable by looking at the past, analyz-
ing the histories of evolving software models is significant support for software
stakeholders in order to be familiar with the change histories, and make further
decisions and plans [Collberg et al., 2003], [Singer et al., 2005], accordingly. Col-
laborators are usually interested in how the development and evolution process is
going on, so that they are fully able to keep the development and evolution process
under their control.

There are already solid concurrent and sequential collaborative development ap-
proaches including history analysis support for source code-based software systems
and textual documents. As discussed above, software models are also the subject
to constant changes because of development in novel technologies, increasing user
requirements, improvements, and corrections. Development and maintenance of
software models need concurrent and sequential collaborative modeling, as well as
model history analysis support.
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It is commonly agreed that the collaborative development approaches for the
source code-driven software systems do not sufficiently fit to the model-driven
software projects because of a paradigm shift between source code-driven and
model-driven concepts (further discussed in Section 2.1) [Cicchetti, 2008], [Stein-
berg et al., 2008]. Currently used tools compute and produce line by line differences
(line additions/removals/keeps) between textual files [Hunt and MacIlroy, 1976].
Since software models do not follow similar principles and syntax as code-based
projects, the aforementioned differentiation approaches cannot fully handle the
compound and associated data structure of models. Thus, there is a need for
the extensive research on difference representation techniques focusing on model-
driven software engineering, especially.

To sum up, MDSE is currently playing an essential role in software development
activities. Like source code-based software systems, software models are also sub-
ject to constant changes which leads to evolution. There are several tools and
approaches for concurrently and sequentially developing and maintaining software
source code, but they are not fully capable of handling model-driven software
projects. There is a need for such tool support and novel approaches for software
models. Since difference (i.e., change) representation lies at the core of these ap-
proaches, this thesis addresses the research problem of change representation for
collaborative MDSE. The research objectives of this thesis are further described
in Section 1.1 in detail. A brief outline of this thesis is given in Section 1.2.

1.1 Research Objective

There already exist outstanding concurrent and sequential collaborative develop-
ment applications for the source code-driven of software systems and satisfactory
approaches for representing differences on the basis of these applications. However,
there is no comparably advanced collaborative development support for MDSE.
As software models have become one of the main and widely used technologies
in today’s software development activities, MDSE requires a solid, configurable
and adaptable concurrent and sequential collaborative modeling techniques. Since
change representation is a central challenge for both collaborative modeling scenar-
ios, there is a need for a generic, sophisticated, applicable and adaptable change
representation which serves as a common underlying change representation ap-
proach for concurrent and sequential collaborative modeling, as well as model
history analysis. Such advanced collaborative modeling approaches will provide
efficient development and evolution of model-driven projects.

Since model change representation lies at the core of concurrent, sequential collab-
orative modeling and model history analysis, these collaborative modeling scenar-
ios can be developed on the top of the same underlying common model difference
representation technique.
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The core objective of this thesis is to introduce a generic Difference Language
(DL) for representing model differences in MDSE and provide a catalog of
supplementary services for operating with DL.

The proposed DL intends to be independent of modeling languages, modeling
tools and aims at reusability, applicability and extendability. In order to provide
the aforementioned properties, this thesis further focuses on providing a catalog
of supplementary services together with their realizations which allow for reusing
and exploiting difference information represented using DL. These supplementary
services extend the application areas of DL. In general, the objectives of this thesis
are threefold:

• introducing a novel means to model difference representation, i.e., Difference
Language (introduced in Chapter 5)

• providing a catalog of supplementary services for reusing and exploiting DL-
based model differences (introduced in Chapter 6)

• extending the applications of the DL approach by the specific orchestration
of supplementary services (explained in Part IV)

These main contributions of this thesis are discussed below in more detail.

Difference Language.
Since the model difference representation is the foundation for applications such
as concurrent, sequential collaborative modeling and model history analysis, this
thesis aims at supporting a meta-model generic difference representation language.
During the initial development or evolution process of model-driven projects, new
modeling artifacts can be created, existing ones can be deleted or the attribute
values of existing artifacts can be changed. Thus, edit operations like the cre-
ations, deletions of modeling artifacts and the changes of attribute values are used
to describe model differences. Using these edit operations, DL can form directly
the executable descriptions of model changes/differences. DL aims at embedding
sufficient and complete data about model changes behind each operation. DL is
practically useful for further tool developers and provides several technical prop-
erties being executable, implementable in an efficient way, fully expressive, yet
unambiguous, for transforming existing models to new revisions, as well as fa-
cilitate developer productivity with precise, concise and clear descriptions. This
thesis introduces DL in Chapter 5.

Services.
Research in this thesis further addresses the applicability and reusability of the dif-
ference representation information in further manipulations and analysis of evolv-
ing software models. Difference information represented by DL intends to be
accessible for further manipulations and analysis. To this end, this thesis provides
a catalog of significant components and services (Definition 4.1) for producing and
reusing DL-based model differences. For instance, several scenarios exist directly



Chapter 1. Introduction 11

associated with difference information such as computing differences (changes)
between model revisions, applying differences to the models to transform one re-
vision to another, tracing model change histories, synchronizing model differences
among the various copies of the shared software models. These operative services
described in Chapter 6 make model differences quite handy in various application
areas.

Applications.
As discussed in Section 1, MDSE requires a support for the concurrent, sequen-
tial collaborative modeling and history analysis applications. This thesis develops
these applications by introducing a generic underlying difference representation
language for software models and a catalog of valuable services. Since supplemen-
tary services can directly operate on difference information represented by DL, it
serves as the common underlying representation format for concurrent, sequential
collaborative modeling and model history analysis applications. These applica-
tions, in turn, are established by the specific orchestrations of supplementary DL
services. DL is applied to these applications in Part IV.

1.2 Outline of the Thesis

In Part I, this chapter has given overall insights into the research area, brief moti-
vation and problem definition in this thesis. The remainder of this thesis consists
of four parts: II Foundations, III Approach, IV Applications and V Evaluation.
Figure 1.1 depicts the outline of this thesis.

Part II. Foundations. Chapter 2 initially gives a brief preamble to the basic con-
cepts of MDSE. It further gives a brief survey on domain-specific languages, model
transformations, and technical spaces that are involved in realizing and develop-
ing the approach in this thesis. Chapter 3 investigates collaborative development
and history analysis approaches for source code-driven and model-driven software
development and presents the current state of the art. These approaches are in-
vestigated in the same chapter in order to derive underlying common concepts,
technologies, architectures and terminologies for collaborative MDSE. The same
chapter defines main prerequisites for collaborative MDSE support and expected
benefits by that support. Chapter 4 provides the extended literature study on
the fundamentals and the state of the art on difference representation approaches
for collaborative MDSE. The related work chapter studies the state of the art
on additional services provided by existing related approaches. The same chap-
ter defines the list of requirements for a difference representation support and its
collaborative modeling application.

Part III. Approach. This part of the thesis is dedicated to the core ideas
behind this thesis. First of all, Chapter 5 of this part explains the conceptual
idea how specific difference languages can be generated for concrete modeling
languages. The same chapter depicts a motivating example for the difference
representation approach combining the concurrent and sequential collaborative
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modeling scenarios. Chapter 6 introduces a catalog of the supplementary DL
services. Each of these supplementary services is enlightened in a separate section.

Part IV. Applications. The applications part of the thesis discusses the main
application areas of the model difference representation approach. This part clari-
fies concurrent collaborative modeling applications in Chapter 7, sequential collab-
orative modeling application in Chapter 8, and model history analysis application
in Chapter 9. Each of these chapters follows a concrete structure; the overall idea
and reference architecture of each collaborative modeling scenario, meta-models,
the concrete architectures and tool support for the collaborative modeling appli-
cations developed in the framework of this thesis.

Part V. Evaluation. The evaluation part of the thesis explains applicability
of DL in Chapter 10. The same chapter discusses the fulfillment of requirements
(recalling requirements defined in Chapter 4.3) and the fulfillment of expected
benefits (revisiting expected benefits explained in Chapter 3) by DL. This thesis
ends up in Chapter 11 by discussing learned lessons and contributions of the
research work.
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The research topic and approach in this thesis is regularly discussed with research
committee and has received valuable feedbacks, as well as the results have been
presented at various workshops and conferences [Kuryazov et al., 2012], [Kuryazov
et al., 2013], [Kuryazov, 2014], [Kuryazov and Winter, 2015b], [Kuryazov et al.,
2018], [Appeldorn et al., 2018], etc.
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Before explaining the ideas behind the research work, Chapter 2 of this part gives
a brief insight into the basic principles and main concepts of MDSE. As long as
this thesis is dedicated to the research problem of collaborative MDSE, inspecting
the essential MDSE concepts is inevitably required to clearly express the ideas,
contributions and applications in this research work, later on. This thesis further
intends to realize the theoretical results as the research prototypes and to validate
them in various application areas. To that end, several technologies are utilized
in the realization of these prototypes. The same chapter illustrates these underly-
ing implementation technologies and concepts involved in developing the research
prototypes.

Chapter 3 inspects the main use cases and scenarios of collaborative development
in the context of source code-driven software development, textual document writ-
ing and collaborative modeling. It intends to study the underlying infrastructures,
collaboration architectures, repository architectures of collaborative development
approaches and derive some common terminologies that can be adopted for col-
laborative MDSE.

The problem of model difference representation is the actively discussed and ex-
tensively addressed topic among the research community in software engineering
and modeling field. There is a large number of research works addressing the prob-
lem of model difference representation and its collaborative modeling applications.
Chapter 4 studies the existing approaches and the state of the art in the field of
model difference representation, as well as the potential operative services and
scenarios they provide. Eventually, the same chapter defines a list of requirements
for model difference representation and collaborative modeling to be fulfilled in
this thesis.





Chapter 2

Basic Concepts

This thesis entails the realization of the research ideas and its validation in vari-
ous application areas. As proof of the concept and to demonstrate applicability of
the approach, the core ideas and supplementary services are implemented as the
research prototypes. Several technical spaces are utilized in implementing these
prototypes. This chapter illustrates these technical spaces and fundamental con-
cepts involved in developing the research prototypes. It is inevitably required to
give insights into these foundations so that the approach can clearly be expressed
in remaining part. Discussions on these basic concepts assist the reader to com-
prehend the relevant fundamental techniques and technologies that take place in
the prototypical development of the approach.

All in all, this chapter explains basic concepts such as MDSE, model transforma-
tions, domain-specific languages and technical spaces.

– Model-Driven Software Engineering (MSDE). As long as this thesis copes with
the research problem of difference representation in collaborative MDSE, the
main principles and core concepts have to be clarified at first. It contributes
to comprehend the clear distinction between the source code-driven and
model-driven software development paradigms. Consequently, Section 2.1
inspects the core concepts and definitions of MDSE and its abstraction lev-
els.

– Domain-Specific Languages. In order to achieve efficient results in model differ-
ence representation, this thesis takes advantage of the underlying syntactical
principles of domain-specific languages (DSL). Thus, Section 2.2 provides a
brief insight into the basic concepts of DSLs.

– Model Transformations. This thesis intends to realize its representation descrip-
tions by model transformations. It takes advantage of model transformation
principles for extending applicability of its difference representations. Thus,
Section 2.3 shortly reviews the potential candidates for choosing the most
suitable transformation approach for implementing model difference repre-
sentations.

19
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– Technical Spaces. Due to realization, implementation and validation of the
research idea, this thesis requests several underlying implementation tech-
niques and technologies, i.e., technical spaces. Section 2.4 discloses the list of
concrete implementation technologies employed in realizing the application
areas of the approach in this thesis.

Eventually, this chapter ends up in Section 2.5 by summarizing what is the outcome
of this chapter.

2.1 Model-Driven Software Engineering

The diversity of programming languages and the complexity of software systems
made the software development process expensive and a far traceable task. In
order to cope with the complexity and avoid redundancies in software develop-
ment activities, software systems have to be documented, designed, planned and
specified during both, initial development and evolution life-cycle. Either partly
or entirely to deal with these design level challenges, MDSE aims at defining the
existing or planned software systems by software models [Kleppe et al., 2003].
The key idea of "model-driven" approaches is to make software models the first-
class citizens of software development and evolution, rather than the source code
implementing software systems.

Definition 2.1. Software Model.
There are several definitions of software models :
A model is the simplification of a system built with an intended goal in mind
[Bézivin and Gerbé, 2001];
A model is the description or specification of a system and its environment for
some certain purpose [Miller and Mukerji, 2003];
A model is the coherent set of formal elements describing something built for
some purpose that is amenable to a particular form of analysis [Mellor et al.,
2003];
A model is a purposeful image of a system that enables observations and state-
ments similar to those of this system and that simplifies the reality through
abstraction to the respective problem-relevant aspects [Winter, 2000].

In general, these definitions (Definition 2.1) of software models can be adopted
to define software models in this thesis. However, this thesis strictly requires
that the construction concepts of software models have to be defined by formal
specifications.
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Definition 2.2. Adopted Definition of Software Models.
A software model is a purposeful abstraction of a planned or existing sys-
tem and describes the respective problem-related aspects. A software model
conforms to its predefined formal specifications (i.e., construction concepts).

Furthermore, the model-driven approaches contribute to avoiding the redundan-
cies involved in the manual implementation of software systems by generating
executable software systems from higher-level models by means of model transfor-
mations. According to [Kleppe et al., 2003], the use of model-driven approaches
provides several advantages such as productivity boost, models become a single
point of truth, portability, and interoperability. In MDSE, models are either de-
scriptive, i.e., they have been derived from a system under study (SUS), or they
are prescriptive, which means a system under development (SUD) is derived from
models [Aßmann et al., 2006], [Seidewitz, 2003].

Models form the basis to specify the design of systems and automatically generate
an executable software as well as well-formed documentations for software systems.
Thereby, model designers may build models that are less limited to underlying im-
plementation techniques and technologies. MDSE promises to raise the efficiency
and ease of developing a software system by abstraction. Although, MDSE is a
promising approach to cope with the ever-growing complexity of systems. They
are used to understand and trace system aspects in the different viewpoint of
users. According to their descriptions, software models are classified into dynamic
models where a model represents or describes some behavioral aspects, and static
models where a model describes the structural aspects or even changes of real-
world systems [Bezivin, 2005]. For instance, UML class diagrams, UML activity
diagrams [Raumbaugh et al., 2004] or the entity-relationship [Chen, 1976] can be
used for describing object-oriented software systems [Rentsch, 1982], the control-
and object-flows or the relational databases, respectively.

Meta-Layers.
Like grammars specify programming languages, modeling concepts are always ex-
pressed by modeling language specifications. For instance, a software system writ-
ten in Java programming language conforms to the Java grammar which is de-
scribed, e.g., by the Extended Backus-Naur Form (EBNF) meta-syntax notations.
Similarly, in MDSE software models are specified according to their "grammars"
called meta-models. A meta-model depicts the collection of notations that is used
to describe the simplified abstraction of a particular domain. It can usually be
considered as the set of rules for producing the correct and legal abstractions of
the existing or planned real-world (software) systems. Meta-models prescribe the
abstract syntax for modeling languages by means of elements and relations be-
tween them. In the same vein, a modeling language defining a specific domain and
model should be complete and unambiguous to the purpose it has been conceived.
If models are precise, more useful and effective, software artifacts can be derived
from these models. A model is defined as the description of (part of) a real-world
system written in a well-defined modeling language [Kleppe et al., 2003, p. 16].
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Definition 2.3. Well-Defined Language.
A well-defined language is a language which is suitable for automated inter-
pretation by a computer. In the MDSE context, languages are defined by the
meta-modeling mechanisms [Kleppe et al., 2003, p. 114].

In order to highly benefit from the adoption of MDSE techniques, all information
related to the problem domains have to be described by means of the some form of
abstraction. This eventually requires the precise specification of each abstraction.
To cope with this task, several meta-models are introduced supporting such new
languages/specifications. In turns, that collection of meta-models have to be spec-
ified by means of rigorous manner called meta-meta-model which all the languages
can be derived from and believed to be the minimum set of concepts. Conclusively,
meta-meta-models are used to describe themselves. To this end, Object Manage-
ment Group (OMG) [OMG, 2014] has introduced the four-level architecture as
depicted in Figure 2.1, which organizes artifacts in a hierarchy of model layers.
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Figure 2.1: Abstraction levels

By looking at these abstraction levels, the M0 level which is more bottom level
is always a starting point for designing the system under study. Therefore, these
abstraction levels are explained starting from M0, the real-world systems to the
M3 top of the higher level of abstraction. Below, a coffee machine example is
modeled as the system under study:

– System Under Study (Level M0). This might be the systems that are under
study, development or evolution, i.e., real-world systems that are being mod-
eled or software systems that have to be modeled.
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– Models (Level M1). Software models are the abstract descriptions of real-world
systems. The structure and behavior of any system under study is modeled
using a collection of concepts defined on meta-layer M2. The example on
layer M1 shows the model of the coffee machine with one opaque action,
initial node and final node as well as the control flow edges connecting these
activity nodes. The example is designed using the UML activity diagram
notations [Raumbaugh et al., 2004, pp. 115ff].

– Meta-models (Level M2). This layer supports the collections of constructions
and concepts for models to design systems. The models on layer M1 conform
to this meta-layer adding extra information about systems. For instance, the
example displays the simplified version of the UML activity diagram meta-
model used for modeling the M1 layer. On this level, the notation is used
to define models. Usually, UML class diagrams are widely used to design
meta-models in UML.

– Meta-meta-models (Level M3). The M3 abstraction level consists of the core
constructions of the domain modeling language. Finally, this layer holds a
reflexively defined model of information at the level M2. The level M3 defines
the collection of meta-models which all languages can be derived from and
believed to be the minimum set of concepts. Meta-meta-models are used to
describe themselves. The examples of meta-meta-models are OMG/MOF
[MOF, 2003], EMF/Ecore [Steinberg et al., 2008] and KM3 [Jouault and
Bézivin, 2006].

It is not required to refer to any further abstraction layers after the meta-meta-
model (M3) layer. Because, further abstraction levels can be defined by the last,
M3 layer. Thus, it is considered that there is no need for repeatedly defining
further abstraction levels and M3 level conforms to itself.

As long as this thesis is dedicated to the research question of model change rep-
resentation, more important use cases of these abstraction levels are models and
meta-models in this thesis. In order to recognize the modeling concepts and con-
structions of modeling languages, this thesis takes advantage of the meta-models
of that models conform to. Therefore, models and meta-models representing mod-
eling concepts are mainly the usages of the approach in this thesis. The modeling
concepts and notations of any modeling language can be recognized by looking
at the meta-models they conform to. Thus, this thesis refers to the meta-models
of modeling languages which allows the approach for being applicable to several
modeling languages conforming appropriate meta-models.

2.2 Domain Specific Languages

Whether it is a modeling language or programming language, it has to be expres-
sive, useful in a technical manner, and well-defined encompassing sufficient, yet
consist of minimal information about a problem domain. Language definitions
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are the trade-offs between precisions and expressiveness which are usually gained
through Domain Specific Languages (DSL) [van Deursen et al., 1998].

Definition 2.4. Domain-Specific Language.
According to [van Deursen et al., 1998], "a domain-specific language (DSL)
is a programming language or specification language that offers, through ap-
propriate notations and abstractions, expressive power focused on, and usually
restricted to, a particular problem domain."

DSLs are the languages designed for specific domains so that they serve to express
solutions for these domains. Mostly, domain experts can read, understand and
validate the code of DSLs. The syntax of DSLs is well-designed for, expressed
focusing on, and usually restricted to, a particular problem domain [Van Deursen
et al., 2000]. In contrast to general purpose languages like Java, DSL can be
focused on a particular problem domain and designed with a more narrowed scope.

DSLs allow for expressing domain information in idioms and at the level of ab-
straction of a concrete domain, thereupon domain experts can understand, val-
idate, modify, and often even develop the DSL programs. The DSL program is
self-documented to a large-extend and can be reused for different purposes sup-
plying readability of the syntax and hiding more information. Moreover, DSLs
embody knowledge and information within a specific domain and provides reuse
of this knowledge [Ghosh, 2010].

Development of DSL typically involves the following steps [Van Deursen et al.,
2000]:

– Analysis: (1) identify the problem domain, (2) gather all relevant knowledge
about the domain, (3) cluster gathered knowledge in a handful of semantic
notions and operations on them, (4) design a DSL that concisely describes
applications in the domain;

– Implementation: (5) construct a library that implements the semantic notions,
(6) design a compiler that translates DSL programs into a sequence of library
calls;

– Usage: (7) write DSL programs for all desired applications and compile them.

Mostly, information domains use domain models to carry out information which
belongs to that domain. Thus, DSL usually takes advantage of these domain
models in order to obtain information and knowledge about concrete domains.

The DSLs, especially textual DSLs, may offer the several valuable properties being
minimal, complete and expressive. Thus, this thesis takes these coherence into
account and utilizes DSL for representing model changes (discussed in Chapter 5).
This thesis expects the following advantages of using DSL in model difference
representations:
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– It allows to enclose and hide as much information as needed using DSL notations.
This property of DSL makes representations complete. In turns, all change
information can be enclosed behind the DSL syntax.

– It may form the directly executable and textual descriptions of model changes
which also provides the efficient storage of model changes.

– It is expressive, extensible in a technical manner, and well-defined encompassing
sufficient, yet minimal information about model changes.

This thesis takes advantage of DSL for representing model changes in Chapter 5
and developing several collaborative modeling applications on the top in Part IV.

2.3 Model Transformations

As already described in Section 2.1, software models are used to conceptually
define and represent behavioral and structural information related to a particu-
lar domain including real-world objects, processes, work-flows, etc. In order to
achieve the highest level of the effectiveness in dealing with the model-driven soft-
ware projects, a novel means is required to transform models between modeling
languages, manipulate models within the same modeling languages (e.g., in-place
transformations), or generate source code from software models. In the MDSE
paradigm, these features are provided by model transformations. Model transfor-
mations are the set of transformation rules specified by transformation definitions.
The transformation rules are then executed by transformation tools.

Definition 2.5. Model Transformation.
[Kleppe et al., 2003, pp. 23ff] defines model transformations, transformation
rules, transformation definitions, and transformation tools in the following
way:

– Model transformations refer to the transformation of one model (source)
into another (target) in general.

– Transformation rules define associations/mappings between the elements of
source and target models, i.e., how the elements of a source model affect
the elements of a target model.

– Transformation definitions are the aggregations of transformation rules to
fully specify the transformation activities of models conforming to a
source meta-model into models conforming to a target meta-model.

– Transformation tools receive a (source) model and relevant transformation
definitions, then produces a new (target) model by performing the trans-
formation process.

As depicted in Figure 2.2, the source and target models conform to their corre-
sponding meta-models and transformation conforms to its definition. By looking
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at the meta-models of models, the transformation definitions detect which ele-
ments of the source language have to be transferred to which elements of the
target language. The model elements which have to be involved in transformation
are specified in the transformation rules.

Meta Object 
Facility

Souce
Meta-model

Target
Meta-model

Source Model Target Model

Mapping

Transformation

<conformsTo><conformsTo> <conformsTo>

<conformsTo> <conformsTo>

Figure 2.2: Architecture of Model Transformation [Jouault et al., 2008]

The transformation might occur between different modeling languages or within
the same modeling language. If both, source and target, models conform to the
same meta-model, it is called endogenous transformation, whereas transformations
occur within one modeling language. If the source and target models conform to
varying meta-models, it is referred to as exogenous transformations, whereas it
occurs between different modeling languages. This thesis takes advantage of the
endogenous transformations in the realization of its DSL.

"In-place" Transformations. This is the special form of model transforma-
tions and is investigated in order to realize the DSL operations in this thesis. It
does not require to have source and target models, but it operates on only one
model instead. Eventually, it does what the ordinary model transformation does,
i.e., manipulate models based on the described set of rules or operations and the
resulting model is the same model but with modified modeling artifacts.

Model Manipulations. Model manipulations [Dahm and Widmann, 1998] are
the special case of the general model transformations and one of the main foun-
dations in MDSE. Model transformations are automatic generation of target
models from source models. A source model is an existing model which is an
input model to the transformation engine and supposed to be transformed into
another model which is a target model, i.e., a new model after transformations
are executed. The executable descriptions of model transformations permit to
propagate the changes defined in transformation rules on a source model and re-
sults eventually in a new model version. The most transformation approaches
usually provide APIs (Application Programming Interfaces) for performing "in-
place" transformations (e.g., JGRaLab, EMF discussed in Section 2.4). This thesis
takes advantage of the basic concepts and tooling support behind the "in-place"
transformation approaches in realization of its services (Section 6) and applications
(Part IV).
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Model to Code (Text) Transformations. Model to text transformations fo-
cus on the generation of textual representations from input models. This kind
of transformations usually employ the template-based approaches where the ex-
pected output text is parameterized with model elements in the input model.
Thus, model-to-text transformations can also be used to generate DSL from a
meta-model provided. In Chapter 5, this thesis utilizes the model-to-code trans-
formations for generating its DSLs (for describing model changes) from the meta-
models of the appropriate modeling languages. In DSL generation, this thesis
imports the meta-models of modeling languages to obtain transformation infor-
mation such as language references, transformation parameters (e.g., variables),
the set of the named elements of models, language conditions.

2.4 Technical Spaces

So far, this chapter has given a brief insight into the general concepts and prin-
ciples of abstraction levels of MDSE (Section 2.1), Domain Specific Languages –
DSL (Section 2.2) and Model Transformations (Section 2.3). These are the core
concepts that provide the necessary knowledge to comprehend the basic concepts
and foundations in this thesis. In order to realize and validate the research ideas,
the concrete technical environment including tool support is required to define
abstraction levels and model transformations. [Kurtev et al., 2002] has introduced
the concept of technical spaces for generalizing associated technical frameworks
into a single technical space (or environment) and compare it with other similar
technical spaces.

Definition 2.6. Technical Space.
"A technical space is a working context with a set of associated concepts, the
body of knowledge, tools, required skills, and possibilities" [Kurtev et al., 2002].
"A technical space is a model management framework accompanied by a set of
tools that operate on the models definable within the framework" [Bézivin and
Kurtev, 2005].
Technical spaces are also characterized by exhibiting a three-level arrangement
of meta-metamodel, meta-models, and models [Bézivin, 2006].

This thesis defines the notion of technical space by the combination of the defini-
tions in Definition 2.6.

Definition 2.7. Adopted Definition of Technical Space.
This thesis defines a technical space as a technological environment to realize
its theoretical research ideas. A technical space provides a set of associated
realization concepts, technologies and tools for meta-modeling, modeling, DSL
engineering, model manipulations and many more.
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There are diverse techniques and tools to be chosen from and combine into a
single technical space which is required for realization and validation of this thesis.
For instance, the EMF and JGraLab technical spaces can be referred to as the
precise technical spaces of the MDSE paradigm. This thesis takes advantage of the
JGraLab and EMF technical spaces for realizing its research ideas and prototypes.
Section 2.4.1 discusses the JGraLab technical space and Section 2.4.2 reviews the
main concepts of the EMF technical space. Section 2.4.3 investigates the further
concepts and underlying technologies that are utilized in realizing the research
idea behind this thesis.

2.4.1 JGraLab – Java Graph Laboratory

The JGraLab (Java Graph Laboratory) [Dahm and Widmann, 1998] technical
space is based on strong theoretical foundations and continuous research. TGraphs
[Ebert, 1987, Ebert et al., 2008] are used as data structure to represent software
models internally. The TGraph schema is used to define meta-models and the
TGraph meta-schema [Ebert and Franzke, 1995] defines meta-metamodels. These
three technologies establish the M1, M2 and M3 layers of this technical space.
In order to define a M3 meta-metamodel layer, grUML (graph UML), a profiled
version of UML class diagrams can be used. This technical space can also be
used to bridge between spaces [Bézivin, 2006]. The grUML modeling facilitates
bidirectional navigations. The JGaLab technical space provides a query language,
GReQL (Graph Repository Query Language) [Kullbach et al., 1998], a model
transformation language GReTL (Graph Repository Transformation Language)
[Ebert and Horn, 2014] and FunnyQT [Horn, 2013] that can also be bridged with
the EMF technical space. JGraLab further provides an API and code generation
facilities. It has adapters to import/export models from/to the EMF technical
space (Section 2.4.2).

The JGraLab environment provides generic features for defining meta-models,
representing models, defining "in-place" model manipulations and many more. It
is independent of certain modeling languages, model designing tools and model
manipulation approaches. Considering these features provided by JGraLab, this
thesis takes advantage of the JGraLab technical space as the technical support for
realizing its research prototypes. This section discusses the features provided by
the JGraLab technical space.

Meta-Modeling.
This thesis uses TGraph schemas to define its meta-models in the JGraLab tech-
nical space. A schema can be given in the modeling language grUML or designed
in Rational Software Architect (RSA) [Leroux et al., 2006] and imported into the
JGraLab environment. It is a tool-ready subset of CMOF (Complete Meta-Object
Facility) [MOF, 2003]. A grUML diagram (or grUML schema) defines a graph
class which specifies the structure and certain constraints for the set of graphs
that are instances of this graph class. A schema can be imported into the JGraLab
environment from a XMI file exported from RSA, by the JGraLab API or by
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writing directly into a file using graph formats. The only exception is that every
schema needs exactly one class with the stereotype «graphclass». The name of
a model becomes the qualified name of the resulting schema after importing it
into JGraLab. The JGraLab environment can also handle meta-models defined
by EMF Ecore meta-models [Steinberg et al., 2008].

Graph UML (grUML) is the profiled version of UML2 class diagrams. The grUML
diagrams inherit most of the notation elements of UML2 class diagrams with some
additional stereotypes. The classes of a grUML diagram define vertex classes in
the grUML schema. The attributes of a class define the attributes of the vertex
class. The associations and association classes of a grUML diagram define edge
classes in the grUML schema. The specialized aggregations and compositions
define aggregation classes and composition classes accordingly. A TGraph schema
(meta-model) defines which types and attributes are allowed in the graph of a
certain graph class. The meta-models in Section 7.2 are designed using RSA
modeling tool and imported into the JGraLab environment.

Modeling (Data Structures).
The graph-like representations of software models [Ebert et al., 2008] is the most
popular form of internal model representations (i.e., data structures for models).
All design concepts, rules, and theories, as well as the graphical notations of mod-
eling languages, can easily be represented by graph structures. Software models
designed using several modeling tools can also be converted to and represented
by graph structures. This thesis partially uses the generic graph-based technique
TGraph [Ebert, 1987] [Ebert et al., 2008] which is the specific sub-class of UML
class diagram for representing models. In TGraphs, all modeling artifacts are de-
fined by vertexes and vertexes are connected using edges. Graphs conform to
their grUML schema, whereas vertexes are the instances of vertex classes in
the schema and edges are the instance of edge classes in the schema.

The TGraph approach is fully capable of representing software models in a wide
range of modeling languages. It is the generic class of graphs which can be in-
formally described by their principal properties. The TGraph schema defines the
set of possible vertex and edge classes, and it associates the set of attributes and
their domains to each graph element class. TGraph has the following principal
properties:

– The vertexes and edges are identifiable first-class, independently.
– All graph elements including graph itself, its vertexes and edges can be at-

tributed and typed.
– TGraph edges are directed and each edge is navigable in both directions.
– The type system provides multiple inheritances for vertex and edge classes.
– The set of vertexes and edges in TGraph are ordered.
– Incident edges are ordered for each vertex.

Figure 2.3 depicts the small excerpt of a TGraph conforming to the meta-model
depicted in Figure 7.2. The TGraph describes a UML class diagram and consists
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of vertex v1: KClass containing vertex v8: KAttribute (connected by edge e6:
ContainsAttribute) and vertex v4: KAssociation containing vertexes v5: KAsso-
ciationEndPoint (connected by edge e3: ContainsSource) and v7: KAssociatio-
nEndPoint (connected by edge e5: ContainsSource).

Figure 2.3: Example TGraph

The TGraph-based model representation is utilized in implementing supplemen-
tary services provided by this thesis as discussed in Chapter 6. Moreover, the
collaborative modeling application (discussed in Chapter 7) is partially developed
using the same model representation approach.

Model Manipulations.
As mentioned above, the JGraLab technical space provides a schema-based meta-
modeling feature for defining the modeling concepts of modeling languages. In
addition to the meta-modeling and internal data structures, JGraLab provides
API (Application Programming Interface) for managing and manipulating the
TGraph-based models. Hence, meta-models and the TGraph-based models can
be created, saved, loaded, as well as the modeling artifacts of meta-models and
models can be manipulated and accessed by the JGraLab API. For instance, new
artifacts can be created in TGraphs, existing ones can be deleted and the attribute
values of existing artifacts can be changed, etc.

In Section 6.4, the applier service provided by this thesis is realized using the
model manipulation features of JGaLab API. The applier service is then employed
in developing the collaborative modeling applications in Part IV).

2.4.2 EMF – Eclipse Modeling Framework

The Eclipse Modeling Framework (EMF) [Steinberg et al., 2008] is another specific
technical space and ECore is its meta-modeling technique. There are several EMF
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modeling tools and a lot of research is dedicated to EMF. The EMF technical space
is based on ECore and Eclipse platform for meta-modeling and model-driven soft-
ware development. The Graphical Editing Framework (GEF) [Rubel et al., 2011],
Graphical Modeling Framework (GMF) [GMF, 2018] and Sirius [Viyović et al.,
2014] can be used to create the EMF-hosted domain-specific graphical modeling
tools. Sirius is widely used and very popular among the Eclipse community and
tool developers for developing domain-specific modeling tools.

This thesis takes advantage of the GEF features in creating graphical editor in
Section 7.2. It further applies its collaborative modeling approach to the exist-
ing Sirius-based domain-specific tool UML Designer in Section 7.3. This section
discusses the main concepts of the EMF technical space.

Meta-Modeling.
EMF is a modeling framework which is built based on ECore and the Eclipse plat-
form. In the EMF technical space, ECore is used for meta-modeling, and for devel-
oping model-driven applications and tools. The ECore meta-modeling approach
can be used to define custom meta-models if needed. Alternatively, due to ease
of meta-modeling effort, UML2 plugins can be installed if only UML profiles are
required. The UML2 plugins consist of standard UML profiled notation provided
by MOF (Meta Object Facilities) standards [MOF, 2003], i.e., UML meta-models.
The resulting Ecore meta-models can be the basis for EMF projects. EMF facili-
tates code generation (i.e., Java code) that provides APIs to work with the models
conforming to the given meta-models.

Modeling (Data Structures).
The EMF-based modeling applications and tools usually store instance models as
a collection of resources which is called Resource Set [Steinberg et al., 2008]. Each
resource consists of language concepts (i.e., abstract syntax) defined by ECore
meta-models and custom graphical representations (i.e., concrete syntax) if exists.
For instance, in case of UML-based modeling, modeling artifacts are stored in the
*.uml files. The graphical concrete syntax of EMF-based modeling applications
can be defined in various ways such as GEF, GMF, etc.

Graphical Editing Framework (GEF) [Rubel et al., 2011] can be used to display the
concrete syntax of models in the EMF-based modeling editors. GEF is a graphi-
cal editing solution based on the Eclipse framework for creating modeling editors.
It provides a model-view-controller architecture. To visualize the graphical views,
GEF and Draw2D [Modica et al., 2009] provide the foundations for building graph-
ical views for EMF and other model types. Graphical Modeling Framework (GMF)
[GMF, 2018] is a tool which encapsulates GEF and Draw2D for creating a graph-
ical editor. GMF also provides an abstract notation for developing EMF-based
graphical modeling tools. The Sirius framework [Viyović et al., 2014] extends the
GMF notations for developing domain-specific modeling tools, e.g., UML Designer
[Obeo Network, 2017]. Draw2d [Rubel et al., 2011] is an object-oriented drawing
framework associated to GEF, which the concrete representation takes place. In
Draw2d, each diagram has tree-like structures which consist of shapes (figures)
and their children as well as edges between the shapes.
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UML Designer [Obeo Network, 2017] is one of the popular EMF-hosted domain-
specific and open-source modeling tools developed based on the Sirius framework.
It provides a graphical modeling editors for designing the most UML diagrams. A
collaborative modeling infrastructure introduced in this thesis is also applied to
UML Designer in Section 7.3 for designing UML activity diagrams.

Model Manipulations.
In Sirius-based modeling tools (e.g., UML Designer), each modeling project be-
longs to exactly one session, and each session has its own editing domain and
resource set. The resource set contains semantic resources (semantic models),
representation resources (representation data such as layout information) and the
viewpoint specification models.

A class which extends the Command Stack Listener can identify new commands
and can get details about them. These commands then allows for performing
various actions (e.g., deleting a modeling artifact, creating a new ones, etc). These
commands are then collected and processed in Command Stack. If a change is
made to a Command Stack, the command Stack Changed method is called in the
corresponding Commander Stack Listener. The interface of the Command Stack
Listener can thus be implemented for specific cases of changes.

A class that extends the Resource Set listener or the Resource Set Listener Imple-
mentation class is notifies about changes to the resource set and can thus receive
information about the updated artifacts. A class that overwrites the resource Set
Changed method can respond to these changes. To apply changes to models, a
Recording Command for the Transactional Editing Domain of the session can be
created and executed by Command Stack. With this command, the elements of
a model can be changed. The use of Transactional Editing Domain allows for
performing redo/undo operations (on modeling editors) without any further im-
plementation effort.

In Chapter 6, several services provided by this thesis are also realized using the
EMF technical space. These services are then utilized to extend collaborative mod-
eling infrastructure for the domain-specific, open-source, EMF and Sirius-based
modeling tool UML Designer in Section 7.3

2.4.3 Further Technologies

Several additional underlying implementation technologies are utilized for devel-
oping the collaborative modeling infrastructure. These technologies are briefly
discussed in this section.

Communication/Synchronization.
In order to provide communication (synchronization) among collaborators in col-
laborative modeling, various frameworks are studied to build this communication
network. Two most popular communication frameworks namely KryoNet [Esoteric
Software, 2018] and Netty [Maurer and Wolfthal, 2016] are inspected.
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Netty is a network application framework for developing maintainable, high per-
formance protocol servers and clients. It is characterized by being asynchronous
and event-driven. When an event occurs, such as if a change occurs, a message
can be sent directly via the network. This makes working with TCP and UDP
easier. In addition, Netty is a non-blocking framework, which eliminates the need
to wait for a different dispatch process to complete when sending messages.

In order to transfer data (model changes, user logging, etc.) between server and
client, a fast and efficient graph serialization framework for Java, KryoNet [Eso-
teric Software, 2018] is used that makes the network usable from Java applications.
KryoNet offers the possibility to send Java objects from compiled classes via TCP
or UDP connections. The serialization of objects is handled automatically but
can be exchanged completely or even for individual classes, if necessary. KryoNet
API consists of several methods for establishing and interrupting connections as
well as exchanging object serializations. It further provides the capability to use
Remote Method Invocation (RMI). The goals of the KryoNet project are its speed,
efficiency, and an easy technique to use its API. Thus, it is utilized in developing
collaborative modeling applications (Chapter 7). During these development, Kry-
oNet has provided sufficient performance and conveniences. Although, there is no
other particular reason to choose KryoNet over Netty.

SWT and JFace.
SWT (Standard Widget Toolkit) and JFace are the part of the standard GUI
framework used in Eclipse products [McAffer et al., 2010]. SWT provides standard
control widgets such as buttons, input fields, labels, etc. SWT uses the native
elements of the operating system with its own "look-and-feel" principle, i.e., the
controls have the usual layout used by Eclipse instead of the operating system-
specific appearance. The Eclipse Plugin API works with SWT and provides (top)
classes to create views, editors, and menu items. In Eclipse, views are windows
that visualize information, e.g., the Project Explorer or the Console window.

The GUI widgets (including tree views, diagram editor, users list, log messages
window, dialog) in collaborative modeling application (in Chapter 7) are imple-
mented using GEF which is based on SWT. SWT is also used for the rest of the
GUI for developing user interaction widgets.

These underlying implementation technologies are investigated for only realiza-
tion, application and validation purposes of this thesis as proof of the concept.
However, the theoretical foundations of this thesis does not rely on any underlying
implementation techniques and technologies.

2.5 Summary

This chapter has briefly surveyed the MDSE concepts, DSL, Model transforma-
tions, as well as potential technical spaces that are involved in realization, im-
plementation, and validation of this thesis. Section 2.1 has clarified the main
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principles, the core concepts and abstraction levels of MSDE which helps to com-
prehend clear distinction between the source code-driven and model-driven soft-
ware development paradigms. Section 2.2 has briefly reviewed some principles
and contributions of DSLs that this thesis can benefit from. Section 2.3 has dis-
cussed some core concepts of model transformations that can be used to realize
representation descriptions in this thesis.

Finally, Section 2.4 has discussed some potential technical spaces. These technical
spaces are inevitably required for the sake of development of the research proto-
types as proof of the concept. The JGraLab [Dahm and Widmann, 1998] and EMF
technical spaces are chosen as the main underlying implementation environments.
Because they support the most essential and popular implementation technologies
that are necessary for realization. Moreover, JGraLab does not rely on any spe-
cific modeling language, internal model representation or model transformation
techniques and it provides the more technical environment which is capable of
handling the wide range of modeling languages.

In order to achieve efficient results in model difference representation, this thesis
takes advantage of the underlying syntactical principles of domain-specific lan-
guages (DSL). The utilization of DSL in model difference representation brings
several advantages; (1) as much information as needed information can be en-
closed using DSL, (2) the compact syntax of DSL provides efficient representation
of model differences in collaborative modeling, (3) DSL can easily be designed
using expressive syntax, as well as can be realized with less implementation effort.

The reviewed potential technical spaces and underlying implementation technolo-
gies are investigated for only realization, application and validation purposes of
this thesis as the proof of the concept. However, the theoretical foundations of
this thesis does not rely on any technical spaces or implementation technologies.



Chapter 3

Collaborative Development Use
Cases

Software production activities usually undergo two sub-processes such as the initial
development andmaintenance (i.e., evolution). The initial development phase may
also be considered as the special part of overall software evolution, whereas only
more features are added to software systems or existing features are optimized. It
is the development phase which takes place till the initial deployment of software
projects.

All development and maintenance activities contribute to the evolution of software
systems. After initial deployment, software systems are further subjected to con-
stant changes. Software systems are changed because of various reasons such as
extensions, corrections, optimizations, adaptations and other improvements. All
these changes are usually entitled as software maintenance [Lientz et al., 1978],
[Chikofsky and Cross, 1990]. Lientz and Swanson [Lientz and Swanson, 1980]
classify software maintenance into four basic classes.

– Adaptive maintenance considers changing software systems to cope with changes
in the software environment, e.g., adapt software systems to new hardware
environments or operation system environments.

– Perfective maintenance covers all change activities implementing new or changed
user requirements which are concerned with the non-functional enhance-
ments of software systems, e.g., adding new features or structural changes.

– Corrective maintenance is usually dedicated to detecting and fixing errors in
software systems, usually detected by end users, e.g., detecting and fixing
bugs, correcting errors.

– Extensive maintenance is dedicated to changes only in functional requirements,
e.g., adding new functionality or behavioral changes like optimizing imple-
mentation algorithms.

35



Chapter 3. Collaborative Development Use Cases 36

Development and maintenance is needed to ensure that the software systems still
satisfy user requirements. Software systems are changed due to correction of faults,
improvement of design, implementation of enhancements, interface with other soft-
ware systems, adaptation of programs. So that different hardware, software, sys-
tem features, and telecommunication facilities can be used, migrate legacy software
and retire software [Bourque et al., 2014, p. 106].

As software systems become huge and complex with the several thousands of soft-
ware artifacts, development and maintenance of the large-scale, evolving software
systems require collaborative work of several stakeholders, project managers, de-
velopers, designers, testers and others (i.e., collaborators) on the shared software
projects.

Definition 3.1. Collaborative Development.

Ellis et. al. [Clarence et al., 1991] defines collaborative development as
computer-based collaborative development that supports the groups of
people engaged in a common task (or goal) and that provides an interface
to a shared interface.

According to [John, 2010], collaboration involves two or more people editing
the same document at the same time.

Borestein [Borenstein, 1992] and Schooler [Schooler, 1996] broadly defines the
field of collaborative work, encompasses the use of computers to support
coordination and cooperation of two or more people who attempt to
perform a task or solve a problem together.

As software systems evolve over time undergoing changes, constantly changing
software systems during development and maintenance results in the multiple re-
visions of the same software artifacts. Collaborative software development allows
several people for editing software artifacts using different computers, a practice
called collaborative editing. There are two scenarios of collaborative development
that are considered in this thesis. They are distinguished by when and where the
interaction takes place [Clarence et al., 1991]. In this context, two primary di-
mensions are identified in Figure 3.1. The figure classifies collaboration scenarios
in two dimensions: Time and Space/Place. The Time dimension is divided into
two phases namely the Same Time and Different Times. In this thesis, collab-
oration which occurs in the same time is referred to as concurrent collaboration,
and collaboration which occurs in the different times is referred to as sequential
collaboration regardless the place they are located.

The time/space taxonomy consists of the four main forms of interaction. They are
discussed below, in detail.

Face-to-Face Interaction. If the collaborators are located at the same place at the
same time, it is called as face-to-face collaboration. In this kind of interaction,
neither electronic devices nor communication networks are involved. Thus,
this form of interaction is out of the scope in this thesis.
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Figure 3.1: The Time/Space Taxonomy [Clarence et al., 1991]

Synchronous Distributed Interaction. This type of interaction occurs when col-
laborators are located in different places and communicate at the same time.
This kind of collaboration is entitled as concurrent collaboration/versioning
which happens in real-time. Synchronous interaction architectures are al-
ready realized in software development and evolution activities, as well as
textual document editing (e.g., Google Docs [Google Inc., 2017], Etherpad
[AppJet Inc., 2017]).

Asynchronous Interaction. If the collaborators are located in the same place but
at different times, it is entitled to be asynchronous interaction. This form
of interaction is the special scenario of asynchronous distributed interaction
which is discussed, below.

Asynchronous Distributed Interaction. This interaction involves collaborators in
different times and located in different places. There are several implementa-
tions of asynchronous distributed interaction principles and already applied
to software development and evolution activities. Some of such systems like
Subversion [Collins-Sussman et al., 2004], Git [Swicegood, 2008], CVS [Bau-
divs, 2014], and many more are the examples for this class of interaction
tools. These approaches are usually referred to as version control systems.
This form of collaboration is consider as the sequential collaboration/version-
ing scenario of collaborative development in this thesis.

As this thesis focuses on the concurrent and sequential scenarios of collabora-
tive development, Figure 3.2 depicts the general architecture combining these two
scenarios in a single architecture. This architecture demonstrates main software
development line as a central software project that is being developed and evolved,
thus, under collaboration. This central software project is being developed by sev-
eral collaborators (modify). All activities (except modify) in the figure have two
parts that are separated by forward slash.

Concurrent Collaboration. The vertical line in Figure 3.2 indicates that the
collaborative work takes place on the shared software system in parallel, i.e., syn-
chronous distributed interaction. Above the forward slashes, the figure depicts
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Figure 3.2: Combined Architecture of Concurrent and Sequential Collabora-
tion

several activities of concurrent collaborative development. For instance, collabora-
tors join the collaboration process by opening the central software project and they
continue modifying it in their environment. While modifying the opened copies
of the project, their changes/modifications are constantly synchronized with the
main software evolution line, so that their changes (i.e., concurrent revisions) are
constantly synchronized with other parallel collaborations and vise verse. After
completing their work for that time period, they may save their software project
which results in a new revision (i.e., sequential revisions) in the central develop-
ment line. Next days or weeks, collaborators may continue developing their project
opening the latest saved revision. As long as they usually save the correct and
complete revisions of their project, they also can revert these revisions in cases
that their project face failure, error or loss. This overall scenario is denoted as
concurrent collaboration in the remaining part of this thesis.

Sequential Collaboration. The other scenario depicted in Figure 3.2 is se-
quential collaboration where each collaborator checks out (co, below the forward
slashes) a copy of the central project, modifies it in their distributed environment,
and checks in (ci) their changes into the central development line. But, before
they check in their changes, they still have to update (up) their local copies with
the central project. Because other collaborators might already have checked in
other changes into the central project. Thus they have to first fetch changes from
the central project in order to keep their copies up-to-date. Constantly changing
and checking in the shared projects results in the several subsequent revisions of
the same artifact differing from each other. As discussed above, collaborators are
involved in the sequential collaboration in different times from different places,
i.e., asynchronous distributed interaction. This use case is referred to as sequential
collaboration in the remaining part of this thesis.

There are several concurrent and sequential collaboration tools for the source code-
driven software systems and textual documents. The approaches, dedicated to
source code-driven projects and textual document writing, can not efficiently be
used in model-driven software projects because of the paradigm shift between the
code-driven and model-driven concepts. Similar to source code-driven software
projects and textual documents, MDSE is the subject to continuous development
and maintenance. Thus, the similar collaborative development support (i.e., col-
laborative modeling) with the concurrent and sequential scenarios is inevitably
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required for collaborative MDSE. Although the MDSE concepts are not the same
as the concepts of source code-driven software projects and textual documents,
the underlying architectures and terminologies of source code-driven collaborative
development and textual editing approaches can still be taken over and reused in
collaborative MDSE.

The most collaborative software development and text editing approaches provide
some kind of analysis features in order to compare different revisions or analyz-
ing the histories of software systems and textual documents under development.
These comparison and analysis features are usually provided by tracing and vi-
sualizing the histories of changes in the software systems and textual documents.
Similarly, the history of evolving software models is interesting for collaborators
in order to track and analyze the evolutionary life-cycle of software models. By
providing history analysis support for MDSE, collaborators can easily analyze and
manage the development process and make further decisions about the evolution
process of their software models. To this end, advanced history analysis support
for MDSE is needed to analyze the histories of software models under collaborative
development.

In the follow-up subsections, this chapter gives the brief descriptions for concurrent
and sequential collaboration as well as the history analysis use cases of this thesis.
These use cases are discussed distinguishing between source code-driven/textual
and MDSE paradigms. Section 3.1 reviews concurrent collaboration principles and
techniques for source code-driven/textual and MDSE. In Section 3.2, this chap-
ter investigates the core concepts behind the sequential collaboration scenario for
source code-driven and MDSE. Section 3.3 inspects the software history analysis
use case for source code-driven/textual and MDSE paradigm.

These sections further motivate and derive required support for concurrent and
sequential collaboration, as well as the history analysis use cases for model-driven
software development and evolution. Additionally, these sections specify expected
benefits from the difference representation for collaborative MDSE.

3.1 Concurrent Collaboration

As technology develops, there has already been a growing need for the computer
supported cooperative work. Diverse approaches and technologies have been pro-
posed to provide computer supported collaborative artifact editing in real-time
[Rama and Bishop, 2006], i.e., concurrent collaboration. The early ideas of con-
current collaboration was demonstrated by Douglas Engelbart in his "mother of all
demos" presentation [Engelbart, 1968] in 1968 where he demonstrated remote col-
laboration on a shared screen among other foundational computer science aspects.
Formerly, the idea of concurrent collaboration was also entitled as the Instant Up-
date [Gupta, 2000], computer supported cooperative work [Yang et al., 2000] and
groupware [Clarence et al., 1991] in some literature.
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Definition 3.2. Concurrent Collaboration.
According to [John, 2010], concurrent collaboration systems are software sys-
tems including hardware technologies that allow multiple users to coopera-
tively work on projects at the same time.

So far, there exist different concurrent collaboration approaches having their own
sets of services for accommodating interactions among users, involving instant
messaging and file sharing. Some of these approaches offer concurrent collabo-
ration, where files can be amended or altered jointly in real-time. Concurrent
collaboration systems can be facilitated by shared access to a centralized server
and jointly, constantly editing the shared software artifacts, textual documents,
or other form of information [Rama and Bishop, 2006].

Like any other form of interaction, the development and evolution of software
systems require collaborative development of several team members enabled by
concurrent collaboration. In concurrent collaboration, collaborators apply various
changes to the shared software projects in parallel. Since several team members
collaboratively work on the shared artifacts, the collaborative development ap-
proaches need to provide sharing software artifacts and the synchronization of the
changes (i.e., concurrent revisions) among collaborators when new artifacts are
created or existing ones are deleted or changed, i.e., instant updates. Instantly
editing the parallel copies of the shared software artifacts results in the several par-
allel revisions of the same artifact differentiated by concurrent revisions. These
concurrent revisions are then instantly identified and synchronized between collab-
orators in real-time. With this scenario, the concurrent revisions of the huge and
complex software systems and documents are easily and constantly shared among
several collaborators.

This section further investigates a brief list of the concurrent collaboration ap-
proaches for textual documents and source code-driven software projects.

3.1.1 Concurrent Text-Driven Collaboration

This section discusses a group of concurrent collaboration principles that are al-
ready investigated in textual document editing, and in source code-driven software
development. These two groups of concurrent collaboration systems are investi-
gated in order to comprehend their basics, study common underlying principles
and technologies that might contribute to develop concurrent collaboration sys-
tems for MDSE.

In text-based concurrent collaboration, the two or more authors of shared docu-
ments can jointly create, update and revise textual documents. Through collabo-
rative writing systems, identification of modifications are provided, i.e, the authors
are able to keep the track of the evolving documents and identify who changed
the document and to what extent [Bafoutsou and Mentzas, 2002]. For instance,
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Google Docs [Google Inc., 2017], Etherpad [AppJet Inc., 2017], Firepad [Firebase
Inc., 2017] and many more are widely used in document creation and editing in
real-time.

The concurrent collaboration systems are usually dedicated to creating, modify-
ing and maintaining huge, shared and centralized documents. The collaborators
of shared artifacts can access the centralized and shared software project either
having or without having the copies or branches of artifacts on their local ma-
chines and directly modify the software project, document or model on the server
side. Once each collaborator modifies artifacts, the changes are automatically in-
terpreted on the central project and are synchronized with the other parallel copies
of that project.

Collaboration Architectures. The most existing concurrent collaborative sys-
tems for textual documents are built using one of two different types of following
architectures:

– Centralized. In the centralized architecture [Nichols et al., 1995], the shared doc-
uments are located in a shared server or machine and collaborators are au-
thorized to access these documents. Only one centralized copy of the shared
documents is available in this type of architecture. For example, Google
Docs [Google Inc., 2017], Etherpad [AppJet Inc., 2017], Firepad [Firebase
Inc., 2017] are built on the top of centralized architectures and they usually
use browser-based document editing environment.

– Decentralized. The decentralized architecture [Buchegger et al., 2009] is also re-
ferred to as the peer-to-peer architecture [Ahmed-Nacer et al., 2011]. Like the
centralized architecture, this architecture uses a centralized server for syn-
chronization purposes, but it further provides standalone client side tools
which store the copies of the centralized, shared documents and changes
are continually synchronized among these copies. For instance, Microsoft
SharePoint Workspace [English et al., 2010] (formerly known as Groove)
and TeamEdit [TeamEdit, 2011] are built on the top of the centralized ar-
chitectures and they usually use standalone document editing environments.

Synchronization Algorithms. The synchronization algorithms are classified
into the state-based and operation-based groups. These algorithms are used to syn-
chronize the artifact changes through the collaboration architectures. Currently,
these two algorithms are widely utilized in concurrent collaborative systems:

– State-based (Differential Synchronization). This group of algorithms takes ad-
vantage of only different states of the shared documents. The examples
for state-based approaches are three-way merges adopted by version con-
trol systems such as Subversion [Berlin and Rooney, 2006] and differential
synchronization approaches [Fraser, 2009]. Since performance is a key fac-
tor in concurrent collaboration, the state-based synchronization technique is
considered to be inefficient in case of low-speed network connection as the
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differences between states have to be computed every time after the docu-
ments are edited resulting in increased time complexity [Ahmed-Nacer et al.,
2011].

– Operation-based (Operational Synchronization). Operational synchronization
technique is supposed to be the suitable approach and widely used by con-
current collaborative systems [Clarence et al., 1991], [Ressel et al., 1996],
[Sun and Ellis, 1998], etc. Modifications on the shared documents are pre-
sented by means of operations such as insertions and deletions of a sequence
of characters. In this case, changes made by collaborators are instantly
recorded (or listened for), defined as concurrent revisions, and synchronized
in real-time.

Besides, there are several algorithms known as CRDT (commutative replicated
data types) [Oster et al., 2006], [Preguica et al., 2009], [Roh et al., 2011], [Weiss
et al., 2009]. The operational synchronization algorithms are used as the underly-
ing concept for CRDT. Below, the core concepts of some operational synchroniza-
tion and CRDT algorithms are briefly reviewed:

– WOOT Algorithm [Oster et al., 2006]. WOOT uses very basic change oper-
ations such as insertion and deletion of elements in a linear structure and
these elements are uniquely identified. All kind of change operations are
represented by the combination of these two atomic operations.

– Replicated Growable Array (RGA) [Roh et al., 2011]. This approach supports
not only insertion and deletion but also update operations which replace the
content of elements.

– Logoot Algorithm [Weiss et al., 2009]. Logoot is another CRDT approach that
ensures the consistency of linear structures. Logoot associates to the list
of elements of the structure, an ordered list of identifiers. Identifiers are
composed by a list of positions. Positions are 3-tuples formed with a digit
in specific numeric base, a unique site identifier and a clock value.

The most existing concurrent collaborative systems follow the collaboration ar-
chitectures and synchronization algorithms as discussed above. These are the
core techniques which applied to concurrent collaboration tools (e.g., [Google Inc.,
2017], Etherpad [AppJet Inc., 2017], Firepad [Firebase Inc., 2017] and many more).
Furthermore, these tools provide some additional tool specific features as follows:

– Editor GUI. The most concurrent collaboration tools usually provide an editor
feature for instantly updating the textual document in real-time. Modifi-
cations are visible in real-time enabling support for undo/redo operations.

– User Authentication. This feature is referred to as collaborative code ownership.
The user needs to be authorized to edit shared documents. Each user might
be authenticated with a specific right such as write, read only, update or the
combination of these. Eventually, the list of users registered (authorized) in
the system is usually displayed on the editors’ graphical user interfaces.
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– Sharing. Collaboration can be organized in different ways. For instance, one
document might be distributed among several editors dividing it into several
parts, one document might be locked for other users while it is being edited
by one user, each user might edit an independent document in parallel and
so on.

– Chatting. The most concurrent collaboration systems usually provide chat fea-
tures among the users of a system. The chat feature might be in different
forms such as textual (instant messaging), audio (voice conversations), video
chatting (screen sharing) features.

– Highlighting. This feature supports the highlighting of textual documents and
users, i.e., each user is given a particular color so that the changes he/she
made are highlighted with his/her color.

These features are only short list of the common services provided by the exist-
ing concurrent collaboration systems especially for textual documents. Besides,
there are several concurrent collaboration systems for source code-driven soft-
ware projects [Heinrich, 2013], [Goldman et al., 2011]. Concurrent collabora-
tion systems follow similar architectures, principles, synchronization techniques
and provide features as discussed above. They further support some additional
features which are specific for the syntax of programming languages. Because,
programming languages follow concrete grammar (i.e., syntax) rather than just
plain-text [Dillenbourg, 1999]. This class of tools is also known as web-based and
cloud-based IDE (Integrated Development Environment) [Hausladen et al., 2014],
[Eclipse Orion, 2014], [Fluidbyte, 2014].

– Language-specific syntax highlighting. In concurrent collaboration, the syntax
of written text on the editor is highlighted with different colors according to
the syntax definition of a programming language.

– Single click deployment. As provided by standard IDEs like Netbeans, Eclipse,
or many others, concurrent collaboration tools provide the deployment of
the shared software systems by single click. This deployment usually occurs
on the server side where the shared software systems reside.

– Error handling. Whenever, developers compile, run, or deploy their software
systems under collaboration, the aforementioned concurrent collaboration
systems support error handling feature whenever they arise. The error han-
dling is usually capable of catching, highlighting and handling error as soon
as a piece of source code is written on the editor.

– Auto-completion. All modern IDEs provide automatic code completion while
writing the source code of software systems. The web-based concurrent
collaboration systems also provide such features on the editors.

Discussions in this section indicate that there are several synchronization algo-
rithms and collaboration architectures for textual document editing and source
code-driven concurrent collaboration. These approaches exchange the sequences
or lines of characters by means of operations such as insertions, removals or up-
dates of the sequences of characters.
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These synchronization algorithms can not be directly used in concurrent collabo-
ration scenarios for MDSE and evolution activities because of the paradigm shift
between code-driven and model-driven software engineering concepts (as discussed
in Chapter 2.1). As long as software models have associated and composite data
structures [Kleppe et al., 2003], existing concurrent collaboration technologies for
source code and textual document editing can not be directly applied to model-
driven concurrent collaboration scenario (explained in Chapter 3.1.2). However,
the architectural principles, concepts and terminologies on the higher level may
be taken over and reused for developing advanced concurrent collaboration sup-
port for MDSE and its evolution. To sum up, there is a strong need for further
extensive research in the field of concurrent collaborative MDSE.

3.1.2 Concurrent Model-Driven Collaboration

Like the source code of software systems and textual documents, software models
are also subjected to constant changes because of development in novel technolo-
gies, increasing user requirements, improvements, and corrections. Development
and maintenance of software models require the collaborative development in par-
allel, i.e., in real-time because of their complexity and large size with several
thousands of modeling artifacts. Concurrent collaboration is quite significant for
creating and maintaining large-scale and complex software models. Concurrent
collaboration might provide on-line designing support for models and instantly
exchanging concurrent revisions between collaborators in real-time.

In parallel development of software models, several modelers design the same
shared software models. But, each collaborator has his/her own copy of mod-
els and individually designs the own part of models. While designing models,
changes need to be identified, synchronized and instantly propagated on other
parallel copies. In comparison to textual document editing and software source
code development, identification and synchronization of instant changes in MDSE
is a more challenging task because of the graph-like structures of software models.
Thereby, a number of technical challenges may arise in establishing concurrent
collaborative modeling approaches.

Technical Challenges. The concurrent collaboration challenge stems from mak-
ing software models commonly available to multiple users in different locations
and communication issues among these users. Especially, the term real-time in
concurrent collaboration requires extra research efforts and consideration in de-
veloping concurrent collaboration systems for MDSE rather than plain text-based
documents. Because, changes on shared software models have to be detected and
synchronized in real-time enabling collaborators to communicate without delays.
However, the speed of communication is limited by network speed latency which
creates a fundamental dilemma: collaborators need to be capable of synchroniz-
ing their changes with the centralized project instantly, regardless of the network
speed and the complexity, large-scale of their shared software models.
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There are several additional technical challenges associated with developing con-
current collaboration systems for MDSE and evolution. It has to cover different
kinds of modeling artifacts enabling re-usability of different modeling languages,
tools, model transformations, etc. Modeling and model management tools are
commonly distributed as software packages, often on top of the complex software
development IDEs (for example, Eclipse). This can be a burden, particularly for
nontechnical experts [Rocco et al., 2015].

Existing Approaches. There are several industrial/commercial model-driven
concurrent collaboration approaches and tools [Tolvanen, 2016], [Franzago et al.,
2018]. Only few of them are open source and explicitly documented. This section
excludes the commercial tools and approaches because they are not open source
and explicitly documented making them difficult to study and extend. However,
there are several web tools and approaches like GenMyModel [GenMyModel, 2015]
[Dirix et al., 2013], Creately [Cinergix Pty., 2015], Gliffy [Gliffy, 2017], which
exchange changes over WebSockets using web browsers. Their underlying ideas
and implementation technologies like handling techniques of modeling concepts,
change representations and synchronization are not explicitly documented.

The open source and well-documented approach EMFStore is introduced by Koegel
and Helming [Helming and Koegel, 2013]. It provides a collaborative modeling
infrastructure hosted in Eclipse for EMF based software models. Another EMF-
based collaborative modeling infrastructure CDO (Connected Data Objects) [Step-
per, 2018] is well-suited for developing collaborative modeling tools in the EMF
technical space. As long as these approaches operate on the tree-like structures
of software models, they need graphical editors for designing software models.
Furthermore, these approaches store the histories of software models relational
databases which might cause a problem as their model repositories become very
huge over time. Chapter 4 investigates the aforementioned and other related ap-
proaches in detail.

As discussed in Section 3.1.1, there are several collaborative development archi-
tectures and synchronization algorithms for textual and code-driven concurrent
collaboration. As result of studying literature, concurrent collaborative modeling
approaches, especially web-based approaches, take advantage of the centralized
collaborative development architectures. However, it is not explicitly documented
which synchronization algorithm they utilize for representing and synchronizing
changes.

Change Representation in Concurrent Collaboration. According to dis-
cussions in this chapter, the essential and widely used scenario of collaborative
development is concurrent collaboration of several collaborators in real-time. As
concurrent collaboration is dedicated to instantly creating, modifying and main-
taining huge, shared and centralized projects (i.e., of textual documents, source
code, models), the changes made by collaborators have to be continually detected
and synchronized among the several concurrent copies of that projects. Unlike tex-
tual documents or source code, increased performance of change synchronization
matters in collaborative modeling because of the graph-like composite structures
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of software models. Thus, model changes have to be identified, represented and
synchronized instantly using very compact notations. Typically, concurrent revi-
sions are usually not stored, yet synchronized between the parallel working copies
of software models.

Collaborative development approaches for MDSE have to consider the modeling
concepts of model-driven software projects. Mens [Mens, 2002] discusses the lim-
itations of textual differentiation and merging: "[...] It does not take the specific
semantics of software artifacts into account because everything is treated as an or-
dinary piece of text". Textual document and source code editing systems operate
under a linear sequence of characters; file-based paradigm that is purely textual.
Although since models are not sequential text lines, they could be represented
either as trees or graphs, these systems cannot use the formal structure of mod-
els to achieve correct compare or merge results concerning syntax and semantics
[Kofman and Perjons, 2004], [Lin et al., 2004].

3.1.3 Required Support

Discussions on concurrent text/code-driven collaboration approaches show that
there are several common concurrent collaboration and synchronization techniques
for textual documents and source code-driven projects, but very few concurrent
collaboration approaches exist for MDSE. However, research on concurrent col-
laborative modeling can slightly take advantage of some general concepts of con-
current text-driven collaboration. For instance, the centralized architecture and
operational synchronization algorithms are perfectly suitable and the very effective
in case of concurrent collaboration for MDSE. Though, operational representation
of concurrent revisions is quite different than the operational representation of
textual documents and software source code. Operations for model changes em-
body more information about differences/changes, whereas operations for textual
document changes consist of only lines of text or the sequence of characters as
motivated in Section 1 and Section 3.1.2.

In concurrent collaboration, all modeling artifacts can be created, removed or
their attribute values can be changed during initial development and evolution.
All these modifications are referred to as changes. Changes forming concurrent
revisions are the central artifacts in concurrent collaborative modeling. Represen-
tation of these changes is the core challenge in developing model-driven concurrent
collaborative systems. Starting from the initial creation, each modeling artifact
undergoes various aforementioned changes. These changes have to be identified
and represented using efficient and suitable techniques.

There is a need for extensive research in a generic change representation approach
for concurrent collaborative modeling regardless of modeling languages and mod-
eling tools. It has to satisfy the technical challenges defined in Section 3.1.2.
A generic change representation approach is needed for concurrent collaborative
MDSE that can be used as a common underlying change representation in con-
current collaboration environment for MDSE. It should provide core functionality
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and extension mechanisms enabling developers to develop concurrent collabora-
tive modeling systems and infrastructures for different domain-specific modeling
languages. Doubtless, the underlying technologies, concepts, architectures and
mainly terminologies of concurrent textual/code-driven collaboration approaches
can be reused in developing collaborative modeling approaches.

3.1.4 Expected Benefits by Difference Language

As discussed in Section 3.1.3, a generic change representation approach is required
for concurrent collaborative modeling. The technical challenges described in Sec-
tion 3.1.2 and required support defined in Section 3.1.3 can be satisfied by a generic
difference language (DL). DL should be generic with respect to the meta-models
of modeling languages. Any service, component or plug-in required for concur-
rent collaborative modeling can then be developed on the top of that language
definition enabling generality, tool independence, extendability and re-usability
properties.

The concurrent revisions represented by DL enables scalability of larger, more
complex model changes. DL supports several following advantages in concurrent
collaborative modeling:

1. The model changes represented by DL may completely satisfy operational
synchronization principles which provide high performance in change syn-
chronization in real-time.

2. The high performance by DL-based change representations may allow for
avoiding possible change conflicts in real-time (more evidence about valida-
tion results can be found in Chapter 10).

3. According to general language design, DL may serve as a common change
representation and exchange format for various modeling languages, model-
ing tools and among various components and services of concurrent collabo-
rative modeling, sequential collaborative modeling (discussed in Section 3.2)
and history analysis (discussed in Section 3.3) use cases.

4. The DL-based changes can easily be detected from and applied to shared
models regardless of their large-scale and complexity.

5. The histories, changes on concurrent revisions or between the different states
of shared software models can be represented and stored using the same DL.

6. Any revision of shared models or their parts can be traced and browsed for
further analysis.

7. It can easily be transferred over the network since it consists of only changed
parts of software models.
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These benefits are the main contributions of DL in case of concurrent collabora-
tive modeling, particularly. Section 4.3 generalizes these expected benefits in the
overall requirements for DL.

3.2 Sequential Collaboration

During initial development and maintenance of software systems, new software
artifacts are constantly created, existing ones changed or deleted. For the sake of
minimizing conflicts and developing large-scale software projects, they are often
strictly separated into different parts and assigned to collaborators. Each collabo-
rator usually feels responsible for his/her part of work. According to the collective
code ownership manifesto of agile software development, an entire team is responsi-
ble for the shared software system and everyone works together to produce software
artifacts [Beck et al., 2001]. Software artifacts are produced by the teams of sev-
eral software developers, designers, project managers, and testers. According to
[Beck et al., 2001], collective software artifact ownership allows for sharing knowl-
edge, developing software projects with good quality and better style, enabling
independence on other individuals, reviewing code efficiently, and good learning
scope.

Constantly changing software systems results in several different revisions of the
same software artifact. Thereby, software developers wish to store the different
revisions of the same software artifacts including their changes. They intend to
manage software revisions so that the previous software system revisions can be
reverted or the change histories can be traced when needed.

Software projects usually undergo the initial development and evolution (i.e., main-
tenance) phases forming their evolution in general. A set of changes transfers
software projects into new states resulting in new revisions. Eventually, there are
several revisions of the same software projects under evolution. The multi-version
software projects are usually managed using version control systems, i.e., sequen-
tial collaboration. These revisions are usually used to identify, store and reuse
changed software artifacts [Conradi and Westfechtel, 1998].

Definition 3.3. Sequential Collaboration.
According to Glasser [Glasser, 1978], a sequential collaboration system is a
system for controlling changes to files of text (typically, the source code or
documentation of software systems). It provides facilities for
– storing, updating, and retrieving all revisions of files;
– controlling and updating privileges;
– identifying the revisions of the retrieved files;
– recording who made each change, when and where it was made, and why.

In order to provide the stable evolution of software systems, user changes are usu-
ally identified and stored in the software repositories using difference documents.
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These difference documents are reused in the further manipulations and analysis
of the base software system. Changes in difference documents embed adequate
knowledge about the history of artifact modifications.

The objective behind sequential collaboration is to preserve the history of software
projects. Sequential collaboration systems are used to store and handle the his-
tories of evolving software systems. They offer features such as adding a software
project to sequential collaboration, updating the latest changes from the main
repository, merging local branches to the main development trunk by committing
local changes to the main repository. All these version management features are
built on the top of software repositories taking advantage of difference documents
for storing software change histories. With the help of sequential collaboration,
software product owners and developers can easily develop and maintain their
large-scale software projects with the teams of developers.

Sequential collaboration plays an essential role in the most of the development pro-
cesses. Ranging from simple undo/redo capabilities for software changes to compli-
cated model management, branching and collaboration of several developers. This
section focuses on the novel approaches for sequential collaboration. Section 3.2.1
inspects sequential text-driven collaboration approaches. Section 3.2.2 studies
the state of the art in sequential collaborative modeling approaches. Learned
lessons and required support are explained in Section 3.2.3. Section 3.2.4 portrays
expected benefits of suitable difference representation in sequential collaborative
modeling.

3.2.1 Sequential Text-Driven Collaboration

There are several source code-driven sequential collaboration approaches and tech-
niques consisting of advanced concepts and foundations. This section explains the
current state of the art in sequential text/code-driven collaboration approaches.
They are investigated in order to study the core architectures, concepts and ter-
minologies that can be conducted in sequential collaboration for MDSE.

Software Repositories. Software repositories are used to store software projects
that are being developed or maintained, their revisions and all other necessary
data related to their development and evolution. For storing software projects and
their revisions in repositories, one naive approach is to duplicate the entire software
project after each modification. Instead, repositories may store the latest revisions
of software systems and the differences between their revisions. Because the latest
revisions are the most frequently accessed during collaborative development.

There are two forms of software repository architectures [Altmanninger et al.,
2009].

– Centralized. This is a classical approach to sequential collaboration which has a
single central repository storing the project history and clients can have the
working copies cached locally, and possibly also (parts of) the history. This
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repository paradigm requires connection with the central server to perform
any change operations (e.g., committing new revisions). The centralized col-
laboration approach requires to gain appropriate commit permissions before
being able to work. The work and performance done by all developers can
easily be tracked [Baudivs, 2014]. For instance, Subversion [Collins-Sussman
et al., 2004] and Perforce [Wingerd and Seiwald, 1998] are built based on
this kind of repository architecture.

– Distributed. In this form, users have their own repositories on their local ma-
chines in addition to their working copies (pulled). Repositories can be op-
tionally synchronized with other repositories. There is no need to establish
the connection to server. Operations such as commit, browsing the history
and check out, are fast. Later, these changes can be sent (pushed) to the
other repositories in order to synchronize changes with other developers’
repositories. For example, Monotone [Hoare et al., 2005], Git [Swicegood,
2008], Darcs [Roundy, 2005] and Mercurial [Mackall, 2006] follow this tech-
nique.

Repository Storage Models. In source code-driven collaboration, there are two
models for storing software repositories:

– Snapshot-oriented. In this repository storage model, the first-class objects are
usually the particular revisions (snapshots) of projects at a particular mo-
ment. The traceability links between revisions defining artifact changes are
detected and identified by comparing the given two revisions (e.g., Monotone
[Hoare et al., 2005], Git [Swicegood, 2008], Mercurial [Mackall, 2006]).

– Changeset-oriented (Delta-based). This technique focuses on the only changed
artifacts of software projects. The new revisions of projects mean the differ-
ences between two; old and new revisions of projects (e.g., Darcs [Roundy,
2005], Subversion [Collins-Sussman et al., 2004]). As long as the differences
consist of only changed artifacts, this category of approaches can be referred
to as delta-based approaches.

Delta Representation Approaches. An artifact change defines any kind of
modification made to software artifacts. The set of artifact changes can be aggre-
gated to a group which is called differences and stored in difference documents.
Difference documents are referred to as deltas. Consequently, deltas consist of the
group of changes. The most repository storage models take advantage of deltas to
store change information, i.e., differences.

Definition 3.4. Delta.
The aggregated group of artifact changes is defined in terms of differences and
represented in difference documents, referred to as deltas.

The existing sequential text-driven collaboration systems use diverse delta repre-
sentation approaches depending on their implementation techniques. Thus, this
section focuses only on the most popular approaches.
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• Delta Algorithms. This is dedicated to compare two objects and create a
delta. There are several delta algorithms. Some algorithms provide suitable
and sensible output for human review and others focus on finding the smallest
set of differences and providing minimal required output for storage [Baudivs,
2014].

– Delta Combination [Hudson, 2002], [Proceedings, 2006]. While applying
deltas, a set of deltas is emerged to a large singe delta, then applied.
This approach dramatically increases the performance of delta appli-
cation process. Similar technique entitled skip-delta [Hudson, 2002] is
used in Subversion [Collins-Sussman et al., 2004].

– Myer’s Longest Common Subsequence [Myers, 1986]. Another widely used
algorithm is based on recursively finding the longest sequence of com-
mon lines in the list of lines of compared objects. This algorithm is
also used by GNU diff tool [MacKenzie et al., 2003]. This algorithm
performs two breadth-first searches searching for modifications (line
addition/removals/keeps) on the compared files. The shortest modifi-
cation sequence is found when these two searches meet. The output
of the algorithm is the additions, removals and keeps of textual lines.
Another optimized version Patience Diff of Myer’s LCS algorithm was
introduced by Bram Cohen as the default difference tool to Bazaar
version control system [Cohen, 2003].

– BDiff [Proceedings, 2006]. The BDiff algorithm is the part of the Python
difflib library [Hellmann, 2011] and used by Mercurial for both delta
storage and difference representation. The BDiff algorithm searches for
the longest common continuous substring within compared files and
recursively in the part preceding/succeeding it.

– XDelta [MacDonald, 2000]. The XDelta algorithm produces copy and
insert instructions as the output. The first of compared revisions is
splitted into the smaller blocks and each block is put on a hash table.
The same hashing is done for the second object as well. Then, all
possible matches are found in the first hash table. The copy instruction
is derived for the largest match. The insert instruction is then generated
for unmatched data in the second hash table. This algorithm is used
in Subversion [Collins-Sussman et al., 2004], Monotone [Hoare et al.,
2005] and Git [Swicegood, 2008] for internal storage, i.e., generating
one-way binary differences between arbitrary non-textual blobs.

• Delta Formats. The delta algorithms discussed above are used to compare
the revisions of the same software artifacts and produce difference documents
(deltas), whereas delta formats are used for storing deltas produced by the
delta algorithms. Principally, delta algorithms and delta formats are strongly
tied to each other.

– Unified Diff [Davison, 1990]. The Unified diff format is a standard used
in "patch" files. The differences consist of the change chunks for each
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file considering only changed artifacts. The change types are distin-
guished by three operations. These are additions; marked with "+"
sign, removals; marked with "-" sign, and modifications; marked as
"+/-" sign. Git takes advantage of the extended form of the unified
diff in representing merges.

– RCS Delta [Tichy, 1985]. The RCS approach represents changes in deltas
using textual formats. In case of the development branches, deltas are
stored in reversed order and newer revisions are represented by backward
deltas. Deltas consist of lines and each line contain the letter a for ad-
ditions, d for deletions followed by line numbers, and the enumerations
of lines which have to be added or deleted.

– Weave [Rochkind, 1975]. The weave format introduced by SCCS [Rochkind,
1975] is used in BitKeeper [Henson and Garzik, 2002]. This approach
represents all revisions, listing all lines that appear in the file together
with its revisions.

In addition to these approaches, there are several other repository formats such as
Git Packs [Swicegood, 2008] which is very effective in size. It uses pack-specific
objects for representing deltas in binary formats [Baudivs, 2014].

As these discussions show, there are several difference representation formats and
repository models for source code-driven software systems, textual files, data ob-
jects or binary files using textual, binary or object formats. The most approach
consider line-by-line differentiation techniques considering line additions, removals
or line modifications, or consider object as a whole. These repository storage mod-
els and delta formats can not directly used in representing model differences in
collaborative MDSE because of paradigm shift between code-driven and model-
driven software development technologies.

3.2.2 Sequential Collaborative Modeling

According to discussions in Section 3.2.1, there are several advanced sequential
collaboration approaches for source code-driven software projects, textual files,
and object files. As MDSE is becoming widely accepted and used technology in
current day’s software development activities, there is a need for extended research
on model difference representation, i.e., delta formats in sequential collaboration
for MDSE. Generic delta format approaches for sequential collaboration support
is required regardless of modeling languages.

Similar to the code-driven artifacts of software systems, the design level models
of software systems are definitely the subject to changes during development and
evolution. In case of code-driven software development and evolution, changes
are mostly considered in the line-by-line forms, i.e., line additions, line removals,
and line deletions. But, this approach of change identification and representation
can not be utilized in case of sequential collaborative modeling. Because software
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models have composite and graph-like structures representations (as discussed in
Section 2.4).

Proposed sequential collaboration infrastructures for MDSEmust implement mech-
anisms to deal with consistency in the shared modeling artifacts, to view data
shared by the team members and consider the associated data structures of mod-
els. Thus, sequential collaboration systems have to be well-advanced enough for
handling model-driven software development and evolution. The adapted process
of sequential collaboration is needed that addresses the challenges arise by having
software models as the subject of evolution.

There are already several sequential collaboration approaches and research pro-
totypes for MDSE and evolution. Below, some of these existing approaches are
partially discussed in order to study the state of the art and derive the related ter-
minologies. The extended literature review and discussions about the underlying
delta formats of existing sequential collaborative modeling approaches are given
in Chapter 4.

Software Repositories. The software repository architectures such as centralized
and distributed are usually used for both, source code-driven and model-driven
sequential collaboration. As long as the software repository architectures are only
the organizational subject, the same repository architectures can be reused for
sequential collaborative modeling.

Repository Storage Models. The snapshot-oriented and changeset-oriented
models are discussed as the repository storage models in Section 3.2.1. In case
of the sequential collaboration, the most existing approaches take advantage of
the changeset-oriented approach for identifying and representing their reposito-
ries (e.g., [Saeki, 2006], CoObRA [Schneider et al., 2004], SMoVer [Altmanninger
et al., 2007], AMOR [Langer, 2011], etc). Because, the changeset-oriented model
is more efficient than storing complete model revisions after every small change.
Further motivation and discussions can be found in Section 4.2.6. As discussed in
Section 8.1, this thesis also takes advantage of the changeset-oriented model for
developing its sequential collaborative modeling application.

Delta Representation Techniques. Section 3.2.1 has reviewed two different
parts of delta representation techniques such as delta algorithms and delta formats.

– Delta Formats. There are several delta formats for representing model differ-
ences in the field of sequential collaborative modeling. These are classified
into four groups such as text-based [Appeldorn et al., 2018], model-based [Ci-
cchetti et al., 2007, Taentzer et al., 2012], graph-based [Kehrer et al., 2013a],
Relational Database-based [Altmanninger et al., 2007]. As long as the differ-
ence representation for collaborative MDSE is the core research objective of
this thesis, Chapter 4.1 is dedicated to extended literature review in model
difference representation approaches (i.e., delta formats).

– Delta Algorithms. In addition to delta formats, providing a catalog of supple-
mentary services is further research objective of this thesis as explained in



Chapter 3. Collaborative Development Use Cases 54

Section 1.1. Thus, Section 4.2 provides extended discussions on the existing
delta algorithms for collaborative modeling.

As described in the content of this chapter, collaborators checkout the shared,
central software models into their distributed environments, modify their copies
of models, and eventually check in (merge) their changes into the central model.
Usually, this scenario is constantly performed by several collaborators. It results in
several different subsequent revisions of the same modeling artifact. Alternatively,
during concurrent collaborative modeling, collaborators may save their models un-
der development whenever they are correct and complete which eventually results
in the new subsequent revisions of the same modeling artifacts. According to
changeset-oriented (delta-based) difference representation, only changed modeling
artifacts are identified and represented in deltas, instead of storing complete model
as sequential revisions. In order to represent model differences in deltas, there is
a strong need for a suitable and appropriate difference representation notation.

Difference Representation in Sequential Collaboration. According to dis-
cussions in this section, changes are the first-class citizens in sequential collab-
orative modeling, as well. Representation of changes plays an essential role in
developing advanced sequential collaborative modeling systems. As discussed in
Section 3.2.1, there are multiple change representation approaches (i.e., delta for-
mats) for source code-driven sequential collaboration. Software models can not be
treated as neither source code nor blob objects because of their graph-like struc-
tures and syntax [Kleppe et al., 2003]. Software models can be represented in
textual formats using XMI exchange formats, but it is commonly agreed that dif-
ferentiating the textual representations of software models do not provide sufficient
information for storing the model histories in sequential collaboration [Cicchetti,
2008], [Steinberg et al., 2008]. Nevertheless, the existing technologies of sequen-
tial text-driven collaboration systems can be utilized on the architectural level.
Moreover, similar principles, concepts and terminologies on the higher level may
be taken over and reused for developing advanced sequential collaboration support
for MDSE and evolution. There is a strong need for a generic and extensible differ-
ence representation language regardless of modeling languages, modeling designing
tools and other underlying technical spaces.

3.2.3 Required Support

According to discussions so far, sequential collaborative modeling approaches are
not competitively well advanced in comparison to sequential text-driven collabo-
ration approaches. Like concurrent collaboration, difference representation (delta
formats) lies at the core of sequential collaboration. Therefore, there is a strong
need for an extended research on a novel and solid means for model difference
representation for sequential collaborative modeling.

Section 3.1.3 requests a difference representation notation for concurrent collabo-
rative modeling. The same underlying difference representation notation can also
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be used for sequential collaborative modeling providing the combination of both
collaborative modeling scenarios. Likewise, the same underlying representation no-
tation can be suitable for sequential collaboration. A common underlying notation
can serve as a generic delta representation and change exchange format for both
concurrent and sequential collaborative modeling scenarios enabling development
of any component or service on the top.

In the field of concurrent and sequential text-driven collaboration, the delta for-
mats for representing differences do not rely on any source code syntax, textual
file types or object types. Moreover, this kind of features are not sufficiently cov-
ered by the existing difference representation approaches for collaborative MDSE
as discussed in Chapter 4. Like the delta formats for concurrent and sequential
text-driven collaboration, an efficient delta notation is required for representing
differences and changes in collaborative MDSE. It should not rely on a particular
modeling language, modeling tools, delta algorithms or other underlying technical
spaces. It has to be generic allowing for development of further operative services
and components on the top, yet serve as the common underlying delta representa-
tion format for both, concurrent and sequential, collaborative modeling. To this
end, this thesis strongly requests a generic difference language for representing
changes/differences in deltas for the both scenarios of collaborative MDSE.

3.2.4 Expected Benefits by Difference Language

In case of sequential collaborative modeling, change representation should defi-
nitely be based on changeset-oriented storage technique, i.e., only changed mod-
eling artifacts have to be considered in delta documents. As long as modeling
concepts follow associated and composite graph-like structures, considering only
changed modeling artifacts has a great deal of time and storage memory efficiency.
Eventually, it allows for storing only the changes in deltas. It plays an essential
role in storing the small set of changes in case of a huge amount of model revisions.
A difference language for representing model differences yields several significant
contributions to sequential collaborative modeling, as well.

1. It may facilitate tool developers’ productivity with precise, concise and clear
descriptions (extensible).

2. It can be declarative enough by making any concepts or mechanisms implicit
that can be intuitively interpreted from the context.

3. It may convert a software model from one revision to another by being
directly executable descriptions of model changes.

4. It can be fully expressive, yet unambiguous and provide necessary knowledge
about each change.

5. It may embody the only changed parts of software models saving memory
and time.
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Model changes are quite crucial in case of the large-scale software models designed
by several collaborators where models have several sequential revisions and several
parallel development branches. Consequently, difference language brings several
advantages to sequential collaborative modeling, particularly. By using simple
difference representation notations, sequential collaborative modeling may reduce
the difference storage space and improves simplicity by storing only changed arti-
facts. Changes can be efficiently exchanged among various development branches
of software models under development and evolution. If a difference representation
notation is generic with respect to the meta-models of modeling languages and in-
dependent of underlying technical spaces, it can be applied to the wide range of
modeling languages and model designing tools.

These are the expected contributions of difference representation notation provided
by difference language. These benefits are generalized in Section 4.3 as the set of
requirements for overall difference representation language.

3.3 History Analysis

Since software systems evolve undergoing different changes resulting in several
different revisions, the history of evolving software systems is quite interesting
for project managers, designers, developers, and other stakeholders. Develop-
ment team members are usually interested in which collaborator made particular
changes, how the development and evolution processes are going on. They aim at
being able to keep the development and evolution processes under their control, as
well as make the further appropriate decisions on improvements of their software
project.

Often the present of models is understandable by looking at their past. Moreover,
in concurrent collaboration, history analysis enables users to visually compare
their current revision with previous ones or the other parallel revisions of the
same modeling artifacts. The users can specify changes they want to save and
discard.

In software evolution, [Ducasse et al., 2005] defines three main terms: revision,
evolution and history. A revision is a snapshot of a software artifact at a partic-
ular moment of time. The evolution is the process that leads from one revision to
another. History is the reunification which encapsulates knowledge about evolu-
tion and revision information. According to these definitions, the history is used
to understand the software evolution.

During development and evolution processes, software systems are usually stored
in software repositories [Arnold, 1996]. Analyzing the evolutionary life-cycle and
history of software systems is the part of the general software engineering activity
entitled mining software repositories (MSR) [Godfrey and Tu, 2002, Kagdi et al.,
2007].
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Definition 3.5. Mining Software Repository.
[Kagdi et al., 2007] defines Mining Software Repository (MSR) as follows:
"The term mining software repositories (MSR) has been coined to describe
a broad class of investigations into the examination of software repositories.
Here software repositories refer to artifacts that are produced and archived dur-
ing software evolution. They include sources such as the information stored in
source code version-control systems (e.g., Concurrent Versions System(CVS))
requirements/bug-tracking systems (e.g., Bugzilla), and communication archives
(e.g., e-mail)."

The term MSR has a very broad meaning and this thesis refers to it as history
analysis of software systems, later on, software models. Thus, this section limits
the scope of MSR which covers examining the multiple revisions or change-sets of
software artifacts during their development and evolution. The revisions of soft-
ware systems or evolutionary change-sets are specifically investigated in order to
analyze the evolutionary life-cycle of software systems with the particular purpose
asking questions such as why? who? and when?. The people involved in devel-
opment and evolution of software systems obviously want to analyze how changes
they made impact on their software systems under evolution and development.

Analyzing and viewing the histories of software systems is significant support for
software stakeholders in order to comprehend necessary knowledge about the re-
vision histories. The advanced querying systems might bring several conveniences
to the software collaborators. These conveniences are discussed in Section 3.3.4.

Information Resources (Software Repositories). As discussed so far, multi-
versioned and shared software artifacts are usually stored, archived in software
repositories which serve as information resources for analyzing the evolutionary
history of software artifacts. Both, concurrent and sequential, versioning systems
utilize software repositories for storing and archiving their software artifacts. The
software repository types vary in their exploitation, information contents, and
storage formats. Furthermore, these repositories are managed and operated in
isolation by the tools and approaches built on the top of these repositories [Kagdi
et al., 2007]. Nevertheless, the common goal of these repositories is to support
software evolution by managing the life-cycle of software change [Robbes, 2007].

[Kagdi et al., 2007] classifies three basic categories of information in software
repositories that can be mined:

– Differences between Artifact Revisions. As long as software changes are the
first-class citizens in development and evolution of software systems, the dif-
ferences between artifact revisions are always the main subject in analyzing
the evolutionary life-cycle of software artifacts.

– Software Artifact Revisions. Software artifact revisions are mainly the states of
software systems before and after making changes. Information about differ-
ent revisions can be queried from software repositories. Information about
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revisions might be different according to the purpose of mining, analysis and
even the type of software artifacts.

– Meta-Data. In addition to software revisions and the differences between these
revisions, meta-data such as commit comments, user names, timestamps, and
other similar data is also necessary information in history analysis. These
meta-data describe, respectively, why, who and when the context of software
artifacts change [Kagdi et al., 2007].

Purpose. Software repositories are mined for different purposes such as extracting
necessary, useful information and/or detect relationships, consistencies according
to particular evolutionary characteristics or metrics [Bieman et al., 2003]. These
characteristics and metrics vary based on what kind of software artifact is being
analyzed, e.g., textual, source code, object type, graph or tree-like structures, etc.
Mining purposes might vary based on the purpose of stakeholders, for instance,
one may be interested in the growth of systems, i.e., the amount of software
artifacts, change relationships between software entities, or most instantly changed
artifacts and so on. Due to studying particular characteristics, and define the scope
and context of mined information, the purpose is typically expressed as a set of
questions. Thus, the purpose of mining reduces to what questions can be answered
by software system analysis [Kagdi et al., 2007].

[Wenzel, 2008, Kagdi et al., 2007] broadly define two classes of software system
analysis questions. The first class is the market-basket questions formulated as: if
something happens then what else occurs on a regular basis? The answer for this
kind of questions is the set of rules or guidelines describing situations and their
relationships. The second type of analysis purpose is related to prevalence ques-
tions. Thereby, questions include metrics and boolean queries. For instance, was
a particular software artifact created/deleted/changed? These questions indicate
the purpose of the analysis scenario.

History Analysis Steps. In general, the process of the history analysis of soft-
ware systems undergoes several sub-steps [Robbes, 2007]:

– Artifact Representation. Different repositories store or archive software artifacts
using different techniques such as source code, abstract syntax trees (AST)
[Robbes, 2007], control-flow graphs [Kim and Notkin, 2006], software models
[Raumbaugh et al., 2004].

– Change Operation Definition. Change operations represent the actual evolution
of software artifacts. Change operations are usually defined in two forms:
atomic operations such as creations/additions, deletions/removals, property
changes, and composite operations such as moves [Robbes, 2007]. Change
operations are usually stored in difference documents sometimes referred to
as delta documents [Zimmermann et al., 2005] using log records [Hindle and
German, 2005], relational databases [Robles et al., 2004], file systems [Berlin
and Rooney, 2006], software models [Cicchetti, 2008], graph-like structures
[Kehrer et al., 2013a], etc.
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– Data Extraction/Retrieval. This is the process of querying and fetching analysis
information from software repositories. This step is the main operation which
facilitates software history analysis with retrieval of necessary and pertinent
information from software repositories. Different techniques are used in data
retrieval (sometimes referred to as repository mining) phase according to
data formats stored in software repositories. For instance, graph queries
[Kullbach et al., 1998] are used to extract information from the graph-like
structures, SQL queries [Date and Darwen, 1987] are used to query relational
databases, etc.

– Data Browsing, Visualization. Data browsing and visualization are the central
ingredients for any software history analysis solution. Difference informa-
tion obtained from the data retrieval phase needs to be properly visualized
in readable and convenient ways so that it can be used for subsequent anal-
ysis and manipulations. According to literature, visualization of software
repositories and/or their differences can be differentiated in the following
ways:
Text-based presentation lists the differences in form of plain text or in

some structured formats, e.g., XML. Modern text-based visualization
techniques, for example, the technique described in [Suvanaphen and
Roberts, 2004] provides a means for the overview, zooming, filtering.
However, the overview, zooming, and filtering, in this case, are syntax-
based and do not provide much insight into the meaning of differences.

Graph or tree-based visualizations (e.g., [Wenzel, 2008], [Collberg et al.,
2003]) show all model or source code artifacts in lists or in trees if they
have hierarchical structures. But getting the overview of the differences
is not so easy for the larger amount of software artifacts because the
size of the visible part of trees is limited by the size of displays. The
details of differences are still not easy to comprehend, since the users
need to interpret the tree representation of differences.

Diagrammatic visualization [Schipper et al., 2009] offers the diagrammatic
view for visualizing differences. In this approach, it is hard to extract
all artifact types having a certain property, because these artifact types
might be in different parts of software system, and thus they might only
be visualized in different diagrams.

Difference highlighting approach [Wenzel, 2008] highlights the differentiated
software artifacts with different colors. For instance, creations might
be highlighted with green color, deletions with red color and changes
might be marked with another color. In this approach, moves cannot
be displayed sufficiently. However, the approach does not scale up to
the large amount of software artifacts due to display limitations.

Tabular view gives the first overview about those software objects comply-
ing with the appropriate query. These query results are directly linked
to the source code if possible [Ebert et al., 2002].

Section 3.3.1 reviews the core ideas and basic concepts behind the history analysis
for source code-driven software development. Section 3.3.2 derives some common
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basic concepts and terminologies from the source code-driven software history
analysis and inspects the history analysis for MDSE and evolution.

3.3.1 Text-Driven History Analysis

There have been several approaches to analyze long-term software-project data in
order to understand software evolution. [Fernández-Ramil and Lehman, 2000] has
reported various results on the changes in the software and nature of software evo-
lution based on long-term studies such as the laws of software evolution [Lehman,
1996], metrics of software evolution [Fernández-Ramil and Lehman, 2000] and clas-
sification of programs [Lehman and Fernández-Ramil, 2001]. These reports serve
as theoretical grounds for several repository mining approaches.

Hassan [Hassan, 2008] distinguishes between two kind of repositories:

Historical repositories are usually utilized in case of the sequential collabora-
tion scenario such as source code control repositories (as explained in Sec-
tion 3.2.1) (the source code of various applications developed by several de-
velopers), bug repositories, and archived communication record information
about the evolution and progress of projects. Monotone [Hoare et al., 2005],
Git [Swicegood, 2008], Mercurial [Mackall, 2006], Darcs [Roundy, 2005], Sub-
version [Collins-Sussman et al., 2004] sequential collaboration tools are the
examples for these repositories.

Run-time repositories such as real-time editing logs contain information on the
execution and development of applications by multiple developers. This kind
of repositories are used in case of the concurrent collaboration scenario. For
instance, Google Docs [Google Inc., 2017], Etherpad [AppJet Inc., 2017],
Firepad [Firebase Inc., 2017] are widely used in document creation and edit-
ing in real-time.

Since the historical repositories store the subsequent revisions of software artifacts,
the repository mining approaches based on the historical repositories usually pro-
vide history information about the subsequent revisions of software source code,
the differences between subsequent revisions and meta-data about their commits.
The repository mining approaches built on the top of real-time repositories usu-
ally contribute to the comparison of parallel revisions, displaying instant updates,
displaying real-time log messages, user lists and other related data. In this thesis,
the both concurrent and sequential collaborative modeling scenarios are built on
the top of the same underlying repository.

Repository mining and history analysis approaches used in concurrent and se-
quential collaboration systems for source code-driven software development and
evolution can extract information from their repository formats. However, they
can not fully handle repositories for MDSE and evolution. They do not take the
specific semantics of software artifacts into account because everything is treated
as the ordinary piece of text by them [Mens, 2002]. These techniques established
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on top of the concurrent and sequential text versioning systems operate on textual
documents and source code under the linear, the sequence of characters, file-based
paradigm that is purely textual. As long as models are not sequential text lines,
but could be represented as trees or/and graphs, these systems cannot use the
formal structures of software models to provide operating data extraction and
suitable analysis features concerning syntax and semantics [Kofman and Perjons,
2004], [Lin et al., 2004].

3.3.2 Model History Analysis

During the evolution and maintenance process of software models, model designers
feel a need for history analysis support for tracing and comprehending the evolution
history of models in general and their particular artifacts. In order to analyze
the histories or trace a particular artifact of evolving models, designers need to
determine answers to several questions such as:

1. How often does a modeling artifact change?

2. When was a modeling artifact created?

3. When was a modeling artifact deleted?

4. Which modeling artifacts are constantly changing?

5. How does the history of a modeling artifact look like?

6. How was the state of a whole model in earlier revisions?

7. What are the differences between any two revisions of a model?

For answering these questions, the change histories of modeling artifacts have to
be identified and stored in appropriate ways for further analysis and manipulation
[Kuryazov and Winter, 2015b], [Wenzel, 2008], [Wenzel, 2010].

There are only few approaches dedicated to history analysis for model-driven soft-
ware development and maintenance. There are approaches providing software
model repositories such as [Schneider et al., 2004] and [Oliveira et al., 2005], but
they do not provide change tracing and history analysis features. The terminolo-
gies and techniques described in the content of this chapter are suitable for model
history analysis, as well. Thus, below, few approaches [Xing and Stroulia, 2005a],
[Godfrey and Tu, 2002], [Wenzel and Kelter, 2008] and [Kehrer et al., 2012] are
discussed by matching these terminologies.

An approach addressing to model change tracing and history analysis is introduced
by Sven Wenzel in [Wenzel, 2010] and [Wenzel and Kelter, 2008]. This approach
uses EMF-based models as its data repositories/resources. In the first stage of data
retrieval, the approach creates the history repository from the model revisions in
repository. It detects model change operations using model comparison as the
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part of data extraction. In the history creation phase, the approach extracts
revision information and one graph representation for each model reversion in
the repository. It then stores traceability data and evolution data by adding fine-
grained element information to revision information and graph representations.
By this step, the approach creates mapping between the model repository and the
history repository. This is also referred to as traceability information. Traceability
information helps (1) to identify modeling artifacts across their evolution and (2)
to follow the modeling artifacts of model revisions to the corresponding artifact
in the ancestor and descendant revisions respectively, if the element exists in that
revision of the model.

Traceability information can be calculated incrementally whenever the new revi-
sions of models are created. The identification links are computed by the model
matching approach of SiDiff algorithm [Treude et al., 2007]. The approach fur-
ther provides the data browsing feature for detected history information by the
change tracer. It takes advantage of coloring and graph-based visualizations and
data browsing techniques. Moreover, model revisions can be opened in textual
forms using tree-like visualizations with multiple revisions. The occurrences of
the selected artifacts can be traced, and the traced modeling artifacts and their
occurrences are visualized in different colors. In the visualization component,
modeling artifacts and their correspondences are visualized in different colors and
notations.

The SiLift approach [Kehrer et al., 2012] aims at comprehending model evolution
through semantic lifting model differences from the low-level graph-based repre-
sentations to the higher-level, composite difference representations. As the exten-
sion of the SiDiff [Schmidt and Gloetzner, 2008] algorithm, SiLift uses low-level
graph-based difference representations produced by the SiDiff algorithm as its data
sources. In the data extraction phase, the approach defines the mappings between
the low-level and high-level differences using the Henshin graph transformation
rules. Eventually, the low-level differences are then transformed into the high-
level, human-readable difference representations and visualized using model-based
and coloring techniques.

Xing and Stroulia [Xing and Stroulia, 2005a] presents an evolution analysis ap-
proach for object-oriented software systems. The evolution of source code is trans-
lated into models. This particular evolution is not comparable to the evolution of
models in MDSE. Another approach by Godfrey and Tu [Godfrey and Tu, 2002]
deals with the problem of tracing source code entities over time. The main objec-
tive of the so-called origin analysis is the structural evolution of software systems.
It addresses renaming or moving of code artifacts. These approaches reside in the
domain of source code evolution, the parts of these concepts can be transferred to
the MDSE context. However, they are neither investigated nor applied in MDSE.
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3.3.3 Required Support

The main challenge in software model history analysis is an advanced query mech-
anism, which is crucial for retrieving artifacts from model repositories according
to different criteria. For instance, software models can be searched by consider-
ing the corresponding modeling concepts, notations, domain type, or development
phases. To achieve successful results in model history analysis, the representation
formats of software model repositories must be easily accessible, reusable and ex-
tensible with compact syntax and notations. Repository mining should not avoid
the model-driven concepts and the syntax of software models when the extracted
data is displayed to collaborators. This allows for analyzing the model histories
by referring to these modeling concepts.

To sum up, model history analysis is still in its infancy. In Section 3.2 and Sec-
tion 3.1, a difference language is requested for difference representation in MDSE
and evolution. As long as the concurrent and sequential collaborative model-
ing scenarios can be built on top of the same underlying difference representation
language, the model history analysis scenario can also use the same common repos-
itories. Eventually, these repositories can be used as information source for the
history analysis applications in the context of MDSE.

3.3.4 Expected Benefits by Difference Language

Since software models are the visual form of software system design and consider
all aspects of design level concepts, a proposed difference language can serve as
suitable information resource for advanced querying, browsing and visualization
features for collaborative MDSE.

1. It may improve the performance of data extraction by difference language
notations.

2. It may allow for tracking model changes by following actual modeling con-
cepts.

3. Whole models or their certain aspects can be queried and query results can
be browsed and visualized in different ways.

4. The history of whole models or their particular artifacts can be traced with-
out loosing relationships between sequential and concurrent revisions.

The list of expected benefits are the contributions of a difference language to
particularly model history analysis use case. This thesis aims at achieving afore-
mentioned expected benefits in model evolution history analysis by applying a
proposed difference language. The model history analysis application of this the-
sis takes advantage of the tabular view and graph visualization techniques for
visualizing its repository query results.
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3.4 Summary

The actual state of the art in concurrent, sequential collaboration and history
analysis use cases for source code-driven/textual and model-driven software devel-
opment are briefly discussed in this chapter. These discussions have shown that
having a suitable model difference representation might significantly contribute to
concurrent, sequential collaborative modeling as well as model history analysis.
These discussions helps to learn several research lessons as follows:

– There are several efficient and suitable difference or change representation ap-
proaches for source code-driven software development and evolution.

– A number of solid and sophisticated concurrent, sequential collaboration and
history analysis applications and tools are established on the top of the
existing difference representation approaches for source code-driven software
development and evolution.

– The source code and text-based difference representation approaches can not
be applied to the representation of model-driven software differences and
changes because of paradigm shift between linear source code-driven and
graph-based model-driven software development concepts.

– Difference representation lies at the core of both collaborative modeling scenar-
ios and history analysis support. Thus, there is a strong need for extended
research in sophisticated, extensible, reusable, applicable and efficient ways
of difference language for collaborative MDSE. It can be a common under-
lying representation technique for the concurrent and sequential scenarios of
collaborative modeling as well as model history analysis.

– A catalog of supplementary services can be developed on the top of a proposed
difference representation approach which can help to extend the application
areas of difference representation.

The research and applications in model difference representation field are still in
early ages. Consequently, this thesis addresses model difference representation by
a difference language in collaborative MDSE as its primary research question. Fur-
thermore, it aims at providing a catalog of services which can produce, reuse and
manipulate model differences represented using a proposed difference language.
Eventually, the concurrent and sequential collaborative modeling scenarios as well
as model history analysis in MDSE can be elaborated by the specific orchestration
of the provided services.



Chapter 4

Related Approaches To Difference
Representation

The problem of model difference representation is the actively discussed and exten-
sively addressed topic among the research community in software engineering and
modeling field. There is a large number of research papers addressing the problem
of model difference representation and its certain aspects. In order to study the
existing approaches and the state of the art, an extensive literature review is done
in the framework of this thesis. This chapter gives a brief overview about the state
of the art in the field of model difference representation. Several existing model
difference representation approaches are studied and analyzed in order to clarify
what aspects of model difference representation are already covered and which
ones are still remaining to be solved.

The related approaches employ various techniques for describing and storing model
differences and changes in deltas. For instance, some approaches use the model-
based way of difference representation, i.e., the differences between model revisions
are described in individual models so called the difference models. There are some
approaches which use textual operations (similar to difference language in this
thesis) as techniques to describe difference representation. Even, some approaches
take advantage of relational databases to store model differences. In addition
to difference representation techniques, these approaches further provide supple-
mentary services to exploit and reuse their difference representation information
dealing with certain aspects.

This chapter studies existing approaches according to, firstly, their model differ-
ence representation technique in Section 4.1, secondly, the supplementary services
they provide to reuse and exploit their difference representation information, in
Section 4.2. As the result of the literature study, the learned lessons are discussed
in Section 4.2.6 so that the open research challenges are highlighted in the research
field. Section 4.3 defines several requirements for model difference representation
and its applications. Finally, this chapter ends up by drawing some conclusions in
Section 4.4.

65
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4.1 Model Difference Representation

In Section 3.2.1, multiple difference/change representation approaches are dis-
cussed for source code-driven software development. There exist several delta
representation approaches in collaborative MDSE, as well. They employ various
forms and techniques for describing and storing model differences. This section
classifies and discusses the existing delta representation approaches for collabora-
tive MDSE according to their model difference representation techniques.

Difference/Change 
Representation Approach

Model-based

Graph-based Relational Database Text-based

Figure 4.1: Related Approaches

Figure 4.1 depicts the classification of the most widespread difference/change rep-
resentation approaches that are addressed in this thesis. This classification is the
result of literature study in the framework of this research work.

– Model-based. Model differences or changes are represented in software models,
e.g., usually using UML class diagrams. This is the specific and more ab-
stract type of the graph-based representation. This class of approaches is
discussed in Section 4.1.1.

– Graph-based. This technique is the special form of the model-based represen-
tation, but relying on the low-level graph-like structures. The graph-based
model difference representation represent model differences in the graph-like
structures on more detailed and technical ways. These approaches are en-
lightened in the same section with model-based approaches in Section 4.1.1.

– Relational Database. Several model difference representation approaches take
advantage of the relational databases for storing/representing their model
differences as discussed in Section 4.1.2.

– Text-based. Model differences or changes are represented by a sequence of edit
operations in textual forms embedding change-related difference information.
The delta representation approach proposed in this thesis also belong to
this class of difference/change representation approaches. The text-based
representation approaches are discussed in Section 4.1.3 in detail.

Operation-based. Before starting to inspect and study the related approaches,
a clear definition of the term operation-based must be given. Most of the related
approaches identify themselves as operation-based difference representation tech-
niques. Because they usually utilize basic edit operations such as create, delete
and change (or similar and more) which is a general concept being relevant to
many difference representation approaches. Regardless its difference representa-
tion technique, these approaches use the aforementioned basic operations only to
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recognize the types of changes. But, model changes are generally stored in various
forms like models, graphs, relational databases or textual forms, as discussed in
the remaining sections of this chapter.

4.1.1 Model- and Graph-based Difference Representation

In model- and graph-based difference representation approaches, model differences
are represented again in software models so-called difference models (graphs). As
long as the model-based difference representation approach is the special form
of the graph-based approaches, this section studies the model-based difference
representation approaches together with the graph-based ones.

The graph-based approaches represent model differences or changes using internal
graph-like structures. In graph-based approaches, model differences are repre-
sented by several low-level (i.e., graph-level) change operations, whereby they can
be composed as only operation in case of model-based difference representation.

A meta-model independent approach to model difference representation. In [Cic-
chetti et al., 2007] and [Cicchetti, 2008], Cicchetti et al. introduced a meta-model
independent approach to model difference representation which is agnostic of dif-
ference calculation. The approach uses software models for representing model
differences. Model differences are described in difference models which conform to
difference meta-models. The difference meta-models themselves are derived from
the base meta-models of modeling languages by automatic transformations apply-
ing three atomic operations add, change, delete to the concepts of the given
meta-models. These basic operations are attached to each concept of difference
meta-models so that the differences between instance models can be represented
by the change operations derived from that difference meta-models.

In the approach by [Cicchetti et al., 2007], the derived difference meta-models are
utilized for representing model differences on the instance level. The approach
distinguishes three types of change operations as follows:

– Additions. New modeling artifacts that are not present in the previous revision
of a model are added to the next revision.

– Deletions. Existing modeling artifacts are deleted from the previous revision
that should not exist in the final revision of a model.

– Changes. Existing modeling artifacts are updated when a model is evolved
from the previous revision to the next revision.

The approach is applied to several modeling languages with respect to their meta-
models. The authors intend to find a suitable representation for model differences
which is agnostic of the calculation method and permits to harness the poten-
tial offered by generic modeling platforms. Thus, they identify several natural
properties their representation technique should provide. They also argue that
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the outcome of difference calculations must be represented using models to con-
form to the spirit of "everything is a model" principle. Therefore, in order to find
a solid and suitable model difference representation approach, they state several
prerequisites that the model difference representation technique should satisfy:

– minimalistic, difference models must contain only the necessary information to
represent model differences/changes, without duplicating the parts of those
models that are not changed;

– transformative, difference models must induce model transformations, such that
whenever they are applied to the initial model, it yields the final one. More-
over, the transformations must be applicable to any other model which is
possibly left unchanged, if the modeling artifacts specified in the difference
models are not contained in it;

– compositional, the result of subsequent or parallel modifications is a difference
model whose definition depends only on difference models being composed
and is compatible with the induced transformations;

– meta-model independent, the representation techniques must be agnostic of the
respective meta-models. In other words, it must be not limited to specific
meta-models.

The discussions above outlines the minimal set of requirements which should be
taken into account in order to let a generic modeling platform to deal with ad-
vanced model version control facilities. Additionally, the approach provides several
supplementary services that are discussed in the follow up sections of this chapter.

AMOR – Adaptable Model Versioning System. A fundamental approach to model
version control based on graph modifications is introduced in [Taentzer et al.,
2012]. It represents model differences by difference models. The approach is val-
idated in the Adaptable Model Versioning System (AMOR) [Langer, 2011] for
EMF models [Steinberg et al., 2008]. The major focus of the approach is the dif-
ferentiation and merging of software models that serve as the main foundations
for sequential collaborative modeling. The approach employs model matching
algorithms to produce mappings between modeling artifacts in the original and
revised versions of models. The identified correspondences by model matching
are described by match models conforming to the match meta-model. For each
pair of matched modeling artifacts, a match model consists of the instance of the
class Match connecting the corresponding model artifacts in the original and the
revised versions. If the model elements are not matched, the instance of the class
Unmatch referring to the unmatched model artifacts is created. The attributes
of meta-classes indicate whether the unmatched object resides in the original or
revised model.

According to graph modifications in [Taentzer et al., 2012], nodes and edges may be
inserted or deleted. For expressing such changes in EMF models, the approach uses
two concrete sub-classes of FeatureChange in the difference meta-model, namely
InsertFeatureValue and DeleteFeatureValue. Feature changes are referred
to as changedObject, to the changed feature in the meta-model. In case of a
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reference, this value is an object and in case of attributes, values are the primitive
value of type String, or Boolean, etc. The meta-model also contains the two
classes InsertObject and DeleteObject, that are the sub-classes of the abstract
class ObjectChange. The container of inserted or removed objects is specified
through the reference changedObject and the containment feature by the reference
changedFeature.

As long as the approach proposes the solid foundations for building sequential
model version control systems, it intends to consider every detail in model differ-
entiation and model difference merging. Thus, the approach extends the kernel dif-
ference meta-model. The single-valued and multi-valued multiplicities of features
are extended as well. They introduce FeatureUpdate that represents the change
of a single-valued attribute or reference in addition to InsertFeatureValue and
DeleteFeatureValue for multi-valued features. They further define ordered fea-
tures that enrich the kernel difference meta-model by the classes InsertOrdered
FeatureValue and DeleteOrdered FeatureValue. By defining these kind of op-
erations, the approach intends to cover all possible conflict scenarios which can
occur during merge process. Furthermore, it considers the special combination of
two FeatureChanges, which is insertion and deletion of one and the same object
in different containers. In this case, the object is moved from one container to
another, Thus, the Move operation is derived consisting of two feature changes:
one InsertFeatureValue and one DeleteFeatureValue.

SiDiff Approach. A generic model difference representation approach using edit
scripts is introduced in SiDiff [Treude et al., 2007]. The SiDiff approach consists
of a chain of model differentiating processes for EMF models which include corre-
spondence matching, difference derivation, and semantic lifting phases. Initially,
the SiDiff approach represents model differences by the low-level change sets con-
sidering the graph-like internal representations of software models. As long as
software models are usually represented by the low-level graph-like structures,
it makes more sense and quite essential to consider the internal representation
techniques of software models. The low-level differences are the outcome of the
difference computation phase.

In the framework of the SiDiff approach, the complete chain of data structures
and activities performed can be distinguished in the following steps:

– Low-Level Differences. The low-level differences are the outcome of model
matching represented by the graph-like structures. Model differences consist
of correspondences between the modeling artifacts of two revisions, as well
as changes like additions and removals of modeling artifacts. The low-level
changes are represented using EMF models and the related low-level changes
are discovered by the pattern matching engine of Henshin transformations
[Arendt et al., 2010].

– Semantic Lifting. The low-level model differences are then lifted to the semantic
change sets by the SiLift approach [Kehrer et al., 2012] using recognition
rules. The basic idea behind the SiLift is to group low-level changes into
semantic change operations according to change patterns. The resulting
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semantic change sets are then more expressive notations for comprehending
changes such as additions, removal and re-locations of modeling artifacts.
The recognition rules always operate on the low-level differences.

– Operation Specification. The formal parameters of the lifted change operations
in the semantic change set are retrieved from the operation specifications of
the edit operations by analyzing the dependencies among edit scripts.

The approach distinguishes the following types of change operations:

– Attribute Change. Two corresponding artifacts differ in their attribute values.

– Reference Change. The references between two corresponding modeling arti-
facts are changed.

– Move. References connecting parent and child artifacts are reconnected to other
parents so that the child artifacts are considered as moved (relocated) arti-
facts.

– Structural Change. Artifacts that have no entry in the correspondence table
are considered to be structurally different, i.e., due to insertion or deletion
operations.

In the SiDiff approach, software models are represented by the graph-like struc-
tures of EMF and aforementioned mentioned steps are implemented using Henshin
model transformation rules [Arendt et al., 2010].

The SiDiff approach offers two options of representing model differences. The
first option is to serialize the internal EMF representation of the difference data
structures. The second option is to employ textual notations. The sequence of
operation invocations can represent the list of edit scripts. There, the formal
parameters are given as objects. The first option can be used for loading edit
scripts which is useful for later reuse in difference application or merge tools.
Eventually, the difference representation approach of SiDiff can be considered both
model-based using the graph-like serializations and text-based (textual) approach.

The SiDiff approach defines the complete (mandatory) set of edit rules for the
considered modeling languages. The mandatory edit rules are generated from
the meta-models of modeling languages by SiDiff Edit Rule Generator (SERGe)
[Kehrer et al., 2013b]. The edit scripts, matching patterns, recognition rules, pa-
rameter retrieval and dependency analysis components are implemented in Hen-
shin transformation engine [Arendt et al., 2010] for EMF models. The approach
is applied to Ecore-based UML [Stephan and Antkiewicz, 2008] models and Mat-
lab/Simulink [Ong, 1998] models. Due to the representation of model differences,
the authors elaborated the 41 different types of edit operations for UML class dia-
grams and 16 different edit operations for Matlab/Simulink models. The authors
further identify 148 mandatory edit rules for Ecore models and 134 of them is gen-
erated by SERGe rule generator and 14 mandatory rules are engineered manually.
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4.1.2 Database-based Difference Representation

In this class of approaches, model differences are stored (represented) in relational
databases. The database-based model difference representation approaches simply
store model differences in relational databases in a way that is convenient for
reusing difference information in developing additional services on the top.

SMOVER. Semantically enhanced Model Version Control System (SMOVER)
[Altmanninger et al., 2007] is a sequential model version control for software mod-
els offering the conflict resolution of model differences. The approach relies on the
EMF Ecore meta-models and derives the view definitions meta-model from the
meta-models of modeling languages. The meta-models of modeling languages are
used for representing model differences, whereas the view definitions meta-model
is used for representing semantic model differences. Both, the creation of the
view definitions meta-models from meta-models and creation of model revisions in
view from model revisions are realized using the "Atlas Transformation Language"
(ATL) [Jouault et al., 2008]. The approach detects the model differences from the
representation of models and the model differences from the representations of
software models, then these two kinds of model differences are mapped to each
other on the conflict resolution phase.

SMOVER stores modeling artifacts and their differences in standard MS SQL
databases and it creates the working copies of models in the initialization phase.
The EMF-based graph-like structures of the working copies of models are created
from the artifacts stored in databases using ATL transformations.

In particular, SMOVER distinguishes four different operations in order to describe
structural changes in graphs that are useful for conflict detection.

– Attribute Update: The values of artifact attributes have been changed.
– Reference Update: The set of referenced modeling artifacts have been changed.

For example, new modeling artifacts can be added or removed.
– Role Update: Modeling artifacts are referenced or de-referenced by other mod-

eling artifacts.
– Referenced Element Update: The referenced modeling artifacts have been up-

dated.

SMOVER provides sequential version control feature for software models. The
system can be integrated with external modeling tools with additionally developed
adapters which convert the XMI serialization of models into SMOVER internal
structures and vice verse.

4.1.3 Text-based Difference Representation

In text-based approaches, model differences are represented by means of the change
operations (change statements) in textual forms. This section investigates the
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text-based model difference representation approaches. Some of these approaches
refer to themselves as operation-based because they use basic change operations.
However, they are represented in form of textual differences.

Alanen and Porres. An early approach in text-based difference representation
was introduced by [Alanen and Porres, 2003]. In this approach, model differences
are represented by the sequence of modification (transformation) operations in
difference documents which consist of the sequence of change operations such as
additions, removals of modeling artifacts and the changes of the attribute values
of modeling artifacts. These transformation operations are described in textual
forms. The authors define seven elementary transformation operations that are
used as the basis for defining difference documents. The approach refers to mod-
eling artifacts with their UUIDs (universally unique identifier).

Alanen and Porres identify the following two groups of transformation operations
in difference documents:

– The approach provides creation operations for creating new modeling artifacts
and deletion operations for deleting existing ones.
• New: operations create new modeling artifacts with particular types and

UUIDs. All features of newly created elements are set to their default
values.

• Del: operations delete existing modeling artifacts with particular types
and UUIDs.

– The approach offers the following modification operations for changing the at-
tribute values of modeling artifacts and associations among modeling arti-
facts.
• Set: The set operations change the attribute values of particular artifacts.

• Insert: The insert operations add links between the unordered features
of particular artifacts and other artifacts.

• Remove: The remove operations delete links between the unordered fea-
tures of particular artifacts and other artifacts.

• InsertAt: These operations add links between the ordered features of
particular artifacts and other artifacts at particular indexes.

• RemoveAt: These operations delete links between the ordered features of
particular artifacts and other artifacts at particular indexes.

Additionally, each operation has a dual operation with the opposite effect which is
needed to calculate the inverse of model changes. Finally, the new and delete (del)
operations do not contain references to other elements simplifying the construction
of algorithms that work with model differences.

DeltaEcore. DeltaEcore is a delta language generation framework [Seidl et al.,
2014] and addresses to the problem of generating delta modeling languages for soft-
ware product lines and software ecosystems. The approach presents a framework
to derive custom delta languages for the source languages given as EMOF-based
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meta-models. The approach further defines six types of standard delta operations
and generates the syntax, semantics and tooling for generated delta languages
including editor support, parser and interpreter. The framework uses the meta-
models of source languages to derive the syntax and semantics of delta languages
with concrete textual syntax for model representation.

The DeltaEcore approach employs two languages represented by meta-models with
concrete textual syntax: (1) the common base delta language, which provides func-
tionality common to all delta languages such as creating and referencing elements
and (2) a delta dialect, which provides delta operations specific to the source
language. The delta language is then generated by combination of the common
base delta language with a delta dialect specific to the respective source language.
The common base delta language is utilized on the meta-meta-level and used to
represent the structure of the custom delta language that is to be created on the
meta-level. The delta dialect represents the delta operations suitable for expressing
variability for a particular source language.

On the instance level, the following six delta operations are defined as the change
semantics of standard delta operations for variability modeling with EMOF-based
models:

– Set/Unset operations modify the value of a single-valued reference. A set delta
operation assigns a new value to a specified single-valued reference, whereas
an unset delta operation replaces the current value with the default value
for that reference as defined in the meta-model.

– Add/Insert/Remove operations manipulate a set of the values of many-valued
references. An add operation appends a given element to the set of values
and a remove operation detaches it from the set. An insert operation places
the element at a certain position within the set of values, which is only
sensible if the set is ordered.

– Modify operations are used to alter the values of an attribute.
– Custom operations are used to declare delta operations with user-defined domain-

specific semantics that could not be expressed using the generated delta op-
erations. This enables the creators of delta languages to utilize knowledge of
the semantics of the source languages to provide specifically tailored opera-
tions, e.g., to avoid dangling references according to the constraints of the
source language.

DeltaEcore provides editor support for the derived delta languages including syn-
tax highlighting and auto completion. It also supports a delta parser to create
the model representation of the textual syntax of delta languages as well as the
delta completer that collects all models to be manipulated. The approach provides
delta sorter which performs topological sorting of delta to establish a suitable ap-
plication order for the delta modules, the delta interpreter executes delta modules
and their delta operations with the help of the generated delta dialect specific
interpreters and the variant derivation assembles all affected models to store them
as variant of the SPL (Software Product Lines) or SECO (Software Ecosystems).
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EMFStore. EMF Store framework [Helming and Koegel, 2013] is a model and
data repository for the EMF-based software models [Steinberg et al., 2008]. The
framework enables collaborative work of several modelers directly via centralized
and peer-to-peer connections. EMF Store represents model changes by the created
and deleted modeling artifacts, feature operations and composite operations. The
feature operations themselves consist of the references and attribute operations.
The composite operations are the compositions of other atomic operations.

The EMF Store framework provides the state-based model matching for merging
model development branches after designing in the off-line mode and the run-time
operation recording feature in modeling in real-time, e.g., like in the concurrent
collaborative modeling scenario. The outcome of both change detection features is
the package of operation-based change log. Eventually, model changes are repre-
sented in the package of change logs using aforementioned change operations and
these packages consisting of the operation-based change logs are stored in the file
system of server repository.

EMF Store provides features to retrieve any state of models that was ever stored on
the EMF Store repository at the any point of time. The approach provides several
additional sequential collaboration, repository browsing, model editing, difference
merging features which are discussed in Section 4.2 in detail.

Custom Serialization Approaches. The collaborative modeling approaches emf-
Collab [A. Schmidt, 2018] and Dawn [Fluegge, 2009] (the sub-component of CDO
- Connected Data Objects [Stepper, 2018]) provide collaborative development fea-
tures for EMF models. However, they use custom serialization of changes for syn-
chronization in concurrent collaborative modeling. For sequential collaborative
modeling, Dawn utilizes standard relational databases to persist models under
development.

4.1.4 Lessons Learned

This chapter has discussed the existing related approaches based on the criteria
if representation by these approaches can serve as a common underlying repre-
sentation and provide efficient difference representation for both sequential and
concurrent collaborative modeling scenarios. Besides, there are several approaches
focusing only on some aspects of these collaborative modeling, and are not dis-
cussed in this thesis. This section briefly summarizes the outcome of this overall
chapter by drawing the result of literature study.

Model- and Graph-based Difference Representation.
The graph- and model-based representations of modeling deltas are more effective
in case of the sequential collaboration and distributed concurrent collaboration.
The modeling deltas represented by models or graphs usually consist of additional
conceptual information for representing its modeling or graph concepts alongside
actual change information. Because these approaches require some sort of technical
spaces with data structures for model difference representation. Thus, the model-
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and graph-based representations might not be as small as text-based representa-
tions. In case of concurrent collaborative modeling, difference representation has
to be as small as possible to achieve higher performance (by rapid synchronization
of changes) in real-time.

The model- and graph-based model difference representation approaches are very
generic in a sense for further reuse if domain experts have sufficient technical
knowledge about graph theories. However, this category of approaches might
possibly require more implementation effort, whereas text-based representations
can be executable by simply developing textual parser. These argumentation are
addressed throughout this thesis.

Relational Database-based Difference Representation.
During the evolutionary life-cycle, if all difference information is stored in relational
databases, the databases might become complex and large with an associated
data set. Thus, the database-based representation approaches may require more
implementation effort in identification and reuse of model differences.

In concurrent collaborative modeling, this category of approaches can be quite
efficient if only concurrent revisions are temporarily stored in relational databases
using custom serializations. In practice, this scenario imply that the only working
copies of models are stored in relational databases and the model change/differ-
ences in concurrent collaboration are synchronized via the central database server.

In sequential collaborative modeling, if the delta-based representation of model
differences is required, storing all differences between the subsequent revisions of
models might not be more efficient than storing these differences in separate delta
documents. Because, if developers want to revert the older revisions out of the
base revision which is quite usual case for the most collaborative systems, this
operation might become complicated. Because, collaborative system has to query
its relational database for each reversion. For instance, if the working copy of a
model is in revision twenty and developers want to revert the tenth revision, then
a collaborative system has to query its relational database ten times to revert the
model from revision twenty to revision ten.

Text-based Difference Representation.
Model difference representation using text-based forms is more likely to be small
which is well-suited to the both, concurrent and sequential, collaborative modeling
scenarios. The textual deltas are (1) directly executable descriptions of model
changes; (2) expressive, yet unambiguous providing necessary knowledge; (3) easy
to synchronize with high performance in concurrent collaborative modeling; (4)
easy serialization and deserialization by textual parser.

The text-based representation of model differences is the coded form of model
differences. It is very practical and provides the compact structures of differences
for tool developers in further extensions and implementations. The operation-
based textual representation of model differences in difference documents offer
several valuable properties:
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– Difference representations directly describe the executable descriptions of model
differences which can easily be implemented by simple text parser.

– The textual differences are fully expressive and unambiguous, as well as neces-
sary knowledge about each change can easily be gained.

– The textual differences in deltas consist of only change-related information with-
out requiring additional modeling or graph content information, i.e., with-
out relying on any technical spaces. For instance, model- or graph-based
approaches require some kind of modeling content and internal model rep-
resentation structure to represent differences, whereas textual deltas can
simply be stored in textual files.

– Only sequence of change operations can be exchanged over the network for syn-
chronizing model changes in the concurrent collaborative modeling scenario.
It makes the real-time synchronization of model changes very fast and con-
tributes to avoid change conflict between the parallel revisions of models.
This argumentation is evaluated in Chapter 10.

– The textual representations can be declarative by making implicit any concepts
or mechanisms that can be intuitively interpreted from the context.

The operation-based textual representation approach introduced by Alanen and
Porres [Alanen and Porres, 2003] aims at detecting the differences and union of
model revisions with the same ancestor. The approach provides a feature for
differentiating and merging models in the framework of sequential model version
control. However, the approach is still remaining as a research prototype.

As presented in this chapter, until now, several approaches are introduced to dif-
ference representation and build up sequential collaborative modeling scenarios on
the top. But, these approaches still can be elaborated, extended and improved.
Research in difference representation for collaborative MDSE is still on its early
stages. As the result of this literature study, the text-based representation (in
deltas) technique is found as a compatible means to representation of model dif-
ferences in this thesis.

4.2 Services

In order to achieve the higher degrees of productivity, flexibility and reusability
in software system development, software engineering offers service-oriented and
component-based software engineering paradigms [Breivold and Larsson, 2007].
This thesis also takes advantage of these software engineering paradigms in study-
ing related approaches in this chapter and developing its services in Chapter 6.

The definition of the term service is used in a very broad manner throughout
several literature. But, this thesis relies heavily on a strict definition of the term
service.



Chapter 4. Related Approaches To Difference Representation 77

Definition 4.1. Software Service.
According to [Jelschen, 2014], a service is defined as a unit of functionality.

A service is an abstract definition of a functionality, i.e., the service defines what
functionality is provided, including required inputs and expected outputs in ab-
stract forms regardless of how the functionality is realized or what representation
the in- and output parameters are used [Jelschen, 2014]. The concrete implemen-
tations of services are usually defined as components.

Definition 4.2. Software Component.
"Software components enable the practical reuse of software parts and amor-
tization of investments over multiple applications. There are other units of
reuse, such as source code libraries, design, or architectures. Therefore, to
be specific, software components are the binary units of independent produc-
tion, acquisition, and deployment that interact to form a functioning system"
[Szyperski, 2000].

Component-based software engineering allows for increasing the reuse of individ-
ual software units. It provides weak coupling between software units exposing the
clearly defined interfaces of software services. Service-oriented software engineering
can be considered as an extension of component-based ideas, yet enabling integra-
tion of distributed software systems. This thesis intends to take advantage of these
software engineering paradigms in inspecting services and components provided by
existing related collaborative modeling approaches, as well as in developing its ad-
ditional supplementary collaborative modeling services in Chapter 6.

Existing related approaches are discussed in Section 4.1 according to their model
difference representation techniques. They employ various techniques for describ-
ing and storing model differences. These and other related approaches also provide
additional supplementary services that aim at producing, using and manipulating
their difference information. This section reviews these approaches based on the
supplementary services they provide.

In general, the most model difference representation approaches aim at solving the
particular sub-problem of or offering an essential grounds for the certain aspects
of overall collaborative modeling or model history analysis. In order to build these
applications, the existing approaches intend to provide additional services so that
they can cover the particular problem of overall application with the respective
research ideas. The collaborative modeling scenarios require several additional
services and the orchestration of these services in order to accomplish the successful
collaborative work on software modeling artifacts.

The list of additional services/components can also be derived from the basic
principles of source code-driven collaborative development and analysis tools, i.e.,
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the same terminologies and common grounds of source code-based collaboration
are applicable to MDSE, as well. The main additional services are classified as
follows:

Difference Calculator. This service compares two given revisions of the same
base model and detect differences between them using model matching ap-
proaches [Kolovos et al., 2009]. The difference calculator receives two re-
visions of the same model and produces difference documents in some rep-
resentation formats (cf., Section 4.1). The special form of the difference
calculator service is referred to as change recorder or change listener [Her-
rmannsdoerfer and Koegel, 2010]. The change recorder might be embedded
behind modeling editors. It does not necessarily require the changed and un-
changed revisions of the same model, instead it operates directly on the base
model. Thereby, the change recorder listens for models in order to observe
user changes. Detailed discussions are given in Section 4.2.1.

Difference Applier and Merger. Difference applier offers essential advantages
to the concurrent and sequential collaborative scenarios independently. In
case of concurrent collaborative modeling, collaborators work on the dif-
ferent copies of the same model. The changes made by collaborators are
synchronized with all other collaborators. These changes are then applied
to the parallel copies by the applier to propagate changes on models. The
sequential collaborative modeling scenario is another main use case of the
difference applier. In case of loss or damage of models, models can be re-
verted to older revisions by applying deltas to models. The difference applier
receives a base model and several deltas, and produces the requested revision
of the model. In some literature, difference application is viewed as the part
of model merging. Model merging aims to combine several different revisions
of a model into a main or base model. In this case, model merging is re-
quired to support for conflict resolution in case conflicts arise. This service
is discussed in Section 4.2.2 in detail.

Synchronizer. In concurrent collaborative modeling, collaborators preserve the
copies of the same central model and modify them in real-time. This scenario
requires the synchronization of model changes among these copies through
the central model repositories. In concurrent collaborative modeling, these
copies are usually designed using the different tool instances. In this case, the
changes made by collaborators are synchronized among these tool instances
in order to keep all copies up-to-date with latest changes. More discussions
are given in Section 4.2.3.

Model Manager. The model management feature of collaborative modeling is
one of the most addressed aspects by research works. It is meant to be one of
the key characteristics of any collaborative modeling infrastructure. A model
manager service should provide several activities for managing the life-cycle
of software models and their revisions which are discussed in Section 4.2.4.

Change Tracer. Change tracer helps to trace the model changes and gives de-
tailed history information about these model changes. The change tracer
might focus on particular modeling artifacts and detect the histories of
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changes in each revision of a model. Detected change information contributes
to model history analysis in order to understand the evolutionary life-cycle
of models and their artifacts. The change tracer translates the technical rep-
resentations of differences into human-readable formats and helps to extract
necessary and useful knowledge about the ongoing evolution process. The
change tracers provide to query software model repositories and visualize the
results in human-understandable ways as discussed in Section 4.2.5.

There are several approaches focusing on the certain aspects of overall collabora-
tive modeling by providing particular services from the list above. This section
revisits the approaches discussed in Section 4.1 and other approaches according to
the additional supplementary services they offer. Moreover, the aforementioned
services are addressed by this thesis in Chapter 6.

4.2.1 Difference Calculator

Section 3.2.1 has discussed several difference calculation (i.e., delta algorithms)
approaches for collaborative source code-driven/textual development. This section
investigates difference calculation approaches for collaborative MDSE.

The difference calculator (Definition 4.3) calculates model differences usually in
two steps: (1) model matching and (2) change/difference production. In the model
matching step, the difference calculator detects the mappings between the mod-
eling artifacts of the two compared revisions of models. In the change/difference
production step, the difference calculator detects the type of changes (creations,
deletions of modeling artifacts, and changes of modeling artifact attributes) be-
tween model revisions using the mappings detected in the model matching step and
produces the model differences in some forms as described in Section 4.1.

Definition 4.3. Difference Calculator.
A difference calculator is used to compare two different revisions of the same
modeling artifacts and compute differences between them. It calculates differ-
ences between software artifact(s) and one of its revisions [Mens, 2002].

Several model matching techniques exist that focus on detecting differences be-
tween any given two model revisions. [Kolovos et al., 2009] gives classification of
model matching approaches. In particular, [Kolovos et al., 2009] distinguishes four
types of matching techniques, namely static identity-based matching, signature-
based matching, similarity-based matching, and custom language-specific matching.
The static identity-based matching relies on persistent universally unique identi-
fiers (UUID) attached to modeling artifacts, whereas the signature-based matching
compares modeling artifacts based on the computed combination of the feature val-
ues (its signature) of the corresponding modeling artifacts. The similarity-based
matching calculates the aggregated similarities between two modeling artifacts
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based on their feature values. As not all feature values of artifacts are always con-
siderable for matching, they often can be configured in terms of weights attached
to the respective features. Ultimately, the custom language-specific matching al-
lows users to define dedicated match rules considering the actual semantics of the
respective modeling languages for matching.

Below, several existing model difference calculation approaches are discussed. The
difference representation approaches discussed in Section 4.1 provide the difference
calculation services which are discussed, below.

Alanen and Porres. [Alanen and Porres, 2003] employs a simple model matching
technique using universally unique identifiers (UUID) for all modeling artifacts.
The approach differentiates the following two phases of difference calculation.

– Mappings. This phase creates mappings between the elements in the old and
new revisions of models. The unique identifiers of modeling artifacts in both
revisions are used to build mappings between these two revisions. Eventually,
the created map helps to detect three types of changes; creation, deletion
and change.

– Calculations. This phase discovers creation, deletion and change operations.
As the result of this phase, difference documents are produced consisting of
operations to create and delete modeling artifacts, as well as changing the
values of attributes.

The complete difference documents between two model revisions are then specified
by the sequence of operations as described in Section 4.1. This is the sequence of
artifact creations, deletions and feature modifications.

EMF Compare. Another model comparison algorithm EMF Compare [EMFCom-
pare, 2017] is introduced to detect changes in EMF models by comparing model
revisions based on structural matching. The approach proposes the total compar-
ison of the attributes of modeling artifacts. The approach considers that if all
attributes of the two revisions of a modeling artifact are near, then these artifacts
are near. The EMF compare approach detects the following six types of model
changes:

– Modeling artifact differences:

• Creations: new modeling artifacts are created;

• Deletions: existing modeling artifacts are deleted;

• Order: the order of modeling artifacts are changed.

– Attribute differences:

• Set: an attribute value is changed;

• Add: an attribute value is added;

• Remove: an attribute value is removed.
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The EMF compare tool undergoes the following steps in the process of comparing
two given models in any order:

– Comparing attributes. The comparison of attributes itself consists of several
sub-steps:
The computation of the distance between attributes – they define the dis-

tance between attributes as the difference between the values of the two
attributes. The distance is a metric which value is comprised between 0
(attributes have the same value) and 1 (attributes have totally different
values);

Comparing the values of boolean attributes – the values have an identical
value, the distance is 0 else it is 1;

Comparing character strings – the algorithm returns the number of ma-
nipulations for transforming one of the character strings to the other,
where a manipulation is one of those operations: deleting a character,
adding a character, modifying a character;

Comparing numbers – numbers have a very large sense.

– Attribute weights. An attribute has a weight depending on the volume of in-
formation it carries. It can be computed by two factors: (1) the number of
times the attribute is met in the model; the more – an attribute is present,
the less – it is important; (2) the number of values – an attribute takes; if it
has only two possible values, like a Boolean, it is very unlikely to be a good
identifier.

– Comparing two elements. The difference rate in this algorithm is the value of
the difference between two elements. If the distance is less than an arbitrary
value, the elements are considered to be a potential couple.

– Local weights. The attribute weights are constricted between 0 and 1 by dividing
their value by the sum of the weight values for the attributes present on two
elements.

In EMF compare, models are compared recursively. Modeling artifacts for every
level are compared with every artifact for their level. Once artifacts are compared,
they are ordered depending on their distance in an increasing order. Couples are
then computed starting with artifacts with the shortest distance. Potential couples
which contain at least one artifact are deleted. The remaining single artifacts are
added to the list of couples by specifying that difference between the two artifacts
is addition or deletion. The type of operations depends on if modeling artifact is
in the local model or in the compared model.

AMOR. The adaptable model version control system (AMOR) [Taentzer et al.,
2012], [Brosch et al., 2010] takes advantage of the EMF compare approach for com-
paring differentiated model revisions and detect differences between them. AMOR
employs the UUID-based and structural model matching features of EMF compare
for detecting mappings (i.e., match models) between the original and revised re-
visions of models. Implementation of AMOR is partially based on EMF compare
so that EMF models can be matched using either heuristics or UUIDs. However,
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AMOR improves the model matching algorithm of EMF compare by the specific
implementations. The model differences produced by EMF compare are optimized
and translated into the own model-based representation of AMOR. The difference
meta-models of EMF compare and the extended difference models of AMOR are
similar, but some explicit information and the several types of conflicts are not
supported by EMF compare in case of AMOR. Eventually, they develop extra
implementation for detecting conflicts based on two difference models conforming
to their extended difference meta-model.

SiDiff. One of the most popular and generic approaches is the SiDiff approach
[Treude et al., 2007] which is utilized by several other model comparison ap-
proaches, as well as in this thesis. SiDiff is a framework for comparing and
detecting model differences. It is modeling language generic, configurable and
provides several model matching algorithms. It uses the graph-like structures to
represent software models internally and exploits graph isomorphism algorithms
to discover differences between differentiated graphs. The SiDiff approach can be
used for many modeling languages if their models can be represented as graphs
and accessible by the SiDiff kernel. This approach provides three main match-
ing strategies, i.e., ID-based, signature-based and similarity-based using name and
structural similarity metrics.

SiDiff processes two input models that are given in a textual or binary format
which is either complying to XMI (XML Metadata Interchange) [MOF, 2003]
or a proprietary format. It supports a parser to transform these models into
internal representation format which is typed, attributed and directed graphs.
Every node corresponds to a modeling artifact in the original model and edges
represent existing connections between those artifacts. Every node in the graph
is additionally connected to a type that represents its artifact type and may have
a set of attributes consisting of the pairs of keys and values. Likewise edges
are connected to the type representing connections in models and have boolean
attributes whether connections are the references or nesting edges of model.

In order to decrease the computational cost on finding corresponding elements
from the two revisions of a model, a special high-dimensional search tree, the
S3V (Similarity searches parse vector) tree, is used to store modeling artifacts in
memory. To find possible matching candidates from another model, all of the
modeling artifacts usually must be checked for similarity. Instead of comparing
all artifacts, they are stored in the S3V tree according to their similarity to each
other. Every artifact is therefore interpreted as a numerical vector where every
index represent the certain characteristic of artifact. The similarity of two artifacts
is then defined as the euclidean distance with smaller distances resulting in higher
similarity. The tree can then be used to find a set of the most similar artifacts
of a given artifact by doing a range query on the tree which returns all similar
candidate artifacts within a subspace of the tree defined by the specified range or
distance of the query. One S3V tree is created for each compared models and for
each occurring artifact type before beginning comparison and these trees remain
in memory while comparing [Treude et al., 2007].
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The SiDiff algorithm firstly detects correspondences between compared model el-
ements by calculating similarities between these elements. The similarity between
two elements is given as a float value between 0 (no similarity) and 1 (equality).
Similarity is usually determined by local attributes or elements in the near prox-
imity of the investigated elements. SiDiff provides a set of standard functions
for such similarity measurements. However, it allows for adding new similarity
functions if required.

Whilst only corresponding matched artifacts have been identified, changes to ar-
tifacts, additions and removals still have to be detected and stored for later reuse.
This is done within the unified document which contains relevant information
about difference calculation. The unified document contains all artifacts of both
compared models and difference information. Already matched artifacts are how-
ever only listed once in the document. SiDiff classifies differences into four cate-
gories:

– Structural differences: artifacts that have been added or deleted;
– Attribute differences: artifacts that are corresponding but that have changed

attributes;
– Reference differences: artifacts that are corresponding but that have changed

references;
– Move differences: artifacts that are corresponding but that have a changed

parent artifact.

SiDiff provides similarity computation flexibility to define a set of similarity func-
tions which allow customization of the calculation process on a more detailed level.
However, it is necessary to define such sets for every processed model type sepa-
rately according to the available artifacts. Transformation of the processed models
into a directed graph provides the single algorithmic approach. Thereby, any model
type can be processed without modifying the algorithm. Transformation of the
processed models into the internal graph structure must still be defined.

Concluding the SiDiff approach, it is highly configurable even it is time-consuming
in case of the large-scale graphs. Hence, the approach is much more productive if
the given models consist only of several hundreds of artifacts. Even though, the
approach is investigated in several model comparison and difference calculation
approaches. The approach in this thesis takes advantage of the difference calcula-
tion feature of the SiDiff algorithm to develop its difference calculator service in
Section 6.3.

SMoVer. The SMOVER (Semantically enhanced Model Version Control System)
[Altmanninger et al., 2007] is dedicated to the sequential model version control of
EMF-based software models relying on the Ecore meta-models. In order to detect
conflicts between the two concurrent revisions of models, the approach takes ad-
vantage of the EMF Compare model comparison approach based on a graph-based
structural difference computation between the model revisions. Actual compari-
son of modeling artifacts is based on persistent unique identifiers designated in
meta-models.
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EMFStore. EMF Store framework [Helming and Koegel, 2013] addresses to the
problem of sequential collaborative modeling. It uses the state-based model match-
ing technique for comparing models in order to merge the various development
branches into the main repository. This case usually considered in the off-line
model designing mode. But, the approach also provides the change-recorder ser-
vice for recording changes on models.

UMLDiff. UMLDiff [Xing and Stroulia, 2005b] is another difference computation
approach that specifically tailored to UML modeling language. The approach
computes similarity metrics based on the names of modeling artifacts and the
structure of models. UMLDiff applies the string-based matching technique at the
element level, as well as the graph-based matching at the structure level, and
internally combines the obtained similarity measures. These features eventually
makes UMLDiff a hybrid matching approach.

Nejati et. al. Another approach particularly dedicated to model difference com-
putation is introduced in [Nejati et al., 2007]. The approach is used to match only
UML state machines. Its matching is based on static similarity measures such as
the typographic, linguistic, and depth properties of modeling artifacts, as well as
behavioral similarity measures.

DSMDiff. DSMDiff [Lin et al., 2007] is model matching approach for domain-
specific modeling languages. The approach compares modeling artifacts based
on their computed signature and considers the relationships between modeling
artifacts previously matched by signatures.

To summarize, DSMDiff and EMF Compare aim at obtaining optimal results and
mostly dedicated to particular modeling language relying on the specific type of
meta-model. In contrast to these modeling language-specific approaches, SiDiff
provides an adaptable model comparison framework, which can be configured for
specific modeling languages. In addition to these, there are diverse approaches for
model matching and difference calculation. Among these approaches, the generic
and configurable algorithm SiDiff is considered to be the most reasonable fit to
difference calculation in this thesis. Thus, this thesis takes advantage of the SiDiff
algorithm for implementing the state-based comparison feature of its difference cal-
culator service. The detailed discussion of the rest of existing difference calculation
approaches is out of the scope in this thesis.

4.2.2 Difference Applier and Merger

Difference appliers perform the process of difference application which refers to
manipulation of a model according to the set of predefined change operations.
The term difference application is also referred to as patching in some literature
and text-based version control systems [Roundy, 2009], [MacKenzie et al., 2003].
It considered to be the special case of general software revision merging scenario
[Bailor et al., 2011], [MacKenzie et al., 2003], [Brunet et al., 2006].
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Definition 4.4. Difference Application.
Difference application is the process of transforming software systems from
one state (version) to another by creating new artifacts, removing existing
ones or changing the properties of existing artifacts.

There are several use cases of the difference applier service:

– Reverting. In concurrent or sequential collaborative modeling systems, software
models (or any software system) usually have several revisions starting from
the initial development till its current state (revision). Thereby, collaborators
feel a need for reverting their models to earlier revisions in case of the damage
or loss of data. In this case, several difference documents have to be applied
to the base revision of models in order to obtain the intended revision of the
same model.

– Merging. Software projects under evolution and maintenance usually have sev-
eral development branches manipulated by collaborators using sequential
model version control tools. Collaborators always have to keep their branches
up to date with the main development trunk to obtain changes made by
other collaborators. Likewise, each collaborator has to commit his/her local
changes to the main trunk. Updating and committing operations are even-
tually application of model differences. But, it usually invokes the model
matching in order to detect model differences between two revisions. The
difference application scenario in sequential collaborative modeling is also re-
ferred to as difference merging in several literature. The difference merging
itself is largely discussed research subject alongside the problem of conflict
resolution by several literature. Because, difference conflicts are more likely
to occur in software model evolution with several development branches and
raises the problem of conflict resolution. Merging revisions or differences is
required mostly in the sequential collaborative modeling scenario. The re-
lated approaches focusing particularly on this kind of difference application
are discussed in this section.

– Conflict Resolution. In merging different revisions or differences, change con-
flicts might arise. These conflicts should be somehow resolved either auto-
matically if possible or with human-interaction [Altmanninger et al., 2009].
Change conflicts can not be fully resolved automatically but sometimes re-
quires human interaction which is referred to as semi-automated merging.
The most merge techniques perform possible merges. In unsolvable cases,
they switch to interaction mode with collaborators for providing an inter-
active resolver feature. The unsolvable conflicts can then be presented to
collaborators in form of the recommendations by browsing conflicts [Koegel
et al., 2010].

Below, this section investigates existing difference application services provided
by the difference representation approaches discussed in Section 4.1 and other ap-
proaches. There are several approaches addressing the model difference application
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service related to their conflict resolution features. As long as this thesis does not
directly addresses the problem of conflict resolution, this section does not provide
the detailed discussions on the conflict resolution of the covered approaches.

Alanen and Porres. [Alanen and Porres, 2003] offers a merge algorithm for the
sequential collaborative modeling scenario using their operation-based difference
representation techniques as discussed in Section 4.1. Their merge algorithm is
basically used to apply the transformations contained in difference documents to
models and obtain the new revisions of these models, eventually. Since the differ-
ence representation uses the operation-based approach, the difference information
is directly the transformation (executable) descriptions of model differences. The
approach addresses the model elements by their UUIDs. The difference application
process is performed in the following order:

– new(e,t): creates a new modeling artifact of type t with the UUID of e.
– change(o): makes the feature change o; a change operation might be one of

the change operations defined in Section 4.1.
– del(e,t): deletes a modeling artifact of type t with the UUID of e.

By ordering difference operations in this way, creation operations are executed
firstly, change operations secondly, and deletion operations in the end.

Cicchetti et al. In [Cicchetti et al., 2007] and [Cicchetti, 2008], Cicchetti et al.
uses the model-based difference representation approach as stated in Section 4.1,
i.e., model differences are represented using difference models. Additionally, the
approach provides the difference application and conflict resolution features. The
approach addresses applying difference models to the differentiated models and
obtain other revisions. It further offers the merging techniques. Difference appli-
cation involves several sub-operations to be performed. These are model matching,
weaving and merging. To apply difference models to the base models, difference
model and base model are matched for detecting references between modeling arti-
facts. These references are designated to detect which change should be applied to
which modeling artifact. References are stored in a weaving model that is utilized
while applying difference models to base models. The approach considers the two
ways of difference application: (1) forward application, i.e., application of differ-
ence models to given models results in newer revisions, (2) backward application,
i.e., application of difference models to given models results in older revisions.

According to Cicchetti et. al., conflicts usually arise during the difference appli-
cation process. For instance, a modeling artifact might be deleted from model by
a collaborator, whereas the same artifact is changed in difference model. In this
case, a delete/change conflict occurs. Thus, the approach focuses on handling
conflicts in advance and resolve by the combination of atomic operations. The
authors have elaborated a list of conflict types which are derived from operation
combinations.

AMOR. The Adaptable Model Versioning System (AMOR) introduced in [Brosch
et al., 2012] is a modeling tool independent approach which works with the state-
based model differences. The major focus of AMOR is model differentiation and
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model merging. AMOR does model matching in order to detect difference models
including atomic and composite operations between compared models. Then, it
produces a conflict model after detecting conflicts based on difference models. It
detects inconsistencies and annotates them before passing conflict models to the
conflict resolution step.

The work-flow of the AMOR approach is as follows:

– Operation Definition. AMOR provides modeling language-generic sequential
model version control support. The quality of conflict detection and reso-
lution may be considerably improved when language-specific knowledge is
incorporated in the merge process. Therefore, AMOR provides an extension
point to integrate composite, user-defined operations like refactorings. Once
this is done, application of such refactorings is detectable. This additional
information is the basis for a precise conflict detection.

– Conflict Detection. The conflict detection component detects not only the
generic atomic changes like insert, update, delete, but also composite op-
erations stored in operations repositories.

– Resolution Lookup. In this step, the Resolution Recommender of AMOR checks
whether there is solution for the reported conflict in the Resolution Pattern
Storage.

– Conflict Resolution. Collaborators have to decide how to resolve conflicts. Col-
laborators may either resolve the conflict completely manually or choose one
of the recommendations made by the Resolution Recommender.

– Resolution Reasoning. In the resolution phase, the Resolution Reasoner ana-
lyzes collaborators decisions in order to derive general resolution patterns for
conflicts between the two conflicting operations. The patterns are stored in
the Resolution Pattern Storage for application in similar situations in future.

– Merge. Finally, all previously chosen resolution recommendations are applied
and the resulting model is saved into repository as a new revision.

AMOR provides different mechanisms to support the conflict resolution:

– Semi-Automatic vs. Manual Conflict Resolution. In semi-automatic conflict
resolution users select one of suggested recommendations offered by the Res-
olution Recommender. The resolution rule of the resolution recommendation
is then applied to the maximally merged revision. In certain cases, user in-
put is required, e.g., if the name of an element has to be introduced. If none
of the given suggestions fit to user’s need, then it is still possible to resolve
the conflict manually either alone or in collaboration with others.

– Collaborative vs. Single User Conflict Resolution. If no adequate recommenda-
tions are found, then semi-automatic resolution is not possible. Therefore,
AMOR offers a validation of the merged revision, on the one hand, and an
opportunity to resolve conflicts in a collaborative way. In this context, collab-
oration refers to communicating the intentions behind changes and trying to
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combine these intentions in a new revision. Thus, AMOR provides an exten-
sion called Collaborative Conflict Resolver to overcome the aforementioned
challenges by orchestrating collaborators while resolving conflicts. The Col-
laborative Conflict Resolver offers a communication platform to exchange
intentions behind their conflicting changes. Collaborators may manually
create the merged revision together by partly remodeling a scenario to ob-
tain the final model with high quality. Afterwards, both collaborators have
to accept the new revision before committing it to the central model repos-
itory. This ensures that an approved and consolidated revision is checked
in. To sum up, the Collaborative Conflict Resolver allows for distributing
responsibility in this critical and error-prone merge phase.

EMF Store. The EMFStore framework [Helming and Koegel, 2013] can be used in
off-line (i.e., without being connected to the server/repository) and on-line (i.e.,
being connected to the server/repository) collaboration modes, as well as it pro-
vides the storage of the model histories. Thus, the approach provides synchroniza-
tion of model changes in form of the change packages consisting of operation-based
change logs. In model designing in off-line mode, model revisions are compared
using the state-based comparison technique in order to detect whether there are
conflicts between main development trunk and its branches. If there are conflicts
in model matching, they are resolved by the semi-automated conflict resolution. In
EMF Store, any revision of models can be reverted by applying the set of change
packages to the base model.

EMF Diff/Merge. The EMF diff/merge framework [Constant, 2012] offers a fea-
ture for differentiating and merging EMF-based software models. This approach
targets Ecore-based meta-models. The approach is capable of comparing and
merging EMF models in semi-automated ways. It provides a graphical interface
highlighting model changes in conflict of compared models. This enables users to
manually merge these conflicts.

Application of differences or changes to models under development is one of the
important and fundamental activities in collaborative modeling. It contributes to
usability of difference information by propagating changes represented in differ-
ence documents on models under development and evolution. As discussed above,
realization of the difference applier service depends heavily on how model differ-
ences are calculated and represented in difference documents. As long as difference
applier performs what is defined in difference documents, the representation tech-
nique of differences has to provide difference information about operations it has
to perform (e.g., create, delete, or change), references to modeling artifacts that
operations have to be applied to, and other necessary information.
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4.2.3 Synchronization

In concurrent collaborative modeling, collaborators preserve the copies of the same
central model and modify them in real-time. This scenario requires the synchro-
nization of model changes among these instances through the central model repos-
itory. In real-time collaborative modeling, these instances are usually designed
using the different tool instances and change synchronization should occur among
these tool instances.

Definition 4.5. Synchronization.
Synchronization is constantly keeping all connected collaborators up-to-date
with instant changes made by any of these collaborators.

EMFCollab. EMFCollab [A. Schmidt, 2018] is an EMF-based collaborative mod-
eling approach to allow multiple collaborators to edit shared EMF models, con-
currently. The approach utilizes a client-server architecture. The client can be
integrated into EMF-based Eclipse editors. The emfCollab approach offers a client-
server model to let the collaborators for editing the shared models at the same time.
It stores the master copies of the models on the server side and the slave copies
of the master models on the client side. These models are synchronized over the
network, by serializing and distributing the commands affecting the model. The
communication layer it uses is CoolRMI [QGears, 2018]. Cool RMI makes the
implementation of client-server application prototypes easy using pure TCP on
the transport layer.

EMFStore. EMFStore [Koegel et al., 2010] provides a repository for storing, dis-
tributing and collaborating on EMF-based entities. Its server is a headless appli-
cation that is usually run as a daemon or service on physical server machines or
virtual machines. Its clients are typically embedded in existing applications that
relies on EMFStore to store entities and synchronize its entities among the differ-
ent collaborators. In EMFStore, changes on shared or checked-out projects can
be synchronized with commit and update operations. However, it is not explicitly
documented if these changes can be synchronized in real-time.

Dawn. Dawn [Fluegge, 2009] is a sub-component of Connected Data Objects
(CDO) project [Stepper, 2018] and achieves to create collaborative network so-
lutions for user interfaces basing on CDO. It uses the Net4j Signalling platform
which is an extensible client/server communications framework.

Web-based Tools. There are also several web-based modeling tools like Gen-
MyModel [GenMyModel, 2015], Creately [Cinergix Pty., 2015] which exchange
changes over WebSockets. As long as they are not open-source approaches, their
core ideas and underlying implementation technologies are not explicitly docu-
mented. Their modeling notations and other services are not accessible making
them difficult to study and extend.
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Generally, there are several synchronization services that provide synchronization
of changes in concurrent collaboration. In most cases, synchronization of changes
among several collaborators is accomplished by defining custom serialization of
model changes. Moreover, the existing approaches take advantage of different
techniques of realizing their change synchronization.

4.2.4 Model Manager

The model manager feature of collaborative modeling is one of the most addressed
aspects by research works. Franzago et. al. [Franzago et al., 2018] defines model
management as one of the key characteristics of any collaborative modeling in-
frastructure. A model manager may consist of a model repository and several
activities for managing the life-cycle of software models; such as managing the
persistence of models and their related meta-data, support for creating, editing,
or deleting models and their revisions [Franzago et al., 2018].

Definition 4.6. Model Manager.
A model manager for managing the life-cycle of software models may contain
a (possibly distributed) repository for managing the persistence of software
models, their revisions, and their related meta-data, a modeling tool for creat-
ing, editing, or deleting software models and their revisions [Franzago et al.,
2018].

EMFStore. In EMFStore [Koegel et al., 2010], modeling projects can be shared
with the server by a client and checked out from the server to other clients. Changes
on shared or checked-out projects can be synchronized with commit and update
operations. Commit operations push local changes made by collaborators to the
server while update operations pull changes made by other collaborators from the
server to the client. EMFStore can store and manage models and their revisions.

SMoVer. The SMOVER (Semantically enhanced Model Version Control System)
[Altmanninger et al., 2007] provides several model management activities such as
add – to bring new models under version control, checkout – to obtain the copies
of models in the central repository into the local working spaces, commit – to
commit local changes to the central repositories and update – to update the local
working spaces with the latest changes in the central repository. SMOVER mostly
addresses flexible difference merging technique and uses relational databases to
store the model differences. Hence, the approach requires an adapter for parsing
models between external modeling tools and SMOVER.
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4.2.5 Change Tracer

Model differences stored in model repositories must be reusable and traceable in
further analysis of the evolutionary life-cycle of software models under develop-
ment, evolution and maintenance. Collaborators can then extract necessary in-
formation about the change histories and different states of their models focusing
on a particular artifact or state. Eventually, the histories of model changes and
states of modeling artifacts can be traced and collaborators can gain knowledge
about the history of their models in order to make further useful decisions about
the future of their models.

According to Definition 3.5 of mining software repositories, the change tracing
scenario is the part of overall repository mining.

Definition 4.7. Change Tracer.
Change tracing has been coined to describe a broad class of investigations into
the examination of software repositories. Here, software repositories refer to
modeling delta repositories representing modeling artifacts that are modified,
produced and archived during model evolution [Kagdi et al., 2007].

In general, the problem of model history analysis can be leveled into two common
objectives: (1) extraction of difference information from model repositories and (2)
browsing/visualization of extracted information. The existing related approaches
discussed below consider these two main objectives of model history analysis.

Wenzel et al. A solid approach addressing the problem of model change tracing
and history analysis is introduced in [Wenzel and Kelter, 2008] and [Wenzel, 2010].
In the first stage, the approach creates the history repository from the model
revisions repository. In the history creation phase, it extracts revision information
and one graph representation for each model revision in the repository. It then
stores traceability and evolution data by adding fine-grained element information
to revision information and graph representations. With this step, the approach
creates mappings between the model repository and the history repository.

The approach creates the mappings of persistent identifiers to store connections
between original modeling artifacts in the repository and their revised artifacts.
The persistent identifiers stored in that map are also assigned to the original mod-
eling artifacts and their revised counterparts. This is referred to as traceability
information [Meier and Winter, 2018]. Traceability information serves to identify
modeling artifacts across its evolution and to follow the artifacts of model revisions
to the corresponding artifacts in the ancestor revisions, and in the descendant revi-
sions respectively, if the element exists in that revision of the model. Traceability
information can be calculated incrementally whenever the new revisions of models
are created.

Furthermore, the approach introduces identification links connecting the new revi-
sions and the corresponding elements in the ancestor revisions. These identification
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links are added as the identity of the respective versioned artifacts. The identifi-
cation links are computed by the model comparison approach of SiDiff algorithm
[Treude et al., 2007].

Due to the EMF-based internal graph representations, the approach distinguishes
four types of changes: attribute change, reference change, moves, structural changes
that denote inserted or deleted artifacts. It stores the artifact changes as ob-
jects assigned to the identification links that represent the correspondences of the
changed artifacts. It does not store information about structural changes and it is
implicitly given by the absence of identification links. The inserted artifacts have
no incoming identification links and the deleted artifacts have no outgoing links
respectively.

The approach provides a browsing feature of detected history information by the
change tracer. Model revisions can be opened as textual tree representation with
multiple revisions. User can trace the occurrences of the selected modeling arti-
facts. The traced elements and their occurrences are visualized in different colors.
In the visualization component, modeling artifacts and correspondences among
them are visualized in different colors and notations.

EMF Store. The EMFStore framework [Helming and Koegel, 2013] supports exten-
sible default user interfaces for almost all its available functionality. By integrating
the EMF-based client platform, clients connected the server can have a naviga-
tor, history view and repository browser. The repository browser (integrated from
EMF Client Platform) enables the users to connect their client to the server and
log in. The navigator view provides viewing all modeling entities in the client’s
local workspace.

Moreover, EMF Store provides several visual dialog to visualize synchronization
with the server, to share and check out entities, as well as to commit and update
entities. It offers an interactive merge dialog for resolving the change conflicts.
Finally, the history of modeling projects or selected entities can be viewed in the
history view including branches, tags and the changes between revisions.

Hawk. Hawk [García-Domínguez et al., 2018] is an indexing approach for fast
querying over the fragment collections of software model repositories. It provides
features for querying through work-spaces, indexing models under version control
systems and creating NoSQL databases from these work-spaces. Eventually, it
can query through NoSQL databases and return the results of queries. Hawk
can run as Eclipse plug-in, Java library, or network service. It can work over
various types of locations, e.g., version control systems (SVN/Git repositories) or
file stores (local folders, Eclipse work-spaces, HTTP locations). The approach is
still under development and extension. It is planned to extend its user interfaces,
more back-ends, better Git connector (JGit-based) and visualizations based on
time-aware queries.

MDSE provides a visual designing aid for software development and evolution
activities by software models. Thus, analyzing the histories of evolving software
models is quite crucial to understand and comprehend the evolutionary life-cycle
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of software models. The change tracer, in turns, is usually viewed as the main un-
derlying component for mining model repositories. The combination of repository
mining and browsing forms the evolution history analysis. The current state of
research in the field of evolution history analysis for MDSE demonstrates a strong
need for research on advanced mining and change tracing approaches for model
repositories.

4.2.6 Lessons Learned

Section 4.1 has reviewed the existing difference representation techniques for col-
laborative MDSE. Section 4.2 has investigated these and other approaches accord-
ing to the supplementary services and components they support. This section
discusses these approaches in order to highlight open challenges and missing fea-
tures, as well as to indicate what can be improved in the research field.

As the result of literature study in Section 4.1 and Section 4.2, there are many
approaches addressing the certain aspects of overall research challenge. However,
these is still a strong need for extended research in difference representation for
collaborative MDSE combining concurrent, sequential collaborative modeling sce-
narios and model history analysis.

A difference representation technique should not only be abstract, but practically
useful for further tool developers. A difference representation approach has to pro-
vide several technical properties being executable, implementable in efficient ways,
fully expressive, yet unambiguous, for transforming existing models to new models,
as well as facilitate developer productivity with precise, concise and clear descrip-
tions. If a difference representation approach provides aforementioned properties,
it can then be applicable, extensible and further reusable.

This section gives a brief overview of lessons learned and open issues in the existing
related approaches. Table 4.1 lists the related approaches discussed in the previous
sections based on their representation techniques and services they provide.

The most approaches, listed in Table 4.1, aim at resolving challenges in the context
of independent services or tools. Only few of current approaches aim at being
generic, where they are surrounded or associated with other modeling tools or
technical spaces. Apart from the list of reviewed approaches, there are several
related approaches focusing only on the particular aspects of the overall model
change representation and its use cases. Some of the existing approaches still
remain as research prototypes.

This thesis intends to deliver a difference representation approach with several ef-
fective properties such as the usability, expressiveness, productivity, completeness,
extend-ability, etc. Hence, a change representation approach has to be compact,
enabling tool developers for developing further collaborative modeling tools on
the top. Additionally, the technical implications play an essential role in differ-
ence representation in collaborative MDSE. Model differences/changes have to be
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Approach Representation Services
Alanen and Porres [Alanen
and Porres, 2003]

textual opera-
tions

calculator, applier (merge,
conflict resolution)

DeltaEcore [Seidl et al.,
2014]

textual opera-
tions

operation recorder, applier

EMF Store [Helming and
Koegel, 2013]

textual opera-
tions

model management, calcu-
lator, applier (merging, con-
flict resolution), model edi-
tor, change tracer

Cicchetti et. al. [Cicchetti
et al., 2007]

model-based applier (merging, conflict
resolution)

AMOR [Brosch et al., 2010] model-based calculator, applier (merg-
ing, conflict resolution)

SiDiff [Schmidt and Gloet-
zner, 2008]

graph-based,
model-based

calculator, SiLift – semantic
lifting, SERGi – rule gener-
ator

SMOVER [Altmanninger
et al., 2007]

database-based model management, calcu-
lator, applier, adapter

Wenzel [Wenzel and Kelter,
2008]

database,
model-based

Evolution analysis – change
tracer

Hawk [García-Domínguez
et al., 2018]

database query engine – change
tracer

Table 4.1: Classification of Related Approaches

represented in forms that can be reused by other tools enabling the high-levels of
interoperability.

As the result of discussions, it can be pointed out that more research work is nec-
essary on generic model difference/change representation and its supplementary
services. A novel means for model change representation and services have to
consider MDSE concepts, their complexity and associated data structures. More-
over, the several existing approaches still remain as only research prototypes that
result in the lake of implementation of prototypes in many cases. Hence, generic
difference/change representation is required which allows for developing the chain
of services and supports change synchronization among them. In turns, difference
representation has to support the concurrent, sequential collaborative modeling
scenarios and history analysis through centralized servers enabling single point of
truth.

4.3 Requirements

After reviewing and analyzing several existing difference representation approaches
in Chapter 4, as well as highlighting and discussing open research challenges, it can
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be pointed out that the research in model difference representation and its applica-
tions is still in its infancy. To this end, this thesis addresses the problem of model
difference representation as its primary research question. Furthermore, the thesis
aims at providing a catalog of supplementary services which can produce, use and
manipulate difference documents represented by a proposed difference representa-
tion approach. Eventually, concurrent and sequential collaborative modeling, as
well as history analysis use cases of collaborative MDSE will be elaborated by the
specific orchestrations of provided services.

A difference representation approach for software models has to satisfy a number of
requirements regarding its re-usability, applicability and extendability. Difference
information must be small, compact, complete, conveniently reusable, extensible
and applicable. In order to have a solid difference representation approach in the
end, several research approaches [Cicchetti et al., 2007], [Herrmannsdoerfer and
Koegel, 2010], [Sriplakich et al., 2008] specify requirements for a model difference
representation. In the same vein, this thesis also defines a list of requirements
and properties following concrete principles and extending requirements stated by
[Cicchetti et al., 2007], [Herrmannsdoerfer and Koegel, 2010] and [Sriplakich et al.,
2008].

Below, these requirements are listed targeting efficiency, re-usability, applicability
and extend-ability of model difference representations. Initially, the list of require-
ments is described that the overall approach has to satisfy. Thereafter, the list
of requirements is given for the difference document, i.e., modeling delta and a
difference representation (i.e., Difference Language) and its operations.

– RQ1: Meta-model Generic. There are several modeling languages following
diverse formal specifications and concepts. The abstract syntax of model-
ing languages, i.e., the modeling concepts are defined by their correspond-
ing meta-models. Models conforming to that meta-models are the subject
to continuous changes and evolution. Thus, being generic with respect to
meta-models makes a difference representation approach applicable to many
modeling languages. A difference language should not relying on a par-
ticular domain-specific modeling language, enabling applicability in various
domains. A generic difference language can then be tailored to the use of
specific domain-specific modeling languages even more supporting the user
in defining the models in easy ways. So that users may work with concepts
they know and they only have to learn the limited set of concepts related to
the domain they work.

– RQ2: Modeling Tool Generic. There are several modeling tools as well and
they have own internal model representation techniques, i.e., concrete syntax
(e.g., Sirius-based [Viyović et al., 2014] tools like UML Designer [Obeo Net-
work, 2017], etc.). To be able to handle models designed in different modeling
tools, a difference language must not rely on a specific model designing tool
restricting itself to that tool. This feature of a difference language provides
its integration and interoperability with existing CASE tools.

– RQ3: Extensible. In addition to being meta-model and tool generic, a pro-
posed difference language must be flexible, i.e., it has to be open for further
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improvements, extensions, adaptations and integration. Particularly, the
provided services by an approach have to be available for further improve-
ments, enrichment and replacements. For instance, the tool developers might
intend to extend or improve existing services, or replace the existing services
by other services. Eventually, further services, components and plug-ins can
easily be developed on the top of a proposed difference language. This re-
quirement is one of the most significant properties a difference language has
to provide, which is not sufficiently addressed by the existing approaches.

– RQ4: Operation-based. The model differences are the collection of the
changes of modeling concepts. Artifact changes can be viewed as opera-
tions using the simple sequence of edit operations (cf. Section 4.1). Using
an operation for each change results in a low number of construction oper-
ations with simple syntax and enables effortless implementations, as well as
follows actual modeling concepts. The operation-based difference language
should also be completely independent from the underlying implementation
techniques and technologies, i.e., technical spaces. Each change can slightly
be represented by single line of operation. Change operation have to be
sufficiently accurate and detailed for particular automatic transformations.

– RQ5: Model Reference. In order to refer to modeling artifacts from the
change operations of a difference language, each change operation has to
embody a reference to a modeling artifact which has to be edited by an
initial operation. Such kind of references are essential grounds for applying
changes to models and provide persistence of modeling artifacts and changes.
It is the best aid for mining consistent information (i.e., change tracing in
Section 4.2.5) for model history analysis (as discussed in Section 3.3).

– RQ6: Expressive. The syntax of the change operations of a difference lan-
guage must be meaningful so that they can be easily understood by users
or tool developers. The understandable syntax of change operations is quite
easy to express changes in human-readable formats and is practical to imple-
ment by various technologies. Eventually, unlike model-based, graph-based
or database-based approaches, the syntax of the operations of a difference
language can be easily understood and extended by tool developers.

– RQ7: Executable. The change operations of a difference language have to
form the executable descriptions of model differences so that it can then be
applied to its differentiated models in order to transform the model from
one revision to another. Difference documents have to represent directly the
executable descriptions of model differences or at least they have to be easy
to implement by model transformation or manipulation approaches. Ap-
plicability of difference documents allows for reverting the older or newer
revisions of the working copy of a model. By being applicable, difference
documents enable easy change propagation in case of the concurrent collab-
orative modeling scenario, as well.

– RQ8: Delta-based. Only changed modeling artifacts have to be referred (ex-
cluding unchanged artifacts) in difference documents. Difference documents
should consist of a set of operations which refer to the only changed mod-
eling concepts, i.e., a difference document covers only necessary set of data
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about each artifact change. As long as a difference document consists of
references and operations for only changed modeling artifacts, this require-
ment is also entitled as minimalistic by the some other related approaches
[Cicchetti et al., 2007], [Herrmannsdoerfer and Koegel, 2010]. The small-
ness of difference documents brings a huge amount of advantages in terms
of time and storage memory in sequential collaboration, as well as in the
synchronization performance of model changes over network in concurrent
collaborative modeling.

– RQ9: Persistent. The model differences in difference documents have to
be persistent during the evolutionary life-cycle of models. Each difference
document must consist of persistent change information with respect to its
successor and predecessor elements. It allows for maintaining and persisting
each modeling artifact together with the change history. The persistence of
difference documents provides consistency of changes and modeling artifacts
from the beginning to the end of the life-time of each modeling artifact.
If change operations are persistent, they are traceable and applicable as
well, i.e., the change histories of modeling artifacts can easily be traced for
extracting necessary knowledge for further analysis.

– RQ10: Traceable. The model differences represented in difference documents
have to be available for further reuse and exploitation. Only representing
the model differences without being accessible and re-usable is ineffective
and needless. Thus, difference representation must be straightforward and
accessible for further analysis and manipulations enabling applicability to
various application areas so that the change and model histories can be
analyzed by mining necessary information from difference documents. A dif-
ference language should not rely on underlying implementation technologies
and provide easy access to difference information by the change tracer service
(Section 4.2.5) in model history analysis.

– RQ11: Relevance. The representation by a difference language must embed
precise information about each change including the kind of change, the ref-
erence to modeling concept and modeling concept which has to be changed.
The kind of change defines what kind of change is made (e.g., creation or
deletion of a modeling artifact or change of attribute values), whereas the
referenced modeling concept defines the changed modeling artifact. These
operations have to allow for representing all model changes embodying all
necessary information about each independent change. An operation must
be a statement that is correct and relevant to a change. Its relevance and
correctness can be checked against the meta-model of a modeling language.

These requirements are proper characteristics for emerging an appropriate ap-
proach for a model difference representation language for collaborative MDSE, as
well as in order to make the data representation more efficient by choosing more
suitable data structures. A difference language fulfilling these requirements pro-
vides more efficient ways of managing, manipulating and reusing difference infor-
mation improving performance of data processing. The aforementioned properties
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contribute to have a solid and common syntactic grounds for representing model
differences in diverse domains and effortless development of further services on the
top. A difference language satisfying the aforementioned properties is supposed
to be executable, implementable in efficient ways, fully expressive, facilitate tool
developers productivity with precise, concise and clear descriptions. It can easily
be adopted to many domain-specific modeling languages regardless their graphical
constructs. It is an efficient design of the data structure for representing model
differences in repositories.

This thesis focuses on a generic model difference representation technique which
provides single point of truth for concurrent, sequential collaborative modeling sce-
narios and model history analysis by supporting a common underlying difference
language and a list of supplementary services. The main objective of this thesis is
not focusing only on a single application, but being more generic with respect to
the meta-models of modeling languages and model tools.

The significant principles listed in this section are the design foundations for a
difference language that contribute to empower the qualification and solidity of
difference representation. The proposed approach aims at fulfilling these require-
ments throughout this thesis.

4.4 Summary

The existing approaches offer various difference representation techniques such
as model/graph-based, text-based and even relational database-based. The model-
based and graph-based difference representation techniques are well-suited for the
distributive sequential collaborative modeling scenario. However, they might not
show high performance in case of concurrent collaborative modeling in real-time.
These kind of representation approaches may require more effort and technical
knowledge to develop collaborative modeling tools on the top. Because model-
and graph-based difference representation requires technical spaces with sufficient
data structures to represent models and graphs. There are several approaches
focusing only on the particular aspects (e.g., sequential model version control by
difference calculation and application) of the overall research challenge.

The existing approaches can be applicable to several application areas, but they
can still be extended and improved with additional services and components to
achieve successful results in terms of applicability. In this case, developing addi-
tional operative services require much effort and technical knowledge from the tool
developers and domain experts. Some of the existing approaches discussed in this
chapter usually rely on the meta-model of specific modeling languages, e.g., like
EMF-based Ecore.

The result of literature study in this chapter indicates that there is still a need
for extended research offering generic means to model difference representation in
collaborative MDSE. A generic model difference representation approach is needed
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which serves as the common grounds and generic difference representation for a
wide range of modeling languages (w.r.t. meta-models) and modeling tools. It
should provide single point of truth for concurrent and sequential collaborative
MDSE by central repositories. A proposed model difference representation ap-
proach should satisfy several properties being executable, implementable, exten-
sible, expressive and descriptive, generic with respect to modeling languages and
tools (as defined in Section 4.3). These requirements are satisfied throughout this
research work and evaluated in Section 10.2.





Part III

Approach

101





Part III. Approach 103

In Part I, the thesis has initially defined central research question and main objec-
tives. Part II has reported on the core foundations of this thesis. These foundations
are MDSE concepts, collaborative development use cases and related approaches
to model difference representation and its operative services.

This part is dedicated to the core ideas behind this thesis. As this thesis focuses
primarily on model difference representation, Chapter 5 presents difference repre-
sentation language for model differences in modeling deltas. It firstly explains the
conceptual idea behind the proposed difference language, then depicts a simplified
motivating example for the approach. In addition to the model difference represen-
tation, this research work aims at providing several supplementary services which
operate on the proposed difference representation approach. Chapter 6 explains
these supplementary services in detail.





Chapter 5

Difference Language

As specified in Section 1.1, the core objective of this thesis is to introduce a generic
difference language to model difference representations in collaborative MDSE.
The discussions in Chapter 3 demonstrates that model difference representation
is entirely crucial for use cases such as concurrent collaborative modeling, sequen-
tial collaborative modeling and model evolution history analysis. The extended
literature review in Chapter 4 shows that there are several approaches dedicated
to the problem of model difference representation. Most of these approaches can
be well-suited for the particular part of the overall research challenge. However,
these approaches can still be extended and improved covering a wide range of
application areas and domains. To this end, this chapter presents a generic Dif-
ference Language (DL) to model difference (modeling delta) representation in
collaborative MDSE.

Software models undergo various changes during the evolution process. These
changes are the main reason for the evolution of software models. Thereby, the
artifact changes are the first-class citizens in collaboration and the evolution pro-
cess of software models. Constantly changing modeling artifacts results in the
evolution of software models. Modeling artifacts can be created or deleted, or the
attribute values of modeling artifacts can be changed when models evolve from
one state to another.

As discussed in Chapter 3, there are several scenarios where the evolving artifacts
of software models have to be properly identified and stored for further processing
of software models. The most high-level scenarios are development and evolu-
tion (particularly maintenance) of model-driven software projects. Both scenarios
require collaborative modeling. Overall collaborative modeling usually comprises
the concurrent collaboration (Section 3.1) and sequential collaboration (Section 3.2)
scenarios. In both scenarios, model changes are the first-class citizens.

The model changes define modifications made on the modeling artifacts. A list
of changes can be aggregated as a collection which is called model differences
and stored in difference documents, also referred to as modeling deltas. Conse-
quently, each modeling delta consists of the collection of model changes. Model
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changes are the first-class entities in this thesis for representing model differences
(changes) in modeling deltas.

Definition 5.1. Model Change.
Any type of modification such as creation, deletion of modeling artifacts or
changing the values of their attributes are referred to as model changes. Re-
lationships among modeling artifacts are treated the attributes of respective
meta-classes.

Model differences are usually detected and produced by comparing (or matching)
the two states (revisions) of the same software models before and after change(s)
are made. Sometimes, they are detected by recording (i.e., logging, listening)
changes on modeling artifacts in modeling editors. The both approaches of com-
puting modeling deltas are described as the delta calculator (discussed in Sec-
tion 6.3 in detail) in this thesis.

Definition 5.2. Modeling Delta.
A collection of model changes is defined in terms of model differences and
represented in difference documents which is referred to as modeling deltas.

As its core objectives, this thesis requests a notation, i.e., Difference Language
(DL) to represent model differences in modeling deltas. Formally, DL is a family
of domain-specific languages. Specific DLs are generated from the meta-models of
modeling languages as depicted on the most upper level of Figure 5.1. The editing
steps are described in terms of DL in modeling deltas. The general concepts of
DL can be seen as a specialized form of domain-specific languages according to its
properties. In contrast to general purpose languages, DL provides only selected
modification operations required for expressing basic model differences/changes
in modeling deltas. DL operations that should not be performed as the part of
model changes are not explicitly considered by simply not expressing the relevant
DL operations [Seidl et al., 2014]. Because, the model difference representation
approach in this thesis considers only atomic changes like artifact creation, deletion
and attribute values changes without reflecting composite changes. Section 5.2
provides more details about this notion and explains a brief example for DL syntax.

As depicted on the central part of Figure 5.1, the approach also provides several
additional DL services to produce, manipulate and reuse the DL-based modeling
deltas. Afterwards, the application areas of the DL approach are developed and
extended by the special orchestrations of these DL services (the bottom part of
Figure 5.1). As the proof of the concept, the DL approach is applied to the con-
current collaborative modeling in Chapter 7 and sequential collaborative modeling
in Chapter 8, as well as Model History Analysis in Chapter 9.
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Figure 5.1 depicts the overall architecture and main outline of the approach. It has
three main levels such as DL Generation (explained in this chapter) as its concep-
tual idea, DL Services (discussed in Chapter 6) and DL Applications (explained
in Part IV).
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Figure 5.1: Overall Architecture of Approach

DL Generation. On the upper level, the architecture depicts the generation of
specifics DL for specific modeling languages (explained in Section 5.1 in de-
tail). The DL generator is meta-model generic. Generally, DL is a family of
conceptual domain-specific languages, whereby specific DLs for specific mod-
eling languages are generated from the meta-models of modeling languages
(more details in Section 5.2). After generating specific DLs, all changes made
on models conforming to the provided meta-models are represented in terms
of the generated specific DLs. In general, the DL generator generates the
DL syntax. The DL syntax is a special and self-defined form of general DSL.
In the same vein, model changes are then represented by the DL operations
that are referred to as delta operations. Each modeling delta conforming to
a specific DL consists of at least one delta operation (cf. Section 5.2 for more
details).

DL Services. The DL approach further provides several DL services (explained
in Chapter 6 in detail) to produce, manipulate and reuse the DL-based mod-
eling deltas stored in model repositories. Each DL service has a particular
task and is involved in constructing the specific service orchestrations to



Chapter 5. Difference Language 108

develop the DL applications. For instance, the delta calculator is used to
compute differences between model revisions and produce modeling deltas.
The delta calculator uses optimizer service to produce the optimized model-
ing deltas. After all, the other DL services such as delta applier and change
tracer utilize the DL-based modeling deltas in further processing of models
during their evolutionary life-cycle.

DL Applications. On the third level, Figure 5.1 depicts the DL applications
developed by the specific orchestrations of the DL services. The DL services
are orchestrated based on the specific operative scenarios of collaborative
modeling applications such as concurrent collaborative modeling and sequen-
tial collaborative modeling, as well as Model Evolution History Analysis (de-
scribed in Part IV).

Section 5.1 demonstrates the overall conceptual idea of the DL generation clar-
ifying how to generate specific DLs for certain modeling languages in order to
represent modeling deltas. Section 5.2 explains the DL-based model difference
representation approach by a simplified running example. Section 5.3 sums up
this chapter. While explaining the core ideas of the approach, the requirements
defined in Section 4.3 are revisited how they are fulfilled by this approach.

5.1 Conceptual Idea: DL Generation

DL is conceptually a family of operation-based domain-specific languages dedi-
cated to represent modeling deltas. Specific DLs for representing modeling deltas
within the particular modeling languages are derived from the meta-models of
these modeling languages. This thesis provides a DL generator (explained in Sec-
tion 6.1) for automatically generating specific DLs from the given meta-models.
This section describes how the generation process of specific DLs is performed by
the DL generator. As proof of the concept, a specific DL is generated for UML
activity diagrams in this section. But, the DL generator does not rely on a par-
ticular modeling language, i.e., it is modeling language generic with respect to the
meta-models of modeling languages. The overall all DL-based collaborative mod-
eling approach can be applied to a wide range of modeling languages by generating
specific DLs for them (more applications in Part IV).

Metamodel.
As depicted on the upper part of Figure 5.1, specific DLs are generated from the
meta-models of modeling languages as the initial step. According to the MDSE
concepts explained in Section 2.1, the modeling concepts of any modeling lan-
guage can be recognized by inspecting the meta-model of that language. Thus,
a specific DL for UML activity diagram is generated by the DL generator service
(Section 6.1) importing the UML activity diagram meta-model. Then, the model
changes in modeling deltas can be represented in terms of DL on the instance
activity diagrams.
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Figure 5.2 depicts the structure of the UML activity diagram meta-model that
is used as a running example. The meta-model is separated into two parts by
a dashed line. Below the line, it depicts the content part (i.e., abstract syntax)
which is adopted from the standard UML activity diagram meta-model for EMF
(Eclipse Modeling Framework) [Steinberg et al., 2008].

In graphical modeling, each modeling object has design information such as ration,
size, and position, also called layout information. Above the dashed line, Figure 5.2
portrays the layout part (i.e., concrete syntax) for the content part. The layout
part of the meta-model depicts the substructure of Graphical Modeling Frame-
work (GMF) notation [GMF, 2018] which supports notation for developing visual
modeling editors based on EMF.
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Figure 5.2: Meta-model for UML Activity Diagrams

The ActivityNode and ActivityEdge of the content part are connected to the Node
and Edge of the layout part through the DNode and DEdge artifacts of the Sirius
odesign notation [Viyović et al., 2014]. This simplified meta-model is utilized
in applying the DL-based collaborative modeling infrastructure to a Sirius-based
domain-specific modeling tool UML Designer in Section 7.3. Sirius is an EMF-
based framework for developing domain-specific graphical modeling tools and it
extends GMF notations for its visual representations. Therefore, the meta-model
uses Sirius notations to combine GMF notation (layout part) and Ecore-based
EMF meta-model for UML activity diagrams (content part).
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A specific DL is generated for this combined meta-model of the UML activity
diagram content (i.e., abstract syntax) and layout (i.e., concrete syntax) parts.
Thus, a specific DL generated from this meta-model can also be used to repre-
sent changes in the layout data of instance models conforming to this meta-model.
For instance, when the size, position or ratio of a model element is changed in
modeling editors, these changes are synchronized among various parallel collabo-
rators. Moreover, these changes are stored in repositories. This donates that the
same underlying DL is used to represent model differences/changes for the layout
and content of UML activity diagrams. Eventually, this way of designing meta-
models allows for using the same collaborative modeling environment for different
modeling contents.

Difference Language Generation.
The specific DL for the UML activity diagram meta-model is generated by the
DL generator service explained in Section 6.1. While generating the specific DLs,
the DL generator inspects all meta-classes. For each of these meta-classes, it it-
erates over the attributes and collects those that are changeable and not marked
as the persistent identifier (e.g., the attribute id of NamedElement in Figure 5.2).
Modification of the values of persistent identifiers are not allowed by default as an
identifier tightly defines the identity of a modeling artifact and, therefore, should
not be changed as the part of model changes. For each meta-class, the DL gen-
erator generates creation and deletion operations. For each attribute of these
meta-classes, the DL generator generates a change operation. In general terms,
the DL generator applies three basic operations, create, delete to each meta-
class and change to each meta-attribute of a given meta-model. Relationships
are treated as the meta-attributes of meta-classes. Thus, meta-associations and
meta-attributes are referred to as meta features in Figure 5.3.

Figure 5.3: Conceptualization of DL Generation

For the sake of simplicity and to demonstrate the overall idea behind DL gen-
eration, this section presents generation of a specific DL for only UML activity
diagrams including the content and layout parts. However, the DL generator is
meta-model generic, i.e., it does not rely on a particular meta-model (modeling
language). In the framework of this thesis, the DL generator is realized using
JGraLab and EMF technical spaces (Section 2.4). Section 6.1 extensively dis-
cusses the further core principles of the DL generator and its realization in detail.

Difference Language.
A specific DL is generated in form of the Java API by the DL generator. Fig-
ure 5.4 depicts the abstract specification of the DL operations for the meta-model
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in Figure 5.2. It is the combined abstraction of the API (Application Programming
Interface) in Figure 5.5 and Figure 5.6. It does not cover all possible cases, yet
depicts only abstract substructure just to show which operations can applied to
each modeling artifact. According to abstraction in Figure 5.4, all modeling arti-
facts including flows and nodes can be deleted or created with parameters if they
have attributes. Only attributes can be changed and all relationships are treated
as attributes. Attributes are created when their container artifacts are created,
and they are deleted when their container artifacts are deleted.
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Figure 5.4: Abstraction of DL API

Figure 5.5 and Figure 5.6 depict only interfaces part of DL generated by the DL
generator importing the UML activity diagram meta-model depicted in Figure 5.2.
In general, DL consists of the interfaces (Figure 5.5 and Figure 5.6), their imple-
mentations to recognize modeling artifacts and a factory to operate on instance
models, i.e., create, delete and change modeling artifacts. All methods of the
resulting API are named and parameterized according to the modeling concepts
described by the meta-model including the basic operations create, delete and
change. The DL generator generates implementation of the interfaces in Figure 5.5
and Figure 5.6, as well.

For the sake of simplicity, the API in Figure 5.5 depicts the abstract representation
of the most important change operations for the content part. The content part
of API consists of creation operations for the meta-classes. These creation oper-
ations further contain operation parameters if the meta-classes have attributes or
associations. The API further consists of change operations for all meta-attributes
and associations. As long as all the meta-classes are of type NamedElement, the
deletion operation is defined by deletion of that root element NamedElement.
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1 //------------ Content Part (UML) in Content Package ------------
2 Activity createActivity ();
3 InitialNode createInitialNode(String id , String name , Activity

activity);
4 OpaqueActionNode createOpaqueAction(String id , String name , Activity

activity);
5 ForkNode createForkNode(String id, String name , Activity activity);
6 JoinNode createJoinNode(String id, String name , Activity activity);
7 DecisionNode createDecisionNode(String id, String name , Activity

activity);
8 MergeNode createMergeNode(String id, String name , Activity activity);
9 ActivityFinalNode createActivityFinalNode(String id , String name ,

Activity activity);
10 ControlFlow createControlFlow(String id , String name , ActivityNode

source , ActivityNode target , Activity activity);
11 ObjectFlow createObjectFlow(String id, String name , ActivityNode

source , ActivityNode target , Activity activity);
12 void changeName(String name); // for all meta -classes in content part
13 void changeSource(Node source); // for meta -classes of type Activity

Edges only
14 void changeTarget(Node target); // for meta -classes of type Activity

Edges only
15 void changeActivity(Activity activity); // for all meta -classes in

content part
16 void delete (); // for all meta -classes in content part

Figure 5.5: Content Part of API Generated From Meta-model in Figure 5.2

As depicted in Figure 5.6, the same method of DL generation is applied to the
layout part of the meta-model. Nodes or Edges can not exist without element, i.e.,
DNode or DEdge; as well as DNode or DEdge can not exist without their target,
i.e., ActivityNode or ActivityEdge, respectively. In order to have possibility to
manipulate children nodes that are also of type View, the View meta-class can be
created and deleted including their Layout Constraints, Bendpoints and Anchors.
Figure 5.6 does not consist of delete operation, because layout information is
automatically deleted whenever its relevant element in the content part is deleted.

Once the DL delta calculator (or listener) service detects any modifications while
calculating (listening for) model changes, it calls the relevant method of the DL
interface providing the necessary parameters with their values. These parameters
are the persistent identifier as a reference, modeling artifact and attribute values
if necessary. Each call of these methods results in an analogous operation with
relevant parameters. The methods of the interface depicted in Figure 5.5 and
Figure 5.6 returns objects for creation operations and void for change and delete
operations. These objects are considered as the part of Delta Operations. The list
of objects of type Delta Operation can then be aggregated as Delta Representation
to define a modeling delta. The DL API also supports a serialization provider
which can serialize the objects of type Delta Operation into textual DL and vice
verse.

The DL approach considers three atomic operations create, delete and change
as a sufficient set of operations for representing all model differences. Below, the
general syntax of these operations is explained in detail.

Creations. The create operations specify creation of new artifacts that exist in
the new revision of a model and did not exist in the previous revision. The
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1 //------------ Layout Part (GMF) in Layout Package ------------
2 View createView(boolean visible , String type , boolean mutable);
3 void changeVisible(boolean visible);
4 void changeType(String type);
5 void changeMutable(boolean mutable);
6

7 DNode createDNode(ActivityNode target);
8 void changeTarget(ActivityNode activityNode);
9

10 DEdge createDEdge(ActivityEdge target);
11 void changeTarget(ActivityEdge activityEdge);
12

13 Size createSize(int width , int height , Node node);
14 void changeWidth(int width);
15 void changeHeight(int height);
16 void changeNode(Node node);
17

18 Location createLocation(int x, int y, Node node);
19 void changeX(int x);
20 void changeY(int y);
21 void changeNode(Node node);
22

23 Ratio createRatio(Double v, Node node);
24 void changeValue(int v);
25 void changeNode(Node node);
26

27 Node createNode(DNode element , Diagram diagram);
28 void changeElement(DNode dnode);
29 void changeDiagram(Diagram diagram)
30

31 Diagram createDiagram(String name , View view);
32 void changeName(String name);
33 void changeView(View view);
34

35 Edge createEdge(View source , View target , DEdge element , Diagram
diagram);

36 void changeSource(View source);
37 void changeTarget(View target);
38 void changeElement(DEdge dedge);
39 void changeDiagram(Diagram diagram);
40

41 RelativeBendPoint createRelativeBendPoint(RelativeBendpointList
points , Edge edge);

42 void changePoints(RelativeBendpointList points)
43 void changeEdge(Edge edge);
44

45 Anchor createAnchor(Edge edge);
46 void changeEdge(Edge edge);

Figure 5.6: Layout Part of API Generated From Meta-model in Figure 5.2

overall syntax of the creation operations is as follows:
«persistentIdentifier» = create«ModelingArtifact»(value[0..*]);
As a whole, creation operations embody the basic create operator, object
(modeling artifact that is taken from the meta-model) and the set of multiple
parameters. The whole operation is assigned to a persistent universally
unique identifier. If a modeling artifact has attribute(s), creation operations
may have parameter(s) in the parentheses. If a child (contained) artifact
should be created by a creation operation, the parent artifact should be
provided to that creation operation (cf. Section 5.2 for more details).

Deletions. The deletion operations can be applied to all modeling artifacts. It
defines a modeling artifact that does not exist in the new revision of a model
and existed in the previous revision. With a delete operation, associations
connected to a modeling artifact that should be deleted are automatically
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deleted if they are not reconnected or deleted by any previous operations. If
a modeling artifact is deleted, its attributes are also automatically deleted.
The overall syntax of deletion operations is as follows:
«persistentIdentifier».delete();
Deletion operations consist only of the basic delete operator. The modeling
artifacts that should be deleted are referred to by a persistent persistent
identifiers.

Changes. The target or source end of meta-associations and the attributes
of meta-classes can be changed. Modeling artifacts exist on the both old
and new revisions of a model, but they might be changed from revision to
revision. Changing the target or source end of any association is done by
changing the attribute of a modeling artifact that is of type association. The
overall syntax of change operation is as follows:
«persistentIdentifier».change«Feature»(newValue);
Syntactically, change operations depict the basic change operator, attribute
name and one attribute value at most. The change operation can only be
applied to the attributes of modeling artifacts to change their values on
instance models. If any end of an association should be changed, the source
or target end of that association has to be provided as a parameter newValue.

Section 5.2 illustrates a motivating example for the DL-based difference/change
representation including all aforementioned operations.

Composite operations. When presenting the results of this thesis among re-
search community, there has been always the question of composite operations
like move operation, i.e., moving a part (a group of modeling artifacts) of a model
from one part to another. But, this thesis considers that the move operation is
necessary mostly in further analysis of the history of evolving models. From the
technical point of view, the move operation can successfully be derived by the
combination of the atomic DL operations. The move operation can be derived by
changing association ends between the part that should be moved and the rest
of a model. Detecting such composite operations from DL-based modeling deltas
requires to define concrete rules and semantic lifting of atomic operations to high-
er/user level operations. Lifting atomic operations to composite ones is out of
the scope in this thesis and one of such novel approaches is introduced in [Kehrer
et al., 2011].

5.2 Motivating Example

Section 5.1 has explained how to generate specific DLs from the meta-models
of modeling languages. The DL generator introduced in Section 6.1 is generic
with respect to the meta-models of modeling languages, i.e., it does not rely on a
particular modeling language. In order to explicitly explain how model differences
are represented in terms of the newly generated DL in Section 6.1, this section
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presents a simplified example of the DL-based difference representation approach.
A very simple UML activity diagram [Raumbaugh et al., 2004, pp. 95ff] is chosen as
a running example to apply the DL approach and to show how to represent model
differences in terms of DL [Appeldorn et al., 2018]. Section 5.2.1 depicts a sample
model of UML activity diagram. Section 5.2.2 gives the detailed descriptions
of modeling deltas for the example models in Section 5.2.1. The DL syntax is
explained in Section 5.2.3 in detail.

5.2.1 Sample Model and Model Changes

Figure 5.7 depicts three subsequent revisions namely Rev_1, Rev_2 and Rev_3
of the same UML activity model portraying an "Order System" example. All
model revisions conform to the same simplified meta-model shown in Figure 5.2.
Figure 5.7 further depicts two concurrent copies of the latest revision, in this case,
Rev_3. Two designers, namely Designer_1 and Designer_2 are working on these
parallel copies.
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Figure 5.7: Example Activity Diagram under Collaborative Development

Model Changes.
In the first revision (Rev_1), the model consists only of one Opaque Action g2
named Receive as well as the Initial g1 and Final g3 nodes. All modeling artifacts
are connected by (Control) Flows ; g4 and g5. While evolving from the first revision
(Rev_1) to the second (Rev_2), the following changes are made on the model: the
Fork, Join nodes g6 and g9, two Opaque Actions named Fill Order g7 and Send
Invoice g8 are created, the target end of the control flow g5 is reconnected to the
fork node, the name of the action node g2 is changed from Receive to Receive
Order, and several control flows g10, g11, g12, g13, g14 are created connecting
these nodes. The model again evolves into the third revision (Rev_3) after making



Chapter 5. Difference Language 116

the following changes: the target end of the control flow g5 is reconnected to the
opaque action g7, the target end of the control flow g12 is reconnected to the final
node, and the Fork g6, Join g9 nodes, the Opaque Action g8 and the Control
Flows g10, g11, g13, g14 are deleted.

In the third, last revision, the model is then being further developed by two de-
signers concurrently. Designer_1 changes the names of the opaque actions g2 and
g7 from Receive Order and Fill Order to Receive Orders and Fill Orders,
respectively. These changes are represented and sent to the other instance in form
of the DL-based modeling delta. On the other instance, Designer_2 creates a
new Opaque Action with the name Close Order. The same designer creates one
Control Flow g16 and reconnects the target end of the control flow g12 from the
Final Node g3 to the newly created opaque action g15. These changes are also
represented and sent to the instance, Designer_1 is working on, as the DL-based
modeling delta.

Universally Unique Identifiers (UUID). In order to identify modeling arti-
facts and to represent referenced data in modeling deltas, each modeling artifact
is assigned to a certain UUID (gx). Assigning modeling artifacts to UUIDs allow
for identifying and keeping the track of the modeling artifacts of evolving soft-
ware models over time. As long as the names of modeling artifacts are not always
unique, unique identifiers make evolution of artifacts more comprehensible and
sufficient. With unique identifiers the inter-delta (i.e., predecessor and successor)
and delta-model relationships can easily be detected. These identifiers are persis-
tent throughout the evolutionary life-cycle of modeling artifacts. The persistent
identifiers allow for tracing inter-delta relationships (predecessor and successor)
of any particular modeling artifact by detecting the predecessor and successor
artifacts of base modeling artifacts, and extract history information about the
evolution process of these modeling artifacts. Furthermore, the inter-delta rela-
tionships provide foundations to extract the necessary data for the model evolution
analysis application of DL that is explained in Chapter 9 (satisfying the require-
ment RQ10: Traceable). The delta-model references are used to refer to modeling
artifacts from modeling deltas. The delta-model references are mainly used in ap-
plying modeling deltas to software models by the DL applier service (explained in
Section 6.4). This feature of the DL-based delta operations fulfills the requirement
RQ5: Model Reference. Only prerequisite in this case that either the meta-models
or the data structures of technical spaces should provide an attribute to identify
modeling artifacts.

5.2.2 Modeling Deltas

As defined in Definition 5.2, modeling deltas consist of the collection of the DL
operations. The collection itself contains at least one DL operation. Modeling
deltas modify the given base revision of a software model by creating new arti-
facts, changing or deleting existing ones. They are therefore applied to models
under evolution and development in order to transfer them from one revision to
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another. Application of modeling deltas to models is performed by the DL applier
service. Furthermore, modeling deltas serve as information resources for the DL
tracer service in mining history information and analyzing the evolution history
of software models.

The DL-based modeling deltas can be distinguished in three forms according to
their descriptions and transformation properties. According to the collaborative
modeling scenarios (i.e., concurrent and sequential model versioning), modeling
deltas are represented in the directed forms, i.e., backward or forward deltas [Mens,
2002] as depicted in Figure 5.7.

Modeling Deltas in Sequential Collaborative Modeling. In sequential col-
laborative modeling (cf. Subversion [Berlin and Rooney, 2006], Git [Swicegood,
2008]), the differences between subsequent revisions are usually identified and rep-
resented in reverse order, i.e., differences are represented in backward deltas as
depicted Figure 5.7. Application of backward deltas to the given base model revi-
sions results in the older revisions of the same model, i.e., the change descriptions
have impacts on the base model in the backward order. The DL delta calculator
service (Section 6.3) always receives two subsequent revisions of a model as inputs
for calculating a modeling delta between these two revisions. While calculating
the backward deltas, the delta calculator service receives the base (working) re-
vision as the first input and the previous revision as the second input. In this
case, the delta calculator produces a backward delta which transforms a model
from the newer revision to older. The backward deltas are usually used in case
of the sequential collaborative modeling scenario. Because, the working copies of
models are the most frequently accessed revisions. The older revisions can easily
be reverted by applying the backward deltas to that working copies. This makes
sequential collaborative modeling more practical and performant. The same way
of delta representation is employed by classic source code version control systems
[Berlin and Rooney, 2006, Swicegood, 2008].

Modeling deltas in sequential collaborative modeling are computed by comparing
two subsequent revisions of models. Therefore, in case of sequential collaborative
modeling, modeling deltas consist of the larger set of model differences, whereas
they represent the small set of model changes in concurrent collaborative modeling.
Modeling deltas consisting of the larger set of differences (in sequential collabora-
tive modeling) are referred to as macro-versions. Consequently, this thesis enables
the sequential collaborative modeling application by macro-versioning as depicted
in Figure 5.7.

In the macro-versioning scenario, the example depicted in Figure 5.7 describes
three subsequent revisions (Rev_1, Rev_2 and Rev_3) of the example model and
the two backward deltas (∆(Rev_2, Rev_1) and ∆(Rev_3, Rev_2)) between
these revisions. As depicted in Listing 5.8, these backward deltas are directed in
reverse order, i.e., each change leads from the later revisions to the older revisions
of the same model. The macro-versioning scenario usually demands the reversal
operations in order to obtain earlier revisions from the latter. The syntax of the
DL-based operations is explained in Section 5.2.3 in detail.



Chapter 5. Difference Language 118

1 g6 = createForkNode ("");
2 g8 = createOpaqueAction ("Send Invoice ");
3 g9 = createJoinNode ("");
4 g10 = createControlFlow ("", g6, g7);
5 g11 = createControlFlow ("", g6, g8);
6 g13 = createControlFlow ("", g8, g9);
7 g14 = createControlFlow ("", g9, g3);
8 g5.changeTarget(g6);
9 g12.changeTarget(g9);

Figure 5.8: Backward Delta: ∆(Rev_3, Rev_2)

Likewise, Figure 5.9 illustrates the backward modeling delta ∆(Rev_2, Rev_1)
including the differences between the second and first revisions.

1 g2.changeName (" Receive ");
2 g5.changeTarget(g3);
3 g10.delete ();
4 g11.delete ();
5 g12.delete ();
6 g13.delete ();
7 g14.delete ();
8 g6.delete ();
9 g7.delete ();

10 g8.delete ();
11 g9.delete ();

Figure 5.9: Backward Delta: ∆(Rev_2, Rev_1)

The modeling deltas in these figures are the executable descriptions of model
differences. Each of these difference deltas allows to revert the base model to
the earlier revisions from the latter. The modeling delta in Figure 5.8 reverts
the model to the second revision from the third, whereas the modeling delta in
Figure 5.9 reverts the same model to the first revision from the second. The
concatenation of the modeling deltas from Figure 5.8 and 5.9 leads to a backward
delta which transforms the model directly to the first revision from the third. The
concatenation of modeling deltas is provided by the DL optimizer service which
is explained in Section 6.8.

In the DL-based modeling deltas, the unchanged modeling artifacts are implicitly
excluded simply not describing DL operations for them. The modeling artifacts
that have to be changed are addressed by the persistent identifiers in the delta
operations. For example, the third revision contains an Opaque Action g2 named
Receive Order. It is not referred in the modeling delta in Figure 5.8 because it is
unchanged artifact. In the modeling delta in Figure 5.9, the name of that opaque
action is changed to the previous name "Receive" (cf. Figure 5.9, line 1).

In Figure 5.8 and Figure 5.9, the modeling deltas consist of the list of only changes
including all necessary information about the differences fulfilling the requirement
RQ11: Relevance and the unchanged modeling artifacts are not referred satisfying
the requirement RQ8: Delta-based.

Modeling Deltas in Concurrent Collaborative Modeling. In case of the
concurrent collaborative modeling scenario, modeling deltas are described in a
forward form where application of modeling deltas to a given model results in
the newer revisions of the same model. In this case, the DL delta calculator
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service further provides a change listener/recorder feature for listening for user
actions/changes and record them in the forward deltas. However, the state-based
model matching feature of the DL calculator service can calculate forward deltas
if two subsequent model revisions are given as they are, i.e., the older revision as
the first input and the newer version as the second input. The output of the delta
calculator is then the forward delta in this case.

Modeling deltas in concurrent collaborative modeling are usually produced by
recording each user action on model editors. In case of concurrent collaborative
modeling, modeling deltas consist of the smaller set of model changes, whereas they
represent the larger set of model differences in sequential collaborative modeling
as discussed above. Modeling deltas consisting of small changes in concurrent
collaborative modeling are referred to as micro-versions, whereas they are referred
to as macro-versions in sequential collaborative modeling. This thesis develops
the concurrent collaborative modeling application on top of the micro-versioning
scenario as depicted in Figure 5.7.

The forward deltas are utilized in case of the micro-versioning as depicted in
Figure 5.7. There, the changes made on one instance (e.g., by Designer_1) of a
model are detected and sent to other parallel model copies (e.g., of Designer_2)
in order to update these copies into the new states by the change descriptions in
the forward deltas. For example, Listing 5.10 depicts the forward delta ∆(Rev_3,
Designer_1) consisting of the changes made by Designer_1.

1 g2.changeName (" Receive Orders ");
2 g6.changeName ("Fill Orders ");

Figure 5.10: Forward Delta: ∆(Rev_3, Designer_1)

In this delta, Designer_1 changes the name of both Opaque Action nodes from
"Receive Order" and "Fill Order" to "Receive Orders" and "Fill Orders",
respectively. This example represents the model revisions where their changes are
not yet synchronized with the working copy (in this case Rev_3) and other parallel
instance of the model.

In the same vein, Listing 5.11 depicts the forward delta ∆(Rev_3, Designer_2)
for the changes made by Designer_2.

1 g15 = createOpaqueAction (" Close Order ");
2 g16 = createControlFlow ("", g15 , g3);
3 g12.changeTarget(g15);
4 g19 = createDNode(g15);
5 g20 = createNode(g19);
6 g21 = createLocation (20, 30, g20);
7 g22 = createSize (10, 15, g20);
8 g23 = createRatio (3.4, g20);

Figure 5.11: Forward Delta: ∆(Rev_3, Designer_2)

In the forward delta in Listing 5.11, Designer_2 makes the following changes: a
new opaque action named "Close Order" is created, a control flow g16 is created,
and the target end of the control flow g12 is reconnected to the newly created node
g15.
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For the sake of simplicity, the modeling deltas in this section do not consist of DL
operations for changes in the layout part. Unlike the previous modeling deltas, this
forward delta depicts DL operations for layout information starting from line 4.
These operations describe change operations for only newly created opaque action
g15. There, a new Node g20 is created for the Opaque Action g15, meantime
DNode 19 connecting these content and layout elements. On the followup two
lines, Location (with the attribute values of x, y), Size (with the attribute values
of width, height), Ratio (with the attribute value) are created for Node g20 of the
newly created Opaque Action g15. These last three operations refer to Node using
their UUIDs as attributes in the operation body.

In the micro-versioning scenario, modeling deltas are represented by the DL oper-
ations in the forward forms. These forward deltas have the forward effect in the
models, i.e., the models are updated with the change descriptions defined in the
forward deltas. This is a scenario which usually occurs in case of micro-versioning.
Because, the recent changes made by other parallel collaborators have to be prop-
agated on models in order to keep them up-to-date.

Active Delta. The most classical source code version control systems [Berlin and
Rooney, 2006] store the working copy of software projects and several (backward)
deltas representing the differences between software revisions in their software
repositories. Because, the working copies (base revisions) of software systems
under collaborative development are the most frequently accessed revisions.

This thesis introduces a new term active delta to store the working copies of
software models as modeling deltas. Active deltas are the DL-based descriptions
of the base revision (working copy) of a complete model. Active deltas consist of
only creation operations. Execution of an active delta creates a complete model
out of an empty model (∅). Eventually, the working copies of models are not
necessarily required to be stored in the repository, instead the repository consists
of only modeling deltas such as one active delta for a recent model revision and
several difference (backward) deltas representing differences between subsequent
model revisions.

The third revision (working copy) of the model depicted in Figure 5.7 is represented
by the active delta (∆(∅, Rev_3)) in Figure 5.12 which consists only of creation
operations. When this active delta is executed on an empty model, the third
revision of the model depicted in Figure 5.7 is generated.

1 g1 = createInitialNode ("");
2 g2 = createOpaqueAction (" Receive Order ");
3 g7 = createOpaqueAction ("Fill Order");
4 g3 = createActivityFinalNode ("");
5 g4 = createControlFlow ("", g1 , g2);
6 g5 = createControlFlow ("", g2 , g7);
7 g12 = createControlFlow ("", g7, g3);

Figure 5.12: Active Delta: ∆(∅, Rev_3)

This thesis distinguishes between these three types of modeling deltas based on
their suitability and efficiency. As discussed above, represention of modeling deltas



Chapter 5. Difference Language 121

in the backward order is more efficient and practical in the sequential collabora-
tive modeling scenario. As long as modeling deltas are directly the executable
descriptions of model differences, they can be reused and applied to the base mod-
els to revert them into older revisions from latter. Reverting is also used in the
most source code-driven revision control approaches (cf. Subversion [Berlin and
Rooney, 2006], Git [Swicegood, 2008], RCS [Tichy, 1985]). The backward deltas
are often more effective in the sequential collaborative modeling scenario because
they speed up retrieval of the older revisions of software system and probably the
most frequently accessed revision.

In concurrent collaborative modeling, the use of the forward deltas is a more
suitable choice. The forward deltas are used to update models with recent changes
described in them. They transfer models from older states to newer states by
propagating the DL-based change operations on the base model.

5.2.3 DL Operations

To represent model differences, the specific DL for UML activity diagrams is de-
rived from its meta-model by applying three atomic operations create, delete
and change to the each concept of its meta-model. The model differences in this
example are then represented by the operations of the generated specific DL for
UML activity diagrams. The complete scenario of deriving specific DLs and basic
change operations are explained in Section 5.1 in detail.

Figure 5.13: Conceptualization of DL Operations

Figure 5.13 depicts abstract conceptualization for DL operations. Each delta op-
eration contains a Operation part (cf. g1=createInitialNode("");) which describes
the type of change by means of operations (one of create, change, delete, explained
in Section 5.1) and an Modeling Artifact (Model Element) (with attributes if re-
quired) (cf. g1=createInitialNode("");) which refers to the modeling concept. To
refer to modeling artifacts from the DL operations in modeling deltas, persistent
UUIDs are used as the references. For instance, the operation on the sixth line in
Figure 5.12 creates a control flow connecting g2 and g7 and assigns it to g5.

Operation Part. This part of the DL operations depicts what type of modifi-
cation is made on a modeling artifact, i.e., it defines the modification type.
When the new revision of a model is produced, it is because of artifact cre-
ation, artifact deletion and/or attribute value change, i.e., modeling artifacts
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can be created, deleted or changed during evolution process. Due to recogni-
tion and identification of the change type, DL classifies the model differences
by the aforementioned three basic operations. DL makes the following three
basic assumptions for its change types:
– If a modeling artifact did not exist in the previous revision of a model,

but exists in the current revision, it is denoted as a created artifact.
In backward deltas, creation operations are reversed as deletion opera-
tions.

– If a modeling artifact existed in the previous revision of a model, but
does not exist in the current revision, it is denoted as a deleted arti-
fact. In backward deltas, deletion operations are reversed as creation
operations.

– If a modeling artifact exists in the both, previous and current, revisions
of a model, the attribute(s) of that artifact is considered as changed,
whereas it might be addition, removal or replacement of the attribute
values.

These three operations are accepted as the sufficient set of operations for
representing all model differences (more details in Section 5.1).

Modeling Artifact (Model Element) Part. Modeling artifacts in the DL
operations are the concepts of modeling languages and they are taken from
the meta-models of modeling languages. A modeling artifact embedded in
this part is the one that has to be modified with the initial DL operation.
This part of the DL statements helps to detect what kind of modeling artifact
is being changed. It also ensures if the differentiated models conform to their
actual concepts provided by meta-models.

Reference Part. Due to delta-model and inter-delta referencing, UUIDs are
embodied in the reference part of each DL statement. It is the aid for creating
delta-model (references from deltas to models) and inter-delta (references
between deltas) relationships for further reuse and exploitation (e.g., delta
application, change tracing, etc.) of modeling deltas.

Parameter(s). Each DL operation may consist of parameters. Meta-attributes
and associations are defined by the parameter list of DL operations. For
instance, opaque actions have names, i.e., the meta-class of opaque actions
has an attribute called name and of type String. Thus, the active delta
depicted in Figure 5.12 consists of creation operations for opaque actions
with parameters (cf. line 2; g2=createOpaqueAction("Receive Order"); or
line 5; g4=createControlFlow("", g1, g2);).

Section 5.1 is dedicated to present the general idea of generating a specific DL from
the meta-models of domain-specific modeling languages. This section has shown
the very simplified example of the DL syntax for representing modeling deltas in
the macro- and micro-versioning scenarios.
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5.3 Summary

This chapter has briefly described how the process of DL generation is performed
by the example of deriving the specific DL from the UML activity diagram meta-
model. However, the approach is generic with respect to the meta-models of
modeling languages. The resulting specific DLs are formed as Model API whereas
the DL calculator and applier services use it by passing the required parameters
for producing the DL statements and manipulating models. This chapter has
further demonstrated the simplified example of the DL-based delta representation.
The specification and syntax of DL is clarified by means of the simple example
expressing the general idea in this thesis.

To sum up, DL satisfies several requirements that are listed in Section 4.3, so far:

RQ1: Meta-Model Generic. DL is conceptually a family of domain-specific
languages. Specific DLs can be generated from the meta-models of modeling
languages. The approach provides the DL generator for generating specific
DLs. The DL generator is a generic service with respect to the meta-models
of modeling languages. If the new versions (improved, extended, optimized)
of the standard profiles of modeling languages are released, their respective
meta-models can be adjusted accordingly, and new specific DLs for them can
be regenerated without any further implementation effort.

RQ4: Operation-Based. Model differences in modeling deltas are represented
in terms of the operation-based DL embodying model changes. In the frame-
work of DL, model differences are distinguished by the modification opera-
tions such as create, delete and change, i.e., each modeling artifact can
be created, deleted or its attributes can be changed during the evolution
process. The syntax of DL is based on textual representations.

RQ5: Model Reference, RQ9: Persistent. Modeling artifacts are assigned
to persistent UUIDs. It allows for identifying modeling artifacts, in the same
vein, their changes. These identifications, in turn, serve as the references to
modeling artifacts from modeling deltas by delta-model references (satisfying
the requirement RQ5: Model Reference), as well as the references between
modeling deltas by inter-delta references (satisfying the requirement RQ9:
Persistent).

RQ6: Expressive. As demonstrated in the example in Section 5.2, DL has
an expressive syntax and completely follows compound modeling concepts.
The syntax of the DL operations is expressive, i.e., any non-expert user can
easily read and understand what is intention behind each operation.

RQ8: Delta-based. Only changed modeling artifacts are referred to in mod-
eling deltas. In modeling deltas, unchanged modeling artifacts are not con-
sidered by just not specifying DL operations.
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RQ11: Relevance. The DL operations consist of precise information about
each model change including the type of change, a reference to the changed
modeling artifact and the conceptual name of the changed modeling artifact
itself. The changed modeling artifacts are referred to according to their
persistent identifiers stored in modeling deltas. Each DL operation encloses
complete and only relevant information about every single change.

Difference representation is not the only focus of the DL approach, it also aims
at providing several supplementary services for producing, further usage and ex-
ploitation of the DL-based modeling deltas in further analysis and manipulations.
Chapter 6 explains several DL services which can produce, manipulate and reuse
the DL-based modeling deltas.



Chapter 6

Difference Language Services

As discussed in Chapter 4, there are several model difference representation ap-
proaches mostly focusing on a subset of appropriate services for calculating, reusing,
manipulating and further analyzing their difference information or modeling deltas.
The main reason for storing model differences/changes in modeling deltas is to
further reuse them in collaborative modeling. Therefore, representing model dif-
ferences in modeling deltas is not only focus of the DL approach. Besides, this
thesis introduces a reasonable set of the DL services enabling reusability, extend-
ability and applicability of the DL-based modeling deltas. This chapter addresses
these supplementary DL services explaining their functioning principles and main
tasks behind each DL service.

As described in the list of research objectives in Section 1.1, this thesis aims at pro-
viding a catalog of supplementary services for reusing and exploiting the DL-based
modeling deltas. The DL services (cf. Definition 4.1) depicted in Figure 6.1 are
able to produce, manipulate and reuse the DL-based modeling deltas. The DL ser-
vices discussed in this chapter are eventually utilized by the specific orchestrations
of the DL-based collaborative modeling applications in Part IV.

Repository

DL Services

Service
6.3 Calculator

6.7 Tracer6.6 Manager

6.2 Adapter
manipulates

6.10 Orchestration

6.1 Generator

6.5 Synchronizer

6.9 Merger

6.4 Applier

6.8 Optimizer

Figure 6.1: DL Services

Each DL service has a specific functionality in the specific service orchestrations
in the DL applications. The DL services are shortly explained below according to
their functionality. Afterwards, each DL service is described in a separate section
of this chapter:

125
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Generator. In order to apply the DL-based collaborative modeling infrastruc-
ture to particular modeling languages, specific DLs for these model languages
have to be generated. This feature is provided by the DL generator service
which is explained in Section 6.1.

Adapter. The adapter is introduced due to the integration purposes. It is used
to parse software models between technical spaces. For instance, the most
modeling tools can export models represented in the XMI serializations.
These kind of models can be processed into internal graph-like representa-
tions (TGraph 2.4) and vice verse in case of the JGraLab technical space.
This service discussed in Section 6.2 is rarely used only if there is a need
to parse models between technical spaces or modeling tools and technical
spaces.

Calculator. The delta calculator compares the subsequent revisions of the same
model and produces modeling deltas in terms of DL. The calculator compares
two different states (before and after changes made or parallel revisions) of
a model using matching algorithms to detect changes (differences). The DL
delta calculator service provides two methods of delta calculation: state-
based comparison and change listener. In sequential collaborative modeling
scenario, the state-based comparison is employed, whereas the model change
listener is utilized in concurrent collaborative modeling. The DL delta cal-
culator service is extensively discussed in Section 6.3).

Applier. The DL delta applier is used to apply modeling deltas to models to
transfer them from one state to another. It is done by executing DL-based
change operations that are described in modeling deltas. For instance, in
case of the lost or damage of information on the working copy of a model
in sequential collaborative modeling, collaborators might feel a need to roll
back their models for obtaining the older revisions of it. In such cases, the
delta applier helps to revert the older revisions of models. The applier is
also employed in the concurrent collaborative modeling scenario in order to
propagate model changes on the parallel copies of shared models (discussed
in Section 6.4).

Synchronizer. In concurrent collaborative modeling, collaborators usually de-
velop their software models in parallel in real-time. This requires synchro-
nization of modeling deltas between these collaborators working concur-
rently. Thus, the DL approach offers a delta synchronization service which
is clarified in Section 6.5.

Manager. Model management activities like storing models and their revisions
in repositories, loading models and their revisions from repositories are in-
evitably crucial features which any collaborative development approach has
to provide. In the same vein, the DL approach provides a model manager
service to control models and their revisions in both, sequential and concur-
rent collaborative modeling applications. The DL model manager service
discussed in Section 6.6 takes advantage of other DL services like calculator
and applier.
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Tracer. Tracing the changes of software models is a powerful support for col-
laborators in comprehending, recognizing and analyzing the model change
histories and to make decisions about the further evolutionary life-cycle of
model-driven projects. The DL change tracer detects history information
about the changed artifacts of models. Information detected by the change
tracer can then be browsed or visualized in various forms as collaborators
want to see (discussed in Section 6.7).

Optimizer. There might be redundant or useless information in modeling deltas.
The delta optimizer is employed to reduce these redundancies and inconsis-
tencies in the DL-based modeling deltas. It allows for obtaining the opti-
mized modeling deltas, eventually. Reordering the DL operations in model-
ing deltas is also done by the delta optimizer (discussed in Section 6.8).

Merger. In case of the sequential collaborative modeling scenario, the new
branches (development lines) of software models are forked by checking out-
/copying. Collaborators make changes on their working copies in their dis-
tributed working environments. After making their changes, they tend to
merge their local changes into the main line (repository) of development.
Merging requires to compare the master and local copies of the software
models in order to detect if there are any change conflicts between compared
revisions. The DL merger service takes advantage of the existing graph
merge feature of the JGraLab technical space to deal with merge issue which
is discussed in Section 6.9.

These services are sketched and implemented in the framework of this thesis. In
the follow up sections, this chapter discusses these services in detail.

6.1 Generator

The process of specific DL generation is partially described in Section 5.1 by
generating the specific DL for the UML activity diagram meta-model. This section
further discusses more details how the DL generator service can be applied and
how it is realized.

As mentioned before, the DL generator (Figure 6.2) is generic regarding the meta-
models of modeling languages. It can be applied to a wide range of modeling
languages. As proof of the concept, the DL generator service is realized using two
technical spaces namely JGraLab and EMF.

DL Service: Generator

:metamodel :dl
GeneratorIN : 

Meta-model
OUT:

DifferenceLanguage

Figure 6.2: DL Service: Generator
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As discussed in Section 2.4, the JGraLab (Java Graph Laboratory) [Dahm and
Widmann, 1998] technical environment provides generic features for defining meta-
models. In JGraLab, the TGraph schema [Ebert and Franzke, 1995] is used to
define meta-models conforming to grUML (graph UML) which the profiled version
of UML2 class diagrams. The DL generator service is realized for meta-models
defined by TGraph schema. Current implementation of the DL generator service
imports meta-models into JGraLab environment from XMI-based serializations
from the Rational Software Architect (RSA) [Leroux et al., 2006], by the JGraLab
API. The only exception is that every schema needs exactly one class with the
stereotype «graphclass». The name of a model becomes the qualified name of the
resulting schema after importing it into JGraLab. The meta-models are exported
into the *.xmi formats from RSA and further processed using the *.schema formats
in the JGraLab environment.

The DL generator service is also realized using the Eclipse Modeling Framework
(EMF) [Steinberg et al., 2008]. The EMF technical space is based on ECore and
Eclipse platform for meta-modeling and model-driven software development. As
depicted in Section 5.1, the EMF-hosted meta-models for DL generation combine
the Graphical Modeling Framework (GMF) [GMF, 2018] and Sirius [Viyović et al.,
2014] notations together with the UML modeling concepts. This combination
of different notations allows for generating specific DLs with less implementation
effort. If these three notations (i.e., GMF, Sirius, UML) are handled independently,
it would require to work with three different sources of modeling notations and
APIs, whereas newly generated DLs based on the combined meta-model allows for
working only with single underlying meta-model (notation) and API. In order to
generate specific DLs, these combined meta-models are designed using the ECore
meta-modeling approach (with the *.ecore formats) in the EMF technical space.

The code snippets of DL API are generated using Apache Velocity Templates
[Naccarato, 2004]. The generic grammar of DL is defined in a template file. While
generating specific DLs, the DL generator imports the predefined template file
together with the meta-models of modeling languages to generate the API of DL in
Java. The resulting overall DL consists ofModel API including Java interfaces and
implementations (in model.impl) for each modeling concept. It further contains a
model utility API including the Adapter Factory to load resources and operate on
the loaded resources.

If specific DLs for other modeling languages should be generated, the DL generator
follows the same principle to generate specific DLs for the given meta-models. The
DL generator can receive any meta-model designed as the UML class diagram
(in the *.xmi formats) and generate specific DLs conforming to the input meta-
models. The DL generator does not rely on any specific meta-model satisfying
the requirement RQ1: Meta-model Generic. After all, differences between the
subsequent and parallel revisions of any instance models can be represented in
terms of the DL notations.
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6.2 Adapter

Software models are usually created and designed using domain-specific model
designing tools like Visual Paradigm (VP) [Visual Paradigm, 2013], Rational Soft-
ware Architect (RSA) [Leroux et al., 2006], EMF-based tools [Steinberg et al.,
2008], Papyrus [Lanusse et al., 2009] or UML Designer [Obeo Network, 2017].
Most of these tools do not provide the proper open-source concurrent and sequen-
tial collaborative modeling scenarios or model evolution history analysis support.

Integrating the collaborative modeling scenarios or history analysis applications
with the existing modeling tools is a challenge. However, these tools provide
export and import of software models by, e.g., XML Metadata Interchange (XMI)
[Cover, 2001] serializations. Therefore, in order to exchange models between the
external modeling tools and the DL-based collaborative modeling support, this
thesis provides a DL adapter service. Figure 6.3 depicts the overall architecture
of the DL adapter service only for the JGraLab technical space.

DL Service: Adapter

External
Modeling

Tools

:xmiModel

:TGraphModel

:TGraphModel
XMI2TGraphIN : xmi

OUT : xmi TGraph2XMI
:xmiModel

OUT:
TGraph

IN:
TGraph

Figure 6.3: DL Service: Adapter

In order to make software models generally processable in the DL-based collab-
orative modeling infrastructure, software models designed using modeling tools
can be imported into the DL-based collaborative modeling applications. The DL
adapter provides two ways of parsing: (1) parsing models from the XMI exchange
formats to the TGraph structures, (2) parsing models from the TGraph structures
(explained in Section 2.4) to the XMI exchange formats. The adapter also takes
advantage of the meta-models of modeling languages to recognize all modeling
concepts specified in the XMI exchange formats. Therefore, it does not rely on
modeling tools, modeling languages, and exchange formats and their revisions with
respect to their meta-models. By providing the adapter, the DL approach satisfies
the requirement RQ2: Modeling Tool Generic.

So far, the DL adapter service is realized using the JGraLab technical space.
There, software models in the XMI formats are processed using Sax Parser [Grose
et al., 2002]. The processed model elements are created using DL applier service
inside the JGraLab technical space. As mentioned above, the meta-models of
models that supposed to be imported always have to be defined in the relevant
technical space before these models are imported. The meta-models of models
to be imported have to be introduced to the JGraLab technical space as TGraph
Schema.
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6.3 Calculator

As long as model changes are the first-class artifacts in collaborative MDSE, iden-
tification of model changes itself is the initial stage of and essential grounds for
the all DL services and applications. According to the definition in Defition 4.3,
modeling deltas are basically calculated and produced by the state-based matching
algorithms or listening for user actions on modeling editors [Mens, 2002], [Her-
rmannsdoerfer and Koegel, 2010]. The outcome of the both calculation features
is referred to as the modeling delta. The DL delta calculator provides these two
features of calculating its modeling deltas. It calculates modeling deltas using
its state-based matching feature in the sequential collaborative modeling scenario,
and the combination of the state-based matching and change listener features in
the concurrent collaborative modeling scenario.

State-Based Model Matching.
The state-based matching feature of the delta calculator is used to compute the
differences (i.e., modeling deltas) by comparing the two subsequent revisions of
the same models. It usually receives two revisions (i.e., states before and after
changes made) of the same model and produces the model differences between
these revisions. The overall delta calculation process operates in two steps, namely
model matching and difference computation [Brun and Pierantonio, 2008]. First
of all, the differentiated model revisions are matched in order to compute the
correspondences between the modeling artifacts of the two differentiated revisions
of a model. Then, the actual model differences are detected by comparing all
corresponding modeling artifacts.

Matching of two differentiated revisions of the same model is a challenge of finding
the similarity of modeling artifacts with the direct predecessors of these model-
ing artifacts. If the identity of two modeling artifacts is explicit according to
comparison of the certain properties of these artifacts, two modeling artifacts are
considered to be similar, i.e., they are the two subsequent revisions of the same
modeling artifact.

As discussed in Section 4.2, several model matching algorithms exist for detecting
model differences and producing modeling deltas in the context of collaborative
MDSE. The most existing model matching approaches can be divided into two
main categories depending on how they identify and compute differences: persis-
tent identifier (ID-based) or similarity metrics-based. In Section 4.2, the existing
delta calculation approaches are broadly discussed including model matching tech-
niques.

As long as there are several sufficient and solid state-based delta calculation ap-
proaches, this thesis utilizes the existing generic delta calculator framework SiDiff
[Schmidt and Gloetzner, 2008] (explained in Section 4.2 in detail) for implementing
its state-based delta calculator service. The SiDiff algorithm is a model difference
calculation approach and configurable for many domains because of its graph-based
representation of software models. SiDiff supports several matching algorithms
for the graph-structured software models.
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The DL delta calculator takes advantage of both persistent identifiers – ID-based
and similarity metrics – similarity-based matching techniques of SiDiff and UMLD-
iff [Xing and Stroulia, 2005b]. In the framework of the DL delta calculator ser-
vice, Küpker [Küpker, 2013] investigated existing delta calculation approaches
such as UMLDiff [Xing and Stroulia, 2005b] and SiDiff [Schmidt and Gloetzner,
2008, Treude et al., 2007] and combined them into a gDiff (generic differentiat-
ing) tool. In order to be highly configurable and flexible, the DL delta calculator
implements the following model matching techniques:

– ID-based Matching. The ID-based matching algorithm delivers the most accu-
rate results in comparison to other matching algorithms. Especially, in case
of the graph-like structures of models, the ID-based matching algorithm per-
forms very fast and efficiently. If software models are designed within the DL
application and/or persistent identifiers are available for modeling artifacts,
the DL delta calculator can be set to the ID-based matching configuration.
During experiments, the ID-based model matching algorithm has shown very
high performance in the concurrent collaborative modeling scenario (more
details in Chapter 10).

– Similarity-based Matching. In some cases, software models are designed us-
ing external model designing tools such as RSA [Leroux et al., 2006] or
EMF-based UML Designer [Obeo Network, 2017], Papyrus [Lanusse et al.,
2009] and can be exported into the XMI [Cover, 2001] exchange formats.
When these models are imported into the DL-based collaborative modeling
environment using the adapter service, persistent identifiers might not be
available or not known for the DL delta calculator service. In such situa-
tions, it is still capable of calculating the differences of models imported from
the external modeling tools. The DL delta calculator can be configured to
operate using its similarity metrics for matching the non-identified artifacts
of the imported models. The DL calculator provides two types of similarity
metrics such as the name and structural similarities. The similarity-based
model matching feature of the DL delta calculator service allows for handling
software models designed using various external modeling tools.

If software models are designed using external modeling tools, their modeling ar-
tifacts may not have been assigned to UUIDs. The DL delta calculator service is
implemented in a configurable manner, i.e., it can handle models with or with-
out persistent identifiers. Persistent identifiers are assigned to modeling artifacts
during the delta calculation phase. The DL delta calculator utilizes its similarity
metrics to match modeling artifacts and detect the correspondences between the
proper modeling artifacts. The newly assigned persistent identifiers are always
used in the DL operations in order to preserve consistency of modeling deltas.

As depicted in Figure 6.4, the DL delta calculator expects two different revisions
of the same model as inputs. It then matches the artifacts of two model revisions
using its similarity metrics or ID-based model matching according to its configura-
tion. The candidate artifacts with the highest similarity (if the similarity metrics
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are used) are selected as the unique match for the host artifact. Afterwards, the
created, deleted and changed artifacts (the type of artifact change) are detected
out of the candidate artifacts.

DL Service: Calculator

:versionA

:differences

IN: 
Model

IN:
Model

Calculator

:versionB
OUT:
Delta

OUT:
Delta

:active

Figure 6.4: DL Service: State-based Calculator

As the result of the calculation process, the DL delta calculator produces two
modeling deltas in terms of DL by using a specific DL interface (in Section 5.1):
an active delta – the DL-based descriptions of the working copy of a model and
a difference delta – representing DL-based descriptions of the differences between
the given two revisions (as explained in Section 5.2).

Currently, the state-based delta calculation feature of the DL delta calculator
service is realized using JGraLab technical space. The compared model revisions
are represented using TGraphs internally. The resulting model differences are
represented in modeling deltas in terms of DL, using the APIs of newly generated
specific DLs. The state-based DL calculator is utilized in the DL-based concurrent
collaborative modeling application Kotelett in Section 7.2. It is also used in
realization of the DL model manager service in Section 6.6.

Change Listener.
The change listener (or recorder) is entitled as change-based delta calculator in
some literature [Herrmannsdoerfer and Koegel, 2010], [Schneider et al., 2004] which
listens for user actions and records (or logs) the detected changes. The detected
changes are then represented in modeling deltas. The DL delta calculator provides
the change listener feature for the concurrent collaborative modeling scenario. As
long as concurrent collaborative modeling occurs in real-time, changes have to be
instantly detected on model editors and recorded in modeling deltas, as well as
synchronized in real-time providing sufficiently high performance. This signifies
the use of the change listener feature in concurrent collaborative modeling instead
of the state-based matching to detect modeling deltas.

As depicted in Figure 6.5, the change listener feature of the DL delta calculator
service is set to models that are being changed. While the change listener is
set, all changes are recorded (i.e., logged, registered) into modeling deltas. The
change listener represents the model changes in terms of DL, as well. The change
listener is used in the concurrent (real-time) collaborative modeling in order to
ease detection of model changes in real-time.

The change listener and state-based comparison features of the DL delta calculator
service are utilized in the concurrent collaborative modeling applications of DL in
Chapter 7. The collaborative modeling application in Section 7.3 takes advantage
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DL Service: Calculator
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Figure 6.5: DL Service: Calculator – Change Listener

of the DL change listener for EMF-hosted models which is realized using the
Resource Set Listener. It listens for the Transactional Editing Domain. The use
of transactional editing domain provides to perform the redo/undo operations
without extra implementation effort.

The DL change listener realized in the EMF technical space listens for Notifications
which consists of information about the changed modeling artifacts and the change
types. The change types in these notifications are mapped to the DL change
types. The change types ADD, ADD_MANY are mapped to the create operation,
REMOVE, REMOVE_MANY are mapped to delete, SET, UNSET are mapped
to change, and MOVE is handled by the combination of the create and delete
operations.

The delta calculator (incl. state-based delta calculator and change listener fea-
tures) identifies only changed artifacts and allows for representing them in model-
ing deltas instead of storing whole model revisions. This eases the storage of sub-
sequent model revisions in sequential collaborative modeling and real-time change
synchronization in concurrent collaborative modeling. Thus, the delta calculator
is one of the central components of the DL-based collaborative modeling.

6.4 Applier

As depicted in Definition 4.4, difference application is the process of transforming
software models from one state (revision) to another by creating new artifacts,
removing existing ones or changing the properties of existing artifacts.

Application of modeling deltas to models is the central task for the most collab-
orative MDSE approaches. Similarly, applicability of modeling deltas to software
models is an essential requirement for this thesis. As listed in Section 4.3, ap-
plicability of modeling deltas is enabled by the executable descriptions of model
differences (RQ7: Executable). Thus, this section introduces the DL applier ser-
vice in order to apply the DL-based modeling deltas to software models under
collaboration.

There are two main scenarios of applying modeling deltas to models in the DL-
based collaborative modeling. These application scenarios are listed and described,
below:

– Reversion. Modeling deltas are used to transform software models from one
revision to another. In case of the sequential collaborative modeling scenario,
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there might be lost or damage of information in models or the users might
want to see their model how it was in earlier revisions. Thereby, models
have to be reverted to older revisions in order to avoid lost or damage of
information or to see the other revisions of the models. The DL applier
transforms models from one revision to another by applying (the chain of
associated) backward modeling deltas in sequential collaborative modeling.
The delta applier is further used by the DL model manager service (explained
in Section 6.6) to load the working copies of models by applying active deltas
to empty models.

– Propagation. In case of the concurrent collaborative modeling scenario, user
changes on one copy of a model are detected by the DL change listener
and sent to other parallel copies as forward modeling deltas. After forward
modeling deltas are delivered to others, they have to be applied to other
parallel copies of that model in order to propagate the newest changes on
all other copies. It allows for keeping all parallel model copies up-to-date by
synchronizing changes between all of these parallel collaborators. The DL
applier service is used to propagate changes described in forward modeling
deltas on the parallel model copies in concurrent collaborative modeling.

As depicted in Figure 6.6, the DL delta applier expects a model and a modeling
delta as inputs. The input delta is applied to the input model and the result is
another revision of the same model.

DL Service: Applier
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Delta
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:diffDelta
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Figure 6.6: DL Service: Applier

According to the example in Section 5.2, execution of the active delta results in the
working copies of models (V ersion3 = ∅.apply(∆active)). To apply backward deltas
to the working copies of models, initially the working copies of models themselves
are reverted from active deltas. Then, application of each backward delta to
the working copy of a model leads to the previous revisions from the current
(V ersion2 = V ersion3.apply(∆(3,2)) and V ersion1 = V ersion2.apply(∆(2,1)).

If the DL delta applier is requested to revert the earlier revision of a model, for
instance, the fifth revision from the fifteenth, the DL delta applier firstly invokes
the DL delta optimizer which runs through the sequence of modeling deltas be-
tween the revisions fifteenth and the fifth. It attempts to optimize the patching
process by concatenating the delta operations in these deltas. Because, several
operations in these steps can be skipped using the optimizer to obtain faster and
efficient reversion in the end. The optimizer helps to skip the subsequent list of
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operations which does not really affect on the resulting revision (e.g., created, and
later on, deleted artifacts).

The DL delta applier service is realized using the JGraLab and EMF technical
spaces, so far. As DL consists of technical space-specific API to manipulate model
resources and artifacts, the DL delta applier uses DL to manipulate models. The
DL API uses in-place model transformations of JGraLab API (as described in
Section 2.3) to manipulate TGraph-based models.

The delta applier service is also realized to be useful in the EMF technical space
for concurrent collaborative modeling application as discussed in Section 7.3. It
converts the DL operations in modeling deltas to executable commands in the
Recording Command. Then, these operations are executed in the Transactional
Command Stack of Transactional Editing Domain of EMF.

The DL-based modeling deltas form directly the executable descriptions of model
changes satisfying the requirement RQ7: Executable. The executable descriptions
of model changes in modeling deltas are another advantage of the DL notation.

6.5 Synchronizer

In concurrent collaborative modeling, developers open the different parallel copies
of centralized software models and design their models in parallel in real-time.
While changing their copies, these changes are constantly recorded by the change
listener feature of the DL delta calculator service and produced as forward model-
ing deltas in terms of DL. Consequently, the produced forward deltas are synchro-
nized with the other parallel copies of other collaborators so that changes made
by all collaborators are propagated and reflected on all parallel copies of models
under collaborative development. In order to support synchronization of modeling
deltas in concurrent collaborative modeling, this thesis provides a DL synchronizer
service (Definition 4.5).

As clarified in the example in Section 5.2, modeling deltas are described in the
forward forms in concurrent collaborative modeling, where application of the mod-
eling deltas to models results in the newer revisions of the same models. These
deltas are synchronized with other parallel model copies in order to transfer them
into the new states by the change descriptions in forward deltas.

The DL synchronizer service is built based on the client-server architectures to pro-
vide communication among collaborators. The DL synchronizer service is hosted
on the server side, whereas each client is connected to that server once they join
centralized models as collaborators. As depicted in Figure 6.7, the DL synchro-
nizer receives forward deltas from the connected collaborators and sends them
back to other collaborators. The synchronizer does not send modeling deltas to
the original sender of that delta.
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Figure 6.7: DL Service: Synchronizer

The server side of the DL synchronizer service supports synchronization of for-
ward modeling deltas which is referred to as micro-versioning in the example in
Section 5.2. Because, these forward deltas (i.e., micro-deltas) in concurrent col-
laborative modeling are rather small in comparison to the backward modeling
deltas in sequential collaborative modeling. On the client side, the changes made
by collaborators are constantly detected by the change listener while they are
made using the model editors and constantly sent to other parallel clients through
the synchronizer service. Once these deltas arrive at other collaborators, they
are applied to models by the applier service. As long as the synchronization of
modeling deltas among clients carried out by the synchronizer on the server, the
communication between collaborators is provided based on star-topology.

The synchronizer service is realized using the KryoNet API (discussed in Sec-
tion 2.4) and employed in developing the DL-based concurrent collaborative mod-
eling applications in Chapter 7.

6.6 Manager

Any collaborative development system must be capable of storing and managing
software projects and their revisions (i.e., change histories) under collaborative
development and evolution. For instance, collaborators should be able do model
management activities like storing and loading their software artifacts and their re-
visions (as defined in Definition 4.6). Likewise, the DL-based collaborative model-
ing infrastructure in this thesis provides the DL model manager service to manage
models and their revisions under collaborative development.

As shown in Figure 6.8, the repository stores several backward modeling deltas
and one active delta for each software model under collaboration. The DL model
manager service directly operates on that repository. For instance, new models
can be created in the repository, existing ones can be opened by collaborators
to join collaboration, existing models can be deleted, revisions can be stored and
loaded, etc.

DL Service: Manager

:backwardDeltas
 Delta Manager Model

:models

Repository

Figure 6.8: DL Service: Manager
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Any revision of a specific model can be stored by collaborators’ requests at any
moment during concurrent collaboration and any model or/and any revision of a
specific model can be loaded from the repository using the DL manager service.
For instance, while developing models in concurrent collaboration, collaborations
might store any state of their model in the repository and load it when needed.

The DL manager service takes advantage of the DL applier service to load models
and to revert their revisions. When any collaborator wants to join a model as a
collaborator, the manager service loads that model by applying a relevant active
delta to an empty model using the delta applier service. If a collaborator is already
working on a model and collaborator wants to load an earlier revision of model,
the manager service reverts the requested revision by applying several backward
deltas to the base model as many times as needed.

Currently, the DL model manager service is completely realized using the JGraLab
technical space and partially realized using the EMF technical space. This service
is employed in developing the DL-based sequential collaborative modeling appli-
cations in Chapter 8, as well as manager service on the server side of concurrent
collaborative modeling applications in Chapter 7.

6.7 Tracer

As long as software models evolve over time undergoing various changes, devel-
opers and stakeholders intend to be aware of how their models evolve, see how
was their model in a particular revision and analyze the histories of changes. For
instance, they want to know about the list of modeling artifacts that are changing
more often or when a specific modeling artifact was created or deleted. These
analysis questions raise the problem of extracting history information about the
evolutionary life-cycle of software models. Thus, this thesis provides a DL change
tracer service for mining the DL-based modeling delta repositories by tracing mod-
eling deltas. This section explains basic ideas and concepts behind the DL change
tracer service.

Mining software model repositories (cf. Definition 3.5) plays an essential role in
comprehending and analyzing the histories of evolving models. In fact, seeing the
visualized or colored view of evolving modeling artifacts and their changes is more
effective than reading the plain text. Collaborators intend to analyze the whole
model histories or trace the specific aspects and artifacts of their models. It allows
for presenting the structural and behavioral modifications to collaborators. Analy-
sis of the model histories is a key support in comprehending and understanding the
evolutionary life-cycle of models. According to knowledge obtained from history
analysis, collaborators can make decisions about the further life of their models.

As described in Section 3.3, software systems are usually stored in software repos-
itories [Arnold, 1996]. Likewise, this thesis also stores its DL-based modeling
deltas in modeling delta repositories. As the DL approach can utilize the same
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central repository for its both, sequential and concurrent, collaborative modeling
applications, the DL tracer service takes advantage of the same underlying mod-
eling delta repository as its main information resource. In software engineering,
the change tracing action is also know as repository querying [Kagdi et al., 2007].

As given in Definition 4.7 and Definition 3.5, change tracing has been coined to
describe a broad class of investigations into the examination of software reposito-
ries. Here, software repositories refer to modeling delta repositories representing
modeling artifacts that are modified, produced and archived during collaborative
modeling.

In the mining phase of modeling delta repositories, the DL change tracer service
inspects the chain of associated modeling deltas. As the result, it then produces
the associated data set according to the request provided by users. The change
tracer service generates its results in ways that collaborators request. For instance,
if collaborators request history information about a particular modeling artifact,
the result consists of a list of changes obtained from the list of modeling deltas.
If collaborators want to see only particular revision of their model, the only re-
quested model revision is retrieved from the repository. In general, the DL change
tracer capable of reverting all revisions of software models together with associ-
ated change-sets between these revisions. It can then be investigated in analyzing
the evolutionary life-cycle of software models with the particular purpose asking
questions such as why? who? and when?.

According to history analysis steps in Section 3.3 [Robbes, 2007], modeling delta
repository mining undergoes two main steps: (1) data extraction/retrieval which
retrieves necessary and pertinent information from modeling delta repositories, and
(2) data browsing, visualization which properly visualizes difference information
obtained from the data retrieval phase in a readable way. In the first phase, the
DL change tracer receives the chain of modeling deltas from the repositories and
analysis queries as input, as depicted in Figure 6.9. Then, it seeks for modeling
artifacts and change information according to the analysis queries given by users.
It verifies these modeling deltas based on the persistent identifiers of modeling
artifacts. All predecessor or successor modeling deltas in the list are inspected
in the same way and the result of change tracing query is reported as the set of
associated data.

DL Service: Tracer
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Figure 6.9: DL Service: Tracer

For instance, Figure 6.10 illustrates all history information about the control flow
g5 in the example in Section 5.2. The traced modeling artifact underwent three
different changes in three revisions. These change information is traced by the DL
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tracer service slicing three modeling deltas, the active delta in Figure 5.12 and two
backward deltas in Figure 5.8 and Figure 5.9.

1 g5 = createControlFlow ("", g2 , g7);
2 g5.changeTarget(g3);
3 g5.changeTarget(ForkNode g6);

Figure 6.10: Change Report of Control Flow g5.

The DL change tracer service is capable of tracing the three basic categories of
information from modeling delta repositories [Kagdi et al., 2007]:

– Revisions. Model revisions are mainly the states of software models after each
change-set is made. Information about different revisions can be queried
from modeling delta repositories. Information about revisions might be di-
verse according to the purpose of mining, analysis and even the type of
software artifact. For instance, how many revisions does the modeling arti-
fact g5 have? in which revisions was the artifact g5 created first? in which
revision is it deleted (if deleted)? etc.

– Differences. As long as model differences are the first-class citizens in devel-
opment and evolution of software models, the differences between artifact
revisions are the main subject in analyzing the evolutionary life-cycle of
modeling artifacts. For example, which change type is made to the target-
value of g5? etc.

– Meta-Data. In addition to model revisions and differences between revisions,
meta-data such as commit comments, user-ids, timestamps, and other similar
information is also quite interesting information in history analysis. These
meta-information describe, respectively, why, by whom and when the con-
text of software artifacts is changed [Kagdi et al., 2007]. For example, who
changed the artifact g5 last time? when exactly a particular change is made
on the artifact g5? etc.

After detecting all history-related data, the results of the DL delta tracer can be
visualized in suitable ways. This thesis takes advantage of the combinations of the
several visualization techniques discussed in Section 3.3. It is the combination of
the graph-based visualization, coloring differences and tabular view. The detailed
discussion of visualization techniques and user queries in the DL history analysis
application are given in Chapter 9.

To sum up, the DL delta tracer service serves as the essential grounds for the
model evolution history analysis application (Section 9) in this thesis. This ser-
vice utilizes the DL-based modeling delta repositories as information resources for
extracting necessary change history information. It enables users to reuse his-
tory information in analyzing the model evolution histories and find out answers
to their various questions about model evolution. The DL delta tracer service
satisfies the requirement RQ10: Traceable.
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6.8 Optimizer

Application of the DL-based modeling deltas to models has to result in correct
models. To obtain correct and non-redundant models as the result of delta ap-
plication, modeling deltas should embody complete, yet correct and only relevant
DL-based change operations as much as possible. Being concise and relevant is
the key objective of modeling deltas. Correctness of modeling deltas provides
consistency and correctness of software models and analysis of their evolutionary
life-cycle. In order to optimize modeling deltas, this thesis introduces a DL delta
optimizer service in this section.

In some cases, there might be a lot of useless operations or redundancies in mod-
eling deltas. For instance, if a particular modeling artifact is created and deleted
later in the same delta, two operations, creation and deletion, can be computed
or recorded in a modeling delta where both have no effect on a model in the end.
Another example might be changing one modeling artifact several times in one
modeling delta. In this case, it is optimal to save only the last change instead
of several change operations for that modeling artifact. In order to avoid afore-
mentioned redundancies and increase efficiency by reducing useless operations and
information in modeling deltas, optimization of modeling deltas is required. Opti-
mization helps to receive more optimal modeling deltas, eventually. The DL delta
optimizer (Figure 6.11) basically receives modeling deltas as input and returns
optimized modeling deltas as the result.

DL Service: Optimizer
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Figure 6.11: DL Service: Optimizer

Moreover, the order of delta operations in modeling deltas matters. Because, ap-
plication of the DL operations to the base model has to follow certain prescriptions:
creation operations have to be applied first, change operations second and dele-
tion operations last. These prescriptions allow for obtaining concise and consistent
software models after applying modeling deltas to models by the delta applier dis-
cussed in Section 6.4. The creation operations are lifted to the top and deletions
are dropped to the end and changes are placed in the middle in all modeling deltas
(for instance, cf. Section 5.2.2). Considering the graph-like structures of software
models, the DL operations in modeling deltas are classified in that certain order
as follows:

1. Creations. The creation operations must be applied to the base model,
firstly. Newly created model elements might be referred to by other delta
operations. For instance, if any end of a control flow has to be changed to a
newly created node in case of the activity diagrams, a new node has to be
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created first, then an existing control flow can be reconnected to that new
node. There is a further assumption for only creation operations themselves.
The creation operations for nodes (i.e., meta-classes) must be placed before
the creation operations for edges (i.e., meta-associations). Because, (1) if
an association should be created with a creation operation, its source and
target artifacts must already exist in the model, (2) if an attribute should
be created in a modeling artifact, that modeling artifact itself must exist.

2. Changes. Change operations are applied to the base model after creation op-
erations and before deletion operations. For instance, if there is a modeling
artifact that should be deleted by a follow-up delete operation, all associa-
tions connected to that artifact have to be reconnected to other modeling
artifacts. So that the associations connected to the artifact that is being
deleted remain in a model if necessary later on. Furthermore, (1) if the
source or target end of an association should be reconnected, its new source
or target end artifact must exist, (2) the same condition holds for the values
of attributes, i.e., if the value of an attribute has to be changed, its container
artifact must exist.

3. Deletions. The deletion operations have to be applied to models after all
other operations. Deleting any modeling artifact earlier might result in struc-
tural error and redundancy in a model, later on. If a modeling artifact should
be deleted, that deletion should not affect to other modeling artifacts and
correctness of the overall model. Therefore, applying deletion operations
in the end ensures the correctness of the application results. In modeling
deltas, the deletion operations for edges (i.e., meta-associations) have to be
placed before the deletion operations for nodes. Because, if a node deletion
operation is applied to a modeling artifact, all links (associations) connected
to that artifact are usually deleted. Moreover, if a modeling artifact should
be deleted, it must exist in the model.

The delta optimizer is usually utilized by other DL services (e.g., DL calculator) to
optimize the DL-based modeling deltas. The delta optimizer can also concatenate
subsequent modeling deltas. The delta applier uses delta optimization to ease delta
application process so that it can skip some delta operations between subsequent
modeling deltas. For example, there are twenty revisions of the same model and
it is requested to revert the tenth revision of that model. If a modeling artifact
is created and deleted between revision ten and twenty (for instance, created in
version fifteen and deleted in version eighteen), that both operations are, in fact,
not necessary to consider in the reverting process. Because, they do not affect to
the resulting (tenth) revision of the model.

Applicability of modeling deltas requires to follow the aforementioned concrete ap-
plication conditions which are considered by the DL delta applier. These applica-
tion conditions are considered and fulfilled by the DL delta optimizer service. This
service improves the relevance of representation information in modeling deltas
(partially satisfying the requirement RQ11: Relevance).
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As long as DL-based modeling deltas are stored in delta repositories using textual
representation, the DL optimizer service operates on the textual modeling deltas.
It is realized in a generic way which independent from any MDSE technical spaces
and can be used in any technical space.

6.9 Merger

In the sequential model versioning scenario, the new branches (development lines)
of software models are forked by checking out/copying. Collaborators make changes
on their local working copies. After making their changes, they commit their local
changes into the main line (repository) of development. Before performing the
commit operation, collaborators have to update their local working copies with
the master copy in order to obtain the latest changes made by other collabora-
tors. The update operation, in turns, requires to compare the master and local
copies of software models in order to detect if there are conflicts between changes
made by different collaborators. This scenario is referred to as the merge prob-
lem and an actively discussed topic by the current research committe. There are
several approaches for merging model differences [Cicchetti, 2008], [Langer, 2011],
[Altmanninger et al., 2007], [Koegel et al., 2010], [Brosch et al., 2010]. This the-
sis takes advantage of the existing graph merge feature of the JGraLab technical
space. Thus, this thesis does not address the problem of model merge (incl. con-
flict resolution) and the extended discussion on this challenge is out of the scope
in this thesis.

In model merging, there might be change conflicts. These conflicts should be
somehow resolved either automatically if possible or with human-interaction [Alt-
manninger et al., 2009]. Change conflicts can not be fully resolved automatically
but requires human interaction which is referred to as semi-automated merging.
The most merge techniques perform possible merges, in unsolvable cases, they
switch to interaction mode with collaborators for providing an interactive resolver
feature. The unsolvable conflicts can then be demonstrated to collaborators in the
form of recommendations by browsing conflicts [Koegel et al., 2010], [Brosch et al.,
2010]. In a simple case, the DL merge service compares two model revisions to be
merged, detect the possible conflicts, resolve them if possible, and finally obtain a
complete, consistent model.

As depicted in Figure 6.12, the DL merger service receives two different revisions of
the same model as inputs and produces the merger copy of these model revisions.

The DL merger service does not provide interactive conflict resolution feature. It
merges the conflicting changes of the given model revisions into one if these con-
flicts are automatically resolvable. If the conflicting changes are not automatically
resolvable, the both revisions of these differences are combined in the final revi-
sion, so that collaborators need to inspect the resulting model in order to resolve
duplicated conflicts.
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Figure 6.12: DL Service: Merger

Like the most merge techniques, the DL merger service classifies the following
combination of operations as conflicts between two different model revisions:

Change/Change. A modeling artifact is supposed to be changed by two different
collaborators at once. This case might occur only if it leads to different
results in merging both changes; if the merge results are the same, this case
is not treated as conflict.

Change/Delete. A modeling artifact is supposed to be changed by one designer
and deleted by another or vice verse.

These scenarios are the most addressed conflict scenarios which require human
interaction in case of merging two different revisions of the same model. If the
results of any pair of changes are the same, then it is donated as non-conflicting
changes.

The DL merge service is utilized in implementation of the sequential collaborative
modeling application in Section 8.2. The concurrent collaborative modeling appli-
cations in Chapter 7 have not faced any conflicts during experiments with the team
of about ten collaborators geographically located in long distance from the server.
Thus, concurrent collaborative modeling applications did not need the merging
and conflict resolution feature. This is probably attributed by the very small
DL-based forward modeling deltas which enabled high performance in real-time
collaboration. These small modeling deltas have provided fast synchronization of
model changes before conflicts actually occur.

6.10 Service Orchestration

This chapter has introduced a catalog of the supplementary DL services so far.
These services are capable of calculating, manipulating and reusing the DL-based
modeling deltas. This section explains how these services can be utilized in con-
structing the DL-based collaborative modeling scenarios such as concurrent and
sequential collaborative modeling, as well as model history analysis. The DL
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services are orchestrated to perform specific tasks or fulfill certain operational sce-
narios. This section further demonstrates some orchestration scenarios of the DL
services.

The DL-based collaborative modeling support enables collaborators to perform
diverse operations. For instance, they design their models using modeling tools,
where changes made on each copy of models are synchronized with the other
parallel copies of that model. This overall scenario requires to listen for user actions
to detect changes, synchronize with other working copies, and apply the changes
to the other model copies. As this example scenario shows that several DL services
are involved in the overall scenario. In order to accomplish this particular scenario
and other similar scenarios (discussed below), all operative actions that might
happen in the DL collaborative modeling require the certain orchestrations of
the DL services.

Definition 6.1. Service Orchestration.
According to [Jelschen, 2014], arranging individual services in such a way to
jointly achieve a more complex goal, is called orchestration.

The individual DL services are orchestrated according to the control-flow among
the involved DL services. As long as each DL service does a particular task,
they are involved in orchestrations whenever they are needed. An orchestration
represents a chain of services, to that an extent, orchestrations and services form
a composite pattern, with the orchestrations being the composites, and the DL
services being leafs.

Chapter 3 has discussed several use cases of collaborative development includ-
ing source code-driven collaborative development, textual document editing and
collaborative modeling. According to these use cases, the most collaborative devel-
opment approaches operate based on concrete scenarios. This section derives and
briefly describes some main orchestration scenarios according to the discussions of
use cases in Chapter 3.

– Creating/Adding. In the framework of the DL collaborative modeling, software
models can be initially either created using existing modeling editors in the
DL tooling environment or imported from external model designing tools (cf.
Chapter 7 for more details). To import models from external modeling tools,
these models have firstly be brought to the DL collaborative modeling envi-
ronment by add operation. This scenario requires the DL adapter to parse
that model from exchange formats into the DL internal model representa-
tions and DL calculator to produce an active delta for this initial revision
of model. In this case, the service orchestration for this particular scenario
invokes the DL adapter and DL calculator services.

– Saving/Committing. While developing software models in concurrent collabo-
rative modeling, collaborators usually store the complete revisions of their
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model at the end of a working day. In sequential collaborative modeling, col-
laborators usually check out a central repository into their local work space
and manipulate software models on their local work space. After making
their changes, they commit the local changes into the main repository, i.e.,
these changes have to be merged into the central repository.
The save/commit operation itself requires the orchestration of several DL
services. If the model is designed using external modeling tools, the DL
adapter firstly parses the model into the internal TGraph structure (cf. Sec-
tion 2.4) from the XMI exchange formats. If the model is designed within
the DL collaborative modeling environment using the concurrent collabora-
tive modeling application, the DL adapter is not involved to save a model
revision. Thereby, the DL calculator compares the model revision in main
repository and the saved model revision, and produces one difference (back-
ward) delta and one active delta in terms of DL. This scenario is repeated
in each save/commit. The delta calculator uses the DL optimizer service to
produce the optimized modeling deltas and store them in repository. The
commit operation is usually used in case of the sequential collaborative mod-
eling scenario, whereas the save is usually used in the concurrent collabora-
tive modeling scenario. Eventually, the service orchestration in this scenario
amalgamates the DL adapter (if needed), DL calculator and DL optimizer
services.

– Loading/Reverting. Collaborators might need to load/revert other revisions of a
model if they face loss or damage of data on their working copies of models.
Thereby, the DL applier service, firstly, reverts the base revision of a model
by applying an active delta to an empty model, secondly, applies several
backward modeling deltas to the working copy of a model in order to obtain
the requested revision of that model. The service orchestration invokes only
DL applier service in this scenario.

– Synchronizing. If collaborators work on the shared and centralized model in
parallel at the same time (i.e., in concurrent collaborative modeling), there
are several parallel copies of the base model. Each collaborators makes
changes on his/her copy of the model. As long as collaboration occurs in
real-time, the changes on each copy of the model have to be detected and
synchronized with other parallel copies of the model.
In this scenario, model changes on each copy are detected by the change
listener feature of the DL calculator after every single change is made, sent to
other collaborators through the DL synchronizer and applied to their models
by the DL applier service. After all, the synchronization scenario requires
the orchestration of the DL calculator: listener, synchronizer and applier
services. The detailed description of this scenario is given in Chapter 7.

– Analyzing. The model history analysis application in this thesis is built on the
top of the DL tracer service. Like other scenarios, the analysis scenario
requires the specific orchestration of one or more DL services. In the first
place, history information has to be mined from the repositories for creating
analysis views.
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History information is extracted by the DL tracer service by analyzing a
chain of modeling deltas according to the queries requested by collaborators.
Then, the extracted change history reports are passed to a visualizer in
order to visualize or browse history information in convenient ways that is
understandable for collaborators. The DL history analysis application is
discussed in Chapter 9 in detail.

These scenarios are very general forms of the DL orchestration scenarios, but
there might also be other specific orchestrations of the DL services according to
the needs of collaborators. In general, each DL service is designed and developed
in a generic way (service-oriented manner), and has the particular roles and tasks
so that they can be integrated and invoked in any specific orchestration. Because,
collaborators might request building other scenarios rather than listed above.

This thesis distinguishes between different granularity levels of the DL services and
service orchestrations in order to make them sustainable, adaptable, extendable
and reusable. The DL services can be replaced by another analogous services or
extended with other complementary features. Thus, it is not the strict catalog of
the DL services and they still can be extended, improved with additional features
or replaced by other services (satisfying requirement RQ3: Extensible). As already
explained in this chapter, each DL service has a particular task receiving certain
input data, performing its task and producing some results as output. The DL
service orchestrations are the main foundations for building the DL applications
that are explained in Part IV in detail.

6.11 Summary

Providing a list of supplementary services is the notable contribution of the DL
approach. These DL services can produce, manage and use the DL-based modeling
deltas. They extend applicability of DL in various application areas and modeling
domains. This chapter has presented the set of core DL services that contribute
to extension of the DL application areas by the specific orchestrations (discussed
in Part IV). Besides, these DL services can further be extended, improved and
replaced by other implementations.

Additionally, the DL services explained in this chapter satisfy some of the require-
ments listed in Section 4.3:

– RQ2: Modeling Tool Independent. There are several modeling tools and they
have own internal model representation techniques. In order to handle mod-
els designed in different modeling tools, the DL adapter service provides
transformation of models from the XMI-based exchange formats into the in-
ternal model representation TGraph and vise verse. The DL adapter en-
ables integration of the DL-based collaborative modeling environment with
existing CASE tools. If the DL delta calculator and applier services can
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be adopted for further modeling tools (like it is for UML Designer in Sec-
tion 7.3), the rest of collaborative modeling infrastructure can be reused for
these modeling tools without additional implementation efforts.

– RQ7: Executable. The DL-based modeling deltas already form the executable
descriptions of model differences. To provide applicability of the DL-based
modeling deltas, this thesis has introduced the DL applier service. The
DL applier implements these deltas by in-place model transformations in
JGraLab and Recording Command in EMF for applying modeling deltas to
software models.

– RQ10: Traceable. As described in Chapter 5, the change operations in mod-
eling deltas are assigned to UUIDs which allow for effortless identification,
elicitation and visualization of the histories of evolving software models from
the DL-based modeling delta repositories. In order to enhance feasibility of
aforementioned features and provide sufficient information in model history
analysis, this thesis delivers the DL tracer service which makes the DL-based
modeling deltas straightforward and accessible for further analysis.

The most existing research ideas provide solutions addressing these services inde-
pendently or concentrating on the specific aspects of the general research problem.
Alongside the generic difference representation technique DL, this thesis provides
a catalog of services that are not strictly embedded behind DL. Instead, the DL
services are realized in a service-oriented, component-based manner and can cer-
tainly operate independently from each other making DL a common underlying
difference representation format (change exchange format) for all DL services. In
this sense, DL and its services are generic, flexible and extensible. This separa-
tion of concepts, yet enabling integration of these concepts, is one of the relevant
contributions of this thesis.

Any further services, making their only prerequisite to recognize the DL syntax,
can be developed as the extension of the DL services. Thereby, DL serves as
the efficient and convenient exchange format for modeling deltas among these
services. Eventually, all DL services are utilized in developing the DL applications
in Part IV.
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One of the main goals of any practical and engineering research work is its real-
world applications alongside its novelty. Each research work has to be applied to
the real-world applications by developing research prototypes in order to present its
applicability and as proof of the concept. In the same vein, applicability criteria is
one of the core objectives of this thesis. Thus, due to applicability of the approach
and as proof of the concept, several application areas (use cases) of the approach
are realized in this part of the thesis.

As already explained so far, the DL applications are developed by the specific
orchestrations of the DL services. These applications are concurrent collaborative
modeling applications Kotelett, CoMo (enabled by micro-versioning) discussed in
Chapter 7, sequential collaborative modeling application Generic Model Version
Control System–GMoVerS (enabled by macro-versioning) explained in Chapter 8,
and model evolution history analysis application MoHA discussed in Chapter 9. The
architectures of these application areas are developed by the specific orchestrations
of the DL services explained in Chapter 6 and built based on DL as the underlying
change representation concept. The DL-based modeling delta repositories serve as
the single point of truth for all aforementioned DL applications.

Each chapter of this part is dedicated to the detailed description of the afore-
mentioned DL applications, whereas each chapter follows the concrete structure;
defining overall scenarios, meta-models, concrete architectures, realization/tooling,
and contributions of DL.





Chapter 7

Concurrent Collaborative Modeling

As motivated in Chapter 3.1, writing huge textual documents, developing large-
scale models or software systems require support for concurrent collaboration of
multiple writers, designers or developers in real-time in parallel. In the same
vein, support for collaborative development in MDSE is required. This chapter
introduces concurrent collaborative modeling applications built based on micro-
versioning.

As long as software models are usually very huge with several thousand artifacts,
developing large models requires collaboration of several modelers in real-time in
parallel. Due to the huge amount of artifacts and complexity of software mod-
els, modeling artifacts are designed and manipulated collaboratively by a group
of collaborators. In concurrent collaborative modeling, collaborators are able to
efficiently and quickly create and manipulate modeling artifacts in real-time. Ad-
ditionally, it helps to reduce the occurrences of the change conflicts, enables col-
laborative discussions, and decision making process among collaborators simulta-
neously.

As explained in Section 1, the collaborative modeling support developed based on
micro-versioning. Because, modeling deltas in this application consist of rather
small set of DL operations. These change operations in deltas are detected while
changing models on modeling editors. They are constantly detected by the change
listener feature of DL calculator and produced in forms of the small modeling
deltas consisting of only small set of changes.

The main focus of concurrent collaborative modeling is to provide the team-work
of several designers and developers on the shared modeling artifacts in real-time.
As long as modeling occurs in real-time in case of concurrent collaborative model-
ing, the high performance of modeling delta synchronization between the multiple
copies of the shared models is one of the main challenges considered by DL. This
issue is eased by small modeling deltas consisting of the small changes of models.
In general, DL aims at providing the required support described in Section 3.1.3
for model difference representation.

153
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Although concurrent and sequential collaborative modeling are two different sce-
narios of collaborative modeling, this thesis addresses to provide the both scenar-
ios based on the same underlying representation technique DL. Interoperability
of these scenarios is accomplished by the same common DL-based modeling delta
repositories as a single point of truth. Thereby, an adequate and efficient difference
representation technique is essential for synchronization of small changes among
the various parallel copies of models under development and evolution. Further-
more, several services like the listener and delta applier are required for detecting
modeling deltas and propagating these deltas on other parallel instances of these
models. For that purpose, this research work has introduced a solid difference
representation technique in Chapter 5 and services in Chapter 6 which rely on the
DL syntax. Thus, this chapter applies DL to concurrent collaborative modeling
applications.

As inspected in Chapter 4, very few collaborative modeling approaches exist sup-
porting concurrent collaborative modeling. The most research in field of collab-
orative modeling are dedicated to the sequential collaborative modeling, or they
focus on one of two collaborative modeling scenarios instead of considering both at
once. Web-based online approaches (e.g., GenMyModel [GenMyModel, 2015] and
creately [Cinergix Pty., 2015]) are usually hosted on the cloud-based web servers
and exchange changes over WebSocket using web browsers.

In Section 7.1, this chapter briefly explains the general concepts and reference
architecture for concurrent collaborative modeling. Section 7.2 and Section 7.3 in-
troduces the DL-based concurrent collaborative modeling applications Kotelett
and CoMo, respectively. The concrete architectures, utilized meta-models and fea-
tures of these applications are described in their respective sections. The main
contributions of DL in concurrent collaborative modeling are described in Sec-
tion 7.4. This chapter ends in Section 7.5 by drawing some conclusions.

7.1 Reference Architecture

Section 3.1 has explained the state of the art in collaborative document editing,
software development and modeling based on concurrent collaboration. The same
section has defined the list of various common underlying principles, technologies
and architectures of the existing concurrent collaborative development approaches.
As long as concurrent collaborative modeling shares the similar underlying princi-
ples, technologies and architectures, this section takes them into account in devel-
oping the DL-based concurrent collaborative modeling applications in this chapter.
Additionally, this section introduces a common reference architect for concurrent
collaborative modeling applications. The reference architecture is then used as a
blueprint in developing the DL-based concurrent collaborative modeling applica-
tions in Section 7.2 and Section 7.3.

Architectures and Synchronization.
As discussed in Section 3.1, the existing concurrent collaboration approaches are
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built on top of the different collaboration architectures and synchronization al-
gorithms providing various features. These architectures are revisited in order
to decide on and derive the best candidate to develop the DL-based concurrent
collaborative modeling application in this chapter.

Collaboration Architectures. The most existing concurrent collaborative systems
are built using two different types of architectures. These are centralized and
decentralized. The DL-based concurrent collaborative modeling application
takes advantage of the centralized architecture. In this architecture [Nichols
et al., 1995], the shared models are located in centralized repositories and
shared with collaborators. Only single master copy and several client copies
of the shared model is available in this architecture. This architecture is cho-
sen for providing the high performance of synchronization of model changes
in collaborative modeling in real-time.

Synchronization Algorithms. According to the calculation techniques of modeling
deltas in concurrent collaborative modeling, the synchronization algorithms
are classified into the state-based and operation-based techniques. The DL-
based concurrent collaborative modeling utilizes the combination of both.
The state-based (differential synchronization) approach considers the differ-
ent states of the shared models. The state-based comparison is utilized
in the Kotelett tool (Section 7.2) As long as performance is a key factor
in concurrent collaborative modeling, the synchronization using the state-
based change computation technique might not be very efficient in case of
the very large models. Because, the differences between the states have to be
computed every time after each edit action by users, resulting in increased
time complexity [Ahmed-Nacer et al., 2011]. Considering the aforementioned
challenge, this thesis uses the operation-based synchronization in one of its
concurrent collaborative modeling applications. The operational synchro-
nization technique is identified as the suitable approach and widely used
by concurrent collaborative systems [Clarence et al., 1991], [Ressel et al.,
1996], [Sun and Ellis, 1998]. Modifications on the shared software models
are presented by means of the DL operations. To sum up, the DL-based
concurrent collaborative modeling applications implement the state-based
comparison of the shared model (Kotelett in Section 7.2), as well as the
change listener (operational synchronization) feature (Como in Section 7.3)
for detecting model changes in real-time. But, in both cases, model differ-
ences (changes) are represented by DL operations.

The most existing collaborative editing and development approaches further pro-
vide some additional tool specific features such asmodel editor, user authentication,
messaging, file sharing, etc. These features are discussed in respective sections (cf.,
Section 7.2 and Section 7.3) of each DL-based concurrent collaborative modeling
applications.

Reference Architecture for Concurrent Collaborative Modeling.
In order to realize the DL-based concurrent collaborative modeling applications,



Chapter 7. Concurrent Collaborative Modeling 156

Figure 7.1 depicts a common reference architecture for concurrent collaborative
modeling. This reference architecture is sketched based on the main operational
scenarios of the concurrent collaborative development approaches discussed in Sec-
tion 3.1.
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Figure 7.1: Reference Architecture for Concurrent Collaborative Modeling

The reference architecture in Figure 7.1 describes the main operational scenarios
that collaborators may perform during concurrent collaborative modeling. The
architecture is separated into server and client parts. The server side of the archi-
tecture serves as the single point of truth in collaboration. The overall architecture
is a blueprint (or guide) to orchestrate the DL services in order to develop certain
concurrent collaborative modeling applications. However, the DL service orches-
trations are not required to rely strictly on this architecture, i.e., the architecture
can be adopted or customized accordingly. Hereafter, the main DL services making
up the reference architecture are briefly discussed.

Server Side. The server side of the architecture depicts two main DL services
namely model manager and synchronizer, as well as the repository to store
the DL-based modeling deltas.

– Synchronizer. In the concurrent collaborative modeling applications,
models are always shared among several collaborators and they simul-
taneously change their models in real-time. These collaborators are
usually located in different places and synchronization of changes must
be done among these collaborators through network without delays or
other inconsistencies. Eventually, the rapid synchronization of every
single change made by collaborators in real-time is quite significant
for the on-line collaboration of several collaborators. The high per-
formance of change synchronization is successfully achieved by syn-
chronizing DL-based forward modeling deltas. These modeling deltas
represent changes made by collaborators on their modeling editors as
depicted on the client side of the architecture. The DL synchronizer ser-
vice hosted on the server side takes care of synchronization of modeling
deltas among collaborators. It receives the DL-based modeling deltas
detected by the DL calculator service on the client side and sends them
back to the DL applier service of other collaborators. As long as the
synchronization of modeling deltas among clients carried out by the
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synchronizer on the server, the communication between collaborators
is provided based on star-topology.

– Manager. While developing shared software models in concurrent col-
laborative modeling, collaborators intends to store models and their
revisions in repositories, so that software models and their revisions are
available in repositories to load, revert and restore. For instance, col-
laborators may want to store a particular state of their model if they
feel that state of their model is complete and correct. The working
copies and revisions of shared models are then stored for further de-
velopment and maintenance. After all, collaborators should be able
to handle various models and load any older revisions of their models
which they have saved earlier. The DL manager service on the server
side is dedicated to perform aforementioned model management activ-
ities such as creating new models in the repository, storing or loading
models and their revisions, or deleting existing models, etc. The DL
manager service stores models and their revisions in the repositories on
the server. These models are stored as active deltas and their revisions
are as backward deltas in terms of DL (as discussed in Section 5.2).
More applications of the DL manager service is explain in Chapter 8 in
detail.

Client Side. On the client side of the reference architecture, collaborators design
their copies of shared models using model editors. The DL calculator and
DL applier services have to be installed on these modeling editors in order
to be able to collaboratively work with the DL-based concurrent modeling
infrastructure.

• Calculator. In case of the concurrent collaborative modeling in cen-
tralized environments, collaborators make changes on their instances.
Every single change made by collaborators needs to be identified and
detected in order to propagate them on other parallel copies. Eventu-
ally, all copies remain up to date. Especially, identifying and producing
these changes is quite problematic and reluctant in case of models with
several thousand modeling artifacts. Thus, either change listener or
state-based matching feature of the DL calculator service can be em-
ployed for detecting changes made by collaborators on modeling editors.
The DL calculator service on the client side represents detected changes
in the DL-based forward deltas.

• Applier. After detecting changes, they are delivered to other clients of
shared models by synchronizer as forward deltas. These changes are
propagated on other parallel copies of models so that they are kept up
to date in real-time. The DL applier service on the client side is used
to apply the DL-based forward deltas to models.

The concrete architectures of concrete DL-based concurrent modeling applications
in Section 7.2 and Section 7.3 are developed based on the reference architecture
depicted in Figure 7.1.
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7.2 Kotelett

The DL-based collaborative modeling tool entitled Kotelett is developed by the
students’ project group in the Software Engineering Group at the Carl von Ossi-
etzky University of Oldenburg [Project Group, 2014]. This concurrent collab-
orative modeling tool takes advantage of the DL-based delta representation for
synchronizing changes among various collaborators in real-time. The DL applica-
tion Kotelett is developed for collaboratively modeling on UML class diagrams.
Section 7.2.1 depicts the meta-model of UML class diagrams that is used for gen-
erating a specific DL for class diagrams. Section 7.2.2 portrays the concrete ar-
chitecture of the concurrent collaborative modeling application Kotelett based
on the reference architecture depicted in Figure 7.1. Section 7.2.3 explains the
Kotelett tool in detail.

7.2.1 Meta-Model

UML class diagram [Raumbaugh et al., 2004, pp. 47ff] is one of the most popular
UML diagrams. It is usually used in modeling object-oriented software systems
as well as modeling real-world systems in a object-oriented manner. They directly
serve as documentations for the object-oriented software systems and real-world
systems. Executable software systems can be automatically generated from class
diagram models. Moreover, they are extensively used in designing the meta-models
of modeling languages.

As DL is conceptually a family of domain-specific languages and generic approach,
a specific DL is generated from the meta-model of UML class diagrams using the
DL generator service (explained in Section 6.1). In order to apply the DL-based
collaborative modeling infrastructure, the DL generation is required as initial step.
Figure 7.2 depicts the meta-model of UML class diagram which is utilized to realize
the DL-based concurrent collaborative modeling application Kotelett.

The meta-model in Figure 7.2 is separated into two parts by a dashed line. Below
the line, it depicts the content part which is used to represent the subset of the
modeling concepts of UML class diagram. In graphical modeling, every modeling
object has design information such as color, size, and position, also called layout
information. Above the dashed line, the figure consists of the layout part that is
used to depict the notation of layout information for the content part. The com-
plete meta-model is used for creating collaborative modeling application Kotelett
throughout this section.

In the meta-model portrayed in Figure 7.2, every modeling artifact can be of type
the KNode linked to the BoundingBox or KRelationship linked to the Graphi-
calEdge. Both, edges and boxes belong to the Diagram, whereas the Diagram
itself is of type ModelElement. Each edge has the BendPoint and LabelPosition.
According to the ModelElement class of the meta-model, each model element has
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Figure 7.2: UML Class Diagram Meta-model for Kotelett

an attribute named gDiff_UUID which means all modeling artifacts are assigned
to UUIDs.

Usually, layout information is not depicted in the standard meta-models (i.e.,
profiles) of modeling languages. In Kotelett, the meta-modeling approach is
also used for handling the data structures of layout notation. This allows for
using the same technique for representing and synchronizing changes in content
data (i.e., abstract syntax) and layout data (i.e., concrete syntax). This art of
designing meta-models is another advantage of the approach. Because, in case of
concurrent collaborative modeling, modeling editors require layout information to
display modeling artifacts on their modeling editors. The layout part of the meta-
models allows for representing layout information (in modeling deltas) for graphical
editors by the DL operations. Additionally, layout information represented by the
DL operations are exchanged among several parallel tool instances. For instance,
if the position or the size of a modeling artifact is changed on one tool instance,
the values of position and size are changed on the other parallel tool instances, as
well. This can be seen in the screen-shot of the Kotelett tool in Figure 7.4.

The layout part of the meta-models in the DL approach enables extend-ability of
the approach for further modeling languages. In order to extend the DL applica-
tions for further modeling languages, the content part (below the dashed line) of
the meta-model depicted in Figure 7.2 should be replaced by the respective meta-
models of other modeling languages. Eventually, the same layout information of
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the meta-model can be reused for extending the collaborative modeling framework
for further modeling languages.

As long as the DL services behind the Kotelett tool are realized using the
JGraLab technical space, the meta-model depicted in Figure 7.2 is designed us-
ing the domain-specific modeling tool Rational Software Architect (RSA) [Leroux
et al., 2006] and imported into the TGraph schema using the JGraLab technical
space. The DL generator service generates a specific DL from this meta-model for
concurrent collaborative modeling of UML class diagrams. As explained in Sec-
tion 6.1, a newly generated specific DL for UML class diagrams consists of Model
API (including interfaces and their implementations) and Model Utility in Java.
The resulting Model API is used to process modeling artifacts, whereas Model
Utility is employed to do various operations on the instance models and their ar-
tifacts. The conceptual idea of generating specific DLs is explained in Section 5.1
in detail.

7.2.2 Concrete Architecture

Figure 7.3 depicts the overall concrete architecture of the Kotelett tool. This
concrete architecture is the concrete implementation of the reference architecture
depicted in Figure 7.1. Thus, the DL services in the concrete architectures are
defined as components, whereas they are defined as services in the reference archi-
tecture.
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Figure 7.3: Concrete Architecture of Concurrent Collaborative Modeling
Kotelett

Like the reference architecture, the concrete architecture is separated into the
server and client sides.

Server. As described in Section 7.1, the server side of the architecture depicts
the DL services manager, synchronizer, and repository to store the DL-based
backward modeling deltas. The manager component in the concrete archi-
tecture is the concrete implementation of the DL manager service, whereas
synchronizer component is the concrete implementation of the DL synchro-
nizer service. The manager service is realized using the JGraLab technical
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space (cf. Section 2.4) for this particular application Kotelett. The man-
ager service takes advantage of the DL applier service to load models and
their revisions. The synchronizer service is realized in a way that is com-
pletely independent from any technical spaces.

Client. The client side of the concrete architecture depicts the DL calculator
and applier services, as well as Kotelett modeling editor and the TGraph
representation of models under collaboration. The Kotelett editor is devel-
oped based on the EMF technical space using EMF-based GMF – Graphical
Modeling Framework [GMF, 2018] for graphical editing. The modeling ed-
itor part allows collaborators to design their models visually. Below, this
section explains the graphical user interface of the application in detail.

Software models within this particular tool are represented by TGraphs (ex-
plained in Chapter 2.4) internally. Each client embeds the TGraph represen-
tations of models. There is a bidirectional synchronization between TGraph-
based and graphical representations of models. Once the user makes changes
on model copies on their model editors, these changes are propagated on the
TGraph representation of that model. If any change is applied to the TGraph
representations of models by the applier service, these changes are inter-
preted on the model editor, as well. The DL calculator service is attached
to each client side of the Kotelett tool in order to compute changes on the
TGraph-based models. In Kotelett, the DL calculator calculates modeling
deltas comparing the changed and unchanged revisions of models based on
the ID-based model matching. The DL calculator computes forward model-
ing deltas in this case. These forward modeling deltas are then synchronized
among other collaborators via the synchronizer service hosted on the server
side. Once the modeling deltas are delivered to other clients, they are applied
to TGraph-based models, whereas changes on the TGraph-based models are
also interpreted on graphical model editors. The same scenario occurs for
all other clients as well. All synchronizations are done by the synchronizer
component on the server side. Each client of the Kotelett tool also embeds
meta-model depicted in Figure 7.2 in order to ensure correctness of model
copies on these clients.

This concrete architecture is used in developing the Kotelett tool in Section 7.2.3.

7.2.3 Kotelett Tool

This section explains the main features of the collaborative modeling tool Kotelett
in detail. Figure 7.4 depicts the screen-shot of the overall user interface of the
Kotelett tool. The figure displays two independent tool instances working on the
same model in parallel. Each user interface (IU) consists of several windows such
as History Menu (A), Model Tree (B), UML class diagram elements (C)Model Ed-
itor Area (D), User List (E), and Log (F). When the tool is launched, it shows
the list of models which are currently available in the repository and asks the
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user which model to join as a collaborator. However, the users can open multiple
models simultaneously during concurrent collaborative modeling.

Figure 7.4: Screenshot of Kotelett Tool

– Model History (A). This window shows all available revisions (in repository)
of currently active model. It lists all automatically and manually saved
revisions of the current model. By selecting the necessary revision from
the menu, it can be opened in the editor area. The DL manager service is
utilized to revert other revisions behind this feature.

– Model Tree (B). On the most left side, the UI shows the list of diagrams a
collaborator is currently working on. Each diagram belongs to a specific
model. It also shows the list of model artifacts that are created in their
relevant diagrams.

– Modeling Concepts (C). This area of the tool depicts the UML class diagram
notations where the collaborators can select and draw that element on the
model editor. These notations of the UML class diagrams are created based
on the meta-model depicted in Figure 7.2. The correctness of the instance
models on this editor is checked according to that meta-model, automatically.

– Model Editor (D). The model editor area is the main part which allows users for
designing the UML class diagrams in the graphical editor. Several modeling
editor tabs can be opened at the same time. As shown in the model editor,
each collaborator is given a specific color so that the model elements created
is highlighted with that given color.

– User List (E in left instance). This window lists all collaborators that are cur-
rently working on the diagram in the activated tab. These collaborators are
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highlighted with different colors in order to show clear distinction between
them and recognize which change is made by which collaborator on the edi-
tor. As the graphical editor displays, the modeling artifacts are highlighted
with the same color of the creator of that model element. If a model ele-
ment is created by one collaborator and changed by another, color of the
last collaborator changed is applied to that model element. Additionally,
each collaborator can change their names and select necessary color (E) that
should appear on the Kotelett UI. In order to allow a particular user for
distinguishing himself from other collaborators, he can see additional text
"You!" right next to his name.

– Log (F in right instance). The log window constantly displays the model-
ing deltas (Figure 7.5) that are exchanged among collaborators after each
change. Creating one modeling artifact on the graphical modeling editor
may result in one or many change DL operations that are contained in one
modeling delta and synchronized with others.

– Configuration (E). Once each collaborator is joined concurrent collaborative
modeling, that collaborator is given a name and specific color. The collab-
orators can configure the their part of the user interface such as changing
color, name and clearing colors.

Figure 7.5: DL-based Change Representation in Kotelett Tool

As mentioned above, model changes are represented by DL operations and ex-
changed by modeling deltas consisting of these DL-based change operations. Fig-
ure 7.5 displays the zoomed screen-shot of the Log (F) window of the Kotelett
tool. Thereby, the DL operations are always listed representing what changes are
made and exchanged among collaborators.

As shown in the log window, each modeling delta is isolated with the begin send
delta and end send delta messages which means sending a delta is started and
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finished, respectively. Other tool instances receive these deltas as change requests
to apply on their models.

7.3 Collaborative Modeling – CoMo

There are several open-source domain-specific modeling tools such as EMF-based
UML Designer [Obeo Network, 2017], Papyrus [Lanusse et al., 2009], etc. As the
DL-based collaborative modeling infrastructure intends to be meta-model and tool
generic, it is applied to Sirius-based [Viyović et al., 2014] domain-specific modeling
tool UML Designer. This section demonstrates the application results of DL to
the UML Designer tool.

As discussed in Section 2.4, Sirius [Viyović et al., 2014] is an Eclipse Foundation
project that provides opportunity to develop domain-specific graphical modeling
tools. Sirius itself is developed based on EMF (Eclipse Modeling Framework)
[Steinberg et al., 2008] and GMF (Graphical Modeling Framework) [GMF, 2018].
The graphical modeling tools developed using Sirius consist of a collection of dif-
ferent editors (charts, tables, trees). These editors are described by models. In
EMF-based Sirius, all model-related data is stored as EMF models in the form of
XML Metadata Interchange (XMI), whereas the JGraLab technical space stores
models as TGraphs in case of the Kotelett application.

UML Designer [Obeo Network, 2017] is a Sirius-based open source modeling tool.
The UML Designer provides possibility to design several UML diagrams. The
collaborative modeling application entitled CoMo – Collaborative Modeling is de-
veloped as an extension for UML Designer. CoMo takes advantage of the DL-based
modeling deltas for synchronizing model changes among the collaborators of the
shared models. The CoMo application is applied to UML activity diagrams. Sec-
tion 7.3.1 presents the meta-model combining UML activity diagram content and
layout parts which is used in developing CoMo. Section 7.3.2 depicts the CoMo
concrete architecture conforming to the reference architecture in Figure 7.1. Sec-
tion 7.3.3 demonstrates the CoMo tool itself.

7.3.1 Meta-Model

UML activity diagrams [Raumbaugh et al., 2004, pp. 95ff] are frequently used
in modeling business processes, activities and work-flows. Computational and
organizational process are usually modeled using activity diagrams representing
the overall control and object flows.

A specific DL for UML activity diagram is generated by the DL generator ser-
vice (explained in Section 6.1) importing the meta-model depicted in Figure 7.6.
Then, the model changes in modeling deltas are represented in terms of DL on the
instance activity diagrams.
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Figure 7.6: UML Activity Diagram Meta-model for CoMo

Like the UML class diagram meta-model presented in Figure 7.2, the meta-model
depicted in Figure 7.6 is separated into two parts by a dashed line. Below the line,
it depicts the content part (i.e., abstract syntax) which is adopted from the stan-
dard UML activity diagram meta-model for EMF (Eclipse Modeling Framework)
[Steinberg et al., 2008]. Above the dashed line, Figure 7.6 portrays the layout part
(i.e., concrete syntax). The layout part of the meta-model depicts the substructure
of Graphical Modeling Framework (GMF) notation [GMF, 2018] which supports
notations for developing visual modeling editors based on EMF. The ActivityNode
and ActivityEdge of the content part are connected to the Node and Edge of the
layout part through the DNode and DEdge artifacts of the Sirius odesign notation.

As long as CoMo in Section 7.3.3 is realized based on the EMF technical space,
the meta-model depicted in Figure 7.3.1 is designed using the EMF-based Ecore
meta-modeling feature.

This way of designing meta-models allows for using the same collaborative model-
ing infrastructure for different modeling contents within the same technical space.
The complete meta-model is used for creating overall collaborative modeling ap-
plication CoMo explained in Section 7.3.3.
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7.3.2 Concrete Architecture

After generating the specific DL for the given meta-model, namely the UML ac-
tivity diagram meta-model (incl. Content and Layout parts) in this case, the
DL-based collaborative modeling infrastructure is used to handle collaboration
activities for UML activity diagrams in UML Designer. It is built by the spe-
cific amalgamation of the several DL services as depicted in Figure 7.7. It is the
concrete architecture based on the reference architecture in Figure 7.1.

Collaborator

Synchronizer
(micro-versioning)

Repository
(Backward Deltas)

Server

Manager
(macro-versioning)

designs

Client

Listener

Applier

:models

:forward
Deltas
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:deltas UML 

Designer

applies

listens

Figure 7.7: Concrete Architecture of Concurrent Collaborative Modeling
CoMo

Like the reference architecture, the concrete architecture is separated into the
server and client sides.

Server. As described in Section 7.1, the server side of the architecture depicts
the DL services manager (enabled by macro-versioning), synchronizer (en-
abled by micro-versioning), and repository to store the DL-based backward
modeling deltas. The manager component in the concrete architecture is
the concrete implementation of the DL manager service, whereas the syn-
chronizer component is the concrete implementation of the DL synchronizer
service. The most implementation parts of the manager service is taken over
and reused as they are. Its implementation is slightly changed to be useful
in this particular application CoMo, whereas the synchronizer service is di-
rectly utilized in CoMo without any adaptations, as it is independent from
the technical spaces. The manager service takes advantage of the DL applier
service to load models and their revisions.

Client. The client side of the concrete architecture depicts the listener feature of
the DL calculator service and applier services, as well as UML Designer as
modeling editor. In the CoMo application, the change listener feature is em-
ployed instead of the state-based matching of the DL calculator. The changes
made by collaborators are constantly detected by the change listener while
they are made using the model editor, in this case, UML Designer. These
changes are then represented in forward modeling deltas and constantly sent
to other parallel clients through the synchronizer service on the server. Once
these deltas arrive at other clients, they are applied to models by the applier
service.
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In case of the EMF-hosted UML Designer, the listener listens for Notifications
which consists of information about the changed modeling artifacts (i.e., resources)
and the change types. As discussed in Section 6.3, the change types in these
notifications are mapped to the DL change types.

The concrete architecture depicted in Figure 7.7 is utilized as the concrete blueprint
in development of the CoMo application in Section 7.3.3.

7.3.3 CoMo Tool

This section explains the collaborative modeling application CoMo (Collaborative
Modeling) of DL. It is developed by the specific orchestrations of the DL services,
on top of the DL-based delta representation, based on the concrete architecture
in Figure 7.3.2 and the meta-model depicted in Figure 7.3.1.

The CoMo support is developed as an extension for Sirius-based domain-specific
modeling tool UML Designer. Figure 7.8 depicts a screen-shot of CoMo. It displays
two different tool instances working on the same model concurrently. These tool
instances describe the micro-versioning scenario depicted in Figure 5.7 after the
changes are synchronized. Each CoMo tool instance consists of several windows as
explained below.

A D1 B BD2

C C

CoMo

E

Figure 7.8: Screenshot of CoMo Tool

Figure 7.8 actually depicts the user interface of UML Designer. As long as the
DL-based collaborative modeling approach is applied to UML Designer which is an
EMF- and Sirius-based domain-specific modeling tool, CoMo is completely realized
using the EMF technical space.
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– CoMo Support (CoMo in left instance). After installing the CoMo support, two
buttons appear in the tool as shown on the left instance under the indicator
CoMo. When the first button (Kol) is clicked, the list of models currently
available in the repository is displayed asking the user which model to join as
a collaborator. From the displayed dialog window, collaborators can either
select an existing model from the list or create a new model in the repository.
If they select to join an existing model as a collaborator, that model is opened
in the editor (D) and they can continue further developing that model. The
users can open multiple models at once during collaboration.

Models under collaboration can be saved by clicking the save button when-
ever the model is complete and correct. When the tool is asked to save the
model by clicking the second button under the indicator CoMo, it calculates
the differences (backward deltas) between the last and active revisions. Fur-
thermore, new active deltas are also generated when the new revisions of
models are stored. As the result of each click, one backward delta (repre-
senting differences between the last and active revisions) and one active delta
(representing the working copy) are stored in the repository. This feature of
the CoMo tool is currently under development.

– Model Tree (A in left instance). The model tree (A) shows the list of models
and diagrams (incl. the elements of these diagrams) the collaborators are
currently working on.

– Modeling Concepts (B in both instances). The both instances display the mod-
eling concepts of the UML activity diagrams (B). These concepts conform
to the meta-model depicted in Figure 7.6.

– Model Editor (D1 and D2 in both instances). The model editor (D1 and D2) ar-
eas on the both instances show the example activity diagrams that Designer_1
and Designer_2 are developing as depicted in Figure 5.7. In this case, these
both instances are displayed after their changes are synchronized. The mod-
eling editor provides the Redo/Undo features of Transactional Command
Stack to revert changes on the editor.

– Logger Window (C in both instances). The logger window (C) constantly dis-
plays the modeling deltas that are exchanged among collaborators once they
are synchronized. Creating one modeling artifact on the graphical modeling
editor may result in one or many change operations that are contained in
one modeling delta that is synchronized between collaborators.

– DL-based Changes (E). The letter E indicates three changes made by two design-
ers. These changes are: the name changes from "Receive Order" and "Fill
Order" to "Receive Orders" and "Fill Orders", respectively (highlighted
on the left logger), as well as the creation of new Opaque Action named
"Close Order" (highlighted on the right logger).

Modeling deltas on the logger windows (C) are represented by the specific DL
generated from the combined meta-model in Figure 7.6 including the standard
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UML profiles (content part, i.e., abstract syntax) and GMF notation (layout part,
i.e., concrete syntax). The DL change listener and applier services are extended
using the EMF technical space features such as the command stack and resource
set listener extensions for the editing domains. All other underlying technologies
such as the DL synchronizer and model manager remain unchanged.

7.4 DL Contributions

During experiments, the both DL applications Kotelett [Kuryazov et al., 2018]
and CoMo [Appeldorn et al., 2018] have shown sufficiently high performance by syn-
chronization of small DL-based modeling deltas. So far, they have not faced any
change conflicts in concurrent collaborative modeling. This probably is attributed
to the rapid synchronization of small modeling deltas with compact syntax. Thus,
concurrent collaborative modeling enabled by the micro-versioning currently does
not focus on the issue of conflict resolution. In the current implementations of
concurrent collaborative modeling applications, the most recent changes are prop-
agated on all parallel instances of models.

Establishing the concurrent collaborative modeling applications is a challenging
task because of its real-time performance, change synchronization and complexity
of software models. However, the DL-based delta representation approach brings
a number of advantages to the concurrent collaborative modeling and aims at
resolving these challenges.

With the DL-based modeling delta representation approach, software models are
made commonly available to multiple collaborators in different locations and com-
munication is provided by synchronization of small DL-based modeling deltas.
Model changes on the shared software models are rapidly detected and synchro-
nized in real-time allowing users to communicate without delays. It enables users
to cooperate their changes into the centralized project instantly, regardless the
network speed, and the complexity, large-scale of their shared software models.

The DL approach solves several additional technical challenges with developing
concurrent collaborative infrastructure for MDSE. It can be applied to the wide
range of modeling languages and modeling tools. It also supports its tooling
modeling as a service (MaaS).

Specific DLs can easily be generated using the modeling concepts of various domain-
specific languages. Eventually, any service, component or plug-in required for col-
laborative modeling can easily be developed on the top of that modeling language
enabling language and tool genericity, extend-ability, and re-usability properties.
DL brings several advantages to the concurrent collaborative modeling scenario,
as follows:

– Single Underlying Meta-model and API. The meta-models depicted in Figure 7.2
and Figure 7.6 have two parts separated by the dashed line. This way of



Chapter 7. Concurrent Collaborative Modeling 170

designing meta-models allows for using the same collaborative modeling en-
vironment for different modeling contents. The layout notation is usually not
depicted in the content of meta-models. The combined meta-models allow
for using the same DL-based delta representation technique for representing,
storing and synchronizing the layout data of models by DL operations.

DL is generic with respect to the meta-models of modeling languages. The
combined design of meta-models provides to generate single underlying API
for the given meta-models. For instance, in case of the CoMo tool, the existing
model APIs of GMF, EMF and Sirius can be used to work with instance
models in collaborative modeling. But, the tools developers need to deal
with three types of APIs, whereas the DL generator generates only one API
for working with UML activity diagrams.

– Changes Only. Only changed modeling artifacts are represented in DL-based
modeling deltas. The unchanged modeling artifacts are not included in mod-
eling deltas simply not defining DL operations for them. In turns, it pro-
vides small modeling deltas which result in quick synchronization of changes
among collaborators.

– No Conflicts. The concurrent collaborative modeling applications are experi-
mented by the users located in long distance in Canada, Mozambique and
Uzbekistan, whereas the server was located in Oldenburg, Germany. During
these experiments, the tool has not shown any inconveniences with conflicts,
performance, agility, and amount of collaborators. The tools have not faced
any change conflicts because of rapid synchronization of model changes by
small DL-based modeling deltas. Change synchronization was fast enough
to exchange all changes before conflicts may occur, so far.

– Undo/Redo Operations. In case of Kotelett, the redo/undo operations with
changes are easily performed in real-time because of the small DL opera-
tions. In CoMo, the DL change listener is realized using the Resource Set Lis-
tener which listens for the Transactional Editing Domain of Sirius sessions.
The use of transactional editing domain provides to perform the redo/undo
operations without extra implementation effort.

– Single Point of Truth. DL serves as a common difference representation and
exchange format for the various modeling tools, components and services
of collaborative modeling. For instance, the both concurrent collaborative
modeling applications Kotelett and CoMo can use the same DL-based mod-
eling delta repositories. The same underlying repository can be used as
the single point of truth without any further adaptations or implementation
efforts.

– Separation of Representations. In Kotelett, clear separation between the graph-
ical editor and internal graph representation of models did not result in any
inconveniences in collaborative work. The collaborative modeling has been
quite efficient and fast. All changes are made on the graph-like represen-
tations of models and these changes are then synchronized with graphical
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editors. Operating on the graph-like structure of models is quite fast, for
example, on calculating and applying changes. This separation of inter-
nal model representations can be the additional advantage of the approach
in developing further collaborative modeling applications by just develop-
ing graphical editors and reusing the same graph-like model representations
together with collaborative modeling support.

– No Model Locking. As surveyed in [Altmanninger et al., 2009], several collabo-
rative development approaches utilize the lock-modify-unlock concept during
collaborative development and evolution. The lock-modify-unlock model is
usually used for avoiding possible change conflicts that might occur during
collaboration. Unlike these approaches, the collaborative modeling applica-
tion of DL enables collaborators to work on shared software models without
locking their models. In the DL-based concurrent collaborative modeling,
conflicts are less likely to occur because of high synchronization performance
provided by small modeling deltas, as discussed above.

7.5 Summary

This chapter has presented the DL-based concurrent collaborative modeling appli-
cations enabled by the concurrent model versioning scenario (i.e.,micro-versioning).
In these applications, the DL approach is applied to the concurrent collaborative
modeling applications to Kotelett for modeling UML class diagrams and to CoMo
for modeling UML activity diagrams based on UML designer. The collaborative
modeling application Kotelett itself was developed by a project group of students
in Software Engineering Group at the Carl von Ossietzky University of Oldenburg.
The approach is applied to UML designer in the framework of bachelor thesis [Ap-
peldorn, 2018]. The collaborative modeling tools are used in Software Engineering
lectures for teaching purposes by a group of students including more than ten col-
laborators in parallel. The Kotelett tool is successfully presented by the project
group on a study exhibition day for school children.

The meta-models depicted in Figure 7.2 and Figure 7.6 support representation,
storage and synchronization of both layout information (i.e., concrete syntax) and
modeling language notation (i.e., abstract syntax) by the same underlying DL. The
both applications can be extended for further modeling languages by extending
or replacing the content part of the meta-models. The layout part remains un-
changed. If the graphical modeling editors can be redeveloped for further modeling
languages, all other underlying technologies and services such as the DL calcula-
tor, applier, manager, synchronizer and DL-based delta representation remain the
same and do not require much implementation effort.





Chapter 8

Sequential Collaborative Modeling

As discussed in Section 3.2, software models evolve over time undergoing various
changes in order to meet user changes and improvements. Evolution of software
models results in the several revisions of the same modeling artifact differing from
each other. During development and evolution of models, artifact changes have to
be properly detected, identified, stored, maintained and reused for further analysis
and manipulations.

The main objectives of sequential collaborative modeling are concerned with main-
taining the historical archive and managing the evolution of modeling artifacts
[Altmanninger et al., 2009]. A huge number of modeling artifacts undergo various
changes which have to be controlled in large and complex software models. In
developing and maintaining the large-scale and complex models, the distributed
team of developers aim at storing the history of evolving modeling artifacts and
managing complex software models with multiple subsequent revisions. The his-
tories of evolving software models are usually managed by sequential collaborative
modeling that is also known as model version control in some literature [Altman-
ninger et al., 2007], [Taentzer et al., 2012], [Swicegood, 2008].

There are several sequential collaborative modeling tools like Subversion [Collins-
Sussman et al., 2004], Git [Swicegood, 2008], Monotone [Hoare et al., 2005] and
many more for developing and maintaining source code-driven software projects.
As long as these tools deal with textual artifact representation, it is commonly
agreed (as discussed in Section 3.2) that their difference representation techniques
can not provide sufficient information in different representation of graph-like soft-
ware models serialized as eXtendable Interchange Format (XMI) [Cicchetti, 2008],
[Steinberg et al., 2008].

Chapter 4 has investigated several approaches dedicated the problem of sequential
collaborative modeling, for instance, EMF Store framework [Helming and Koegel,
2013], SMOVER (Semantically enhanced Model Version Control System) [Altman-
ninger et al., 2007], AMOR (Adaptable Model Versioning System) [Langer, 2011].

173
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These tools are dedicated to sequential collaborative modeling of EMF-based soft-
ware models [Steinberg et al., 2008]. They provide several standard sequential
collaborative modeling activities.

In sequential collaborative modeling, it is properly effective and convenient to
store the history of artifact revisions in form of difference documents which are
also referred to as modeling deltas in this thesis. Especially, in MDSE, the efficient
representation of modeling deltas allows for easy storage and reuse of difference
information in further development and evolution. DL introduced in this thesis is
a reasonable means to represent the change histories of evolving software models
in modeling deltas. It is effective and reasonable foundations for sequential col-
laborative modeling in storing the histories of software models in modeling deltas.
This chapter explains the sequential collaborative modeling application of DL,
enabled by macro-versioning.

This chapter firstly explains the general repository architectures and scenarios re-
garding sequential collaborative modeling in Section 8.1. The same section depicts
a reference architecture for developing sequential collaborative modeling architec-
tures based on the DL representation and explains several DL services that are
involved in developing the reference architecture for sequential collaborative mod-
eling. Section 8.2 and Section 8.3 introduce the sequential collaborative modeling
applications of DL. This chapter identifies several contributions of DL to sequen-
tial collaborative modeling in Section 8.4. Section 8.5 draws some conclusions for
this chapter.

8.1 Reference Architecture

In Section 3.2, the existing sequential collaborative modeling approaches for both
source code-driven and model-driven software development are discussed in detail.
The existing approaches take advantage of diverse principles, technologies, reposi-
tory and storage architectures, and models. This section revisits these underlying
architectures, principles and technologies utilized by the existing sequential col-
laborative modeling systems in order to identify and derive principles, storage
and repository architectures and models that can be reused for the sequential
collaborative modeling application in this chapter. This section also gives the
detailed description of the reference architecture for DL-based sequential collabo-
rative modeling.

As already defined in Definition 3.3 in Section 3.2, sequential collaboration is
used for identifying differences between subsequent revisions, storing them in delta
documents, and reusing them when needed. These delta documents are then
utilized in retrieving the revisions of modeling artifacts, analyzing the evolution
histories of modeling artifacts under development and evolution [Glasser, 1978].
The basic idea behind sequential collaborative modeling (i.e., revision control) is
to preserve the histories of software models under development and maintenance.



Chapter 8. Sequential Collaborative Modeling 175

Repository Architectures and Storage Models.
As discussed in Section 3.2, the existing sequential collaboration systems use differ-
ent software repository architectures, history models and storage models regardless
of the type of software artifacts. Below, these repository architectures and models
are discussed that are used in the DL sequential collaborative modeling applica-
tion:

Software Repository Architectures. There are two approaches for building up the
architectures of software repositories [Altmanninger et al., 2009]: Central-
ized and Distributed. The DL sequential collaborative modeling application
takes advantage of the centralized development architecture. Models under
development and evolution, and their histories are stored in a single central
repository. Collaborators can have the working copies cached locally.

History Models. The most classical sequential collaborative systems use two types
of history models for storing software repositories. These are snapshot-
oriented and change-oriented. As long as the snapshot-oriented approach
stores the whole revision (snapshot) of software projects as the first-class
object, it is very costly, ineffective, memory and time consuming approach
in case of software models. Thus, the DL sequential collaborative modeling
application employs the change-oriented history model for storing the model
histories in repositories.

Storage Models. As discussed in Section 3.2, the existing sequential collaboration
systems use diverse repository storage models depending on their imple-
mentation details. As this thesis uses the delta-based (i.e., change-oriented)
storage model, the DL sequential collaborative modeling application takes
advantage of delta algorithms. This is dedicated to compare the subsequent
revisions of software models or listening for user changes and to create mod-
eling deltas as discussed in Section 6.3. The DL optimizer (Section 6.8)
service partly realizes the delta combination approach [Hudson, 2002], [Pro-
ceedings, 2006]. While applying modeling deltas to models, the chain of
modeling deltas are emerged (concatenated) into a singe delta, then applied
by the DL applier service. This approach dramatically increases performance
of the delta application process. Similar technique is entitled skip-delta [Hud-
son, 2002] or known as delta concatenation.

Reference Architecture.
The most basic architectural and operational concepts as well as terminologies of
source code-driven sequential collaboration systems are applicable to the sequen-
tial collaborative modeling application, as well. The architectures of the code-
and model-driven sequential collaboration applications can be considered as sim-
ilar. Moreover, their main operating scenarios are analogous, e.g., add, checkout,
commit, update, revert and delete can be used to manage models under collabora-
tive development.

Figure 8.1 depicts a reference architecture for the DL-based sequential collabora-
tive modeling applications. It presents four main operative scenarios of sequential
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Figure 8.1: Reference Architecture for Sequential Collaborative Modeling

collaboration, namely, adding/creating model, committing/saving revision, check-
ing out/opening model and reverting revision. In order to perform these operative
scenarios, the relevant DL services are orchestrated in each scenario. Below, these
orchestrations in the reference architecture are explained in detail.

Adding/Creating Models. Before starting sequential collaboration process with
software models, models have to be added to the collaborative modeling ap-
plications or new models have to be created. After adding to or creating
models in collaborative development system, their artifacts are usually iden-
tified as the initial revision. Then, the histories of these modeling artifacts
are stored and maintained during further development and maintenance.
Eventually, while software models under collaboration are being developed
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and maintained by developers, their change histories are stored in reposi-
tories keeping them persistent. For adding existing models or creating new
ones, the meta-data about these models should be provided. The meta-data
may consist of the names of new models, additional comments, etc. Eventu-
ally, active deltas are generated by the DL calculator service and stored in
the repositories, in initial step.

Committing/Saving Revisions. After making changes on the working copies or
branches of models, collaborators commit/save their local changes into the
main development lines of their models. In order to perform this scenario,
models have to be given as input. Then, the DL applier service creates the
previous revision of that model by applying relevant active delta to an empty
model. After having the given (current) and reverted (previous) revisions,
the DL calculator service compares these model revisions to compute one
backward delta representing differences between these revisions and one ac-
tive delta to store the given model revision in the repository. When storing
backward deltas in the repository, they are optimized by the DL optimizer
service according to optimization requirements discussed in Section 6.8.

Checking Out/Opening Models. If collaborators intend to open or check out
models from the repository, this scenario invokes the DL applier service.
Thereby, the DL applier fetches an active delta for the requested model
and creates the model out of that active delta. Collaborators are able to
copy/check out (co) any model from the repository into their local working
spaces in order to further develop that model. These working copies of the
models are usually entitled to be the parallel copies or branches of the central
model.

Reverting Revisions. In case of the lost or damage of information on software
models, collaborators intend to revert their models to older, correct revisions.
To perform the reversion scenario, the DL applier service receives a relevant
model that should be reverted. A list of backward deltas are fetched from the
repository related to the given model. These deltas are then concatenated by
the DL optimizer service in order to skip some delta operations if possible.
After all, the DL applier service applies these chain of backward deltas to the
given model and reverts the requested revision of that model. The amount
of backward deltas in the set depends on which revision has to be reverted.
For instance, if the tenth revision should be reverted out of twenty, then the
delta list consists of ten backward deltas.

Updating Models. In sequential collaborative modeling, collaborators may have
different development branches or copies in distributed environments. These
development branches or copies are developed by different collaborators re-
sulting in different copies the same software model. Before committing the
local changes into the main repository, the local working copy must be up-
dated (up) in order to obtain recent changes from the repository made by
others. If another collaborator has already committed other changes to the
main repository before this initial commit, all other collaborators have to
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update their local copies with the changes in the main repository so that
the changes in the main repository are fetched and available in all parallel
copies or branches. The merge operation, in turn, requires to resolve con-
flicts if there are any during merging. The DL merger service can be utilized
to merge different revisions of models. There, the DL merger service ob-
tains the last revision of models by applying the relevant active to an empty
model. Simultaneously, it receives the given model revision as the second
input. Eventually, as the result of merging, it produces the merged revision
of that model.

While merging different revisions (with different changes) of the same model,
change conflicts between revisions might arise. In case of conflicts, they are
classified into two classes such as resolvable and unsolvable. The resolv-
able conflicts are the conflicts that can be automatically resolved by the
DL merger service (as discussed in Section 6.9) without requiring any user
interaction. The unsolvable conflicts require interaction of collaborators in
deciding which revision to accept or reject in final revision, or postpone for
resolving later. However, the latter is planned as the future work.

Further Scenarios. In addition to the aforementioned orchestration scenarios,
there are further management operations provided by the DL-based collaborative
modeling infrastructure. These are getting model list that are available in the
repositories, getting model revision list of a particular model, or deleting a model
from the repository.

The aforementioned orchestration scenarios are the core objective of the DL ap-
proach in developing its sequential collaborative modeling applications. These
scenarios are developed and fulfilled by the specific orchestrations of the DL ser-
vices in this chapter.

8.2 Generic Model Versioning System – GMoVerS

As the sequential collaborative modeling is another prominent application of DL,
the DL approach is applied to application entitled Generic Model Versioning Sys-
tem (GMoVerS) in this section. Like the concurrent collaborative modeling ap-
plication, the sequential collaborative modeling application is established by the
specific orchestrations of the DL services based on the reference architecture de-
picted in Figure 8.1. GMoVerS is developed on top of the main scenarios of se-
quential collaborative modeling explained in Section 8.1. Section 8.2.1 explains
what kind of modeling languages GMoVerS can handle. The concrete architecture
of this sequential collaborative modeling application is defined in Section 8.2.2.
Section 8.2.3 clarifies the concrete realization of the GMoVerS tool.
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8.2.1 Meta-Model

The DL sequential collaborative modeling application is enabled bymacro-versioning.
This application is usually dedicated to the problem of managing software models
and their revisions. Whenever specific DLs are generated, all DL services are ca-
pable of operating based on that DLs. Consequently, the sequential collaborative
modeling application developed by the specific orchestrations of the DL services
operates on top of the DL-based modeling repositories.

The sequential collaborative modeling application GMoVerS can be used as either
a standalone tool or embedded behind the concurrent collaborative modeling ap-
plications (in Section 7) for managing DL-based modeling delta repositories. If it
has to be used as a standalone tool for sequential collaborative modeling, specific
DLs have to be generated by the DL generator service only for sequential collab-
orative modeling. The DL manager service in the reference architecture of the
concurrent collaborative modeling applications is also provided by the GMoVerS
application. If it has to be used as an embedded model manager behind a con-
current collaborative modeling application, one common DL can be generated for
the both collaborative modeling applications at once.

As GMoVerS is used behind the DL manager service, it is applied to the meta-
models used in Kotelett (Section 7.2) and CoMo (Section 7.3). In this case,
GMoVerS is used as embedded tool. Thus, the DLs for both concurrent collabora-
tive modeling applications Kotelett, CoMo and sequential collaborative modeling
application GMoVerS (i.e., DL manager) are generated altogether.

As experimental illustration, GMoVerS is applied to UML state machine diagrams
[Raumbaugh et al., 2004, pp. 81ff]. Figure 8.2 depicts the simplified substructure
of the meta-model for UML state machine that is utilized for validation purposes.
The simplified meta-model depicted in Figure 8.2 presents a state that might be
one of simple state with a name, initial or final states, transitions including guard,
trigger and action.
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0..1
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f rom

guard

trigger

FinalInitial
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Figure 8.2: Simplified Substructure of UML State Machine Meta-model
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8.2.2 Concrete Architecture

GMoVerS stores the DL-based modeling deltas in its delta repositories. In turns,
it is developed by the specific orchestrations of the DL services that can directly
operate on the DL-based modeling delta repositories. Figure 8.3 illustrates the
concrete architecture of GMoVerS based on the reference architecture depicted in
Figure 8.1.
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Figure 8.3: Concrete Architecture of GMoVerS

The concrete architecture in Figure 8.3 considers all orchestration scenarios of
sequential collaborative modeling such as adding, committing, updating, reverting
discussed in Section 8.1.

The DL-based concurrent and sequential collaborative modeling applications can
also be used either in a combined way or independently. The concrete architecture
in Figure 8.3 considers independent use of GMoVerS from the other DL-based
concurrent collaborative modeling applications. However, GMoVerS can also be
utilized as the DL-based model repositories together with existing modeling tools
such as Rational Software Architect (RSA, Visual Paradigm (VP) or EMF-based
tools. Thus, the concrete architecture further depicts the DL adapter service
to enable integration of GMoVerS with other modeling tools. The DL adapter
service is utilized to convert models in exchange formats (e.g., XMI exported from
these tools) into internal TGraph models (TGModel or TGRevision) and vise
verse. Because, GMoVerS processes software models using TGraph (cf. Section 2.4),
internally.

GMoVerS is also used together with other DL concurrent collaborative modeling
applications to provide the model management features. All model management
features provided by the DL manager service are provided by this sequential col-
laborative modeling application. In case of the DL manager service, the same
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concrete architecture in Figure 8.2.2 is utilized without the DL adapter service.
As long as sequential collaborative modeling is used as the model manager for the
concurrent collaborative modeling applications, models are created directly using
the concurrent collaborative modeling editors.

8.2.3 GMoVerS Tool

Figure 8.4 displays a screenshot of the GMoVerS development environment.

Meta-models

Models

Modeling 
Deltas

Version 1
Version 2 Version 3

diff. delta diff. delta active delta 

Terminal to execute 
commands

Figure 8.4: GMoVerS Screenshot

The package explorer on the left shows arrangement of the working space including
the meta-model in Figure 7.6, the models and modeling deltas in the example in
Section 5.2. Particularly, all DL-based modeling deltas are stored in the GMoVerS
repository. On the upper row of the right side, Figure 8.4 displays three subse-
quent revisions of the example model in Figure 5.7 in the exchange formats. The
central row of the right shows two backward modeling deltas and one active delta
in Figure 5.12, Figure 5.8 and Figure 5.9, respectively. Finally, the most bottom of
the screenshot is a terminal (command line) to type and perform aforementioned
operative scenarios such as add, commit, update, revert, delete, etc.

While committing changes from workspace onto the main repository, conflicts
might occur between differentiated models. In such cases, conflicts have to be
detected when they arise and resolved either automatically (if possible) or semi-
automatically. If the user involvement is needed in case of the semi-automatic way,
the sequential collaborative modeling system has to provide interactive conflict
resolution feature by browsing conflicts. The merge feature is provided by the
DL merger service. However, a feature for the interactive resolution of conflicts is
planned as the future work.
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8.3 Versioning Sustainability Reports

Sustainability reports are documents which describe data about different perfor-
mances of companies. They intend to report and analyze sustainability informa-
tion to provide sustainable future. During sustainability development, reports have
to be stored and versioned to analyze the histories of sustainability reports, to rep-
resent changes and improvements of sustainability data. Sustainability reporting
allows companies to document their performance on specific sustainability issues
by measuring, tracking, and monitoring companies information such as economy,
environment or social impacts [Kuryazov et al., 2013].

Sustainable Online Reporting Model (STORM) [Solsbach et al., 2011] which is
developed at the University of Oldenburg aims at dialogue-based public or private
sustainability reporting which intend to engage stakeholders in sustainability de-
velopment. While maintaining sustainability reports, STORM stores all required
information in its relational database and obtains various reports by appropriate
requests. The storing procedure used in STORM may lead to "flood of informa-
tion" within the system. Another issue which appears in case of database approach
is to revise reports in a way which is easy to analyze the revision histories.

The DL-based difference representation approach was applied to versioning sus-
tainability reports at companies [Kuryazov et al., 2013]. Versioning sustainability
reports does not directly belong to the MDSE domain. However, the core problem
is still similar and can be resolved by the DL-based model versioning technique.
Because, sustainability reports at companies are also subject to constant changes
and evolution. The changes in sustainability reports are represented by DL and
version control is supported by GMoVerS.

Section 8.3.1 illustrates the meta-model (i.e., schema) of sustainability reports to
generate a specific DL.

8.3.1 Meta-Model

According to the data structure of sustainability reports, version control of reports
and associated data in STORM is not as simple as version control of textual
documents. By looking at sustainability reports and associated data, the data
structure of them can be viewed as a sustainability meta-model. The problem
of version control of sustainability reports is a similar issue to version control of
sustainability models. In case of STORM, reports are stored in a database based
on schema which is, at some point, inconvenient to provoke delta between the
revisions and analyze the version histories. Taking these issues into consideration,
the DL approach was applied to STORM sustainability models.

To derive a specific DL for representing differences between the report revisions,
the approach has utilized the schema of sustainability reports depicted in Fig-
ure 8.5. As STORM takes advantage of relational databases to store its sustainability
reports, this schema is designed based on the database schema of STORM.
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Figure 8.5: Simplified Schema of Sustainability Reports

According to the schema (i.e., meta-model for DL) in Figure 8.5, a report (with
name and status) may consist of several articles. In the same vein, each arti-
cle (with a title, text and status) consists of multiple indicators (with indicator,
name and value). In order to provide the DL-based versioning of sustainability
reports conforming to this schema, each report is considered as a Versioned Object,
whereas each versioned object has a time-stamp date, revision number version and
indicator predecessor to trace the predecessor object of each versioned object. In
this way, differences between each subsequent pairs of revisions are identified as
one modeling delta.

The simplified schema in Figure 8.5 presents only an excerpt data schema of the
sustainability report within STORM. The complete STORM schema conforms the GRI
C3 standard.

* *
1
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changeDate()
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changeIndicator(String i)
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delete()
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changeArticle(Article a)
delete()

Figure 8.6: Abstraction of DL for Sustainability Reporting

The schema depicted in Figure 8.6) shows the abstract DL notation to represent
modeling deltas in STORM. As the DL approach is meta-model generic, it is applied
to meta-model-like schema. The DL generator service imports the data schema
of sustainability reports (cf. Figure 8.5) and generates a sequence of operations
which represents a minimal set of possible activities to store report versions (cf.
Figure 8.6). The operations represent only differences in modeling deltas. Mod-
eling deltas, in turn, allow for identifying, analyzing and reusing the revisions of
sustainability reports in convenient ways.

8.3.2 Concrete Architecture

The sequential collaborative modeling scenario of sustainability reports is devel-
oped based on the reference architecture of DL depicted in Figure 8.1. The most
sequential collaborative modeling scenarios are covered in versioning sustainability
reports. The similar DL-based modeling delta repositories are utilized for storing
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the backward deltas in case of the DL-based sequential sustainability report ver-
sioning. The same concrete architecture of GMoVerS depicted in Figure 8.3 is used
to develop the sequential version control application for STORM.

8.4 DL Contributions

As discussed in Chapter 3.2, sequential collaborative modeling is quite crucial
for storing and managing the histories of evolving software models. The storage
of evolving software models and their revision control is a challenging research
question. Therefore, the DL approach in this thesis is utilized in developing a
solid and competitive sequential collaborative modeling application.

The GMoVerS application of DL can be applied to a wide range of modeling lan-
guages by providing the meta-models of modeling languages (RQ1: Meta-model
Generic). As long as the DL services are not strongly consolidated to the GMoVerS
tooling environment, they can be optimized, extended with additional features or
completely replaced by other implementation as well (RQ3: Extensible). Further
DL services can be realized and integrated into the DL service orchestrations.
They are capable of handling the DL-based modeling deltas.

Modeling deltas consist of DL operations to represent only changed modeling arti-
facts RQ8: Delta-based. The unchanged modeling artifacts are not included simply
not defining DL operations for them. The DL-based representation of backward
deltas in sequential collaborative modeling forms directly the executable descrip-
tions of model differences, i.e., the DL-based modeling deltas can directly be ap-
plied to models in order to transform them into earlier revisions RQ7: Executable.

The DL-based sequential collaborative modeling support can be used as either an
independent model version control system or integrated with existing DL-based
concurrent collaborative modeling applications. It can further be integrated with
external modeling tools by the DL adapter service (RQ2: Modeling Tool Generic).
It is also utilized in the DL concurrent collaborative modeling support Kotelett
and CoMo as the DL manager in the server side. The generic DL-based represen-
tation is used as a common change representation notation and exchange format
for all revision control-specific orchestrations described in Section 8.1. The both,
concurrent and sequential collaborative modeling applications can take advantage
of the same underlying DL-based modeling delta repositories as Single Point of
Truth.

The DL and its sequential collaborative modeling application is further applied to
represent the changes of sustainability reports which is not directly in the MDSE
domain.
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8.5 Summary

This chapter has presented the DL-based sequential collaborative modeling appli-
cation GMoVerS. The operation-based, textual DL approach facilitates a difference
representation notation for representing differences between the subsequent revi-
sions of software models in case of sequential collaborative modeling.

DL introduced in Chapter 5 is applied to GMoVerS in Section 8.2 using the specific
orchestrations of the DL services explained in Chapter 6. The same sequential col-
laborative modeling support is applied to version sustainability reports in STORM.

In the DL-based sequential collaborative modeling applications, differences be-
tween the subsequent revisions of software models are represented by the DL-based
modeling deltas. The use of DL-based modeling deltas in GMoVerS and STORM pro-
vides high performance in all orchestration scenarios of sequential collaborative
modeling and the efficient storage of model differences. Because, the DL-based
modeling deltas embody minimal and relevant information about model differ-
ences and form directly the executable descriptions of model differences. High
efficiency and performance of the sequential collaborative modeling is significant
contribution of the DL approach especially because of the large-scale, complex and
constantly evolving software models.





Chapter 9

Model History Analysis

As discussed in Chapter 7 and Chapter 8, software models with a large number of
revisions and artifacts are developed, managed and maintained using concurrent
and sequential collaborative modeling applications. In case of both applications,
collaborators feel a need for analyzing the model histories, comprehending and
understanding what changes are made by other collaborators or know how their
models are evolving. Also, observing the model history and its evolution process
assists the users in making important decisions in maintenance of their model-
based software projects. Considering these concerns and significance, this chapter
explains model history analysis application of the DL approach.

The model history forms overall evolutionary life-cycle of software models. The
issue of model history analysis consists of two sub-challenges that have to be re-
solved. Firstly, information about the model histories have to be mined from the
model repositories where modeling artifacts are produced and archived during the
evolution process. Secondly, model history data that is mined has to be properly
displayed to collaborators using the browsing and visualization techniques as dis-
cussed in Section 3.3. These two features contribute to efficient analysis of the
evolutionary life-cycle of software models with a particular focus asking questions
such as who? why?, when? and what?.

This chapter discusses the reference architecture for the DL-based model history
analysis applications in Section 9.1 and explains orchestration scenarios by revis-
iting the discussions in Section 3.3 about the history analysis of software systems.
Section 9.2 introduces the model history analysis application of the DL approach.
Section 9.3 discusses some contributions of the DL-based model difference repre-
sentation to the model history analysis application. Finally, Section 9.4 sums up
this chapter by drawing conclusions about the DL model history analysis applica-
tion.

187
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9.1 Reference Architecture

This section revisits the basic categories of history information, the purpose of
history analysis, history analysis steps in Section 3.3. They can partially be uti-
lized in the model history analysis application of this thesis. This section further
presents a reference architecture and the service orchestration scenarios for DL-
based model history analysis.

Infrastructure.
Like other DL applications, several construction technologies are required in build-
ing an infrastructure for model history analysis. For this purpose, this section takes
advantage of already existing architectural foundations and patterns of software
history analysis discussed in Section 3.3.

Information Resources (Software Repositories). As long as the DL-based con-
current (e.g., Kotelett, CoMo) and sequential (e.g., GMoVerS) collaborative
modeling applications utilize the common DL-based modeling delta reposi-
tories (cf. Figure 9.1) for storing and archiving software model histories, the
DL model history analysis application takes advantage of the same common
repository as its information resource.

Information Categories. As classified by [Kagdi et al., 2007], there are three
basic categories of information in software repositories that can be mined:
model revisions – the sequential and concurrent states of software models,
differences between revisions – the differences (modeling deltas) between the
revisions of software models, and meta-data about model differences – the
commit messages, user-ids, time-stamps, and other similar information. The
meta-data of model changes are stored in modeling delta repositories in this
thesis, as well. In developing the DL-based collaborative modeling infras-
tructures, all aforementioned data is stored in the central modeling delta
repositories.

In general, the problem of model history analysis can be leveled into two com-
mon objectives: (1) representation of model differences in modeling deltas and (2)
extracting necessary information from these repositories [Robbes, 2007]. Tracing
the history of any modeling artifact is heavily depend on the representation tech-
niques of models, modeling deltas, and identification of differences and references
(inter-model and delta-model).

Reference Architecture.
Figure 9.1 depicts the reference architecture for DL-based model history analysis.

According to [Robbes, 2007], the history analysis of software models consists of
several sub-activities as follows:

Change Representation. Change operations are usually distinguished in two
forms: atomic operations: artifact creations, artifact deletions, artifact’s
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Figure 9.1: Reference Architecture for DL-based Model History Analysis

property changes and composite operations: moves [Robbes, 2007]. As intro-
duced in Section 5, DL represents all possible model changes by the atomic
operations create, delete, change and stored in DL-based modeling deltas
repositories. Model changes are represented in modeling deltas that stored
in the repositories.

Data Extraction. This thesis has introduced the DL tracer service in Section 6.7
which helps to extract model history information from the DL-based mod-
eling delta repositories. The reference architecture depicted in Figure 9.1
utilizes the DL tracer service to trace the chain of modeling deltas and ex-
tract necessary data based on the queries provided by users.

Browsing, Visualization. After extracting necessary history information from the
repository based on the given queries, that information has to be browsed
or visualized in convenient ways, so that users can analyze the visualized
data. The visualization/browsing usually depends on the users in which
ways they want to interpret these history data. Thus, this part of the refer-
ence architecture is flexible and clearly separated from the rest of the refer-
ence architecture. Section 9.2 demonstrates the visualization and browsing
techniques that are used in the realizations of the DL-based model history
analysis application.

Querying. The model history application is usually supposed to operate based
on the queries that users might ask. Below, several questions are listed that
the DL model history analyze application is capable of answering. Designers
and stakeholders might ask various questions based on their needs, as well
as for extracting necessary knowledge about the change history of modeling
artifacts. In order to analyze the histories of whole model or to trace par-
ticular artifacts of evolving models, collaborators need to determine answers
to several questions as follows:

1. How often does a modeling artifact change?

2. When was a modeling artifact created?

3. When was a modeling artifact deleted?

4. Which modeling artifacts are constantly changing?

5. How does the history of a modeling artifact look like?

6. How were the states of a whole model in earlier versions?

7. What are the differences between any two versions of a model?

8. Who made a particular change?

9. Which modeling artifacts are associated to a modeling artifact? etc.
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There are several questions that can be answered by analyzing meta-data
stored in the repositories. For instance, the questions formulated with why
are usually answered by analyzing commit messages in the repositories. The
questions formulated with when are usually answered by considering the
time-stamps stored as the part of meta-data.

The questions formulated with who can answered by creating an additional
attribute in the root meta-class of meta-models. For instance, in case of
the Kotelett tool, the root meta-class ModelElement of the meta-model
depicted in Figure 7.2 has an attribute lastChangingUser which is used to
store the names of users that changed modeling artifacts. In this way, the
most questions formulated with who can be answered.

These questionnaires are also partly addressed by Wenzel et al. [Wenzel,
2008, Wenzel and Kelter, 2008]. These questions are listed in a generalized
form and addressed to by the model history analysis of the DL approach in
this chapter.

9.2 Model History Analysis

As long as the DL operations refer to modeling artifacts by their persistent identi-
fiers, connected subsequence (sometimes called Traceability Links [Meier and Win-
ter, 2018]) of history information (correspondences) can easily be detected from
the chain of modeling deltas. By using these associated change operations in
modeling deltas, the history of any selected artifact in any model revision can be
traced back or forward by eliciting necessary information like change type, model-
ing concept, etc. Back tracking of associated operations leads to the creation point
(revision) of the selected modeling artifacts, whereas forward tracking leads to the
working copy of modeling artifacts. Eventually, all history information between
the creation point and working copy (evolutionary life-cycle) of modeling artifacts
is available for analysis. As already described in Chapter 5, the DL operations
consist of reference part which allows for identifying (model-delta) and tracing
(inter-delta) model changes by the global and persist UUIDs.

As explained in Chapter 6.7, this research work provides the DL tracer service
which allows for tracing a specific (set of) modeling artifacts and gather required
information about the selected modeling artifact(s). The DL tracer service makes
use of the idea of program slicing technique [Weiser, 1981] for detecting the neces-
sary slice of change operation from modeling deltas. The slicing process continues
until it finds all necessary operations by matching the references between modeling
artifacts and delta operations.

The history analysis application – MoHA is built on the top of the DL change
tracer (Figure 9.2). In order to detect history information based on user queries,
the change tracer fetches a set of modeling deltas from the repository and runs
throughout these deltas based on persistent identifiers by gathering required infor-
mation from each modeling delta. The outcome of the change tracer service is the
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associated (sub-)sequence of the change operations (history information) about
the selected modeling artifact(s).

Model History Analysis
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:TextualQueries

:Deltas:Results
User

TGraph and Tabular 
Visualizations

Tracer

Figure 9.2: Concrete Architecture of Model History Analysis

MoHA firstly builds a history tree for each model running throughout all modeling
deltas to show models (available in repository) as a general tree (A). For example,
on the left side of Figure 9.3, all model revisions are outlined in a tree view (B)
including all modeling artifacts and their attributes. Then, the DL tracer service
traces the history of selected modeling artifact based on its persisted identifier.
After detecting a requested change operation, the change tracer verifies the identi-
fier of that change operation with the unique identifiers found from the successor
and predecessor modeling deltas if necessary. Finally, the change tracer creates a
chain of change operations where all operations are associated with each other and
each operation embeds all necessary history information of the requested modeling
artifact.

The screenshot in Figure 9.3 depicts the current prototypical implementation of
the DL-based MoHA. It displays the example model from Section 5.2. It further
shows a list of available models in the repository under the Select the Model pop-
up menu (A). If any model is selected from the list, all existing revisions of the
selected model are then shown in the model history tree (B), right below that
pop-up menu. The model history tree shows all model revisions in a tree view
including modeling artifacts belonging to each revision.

A

B

C

E

D

Figure 9.3: Screenshot of MoHA



Chapter 9. Model History Analysis 192

The pop-up menu under the section action you want to perform (C) consists of all
the history analysis questionnaires described in Section 9.1. In order to find out
the answer for analysis questions, users can select corresponding model revision
or artifact from the model history tree and the question they want find out an
answer from the menu. The history report then appears in the tabular view (D)
displaying history information according to user’s choice. In this example, the
tabular representation view (D) displays the comparison of the two revisions of
the model. However, it is always adjusted to represent relevant query results,
accordingly. The color area (E) shows the type of change with different colors.

MoHA utilizes tabular, highlighting (as depicted in Figure 9.3) andmodel-based forms
of visualizations. If users intend to see the whole model in a particular revision,
they can simply double-click that revision in the revision tree (B). Eventually, the
double-clicked revision is opened in the TGraph forms.

9.3 DL Contributions

Each DL operation depicts sufficient history information about each individual
model change. The reference part of the DL operations embodies globally unique
and persistent identifiers, thus, model changes are easily identified by these ref-
erences. The correspondences between modeling artifacts in model revisions are
effectively traced, as well. Each of these correspondences defines the occurrences
of artifact changes. All change occurrences and types they depict are traced by
the DL tracer service. The most desired analysis questions can be answered by
querying the model repository.

Based on the DL representation, advanced querying, browsing and visualization
features for software model repositories can efficiently be developed. The contri-
butions of DL to model history analysis are manifold:

– It improves tracing performance by small change operations in modeling deltas.

– It allows for tracing model changes without ignoring actual modeling concepts.

– Whole models or their certain aspects can be queried and the query results can
be browsed and visualized in many different ways.

– As long as only changed model elements are referred to in modeling deltas,
tracing the change histories from modeling deltas is quite effective to detect
required history information.

– Analysis questions can be extended by just extending the tracer service.

MoHA takes advantage of the tabular view and graph visualization techniques for
visualizing its query results. These visualization techniques are completely sep-
arated from the DL tracer service. Thus, both tracer and visualization can be
further developed and extended without relying on each other.
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9.4 Summary

As proof of the concept, this thesis has applied the proposed DL to the model
history analysis, as well. As all three DL applications operate on the DL-based
modeling delta repositories, the DL-based MoHA can be used alongside the DL-
based Kotelett, CoMo and/or GMoVerS applications. Moreover, the history anal-
ysis support can also be utilized as a standalone tool.

In order to develop the DL model history analysis, the DL approach provides the
DL tracer service. The DL tracer service can query the DL-based modeling delta
repositories and its outcome is a list of associated artifact changes that can be clas-
sified based on analysis questions introduced in Section 9.1. The results of the DL
tracer service can then be visualized in convenient ways for further analysis. The
current prototypical implementations of the history analysis application (MoHA) vi-
sualizes these change reports using the tabular, highlighting andmodel-based views.
But, these change reports can notably be visualized in any other forms which users
want to see if the further visualization features are implemented.





Part V
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One of the main goals of any research work is its validation based on different
criteria and requirements. In the same vein, Section 3.1.4 has expressed the ex-
pected benefits of DL for concurrent collaborative modeling, Section 3.2.4 has
explained the expected benefits of DL for sequential collaborative modeling, and
Section 3.3.4 has defined the expected benefits of DL for model history analysis.
Eventually, Section 4.3 has generalized these expected benefits and defined several
requirements for the DL-based difference representation approach, its services and
applications. The common required support for all three application areas was to
have a common underlying model difference representation technique and further
supplementary services to develop these applications by the specific orchestrations.
To that end, Part III has introduced Difference Language for representing model
differences in modeling deltas and a set of supplementary services to extend the
application areas of DL.

This part of the thesis inspects the main contributions of DL, its services and
applications based on the requirements defined in Section 4.3 and required support
defined in Chapter 3.





Chapter 10

Validation

In Section 10.1, this chapter demonstrates the practical value and usefulness as
well as flexibility of the DL concepts by several applications. The DL approach is
validated to achieve its intended goals by fulfilling the requirements identified in
Section 4.3. More specifically, these requirements are revisited in Section 10.2 for
validating that these requirements are satisfied by the DL approach throughout
this thesis. All DL concepts, its services and applications provide evidence to the
fulfillment of these requirements. Section 10.3 inspects the DL-based difference
representation approach and its main properties based on expected benefits (de-
fined in Chapter 3) concurrent and sequential collaborative modeling, and model
history analysis. This chapter is concluded in Section 10.4.

10.1 Applicability

In Chapter 5, the operation-based, meta-model generic difference language has
been explained in detail illustrating the simplified example. Furthermore, Chap-
ter 6 has introduced a catalog of the DL services that are capable of producing,
manipulating and reusing the DL-based modeling deltas. The concrete applica-
tions of DL are presented in Part IV by concurrent collaborative modeling ap-
plications Kotelett for UML class diagrams, CoMo for UML activity diagrams
based on Sirius-based UML Designer, sequential collaborative modeling applica-
tion GMoVerS, and model history analysis MoHA as proof the DL concepts.

Modeling Languages.
In order to validate the ideas behind this thesis, several modeling languages are in-
spected according to their popularity among academicians, researchers and indus-
try experts. Eventually, several UML diagrams are chosen for validation purposes
in this thesis. The approach is validated in UML class diagram (in Chapter 7),
activity diagrams and sustainability reports (in Chapter 8). UML state machine
diagrams are also considered in experimental validations.
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These applications are flexible and can be extended for further modeling languages
with less implementation effort. DL is generic with respect to the meta-models of
modeling languages. For this purpose, Section 5.1 has introduced the DL generator
service. It is capable of importing the meta-models of modeling languages and
deriving the specific DLs from the given meta-models. If the meta-models of
modeling languages are changed, i.e., updated with new revisions, for example,
standard UML 2.2 profiles are being updated with UML 2.4 profiles, these new
profiles can be imported and new specific DLs can again be generated. Specific
DLs can be derived as many time as needed regardless of changes on meta-models.
With such feature, the approach does not require extra effort for generating new
specific DLs if the meta-models of modeling languages are modified or extended
with additional modeling concepts.

The meta-models can be designed combining content (i.e., abstract syntax) and
layout (i.e., concrete syntax) of modeling languages. The layout part is used to
depict notation for layout information for the content part. In the concurrent
collaborative modeling scenario, modeling editors require layout information to
display modeling artifacts on their editors. The layout part of the meta-models
allows for representing layout information (in modeling deltas) for graphical editors
by the DL operations. Additionally, layout information represented by the DL
operations are exchanged among several parallel tool instances. The layout part
of the meta-models in the DL approach enables extend-ability of the approach
for further modeling languages and tools. In order to extend the DL applications
for further modeling languages, the modeling content part of the meta-models
should be replaced by the relevant meta-models of modeling languages. Eventually,
the same layout notation can be reused for extending the collaborative modeling
framework for further modeling languages, probably with very less effort.

DL Services.
All DL services explained in Section 6 are realized based on the service-oriented
software development concepts [Erl, 2005]. After all, these services are orches-
trated in order to perform certain chain of operations in the reference architectures
of the DL applications. Thus, these DL services can be configured if needed or
replaced by other implementations and/or extended with further services. Only
prerequisite for these services is to recognize the syntax of DL. After adding newly
implemented services or optimizing existing ones in the service catalog of DL, these
services can be utilized in service orchestrations in developing and extending the
DL applications. If needed, new reference architectures or orchestration scenarios
can be defined by using the same DL services. These DL services can be reused
in reference architectures and orchestration scenarios as many times as needed.

DL Applications.
The DL applications such as concurrent collaborative modeling Kotelett, CoMo,
sequential collaborative modeling GMoVerS and model history analysis MoHA are
emerged by the specific orchestrations of the DL services. Accordingly, their func-
tionality and features can also be improved by extension of the DL services. For
instance, the DL change listener and delta applier service can be extended in the
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DL service catalog for other modeling tools, whereas the whole collaborative mod-
eling infrastructure can be taken over for that modeling tools. As explained in
Section 7, if the change listener feature of the DL calculator service and DL ap-
plier service are extended for new domain-specific modeling tools and new specific
DL is generated for that domain-specific modeling language, the whole DL-based
collaborative modeling infrastructure can be utilized for collaborative modeling,
model repository management, and model history analysis.

The concurrent collaborative modeling tool Kotelett represent software models
under collaboration using the graph-like structures, as well. The graphical editor of
the Kotelett tool is separated from its internal graph representation. This allows
for extending and improving the graphical editor of the Kotelett tool as much as
needed without changing underlying DL services. Because the DL services calcu-
lator and applier operate on the graph representation of models, whereas there is a
bidirectional synchronization between graphical editor and graph representation.
This feature of the approach enables tool developers to define further graphical no-
tations, shapes and views as they want and reuse existing collaborative modeling
infrastructure.

10.2 Fulfillment of Requirements

In order to accomplish a solid, appropriate, generic and effective difference rep-
resentation approach for collaborative MDSE, this thesis has identified several
requirements for model difference representation in Section 4.3. These require-
ments have stayed as the central focus and the DL approach has attempted to
satisfy these requirements throughout this thesis. This section combines and sum-
marizes all DL features fulfilling these requirements. Below, these requirements are
revisited together with the fulfillment by the DL features [Kuryazov and Winter,
2015a].

– RQ1: Meta-model Generic. There are several modeling languages following
diverse formal specifications and modeling concepts. The abstract syntax of
modeling languages, i.e., the modeling concepts are defined by their corre-
sponding meta-models. As defined in Section 5.2, DL can be applied to the
wide range of modeling languages if their meta-models are provided. Con-
ceptually, DL is a family of model difference languages. Specific DLs are
derived from the meta-models of modeling languages by the DL generator
introduced in Section 5.1. For instance, the specific DLs for UML class di-
agrams (in case of Kotelett in Section 7.2) [Kuryazov et al., 2018], UML
activity diagrams (in case of CoMo in Section 7.3) [Appeldorn et al., 2018] and
Sustainability Reports (in Section 8.3) [Kuryazov et al., 2013]are generated
by the DL generator importing their respective meta-models. After generat-
ing specific DLs for them, their changes on the instance models conforming
to these given meta-models are represented by the specific DLs.
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– RQ2: Modeling Tool Generic. There are several model designing tools (e.g.,
Sirius-based UML Designer, Rational Software Architect - RSA, etc.) as well
and they have own internal model representation structures. To be able to
handle models designed in different modeling tools, DL is not restricted
to a certain modeling tool. This thesis has introduced the DL adapter in
Section 6.2 for transforming software models from XMI exchange formats
to TGraph internal structures and vice verse. For instance, the sequential
collaborative modeling application GMoVerS is applied to version control
of the models designed in RSA. Moreover, the meta-models of modeling
languages can be designed for representing layout information together with
the content of languages which allows for representing layout changes in DL
terms. This feature of the approach extends applicability of DL in various
modeling tools [Kuryazov, 2014]. If the DL calculator and applier services
can be extended, the approach can be applied to various modeling tools as
it is applied to UML Designer.

– RQ3: Extensible. DL is flexible, i.e., it can be further improved, extended,
adapted and integrated. Particularly, the provided services by the approach
are available for further improvements and extensions. Because, these ser-
vices are realized based on service-oriented and component-based concepts,
and orchestrated in the reference architectures in Section 7.1 and Section 8.1.

– RQ4: Operation-Based. Section 5.2 has shown simplified example of the
DL-based model difference representation. In DL, artifact changes are rep-
resented using simple edit operations. The DL operations consider the com-
posite structure of modeling concepts. DL is a special form of domain spe-
cific language being completely independent from the underlying technical
spaces. DL represents all types of model changes using three atomic change
operations such as create, delete and change.

– RQ5: Model Reference. In order to refer to modeling artifacts from DL
operations in modeling deltas (cf. deltas in Section 5.2), DL operations em-
body references (i.e., UUIDs) to modeling artifacts. The references so-called
delta-model references are used in applying modeling deltas to differentiated
models and analyzing the change histories of evolving models.

– RQ6: Expressive. The syntax of DL operations (Section 5.2) is meaningful
being easily understandable by users and is practical to implement using
various technical spaces. The DL syntax is self-expressive enabling tools
developers to understand it and develop further tools on the top. By looking
at the DL syntax, it can easily be comprehended what kind of modeling
artifact is being changed including its value and what kind of change is
made.

– RQ7: Executable. DL operations in modeling deltas (e.g., deltas in Sec-
tion 5.2) form the executable descriptions of model differences. Modeling
deltas are then applicable to its differentiated models in order to transform
them from one revision to another. This thesis has introduced DL applier
service in Section 6.4 to enable applicability of modeling deltas.
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– RQ8: Delta-Based. Only changed modeling artifacts are referred to in mod-
eling deltas. Unchanged modeling artifacts are implicitly excluded by just
not defining DL operations for them in modeling deltas. As described in
Section 5.2.2, modeling deltas consist of a set of operations which refer to
only changed modeling artifacts. Considering only changed modeling arti-
facts bring several advantages in terms of time and storage memory in the
sequential collaborative modeling scenario, as well as in the synchronization
performance of model changes over network in the concurrent collaborative
modeling [Cicchetti et al., 2007], [Herrmannsdoerfer and Koegel, 2010].

– RQ9: Persistent. DL change operations in modeling deltas are persistent
throughout the evolutionary life-cycle of software models. Each operation in
modeling deltas can be identified by their UUIDs with respect to its succes-
sors and predecessors. It allows for maintaining and persisting each modeling
artifact together with the change history. These identifiers serve for tracing
the associated set (chain) of change operations from the chain of modeling
delta by inter-delta references. Using these identifiers, the change histo-
ries of modeling artifacts are traced by the DL tracer service for extracting
necessary knowledge for further analysis.

– RQ10: Traceable. The DL operations in modeling deltas are available for
further reuse and utilization. DL is straightforward and accessible by the
DL tracer service which is used for further analysis in model history analysis
application MoHA. The change histories stored in the DL-based modeling
delta repositories are analyzed by mining necessary information with the DL
tracer service (cf. Section 6.7) [Kuryazov and Winter, 2015b].

– RQ11: Relevance. As described in Section 5.2.2, DL-based modeling deltas
consist of precise information about each change including the type of change,
a reference to modeling artifact, and a modeling artifact which has to be
changed. These operations allow for representing all model changes embody-
ing all necessary information about each independent change. The relevance
and correctness of DL operations is affirmed by the meta-models of model-
ing languages. DL-based modeling deltas are complete consisting of relevant
information about differences between the subsequent or parallel revisions
of models.

These requirements have played an essential role in finding suitable difference
representation approach in modeling deltas for collaborative MDSE. By fulfilling
these requirements, DL provides more efficient ways of managing, manipulating
and reusing difference information improving performance of data processing. The
aforementioned properties provided by DL contribute to solid and common syn-
tactic grounds for representing model differences in diverse domains and effortless
development of further services on the top. DL has satisfied aforementioned prop-
erties throughout this thesis. It can easily be adapted for many domain-specific
modeling languages with respect to their meta-models regardless their graphical
constructs.
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10.3 Fulfillment of Expected Benefits

In Chapter 3, each use case (concurrent and sequential collaboration, and history
analysis) has defined a list of the expected advantages of DL. This section recalls
these expected advantages if they are provided by DL.

Benefits for Concurrent Collaborative Modeling.
The technical challenges described in Section 3.1.2 and required support defined
in Section 3.1.3 are satisfied by the generic DL.

The modeling deltas in concurrent collaborative modeling are represented by DL
enabling quick synchronization of change between collaborators in real-time. DL
supports several following advantages in concurrent collaborative modeling:

1. The model changes represented by DL completely satisfy operational syn-
chronization principles which provide high performance in change synchro-
nization in real-time. This benefit is already accomplished in case of Kotelett
(Section 7.2) and CoMo (Section 7.3) applications.

2. The high performance by DL-based change representations allows for avoid-
ing possible change conflicts in real-time. Kotelett is used in Software
Engineering lectures for teaching purposes by a group of students including
more than ten collaborators in parallel. The tool was also used experimen-
tally by more than ten users located over long distance (Germany, Canada,
Mozambique, and Uzbekistan), all connecting to the same server located in
Germany. During these experiments, the tool has shown sufficiently high
performance by synchronization of small DL-based modeling deltas [Kurya-
zov et al., 2018].

3. According to general language design, DL serves as a common change repre-
sentation and exchange format for various components and services of con-
current and sequential collaborative modeling, and history analysis. As dis-
cussed in Part IV, concurrent and sequential collaborative modeling scenar-
ios, as well as model history analysis application take advantage of the same
common DL-based modeling deltas repositories as the single point of truth.

4. The same underlying DL is utilized to represent changes on concurrent re-
visions (in forward deltas), differences between the subsequent revisions of
software models (in backward deltas) and working copies (in active deltas).

5. Any revision of shared models or their parts can be traced and browsed for
further analysis by the DL tracer service based on UUIDs.

6. In concurrent collaborative modeling, modeling deltas consisting of small set
of DL operations are easily be transferred over the network. Since it consists
of only changed parts of software models, the performance has mostly been
high.
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Benefits for Sequential Collaborative Modeling
In case of sequential collaborative modeling, representations are based on the
change-oriented technique, i.e., only changed modeling artifacts are considered in
backward modeling deltas. Storing only changed modeling artifacts is quite effi-
cient in case of a huge amount of model revisions with several thousand modeling
artifacts. DL yields several significant contributions to sequential collaborative
modeling:

1. DL facilitates tool developers’ productivity with precise, concise and clear
descriptions (extensible). It is fully expressive, yet unambiguous and neces-
sary knowledge about each change can easily be gained.

2. It is declarative enough by making implicit any concepts or mechanisms that
can be intuitively interpreted from the context. It does not rely on specific
technical spaces or modeling languages.

3. DL-based modeling deltas form directly executable descriptions of model
differences. It allows for converting software models from one revision to
another, applying modeling deltas by the DL applier service.

4. DL-based delta operations embody only changed parts of software models
saving memory and time.

Benefits for Model History Analysis.
Since software models are the visual form of software system design and consider all
aspects of design level concepts, the DL tracer service provides advanced querying,
browsing and visualization features for software model repositories.

1. The DL tracer service improves the performance of data extraction by in-
specting the DL-based modeling delta repositories. The extracted data is
then visualized in convenient ways for collaborators and stakeholders.

2. Regardless the textual representation of the DL-based modeling deltas, re-
quired history data (i.e., model changes) can be traced by following actual
modeling concepts.

3. The DL tracer operates based on the queries provided by collaborators. It
can trace complete models or their certain aspects.

10.4 Summary

This chapter has recalled the DL-based collaborative modeling applications and
modeling languages that the DL-based collaborative modeling infrastructure either
fully or partly validated. Specific DLs conforming to specific modeling languages
are generated by their underlying meta-models, i.e., language concepts. These
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specific DLs are then utilized as the common underlying modeling delta represen-
tation means, more prominently, for both concurrent and sequential collaborative
modeling, as well as model history analysis. Because, there are very few ap-
proaches which are meant to cope with both collaborative modeling scenarios by
the same underlying representation approach for MDSE. The DL-based modeling
delta representation and its supplementary services fulfill the requirements defined
in Section 4.3. Moreover, as the result of the studies and investigations in Sec-
tion 3, several expected advantages of difference representation for concurrent and
sequential collaborative modeling, and model history analysis are identified. DL
and its services are capable of delivering these expected advantages.

In general, the significance and quality of any research work or thesis is estimated
by their applicability. In order to examine the applicability and usability of the
approach, DL is applied to various applications which are validated in several
domain-specific modeling languages. Although the DL-based collaborative mod-
eling application is not the end products in industrial scale, yet as a research
prototype it has performed sufficiently and conveyed considerable results.



Chapter 11

Conclusion

Generally, this thesis addressed the problem of model difference representation by
a Difference Language (DL) and its applications by providing several services.
Part I has given a brief introduction to the overall collaborative development and
defined main research objectives of this research work. In Part II, Chapter 3
was dedicated to study the state of the art in source code-driven collaborative
development to derive underlying similar concepts, architectures, principles and
terminologies for collaborative modeling. Chapter 4 has investigated the exist-
ing difference representation approaches and their supplementary services. As the
result of the literature study, Section 4.3 has derived and defined several require-
ments regarding applicability, re-usability and adaptability of model difference
representation.

In Part III, this thesis has introduced DL for model difference representations
and several reasonable services for extending application areas of DL. Part IV
has demonstrated concurrent and sequential collaborative modeling, and model
history analysis applications that are developed on top of DL and based on the
specific orchestrations of the DL services. By developing the collaborative model-
ing infrastructure on top of DL, this thesis has demonstrated its applicability.

Section 10.2 of this part has discussed the fulfillment of requirements (from Sec-
tion 4.3) by DL, its services and applications. Section 10.3 has revisited all ex-
pected benefits (from Chapter 3) of DL for concurrent and sequential collaborative
modeling, and model history analysis applications.

This, conclusion chapter summarizes the overall thesis by explaining some learned
lessons in Section 11.1 and contributions of the thesis in Section 11.2.

11.1 Lessons Learned

In the framework of this thesis, the conceptual idea of DL is elaborated and sev-
eral applications are developed based on DL. These applications are validated in
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various domains, as well. During these research, development and validation ac-
tivities, several research findings and lessons are determined and learned. More
considerably, these findings are not considered by the existing approaches in the
research field. This section describes research findings and lessons learned during
this research.

– Combined Meta-model. In order to provide collaborative modeling on both,
the modeling concepts of modeling languages and the layout concepts of
modeling tools, the meta-models used by DL can be designed consisting
of modeling language content (i.e., abstract syntax) and layout (i.e., con-
crete syntax) part. With this way of designing meta-models, DL is used to
represent, store and synchronize changes on concrete syntax together with
abstract syntax. This separation extends applicability of the underlying col-
laborative modeling infrastructure to a wide range of modeling languages
and tools.

– Conflicts in Concurrent Collaboration. The concurrent collaborative modeling
applications are experimented by several users located in different locations
over long distance. During these experiments, the tools have not shown any
conflict or performance issues. Change synchronization was fast enough to
exchange all modeling deltas before conflicts may occur.

– Active Delta. The most concurrent and sequential collaborative systems in-
spected in Chapter 3 and Chapter 4 usually store the working copies of soft-
ware systems (i.e., source code or models) in their repositories. The working
copies of software models are stored as a whole by notations of domain lan-
guages. This thesis has introduced a term active delta to represent (store)
the working copies of software models using DL operations. Like forward
and backward modeling deltas, active deltas are also represented in terms
of specific DLs and they consists of only creation operations. The working
copies of software models are then derived by applying active deltas to empty
models.

– Additional Attributes. If the meta-models of modeling languages or modeling
tools do not provide an attribute on their root meta-class for handling persis-
tent identifiers, that additional attribute can be added to the root meta-class
in order to store the persistent identifiers of modeling artifacts. Moreover,
additional attributes can be added for storing additional meta information,
e.g., about collaborators (e.g., user names), time-stamps, etc. These addi-
tional information might be useful during collaborative modeling or when
analyzing model histories.

– Simultaneous Modification of Same Artifact. In the concurrent collaborative
modeling applications, when two collaborators change a modeling artifact at
the same time, the behavior of concurrent collaborative modeling is not de-
fined. It can happen that the deltas are swapped on a client, which overwrites
the respective change of the collaborator. For instance, if the attribute value
of a class is changed by one collaborator and the same attribute is changed by
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another collaborator at the same time, the change the first collaborator just
made can be updated by the incoming delta from the second collaborator.
A latest change wins in such cases.

11.2 Contributions

As long as there are several modeling languages and model designing tools, the DL-
based collaborative modeling infrastructure does not rely on a specific modeling
language or modeling tool. The DL-based collaborative modeling supports both
concurrent and sequential collaborative modeling scenarios making DL the com-
mon underlying change and difference representation technique for both. Since
difference representation lies at the core of collaborative modeling, DL delivers
several notable contributions to collaborative MDE. Below, the main scientific
contribution of this thesis are revisited:

Awareness of Content and Layout. The content of software models is recog-
nized by looking at the meta-models they conform to. The graphical design
of models is aligned by their layout data in the model editors of model de-
signing tools. There are several graphical modeling editors which display
the modeling content with their layout representation information. Like
models conform to their meta-models, layout information is represented by
and conform to their graphical notations. In order to provide collaborative
modeling on such graphical modeling tools, DL is aware of layout notation
(i.e., concrete syntax) together with the meta-models (i.e., abstract syntax)
of modeling languages. For instance, if a collaborator changes the position
and size of a modeling artifact in a graphical editor, the same changes occur
simultaneously in the modeling editors of other tool instances, as well. In
concurrent collaborative modeling, this is provided by synchronizing forward
modeling deltas consisting of the both, layout changes and content changes.
The DL operations representing changes in layout part are also stored in
backward modeling deltas in sequential collaborative modeling.

Genericity. There are several modeling languages and graphical notations fol-
lowing diverse formal specifications and concepts. DL is generic with re-
spect to the meta-models of modeling languages and their layout without
restricting itself to particular modeling languages or tools. Its collaborative
modeling support is tailored to the wide range of modeling languages and
tools. To this end, this thesis provides the DL generator service to derive
specific DLs from the meta-models of modeling languages. Eventually, the
application areas of DL can be extended by the specific orchestrations of the
DL services.

Applicability. Overall collaborative modeling forms two scenarios such as con-
current and sequential collaborative modeling, whereas difference representa-
tion is a common and fundamental concern for both. The most approaches
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investigated in Chapter 4 focus only on the some aspects of these collabo-
rative modeling scenarios. DL supports the both scenarios of collaborative
modeling by being applicable, persistent, implementable and expressive. The
DL-based modeling delta repositories serve as the single point of truth for
the both scenarios of collaborative modeling, as well as for model history
analysis.

These contributions are reasonable advancements provided by DL for emerging
an appropriate difference representation approach for collaborative MDSE. They
are the efficient design of the data structure for representing model differences
in modeling deltas. These significant principles are also the design foundations
for DL that contribute to empower the qualification and solidity of difference
representation. This thesis has developed the DL-based collaborative modeling
infrastructure that can be further reused and applied to a wide range of domain-
specific modeling languages and tools.



References

[A. Schmidt, 2018] A. Schmidt (visited on 22.07.2018). emfCollab: Collaborative
Editing for EMF models. http://qgears.com/products/emfcollab/.

[Ahmed-Nacer et al., 2011] Ahmed-Nacer, M., Ignat, C.-L., Oster, G., Roh, H.-
G., and Urso, P. (2011). Evaluating CRDTs for Real-time Document Editing.
In Proceedings of the 11th ACM Symposium on Document Engineering, DocEng
’11, pages 103–112, New York, NY, USA. ACM.

[Alanen and Porres, 2003] Alanen, M. and Porres, I. (2003). Difference and union
of models. In P.Stevens, J.Whittle, and G. Booch, editors, Proc. 6th Int. Conf.
on the UML, Springer, volume 2863 of LNCS:pages 2–17.

[Altmanninger et al., 2007] Altmanninger, K., Bergmayr, A., Schwinger, W., and
Kotsis, G. (2007). Semantically enhanced conflict detection between model
versions in SMoVer by example. In Procs of the Int. Workshop on Semantic-
Based Software Development at OOPSLA.

[Altmanninger et al., 2009] Altmanninger, K., Seidl, M., and Wimmer, M. (2009).
A survey on model versioning approaches. International journal of Web Infor-
mation Systems (IJWIS), 5:271–304.

[Appeldorn, 2018] Appeldorn, M. (2018). Collaborative Modeling Support for
UML Activity Diagrams. Bachelor Thesis. University of Oldenburg.

[Appeldorn et al., 2018] Appeldorn, M., Kuryazov, D., and Winter, A. (2018).
Delta-Driven Collaborative Modeling. In Berger, T. and Hebig, R., editors,
Models 2018, Capenhagen. ACM SIG WEB.

[AppJet Inc., 2017] AppJet Inc. (visited on 01.02.2017). Etherpad.
http://www.etherpad.com.

[Arendt et al., 2010] Arendt, T., Biermann, E., Jurack, S., Krause, C., and
Taentzer, G. (2010). Henshin: advanced concepts and tools for in-place EMF
model transformations. In Model Driven Engineering Languages and Systems,
pages 121–135. Springer.

[Arnold, 1996] Arnold, R. (1996). Software Change Impact Analysis. IEEE Com-
puter Society Press, Los Alamitos, CA, USA.

211



References 212

[Aßmann et al., 2006] Aßmann, U., Zschaler, S., and Wagner, G. (2006). Ontolo-
gies, meta-models, and the model-driven paradigm. In Ontologies for software
engineering and software technology, pages 249–273. Springer.

[Bafoutsou and Mentzas, 2002] Bafoutsou, G. and Mentzas, G. (2002). Review
and functional classification of collaborative systems. International journal of
information management, 22(4):281–305.

[Bailor et al., 2011] Bailor, J. B., Bernstein, E. J., Knight, M. R., Antos, C. J.,
et al. (2011). Document Merge. US Patent 8,028,229.

[Baudivs, 2014] Baudivs, P. (2014). Current concepts in version control systems.

[Beck et al., 2001] Beck, K., Beedle, M., Bennekum, A. V., Cockburn, A., Cun-
ningham, W., Fowler, M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R.,
et al. (2001). The agile manifesto.

[Berlin and Rooney, 2006] Berlin, D. and Rooney, G. (2006). Practical Subversion.
Apress.

[Bezivin, 2005] Bezivin, J. (2005). On the Unification Power of Models. SOSYM,
4(2):171–188.

[Bézivin, 2006] Bézivin, J. (2006). Model driven engineering: An emerging techni-
cal space. In Generative and transformational techniques in software engineer-
ing, pages 36–64. Springer.

[Bézivin and Gerbé, 2001] Bézivin, J. and Gerbé, O. (2001). Towards a precise
definition of the OMG/MDA framework. In Automated Software Engineering,
2001.(ASE 2001). Proceedings. 16th Annual International Conference on, pages
273–280. IEEE.

[Bézivin and Kurtev, 2005] Bézivin, J. and Kurtev, I. (2005). Model-based tech-
nology integration with the technical space concept. In Metainformatics Sym-
posium, volume 20, pages 44–49.

[Bieman et al., 2003] Bieman, J., Andrews, A. A., and Yang, H. (2003). Un-
derstanding change-proneness in OO software through visualization. In Pro-
gram Comprehension, 2003. 11th IEEE International Workshop on, pages 44–
53. IEEE.

[Booch and Brown, 2003] Booch, G. and Brown, A. W. (2003). Collaborative
development environments. Advances in computers, 59:1–27.

[Borenstein, 1992] Borenstein, N. (1992). Computational mail as network infras-
tructure for computer-supported cooperative work. In Proceedings of the 1992
ACM conference on Computer-supported cooperative work, pages 67–74. ACM.

[Bourque et al., 2014] Bourque, P., Fairley, R., et al. (2014). Guide to the software
engineering body of knowledge (SWEBOOK (R)): Version 3.0. IEEE Computer
Society Press.



References 213

[Breivold and Larsson, 2007] Breivold, H. P. and Larsson, M. (2007). Component-
based and service-oriented software engineering: Key concepts and principles.
In 33rd EUROMICRO Conference on Software Engineering and Advanced Ap-
plications (EUROMICRO 2007), pages 13–20. IEEE.

[Brosch et al., 2012] Brosch, P., Kappel, G., Langer, P., Seidl, M., Wieland, K.,
and Wimmer, M. (2012). An Introduction to Model Versioning. In Formal
Methods for Model-Driven Engineering, pages 336–398. Springer.

[Brosch et al., 2010] Brosch, P., Kappel, G., Seidl, M., Wieland, K., Wimmer, M.,
Kargl, H., and Langer, P. (2010). Adaptable Model Versioning in Action. in:
Proc. Modellierung 2010, Klagenfurt, Österreich, Lecture Notes in Informatics
161:p.221–236.

[Brun and Pierantonio, 2008] Brun, C. and Pierantonio, A. (2008). Model differ-
ences in the eclipse modeling framework. UPGRADE, The European Journal
for the Informatics Professional, 9(2):29–34.

[Brunet et al., 2006] Brunet, G., Chechik, M., Easterbrook, S., Nejati, S., Niu, N.,
and Sabetzade, M. (2006). A Manifesto for Model merging. Proceeding GaMMa
’06 Proceedings of the 2006 international workshop on Global integrated model
management ACM.

[Buchegger et al., 2009] Buchegger, S., Schiöberg, D., Vu, L.-H., and Datta, A.
(2009). PeerSoN: P2P social networking: early experiences and insights. In
Proceedings of the Second ACM EuroSys Workshop on Social Network Systems,
pages 46–52. ACM.

[Chen, 1976] Chen, P. P.-S. (1976). The entity-relationship model—toward a uni-
fied view of data. ACM Transactions on Database Systems (TODS), 1(1):9–36.

[Chikofsky and Cross, 1990] Chikofsky, E. J. and Cross, J. H. (1990). Reverse
engineering and design recovery: A taxonomy. IEEE software, 7(1):13–17.

[Cicchetti, 2008] Cicchetti, A. (2008). Difference Representation and Conflict.
PhD thesis, University of L’Aquila, (Italy).

[Cicchetti et al., 2007] Cicchetti, A., Ruscio, D. D., and Pierantonio, A. (2007). A
Metamodel independent approach to difference representation. journal of Object
Technology, 6:9:165–185.

[Cinergix Pty., 2015] Cinergix Pty. (visited on 01.06.2015). CreateLy.
http://www.creately.com.

[Clarence et al., 1991] Clarence, E., Simon, G., and Gail, R. (1991). Groupware:
Some Issues and Experiences. Commun. ACM, 34(1):39–58.

[Cohen, 2003] Cohen, B. (2003). Incentives build robustness in BitTorrent. In
Workshop on Economics of Peer-to-Peer systems, volume 6, pages 68–72.



References 214

[Collberg et al., 2003] Collberg, C., Kobourov, S., Nagra, J., Pitts, J., and
Wampler, K. (2003). A System For Graph-based Visualization of the Evolution
of Software. Proc. 2003 ACM Symposium on Software Visualization SoftVis’03,
ACM:p.77.

[Collins-Sussman et al., 2004] Collins-Sussman, B., Fitzpatrick, B., and Pilato,
M. (2004). Version Control with Subversion. O’Reilly Media.

[Conradi and Westfechtel, 1998] Conradi, R. and Westfechtel, B. (1998). Ver-
sion models for software configuration management. ACM Computing Surveys
(CSUR), 30(2):232–282.

[Constant, 2012] Constant, O. (2012). EMF Diff/Merge.

[Cover, 2001] Cover, R. (2001). XML Metadata Interchange (XMI).

[Dahl, 2004] Dahl, O.-J. (2004). The Birth of Object Orientation: The Sim-
ula Languages. In From Object-Orientation to Formal Methods, pages 15–25.
Springer.

[Dahl et al., 1972] Dahl, O.-J., Dijkstra, E. W., and Hoare, C. A. R. (1972). Struc-
tured programming. Academic Press Ltd.

[Dahm and Widmann, 1998] Dahm, P. and Widmann, F. (1998). Das Graphen-
labor. Technical Report 11/98, Universität Koblenz-Landau, Institut für Infor-
matik, Koblenz. Fachberichte Informatik.

[Date and Darwen, 1987] Date, C. and Darwen, H. (1987). A Guide to the SQL
Standard, volume 3. Addison-Wesley New York.

[Davison, 1990] Davison, W. (1990). Unified Context Diff Tools.

[Dillenbourg, 1999] Dillenbourg, P. (1999). What do you mean by collaborative
learning? Collaborative-learning: Cognitive and computational approaches, 1:1–
15.

[Dirix et al., 2013] Dirix, M., Muller, A., and Aranega, V. (2013). GenMyModel:
an online UML case tool. In ECOOP.

[Ducasse et al., 2005] Ducasse, S., Gîrba, T., and Favre, J.-M. (2005). Modeling
software evolution by treating history as a first class entity. Electronic Notes in
Theoretical Computer Science, 127(3):75–86.

[Ebert, 1987] Ebert, J. (1987). A versatile data structure for edge-oriented graph
algorithms. Communications of the ACM, 30(6):513–519.

[Ebert and Franzke, 1995] Ebert, J. and Franzke, A. (1995). A declarative ap-
proach to graph based modeling. In Graph-Theoretic Concepts in Computer
Science, pages 38–50. Springer.

[Ebert and Horn, 2014] Ebert, J. and Horn, T. (2014). GReTL: an extensible,
operational, graph-based transformation language. Software and Systems Mod-
eling, pages 1–21.



References 215

[Ebert et al., 2002] Ebert, J., Kullbach, B., Riediger, V., and Winter, A. (2002).
Gupro-generic understanding of programs an overview. Electronic Notes in
Theoretical Computer Science, 72(2):47–56.

[Ebert et al., 2008] Ebert, J., Riediger, V., and Winter, A. (2008). Graph tech-
nology in reverse engineering. The TGraph approach. In Proc. 10th Workshop
Software Reengineering. GI Lecture Notes in Informatics, pages 23–24. Citeseer.

[Ebert et al., 1997] Ebert, J., Süttenbach, R., and Uhe, I. (1997). Meta-CASE in
Practice: a Case for KOGGE. In Advanced Information Systems Engineering,
pages 203–216. Springer.

[Eclipse Orion, 2014] Eclipse Orion (2014). Eclipse Orion.

[EMFCompare, 2017] EMFCompare (visited on 15.03.2017). EMF Compare.
http://wiki.eclipse.org/EMFCompare.

[Engelbart, 1968] Engelbart, D. (1968). The mother of all demos.

[English et al., 2010] English, B., Alderman, B., and Ferraz, M. (2010). Microsoft
SharePoint 2010 Administrator’s Companion. Pearson Education.

[Erl, 2005] Erl, T. (2005). Service-oriented architecture: concepts, technology, and
design. Pearson Education India.

[Esoteric Software, 2018] Esoteric Software (visited on 22.07.2018).
KryoNet: TCP/UDP Client/Server library for Java.
https://github.com/EsotericSoftware/kryonet.

[Fernández-Ramil and Lehman, 2000] Fernández-Ramil, J. and Lehman, M. M.
(2000). Metrics of Software Evolution as Effort Predictors-A Case Study. In
ICSM, pages 163–172. IEEE.

[Firebase Inc., 2017] Firebase Inc. (visited on 01.02.2017). Firepad.
https://firepad.io.

[Fluegge, 2009] Fluegge, M. (2009). Entwicklung einer kollaborativen Erweiterung
fuer GMF-Editoren auf Basis modellgetriebener und webbasierter Technologien.
Master’s thesis, University of Applied Sciences Berlin.

[Fluidbyte, 2014] Fluidbyte (2014). Codiad v.2.8.1 Web Based, Cloud IDE.

[Franzago et al., 2018] Franzago, M., Ruscio, D. D., Malavolta, I., and Muccini,
H. (2018). Collaborative model-driven software engineering: a classification
framework and a research map. IEEE Transactions on Software Engineering,
pages 1–1.

[Fraser, 2009] Fraser, N. (2009). Differential synchronization. In Proceedings of
the 9th ACM symposium on Document engineering, pages 13–20. ACM.

[García-Domínguez et al., 2018] García-Domínguez, A., Kolovos, D. S., Barmpis,
K., Daniel, G., and Sunyé, G. (2018). Taming Large Models with Hawk and
NeoEMF. MoDELS’2018, https://projects.eclipse.org/proposals/eclipse-hawk.



References 216

[GenMyModel, 2015] GenMyModel (visited on 01.06.2015). GenMyModel.
http://www.genmymodel.com/.

[Ghosh, 2010] Ghosh, D. (2010). DSLs in Action. Manning Publications Co.

[Glasser, 1978] Glasser, A. L. (1978). The evolution of a Source Code Control
System. ACM SIGMETRICS Performance Evaluation Review, 7.

[Gliffy, 2017] Gliffy (visited on 14.05.2017). Gliffy. https://www.gliffy.com/.

[GMF, 2018] GMF (visited on 22.07.2018). Graphical Modeling Project (GMP).
http://www.eclipse.org/modeling/gmp/.

[Godfrey and Tu, 2002] Godfrey, M. and Tu, Q. (2002). Tracking structural evo-
lution using origin analysis. In Proceedings of the international workshop on
Principles of software evolution, pages 117–119. ACM.

[Goldman et al., 2011] Goldman, M., Little, G., and Miller, R. (2011). Collabode:
collaborative coding in the browser. In Proceedings of the 4th international
workshop on Cooperative and human aspects of software engineering, pages 65–
68. ACM.

[Google Inc., 2017] Google Inc. (visited on 01.02.2017). Google Docs.
http://docs.google.com.

[Grose et al., 2002] Grose, T. J., Doney, G. C., and Brodsky, S. A. (2002). Mas-
tering XML: Java Programming with XMI and UML, volume 21. John Wiley
& Sons.

[Gupta, 2000] Gupta, U. (2000). Done deals. Venture Capitalists Tell Their Sto-
ries, Boston.

[Hassan, 2008] Hassan, A. (2008). The road ahead for mining software reposito-
ries. In Frontiers of Software Maintenance, 2008. FoSM 2008., pages 48–57.
IEEE.

[Hausladen et al., 2014] Hausladen, J., Pohn, B., and Horauer, M. (2014).
A cloud-based integrated development environment for embedded systems.
In Mechatronic and Embedded Systems and Applications (MESA), 2014
IEEE/ASME 10th International Conference on, pages 1–5. IEEE.

[Heinrich, 2013] Heinrich, M. (2013). Enriching Web Applications Efficiently with
Real-Time Collaboration Capabilities.

[Hellmann, 2011] Hellmann, D. (2011). The Python standard library by example.
Addison-Wesley Professional.

[Helming and Koegel, 2013] Helming, J. and Koegel, M. (2013). EMFStore.
http://eclipse.org/emfstore.

[Henson and Garzik, 2002] Henson, V. and Garzik, J. (2002). Bitkeeper for kernel
developers. In Ottawa Linux Symposium, page 197.



References 217

[Herbsleb and Moitra, 2001] Herbsleb, J. and Moitra, D. (2001). Global software
development. IEEE software, 18(2):16–20.

[Herrmannsdoerfer and Koegel, 2010] Herrmannsdoerfer, M. and Koegel, M.
(2010). Towards a Generic Operation Recorder for Model Evolution. In Pro-
ceedings of the 1st International Workshop on Model Comparison in Practice,
IWMCP 10, pages 76–81, New York, NY, USA. ACM.

[Hindle and German, 2005] Hindle, A. and German, D. (2005). SCQL: A formal
model and a query language for source control repositories, volume 30:4. ACM.

[Hoare et al., 2005] Hoare, G. et al. (2005). Monotone.

[Horn, 2013] Horn, T. (2013). Model querying with FunnyQT. In International
Conference on Theory and Practice of Model Transformations, pages 56–57.
Springer.

[Hudson, 2002] Hudson, G. (2002). Notes on keeping version histories of files.
Unpublished personal notes.

[Hunt and MacIlroy, 1976] Hunt, J. W. and MacIlroy, D. (1976). An algorithm
for differential file comparison. Bell Laboratories New Jersey.

[Jelschen, 2014] Jelschen, J. (2014). SENSEI: Software evolution service inte-
gration. In Software Maintenance, Reengineering and Reverse Engineering
(CSMR-WCRE), 2014 Software Evolution Week-IEEE Conference, pages 469–
472. IEEE.

[John, 2010] John, A. (2010). Real-time content collaboration. US Patent App.
12/419,926.

[Jouault et al., 2008] Jouault, F., Allilaire, F., Bézivin, J., and Kurtev, I. (2008).
ATL: A model transformation tool. Science of computer programming, 72(1):31–
39.

[Jouault and Bézivin, 2006] Jouault, F. and Bézivin, J. (2006). KM3: a DSL for
Metamodel Specification. In Formal Methods for Open Object-Based Distributed
Systems, pages 171–185. Springer.

[Kagdi et al., 2007] Kagdi, H., Collard, M., and Maletic, J. (2007). A survey
and taxonomy of approaches for mining software repositories in the context of
software evolution. Journal of software maintenance and evolution: Research
and practice, 19(2):77–131.

[Kay, 1996] Kay, A. (1996). The early history of Smalltalk. In History of program-
ming languages—II, pages 511–598. ACM.

[Kehrer et al., 2012] Kehrer, T., Kelter, U., Ohrndorf, M., and Sollbach, T.
(2012). Understanding model evolution through semantically lifting model dif-
ferences with SiLift. In Software Maintenance (ICSM), 2012 28th IEEE Inter-
national Conference on, pages 638–641. IEEE.



References 218

[Kehrer et al., 2011] Kehrer, T., Kelter, U., and Taentzer, G. (2011). A Rule-
based Approach to the Semantic Lifting of Model Differences in the Context of
Model Versioning. In Proceedings of the 2011 26th IEEE/ACM International
Conference on Automated Software Engineering, ASE ’11, pages 163–172, Wash-
ington, DC, USA. IEEE Computer Society.

[Kehrer et al., 2013a] Kehrer, T., Kelter, U., and Taentzer, G. (2013a).
Consistency-Preserving Edit Scripts in Model Versioning. In Automated Soft-
ware Engineering (ASE), 2013 IEEE/ACM 28th International Conference on,
pages 191–201. IEEE.

[Kehrer et al., 2013b] Kehrer, T., Rindt, M., Pietsch, P., and Kelter, U. (2013b).
Generating Edit Operations for Profiled UML Models. In ME@ MoDELS, pages
30–39. Citeseer.

[Kim and Notkin, 2006] Kim, M. and Notkin, D. (2006). Program element match-
ing for multi-version program analyses. In Proceedings of the 2006 international
workshop on Mining software repositories, pages 58–64. ACM.

[Kleppe et al., 2003] Kleppe, A., Warmer, J., and Bast, W. (2003). MDA Ex-
plained: The Model Driven Architecture: Practice and Promise. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA.

[Koegel et al., 2010] Koegel, M., Herrmannsdoerfer, M., von Wesendonk, O., and
Helming, J. (2010). Operation-based conflict detection. In Proceedings of the 1st
International Workshop on Model Comparison in Practice, pages 21–30. ACM.

[Kofman and Perjons, 2004] Kofman, M. and Perjons, E.
(2004). MetaDiff - a Model Comparison Framework.
http://metadiff.sourceforge.net/docs/metadiff.pdf, undated.

[Kolovos et al., 2009] Kolovos, D., Ruscio, D. D., Pierantonio, A., and Paige, R. F.
(2009). Different models for model matching: An analysis of approaches to
support model differencing. In Comparison and Versioning of Software Models,
2009. CVSM’09. ICSE Workshop on, pages 1–6. IEEE.

[Kullbach et al., 1998] Kullbach, B., Winter, A., Dahm, P., and Ebert, J. (1998).
Program comprehension in multi-language systems. In Reverse Engineering,
1998. Proceedings. Fifth Working Conference on, pages 135–143. IEEE.

[Kurtev et al., 2002] Kurtev, I., Bézivin, J., and Aksit, M. (2002). Technological
spaces: An initial appraisal. CoopIS, DOA, 2002.

[Kuryazov, 2014] Kuryazov, D. (2014). Delta Operations Language for Model Dif-
ference Representation. In Plödereder, E., Grunske, L., and Schneider Ull, E. D.,
editors, 44. Jahrestagung der Gesellschaft für Informatik e.V. (GI), ISBN 978-
3-88579-626-8, volume 232, pages 2221–2232, Stuttgart, Germany. Gesellschaft
für Informatik.



References 219

[Kuryazov et al., 2012] Kuryazov, D., Jelschen, J., and Winter, A. (2012). De-
scribing Modeling Delta By Model Transformation. In Softwaretechnik Trends
(Issue on International Workshop on Comparison and Versioning of Software
Models (CVSM 2012)), no. Band 32 Heft 4. Gesellschaft für Informatik.

[Kuryazov et al., 2013] Kuryazov, D., Solsbach, A., and Winter, A. (2013). Ver-
sioning Sustainability Reports. In 5.BUIS-Tage: IT-gestütztes Ressourcen- und
Energiemanagement, pages 409–419. Springer-Verlag.

[Kuryazov and Winter, 2015a] Kuryazov, D. and Winter, A. (2015a). Collabora-
tive Modeling Empowered by Modeling Deltas. Lausanne, Switzerland. ACM.
ISBN: 978-1-4503-3714-4.

[Kuryazov and Winter, 2015b] Kuryazov, D. and Winter, A. (2015b). Towards
Model History Analysis Using Modeling Deltas. Softwaretechnik-Trends,
35(2):15–16.

[Kuryazov et al., 2018] Kuryazov, D., Winter, A., and Reussner, R. (2018). Col-
laborative Modeling Enabled by Version Control. In Schaefer, I., Karagiannis,
D., and Vogelsang, A., editors, Modellierung 2018, volume P-280, pages 183–
198, Bonn. Gesellschaft für Informatik (GI). ISBN: 978-3-88579-674-9.

[Küpker, 2013] Küpker, C. (2013). General Model Difference Calculation. Bach-
elor Thesis, Carl von Ossietzky University of Oldenburg.

[Langer, 2011] Langer, P. (2011). Adaptable model versioning based on model
transformation by demonstration. na.

[Lanusse et al., 2009] Lanusse, A., Tanguy, Y., Espinoza, H., Mraidha, C., Ger-
ard, S., Tessier, P., Schnekenburger, R., Dubois, H., and Terrier, F. (2009).
Papyrus UML: an open source toolset for MDA. In Proc. of the Fifth Euro-
pean Conference on Model-Driven Architecture Foundations and Applications
(ECMDA-FA 2009), pages 1–4.

[Lehman, 1996] Lehman, M. M. (1996). Laws of software evolution revisited. In
LNCS, European Workshop on Software Process Technology, pages 108–124.
Springer.

[Lehman and Fernández-Ramil, 2001] Lehman, M. M. and Fernández-Ramil, J.
(2001). Evolution in software and related areas. In Proceedings of the 4th
international workshop on Principles of software evolution, pages 1–16. ACM.

[Leroux et al., 2006] Leroux, D., Nally, M., and Hussey, K. (2006). Rational Soft-
ware Architect: A tool for domain-specific modeling. IBM systems journal,
45(3):555–568.

[Lientz and Swanson, 1980] Lientz, B. and Swanson, B. (1980). Software mainte-
nance management.

[Lientz et al., 1978] Lientz, B., Swanson, B., and Tompkins, G. (1978). Charac-
teristics of application software maintenance. Communications of the ACM,
21:6:466–471.



References 220

[Lin et al., 2007] Lin, Y., Gray, J., and Jouault, F. (2007). DSMDiff: a differentia-
tion tool for domain-specific models. European Journal of Information Systems,
16(4):349–361.

[Lin et al., 2004] Lin, Y., Zhang, J., and Gray, J. (2004). Model comparison: A
key challenge for transformation testing and version control in model driven
software development. In OOPSLA Workshop on Best Practices for Model-
Driven Software Development, volume 108, page 6.

[MacDonald, 2000] MacDonald, J. (2000). File system support for delta compres-
sion. PhD thesis, Masters thesis. Department of Electrical Engineering and
Computer Science, University of California at Berkeley.

[Mackall, 2006] Mackall, M. (2006). Towards a better SCM: Revlog and mercurial.
Proc. Ottawa Linux Sympo, 2:83–90.

[MacKenzie et al., 2003] MacKenzie, D., Eggert, P., and Stallman, R. (2003).
Comparing and Merging Files with GNU diff and patch. Network Theory Ltd.

[Maurer and Wolfthal, 2016] Maurer, N. and Wolfthal, M. (2016). Netty in Ac-
tion. Manning Publications.

[McAffer et al., 2010] McAffer, J., Lemieux, J.-M., and Aniszczyk, C. (2010).
Eclipse Rich Client Platform. Addison-Wesley Professional.

[Meier and Winter, 2018] Meier, J. and Winter, A. (2018). Traceability enabled
by metamodel integration. Softwaretechnik-Trends, 38(1):21–26.

[Mellor et al., 2003] Mellor, S., Clark, T., and Futagami, T. (2003). Model-driven
development: guest editors’ introduction. IEEE software, 20(5):14–18.

[Mens, 2002] Mens, T. (2002). A State-of-the-Art Survey on Software Merging.
IEEE Trans. Software Eng., 28:5:449–462.

[Meyer, 1988] Meyer, B. (1988). Object-oriented software construction, volume 2.
Prentice hall New York.

[Miller and Mukerji, 2003] Miller, J. and Mukerji, J. (2003). MDA guide version
1.0. 1, Object Management Group. Inc., June.

[Modica et al., 2009] Modica, T., Biermann, E., and Ermel, C. (2009). An Eclipse
Framework for Rapid Development of Rich-featured GEF Editors based on EMF
Models. GI Jahrestagung, 154:2972–2985.

[MOF, 2003] MOF (2003). Meta Object Facility (MOF) 2.0 Core Specification,
OMG Document ptc/03-10-04.

[Myers, 1986] Myers, E. W. (1986). An O (ND) difference algorithm and its vari-
ations. Algorithmica, 1(1):251–266.

[Naccarato, 2004] Naccarato, G. (2004). Template-based code generation with
apache velocity.



References 221

[Naur and Randell, 1969] Naur, P. and Randell, B. (1969). Software Engineering:
Report of a conference sponsored by the NATO Science Committee, Garmisch,
Germany, 7-11 Oct. 1968, Brussels, Scientific Affairs Division, NATO.

[Nejati et al., 2007] Nejati, S., Sabetzadeh, M., Chechik, M., Easterbrook, S., and
Zave, P. (2007). Matching and merging of statecharts specifications. In Software
Engineering, 2007. ICSE 2007. 29th International Conference on, pages 54–64.
IEEE.

[Nichols et al., 1995] Nichols, D., Curtis, P., Dixon, M., and Lamping, J. (1995).
High-latency, low-bandwidth windowing in the Jupiter collaboration system. In
Proceedings of the 8th annual ACM symposium on User interface and software
technology, pages 111–120. ACM.

[Obeo Network, 2017] Obeo Network (visited on 02.10.2017). UML Designer.
http://www.umldesigner.org/.

[Oliveira et al., 2005] Oliveira, H., Murta, L., and Werner, C. (2005). Odyssey-
VCS: a flexible version control system for UML model elements. In Proceedings
of the 12th international workshop on Software configuration management, pages
1–16. ACM.

[OMG, 2014] OMG (last visited on 2014). Object Management Group (OMG).
http://www.omg.org.

[Ong, 1998] Ong, C.-M. (1998). Dynamic simulation of electric machinery: using
MATLAB/SIMULINK, volume 5. Prentice hall PTR Upper Saddle River, NJ.

[Oster et al., 2006] Oster, G., Urso, P., Molli, P., and Imine, A. (2006). Data
consistency for P2P collaborative editing. In Proceedings of the 2006 20th an-
niversary conference on Computer supported cooperative work, pages 259–268.
ACM.

[Preguica et al., 2009] Preguica, N., Marques, J. M., Shapiro, M., and Letia, M.
(2009). A commutative replicated data type for cooperative editing. In Dis-
tributed Computing Systems, 2009. ICDCS’09. 29th IEEE International Con-
ference on, pages 395–403. IEEE.

[Proceedings, 2006] Proceedings, O. ., editor (2006). Towards a Better SCM:
Revlog and Mercurial, volume 2, Ottawa.

[Project Group, 2014] Project Group (2014). Kotelett: Collaborative Modeling
Tool. https://pg-kotelett.informatik.uni-oldenburg.de:8443/build/stable/. Uni-
versity of Oldenburg.

[QGears, 2018] QGears (visited on 22.10.2018). CoolRMI: High performance Java
remote method invocation library. http://qgears.com/products/coolrmi/.

[Rama and Bishop, 2006] Rama, J. and Bishop, J. (2006). A survey and com-
parison of CSCW groupware applications. In Proceedings of the 2006 annual



References 222

research conference of the South African institute of computer scientists and in-
formation technologists on IT research in developing countries, pages 198–205.
South African Institute for Computer Scientists and Information Technologists.

[Raumbaugh et al., 2004] Raumbaugh, J., Jacobson, I., and Booch, G. (2004).
Unified Modeling Language Reference Manual. Pearson Higher Education.

[Rentsch, 1982] Rentsch, T. (1982). Object Oriented Programming. SIGPLAN
Not., 17(9):51–57.

[Ressel et al., 1996] Ressel, M., Nitsche-Ruhland, D., and Gunzenhäuser, R.
(1996). An integrating, transformation-oriented approach to concurrency con-
trol and undo in group editors. In Proceedings of the 1996 ACM conference on
Computer supported cooperative work, pages 288–297. ACM.

[Robbes, 2007] Robbes, R. (2007). Mining a Change-Based Software Repository.
In Proceedings of the Fourth International Workshop on Mining Software Repos-
itories, MSR ’07, pages 15–, Washington, DC, USA. IEEE Computer Society.

[Robles et al., 2004] Robles, G., González-Barahona, J., and Ghosh, R. (2004).
Gluetheos: Automating the retrieval and analysis of data from publicly available
software repositories. In Proceedings of the international workshop on mining
software repositories, pages 28–31. IET.

[Rocco et al., 2015] Rocco, J. D., Ruscio, D. D., Iovino, L., and Pierantonio, A.
(2015). Collaborative repositories in model-driven engineering [software tech-
nology]. IEEE Software, 32(3):28–34.

[Rochkind, 1975] Rochkind, M. (1975). The source code control system. Software
Engineering, IEEE Transactions on, 4:364–370.

[Roh et al., 2011] Roh, H.-G., Jeon, M., Kim, J.-S., and Lee, J. (2011). Replicated
abstract data types: Building blocks for collaborative applications. Journal of
Parallel and Distributed Computing, 71(3):354–368.

[Roundy, 2005] Roundy, D. (2005). Darcs: distributed version management in
haskell. In Proceedings of the 2005 ACM SIGPLAN workshop on Haskell, pages
1–4. ACM.

[Roundy, 2009] Roundy, D. (2009). Theory of Patches.
darcs.net/manual/node8.html.

[Rubel et al., 2011] Rubel, D., Wren, J., and Clayberg, E. (2011). The Eclipse
Graphical Editing Framework (GEF). Addison-Wesley Professional.

[Saeki, 2006] Saeki, M. (2006). Meta-modeling based version control system for
software diagrams. In IEICE Transactions on Information and Systems, volume
E89-D, pages 1390–1402. IEICE.

[Schipper et al., 2009] Schipper, A., Fuhrmann, H., and von Hanxleden, R. (2009).
Visual comparison of graphical models. In Engineering of Complex Computer
Systems, 2009 14th IEEE International Conference on, pages 335–340. IEEE.



References 223

[Schmidt, 2006] Schmidt, D. C. (2006). Model-Driven Engineering. IEEE Com-
puter Society, 39(2):25.

[Schmidt and Gloetzner, 2008] Schmidt, M. and Gloetzner, T. (2008). Construct-
ing Difference Tools for Models Using the SiDiff Framework. in: Companion
volume, ICSE 2008, pages 947–948.

[Schneider et al., 2004] Schneider, C., Zündorf, A., and Niere, J. (2004).
CoObRA-a small step for development tools to collaborative environments. In
Workshop on Directions in Software Engineering Environments.

[Schooler, 1996] Schooler, E. (1996). Conferencing and collaborative computing.
Multimedia Systems, 4(5):210–225.

[Seidewitz, 2003] Seidewitz, E. (2003). What models mean. IEEE software,
20(5):26–32.

[Seidl et al., 2014] Seidl, C., Schaefer, I., and Aßmann, U. (2014). DeltaEcore-A
Model-Based Delta Language Generation Framework. In Modellierung, pages
81–96.

[Singer et al., 2005] Singer, J., Elves, R., and Storey, M.-A. (2005). Navtracks:
Supporting navigation in software maintenance. In Software Maintenance, 2005.
ICSM’05. Proceedings of the 21st IEEE International Conference on, pages 325–
334. IEEE.

[Solsbach et al., 2011] Solsbach, A., Süpke, D., vom Berg, B. W., and Gómez,
J. M. (2011). Sustainable online reporting model: A web based sustainability
reporting software. In Information Technologies in Environmental Engineering,
pages 165–177. Springer.

[Sriplakich et al., 2008] Sriplakich, P., Blanc, X., and Gervais, M.-P. (2008). Col-
laborative Software Engineering on Large-scale models: Requirements and Ex-
perience in ModelBus. Proceedings of the 2008 ACM symposium on Applied
computing 2008, ACM:p.674–681.

[Steinberg et al., 2008] Steinberg, D., Budinsky, F., Merks, E., and Paternostro,
M. (2008). EMF: Eclipse Modeling Framework. Addison-Wesley Longman Pub-
lishing Co., Inc.

[Stephan and Antkiewicz, 2008] Stephan, M. and Antkiewicz, M. (2008). Ecore:
A tool for editing and instantiating class models as feature models. University
of Waterloo, Tech. Rep, 8:2008.

[Stepper, 2018] Stepper, E. (visited on 22.07.2018). EMF-based Model
Repository: Corrected Data Objects (CDO). Eclipse Project Website.
http://eclipse.org/cdo.

[Sun and Ellis, 1998] Sun, C. and Ellis, C. (1998). Operational transformation in
real-time group editors: issues, algorithms, and achievements. In Proceedings
of the 1998 ACM conference on Computer supported cooperative work, pages
59–68. ACM.



References 224

[Suvanaphen and Roberts, 2004] Suvanaphen, E. and Roberts, J. (2004). Textual
difference visualization of multiple search results utilizing detail in context. In
Theory and Practice of Computer Graphics, 2004. Proceedings, pages 2–8. IEEE.

[Swicegood, 2008] Swicegood, T. (2008). Pragmatic version control using Git.
Pragmatic Bookshelf.

[Szyperski, 2000] Szyperski, C. (2000). Component software and the way ahead.
Foundations of component-based systems, pages 1–20.

[Taentzer et al., 2012] Taentzer, G., Ermel, C., Langer, P., and Wimmer, M.
(2012). A fundamental approach to model versioning based on graph modifica-
tions: from theory to implementation. journal: Software and Systems Modeling.

[TeamEdit, 2011] TeamEdit (2011). A collaborative text editor.

[Tichy, 1985] Tichy, W. F. (1985). RCS — a system for version control. Software
– Practice Experience, 15:Issue 7.

[Tolvanen, 2016] Tolvanen, J.-P. (2016). MetaEdit+ for collaborative language
engineering and language use (tool demo). In Proceedings of the 2016 ACM
SIGPLAN International Conference on Software Language Engineering, pages
41–45. ACM.

[Treude et al., 2007] Treude, C., Berlik, S., Wenzel, S., and Kelter, U. (2007).
Difference Computation of Large Models. In Proceedings of the the 6th Joint
Meeting of the European Software Engineering Conference and the ACM SIG-
SOFT Symposium on The Foundations of Software Engineering, ESEC-FSE,
pages 295–304, New York, NY, USA. ACM.

[van Deursen et al., 1998] van Deursen, A., Klint, P., et al. (1998). Little lan-
guages: Little maintenance? Journal of software maintenance, 10(2):75–92.

[Van Deursen et al., 2000] Van Deursen, A., Klint, P., and Visser, J. (2000).
Domain-specific languages. Centrum voor Wiskunde en Informatika, 5:12.

[Visual Paradigm, 2013] Visual Paradigm (2013). Visual Paradigm for UML. Vi-
sual Paradigm for UML-UML tool for software application development.

[Viyović et al., 2014] Viyović, V., Maksimović, M., and Perisić, B. (2014). Sir-
ius: A rapid development of DSM graphical editor. In Intelligent Engineering
Systems (INES), 2014 18th International Conference, pages 233–238. IEEE.

[Weiser, 1981] Weiser, M. (1981). Program slicing. In Proceedings of the 5th
international conference on Software engineering, pages 439–449. IEEE Press.

[Weiss et al., 2009] Weiss, S., Urso, P., and Molli, P. (2009). Logoot: A scal-
able optimistic replication algorithm for collaborative editing on p2p networks.
In Distributed Computing Systems, 2009. ICDCS’09. 29th IEEE International
Conference on, pages 404–412. IEEE.



References 225

[Wenzel, 2008] Wenzel, S. (2008). Scalable Visualization of Model Differences.
Proc. 2008 ICSE Workshop on Comparison and Versioning of Software Models,
Leipzig:41–46.

[Wenzel, 2010] Wenzel, S. (2010). Unique identification of elements in evolving
models : towards fine-grained traceability in model-driven engineering. PhD
thesis, Universität Siegen.

[Wenzel and Kelter, 2008] Wenzel, S. and Kelter, U. (2008). Analyzing Model
Evolution. In Proceedings of the 30th International Conference on Software
Engineering (ICSE’08), pages 831–834, Leipzig, Germany.

[Wingerd and Seiwald, 1998] Wingerd, L. and Seiwald, C. (1998). High-level best
practices in software configuration management. System Configuration Man-
agement, pages 57–66.

[Winter, 2000] Winter, A. (2000). Referenz-Metaschema für visuelle Model-
lierungssprachen. PhD thesis, Universität Koblenz-Landau, Wiesbaden. zugl.
Dissertation, Institut für Informatik. Universität Koblenz-Landau.

[Xing and Stroulia, 2005a] Xing, Z. and Stroulia, E. (2005a). Analyzing the evo-
lutionary history of the logical design of object-oriented software. IEEE Trans-
actions on Software Engineering, 31(10):850–868.

[Xing and Stroulia, 2005b] Xing, Z. and Stroulia, E. (2005b). UMLDiff: An Al-
gorithm for Object-Oriented Design Differencing. in: Proc. 20th IEEE/ACM
International Conference on Automated Software Engineering (ASE’05), IEEE
Computer Society:54–65.

[Yang et al., 2000] Yang, Y., Sun, C., Zhang, Y., and Jia, X. (2000). Real time
cooperative editing on the Internet. IEEE Internet Computing, 4(3):18–25.

[Zimmermann et al., 2005] Zimmermann, T., Zeller, A., Weissgerber, P., and
Diehl, S. (2005). Mining version histories to guide software changes. IEEE
Transactions on Software Engineering, 31(6):429–445.



Declaration of Authorship
Ich versichere, dass ich die vorliegende Arbeit selbständig verfasst und keine an-
deren als die angegebenen Quellen und Hilfsmittel benutzt und die allgemeinen
Prinzipien wissenschaftlicher Arbeit und Veröffentlichungen, wie sie in den Leitlin-
ien guter wissenschaftlicher Praxis der Carl von Ossietzky Universität Oldenburg
festgelegt sind, befolgt habe.

Dilshodbek Kuryazov, 20.02.2019

226


	Title: Model Difference Representation
	Abstract
	Kurzfassung
	Acknowledgements
	Contents
	List of Figures
	I Motivation and Challenges
	1 Introduction
	1.1 Research Objective
	1.2 Outline of the Thesis


	II Foundations
	2 Basic Concepts
	2.1 Model-Driven Software Engineering
	2.2 Domain Specific Languages
	2.3 Model Transformations
	2.4 Technical Spaces
	2.4.1 JGraLab – Java Graph Laboratory
	2.4.2 EMF – Eclipse Modeling Framework
	2.4.3 Further Technologies

	2.5 Summary

	3 Collaborative Development Use Cases
	3.1 Concurrent Collaboration
	3.1.1 Concurrent Text-Driven Collaboration
	3.1.2 Concurrent Model-Driven Collaboration
	3.1.3 Required Support
	3.1.4 Expected Benefits by Difference Language

	3.2 Sequential Collaboration
	3.2.1 Sequential Text-Driven Collaboration
	3.2.2 Sequential Collaborative Modeling
	3.2.3 Required Support
	3.2.4 Expected Benefits by Difference Language

	3.3 History Analysis
	3.3.1 Text-Driven History Analysis
	3.3.2 Model History Analysis
	3.3.3 Required Support
	3.3.4 Expected Benefits by Difference Language

	3.4 Summary

	4 Related Approaches To Difference Representation
	4.1 Model Difference Representation
	4.1.1 Model- and Graph-based Difference Representation
	4.1.2 Database-based Difference Representation
	4.1.3 Text-based Difference Representation
	4.1.4 Lessons Learned

	4.2 Services
	4.2.1 Difference Calculator
	4.2.2 Difference Applier and Merger
	4.2.3 Synchronization
	4.2.4 Model Manager
	4.2.5 Change Tracer
	4.2.6 Lessons Learned

	4.3 Requirements
	4.4 Summary


	III Approach
	5 Difference Language
	5.1 Conceptual Idea: DL Generation
	5.2 Motivating Example
	5.2.1 Sample Model and Model Changes
	5.2.2 Modeling Deltas
	5.2.3 DL Operations

	5.3 Summary

	6 Difference Language Services
	6.1 Generator
	6.2 Adapter
	6.3 Calculator
	6.4 Applier
	6.5 Synchronizer
	6.6 Manager
	6.7 Tracer
	6.8 Optimizer
	6.9 Merger
	6.10 Service Orchestration
	6.11 Summary


	IV Applications
	7 Concurrent Collaborative Modeling
	7.1 Reference Architecture
	7.2 Kotelett
	7.2.1 Meta-Model
	7.2.2 Concrete Architecture
	7.2.3 Kotelett Tool

	7.3 Collaborative Modeling – CoMo
	7.3.1 Meta-Model
	7.3.2 Concrete Architecture
	7.3.3 CoMo Tool

	7.4 DL Contributions
	7.5 Summary

	8 Sequential Collaborative Modeling
	8.1 Reference Architecture
	8.2 Generic Model Versioning System – GMoVerS
	8.2.1 Meta-Model
	8.2.2 Concrete Architecture
	8.2.3 GMoVerS Tool

	8.3 Versioning Sustainability Reports
	8.3.1 Meta-Model
	8.3.2 Concrete Architecture

	8.4 DL Contributions
	8.5 Summary

	9 Model History Analysis
	9.1 Reference Architecture
	9.2 Model History Analysis
	9.3 DL Contributions
	9.4 Summary


	V Evaluation
	10 Validation
	10.1 Applicability
	10.2 Fulfillment of Requirements
	10.3 Fulfillment of Expected Benefits
	10.4 Summary

	11 Conclusion
	11.1 Lessons Learned
	11.2 Contributions

	References
	Declaration of Authorship


