
Fakultät II – Informatik, Wirtschafts- und Rechtswissenschaften

Department für Informatik

From Supervised to Unsupervised Support Vector Machines

and Applications in Astronomy

Dissertation zur Erlangung des Grades eines

Doktors der Naturwissenschaften

vorgelegt von

Dipl.-Math. Dipl.-Inform.

Fabian Gieseke

29. November 2011

Dekan

Prof. Dr. Thorsten Raabe

Tag der Disputation

29.02.2012

Prüfungskommission

Prof. Dr. Martin Fränzle (Vorsitzender)

Jun.-Prof. Dr. Oliver Kramer (Erstgutachter)

Prof. Dr. Christian Igel (Zweitgutachter)

Dr. Ute Vogel (Mitglied der wiss. Mitarbeiter)

To my parents

iii

Abstract

A common task in the field of machine learning is the classification of objects. The basis

for such a task is usually a training set consisting of patterns and associated class labels.

A typical example is, for instance, the automatic classification of stars and galaxies in

the field of astronomy. Here, the training set could consist of images and associated

labels, which indicate whether a particular image shows a star or a galaxy. For such

a learning scenario, one aims at generating models that can automatically classify new,

unseen images. In the field of machine learning, various classification schemes have been

proposed. One of the most popular ones is the concept of support vector machines, which

often yields excellent classification results given sufficient labeled data.

However, for a variety of real-world tasks, the acquisition of sufficient labeled data can

be quite time-consuming. In contrast to labeled training data, unlabeled one can often be

obtained easily in huge quantities. Semi- and unsupervised techniques aim at taking these

unlabeled patterns into account to generate appropriate models. In the literature, various

ways of extending support vector machines to these scenarios have been proposed. One of

these ways leads to combinatorial optimization tasks that are difficult to address.

In this thesis, several optimization strategies will be developed for these tasks that

(1) aim at solving them exactly or (2) aim at obtaining (possibly suboptimal) candidate

solutions in an efficient kind of way. More specifically, we will derive a polynomial-time

approach that can compute exact solutions for special cases of both tasks. This approach

is among the first ones that provide upper runtime bounds for the tasks at hand and, thus,

yield theoretical insights into their computational complexity. In addition to this exact

scheme, two heuristics tackling both problems will be provided. The first one is based on

least-squares variants of the original tasks whereas the second one relies on differentiable

surrogates for the corresponding objective functions. While direct implementations of both

heuristics are still computationally expensive, we will show how to make use of matrix

operations to speed up their execution. This will result in two optimization schemes that

exhibit an excellent classification and runtime performance.

Despite these theoretical derivations, we will also depict possible application domains

of machine learning methods in astronomy. Here, the massive amount of data given for

today’s and future projects renders a manual analysis impossible and necessitates the use

of sophisticated techniques. In this context, we will derive an efficient way to preprocess

spectroscopic data, which is based on an adaptation of support vector machines, and

the benefits of semi-supervised learning schemes for appropriate learning tasks will be

sketched. As a further contribution to this field, we will propose the use of so-called

resilient algorithms for the automatic data analysis taking place aboard today’s spacecrafts

and will demonstrate their benefits in the context of clustering hyperspectral image data.

iv

v

Zusammenfassung

Ein klassisches Problem des maschinellen Lernens ist die Klassifikation von Objekten. Als

Ausgangspunkt stehen hier Trainingsdaten in Form von Mustern und zugehörigen Labeln

zur Verfügung. Im Bereich der Astronomie könnten die Trainingsdaten z.B. aus Bilddaten

und zugehörigen Labeln bestehen, wobei jedes Label angibt, ob auf dem Bild ein Stern

oder eine Galaxie zu sehen ist. Das Ziel des Lernprozesses würde dann darin bestehen,

auf Basis der bekannten Trainingsdaten ein entsprechendes Modell zu erstellen, welches

bisher unbekannte Bilddaten klassifizieren kann. Ein bekanntes Klassifikationskonzept

im Bereich des maschinellen Lernens sind die sogenannten Support Vektor Maschinen.

Falls genügend Trainingsdaten vorhanden sind, führt dieses Konzept in vielen Fällen zu

Modellen mit einer exzellenten Klassifikationsgüte.

Die Erstellung eines hinreichend großen Datensatzes kann sich für gewisse Anwen-

dungsfälle jedoch als aufwendig erweisen. Im Gegensatz zu solchen gelabelten Trainings-

daten stehen ungelabelte Daten oft in großem Umfang zur Verfügung. Um auch letztere für

den Lernprozess verwenden zu können, wurden in der Literatur unter anderem die halb-

und unüberwachten Support Vektor Maschinen vorgestellt; beide Erweiterungen führen

jedoch zu schwierigen kombinatorischen Optimierungsproblemen.

Die Entwicklung von Optimierungsansätzen für beide Erweiterungen ist eines der zen-

tralen Themen dieser Arbeit. Dabei wird sowohl auf die aufwendige Bestimmung exakter

Lösungen als auch auf den Entwurf von effizienten Heuristiken eingegangen. Im Speziellen

wird ein Ansatz vorgestellt, der es ermöglicht, exakte Lösungen in polynomieller Laufzeit

für einen Spezialfall der Problemstellungen zu bestimmen. Dieser liefert somit wertvolle

theoretische Einsichten in die Komplexität beider Optimierungsprobleme. Neben diesem

exakten Verfahren werden zwei lokale Suchstrategien vorgestellt. Die erste basiert auf einer

least-squares-Variante der Problemstellungen wohingegen die zweite auf differenzierbaren

Ersatzfunktionen beruht. Der in diesem Zusammenhang geleistete Kernbeitrag besteht in

hocheffizienten Implementationen beider Ansätze, welche sich durch geschicktes Ausnutzen

von Matrixeigenschaften der Zwischenlösungen ergeben.

Über diese theoretischen Ausführungen hinaus ist die Anwendung von Techniken des

maschinellen Lernens auf Daten aus der Astronomie Gegenstand der Arbeit. Der große

Umfang aktueller Datensätze in diesem Bereich führt dazu, dass eine manuelle Datenanaly-

se
”
per Hand“ nicht mehr möglich ist. In diesem Kontext wird ein Verfahren zur effizienten

Vorverarbeitung von Spektraldaten vorgestellt, welches auf einer angepassten Version der

oben genannten Support Vektor Maschinen basiert. Weiterhin werden sowohl mögliche

Anwendungsgebiete von halbüberwachten Lernverfahren im Bereich der Astronomie als

auch der Nutzen von sogenannten robusten Algorithmen zur automatisierten Datenana-

lyse an Bord heutiger Raumfahrzeuge diskutiert und analysiert.

vi

vii

Acknowledgments

I want to express my gratitude to my supervisor, Jun.-Prof. Oliver Kramer, for giving me

the opportunity to write this thesis in a prolific and enjoyable scientific environment. I

also want to thank him for numerous helpful discussions related to machine learning and

optimization issues that contributed significantly to the completion of this work.

I want to express my gratitude to Prof. Christian Igel who kindly agreed to serve as a

second referee. I also want to thank Prof. Martin Fränzle and Ute Vogel for agreeing to

complete my defense committee.

I would like to thank Prof. Jan Vahrenhold for giving me the opportunity to discover

both the machine learning field as well as its application domains in astronomy. I am also

thankful for several interesting discussions with Prof. Xiaoyi Jiang, who drew my attention

to support vector machines and their semi- and unsupervised extensions. Thanks to Prof.

Tapio Pahikkala, Evgeni Tsivtsivadze, and Antti Airola for having had the opportunity

to work with you and for various inspiring discussions. It was great to visit you in Turku

and Nijmegen and to host you in Dortmund and Münster. Special thanks go to Kai Lars

Polsterer for various prolific discussions, not only related to astronomical issues, and for

the interesting research we conducted during the last three years.

Thanks to Gundel Jankord, Marlies Terber, Meike Burke, and Petra Oetken, who

made travel arrangements and other administrative stuff much easier for me. Further,

many thanks to several people who provided valuable linguistic comments for the work at

hand including Wolfgang Hempel, Ulrich Trüloff, Christian Jansen, and Svenja Eßling.

I am also glad about having had the opportunity to conduct research at the TU

Dortmund, the Turku Centre of Computer Science, the Institute for Structural Mechanics

in Weimar, and the International Computer Science Institute in Berkeley. Further, I

would like to thank Jane White for her tremendous hospitality that made my short stay

in Berkeley so wonderful.

My particular gratitude goes to my lovely girlfriend Anna Amelung for her continuous

support and for keeping me going despite the pressure of work. I also want to thank her

for the wonderful cartoons she made for me.

I want to thank my family for the support I received year after year. In particular, I

want to thank Carolin Gieseke and Jan Verschraegen for knowing when to offer help, and

Noan and Malo Verschraegen for being such groovy nephews. Most of all, I want to thank

my parents, Beate Gieseke-Ladner and Arnold Gieseke, who supported me throughout my

life, especially during the last years. Thank you very much.

Fabian Gieseke

Oldenburg, November 2011

viii

Mathematical Notation

We will use N to denote the set of natural numbers (not including zero) and [n] to denote

the set {1, . . . , n} for any n ∈ N. The set of real numbers will be denoted by R, the set

of strictly positive real numbers by R+, and the set of non-negative real numbers by R+
0 .

Further, the n-dimensional vector space over R will be denoted by Rn and the vector space

of all n×m matrices with real coefficients by Rn×m.

Throughout the thesis, vectors and matrices are written in boldface where num-

bers/scalars are written in plain text. All vectors are assumed to be column vectors

and the superscript T is used to denote the transpose of a matrix or a vector, i. e., xT is

a row vector and MT ∈ Rm×n is the transpose of the matrix M ∈ Rn×m. Further, we use

xi to denote the i-th coordinate of the vector x ∈ Rn and [M]i,j to denote the element

in the i-th row and j-th column of M ∈ Rn×m. For two sets R = {i1, . . . , ir} ⊆ [n] and

S = {k1, . . . , ks} ⊆ [m] of indices, we use MR,S to denote the submatrix that contains only

the rows and columns of M ∈ Rn×m that are indexed by R and S, respectively. Moreover,

we set MR,[m] = MR. The identity matrix is denoted by I ∈ Rn×n.

The d-dimensional Euclidean space for fixed dimension d ∈ N is denoted by Rd. For

two vectors x and z in Rd, we will use 〈x, z〉 := xTz =
∑d

i=1 xizi to denote the standard

inner product and ‖x‖ := (xTx)
1/2

to denote the Euclidean norm of x. The Euclidean

distance between them is given by d(x, z) := ‖x− z‖ and we will use

d(P,Q) := inf{d(x, z) | x ∈ P ∧ z ∈ Q} (1)

to denote the natural extension of this metric to non-empty sets P,Q ⊆ Rd. Note that some

letters and symbols will be (re-)used multiple times throughout this thesis; the context

will make clear which meaning is intended.

ix

x

Contents

Abstract . iii

Zusammenfassung . v

Acknowledgments . vii

Mathematical Notation . ix

1 Introduction 1

1.1 Motivation . 2

1.1.1 Support Vector Machines . 2

1.1.2 Semi- and Unsupervised Extensions 2

1.1.3 Application Examples . 4

1.2 Related Work . 6

1.3 Overview on this Thesis . 7

I Foundations 9

2 Machine Learning Background 11

2.1 Statistical Learning in a Nutshell . 12

2.1.1 Expected and Empirical Risk . 12

2.1.2 Regularized Risk . 13

2.1.3 Generalization Bounds . 14

2.2 From Supervised to Unsupervised Learning 14

2.2.1 Supervised Learning . 14

2.2.2 Unsupervised Learning . 15

2.2.3 Semi-Supervised Learning . 15

2.2.4 Elementary Algorithms . 16

xi

xii CONTENTS

2.2.5 Related Work . 18

2.3 Model Selection . 19

2.3.1 Training, Validation, and Test Set 19

2.3.2 K-Fold Cross-Validation . 20

2.4 The Curse of Dimensionality . 20

2.4.1 The Hughes Effect . 20

2.4.2 Dimension Reduction . 21

2.5 Concluding Remarks . 23

3 Support Vector Machines Revisited 25

3.1 Linear Support Vector Machines . 26

3.1.1 Preliminaries . 26

3.1.2 Large Margin Separation . 27

3.2 Non-Linear Support Vector Machines . 29

3.2.1 Kernels and Feature Spaces . 30

3.2.2 Generalized Representer Theorem 31

3.2.3 Support Vector Classification . 33

3.2.4 Support Vector Regression . 34

3.3 Computational Considerations . 35

3.3.1 Primal and Dual Problems . 36

3.3.2 Mathematical Optimization . 39

3.4 The Hughes Effect Revisited . 41

3.4.1 Experimental Setup . 41

3.4.2 Results . 42

3.5 Concluding Remarks . 42

II Semi- and Unsupervised Support Vector Machines 43

4 Exact Solutions in Polynomial Time 45

4.1 Mathematical Framework . 46

4.1.1 Learning Tasks . 46

4.1.2 Related Work . 48

4.2 Geometric Background . 49

4.2.1 Arrangements and Duality . 49

4.2.2 Constructing Arrangements . 51

4.3 Polynomial-Time Framework . 52

4.3.1 Connection to Arrangements . 52

4.3.2 Polynomial-Time Algorithm . 55

CONTENTS xiii

4.4 Experimental Analysis . 57

4.4.1 Experimental Setup . 57

4.4.2 Results . 59

4.5 Concluding Remarks . 63

5 Speedy Local Search 65

5.1 Motivation . 66

5.2 General Classification Framework . 67

5.2.1 Non-Linear Extensions . 67

5.2.2 Related Work . 69

5.3 Algorithmic Framework . 70

5.3.1 Least-Squares Variants . 70

5.3.2 Local Search Strategy . 73

5.3.3 Convex Intermediate Tasks . 75

5.3.4 Speed-Ups via Matrix Calculus . 76

5.4 Experimental Analysis . 84

5.4.1 Experimental Setup . 84

5.4.2 Semi-Supervised Learning Settings 87

5.4.3 Unsupervised Learning Settings . 93

5.5 Concluding Remarks . 97

6 Sparse Quasi-Newton Optimization 99

6.1 Motivation . 100

6.2 Continuous Optimization . 101

6.2.1 Non-Convex Task . 101

6.2.2 Balance Constraint . 102

6.2.3 Related Work . 103

6.3 Algorithmic Framework . 104

6.3.1 Differentiable Surrogates . 104

6.3.2 Quasi-Newton Optimization . 106

6.3.3 Computational Speed-Ups . 108

6.3.4 Competitors: Steepest Descent and Newton’s Method 111

6.4 Experimental Analysis . 111

6.4.1 Experimental Setup . 111

6.4.2 Results . 114

6.5 Discussion: Model Selection and Optimization 119

6.5.1 Parameters, Parameters, and Parameters 119

6.5.2 More Optimization . 120

xiv CONTENTS

6.6 Concluding Remarks . 122

III Applications in Astronomy 123

7 Machine Learning on Earth 125

7.1 Motivation . 126

7.1.1 Massive Data in Astronomy . 126

7.1.2 Quasi-Stellar Radio Sources . 127

7.2 Detecting Quasars in Large-Scale Spectroscopic Surveys 129

7.2.1 Speedy Adaptable Continuum Extraction 129

7.2.2 Discriminating Quasars from Other Objects 135

7.3 Semi-Supervised Learning Perspectives . 136

7.3.1 Semi-Supervised Support Vector Machines for Spectroscopic Data . 137

7.3.2 Multiple Views: Photometric and Spectroscopic Data 138

7.4 Concluding Remarks . 140

8 Machine Learning in Space 141

8.1 Motivation . 142

8.2 Accelerating K-Means . 143

8.2.1 K-d Trees . 143

8.2.2 Speed-Up with K-d Trees . 143

8.3 Resilient K-d K-Means . 145

8.3.1 Resilient K-d Tree . 145

8.3.2 Resilient K-d K-Means . 149

8.4 Experimental Analysis . 150

8.4.1 Experimental Setup . 150

8.4.2 Results . 153

8.5 Concluding Remarks . 155

IV Summary 157

9 Summary and Outlook 159

9.1 Summary . 159

9.1.1 Semi- and Unsupervised Support Vector Machines 159

9.1.2 Applications in Astronomy . 160

9.2 Research Directions . 161

9.2.1 Semi- and Unsupervised Learning 161

9.2.2 Astroinformatics: An Emerging Discipline 162

CONTENTS xv

Appendix 167

Author’s Contribution 167

List of Figures 171

List of Tables 175

List of Algorithms 177

Bibliography 179

xvi CONTENTS

CHAPTER 1

Introduction

T
he field of machine learning [5, 15, 73, 105] has gained more and more attention

in recent years. One of the reasons for this phenomenon is the fact that the

data volume in various (scientific) fields has increased dramatically during the last

decade. This is the case, for instance, in astronomy where recent projects like the Sloan

Digital Sky Survey [132] or future ones like the Large Synoptic Sky Telescope [95] produce

or will produce data volumes in the tera- and petabyte range. For such projects, the sheer

data volume renders a manual analysis impossible. Machine learning techniques aim at

retrieving useful information in an automatic manner and the corresponding tools have

been recognized as “increasingly essential in the era of data-intensive astronomy” [17]. In

general, expert knowledge is required to teach the machines how to automatically perform

a task (like predicting a class for an object). Such a teaching process is usually based on

expert knowledge in terms of labels, i. e., a machine has access to a finite set of data items

with associated labels. This type of task is called supervised learning [5, 15, 73, 105].

Ideally, a large amount of labeled data items should be available for the machines

to yield a satisfying classification performance on unseen data. Depending on the task

at hand, however, acquiring such labeled data can be extremely time-consuming and

expensive. In contrast to labeled data, unlabeled data (i. e., data items without associated

labels) can often be obtained in great quantities without much additional effort. Both

so-called semi- and unsupervised learning schemes aim at making use of the (additional)

information provided by the unlabeled patterns to generate appropriate models. In this

chapter, we will sketch the main ideas of supervised, semi-supervised, and unsupervised

learning settings and will provide an overview of the work at hand.

1

2 CHAPTER 1. INTRODUCTION

1.1 Motivation

The content presented in this work mostly deals with a well-known supervised learning

technique, the so-called support vector machines [40, 73, 124, 135], and their extensions to

semi- and unsupervised learning scenarios. In this section, we will briefly sketch the basic

ideas behind these concepts.

1.1.1 Support Vector Machines

The concept of support vector machines can be used to address binary classification

tasks [73]. For such a learning setting, there are data from two types of objects along

with associated class labels. In most cases, each data item, also called pattern, is repre-

sented by a set of real-valued features describing the objects. These features and the class

labels constitute the training set TL = {(x′1, y′1), . . . , (x′l, y′l)} ⊂ Rd × {−1,+1}.
Briefly speaking, the goal of a support vector machine consists in finding a hyperplane

which separates both classes well such that the induced distance (or margin) between the

hyperplane and the patterns is maximal. At the same time, patterns lying within the

corridor (induced by the margin and the patterns) are penalized. As we will see below,

this idea can be formalized mathematically in terms of the following optimization problem:

minimize
w∈Rd, b∈R, ξ′∈Rl

1

2
‖w‖2 + C ′

l∑
i=1

ξ′i (1.1)

s.t. y′i(〈w,x′i〉+ b) ≥ 1− ξ′i, ξ′i ≥ 0

Here, the first term of the objective corresponds to maximizing the margin whereas the

second term corresponds to penalizing the patterns lying within the corridor [40, 73, 124,

135]. The parameter C ′ > 0 determines the trade-off between these two aims.

This concept can be extended by using so-called kernel functions k : Rd × Rd → R,

which render non-linear decision hyperplanes possible [124, 135]. In Figure 1.1 (a), an

illustration of this concept is shown. Here, the red squares and the blue triangles depict

the two classes and the middle line represents the (non-linear) decision hyperplane. The

margin is indicated by the regions between the middle and each of the two outer lines.

For unseen patterns, one can then resort to the decision hyperplane to assign appropriate

labels.

1.1.2 Semi- and Unsupervised Extensions

Support vector machines belong to the class of supervised learning techniques since they

only make use of labeled data for generating an appropriate decision hyperplane. Ideally, a

1.1. MOTIVATION 3

(a) Supervised (b) Semi-Supervised (c) Unsupervised

Figure 1.1. For standard support vector machines, a labeled training set (red squares and blue triangles)
is given and the goal consists in finding a decision hyperplane (middle line) which maximizes the margin
(indicated by the regions between the middle and each of the two outer lines), see Figure (a). In real-world
settings, labeled data are usually scarce while unlabeled data (black points) can often be obtained without
much additional effort. As shown in Figure (b), unlabeled data can reveal more information about the
structure of the data. This additional information is taken into account by semi-supervised support vector
machines. A similar task is addressed by unsupervised support vector machines, see Figure (c). However,
while the corresponding model still captures the structure of the data, it might not infer the correct class
for a new pattern due to missing labeled data.

large amount of labeled patterns should be available for this concept to yield reasonable re-

sults. In real-world scenarios, however, this type of data is usually scarce and the resulting

hyperplane might not be a good candidate for classifying unseen patterns. For this reason,

both semi- and unsupervised extensions of support vector machines have been proposed

in the literature which aim at incorporating unlabeled patterns TU = {x1, . . . ,xu} ⊂ Rd

in a reasonable manner.

Semi-Supervised Support Vector Machines

The semi-supervised extension takes both the labeled set TL = {(x′1, y′1), . . . , (x′l, y′l)} ⊂
Rd × {−1,+1} and the unlabeled set TU = {x1, . . . ,xu} ⊂ Rd of patterns into account.

In a nutshell, the idea is to consider the same objectives on the labeled part as a support

vector machine but, at the same time, to additionally enforce the decision hyperplane not

to go through high-density areas induced by the unlabeled patterns. An illustration of

this extension is given in Figure 1.1 (b). Here, the decision hyperplane still maximizes the

margin with respect to the labeled patterns (to some degree) but simultaneously avoids

the unlabeled patterns (black points). In this case, the unlabeled patterns clearly provide

useful information and the resulting model is better suited to classify unseen patterns.

From an optimization point of view, semi-supervised support vector machines aim at

identifying a partition of the unlabeled patterns into two classes such that a subsequent

application of a modified support vector machine yields the best overall result.1

1We would like to point out that there exists a variety of other possibilities to extend the concept
of support vector machines to semi-supervised settings. In this thesis, we will focus on the described
combinatorial extension, which depicts one of the main research directions in this context.

4 CHAPTER 1. INTRODUCTION

(a) Image Classification (b) Fore- and Background Separation

Figure 1.2. Both examples demonstrate possible application domains of semi- and unsupervised classifi-
cation schemes. In Figure (a), the task of classifying handwritten digits is shown. Besides the data (i.e.,
the grayscale images [42]), appropriate labels are needed for generating machine learning models. This
labeling usually requires a visual inspection by human beings. Another example is shown in Figure (b).
Here, instead of classifying different types of images, one aims at detecting the two most dominant groups
of pixels. In this case, these two groups correspond to the fore- and the background of the image.

Unsupervised Support Vector Machines

The optimization task induced by semi-supervised support vector machines is strongly

related to the one of unsupervised support vector machines. For the unsupervised case, one

is only given the set TU = {x1, . . . ,xu} ⊂ Rd of unlabeled patterns and the goal consists

in finding a partition of these patterns into two classes such that a subsequent application

of a standard support vector machine yields the best overall result, see Figure 1.1 (c)

for an illustration. Note that a trivial solution for this task is to assign all patterns to

one class. In order to avoid such (undesired) degenerated solutions, one usually considers

an additional constraint which ensures that at least one pattern (or a specific amount of

patterns) is assigned to each of the two classes. Exactly as for the semi-supervised case,

this task leads to a combinatorial optimization problem which is difficult to address.

1.1.3 Application Examples

As mentioned above, the process of labeling data can be time-consuming and expensive

for specific tasks and, hence, leads to a general lack of labeled data for such settings.

Further, in some cases, no labels at all are given for the task at hand and one could,

e.g., aim at detecting the most dominant classes present in the data. The following three

real-world examples sketch possible application domains for support vector machines and

their extensions to both semi- and unsupervised settings.

Spam Detection

A typical binary classification task is the automatic classification of emails into two groups,

in particular the detection of email spam. In such settings, each email can be represented

as an unordered collection of words (occurring in the text) and the labels indicate whether

a user classifies a given email as spam or not spam. Support vector machines are known

1.1. MOTIVATION 5

Figure 1.3. An important task in the field of astronomy is the classification of galaxies based on their
shapes [6, 17]. In this context, a binary classification task could consist, for instance, in discriminating
elliptical and spiral galaxies [132].

to perform well on text data in general [84]. However, to generate personalized spam

filters, the user has to manually label a relatively large amount of emails. In contrast

to obtaining such labeled patterns, unlabeled ones can usually be obtained for free in

this context. Thus, semi-supervised learning schemes like the corresponding extension of

support vector machines have the potential to reduce the amount of manual interaction

by the user dramatically.

Image Classification

Another application domain is the automatic classification of images. A popular example

is depicted in Figure 1.2 (a). Here, each pattern corresponds to the image of a handwritten

digit and the associated labels indicate whether an image is of type 3 or of type 8. Again,

for such scenarios, labeling sufficient images manually can be time-consuming, especially

if a variety of classification tasks are given. This is the case, for instance, in the field of

astronomy, where one could aim at classifying the different types of galaxies, see Figure 1.3.

Similar to generating personalized spam filter models, unlabeled data might be used to

reduce the required amount of visual inspection by human beings for such learning tasks.

Fore- and Background Separation

The two problem settings described above depict reasonable examples in which the ad-

ditional unlabeled data might be useful. In general, without any labeled data at all,

unsupervised classification methods can be used for similar problem settings to detect the

most dominant (possibly unknown) classes in the data. An important task in the field of

pattern recognition [15] is, for instance, the automatic separation of fore- and background

pixels in images. Such a setup is sketched in Figure 1.2 (b). Here, each pattern corre-

6 CHAPTER 1. INTRODUCTION

sponds to a pixel (represented by three color values) and one aims at detecting the two

most distinct groups of pixels in the color space. This task is a typical application domain

for unsupervised classification schemes. Note, however, that for this particular task, both

supervised and semi-supervised classification schemes might also be useful.2

1.2 Related Work

A wide range of supervised as well as semi- and unsupervised learning techniques exist in

the field of machine learning [15, 73]. In this work, we will mainly focus on support vector

machines and their depicted extensions to semi- and unsupervised learning settings. The

concept of support vector machines has gained tremendous attention during the last two

decades both from a practical as well as theoretical point of view [124, 135]. Further, vari-

ous extensions have been proposed including the semi- and unsupervised variants sketched

above. Both extensions considered in this thesis lead to combinatorial optimization tasks

which are difficult to address. In the related literature, three general research directions

for these tasks can be found:

(1) Exact approaches (see, e.g., [10, 35, 112]): A small number of techniques aim at

solving these combinatorial tasks exactly, i. e., they aim at computing solutions with

guaranteed accuracy. While the resulting approaches are interesting from a the-

oretical point of view, the involved computational complexities usually limit their

practical use.

(2) Relaxations (see, e.g., [14, 98, 140, 148, 149]): Some of the approaches are based

on reformulating the original problem definitions to obtain tasks that are easier to

address. On the one hand, these instances can often be solved exactly in an efficient

manner (via, e.g., convex optimization techniques [20]) and the resulting solutions

might depict reasonable candidates. On the other hand, a solution for these modified

problem instances is not necessarily optimal in the sense of the original problem

definition.

(3) Local search schemes (see, e.g., [32, 33, 38, 39, 55, 83, 104, 127, 131, 146, 153, 156]):

The most prominent class of related techniques are local search schemes which aim

at computing reasonable solutions in an efficient manner. While these approaches

are often very attractive from a computational point of view, no guarantee of the

solutions’ quality is given. However, such schemes often yield surprisingly good

results on both artificial and real-world data sets.

2In Figure 1.2 (b), for instance, one could also be interested in separating the seagull from the remaining
part of the image. For this particular task, one could manually label some pixels belonging to the seagull
and some pixels that do not belong to the seagull.

1.3. OVERVIEW ON THIS THESIS 7

In the remainder of this work, the above learning concepts will be formalized and the re-

lated literature will be discussed in a more detailed manner. Despite these concepts several

applications of machine learning techniques in the field of astronomy will be discussed.

For an overview of this emerging interdisciplinary field, we refer the reader to the surveys

given by Ball and Brunner [6] and Borne [17].

1.3 Overview on this Thesis

The content presented in this work is partially based on several papers [58, 59, 60, 61,

62, 67, 63, 64, 65, 66, 91, 92, 139]. The author’s contribution to these publications and

manuscripts is depicted in the appendix of this thesis. We will now give an overview of

the thesis at hand, which is split into four parts:

Part I: Foundations

In the first part, we will provide the machine learning background for the remaining chap-

ters. For this sake, a brief introduction into statistical learning theory will be given, which

deals with the formal analysis of machine learning techniques. In addition, the different

learning settings that are central for the thesis will be defined. As we will see, addressing

machine learning tasks usually becomes increasingly difficult in high-dimensional input

spaces. One way to cope with such difficulties are dimension reduction techniques, which

we will briefly sketch as well. These issues will be subject of Chapter 2.

Most parts of this work are related to support vector machines. In Chapter 3, the

mathematical background of this concept will be provided, which will form the basis for

deriving its extensions to semi- and unsupervised learning scenarios.

Part II: Semi- and Unsupervised Support Vector Machines

The second part of this thesis deals with the extensions of support vector machines, which

lead to combinatorial optimization tasks. Surprisingly, exact approaches, i. e., methods

aiming at computing solutions with guaranteed accuracy, have not been investigated ex-

tensively in the related literature. In Chapter 4 we will propose an approach that is

capable of computing exact solutions (up to machine precision) in polynomial time for

special cases of the problem instances [66]. Despite providing these theoretical insights,

the approach can also be used to generate benchmark data sets in low-dimensional feature

spaces, which is of independent interest. The computational complexity of the algorithm,

however, renders an application in high-dimensional learning settings impossible.

Aiming at such learning scenarios, we will therefore propose a simple local search

strategy to approach both tasks in Chapter 5. Since a direct implementation is still

8 CHAPTER 1. INTRODUCTION

computationally expensive, we will show how to make use of matrix-based updates for the

intermediate candidate solutions, which will greatly reduce the overall runtime [59, 63].

This renders the approach capable of testing a massive amount of candidate solutions and,

thus, paves the way for a more detailed exploration of the search space.

Finally, in Chapter 6, we will depict an alternative optimization perspective for the

tasks at hand which leads to continuous and non-convex optimization problems. As we will

see, a simple but careful application of gradient based schemes yields extremely efficient

optimization frameworks to deal with the tasks [67]. Although being conceptually very

simple, the resulting approach yields results which are superior (or, at least, comparable)

to state-of-the-art methods, both with respect to the classification as well as to the runtime

performance. The chapter concludes with a discussion of critical issues related to global

optimization and parameter selection.

Part III: Applications in Astronomy

The data volume in astronomy has increased dramatically in recent years. The third part

of this work deals with application domains of machine learning techniques in this field.

In particular, we will derive a new, adaptable scheme for extracting the continuum (rough

shape) of a given spectrum and will show how to define simple but expressive features based

on continuum-subtracted versions of the raw data in the context of detecting quasars, a

special type of astronomical objects [62]. Further, the possible benefits of semi-supervised

learning schemes in astronomy will be discussed including perspectives related to multi-

view learning and ranking [139]. These issues will be subject of Chapter 7.

Unsupervised learning schemes have also gained interest in astronomy during recent

years. One example is the automatic data analysis taking place on board of today’s space-

craft systems. In contrast to the analysis on earth, however, such systems are faced with

computational problems which are caused by the cosmic radiation. In Chapter 8, these

problems will be discussed. In addition, we will show how to make use of sophisticated

data structures that render the data analysis in such scenarios more stable (without much

additional cost with respect to runtime and space consumption) [61, 64].

Part IV: Summary

Finally, in the fourth part, we will summarize the main results of this work and will discuss

future research directions including sophisticated concepts to cope with the lack of labeled

data and the huge data volumes in astronomy [58, 60, 65] as well as on-line monitoring

systems of important astronomical events [91, 92].

Part I

Foundations

9

CHAPTER 2

Machine Learning Background

I
n this chapter, we will formalize the concept of learning. Briefly speaking, this concept

deals with the design of algorithms yielding models based on observed data. The key

idea is that these models capture as many of the characteristics of the data at hand

as possible such that they can make reasonable predictions for unseen data patterns. As

an example, consider again the task of classifying handwritten digits. Here, the training

data are given as grayscale images with associated class labels and the goal is to derive a

model which can automatically assign appropriate class labels to new images.

One of the main issues in the field of machine learning is the fact that such models

have to be generated based on a finite amount of data. Predictions, however, usually

have to be made for any possible new data item. This renders simple look-up strategies

unsuitable in most cases. Further, learning tasks become increasingly difficult to approach

in high-dimensional input spaces. To cope with this phenomenon, known as curse of

dimensionality, one can try to reduce the input dimension of the data or to increase the

amount of labeled data used for generating the models (or a combination thereof). The

former idea is addressed by so-called dimension reduction techniques that aim at obtaining

a low-dimensional but meaningful description of the given data. In some cases, however,

such a reduction might not yield satisfying results. This normally necessitates the use of

more labeled data or the application of other sophisticated strategies.

Outline. The mathematical formalization of the concept of learning and the definition of

the different learning settings will be subject of Section 2.1 and Section 2.2, respectively.

Most machine learning approaches depend on parameters and the specific assignments

11

12 CHAPTER 2. MACHINE LEARNING BACKGROUND

for these parameters play a crucial role for the performance of the resulting models. In

Section 2.3, two well-known model selection techniques will be sketched. Finally, in Sec-

tion 2.4, the curse of dimensionality along with dimension reduction methods will be briefly

explained, followed by concluding remarks given in Section 2.5.

2.1 Statistical Learning in a Nutshell

The concept of statistical learning theory [19, 73, 100, 135, 141] provides the mathematical

framework for the theoretical analysis of machine learning techniques. Basis for such

an analysis is an input space X ⊆ Rd, an output space Y ⊆ R, and random variables

(X,Y) ∈ X × Y with unknown joint distribution P (x, y).1 The goal of the learning

process is to identify a prediction function f ∈ H in a hypothesis space H ⊆ {g : X → Y}
which assigns predictions to unseen patterns x ∈ X in an optimal manner. This usually

has to be accomplished given a finite training set

TL = {(x′1, y′1), . . . , (x′l, y′l)} ⊂ X × Y (2.1)

consisting of l ∈ N independent and identically distributed pairs (x′i, y
′
i) ∈ X ×Y sampled

according to the distribution P (x, y) [19, 100, 135]. To measure the quality of a given

prediction function f ∈ H, one can resort to the expected, empirical, and the regularized

risk, which we will describe next.

2.1.1 Expected and Empirical Risk

The definition of these risks is based on loss functions L : Y × R → [0,∞) measuring

the disagreement L(y, f(x)) of a given label y ∈ Y and a corresponding prediction f(x)

for a particular pattern x ∈ X . Well-known loss functions are, for instance, the 0-1

loss L(y, f(x)) = 1{f(x)6=y} and the square loss L(y, f(x)) = (y − f(x))2. For a given

prediction function f ∈ H, the expected risk R[f] is then defined as

R[f] :=

∫
X×Y

L(y, f(x))dP (x, y). (2.2)

In principle, one would like to identify the prediction function f ∈ H which has minimal

expected risk over all possible functions.2 However, since the joint distribution P (x, y)

1For the precise definition of the spaces and the joint distribution, one has to resort to the concept
of measure theory. In this context, the spaces X and Y are arbitrary measurable spaces with associated
σ-algebras and one considers measurable functions as possible prediction functions. The definition of this
setup, however, is beyond of the scope of this work and we refer the reader to appropriate textbooks [7,
47, 135, 141] for details.

2The infimum of R[f] over all possible measurable functions is called the Bayes risk [19].

2.1. STATISTICAL LEARNING IN A NUTSHELL 13

(a) λ=small (b) λ=large (c) λ=medium

Figure 2.1. Three possible models (black curves) for a given set of data points. In Figure (a), the model
fits the data well but is too complex (due to a small λ). In Figure (b), the model is simple (due to a
large λ), but does not fit the data. An appropriate model is the one shown in Figure (c) with a reasonable
trade-off between model complexity and data fit.

is unknown, one cannot resolve the integral (2.2). Instead, one usually considers the

empirical risk Remp[f] as surrogate for the expected risk which is defined as

Remp[f] :=
1

l

l∑
i=1

L(y′i, f(x′i)). (2.3)

Unfortunately, there are two difficulties arising when using the empirical risk instead

of the expected risk in this context. Firstly, there might be many possible prediction

functions in the hypothesis space H rendering the search for an optimal function difficult.

Secondly, it is always possible to select a prediction function among all possible prediction

functions having small empirical risk but high expected risk [19]. For instance, the function

g : X → Y defined as

g(x) :=

y′i if x = x′i for a i ∈ {1, . . . , l} and

0 otherwise,
(2.4)

yields small empirical risk (assuming, e.g., the 0-1 loss) but does not provide any informa-

tion about unseen patterns. Thus, simply identifying a function with low expected risk is

not useful in general. To cope with both difficulties, one usually restricts the hypothesis

space or modifies the objective by adding a term which penalizes complex functions.

2.1.2 Regularized Risk

One possible concept to deal with these problems is regularization [19, 73]. The basic idea

consists in choosing a large hypothesis space H and to add a regularization term to the

objective (i. e., to the empirical risk). This leads to the regularized risk Rreg[f] defined as

Rreg[f] := Remp[f] + λΩ(f) (2.5)

14 CHAPTER 2. MACHINE LEARNING BACKGROUND

for a particular prediction function f ∈ H, where Ω : H → R is the so-called regularizer

which penalizes complex functions. Thus, the first term of the right hand side of (2.5)

measures how well the prediction function f fits the patterns in the training set whereas

the second term measures the complexity of the function. The additional regularization

parameter λ ∈ R+ determines the trade-off between both objectives, i. e., between a good

data fit and a small complexity, see Figure 2.1 for an illustration. Typically, the regularizer

Ω(·) is given in terms of a norm ‖·‖H defined on the hypothesis space H. Thus, the concept

of regularization is based on the assumption that appropriate prediction functions exhibit

a smooth behavior [73]. As we will see in Chapter 3, support vector machines sketched in

the introductory chapter are based on this concept as well.

2.1.3 Generalization Bounds

Statistical learning theory aims at providing the theoretical framework for the analysis

of algorithms yielding prediction functions of the above form. In general, a prediction

function f ∈ H generated by such a learning algorithm is designated to have small expected

risk R[f]. Again, since the joint distribution P (x, y) is unknown, one cannot approach

this task directly. One of the goals of statistical learning is to provide bounds [19] of the

form

R[f] ≤ Remp[f] +B(l,H), (2.6)

which are fulfilled with high probability for each f ∈ H and where B(l,H)→ 0 holds for

l→∞. Here, the term B(l,H) captures the complexity of H and is supposed to be small

if not too complex functions are contained in H. Thus, such bounds essentially state that

if the hypothesis space H contains simple functions (i. e., small B(l,H)) and, at the same

time, one of the considered functions f can describe the data well (i. e., small empirical

risk), the empirical risk Remp[f] is likely to be close to the expected risk R[f]. A detailed

discussion of these issues, however, goes beyond the scope of this work and we refer the

reader to appropriate surveys [19] and textbooks [135, 141] for an overview.

2.2 From Supervised to Unsupervised Learning

We will now define the central learning tasks for the work at hand and will subsequently

sketch simple algorithms to approach them.

2.2.1 Supervised Learning

The setup described above is called supervised learning since an algorithm has access to

a labeled training set TL = {(x′1, y′1), . . . , (x′l, y′l)} ⊂ X × Y consisting of patterns x′i with

2.2. FROM SUPERVISED TO UNSUPERVISED LEARNING 15

associated labels y′i. The two most common supervised learning tasks are classification

and regression [73]. For the former one, the output space Y consists of a finite set of

discrete variables which represent the classes. Here, the special case of two classes, i. e.,

Y = {−1,+1}, induces binary classification tasks.3 For the latter one, regression, the

output space is usually given as Y = R. For such tasks, the goal consists in finding a

prediction function which assigns appropriate real-valued labels to unseen patterns x ∈ X .

In this thesis, we will mainly focus on binary classification tasks as well as its extensions

to unsupervised and semi-supervised settings.

2.2.2 Unsupervised Learning

At early stages of the learning process, no labels at all are usually given for the patterns

(in some cases, it is even not clear what to search for). For such settings, one is only given

an unlabeled training set TU = {x1, . . . ,xu} ⊂ X and the induced learning tasks belong to

unsupervised learning scenarios. The unsupervised analogon for classification is clustering

(or unsupervised classification). Here, the goal is to partition the patterns into groups

such that patterns within the same group exhibit similar properties and those being in

different groups exhibit dissimilar ones. Note, however, that the desired classification and

clustering models do not necessarily coincide, see Figure 2.2. This depends on the data at

hand and on the particular objectives for both settings (e.g., on the similarity measure used

for defining the clustering partitions). Despite clustering, dimension reduction schemes

depict well-known unsupervised learning concepts as well (which will be sketched below).

2.2.3 Semi-Supervised Learning

A recent direction in the field of machine learning is semi-supervised learning. Briefly

speaking, it can be seen as a mixture of the above two learning settings where both

a labeled TL = {(x′1, y′1), . . . , (x′l, y′l)} ⊂ X × Y and an unlabeled training set TU =

{x1, . . . ,xu} ⊂ X are given. The key idea of semi-supervised learning is that the unlabeled

patterns reveal more information about the structure of the data (compared to supervised

learning settings). Thus, an algorithm aims at taking both parts of the data into account

for generating appropriate models. Again, a variety of semi-supervised learning tasks

can be defined and we refer to the surveys given by Chapelle et al. [34] and Zhu and

Goldberg [157] for an introduction. In the following, we will consider semi-supervised

binary classification settings. There are two slightly different semi-supervised learning

scenarios, namely inductive and transductive semi-supervised learning.

3Note that any classification task with |Y| > 2 can be considered as a set of binary classification tasks
(e.g., via an one-versus-all strategy).

16 CHAPTER 2. MACHINE LEARNING BACKGROUND

Inductive Scenarios

The first of these two variants is called inductive semi-supervised learning [34, 157]. Here,

an algorithm has access to both the labeled and the unlabeled training set. Similar to

supervised settings, the goal of the learning process consists in deriving a function f ∈ H
having a good performance on unseen patterns. Thus, for such settings, these patterns

are neither contained in TL nor in TU and are therefore not available for generating the

model.

Transductive Scenarios

The second setting is called transductive semi-supervised learning [34, 157]. Exactly as

before, one aims at deriving a function f ∈ H based on both the labeled training set TL

and the unlabeled one TU . However, in contrast to inductive semi-supervised learning

scenarios, one is interested in the performance of f ∈ H on the unlabeled training set

itself. The induced learning tasks are therefore easier to approach since the patterns used

for testing are already known during the construction phase of the model. Note that for

real-world settings, such a setup is often given: Despite a small amount of labeled patterns,

one usually has access to a huge amount of unlabeled patterns. At the same time, one is

interested in reasonable labels for these (already given) unlabeled patterns.4

2.2.4 Elementary Algorithms

We will now sketch elementary classification algorithms for each of the learning settings

depicted above to demonstrate the key ideas of these concepts.

K-Nearest Neighbors

One of the most popular supervised classification algorithms is the k-nearest neighbor

classifier [73]. The key idea of this approach is to assign a label to a new pattern x ∈ X
based on its neighborhood in the training set TL = {(x′1, y′1), . . . , (x′l, y′l)} ⊂ X × Y. More

precisely, for binary classification scenarios with Y = {−1,+1}, the prediction function

f : X → Y is defined as

f(x) :=

 1 if
∑

x′i∈Nk(x)
y′i > 0 and

−1 if
∑

x′i∈Nk(x)
y′i ≤ 0,

(2.7)

4As an example, consider today’s astronomical catalogs. Here, a small portion of objects is usually
labeled manually by experts in this field. The majority of objects, however, is not labeled. For such
scenarios, it is interesting to build machine learning models which can automatically label these unlabeled
but already available patterns.

2.2. FROM SUPERVISED TO UNSUPERVISED LEARNING 17

(a) Supervised (b) Unsupervised (c) Semi-Supervised

Figure 2.2. The figures demonstrate the key ideas of (a) supervised, (b) unsupervised, and (c) semi-
supervised classification, where the large squares and triangles depict labeled and the black points unlabeled
patterns. Small squares and triangles represent unlabeled patterns that have been assigned a label by one
of the approaches. The final models (i.e., decision functions) are indicated by the black lines. Clearly,
the k-nearest neighbor model (with k = 3), shown in Figure (a), seems to be inappropriate for the data at
hand since it does not take the structure induced by the unlabeled patterns into account. The clustering
solution shown in Figure (b) obtained via the k-means approach (with k = 2) does capture the structure of
the data. However, it does not yield the (desired) classification partition induced by the labeled patterns.
This is achieved via the semi-supervised propagating 1-nearest neighbor scheme as depicted in Figure (c).

where Nk(x) denotes the k-nearest neighbors of x in the training set TL for a user-

defined k ∈ N. For the definition of the neighborhood, arbitrary distance measures can be

used. A popular one is the Euclidean distance, see Figure 2.2 (a) for an illustration. One

of the advantages of this classification concept is the fact that it can be extended to mul-

ticlass classification settings in a straightforward manner. As pointed out by Hastie et al.,

this type of classifier “is often successful where each class has many possible prototypes,

and the decision boundary is very irregular” [73, p. 465].

K-Means

For clustering scenarios, one of the most popular approaches is the k-means algorithm [101].

Given an unlabeled training set TU = {x1, . . . ,xu} ⊂ X = Rd, this algorithm aims at find-

ing a partition {S1, . . . , Sk} of the input patterns into a predefined number k ∈ N of

clusters. Formally, the algorithm aims at finding the global optimum of

minimize
{S1,...,Sk}

k∑
i=1

∑
xj∈Si

‖xj − ci‖2, (2.8)

over all possible partitions, where ci denotes the mean of the points contained in the

set Si. This optimization task is known to be NP-hard, even for special cases [4]. If

both the number k of designated clusters and the input dimension d are fixed, however,

the optimal solution can be obtained in O(ukd+1) time [82]. Due to these computational

complexities, one usually resorts to heuristics for addressing the above optimization task

that yield (possibly suboptimal) solutions in an efficient manner. One of them is the

k-means algorithm. The framework is given in Algorithm 2.1: After initializing the set of

18 CHAPTER 2. MACHINE LEARNING BACKGROUND

Input: A set TU = {x1, . . . ,xu} ⊂ X and a user-defined number k ∈ N of clusters.
Output: A partition of the set TU into k clusters along with cluster centers {c1, . . . , ck}.

1: Randomly initialize cluster centers c1, . . . , ck ∈ TU .
2: repeat
3: Assign each pattern in TU to its nearest cluster center ci.
4: Recompute positions of the cluster centers (mean of assigned patterns).
5: until no changes in this iteration.
6: return Partition of TU and cluster centers {c1, . . . , ck}.

Algorithm 2.1. The k-means algorithm [101] computes a partition of the input data into k ∈ N clusters.
Throughout its execution, a set of candidate centers is maintained and the approach adjusts these centers
until a convergence criterion is fulfilled.

candidate centers with k points (sampled, e.g., uniformly at random from the set of input

patterns TU), the algorithm proceeds in multiple iterations. In each of these iterations,

every pattern is assigned to its nearest candidate center (Step 3) and at the end of the

iteration, each candidate center is updated to the mean of all patterns assigned to it

(Step 4). The algorithm terminates as soon as an iteration does not result in any change

and returns both the partition of TU as well as the corresponding cluster centers, see

Figure 2.2 (b) for an illustration.

Propagating 1-Nearest Neighbor

Finally, let us consider a simple semi-supervised classification approach which belongs

to the class of so-called self-training [157] models. Briefly speaking, the corresponding

learning schemes use their own predictions to (iteratively) classify the unlabeled patterns

TU (and to rebuild the classifier after each iteration). One possible semi-supervised variant

of the k-nearest neighbor model is the propagating 1-nearest neighbor classifier [157]. Its

algorithmic framework is shown in Algorithm 2.2: In each step, the unlabeled candidate

pattern closest to any of the already labeled patterns is selected. The label for this pattern

is determined by the label of its nearest neighbor in the current set of labeled patterns.

This iterative process is repeated until no unlabeled patterns are left. The result of this

scheme is illustrated in Figure 2.2 (c). In this case, the additional information provided

by the unlabeled patterns clearly leads to a better classification model.

2.2.5 Related Work

One of the concepts related to the settings described above is, for instance, constraint

clustering [8]. Here, the goal consists in deriving a partition of the data patterns into

groups so that similar patterns belong to the same group and dissimilar ones to different

2.3. MODEL SELECTION 19

Input: A labeled TL = {(x′1, y′1), . . . , (x′l, y′l)} ⊂ X × Y and an unlabeled training set
TU = {x1, . . . ,xu} ⊂ X .

Output: A set of labels {y1, . . . , yu} for the set TU .
1: Initialize L = TL and U = TU .
2: repeat
3: Select x = minimizex∈U minx′∈L d(x,x′).
4: Add (x, y) to L, where y is the label of the nearest neighbor of x in L.
5: Remove x from U .
6: until U is empty

Algorithm 2.2. The propagating 1-nearest neighbor classifier belongs to the class of self-training mod-
els [157]. The key idea is to make use of the intermediate classification models to iteratively classify the
unlabeled part of the data. Instead of the Euclidean distance d, arbitrary distance functions can be used.

groups. But, in addition to the set TU = {x1, . . . ,xu} ⊂ X of unlabeled patterns, one

is given additional information in terms of, e.g., must-link constraint (two patterns xi

and xj have to be in the same group) or cannot-link constraints (two patterns xi and xj

must not be be in the same group) [157]. A wide range of other learning techniques is

to be found in the literature including, e.g., semi-supervised regression frameworks [94]

or corresponding extensions of dimension reduction methods [151]. A general discussion

of such methods, however, is beyond the scope of this work and we refer the reader

to corresponding textbooks and surveys [5, 15, 34, 73, 157] for an overview of various

supervised, semi-supervised, and unsupervised learning schemes.

2.3 Model Selection

The task of model selection describes the problem of selecting appropriate machine learning

techniques (i. e., algorithms) along with associated model parameters. For instance, the

regularization parameter λ ∈ R+ for problems of the form (2.5) has to be set appropriately

for a given training set instance. Another example is the parameter k ∈ N which has to be

set for the k-nearest neighbor classifier. Below, we will sketch two well-known strategies

which can be used if (at least some) labeled patterns are given, i. e., for supervised and

semi-supervised scenarios.5

2.3.1 Training, Validation, and Test Set

For a data-rich situation with sufficient labeled patterns, a common approach consists in

splitting up the data at hand into three parts: the training, validation, and test set. A

5For unsupervised settings, however, the situation is more difficult since the corresponding tools, “so
useful for model selection in supervised learning, cannot be utilized in this context” [73, p. 519].

20 CHAPTER 2. MACHINE LEARNING BACKGROUND

model (e.g., an algorithm along with appropriate assignments for the involved parameters)

is then applied to the training set and its performance is evaluated on the validation

set. Such training and validation phases are repeated for a set of possible parameter

assignments and the best-performing parameter setting is selected to obtain the final

model. For the final evaluation, one can then resort to the test set (which has not been

used during the training/validation phases). As performance measure for all three phases,

the empirical risk (induced by the specific loss function) is usually considered. This results

in the training, validation, and test error. As pointed out by Hastie et al. [73], one typically

uses half of the data set as training set and one fourth for each the validation and the test

set.

2.3.2 K-Fold Cross-Validation

The above setting is well-suited for data-rich situations. But, in real-world settings,

labeled data patterns are usually scarce. For such scenarios, a common technique is

K-fold cross-validation [73]. The basic idea is to split up the labeled data set TD =

{(x′1, y′1), . . . , (x′N , y′N)} into smaller subsets. More precisely, for the training and valida-

tion phases, one partitions the data into K ∈ N disjoint and (almost) equal-sized sets

P1, . . . ,PK ⊂ TD. Then, K − 1 out of the K sets are used for training the model (given a

fixed parameter setup), and the remaining set is used to validate the model (i. e., TD \ Pi
is used for the training phase and Pi is used for the validation phase). Such a training and

validating phase is repeated K times such that each hold-out set is used once to validate

the model. The final selected model is the one with the best average performance mea-

sured on all K hold-out validation sets. The benefit of such a strategy is that each pattern

in the data set is used for both training and validating the model. Typically, one performs

5-fold or 10-fold cross-validation [73]. This procedure can be extended in a natural way

to incorporate the testing phase.

2.4 The Curse of Dimensionality

The curse of dimensionality [73] describes the phenomenon that problems often become

more difficult to approach as soon as the number of involved variables increases. We will

demonstrate this phenomenon by means of a simple artificial classification task and will

sketch two general strategies to reduce the drawbacks of this phenomenon.

2.4.1 The Hughes Effect

To demonstrate the curse of dimensionality, also called Hughes effect [80], let us consider

two Gaussian clusters generated by drawing N/2 patterns (N = 500) from each of two

2.4. THE CURSE OF DIMENSIONALITY 21

0

5

10

15

20

25

30

35

50 100 150 200 250 300 350 400 450 500

T
es
t
E
rr
or

(%
)

Input Dimension d

(a)

0

5

10

15

20

25

30

35

50 100 150 200 250

T
es
t
E
rr
or

(%
)

Number l of Patterns

(b)

Figure 2.3. Figure (a) shows how the classification performance (test error) decreases with increasing
input dimension d (given a training set of fixed size l = 25). Taking more training data into account (for
fixed d = 500) again leads to a better performance, see Figure (b).

multivariate distributions Xi ∼ N (mi, I) with m1 = (−2.5, 0.0, . . . , 0.0)T ∈ Rd and m2 =

(+2.5, 0.0, . . . , 0.0)T ∈ Rd. The class label of a pattern corresponds to the distribution it

has been drawn from. As classification model, we consider the k-nearest neighbor classifier

(with k = 5) and use half of the data set as training and the other half as test set.

First, let us restrict the size of the training set to l = 25 patterns (ignoring the

remaining patterns) and let us vary the dimension d of the input space from 50 to 500.

In Figure 2.3 (a), the average test error and the one standard deviation over 10 random

partitions into training and test patterns is given (for each assignment of d). Clearly, by

increasing the dimension of the input space, the performance of the classifier gets worse.

Now, let us fix the dimension d = 500 and let us increase the amount of (labeled) patterns

to l = 250. As expected, the (average) test error decreases, see Figure 2.3 (b). Thus,

the performance is improved by taking more labeled data into account for generating

the model. Obtaining sufficient labeled data, however, is not always possible in real-world

scenarios. A possible approach to alleviate this problem consists in reducing the dimension

of the input space by means of appropriate strategies, as we will sketch now.

2.4.2 Dimension Reduction

Dimensionality reduction methods offer one possible way to cope with the Hughes ef-

fect [73]. The basis of such methods is to reduce the dimension d of the input space

(assuming X = Rd) without loosing too much information. The corresponding class of

techniques can be divided into feature selection and feature extraction methods.

Feature Selection

The idea of feature selection [71, 73] is based on the assumption that only few dimensions

might be relevant for a specific task and that the remaining ones are less important (or

22 CHAPTER 2. MACHINE LEARNING BACKGROUND

even harmful) and can therefore be removed. This is the case, for instance, for the artificial

data set described above. Here, only the first dimension is important for the classification

task whereas the remaining ones are misleading. Thus, for this particular data set, it

would be reasonable to ignore all input variables except the first one.

In real-world settings, however, one usually does not know the important features in

advance. A simple (but time-consuming) approach consists in testing every possible subset

of features via an appropriate machine learning model and to select the best one with

respect to, e.g., the induced performance on the validation set. This kind of approach

is called subset selection [73].6 Working on such reduced feature sets can have several

advantages including a faster generation as well as a better performance of the models.

For a detailed discussion of these issues, we refer the reader to the survey given by

Guyon [71]. For the work at hand it is important to point out that such methods depict

an alternative way to cope with the curse of dimensionality compared to incorporating

unlabeled data. However, a meaningful reduction to a low-dimensional space might be

time-consuming or even impossible for specific data sets.

Feature Extraction

Exactly as for feature selection techniques, the goal of feature extraction [73] methods

consists in reducing the dimension of the input space without losing too much information.

A well-known candidate is the principal component analysis [111], which performs a linear

transformation into a low-dimensional space. The transformation is based on the so-called

principal components which define the new system of coordinates. They are selected in

such a way that the projections of the (original) patterns onto the first principal component

have maximal variance. The remaining principal components are ordered with respect to

the variances of the projected data, i. e., the projections of the patterns onto the second

component exhibit the second largest variance, and so on, see Hastie et al. [73] for an

introduction.

In Figure 2.4, such a reduction of the artificial data set sketched above is shown: Here,

the first two dimensions of the artificial data set are depicted in Figure (a). Further, the

outcome of a projection onto the first two principal components is given in Figure (b).

Note that, in this case, a classification model based on the projected data would have a

comparable performance as a model trained on the first two dimensions of the original

data set. Thus, the application of such dimension reduction methods depicts another way

to cope with the curse of dimensionality. However, whether such a mapping preserves the

structure of the data or not is unclear and depends on the specific setting.

6Since the task of selecting an optimal subset of features (with a given user-defined cardinality) is of
combinatorial nature, one usually resorts to greedy hill climbing strategies to select a reasonable subset.

2.5. CONCLUDING REMARKS 23

(a) Selected Features (b) Projections

Figure 2.4. The first two dimensions (features) of the artificial data set described in Section 2.4.1
are shown in Figure (a). The projections of the high-dimensional patterns (d = 500) onto the first two
principal components are given in Figure (b).

A variety of other dimension reduction methods including non-linear variants like lo-

cally linear embedding [123] and Isomap [137] have been proposed in the literature, see

e.g., Fodor [52] for an overview. All these techniques aim at deriving a meaningful low-

dimensional representation of the data in an automatic manner.

2.5 Concluding Remarks

In this chapter, some basics related to statistical learning theory have been provided. In

particular, the idea of regularization techniques was sketched. As we will see in the next

chapter, the concept of support vector machines belongs to such regularization methods

as well. Despite the different learning settings and model selection issues, the curse of di-

mensionality has been briefly introduced. For supervised tasks, the negative effects of this

phenomenon can be shortened by (a) dimension reduction methods or by (b) using more

labeled data (or combinations thereof). The reduction of the input space’s dimension can

be addressed by means of feature selection and extraction methods. However, depending

on the data at hand, such a reduction might also fail. On the other hand, sufficient labeled

data are often not available in real-world settings. As sketched in Section 2.2, incorpo-

rating unlabeled data can also help to reveal more information about the structure of the

data and, thus, to circumvent the curse of dimensionality. The extension of support vector

machines to these scenarios will be subject of the second part of this thesis.

24 CHAPTER 2. MACHINE LEARNING BACKGROUND

CHAPTER 3

Support Vector Machines Revisited

S
upport vector machines are among the most popular classification schemes in the

field of machine learning. As outlined in Chapter 1, the key idea of this concept is

to identify the hyperplane separating both classes such that the induced distance

between the hyperplane and the training patterns is maximal. The so-called kernel func-

tions are one of the reasons for the success of support vector machines. For patterns in

the Euclidean space Rd, such functions render non-linear decision functions possible and,

thus, provide the basis for flexible models that can adapt to the structure of the data at

hand. In addition, such kernel functions can also be defined on arbitrary sets of objects

(like sets of graphs or strings), which paves the way for the applicability of support vector

machines in various learning scenarios. In this chapter, support vector machines will be

described in a detailed manner. More specifically, both the linear and the non-linear case

will be derived, where the former one corresponds to linear decision hyperplanes (with

patterns in Rd) and the latter one to non-linear decision hyperplanes induced by kernel

functions (with patterns in arbitrary sets).

Outline. We start by deriving the concept of support vector machines for patterns in

the d-dimensional Euclidean space Rd in Section 3.1. The general perspective based on

kernel functions will be described in Section 3.2. As we will see, both linear and non-

linear support vector machines lead to convex optimization tasks. These tasks as well

as associated computational aspects will be discussed in Section 3.3. In Section 3.4, the

effect of high-dimensional input spaces on the classification performance of support vector

machines will be sketched, followed by concluding remarks provided in Section 3.5.

25

26 CHAPTER 3. SUPPORT VECTOR MACHINES REVISITED

3.1 Linear Support Vector Machines

In this section, we will consider training patterns in the d-dimensional Euclidean space Rd

and derive the concept of linear support vector machines [1, 40, 124, 135].

3.1.1 Preliminaries

We will start by providing some elementary definitions [45, 46] related to hyperplanes in

Rd, which will be important for Chapter 4 as well.

Hyperplanes

Let P = {p0, . . . ,pk} be a set of k + 1 points in Rd. A point p ∈ Rd is called a linear

combination of P if it can be written as a sum p =
∑k

i=0 βipi with real coefficients

β0, . . . , βk. Further, if
∑k

i=0 βi = 1, then x is called an affine combination and, in case

both
∑k

i=0 βi = 1 and β0, . . . , βk ≥ 0 hold, a convex combination of P . The linear, the

affine, and the convex hull of P denote the set of all linear, affine, and convex combinations

of P , respectively. If there is no point pi ∈ P which is a linear or affine combination of

P − {pi}, then P is called linearly or affinely independent, respectively. In case of an

affinely independent point set P , the affine combination of P is called a k-flat and the

number k is called the dimension of the k-flat. A (d− 1)-flat in Rd is named hyperplane.

For any hyperplane h in Rd, let h+ denote the open half-space not containing the origin 0

and let h− denote the other open half-space induced by h.

Offset Term

Any hyperplane h in Rd can be written as

h = h(w, b) = {x ∈ Rd | 〈w,x〉+ b = 0}, (3.1)

where 0 6= w ∈ Rd is normal to the hyperplane and b ∈ R [45]. Let x ∈ h and let

x̄ = rw with r ∈ R be the orthogonal projection of x on the subspace spanned by w.

Since 〈rw,w〉 − 〈x,w〉 = 〈x̄− x,w〉 = 0, we have r = 〈w,x〉/〈w,w〉. Hence, if ‖w‖ = 1,

then the product 〈w,x〉 denotes the length of x with respect to w. If ‖w‖ 6= 1, then

〈w,x〉/‖w‖ denotes this length as we have

x̄ = rw =
〈w,x〉
〈w,w〉w =

〈w,x〉
‖w‖

w

‖w‖ . (3.2)

Consequently, for any hyperplane h of the form (3.1) and x ∈ h, the term 〈w,x〉
‖w‖ = −b

‖w‖
determines the offset of the hyperplane to the origin 0 along the direction given by w.

3.1. LINEAR SUPPORT VECTOR MACHINES 27

y′i = +1

y′i = −1

h = 0

rs rs
x
′
1 u ux

′
2

uu
x
′
3

+ 0
w

〈w,x′1〉
||w||

−b
||w||

(a)

h = +1

h = 0h = −1

y′i = +1

y′i = −1

u u
x
′

2

uu
x
′

3

rsrs
x
′

1

rs rs

rsrs

uu

uu

uu

uu

rsrs

rsrs

rsrs
rsrs

+
0

w

(b)

Figure 3.1. The concept of the geometrical margin for a training set TL = {(x′1,+1), (x′2,−1), (x′3,−1)}
is illustrated in Figure (a). In case a hyperplane h = h(w, b) ⊂ Rd fulfills the additional constraint (3.6),
the geometrical margin with respect to the labeled training set is given by 1/‖w‖. This follows from
〈w/‖w‖,x′1 − x′2〉 = 2/‖w‖ for two training instances (x′1,+1) and (x′2,−1) with 〈w,x′1〉 + b = +1 and
〈w,x′2〉+ b = −1, see Figure (b) [124].

3.1.2 Large Margin Separation

Given a training set TL = {(x′1, y′1), . . . , (x′l, y′l)} ⊂ Rd × {−1,+1} with patterns x′i ∈ Rd

and associated class labels y′i ∈ {−1,+1}, a pair (x′i, y
′
i) is called negative training instance

if y′i = −1 and positive training instance otherwise.1 For any hyperplane h(w, b) in Rd,
the corresponding decision function f(w,b) : Rd → {−1,+1} is defined as

f(w,b)(x) := sgn(〈w,x〉+ b) (3.3)

where sgn(t) = 1 for t ≥ 0 and sgn(t) = −1 otherwise. We say that the training set TL is

linearly separable if there exists a hyperplane h(w, b) so that f(w,b)(x
′
i) = y′i for i = 1, . . . , l.

Note that, without loss of generality, one can assume that the separating hyperplane

h(w, b) does not contain any of the points x′1, . . . ,x
′
l.

Separable Case

The geometrical margin [124] of a pair (x, y) ∈ Rd × {−1,+1} with respect to a given

hyperplane h(w, b) ⊂ Rd is defined as

ρ(w,b)(x, y) := y
(〈w,x〉 − (−b))

‖w‖ (3.4)

1We assume the training set TL to contain at least one positive and one negative training instance.
Further, we do not consider multisets of patterns, i. e., we assume that x′i 6= x′j for i 6= j.

28 CHAPTER 3. SUPPORT VECTOR MACHINES REVISITED

and the one of the labeled training set TL = {(x′1, y′1), . . . , (x′l, y′l)} ⊂ Rd × {−1,+1} with

respect to h(w, b) ⊂ Rd is defined as

ρ(w,b)(TL) := min
i=1,...,l

ρ(w,b)(x
′
i, y
′
i), (3.5)

see Figure 3.1 (a) for an illustration of both definitions. For a given training set TL, the

goal of a support vector machine is to find a hyperplane h(w, b) with f(w,b)(x
′
i) = y′i for

all i = 1, . . . , l that has maximal geometrical margin ρ(w,b)(TL). Note that the existence

of such a hyperplane is guaranteed (by definition) for linearly separable training sets.

However, there exists an infinite number of hyperplanes as solutions to this optimization

problem.2 One therefore imposes the following additional constraint:

min
i=1,...,l

|〈w,x′i〉+ b| = 1 (3.6)

In this case, the geometrical margin of the training set with respect to the optimal hy-

perplane is given by 1/‖w‖, see Figure 3.1 (b) for an explanation. Thus, both the goal to

maximize the geometrical margin with respect to the training set TL as well as the addi-

tional constraint described above lead to the optimization task to be solved for hard-margin

support vector machines [1, 124]:

minimize
w∈Rd, b∈R

1

2
‖w‖2 (3.7)

s.t. y′i(〈w,x′i〉+ b) ≥ 1

Note that one minimizes 1
2‖w‖2 instead of maximizing 1

‖w‖ due to computational consid-

erations (since it leads to a convex optimization problem [20], see below).

Non-Separable Case

The concept of hard-margin support vector machines is based on the assumption that the

training set TL = {(x′1, y′1), . . . , (x′l, y′l)} ⊂ Rd × {−1,+1} is linearly separable. In real-

world scenarios, however, this assumption is rarely fulfilled. To cope with non-separable

training sets, one relaxes the constraints by allowing patterns to lie within the margin

or even on the wrong side of the hyperplane. More precisely, so-called slack variables

ξ′1, . . . , ξ
′
l ∈ R are introduced to impose

y′i(〈w,x′i〉+ b) ≥ 1− ξ′i, ξ′i ≥ 0 (3.8)

2Given h(w, b) that separates TL, then h(sw, sb) separates TL as well for any s > 0.

3.2. NON-LINEAR SUPPORT VECTOR MACHINES 29

(a) C′ = 0.001 (b) C′ = 1 (c) C′ = 1000

Figure 3.2. The blue triangles depict negative training instances and the red squares positive ones. The
decision hyperplane and both (margin) boundaries are indicated by black lines. For small C′, the goal of
maximizing the margin has priority whereas a large value leads to a heavy penalization of patterns lying
within the margin (or even on its wrong side).

for i = 1, . . . , l. This leads to the following optimization task [18, 124, 135]:

minimize
w∈Rd, b∈R, ξ′∈Rl

1

2
‖w‖2 + C ′

l∑
i=1

ξ′i (3.9)

s.t. y′i(〈w,x′i〉+ b) ≥ 1− ξ′i, ξ′i ≥ 0

Here, the first term of the objective corresponds to maximizing the margin and the second

term captures the violation of the (previous) strict constraints. The parameter C ′ ∈ R+

determines the trade-off between both aims, see Figure 3.2. This modified optimization

task is called soft-margin support vector machine [124] and can also be written in an

alternative manner: Both types of constraints can be combined by imposing

ξ′i ≥ L(y′i, 〈w,x′i〉+ b) (3.10)

for i = 1, . . . , l, where L(y, t) = max(0, 1 − yt) is the hinge loss [135], see Figure 3.3 (a).

Since the objective (3.9) is minimal if equality holds for (3.10), one obtains

minimize
w∈Rd, b∈R

1

l

l∑
i=1

max(0, 1− y′i(〈w,x′i〉+ b)) + λ‖w‖2 (3.11)

with λ = 1
2lC′ ∈ R+ as equivalent unconstrained optimization task.

3.2 Non-Linear Support Vector Machines

We will now derive a more general definition of support vector machines that is based

on so-called kernel functions. This type of function depicts, among other things, one of

the main reasons for the popularity of support vector machines. In the following, we will

assume that the input space X is an arbitrary set and that the output space Y is either

30 CHAPTER 3. SUPPORT VECTOR MACHINES REVISITED

given by Y = R or by Y = {−1,+1}, depending on the context.

3.2.1 Kernels and Feature Spaces

A kernel function can be seen as a similarity measure and gives rise to an associated

feature space. In this section, we will provide the basics related to both of these concepts.

Kernel Functions

Given a non-empty arbitrary set X , a real-valued function k : X × X → R is called

kernel or kernel function [124, 135].3 Applied to a particular subset of m ∈ N patterns

{x1, . . . ,xm} ⊂ X , a kernel gives rise to a kernel matrix (or Gram matrix) K ∈ Rm×m

with entries [K]i,j = k(xi,xj). A kernel k is called positive definite kernel [125, 135] if the

kernel matrix induced by any sequence x1, . . . ,xm ∈ X with m ∈ N is positive definite.4

In case the associated kernel matrix is strictly positive definite, then the kernel is called a

strictly positive definite kernel. In the following, we will focus on positive definite kernels

and will therefore omit the term (strictly) positive definite. For the special case in which

the d-dimensional Euclidean space is given as input space, i. e., for X = Rd, well-known

kernel functions k : Rd × Rd → R are

• the linear kernel with k(xi,xj) = 〈xi,xj〉,

• polynomial kernels with k(xi,xj) = 〈xi,xj〉p and p ∈ N,

• and the radial basis function (RBF) kernel with k(xi,xj) = exp(−‖xi−xj‖
2

2σ2) and

associated kernel width σ ∈ R+.

It should be pointed out that a variety of other kernel functions can be found in the

literature which are not restricted to operate on Rd. For instance, kernels can be defined

on sets of graphs or strings, see, e.g., Borgwardt [16] and Hofmann et al. [76]. This is one

of the advantages of kernel functions since the corresponding methods can be applied to

arbitrary sets of objects. Another positive aspect of kernel functions is the fact that their

specific properties can lead to efficient (optimization) schemes for the different learning

tasks. For instance, the positive definiteness of the associated kernel matrix K often yields

convex optimization problems [20] and invertible matrices.5

3The latter definition can also be extended to complex-valued functions but we will focus on real-valued
ones in this work.

4A symmetric matrix G ∈ Rm×m is called positive definite, zTGz ≥ 0 holds for all z ∈ Rm. If equality
is obtained only for z = 0, then the matrix is called strictly positive definite [68, 77].

5The matrix K+γI with [I]i,j = δij is strictly positive definite for γ ∈ R+ and, thus, invertible [68, 77].

3.2. NON-LINEAR SUPPORT VECTOR MACHINES 31

Feature Spaces

We can now provide the definition of the feature space associated with a kernel function:

Let k : X ×X → R be a kernel and let RX = {f : X → R} denote the space of all functions

mapping elements from X into R. Then the feature map Φ : X → RX [124, 125] is given

by

Φ(x) := k(·,x). (3.12)

As pointed out by Schölkopf et al. [124, 125], the image Φ(x) of a particular pattern x can

be seen as a function that measures the similarity of x with respect to all other patterns

in X . The feature map can be used to obtain a vector space Hk ⊂ RX with elements of

the form

f(·) =
m∑
i=1

αik(·, zi) and g(·) =
m̂∑
j=1

βjk(·, ẑj) (3.13)

with m ∈ N, m̂ ∈ N, αi ∈ R, βj ∈ R, and arbitrary zi ∈ X , ẑj ∈ X . By defining

〈f, g〉Hk :=
m∑
i=1

m̂∑
j=1

αiβjk(zi, ẑj), (3.14)

one obtains a dot product (space) with associated norm ‖f‖Hk =
√
〈f, f〉Hk [124]. Adding

the limits of sequences that are convergent with respect to ‖·‖Hk leads to a Hilbert

space Hk, called reproducing kernel Hilbert space (RKHS) or feature space of the asso-

ciated kernel k. We omit giving further details and refer to Schölkopf et al. [124] and

Steinwart and Christmann [135] for the corresponding definitions and derivations.

3.2.2 Generalized Representer Theorem

As shown in Chapter 2, the concept of regularized risk minimization aims at finding an

optimal prediction function f ∈ H in a hypothesis space H ⊆ {g : X → Y} with respect

to

Rreg[f] = Remp[f] + λΩ(f), (3.15)

where the parameter λ ∈ R+ determines the trade-off between data fit and complexity of

the function (which is in turn measured via the regularizer Ω(f)). In the following, we will

use the feature space Hk depicted above as hypothesis space and the associated squared

norm as regularizer, i. e., H = Hk and Ω(f) = ‖f‖2Hk for f ∈ Hk. This leads to problems

of the form

minimize
f∈Hk

l∑
i=1

L(y′i, f(x′i)) + λ‖f‖2Hk , (3.16)

32 CHAPTER 3. SUPPORT VECTOR MACHINES REVISITED

for a given loss function L : Y×R→ [0,∞) and training set TL = {(x′1, y′1), . . . , (x′l, y′l)} ⊂
X × Y with patterns x′i ∈ X and real-valued labels y′i ∈ Y ⊆ R. This setup leads to the

question of how the above optimization task can be addressed efficiently. The following

theorem plays an important role in this context:

Fact 3.1 ([124, p. 90]) Given a non-empty set X , a training set T = {(x′1, y′1), . . . , (x′l, y′l)} ⊂
X ×R, a positive definite kernel k : X ×X → R, a strictly monotonic increasing function

g : [0,∞[→ R, and an arbitrary cost function c : (X × R2)
l → R∪{∞}. Then, any f ∈ Hk

minimizing

c((x′1, y
′
1, f(x′1)), . . . , (x

′
l, y
′
l, f(x′l))) + g(‖f‖Hk) (3.17)

admits a representation of the form

f(·) =

l∑
i=1

αik(·,x′i) (3.18)

with appropriate coefficients α1, . . . , αl ∈ R.

This fact, known as the representer theorem, essentially shows that it is always possible

to express an optimal solution for the task (3.17) based only on the patterns given in the

training set TL, although the hypothesis space Hk contains a much richer class of functions

(namely linear combinations of kernel functions centered on arbitrary patterns in X) [124].

This paves the way for efficient optimization frameworks that address such problems.

There is a direct extension of the above fact, the so-called semiparametric representer

theorem [124], which is needed for capturing the offset term b ∈ R present in the standard

formulation of support vector machines:

Fact 3.2 ([124, p. 91]) In addition to the assumptions of Fact 3.1, let us assume that we

are given a set {ψ1, . . . , ψM} ⊂ RX of M ∈ N real-valued functions so that the matrix

M ∈ Rl×M with [M]i,p = ψp(x
′
i) has rank M . Then, any f̃ = f + h with f ∈ Hk and

h ∈ span{ψ1, . . . , ψM} which minimizes

c((x′1, y
′
1, f̃(x′1)), . . . , (x

′
l, y
′
l, f̃(x′l))) + g(‖f‖Hk) (3.19)

admits a representation of the form

f̃(·) =

l∑
i=1

αik(·,x′i) +

M∑
p=1

βpψp(·) (3.20)

with additional coefficients β1, . . . , βM ∈ R.

3.2. NON-LINEAR SUPPORT VECTOR MACHINES 33

0

0.5

1

1.5

2

2.5

3

3.5

4

-1 -0.5 0 0.5 1 1.5 2 2.5 3

(a) Hinge Loss

0

0.5

1

1.5

2

2.5

3

3.5

4

-1 -0.5 0 0.5 1 1.5 2 2.5 3

(b) Square Loss

0

0.5

1

1.5

2

2.5

3

3.5

4

-1 -0.5 0 0.5 1 1.5 2 2.5 3

(c) ε-insensitive Loss

Figure 3.3. A well-known loss function used in classification settings is the hinge loss L(y, t) =
max(0, 1− yt) that leads to standard support vector machines, see Figure (a). The square loss L(y, t) =
(y − t)2, depicted in Figure (b), is a common loss function for regression problems. However, it is also
applied in the context of classification scenarios, leading to least-squares support vector machines. The
so-called ε-insensitive loss L(y, t) = max(0, |y − t| − ε), shown in Figure (c) with ε = 0.2, yields the
concept of support vector regression.

3.2.3 Support Vector Classification

The above fact allows to investigate slightly modified optimization tasks of the form

inf
f∈Hk, b∈R

1

l

l∑
i=1

L
(
y′i, f(x′i) + b

)
+ λ‖f‖2Hk (3.21)

with λ ∈ R+. Depending on the learning task at hand, different loss functions can be

plugged into the above task, which leads to various learning schemes. In the context

of binary classification with a labeled training set TL = {(x′1, y′1), . . . , (x′l, y′l)} ⊂ X ×
{−1,+1}, the hinge loss L(y, t) = max(0, 1 − yt) shown in Figure 3.3 (a) is a commonly

considered loss function and leads to

inf
f∈Hk, b∈R

1

l

l∑
i=1

max
(
0, 1− y′i(f(x′i) + b)

)
+ λ‖f‖2Hk . (3.22)

In this case, due to Fact 3.2 with strictly monotonic increasing function g(x) = λx2,

real-valued function ψ1(x) = 1, and cost function

c((x′1, y
′
1, f̃(x′1)), . . . , (x

′
l, y
′
l, f̃(x′l))) =

1

l

l∑
i=1

max(0, 1− y′if̃(x′i)) (3.23)

for f̃ = f + h with f ∈ Hk and h ∈ span{ψ1}, any f∗(·) + b∗ minimizing (3.22) admits a

representation of the form

f∗(·) + b∗ =

l∑
j=1

αjk(·,x′j) + β (3.24)

34 CHAPTER 3. SUPPORT VECTOR MACHINES REVISITED

with coefficients α1, . . . , αl, β ∈ R. Following Steinwart and Christmann [135], one can

define

w(α) :=
l∑

j=1

αjk(·,x′j) =
l∑

j=1

αjΦ(x′j) (3.25)

and can thus rewrite the task (3.22) as

minimize
α∈Rl, b∈R

1

l

l∑
i=1

max
(
0, 1− y′i(〈w(α),Φ(x′i)〉Hk + b)

)
+ λ‖w(α)‖2Hk . (3.26)

The above problem depicts the generalization of linear support vector machines to the

general case with arbitrary kernel functions. Note the resemblance of the above formulation

with the task (3.11) derived for the linear case. However, instead of having an explicit

hyperplane parameter w ∈ Rd, we are now given functions w(α) in the feature space Hk
that are parameterized by the finite dimensional vector α ∈ Rl. The linear case with

X ⊆ Rd and k(x′i,x
′
j) = 〈x′i,x′j〉 is, in turn, a special case of the above formulation since

one has

w(α) =
l∑

j=1

αjk(·,x′j) =
l∑

j=1

αj〈·,x′j〉 = 〈·,
l∑

j=1

αjx
′
j〉 = 〈·,w〉 (3.27)

with w =
∑l

j=1 αjx
′
j ∈ Rd. Thus, one can rewrite the general optimization task (3.26) to

obtain the former problem (3.11). The feature space Hk is based on the considered kernel

function k. Depending on the given input space X and the particular training set TL, the

kernel function allows to adapt to the task at hand.

A possible learning scenario is depicted in Figure 3.4: Here, the outcome of a support

vector machine based on the RBF kernel for a two-dimensional toy example is shown

given varying assignments for the model parameters. It can be seen that, with more

regularization (larger λ), the optimal prediction function f∗(·) + b∗ for the task (3.22)

gets simpler. In addition, the kernel width σ has a similar effect, i. e., larger values

lead to simpler models for this data set instance. It should be pointed out that there

exists a huge amount of variants of standard support vector machines. For instance,

considering the square loss for the task (3.21) leads to so-called least squares support

vector machines [119, 136], see Figure 3.3 (b). For a detailed overview, we refer the reader

to Steinwart and Christmann [135].

3.2.4 Support Vector Regression

We will briefly sketch how to apply the ideas depicted above for regression problems.

For such settings, one is given a training set TL = {(x′1, y′1), . . . , (x′l, y′l)} ⊂ X × R with

arbitrary real-valued labels. Using the ε-insensitive loss L(y, t) = max(0, |y − t| − ε) for

3.3. COMPUTATIONAL CONSIDERATIONS 35

(a) λ = 0.1, σ = 0.5 (b) λ = 0.1, σ = 1.0 (c) λ = 0.1, σ = 2.0

(d) λ = 1.0, σ = 0.5 (e) λ = 1.0, σ = 1.0 (f) λ = 1.0, σ = 2.0

(g) λ = 10, σ = 0.5 (h) λ = 10, σ = 1.0 (i) λ = 10, σ = 2.0

Figure 3.4. Two-dimensional binary classification example addressed by a standard support vector
machine with RBF kernel. The kernel width σ ∈ R+ is increased from left to right and the regular-
ization parameter is increased from top to bottom. Again, the blue triangles depict negative training
instances and the red squares positive ones. The contour lines {x ∈ X | f∗(x) + b∗ = 0} as well as
{x ∈ X | f∗(x) + b∗ = 1} and {x ∈ X | f∗(x) + b∗ = −1} are indicated by black lines. Note that these
lines are more complex for small λ and σ whereas they become simpler for large λ and σ.

ε ∈ R+ leads to

inf
f∈Hk, b∈R

1

l

l∑
i=1

max
(
0, |y′i − (f(x′i) + b)| − ε

)
+ λ‖f‖2Hk . (3.28)

Thus, the ε-insensitive loss function penalizes predictions which are more than ε away from

the known labels in a linear manner, see Figure 3.3 (c). Exactly as for the classification

case, one can apply Fact 3.2 to obtain a finite-dimensional (convex) optimization problem.

For further details see Schölkopf and Smola [124].

3.3 Computational Considerations

In this section, we will sketch an efficient way of solving the optimization task induced by

support vector classification with Y = {−1,+1}. By making use of ‖w(α)‖2Hk = αTKα

36 CHAPTER 3. SUPPORT VECTOR MACHINES REVISITED

and 〈w(α),Φ(x′i)〉Hk =
∑l

j=1 αjk(x′i,x
′
j), one can rewrite the problem (3.26) as

minimize
α∈Rl, b∈R

1

l

l∑
i=1

max
(
0, 1− y′i(

l∑
j=1

αjk(x′i,x
′
j) + b)

)
+ λαTKα. (3.29)

This is a convex function on the convex set Rl+1: The first term is convex since the

sum of convex functions (defined on the same convex set) is convex. Note that each

summand is convex due to the convexity of the hinge loss and the fact that affine maps

preserve convexity [20, p. 79 ff.]. Furthermore, the second term is convex since the kernel

matrix is positive definite [20]. Thus, in principle, one can resort to simple derivative-free

optimization methods to approach this task [108]. Another possible strategy is to resort

to differentiable surrogates for the hinge loss so that efficient gradient based solvers can

be used, see Chapelle [31]. The most common approach, however, is to reformulate the

task (3.29) as quadratic programming (QP) [20] problems, which “can often be solved

faster than general convex problems” [135, p. 414]. We will now provide the details.

3.3.1 Primal and Dual Problems

Due to the convexity of the above problem, two related quadratic programs are considered

in the literature, the primal problem and the dual problem associated with it [20].

Primal Problem

Exactly as for the linear case, one can reformulate the optimization task (3.29) as

minimize
α∈Rl, b∈R, ξ′∈Rl

1

2
αTKα+ C ′

l∑
i=1

ξ′i (3.30)

s.t. y′i(
l∑

j=1

αjk(x′i,x
′
j) + b) ≥ 1− ξ′i, ξ′i ≥ 0

with C ′ = 1
2lλ ∈ R+. Again, due to the positive definiteness of the kernel matrix, the first

term in the objective is convex. Further, the constraints
∑l

j=1 αjk(x′i,x
′
j) are linear with

respect to the optimization variables. Therefore, one ends up with a (convex) quadratic

program, called the primal optimization problem [124, 135].

Dual Problem

The Lagrange dual function [20, p. 216] G : Rl × Rl → R is defined as

G(β,η) := inf
α∈Rl, b∈R, ξ′∈Rl

L(α, b, ξ′,β,η) (3.31)

3.3. COMPUTATIONAL CONSIDERATIONS 37

with associated Lagrangian L : R2l+1 × Rl × Rl → R given by

L(α, b, ξ′,β,η) :=
1

2
αTKα+ C ′

l∑
i=1

ξ′i +
l∑

i=1

βi(1− y′i(
l∑

j=1

αjk(x′i,x
′
j) + b)− ξ′i)−

l∑
i=1

ηiξ
′
i

and dual variables β ∈ Rl and η ∈ Rl. The coefficients β1, . . . , βl, η1, . . . , ηl are called

Lagrange multipliers [20]. The Lagrange dual problem [20, p. 223] is given by

maximize
β∈Rl,η∈Rl

G(β,η) (3.32)

s.t. βi, ηi ≥ 0

and depicts a convex optimization task (with respect to the dual variables). Further, it

yields the best lower bound on the optimal objective value of the original primal opti-

mization task that can be obtained via the Lagrange dual function [20, p. 225]. Since

the primal optimization task (3.30) is convex (with differentiable objective and constraint

functions), the so-called Karush-Kuhn-Tucker (KKT) conditions are necessary and suffi-

cient for optimality [20, p. 244] and imply (among other things) that the derivatives with

respect to the primal variables must vanish, i. e.,

∇bL(α, b, ξ′,β,η) = −
l∑

i=1

βiy
′
i

!
= 0, (3.33)

∇ξ′pL(α, b, ξ′,β,η) = C ′ − βp − ηp !
= 0 (3.34)

for p ∈ {1, . . . , l}. Thus, we have C ′
∑l

i=1 ξ
′
i−
∑l

i=1 βiξ
′
i−
∑l

i=1 ηiξ
′
i = 0 and the Lagrangian

can be simplified to:

L(α,β) =
1

2
αTKα−

l∑
i=1

βiy
′
i

l∑
j=1

αjk(x′i,x
′
j) +

l∑
i=1

βi

=
1

2
αTKα−

l∑
j=1

αj

(
l∑

i=1

βiy
′
ik(x′i,x

′
j)

)
+

l∑
i=1

βi (3.35)

By further imposing

∇αL(α,β) = K(α−Y′β)
!

= 0 (3.36)

with Y′ = diag(y′1, . . . , y
′
l) and by assuming the kernel matrix K to be strictly positive

definite (and, thus, invertible), one obtains

α = Y′β. (3.37)

38 CHAPTER 3. SUPPORT VECTOR MACHINES REVISITED

Note that, in case K is only positive definite (and therefore not invertible), α = Y′β

still depicts one of the possible solutions [120]. Thus, since we have αi = βiy
′
i, one can

eliminate the primal variables in (3.35) and rewrite the Lagrange dual problem (3.32) as

maximize
β∈[0,C′]l

l∑
i=1

βi −
1

2

l∑
i=1

l∑
j=1

βiβjy
′
iy
′
jk(x′i,x

′
j) (3.38)

s.t.
l∑

i=1

βiy
′
i = 0,

where the box constraint results from Equation (3.34) and the fact that βi, ηi ≥ 0 for

i = 1, . . . , l. The above task is called the dual optimization problem [124, 135] in the

context of support vector machines and can also be written as

maximize
β∈[0,C′]l

1Tβ − 1

2
βT(K� y′y′

T
)β (3.39)

s.t. βTy′ = 0,

where � denotes the element-wise product and where 1 ∈ Rl is the vector of ones. There-

fore, the dual optimization problem is also a quadratic program which, however, exhibits

a simpler structure compared to the primal one.6 The final classifier is then given by

g(x) = sgn

(
l∑

i=1

β∗i y
′
ik(·,x′i) + b∗

)
(3.40)

for optimal β∗ ∈ Rl and b∗ ∈ R. The optimal offset term b∗ can be obtained via the KKT

conditions that additionally imply

β∗i (y′i(
l∑

j=1

β∗j y
′
jk(x′i,x

′
j) + b∗)− 1 + ξ′i)

!
= 0 (3.41)

for i = 1, . . . , l [20, p. 244]. Thus, given an arbitrary (strictly) positive Lagrange multi-

plier β∗i ∈ R+, one can compute the optional offset parameter b∗. The patterns x′i with

corresponding strictly positive multiplier β∗i ∈ R+ are called support vectors and gave rise

to the name of the overall concept.7

6The quadratic program is actually given by minimizing F (β) = 1
2
βT(K� y′y′

T
)β − 1Tβ subject to

the constraints. Note that the objective is convex since the element-wise product of two positive definite
matrices is positive definite [77, p. 485].

7As pointed out by Rifkin et al. [118], such a pattern is guaranteed to exist under extremely mild
assumptions. Further, necessary and sufficient conditions for the uniqueness of a computed solution are
given by Burges and Crisp [25].

3.3. COMPUTATIONAL CONSIDERATIONS 39

3.3.2 Mathematical Optimization

As pointed out above, one could address the convex optimization task (3.29) by simple

derivative-free optimization schemes. Besides, both subgradient methods and differen-

tiable surrogates for the hinge loss are used in the related literature to speed up such

schemes [31, 126]. The quadratic programs derived above are, however, more amenable

to mathematical optimization. In particular, it is possible to obtain solutions with guar-

anteed accuracy in polynomial time. The special structure of both quadratic programs

has also led to sophisticated optimization frameworks that depict another reason for the

success of support vector machines.

Solutions in Polynomial Time

No algorithms are known that can solve general quadratic programming problems exactly

with infinite precision, as required in, e.g., the real random access machine model of

computation [116]. Still, one can approximate the optimal solution up to machine precision

and the number of needed arithmetic operations is cubic with respect to the involved

variables and constraints.

Fact 3.3 ([12, 89]) A quadratic program with n variables and constraints can be solved

up to machine precision in O(n3IL) time, where IL denotes the input length, i. e., the

number of bits used to encode all the rational data of the problem.8

This fact can be applied to both quadratic programming problems derived above, which

yields the following upper runtime bounds:

Lemma 3.1 Given a non-empty set X , a labeled training set T = {(x′1, y′1), . . . , (x′l, y′l)} ⊂
X × {−1,+1}, and a positive definite kernel k : X × X → R. Assuming that the corre-

sponding kernel matrix K ∈ Rl×l is precomputed, one can obtain an optimal solution up

to machine precision for both the primal (3.30) and the dual (3.39) problem in O(l3IL)

arithmetic operations, where IL denotes the input length of the problems.

Proof: The primal problem (3.30) has 2l + 1 variables and 2l constraints, whereas the

dual problem (3.39) has l variables and l + 1 constraints. In both cases, we have at most

4l + 1 variables and constraints. �

For common kernel functions like the linear or the RBF kernel with X ⊆ Rd, the compu-

tation of the kernel matrix can be performed in O(dl2) time. Consequently, cubic time is

needed in total for computing solutions up to machine precision in these cases.

8Personal communication with Michael J. Todd and Marshall W. Bern [12].

40 CHAPTER 3. SUPPORT VECTOR MACHINES REVISITED

Sophisticated Optimization Frameworks

For both quadratic programming problems, there exists a variety of sophisticated opti-

mization schemes. A recent runtime analysis for solving both quadratic programming

problems has been given by Hush et al. [81] and List and Simon [99, 128]. Among other

things, Hush et al. [81] show that O(l2(ck + 1)) arithmetic operations are needed to solve

the primal problem up to machine precision, where l is the number of patterns and where

ck is an upper bound on the runtime needed to compute an entry of the kernel matrix

K ∈ Rl×l. Similar to the above bounds, the hidden constants are affected by the distri-

bution of the input data (in addition to the desired accuracy): In short, Hush et al. [81]

solve the dual optimization problem with accuracy

εD := (2
√

2Kl + 8
√
λ)
−2
λε2P (3.42)

to obtain a solution with accuracy εP ∈ R+ for the primal problem, where Kl defined as

Kl := max
1≤i≤l

k(x′i,x
′
i) (3.43)

depends on the particular kernel k and training set TL = {(x′1, y′1), . . . , (x′l, y′l)}. By

using the linear kernel with X = Rd, for instance, the value Kl can become arbitrarily

large for general training sets. For the RBF kernel, however, the term Kl is bounded

by one for all possible training sets. It should be pointed out that special cases of the

optimization tasks can sometimes be approached more efficiently. This is the case, for

instance, given linear support vector machines, which can (essentially) be addressed in

linear time [86]. However, special assumptions are made for the distribution of the input

data for such settings. We omit providing a detailed discussion of the vast amount of

possible optimization frameworks and refer the reader to Steinwart and Christmann [135,

p. 420 ff.] and Hush et al. [81] for comprehensive overviews.

Offset Term b

The standard support vector machine task includes the offset term b ∈ R. In contrast to

the remaining optimization variables, this term is not regularized since it does not occur

in the regularization term λ‖f‖2Hk of the task (3.21). From both the theoretical as well as

the practical point of view, the additional term b does not yield any known advantages for

kernel functions like the RBF kernel [120, 135]. For the sake of simplicity, it is therefore

sometimes omitted. This yields problems of the form

inf
f∈Hk

1

l

l∑
i=1

L
(
y′i, f(x′i)

)
+ λ‖f‖2Hk (3.44)

3.4. THE HUGHES EFFECT REVISITED 41

in lieu of the task (3.21). However, for the linear case, the offset term makes a difference

since it addresses translated data. In case such an offset effect is needed for a particular

learning task, there exists an alternative way to reobtain this flexibility that is based on

adding an extra dimension of ones to the input data. More precisely, by transforming each

input pattern x′i ∈ Rd to x̂′i = (x′i
T, 1)T ∈ Rd+1 [30, 120], one obtains

minimize
ŵ∈Rd+1, ξ′∈Rl

1

2
‖ŵ‖2 + C ′

l∑
i=1

ξ′i (3.45)

s.t. y′i(〈ŵ, x̂′i〉) ≥ 1− ξ′i, ξ′i ≥ 0

instead of the task (3.9). Since 〈ŵ, x̂′i〉 = 〈w,x′i〉 + ŵd+1, the variable ŵd+1 can also be

seen as a regularized offset term (via ‖ŵ‖2).9

3.4 The Hughes Effect Revisited

We will now briefly sketch the influence of high-dimensional feature spaces on the perfor-

mance of support vector machines. For this purpose, we conduct a similar experiment as

the one performed for the k-nearest neighbor classifier in Section 2.4.1.

3.4.1 Experimental Setup

Exactly as before, we consider the artificial data set composed of two Gaussian clusters

generated by drawing N/2 patterns (N = 500) from each of two multivariate distributions

Xi ∼ N (mi, I) with m1 = (−2.5, 0.0, . . . , 0.0)T ∈ Rd and m2 = (+2.5, 0.0, . . . , 0.0)T ∈ Rd.
Again, the class label of a point corresponds to the distribution it was drawn from and

half of the resulting data set is used as training and the other half as test set. To address

the support vector machine optimization task, we resort to the LIBSVM implementation

(with default parameter settings) provided by Chang et al. [29] and use a linear kernel.

The tradeoff-parameter C ′ ∈ {2−10, . . . , 210} for the support vector machines as well as

the parameter k ∈ {1, . . . , 10} for the nearest neighbor model are tuned on the training

set via 5-fold cross-validation. The conducted experiments remain the same, i. e., for the

first experiment, we fix the number l = 25 of patterns in the data set and vary the input

dimension d from 25 to 500, see Figure 3.5 (a). For the second experiment, we fix d = 500

and increase the amount of labeled patterns to 250, see Figure 3.5 (b). Again, for all

data set instances, the average test error and the one standard deviation over 10 random

partitions are reported.

9If less regularization is desired, one can add a large constant as additional dimension instead of one.

42 CHAPTER 3. SUPPORT VECTOR MACHINES REVISITED

0

5

10

15

20

25

30

35

50 100 150 200 250 300 350 400 450 500

T
es
t
E
rr
or

(%
)

Input Dimension d

kNN

SVM

(a)

0

5

10

15

20

25

30

35

50 100 150 200 250

T
es
t
E
rr
or

(%
)

Number l of Patterns

kNN

SVM

(b)

Figure 3.5. Figure (a) shows how the test error decreases with increasing input dimension d (given
l = 25 patterns) for both a k-nearest neighbor (kNN) and a linear support vector machine (SVM) model.
Taking more labeled data into account (for d = 500) again leads to a better performance, see Figure (b).

3.4.2 Results

As before, increasing the dimension of the data set leads to worse results whereas increasing

the amount of labeled patterns for a fixed dimension leads to better ones. Clearly, for both

experiments, the classification performance of the linear support vector machine model is

superior to the one of the k-nearest neighbor model.10 However, increasing the amount

of labeled patterns (i. e., using sufficient labeled data) is not always possible in real-world

settings. This gives rise to the question of how to incorporate unlabeled data into the

learning process in order to improve the performance of a support vector machine. This

will be subject of the following chapters.

3.5 Concluding Remarks

In this chapter, the concept of support vector machines was derived for linear and general

kernel functions. For both settings, we have seen that the learning setup leads to convex

optimization tasks. Aiming at efficient optimization schemes, these tasks are usually

reformulated as quadratic programming problems. In particular, the resulting programs

can be addressed by standard solvers that can yield optimal solutions up to machine

precision in cubic time. Similar to the k-nearest neighbor classifier, the Hughes effect can

be observed when training a support vector machine model. The following chapters will

deal with the extension of support vector machines to semi- and unsupervised settings. As

we will see, these extensions have the potential to incorporate unlabeled data in order to

reveal more information about the structure of the data and, thus, depict an alternative

way to cope with the curse of dimensionality.

10Of course, this particular task is well-suited for a linear support vector machine due to its linear
structure.

Part II

Semi- and Unsupervised Support

Vector Machines

43

CHAPTER 4

Exact Solutions in Polynomial Time

T
he concept of support vector machines depicts one of the most promising learning

schemes in the field of machine learning. However, as for all supervised approaches,

sufficient labeled data are needed in general to obtain models of satisfying quality.

As depicted in Chapter 2, semi- and unsupervised learning schemes can be used to reveal

(more) information about the structure of the data in case (additional) unlabeled patterns

are available. In this chapter, we will derive extensions of linear support vector machines

to semi- and unsupervised learning settings. As we will see, both extensions lead to

combinatorial optimization problems which are difficult to solve. The main result of this

chapter is a polynomial-time approach that computes exact solutions (up to machine

precisision) for these problems. The proposed framework is based on well-known concepts

from the field of computational geometry and is among the first ones yielding theoretical

upper runtime bounds. Another consequence of independent interest is the fact that

the optimization scheme can be used to generate benchmark data sets for low-dimensional

input spaces. These data sets depict excellent candidates for the mutual quality assessment

of competing approaches for both learning tasks.

Outline. In Section 4.1, the formal definitions related to both extensions of support

vector machines will be given. Afterwards, in Section 4.2, some concepts from the field

of computational geometry will be introduced. These concepts will form the basis for the

polynomial-time approach that is subject of Section 4.3. The experimental evaluation is

given in Section 4.4 followed by concluding remarks provided in Section 4.5.

45

46 CHAPTER 4. EXACT SOLUTIONS IN POLYNOMIAL TIME

(a) Supervised (b) Unsupervised (c) Semi-Supervised

Figure 4.1. In supervised learning scenarios, we are only given labeled patterns (red squares and blue
triangles). Thus, given only a small amount of data, a support vector machine cannot yield a good
classification model, see Figure (a). Both unsupervised and semi-supervised support vector machines try
to incorporate unlabeled patterns (black dots), see Figures (b) and (c).

4.1 Mathematical Framework

For the sake of exposition, we will briefly review the main ideas behind both extensions

for the linear case: The goal of a support vector machine is to search for a hyperplane

separating both classes such that the distance between the hyperplane and the patterns

is large, see Figure 4.1 (a). This concept can also be considered in unsupervised learning

scenarios. Here, the goal is to find the optimal partition of the data into two classes (given

some constraints) such that a subsequent application of a support vector machine leads

to the best possible result, see Figure 4.1 (b). Semi-supervised support vector machines

can be seen as an intermediate approach between supervised and unsupervised support

vector machines. Given both the labeled and the unlabeled part of the data, the aim of

the corresponding learning task is to find a hyperplane which separates both classes well

and, at the same time, passes through a low-density area induced by all patterns, see

Figure 4.1 (c). Again, one searches for the optimal assignment of the unlabeled patterns

to the two classes such that a subsequent application of a modified support vector machine

yields the best overall result.1

4.1.1 Learning Tasks

We will now define both tasks from a mathematical point of view while focussing on the

extensions of linear support vector machines. The more general cases based on arbitrary

kernel functions will be defined in Chapter 5.

Unsupervised Support Vector Machines

The optimization task (3.9) induced by linear support vector machines can be extended

to unsupervised learning scenarios in the following manner: Assume that we are given a

1Again, as mentioned in Chapter 1, there exists other ways to extend support vector machines to
semi-supervised learning settings. In this work, we will focus on these combinatorial extensions.

4.1. MATHEMATICAL FRAMEWORK 47

training set TU = {x1, . . . ,xu} ⊂ Rd of unlabeled patterns in the d-dimensional Euclidean

space. Then, the goal of an unsupervised support vector machine can be formalized in

terms of the following optimization task:

minimize
y∈{−1,+1}u,

w∈Rd, b∈R, ξ∈Ru

1

2
‖w‖2 + C

u∑
i=1

ξi (4.1)

s.t. yi(〈w,xi〉+ b) ≥ 1− ξi, ξi ≥ 0,

and

∣∣∣∣∣1u
u∑
i=1

max(0, yi)− bc
∣∣∣∣∣ < ε,

where C ∈ R+, bc ∈ [0, 1], and ε ∈ R+ are manually chosen constants. The second con-

straint is called the balance constraint and is necessary to avoid the two trivial (undesired)

solutions which arise by assigning all patterns to only one class.2

Obviously, the difficulty of the above optimization task, also known as maximum mar-

gin clustering (MMC) [149] problem, consists in finding the optimal assignment for the

partition vector y ∈ {−1,+1}u. Since we have both real-valued and integer optimization

variables, we are dealing with a mixed-integer programming (MIP) [51] problem. This class

of optimization tasks is, in general, NP-hard [51, 143] and therefore difficult to approach.

Semi-Supervised Support Vector Machines

Let us now consider semi-supervised scenarios where we are given both a set TL =

{(x′1, y′1), . . . , (x′l, y′l)} ⊂ Rd×{−1,+1} of labeled patterns and a set TU = {x1, . . . ,xu} ⊂
Rd of unlabeled ones. As sketched above, the idea of semi-supervised learning consists in

taking advantage of both parts of the data. This leads to semi-supervised support vector

machines (S3VMs) [10, 83, 142], originally proposed by Vapnik and Sterin [142]:

minimize
y∈{−1,+1}u,

w∈Rd, b∈R, ξ′∈Rl, ξ∈Ru

1

2
‖w‖2 + C ′

l∑
i=1

ξ′i + C
u∑
i=1

ξi (4.2)

s.t. y′i(〈w,x′i〉+ b) ≥ 1− ξ′i, ξ′i ≥ 0,

and yi(〈w,xi〉+ b) ≥ 1− ξi, ξi ≥ 0,

and

∣∣∣∣∣1u
u∑
i=1

max(0, yi)− bc
∣∣∣∣∣ < ε,

where C ′ ∈ R+, C ∈ R+, bc ∈ [0, 1], and ε ∈ R+. Again, since the optimal partition

vector y ∈ {−1,+1}u for the unlabeled patterns is unknown, one ends up with a mixed-

2The parameters bc and ε have to be set appropriately to avoid these undesired solutions.

48 CHAPTER 4. EXACT SOLUTIONS IN POLYNOMIAL TIME

integer programming problem which is difficult to solve [51, 143].

4.1.2 Related Work

In this chapter, we will focus on related approaches which aim at solving the linear ex-

tensions exactly, i. e., which yield solutions with guaranteed accuracy (up to machine

precision) for the combinatorial tasks at hand. The more general cases along with the

related literature will be discussed in Chapters 5 and 6.

Standard Solvers

Since the optimization tasks give rise to mixed-integer programming problems, standard

solvers for this type of problems can be applied, see, e.g., Bennett and Demiriz [10]. These

approaches can, in general, compute exact solutions up to machine precision if sufficient

computational resources are available. However, mixed-integer programming problems are

generally NP-hard [51, 143]. Thus, up to know, such general schemes do not yield practical

upper runtime bounds.

Combinatorial Search Schemes

A trivial approach to solving both combinatorial tasks consists in testing every feasible

assignment of the partition vector y ∈ {−1,+1}u and to report the best result found

during the overall process. Of course, this brute-force approach is only feasible for a very

small amount of unlabeled training patterns due to its exponential runtime.

Aiming at exact solutions, Chapelle et al. [35] proposed a branch and bound scheme for

the semi-supervised case. Their approach recursively splits the search space into smaller

subregions, which yields a tree with nodes corresponding to these subregions. The basic

idea of such an approach is that one can safely discard large subtrees in the overall search

tree based on lower and upper bounds for the objective function. The effectiveness of such

a procedure is based on these bounds and on the way the pruning of subtrees takes place.

In the worst case, the complete tree has to be examined, which leads to an exponential

runtime.

A result competitive to the one provided in this chapter is given by Peng et al. [112].

However, their approach only aims at solving the unsupervised setting for the special

case of a hard-margin support vector machine (without any slack variables), i. e., a more

restrictive version is considered. In addition, a general position of the patterns is assumed,

i. e., the authors require that “any d points in TU will define precisely one hyperplane in

Rd” [112]. Given this assumption, they describe how to obtain an optimal solution for the

hard-margin case in O(ud+2) time.3

3To the best of the author’s understanding, there exists certain point configurations that are not covered

4.2. GEOMETRIC BACKGROUND 49

b
b

b

b

b

b

(a) Arrangement

D0(v)

hg

D0(w)

bD0(h)

b
D0(g)

bw

b

v

×
0

+

- +

-

+

-

+
-

(b) Dual Mapping

Figure 4.2. The Figure (a) shows an arrangement in the plane consisting of six vertices, 16 edges (eight
of which are unbounded), and eleven cells (eight of which are unbounded). Figure (b) illustrates Fact 4.2,
where the algebraic signs mark the open half-spaces of a hyperplane. Note, for instance, that w ∈ h− and
D0(h) ∈ D0(w)−.

4.2 Geometric Background

The optimization framework proposed in this chapter is based on arrangements, a well-

known concept in the field of computational geometry [43, 45]. In a nutshell, an arrange-

ment is the partition of the d-dimensional Euclidean space Rd into k-dimensional objects

induced by a set of hyperplanes. The popularity of this concept in the field of computa-

tional geometry is mainly based on a connection between points and hyperplanes induced

by a so-called dual function. We will now provide the details.

4.2.1 Arrangements and Duality

Following Edelsbrunner [45], we will introduce both arrangements and the concept of

duality along with associated definitions and facts.

Arrangements

The arrangement A(G) of a finite set G of hyperplanes in Rd is defined as the partition of Rd

into open convex cells of dimensions k = 0, . . . , d [45, 70]. An example of an arrangement

in the Euclidean plane is shown in Figure 4.2 (a). Here, the plane is subdivided into

vertices, edges, and regions. More formally, a d-face is defined as a maximal connected

region in Rd that is not intersected by any hyperplane in G. For k = 0, . . . , d− 1, a k-face

is a maximal connected region in the intersection of a subset of hyperplanes, which is not

intersected by any other hyperplane in G and whose dimension is k, i. e., which belongs to

a k-flat but not to a (k − 1)-flat (see Section 3.1 for the definition of a k-flat) [70].

For special values of k, special names are common in the literature. A 0-face is called

vertex, a 1-face is called edge, a (d − 1)-face is called facet, and a d-face is simply called

by the approach of Peng et al. [112].

50 CHAPTER 4. EXACT SOLUTIONS IN POLYNOMIAL TIME

cell. A k-face g and a (k−1)-face f are called incident if f is contained in the closure of g

(k = 1, . . . , d). In this case, g is the superface of f and f is a subface of g. An arrangement

A(G) with |G| ≥ d is called simple, if any d hyperplanes in G have a common unique

intersection point and if any d + 1 hyperplanes in G do not have a common intersection

point. Following Edelsbrunner [45], we denote by f
(d)
k (G) the number of k-faces of A(G)

(for k = 0, . . . , d) and by i
(d)
k (G) the number of incidences between k-faces and (k+1)-faces

(for k = 0, . . . , d − 1). The following fact describes the number of all possible faces and

incidences in a given arrangement:

Fact 4.1 ([45, Theorem 1.3]) Let G be an arbitrary non-empty set of hyperplanes in the

d-dimensional Euclidean space Rd. Then,

f
(d)
k (G) ≤

k∑
i=0

(
d− i
k − i

)(|G|
d− i

)
∈ Θ(|G|d) (4.3)

and

i
(d)
k (G) ≤ 2(d− k)

k∑
i=0

(
d− i
k − i

)(|G|
d− i

)
∈ Θ(|G|d). (4.4)

Equality is attained if and only if the arrangement A(G) is simple.

Duality

We will make use of the following dual function D0 [45, Section 1.6] which maps a point

p ∈ Rd − {0} to the hyperplane

D0(p) := {x ∈ Rd | 〈p,x〉 − 1 = 0}, (4.5)

and vice versa, i. e., D0(D0(p)) := p for all hyperplanes D0(p) not containing the origin 0.

We extend the definition of D0 to sets of points and hyperplanes in a natural way. The

following fact can be proved easily, see Figure 4.2 (b) for an illustration:

Fact 4.2 ([45, Observation 1.8]) Let w 6= 0 be a point in Rd and let h be a hyperplane

in Rd not containing the origin 0. Then, the transformation D0 is incidence and order

preserving, i. e.,

(a) Incidence preservation: The point w belongs to h if and only if D0(h) belongs

to D0(w).

(b) Order preservation: The point w is contained in h+ if and only if the point D0(h)

4.2. GEOMETRIC BACKGROUND 51

r4

e1

e3

e4

r1r3

e2

v

r2

(a) Arrangement

r1

e1 e2

r2 r3

e3

r4

e4

v

(b) Incidence Graph

Figure 4.3. In Figure (a), an arrangement in the Euclidean plane is shown. Figure (b) shows its
corresponding incidence graph. The graph can be augmented with additional auxiliary information [46].

is contained in D0(w)+ and the point w is contained in h− if and only if the point

D0(h) is contained in D0(w)−.

4.2.2 Constructing Arrangements

The efficient construction of arrangements will play an important role for the polynomial-

time approach proposed in this chapter and is a common problem in the field of compu-

tational geometry. Edelsbrunner et al. [45, 46] propose a data structure D(A(G)) called

incidence graph which represents the mathematical concept of an arrangement A(G) for

a given set G of hyperplanes in Rd. We will briefly review this data structure as well

as its efficient construction. The reader is referred to the descriptions of Edelbrunner et

al. [45, 46] for a comprehensive introduction.

Incidence Graph

Each k-face in A(G) is represented by a node in D(A(G)), where A(G) is considered to be

a (d + 1)-face and the empty set ∅ to be a (−1)-face (in the following, we will identify

a node with its corresponding face). Further, there exists an edge in D(A(G)) between

two nodes if the corresponding faces are incident, see Figure 4.3. The graph structure

can be augmented with auxiliary information, depending on the particular application.

Following Edelsbrunner et al. [46], we assign a point p(f) to each k-face (and store it in

the node itself). For a 0-face, we set p(f) = f . If f is an unbounded 1-face, then p(f) is

the unique point of f with distance 1 from the (only) incident 0-face. Otherwise, in case

f is a bounded 1-face or a k-face with k ≥ 2, we set

p(f) =

(
m∑
i=1

p(fi)

)
/m, (4.6)

where f1, . . . , fm are the subfaces of f .

52 CHAPTER 4. EXACT SOLUTIONS IN POLYNOMIAL TIME

Iterative Construction

Edelsbrunner et al. [46] propose an incremental approach to constructing the incidence

graph structure of a given arrangement A(G) induced by a set G of hyperplanes. The idea

is to insert the hyperplanes iteratively. In each iteration, a new hyperplane is added to

the already existing graph structure given for the predecessors of the current hyperplane.

Since each insertion of such a hyperplane can be performed in O(|G|d−1) time, the overall

runtime is bounded by O(|G|d). We refer to Edelsbrunner et al. [46] for details and directly

provide the corresponding fact that summarizes the corresponding theoretical analysis:

Fact 4.3 ([46, Theorem 3.3]) For a given set G of hyperplanes in Rd with d ≥ 2, one can

construct the incidence graph D(A(G)) for A(G) in O(|G|d) time.

It is worth noting that the incidence graph can deal with degenerated cases (like parallel

hyperplanes or the intersection of more than d hyperplanes in a common point). Further,

since the maximal complexity of A(G) is attained if A(G) is simple, the theoretical bounds

are not affected by these cases [46].

4.3 Polynomial-Time Framework

We will now derive the connection of the above geometrical concepts to the combina-

torial optimization tasks induced by semi- and unsupervised support vector machines.

For the sake of exposition, we will focus on the unsupervised case with a training set

TU = {x1, . . . ,xu} ⊂ Rd of unlabeled training patterns. The semi-supervised case can be

derived in a similar way, which we will sketch at the end of this section.

4.3.1 Connection to Arrangements

In the following, we will show that there exists a k-face (k = 0, . . . , d) in the arrangement

A(D0(TU)) for each optimal partition vector y∗ ∈ {−1,+1}u of the task (4.1). We will

start by considering the case without slack variables and will subsequently show how the

ideas can be extended to the more general case with slack variables. For the following

theoretical analysis, we will assume that d ≥ 2 is constant.4 Further, we will initially

assume that both u ≥ d and 0 /∈ TU hold.

4For d = 1, the optimization tasks can be solved easily. Again, we do not consider multisets of points,
i. e., we assume xi 6= xj for all xi,xj ∈ TU with i 6= j.

4.3. POLYNOMIAL-TIME FRAMEWORK 53

h

f

g

bx1
b

x2

b
x3

b
x4

+

- +

-

+

-×

0

(a)

D0(x1)

D0(x2)

D0(x3)

D0(x4)

b

D0(f)

b

D0(g)

b
D0(h)

×

0

+

+

++

-

-

--

(b)

Figure 4.4. In Figure (a), four training patterns TU = {x1, . . . ,x4} in the Euclidean plane along with
three hyperplanes f, g, and h are shown. Each hyperplane along with the set TU induce a linearly separable
training set. The configuration induced by the dual mapping D0 is shown in Figure (b). Since D0(f) and
D0(g) are contained in the same cell of the arrangement, the preimages f and g must induce the same
linearly separable training set T ′U = {(x1,−1), (x2,−1), (x3,+1), (x4,+1)}.

Without Slack Variables

Let us initially ignore the slack variables by considering the optimization task induced by a

linear hard-margin support vector machine, i. e., we enforce ξi = 0 for i = 1, . . . , u in (4.1).

In this case, the labeled training set induced by the optimal partition y ∈ {−1,+1}u for

the task (4.1) is linearly separable. The following lemma follows immediately:

Lemma 4.1 Let TU = {x1, . . . ,xu} ⊂ Rd be a set of points and let CA be a cell of the

arrangement A(D0(TU)). Then, all hyperplanes D0(w) with w ∈ CA induce one and the

same linearly separable training set with respect to TU .

Proof: Application of Fact 4.2. �

Hence, the above lemma implies that every cell (i. e., d-face) in the arrangementA(D0(TU))

corresponds to exactly one linearly separable training set and vice versa (i. e., the mapping

between cells in the arrangement and linearly separable training sets is bijective). Further,

since we have O(ud) cells in the arrangement due to Fact 4.1, there are at most O(ud)

linearly separable training sets induced by TU .

These observations are illustrated in Figure 4.4: Here, each hyperplane along with

the set TU = {x1,x2,x3,x4} of patterns induce positive and negative training instances.

For example, hyperplane f and TU induce the linearly separable training set T ′U =

{(x1,−1), (x2,−1), (x3,+1), (x4,+1)}. Since the hyperplane g and TU induce the same

linearly separable training set T ′U , the above lemma implies that D0(f) and D0(g) must

be contained in the same cell of the arrangement A(D0(TU)). Note that hyperplane h and

54 CHAPTER 4. EXACT SOLUTIONS IN POLYNOMIAL TIME

TU induce a different training set. Thus, the point D0(h) must be contained in a different

cell of the arrangement.

With Slack Variables

Let us now consider the more general case with possibly non-zero slack variables. The

next lemma shows that optimal partition vectors fulfill specific properties:

Lemma 4.2 Given a set TU = {x1, . . . ,xu} ⊂ Rd of points and let (y∗,w∗, b∗, ξ∗) denote

an optimal solution for the optimization problem (4.1). Then, one of the two following

cases holds for the induced training set T ∗U = {(x1, y
∗
1), . . . , (xu, y

∗
u)}:

(a) We have 0 ≤ ξ∗i ≤ 1 for each index i with y∗i = +1. If ξ∗j > 1 holds for a negative

training instance (xj ,−1) ∈ T ∗U , then d(h(w∗, b∗),xj) ≤ d(h(w∗, b∗),xi) holds for

any positive training instance (xi,+1) ∈ T ∗U .

(b) We have 0 ≤ ξ∗j ≤ 1 for each index j with y∗j = −1. If ξ∗i > 1 holds for a positive

training instance (xi,+1) ∈ T ∗U , then d(h(w∗, b∗),xi) ≤ d(h(w∗, b∗),xj) holds for

any negative training instance (xj ,−1) ∈ T ∗U .

Proof: Let us fix the optimal hyperplane h(w∗, b∗). To prove the first assertion for both

cases, let us assume that there exist two training instances (xi,+1) and (xj ,−1) in T ∗U
with ξ∗i > 1 and ξ∗j > 1. By exchanging the two associated labels, the corresponding slack

variables can be set to 0 without violating the constraints. This leads to a strictly lower

objective value, which is a contradiction to the optimality of h(w∗, b∗).

For the extended assertion of the case (a), let us assume that 0 ≤ ξ∗i ≤ 1 holds

for all indices i with y∗i = +1. If d(h(w∗, b∗),xj) > d(h(w∗, b∗),xi) is fulfilled for any

negative training instance (xj ,−1) ∈ T ∗U with ξ∗j > 1 and any positive training instance

(xi,+1) ∈ T ∗U , then one can again strictly reduce the objective value by exchanging the

labels of xj and xi without violating the constraints. The extended assertion for the

case (b) follows in the same manner. �

The above lemma guarantees the existence of a hyperplane hcut (parallel to an optimal hy-

perplane hopt = h(w∗, b∗)) that gives rise to an optimal partition vector y∗ ∈ {−1,+1}u.5

If hcut does not contain any points, then there exists a cell in A(D0(TU)) containing

D0(hcut), see Figure 4.5 (a). Otherwise, up to about u points of TU might be contained in

5Note that, when ignoring the balance constraint, the optimal labels for a fixed hyperplane h(w, b) are
given by y∗i = f(w,b)(xi) for all patterns xi ∈ TU [36]; see the equation (3.3) for the definition of f(w,b).
Including the balance constraint, however, renders a more detailed analysis necessary.

4.3. POLYNOMIAL-TIME FRAMEWORK 55

uu

uu

uu

uu

uu

uu uu

rsrs
rsrs

rsrs

rsrs

rsrs

uu

uu

uu

uu

uu

rsrs
uu

rsrs rsrs

rsrs
rsrs

rsrs

(a) Non-Degenerated

uu

rsrs

rsrs
uu

uu

uu

rsrs

rsrs

rsrs

rsrs

rsrs

rsrs

rsrs

uu

uu

uu

uu

rsrs

rsrs

uu

uu

uu

uu

uu uu

uu

rsrs

rsrs

rsrs

rsrs

rsrs

(b) Degenerated

Figure 4.5. Two non-degenerated cases are shown in Figure (a). Here, the hyperplanes hcut (dashed
lines) induce linearly separable training sets. In Figure (b), two degenerated cases are depicted where the
hyperplanes hcut contain multiple patterns and, thus, induce training sets which are not linearly separable.

hcut. In these cases, there exists a corresponding k-face (k = 0, . . . , d − 1) in A(D0(TU))

which contains D0(hcut), see Figure 4.5 (b). Note that the last observation follows directly

from the definition of a k-face (which is provided in Section 4.2).

4.3.2 Polynomial-Time Algorithm

The above derivations show that it is sufficient to test all partition vectors which cor-

respond to k-faces in the arrangement A(D0(TU)) (instead of testing all possible O(2u)

partition vectors). Note that, for the special case with multiple points in the hyper-

plane hcut, the configuration of points within hcut is not important, i. e., the particular

label assignments for these points can be selected in an arbitrary manner. Hence, it is suf-

ficient to check a single partition fulfilling the balance constraint out of the Θ(2u) possible

partitions (induced by all points contained in the hyperplane hcut).

Algorithmic Framework

The two initial assumptions (u < d and 0 /∈ TU) made at the beginning of this section can

be removed as follows: If u < d, then one can resort to the simple brute-force approach

that tests O(2d−1) = O(1) possible partition vectors. Further, since the task (4.1) is

invariant under translation, one can handle the case 0 ∈ TU by simple translation steps in

the pre- and post-processing phase.

The main optimization approach is given in Algorithm 4.1: First, the incidence graph

D(A(D0(TU))) for the arrangement A(D0(TU)) is constructed. Given this graph, one

iterates over all k-faces (i. e., nodes in the graph). For each k-face, the corresponding

partition vector y is generated, where one can resort to the point p(f) stored for each

k-face. If k = d, then p(f) is not contained in any dual hyperplane and, hence, induces

a unique linearly separable training set (via D0(p(f)) and TU) along with the desired

partition vector y. If k < d, then the hyperplane D0(p(f)) can contain up to u points

56 CHAPTER 4. EXACT SOLUTIONS IN POLYNOMIAL TIME

Input: An unlabeled training set TU = {x1, . . . ,xu} ⊂ Rd, C ∈ R+, bc ∈ [0, 1], and ε ∈ R+.
Output: An optimal solution (up to machine precision) (y∗,w∗, b∗, ξ∗) for the task (4.1).
1: y∗ = nil
2: Construct incidence graph D(A(D0(TU)))
3: for each k-face in A(D0(TU)) do
4: Compute vector y ∈ {−1,+1}u corresponding to the k-face
5: if the vector y fulfills the balance constraint then
6: Compute solution (w, b, ξ) for (3.9) given T ′U = {(x1, y1), . . . , (xu, yu)}
7: if y∗ = nil or J(w, b, ξ) < J(w∗, b∗, ξ∗) then
8: (y∗,w∗, b∗, ξ∗) = (y,w, b, ξ)
9: end if

10: end if
11: end for
12: return (y∗,w∗, b∗, ξ∗)

Algorithm 4.1. The polynomial-time framework for addressing the task (4.1) induced by linear unsu-
pervised support vector machines: The approach first constructs an incidence graph for the arrangement
A(D0(TU)) and then traverses all k-faces of A(D0(TU)). For each k-face, the corresponding (labeled)
training set is tested via a standard support vector machine and the best overall result is stored.

of TU . However, since their particular configuration is not important, one can generate a

unique partition vector that fulfills the balance constraint (if existent), again via D0(p(f))

and TU . Given the vector y, the solution (w, b, ξ) with objective value J(w, b, ξ) for

the support vector machine task (3.9) with training set T ′U = {(x1, y1), . . . , (xu, yu)} is

computed. Throughout the overall execution, one keeps track of the best result.

Runtime Analysis

In summary, our approach processes all k-faces in the arrangement A(D0(TU)) and for

each k-face, a single partition vector y is generated and checked via a support vector

machine. This leads to the following result:

Theorem 4.1 Given an unlabeled training set TU = {x1, . . . ,xu} ⊂ Rd, one can compute

an exact solution (up to machine precision) for the task (4.1) in O(ud+3IL) time, where

IL denotes the input length, i. e., the number of bits used to encode all the rational data

of the problem.

Proof: The construction of the graph can be performed in O(ud) time. In total, at most

O(ud) nodes (representing all k-faces) are given in the graph due to Fact 4.1. For each k-

face f , the corresponding partition vector y has to be generated via the point p(f) stored

in the node associated with f . This can be done in linear time (also if the point p(f) is

contained in up to u dual hyperplanes). Thus, the total runtime is O(ud+1 +ud ·T1(u, d)),

4.4. EXPERIMENTAL ANALYSIS 57

where T1(u, d) denotes the time needed for computing a solution for the optimization

problem (3.9) for fixed y. Since these intermediate tasks give rise to quadratic programs

with u + d + 1 variables and 2u constraints, we have T1(u, d) = O(u3IL) due to Fact 3.3

and, thus, O(ud+3IL) as total runtime. �

Note that other optimization schemes for the intermediate support vector machine tasks

could be used. As pointed out in Chapter 3, recent runtime results provide quadratic

upper runtime bounds for general (non-linear) support vector machines. Further, specific

schemes like the linear-time approach of Joachims [86] could be employed to address

the optimization tasks induced by the special case of a linear support vector machine.

The latter scheme, however, assumes that the patterns in TU = {x1, . . . ,xu} ⊂ Rd have

bounded norm.

Dealing with the Semi-Supervised Case

The combinatorial problem induced by the semi-supervised setting is similar to the one

of the unsupervised setting. The only difference is the additional term representing the

labeled part of the training data that leads to a slightly different quadratic program.

The total runtime is O(ud+1 + ud · T2(l, u, d)), where T2(l, u, d) denotes the runtime for

solving the task (4.2) for fixed partition vector y. Again, these intermediate tasks give

rise to quadratic programs with l + u + d + 1 variables and 2(l + u) constraints, which

can be solved in O((l + u)3IL) time due to Fact 3.3. Thus, the only difference consists in

having slightly modified intermediate optimization tasks in Step 6 of Algorithm 4.1. The

remaining ideas can essentially be taken over. This leads to the following result:

Theorem 4.2 Given a labeled training set TL = {(x′1, y′1), . . . , (x′l, y′l)} ⊂ Rd × {−1,+1}
and an unlabeled training set TU = {x1, . . . ,xu} ⊂ Rd, one can compute an exact solution

(up to machine precision) for the task (4.2) in O(ud(l + u)3IL) time, where IL denotes

input length, i. e., the number of bits used to encode all the rational data of the problem.

4.4 Experimental Analysis

In the remainder of this chapter, we evaluate the runtime behavior of the approach and

sketch the generation of benchmark data sets. Again, for simplicity, we focus on the

unsupervised case with d = 2.

4.4.1 Experimental Setup

We start by describing the experimental setup including details about the considered data

sets along with implementation details.

58 CHAPTER 4. EXACT SOLUTIONS IN POLYNOMIAL TIME

Implementation Details

The implementation is based on the programming language Python. The runtimes are

measured on a 3.00 GHz Intel(R) Core(TM)2 PC running Ubuntu 10.04. To avoid de-

generated (dual) hyperplanes, we perform an initial translation such that no points lie

around the origin (all points are shifted into the first quadrant); after having applied

the optimization scheme, this translation is reverted. For simplicity, we assume that the

hyperplanes hcut do not contain any points and that the induced arrangement is simple.

Thus, we are only interested in the partition vectors induced by the cells (2-faces) of

the arrangement A(D0(TU)).6 Further, instead of building the complete incidence graph

structure in Step 2 of Algorithm 4.1, we resort to the following simple scheme for obtaining

these partition vectors: Let

s(i,j) = D0(xi) ∩ D0(xj) (4.7)

be the intersection point of the dual hyperplanes D0(xi) and D0(xj) with i, j ∈ {1, . . . , u}
and i 6= j. Then, the value

vp(i, j) := sgn(〈xp, s(i,j)〉 − 1) ∈ {−1,+1} (4.8)

indicates the relative position of s(i,j) with respect to the dual hyperplane D0(xp), see

again the definition (4.5) of the dual function D0.
7 Further, the intersection point s(i,j) is

adjacent to four cells of the arrangement A(D0(TU)), which correspond to the following

four partition vectors:

y1(i, j) = {v1(i, j), . . . ,−1, . . . ,−1, . . . , vu(i, j)}
y2(i, j) = {v1(i, j), . . . ,+1, . . . ,−1, . . . , vu(i, j)}
y3(i, j) = {v1(i, j), . . . ,−1, . . . ,+1, . . . , vu(i, j)}
y4(i, j) = {v1(i, j), . . . ,+1, . . . ,+1, . . . , vu(i, j)}

Here, for all vectors, the i-th and j-th positions are fixed to ±1. Thus, by testing these four

partition vectors for each of the O(u2) intersection points, all cells of the arrangement are

processed (multiple times).8 To approach the intermediate support vector machine tasks

in Step 6 of Algorithm 4.1, we resort to the LIBSVM implementation provided by Chang et

al. [29] (using the default parameter settings).

6The derivations in Section 4.3 dealing with the special cases are of theoretical interest. Aiming at a
robust and simple implementation, we ignore these cases here. For the correct generation of benchmark
data sets, we make use of simple assertions to catch these degenerated cases.

7Again, we define sgn(t) = 1 for t ≥ 0 and sgn(t) = −1 for t < 0.
8Note that each pair of dual hyperplanes intersect since we assume the arrangement to be simple.

Further, this approach can be extended to arbitrary dimensions in a natural way.

4.4. EXPERIMENTAL ANALYSIS 59

(a) Gaussian1 (b) Gaussian2 (c) Gaussian3 (d) Gaussian4

Figure 4.6. The figures show the different distributions of the two-dimensional data sets. While the
cluster structure for the data sets shown in Figures (a) and (b) are obvious, this is not the case for the
data sets depicted in Figures (c) and (d).

Artificial Data Sets

We consider four artificial data sets with d = 2 for generating benchmark data of vary-

ing complexity. The first data set is the two-dimensional version of the data set al-

ready considered the previous two chapters, i. e., N/2 points (N = 250) are drawn from

each of two multivariate Gaussian distributions Xi ∼ N (mi, I) with m1 = (−2.5, 0.0) ∈
R2 and m2 = (+2.5, 0.0) ∈ R2, see Figure 4.6 (a). This data set is denoted by Gaussian1.

The second one, called Gaussian2, is a variant of the first one with different centers

m1 = (−1.5, 0.0) ∈ R2 and m2 = (+1.5, 0.0) ∈ R2, thus leading to two overlapping clus-

ters which are more difficult to separate, see Figure 4.6 (b). The third artificial data set,

named Gaussian3, is composed of four Gaussian clusters. Here, N/4 points are drawn

from each of four multivariate Gaussian distributions Xi ∼ N (mi, I) with

m1 = (−2.5,−2.5) ∈ R2, m2 = (−2.5,+2.5) ∈ R2,

m3 = (+2.5,−2.5) ∈ R2, m4 = (+2.5,+2.5) ∈ R2,

see Figure 4.6 (c). Finally, we consider two overlapping clusters (Gaussian4), i. e., we

generate N/2 points from two multivariate Gaussian distributions Xi ∼ N (mi, σiI) with

σ1 = 4, σ2 = 1 and m1 = (0, 0) ∈ R2 and m2 = (2, 2) ∈ R2, see Figure 4.6 (d).

4.4.2 Results

We will now provide the results of the experimental analysis.

Practical Runtime

We consider the Gaussian1 data set to investigate the practical running time of the

implementation. We fix two of the three model parameters, i. e., C = 1 and bc = 0.5.

The third parameter ε determines the amount of valid partitions (fulfilling the balance

constraint), where larger values lead to a less restrictive balance constraint and, hence, to

60 CHAPTER 4. EXACT SOLUTIONS IN POLYNOMIAL TIME

0

200

400

600

800

1000

50 100 150 200 250

R
u
n
n
in
g
T
im

e
(s
)

Number l of Patterns

ε = 0.1
ε = 0.3
ε = 0.5

Figure 4.7. The plot depicts the runtime behavior of the approach for varying assignments of ε. Clearly,
the more partitions have to be checked by a support vector machine, the more runtime is needed.

more valid partitions. For this parameter, we consider three possible assignments: ε = 0.1,

ε = 0.3, and ε = 0.5. The practical runtimes for this setup are given in Figure 4.7. It

can be seen that the runtime increases moderately with increasing size of the training set.

Further, as expected, larger values for ε lead to an increased runtime time as well.

Generating Benchmark Data Sets

Model selection and performance evaluation is a difficult issue in the field of semi- and

unsupervised support vector machines due to the lack of (sufficient) labeled data. In most

cases, the authors resort to the true labels (given in the test set) for tuning the non-fixed

model parameters (like C, bc, and ε) [36]. This way of dealing with the involved parameters

is not realistic but, nevertheless, a meaningful procedure since one can investigate the

flexibility of the proposed models, i. e., one can test if the corresponding approach is,

in principle, capable of adapting to the structure of the data. Note that, even if a good

assignment for the parameters is given, one still has to solve the combinatorial optimization

tasks. Thus, a comprehensive comparison on artificial and challenging benchmark data

sets can be seen as an important pre-evaluation step before approaching real-world data.

Such an experimental setup is, for instance, a well-established procedure in the field of

stochastic optimization [13], where one resorts to difficult non-convex real-valued functions

(with many local optima) for the comparison of competing heuristics. In the remainder

of this section, we exemplify the generation of benchmark data sets which could serve

as the basis for a similar experimental setup in the context of semi- and unsupervised

support vector machines. Below, we will see that different data distributions along with

specific parameter assignments can lead to various non-obvious optimal solutions. For all

remaining experiments, we fix N = u = 250.

Scenario 1: Balance Constraint. Most real-world experimental setups aim at de-

tecting obvious cluster structures given in the data set. The Gaussian1 data set could

4.4. EXPERIMENTAL ANALYSIS 61

(a) bc = 0.1 (b) bc = 0.3 (c) bc = 0.5

Figure 4.8. Influence of the balance parameter bc on the Gaussian1 data set for fixed C = 1 and
ε = 0.1. Depending on the particular assignment for the parameter bc both unbalanced and balanced
clustering solutions can be enforced.

(a) ε = 0.1 (b) ε = 0.3 (c) ε = 0.5

Figure 4.9. Influence of the parameter ε on the Gaussian2 data set for fixed C = 0.01 and bc = 0.5.
Given a tight balance constraint induced via ε = 0.1, a balanced clustering solution is obtained. Relaxing
this constraint by increasing ε leads to unbalanced solutions. Note that in Figure (c), only the hyperplane
{x ∈ R2 | 〈w∗,x〉+ b∗ = −1} is visible.

be seen as such an easy task due to its well-separated Gaussian clusters. However, the

model parameters can also be used to induce more difficult problem instances: Let us fix

C = 1 and ε = 0.1 and let us consider three assignments for the balance parameter bc. In

Figure 4.8, the optimal partitions along with the induced classification models are shown

for bc ∈ {0.1, 0.3, 0.5}. As expected, the assignment bc = 0.5 leads to the obvious cluster

separation while the other two ones lead to non-obvious partitions.

The next experiment is based on the Gaussian2 data set which exhibits a more over-

lapping cluster structure. Let us now fix C = 0.01 and bc = 0.5. By imposing tight

balance constraints via ε = 0.1 and ε = 0.3, one gets decision hyperplanes separating the

two obvious clusters. Relaxing the constraint via ε = 0.5, however, yields a completely

different partition, see Figure 4.9. Hence, for both data sets, the balance constraint deter-

mined by bc and ε can have a significant influence.9 We would like to point out that this

can be a quite sensitive issue for real-world data scenarios: Local search strategies (like

9Note that besides avoiding undesired solutions, the balance constraint can also be used to enforce
certain ratios between the positive and the negative class. As a real-world example, consider the task of
fore- and background separation for image data (where each pixel corresponds to a vector in R3). Here,
the foreground could be a small object whereas the background could encompass most of the pixels. To
obtain a satisfying separation, a small (or a large) value for bc might be important.

62 CHAPTER 4. EXACT SOLUTIONS IN POLYNOMIAL TIME

(a) s1 (b) s2 (c) s3

Figure 4.10. Sensitivity with respect to variations of the data set’s distribution for Gaussian3 given
fixed C = 0.01, bc = 0.5, and ε = 0.1. In this case, using different seeds for the generation of the input
data leads different optimal partitions.

(a) C = 0.001 (b) C = 1 (c) C = 1000

Figure 4.11. Influence of the model parameter C on the Gaussian4 data set for fixed bc = 0.2 and
ε = 0.1. By assigning small values to C, large margins are prioritized. Assigning large values to C, on
the other hand, leads to a heavy penalization of patterns lying within the margin. Note that in Figure (a),
all positive patterns (red squares) are misclassified, i.e., they are lying on the wrong side of the decision
hyperplane (again, only the hyperplane {x ∈ R2 | 〈w∗,x〉+ b∗ = −1} is visible).

label-switching schemes) are often based on a good estimate for the ratio bc. However,

since a good estimate for this ratio is often not available, one is often enforced to relax

the constraint via ε. As we have seen, this can lead to undesired partitions (even if one is

able to compute the exact solution).

Scenario 2: Minor Variations. The second scenario is based on the Gaussian3 data

set. Due to the symmetry present in this data set, two obvious partitions are possible

(i. e., the vertical and horizontal partition). Thus, given appropriate assignments for the

model parameters, the optimal partition should depend on minor changes of the data set’s

distribution. To investigate this issue, we fix C = 0.01, bc = 0.5, and ε = 0.1 and use three

different seeds for the generation of the data (i. e., for the generation of random numbers).

The result is shown in Figure 4.10. Clearly, minor changes of the data set’s distribution

have a significant influence on the final (optimal) partition.

Scenario 3: Hard- and Soft-Margins. For the next scenario, we consider different

assignments for the parameter C ∈ {0.001, 1, 1000} and fix the other two remaining pa-

rameters (bc = 0.2 and ε = 0.1). Thus, by using assignments for the model parameter C,

4.5. CONCLUDING REMARKS 63

Figure 4.12. The COIL data set consisting of grayscale images of 20 objects.

we relax and stress the importance of patterns lying within the induced margin, respec-

tively. Further, the balance constraint used in this setup allows partitions having different

sizes. The final optimal partitions are depicted in Figure 4.11. Again, the particular as-

signment for a single parameter leads to completely different partitions: Small values for

the parameter C leads to a prioritization of a large margin whereas large values leads lead

to the hard-margin case, i. e., to a heavy penalization of patterns lying within the margin.

Toy Example: Clustering Image Data

Following Peng et al. [112], we sketch the principle combination of dimensionality reduction

methods and the proposed clustering approach. As high-dimensional data, we consider

the COIL [107] data set, which consists of images 1, 440 images (72 images for each of 20

objects), see Figure 4.12. Here, we use COIL(i, j) to denote the binary task induced by the

objects i and j, where the labeling in Figure 4.12 is from left to right and top to bottom.

In Figure 4.13, the projections on the first two principal components of four binary

tasks obtained via the principal component analysis procedure are shown. In case the

induced two-dimensional data sets exhibit a well-separated cluster structure, the exact

clustering approach (C = 1, bc = 0.5, ε = 0.1) can subsequently separate both classes. In

case the reduced data sets do not exhibit such a structure, the clustering approach does

not yield satisfying results. For the latter cases, one can try to add more flexibility to

the overall model by making use of non-linear dimensionality reduction approaches (like

the kernel variant of the principal component analysis [124]). We would like to point out

that this example shall only demonstrate the principle application of the exact clustering

approach for high-dimensional data. Naturally, the reduction to a low-dimensional feature

space can result in a big loss of information about the structure of the data.

4.5 Concluding Remarks

The key contribution of this chapter is a polynomial-time approach for linear semi- and

unsupervised support vector machines. The proposed algorithm is the first one that yields

non-trivial theoretical upper runtime bounds for the tasks at hand (considering the more

64 CHAPTER 4. EXACT SOLUTIONS IN POLYNOMIAL TIME

(a) COIL(1,2) (b) COIL(1,8) (c) COIL(3,6) (d) COIL(4,5)

Figure 4.13. Four two-dimensional embeddings along with the corresponding clustering results.

general soft-margin extensions). Its algorithmic framework is based on a connection be-

tween all possible partition vectors and all k-faces in the arrangement induced by the

training patterns. The efficient construction of this arrangement plays an important role

for the theoretical runtime analysis of the proposed approach. Constructing arrangements

is, in turn, an important building block for a variety of algorithms in the field of compu-

tational geometry and the optimality of the corresponding algorithm “relies heavily on a

nontrivial combinatorial fact” [45, 46].

We believe that the derivations provided in this chapter will stimulate the collaboration

between both the field of machine learning and the field of computational geometry with

respect to these problems (similar to the results [9, 12, 41, 102, 150] for standard support

vector machines). Note that a comparable research direction exists for the k-means algo-

rithm, which aims at obtaining good candidate solutions for its associated combinatorial

optimization task (2.8). Similar to the results presented in this chapter, computing exact

solutions for this task takes O(ukd+1) time for fixed number k ∈ N of designated clusters

with patterns in Rd [82]. Despite these theoretical insights, the polynomial-time approach

can be used to generate benchmark data sets in low-dimensional feature spaces. These

data sets depict excellent baseline tasks for the mutual quality assessment of competing

optimization frameworks. As pointed out above, such an experimental setup is common in

the field of stochastic optimization [13], where difficult tasks (e.g., non-convex functions

with many local optima) are used for the comparison of optimization schemes.

CHAPTER 5

Speedy Local Search

T
he computational complexities of the exact approaches proposed in the previous

chapter indicate that the optimization tasks are difficult to approach, even for

special cases. Since the idea of extending support vector machines to such semi-

and unsupervised learning settings is very appealing for real-world data, both extensions

have received considerable attention in recent years from a practical point of view. In the

literature, a variety of heuristic optimization schemes can be found that are, on the one

hand, computationally efficient, but, on the other hand, only yield (possibly suboptimal)

candidate solutions without any guaranteed accuracy. In this chapter, we will propose

such a local search scheme for addressing both tasks. While a direct implementation is

still computationally expensive, we will show how to accelerate the search by means of

matrix-based updates for the intermediate solutions. More precisely, these computational

shortcuts will render linear-time updates per iteration possible (instead of cubic-time op-

erations needed by a naive implementation). This will greatly reduce the overall runtime

of the approach and permits a huge amount of possible candidate solutions to be tested

in an efficient kind of way. In addition, we will show how to efficiently integrate well-

known (kernel matrix) approximation schemes into the framework that pave the way for

large-scale learning settings.

Outline. After motivating the basic ideas in Section 5.1, we will formalize both tasks

from a general perspective including non-linear kernels in Section 5.2. The algorithmic

framework along with the matrix-based speed-ups will be described in Section 5.3, followed

by experiments given in Section 5.4. Concluding remarks will be provided in Section 5.5.

65

66 CHAPTER 5. SPEEDY LOCAL SEARCH

Input: A labeled training set TL = {(x′1, y′1), . . . , (x′l, y′l)} ⊂ Rd×{−1,+1}, an unlabeled
training set TU = {x1, . . . ,xu} ⊂ Rd, C ′ ∈ R+, C ∈ R+, bc ∈ [0, 1], and ε ∈ R+.

Output: An approximation (y,w, b, ξ′, ξ) for the semi-supervised learning task (4.2).
1: Compute solution (w, b, ξ′) for the support vector machine task (3.9) given TL.
2: Initialize vector y ∈ {−1,+1}u via yi = f(w,b)(xi) for i = 1, . . . , u.
3: repeat
4: Switch a positive and a negative entry of y if this leads to a strictly better objec-

tive (4.2). In case several pairs leading to a smaller objective exist, consider the
one that yields the best improvement.

5: until No label-switches leading to a smaller objective possible anymore.
6: Compute solution (w, b, ξ′, ξ) for the task (4.2) for fixed y ∈ {−1,+1}u.
7: return (y,w, b, ξ′, ξ)

Algorithm 5.1. Local search scheme for linear semi-supervised support vector machines proposed by
Joachims [83]: The initial candidate solution is obtained via a linear support vector machine trained
on the labeled part of the data. The unlabeled patterns are initialized via the decision function f(w,b)
that is defined in (3.3). The main loop (Steps 3–5) iterates until no label-switchings leading to a lower
objective are possible anymore. Throughout the overall execution, only partition vectors fulfilling the
balance constraint are generated. Further, the approach also gradually increases the influence of the
unlabeled patterns (which is not depicted here).

5.1 Motivation

One of the first practical optimization schemes for semi-supervised scenarios was given by

Joachims [83]: The main idea of his approach is to first train a standard support vector

machine on the labeled part of the data and to subsequently improve this initial guess

by incorporating the unlabeled part via a label-switching strategy, see Algorithm 5.1.

Although being one of the first methods for the semi-supervised learning task, this kind

of local search strategy is still among the state-of-the-art methods, most probably due to

its conceptual simplicity and the publicly available source code.

For the unsupervised case, this scheme was reformulated by Zhang et al. [153]. Since

no labeled part is available for these settings, they resort to a simple clustering approach

for getting reasonable initial candidate solutions. Exactly as Joachims, they suggest to

subsequently improve the objective value by an iterative label-switching strategy. One of

their key insights was the replacement of the hinge loss by the ε-insensitive loss such that

“it is easier to flip the labels if needed” [153]. Their experimental evaluation indicates

that such a replacement is an important algorithmic ingredient, at least for unsupervised

scenarios. In addition to the ε-insensitive loss, they also suggest to make use of the square

loss (instead of the hinge loss), which led to competitive results.

One of the main disadvantages of the two schemes depicted above is the fact that one

has to retrain a support vector machine for each of the intermediate candidate solutions.

5.2. GENERAL CLASSIFICATION FRAMEWORK 67

Depending on the particular assignments for the involved model parameters, such a re-

current training can be extremely time-consuming. In this chapter, we will propose a

simple local search scheme similar to the one depicted in Algorithm 5.1 that can be used

to address both semi- and unsupervised support vector machines. Further, motivated by

the results of Zhang et al. [153] for the ε-insensitive and the square loss, we will consider

least-squares variants for the original problem formulation. While a naive implementation

of the resulting local search scheme is computationally very demanding, we will provide

an efficient implementation of this framework that is based on matrix updates of the inter-

mediate candidate solutions. This will result in a conceptually very simple but extremely

effective approach for both learning tasks.

5.2 General Classification Framework

We will now formalize the classification tasks by extending the definitions of linear semi-

and unsupervised support vector machines to the general cases with arbitrary kernels.

5.2.1 Non-Linear Extensions

In the following, let X be an arbitrary set, k : X × X → R a kernel function, and

TL = {(x′1, y′1), . . . , (x′l, y′l)} ⊂ X×Y a labeled training set with Y = {−1,+1}. As depicted

in Chapter 3, support vector machines are a special case of regularization problems of the

form

inf
f∈Hk, b∈R

1

l

l∑
i=1

L
(
y′i, f(x′i) + b

)
+ λ‖f‖2Hk (5.1)

with user-defined parameter λ ∈ R+, loss function L : Y×R→ [0,∞) and feature spaceHk
that is associated with the kernel function k. Similar to linear support vector machines,

this more general concept can be extended to both semi- and unsupervised settings in the

following manner.

Unsupervised Support Vector Machines

The direct extension of the above regularization problem to the unsupervised case for a

given unlabeled training set TU = {x1, . . . ,xu} ⊂ X has the form [149]

minimize
y∈{−1,+1}u, f∈Hk, b∈R

1

u

u∑
i=1

L
(
yi, f(xi) + b

)
+ λ‖f‖2Hk (5.2)

s.t.

∣∣∣∣∣1u
u∑
i=1

max(0, yi)− bc
∣∣∣∣∣ < ε

68 CHAPTER 5. SPEEDY LOCAL SEARCH

with parameters λ ∈ R+, bc ∈ [0, 1], and ε ∈ R+. Again, the balance constraint is

used to enforce a certain ratio between positive and negative assignments determined by

y ∈ {−1,+1}u.1 Plugging in the hinge loss leads to the problem statement usually ad-

dressed in the literature for unsupervised support vector machines, also named maximum

margin clustering [149]. In this case, one obtains a mixed-integer programming prob-

lem [51] via the semiparametric representer theorem (Fact 3.2) since, for fixed partition

vector y ∈ {−1,+1}u, any optimal f∗ ∈ Hk is of the form

f∗(·) =
u∑
i=1

cik(·,xi) (5.3)

with real coefficients c1, . . . , cu ∈ R.

Semi-Supervised Support Vector Machines

For semi-supervised classification, we are given both a set TL = {(x′1, y′1), . . . , (x′l, y′l)} ⊂
X × {−1,+1} of labeled patterns as well as a set TU = {x1, . . . ,xu} ⊂ X of unlabeled

patterns. Taking both parts into account leads to

minimize
y∈{−1,+1}u, f∈Hk, b∈R

1

l

l∑
i=1

L
(
y′i, f(x′i) + b

)
+ γ

1

u

u∑
i=1

L
(
yi, f(xi) + b

)
+ λ‖f‖2Hk (5.4)

s.t.

∣∣∣∣∣1u
u∑
i=1

max(0, yi)− bc
∣∣∣∣∣ < ε

with parameters λ ∈ R+, γ ∈ R+, bc ∈ [0, 1], and ε ∈ R+ [10, 83, 141, 142]. Thus, in addi-

tion to the parameter λ, we are also given the parameter γ that determines the influence

of the unlabeled part with respect to the overall objective value. Note that, depending on

the data at hand, the particular assignment for γ can have a significant influence on the

overall model which necessitates its existence.2 It should be pointed out that, in contrast

to the unsupervised setting, the balance constraint is not necessary for the semi-supervised

case due to the labeled part of the data.3 However, a good estimate for the true ratio

between positive and negative patterns is usually beneficial for local search strategies due

to the more restrictive search space. Using the hinge loss leads to the problem formula-

tion for standard semi-supervised support vector machines and, again, to a mixed-integer

programming problem via the semiparametric representer theorem (Fact 3.2).

1As pointed out above, these parameters have to set accordingly to avoid trivial solutions.
2A very small value corresponds to a pure classification task whereas a large value corresponds to a

pure clustering task.
3If at least one negative training and one positive training instance are given in TL.

5.2. GENERAL CLASSIFICATION FRAMEWORK 69

5.2.2 Related Work

Both mixed-integer programming problems can be addressed by standard solvers. Al-

though exact solutions (up to machine precision) can be obtained this way, it is not

feasible for settings with more than, e.g., 80 unlabeled patterns [10]. For that reason, a

variety of heuristics and other techniques has been proposed in the literature.

Unsupervised Support Vector Machines

Xu et al. [149] were among the first ones who formalized the extension of support vector

machines to unsupervised learning scenarios. Their optimization approach is essentially

based on reformulating the original problem definition as semidefinite programming prob-

lem [20], which can then be addressed efficiently via standard solvers. Note that the

resulting approach computes only an approximation of the original problem formulation

(without any accuracy guarantees). A variant of this approach is given by Valizadegan

and Jin [140] who show how to reduce the number of involved optimization variables and

how to incorporate a kernel learning scheme. Further, an extension of this optimization

framework to multi-class settings has been proposed by Xu et al. [148].

As mentioned above, Zhang et al. [153] proposed an optimization scheme that im-

proves an initial candidate solution by iteratively applying a support vector regression

model. While being computationally quite efficient, their approach depends heavily on

the considered initial guess (which can, for instance, be obtained via the k-means clus-

tering scheme). A recent local search approach for the linear case is given by Wang et

al. [146, 156]. It is based on applying the so-called constrained concave-convex proce-

dure [133, 152], which is an iterative optimization strategy yielding a local optimum for a

non-convex optimization problem [134, 152]. Wang et al. [146] apply this iterative scheme

by deriving appropriate quadratic programming problems (with many constraints) to be

solved per iteration. The intermediate tasks are addressed by the cutting plane approach

for linear support vector machines [86]. As pointed out by Wang et al. [146], the result-

ing framework needs O(T · su) time for u unlabeled patterns, where T is the number of

iterations needed by the constrained concave convex procedure and where s represents

the sparsity of the data (i. e., the average number of nonzero features in a given pattern).

A direct extension to multi-class scenarios is also given by Zhao et al. [156]. Another

approach, also based on a cutting plane framework, is provided by Li et al. [98]. Their

scheme is similar to the one proposed by Xu et al. [149], but with tighter constraints.

Semi-Supervised Support Vector Machines

The idea of using unlabeled data in the context of support vector machines stems from

Vapnik, Sterin, and Joachims [83, 141, 142] under the name of transductive inference or

70 CHAPTER 5. SPEEDY LOCAL SEARCH

transductive support vector machines and from Bennett and Demiriz [10] under the name

of semi-supervised support vector machines. Among the first approaches was the local

search scheme of Joachims [83] sketched above. During the last decade, a variety of other

optimization schemes has been proposed that are based on the concave-convex proce-

dure [38, 39, 55], gradient descent [32], semidefinite programming [14, 148], deterministic

annealing [131], and other methods [10, 33]. In addition, the problem has recently gained

attention in the field of evolutionary computation [104, 127]. In Chapter 6, we will see

that it is possible to restate the tasks as continuous but non-convex optimization prob-

lems. In this context several approaches [32, 33, 38, 39, 55] have been proposed and we

defer their discussion to Chapter 6. In general, semi-supervised classification settings can

also be addressed by various other techniques that aim at using both the labeled part as

well as the unlabeled one to improve the generalization performance of the models. For

a comprehensive overview of related concepts and methods, we refer the reader to the

overviews given by Chapelle et al. [34, 36] and Zhu et al. [157]. In this work, however, we

will focus on the semi-supervised extension of support vector machines defined above.

5.3 Algorithmic Framework

We will start by depicting the algorithmic framework including the definition of the con-

sidered least-squares variants as well as the local search scheme used for addressing the

induced tasks. Subsequently, we will show how to speed up the intermediate optimization

problems of the local search scheme by means of efficient matrix updates.

5.3.1 Least-Squares Variants

Standard support vector machines are associated with the hinge loss. In the literature

several variants of this classification concept can be found that are based on replacing the

hinge loss by other loss functions. One of these surrogates is the concept of least-squares

support vector machines [136], also known under the name of regularized least-squares

classification [120]. We will now describe this supervised variant as well as its extensions

to semi- and unsupervised learning settings.

Least-Squares Support Vector Machines

Least-squares support vector machines stem from the replacement of the hinge loss by the

square loss L(y, t) = (y − t)2. Plugging in this loss function into the task (5.1) leads to

inf
f∈Hk

1

l

l∑
i=1

(
y′i − f(x′i)

)2
+ λ‖f‖2Hk , (5.5)

5.3. ALGORITHMIC FRAMEWORK 71

where TL = {(x′1, y′1), . . . , (x′l, y′l)} ⊂ X × {−1,+1} is the labeled training set and where

λ ∈ R+. Note that the latter formulation does not include the offset term b ∈ R that

addresses translated data. In the remainder of this chapter, we will omit this term for

the sake of simplicity.4 Again, due to the representer theorem (Fact 3.1), any minimizer

f∗ ∈ Hk of the above task has the form

f∗(·) =
l∑

i=1

cik(·,x′i) (5.6)

with appropriate coefficients c = (c1, . . . , cl)
T ∈ Rl. Thus, using ‖f∗‖2Hk = cTKc, one can

rewrite the regularization problem (5.5) as

minimize
c∈Rl

1

l
(y′ −Kc)

T
(y′ −Kc) + λcTKc, (5.7)

where y′ = (y′1, . . . , y
′
l)
T and where K ∈ Rl×l is the kernel matrix induced by the sequence

x′1, . . . ,x
′
l of patterns. One of the benefits of the above classification model is the fact

that it depicts an unconstrained convex optimization task whose solution can be com-

puted analytically in O(l3) time using O(l2) space. For a comprehensive overview of this

classification concept, we refer to Rifkin [120] and Suykens and Vandewalle [136].

Unsupervised Least-Squares Support Vector Machines

The extension of the least-squares variant depicted above to unsupervised scenarios with

a set TU = {x1, . . . ,xu} ⊂ X of unlabeled patterns consists in searching for a function

f∗ ∈ Hk and a partition vector y∗ ∈ {−1,+1}u for the unlabeled patterns that are optimal

with respect to

minimize
y∈{−1,+1}u, f∈Hk

1

u

u∑
i=1

(
yi − f(xi)

)2
+ λ‖f‖2Hk (5.8)

s.t.

∣∣∣∣∣1u
u∑
i=1

max(0, yi)− bc
∣∣∣∣∣ < ε,

4As explained in Chapter 3, a regularized offset effect can be easily obtained for linear support vector
machines. Similar modifications can be performed for least-squares support vector machines.

72 CHAPTER 5. SPEEDY LOCAL SEARCH

where λ ∈ R+, bc ∈ [0, 1], and ε ∈ R+. By applying the representer theorem (Fact 3.1) for

a fixed partition vector y ∈ {−1,+1}u, one can rewrite the above task as

minimize
y∈{−1,+1}u, c∈Ru

Q(y, c) = (Λy −ΛKc)T(Λy −ΛKc) + λcTKc (5.9)

s.t.

∣∣∣∣∣1u
u∑
i=1

max(0, yi)− bc
∣∣∣∣∣ < ε,

where K ∈ Ru×u is the kernel matrix induced by the sequence x1, . . . ,xu and where

Λ ∈ Ru×u a diagonal matrix with entries of the form [Λ]i,i =
√

1
u for i = 1, . . . , u.

Semi-Supervised Least-Squares Support Vector Machines

Using the square loss for the semi-supervised case with a set TL = {(x′1, y′1), . . . , (x′l, y′l)} ⊂
X × {−1,+1} of labeled patterns and a set TU = {x1, . . . ,xu} ⊂ X of unlabeled patterns

leads to

minimize
y∈{−1,+1}u, f∈Hk

1

l

l∑
i=1

(
y′i − f(x′i)

)2
+ γ

1

u

u∑
i=1

(
yi − f(xi)

)2
+ λ‖f‖2Hk (5.10)

s.t.

∣∣∣∣∣1u
u∑
i=1

max(0, yi)− bc
∣∣∣∣∣ < ε,

where γ ∈ R+ and λ ∈ R+ are cost parameters and where the balance constraint is

determined by bc ∈ [0, 1] and ε ∈ R+. Again, due to the representer theorem (Fact 3.1),

any optimal function f∗ ∈ Hk for fixed y ∈ {−1,+1}u is of the form

f∗(·) =
l∑

i=1

cik(·,x′i) +
l+u∑
i=l+1

cik(·,xi−l) (5.11)

with appropriate coefficients c = (c1, . . . , cl+u)T ∈ Rn with n = l + u. Thus, we obtain

minimize
y∈{−1,+1}n, c∈Rn

J(y, c) = (Λy −ΛKc)T(Λy −ΛKc) + λcTKc (5.12)

s.t.

∣∣∣∣∣1u
n∑

i=l+1

max(0, yi)− bc
∣∣∣∣∣ < ε,

and yi = y′i for i = 1, . . . , l,

where K ∈ Rn×n is the kernel matrix induced by the sequence x′1, . . . ,x
′
l,x1, . . . ,xu and

where Λ ∈ Rn×n is a diagonal matrix with entries [Λ]i,i =
√

1
l for i = 1, . . . , l and

[Λ]i,i =
√

γ
u for i = l + 1, . . . , n.

5.3. ALGORITHMIC FRAMEWORK 73

Input: A labeled training set TL = {(x′1, y′1), . . . , (x′l, y′l)} ⊂ X × {−1,+1}, an unlabeled
training set TU = {x1, . . . ,xu} ⊂ X , γ ∈ R+, λ ∈ R+, bc ∈ [0, 1], and ε ∈ R+.

Output: An approximation (c∗,y) for the task (5.12).
1: Initialize candidate solution y ⊆ {−1,+1}n (see text).
2: while not converged do
3: Generate modified ȳ by flipping a single coordinate j ∈ {l + 1, n} of y.
4: if F (ȳ) < F (y) and ȳ is valid then
5: Replace y by ȳ.
6: end if
7: end while
8: Compute c∗ for minimizec∈Rn J(y, c).
9: return (c∗,y)

Algorithm 5.2. Local search scheme for semi-supervised least-squares support vector machines defined
via the task (5.12): Starting with an initial candidate solution, one iteratively improves the objective
value by flipping single assignments of the partition vector. Once no flips improve the objective value
anymore, the corresponding model c∗ ∈ Rn is computed and returned (along with the optimal partition
vector y ∈ {−1,+1}n).

5.3.2 Local Search Strategy

For the sake of exposition we will focus on the description of the semi-supervised case

defined in (5.12); the unsupervised case can be handled in the same way. The local search

strategy considered in this chapter is given in Algorithm 5.2 and is similar to the approach

proposed by Joachims [83] depicted in Section 5.1: Starting with an initial candidate

solution, one iterates until a convergence criterion is fulfilled. For each iteration a new

candidate solution is generated by flipping a single coordinate and the best performing

candidate solution (out of the two current ones) is used for the next iteration. The

quality of an intermediate candidate solution ȳ ∈ {−1,+1}n is measured in terms of the

objective (5.12), i. e., via

F (ȳ) = minimize
c∈Rn

J(ȳ, c). (5.13)

Once the overall process is finished, the final candidate solution y ∈ {−1,+1}n along with

its corresponding optimal vector c∗ ∈ Rn is returned. Throughout the execution of the

algorithm, it is ensured that only valid candidate solutions are generated, i. e., partition

vectors fulfilling the balance constraint.

Initial Candidate Solutions

The generation of initial candidate solutions in Step 1 of Algorithm 5.2 plays an important

role for the outcome of the local search. We will consider the following two schemes.

74 CHAPTER 5. SPEEDY LOCAL SEARCH

Random Initialization. The first one consists in initializing the unlabeled patterns

randomly while taking the balance parameter bc into account, i. e., we set yi = 1 with

probability bc and yi = −1 with probability 1− bc for i = l+ 1, . . . , n. In case the balance

constraint is not fulfilled after this initialization phase, we perform (a small amount of)

appropriate flips to ensure its validness. The first l coordinates of y ∈ {−1,+1}n are fixed

to the known values provided by the labeled training set.

Initial Guess. The second scheme uses the labeled part of the data to train a least-

squares support vector machine via the convex task (5.7), which is subsequently used

to initialize the unlabeled patterns. More specifically, the predictions of the model are

used as assignments for the unlabeled patterns. If the balance constraint is not fulfilled

after this assignment phase, one uses an appropriate amount of the largest (real-valued)

predictions of the model as positive and the remaining ones as negative class assignments.

Thus, this setting is similar to the local search scheme proposed by Joachims [83]. Note

that, for unsupervised learning settings, such an initial guess cannot be obtained due to

lack of labeled data and one has to resort to, e.g., a random initialization of the unlabeled

patterns.

Coordinate-Flips and Convergence

Another important issue is the way the coordinates in Step 3 of Algorithm 5.2 are selected.

One obvious scheme is a random selection i. e., the coordinate j ∈ {l+1, . . . , n} is selected

uniformly at random per iteration. Another way consists in selecting the coordinates in

a round-robin manner, i. e., one sets j = l + 1 for the first iteration, j = l + 2 for the

second iteration, and so on until the u+ 1-th iteration is reached, where one restarts with

j = l + 1. In the following, we will make use of the round-robin scheme and will stop the

iterative process if no changes have occurred for u consecutive iterations. The next lemma

is straightforward and shows that a finite number of iterations is needed for the approach

to converge in this case.

Lemma 5.1 The local search depicted in Algorithm 5.2 converges in a finite number of

iterations in case the above round-robin scheme is used to select the coordinates in Step 3.

Proof: Let us denote u consecutive iterations/coordinate-flips starting with j = l + 1

as round. In case the overall objective is not reduced in a round, the local search stops.

Otherwise, the new objective (5.12) is strictly less than the one of the previous round.

Since we have a finite number of candidate solutions, there can only be a finite number of

rounds that lead to a decrease of the objective. �

5.3. ALGORITHMIC FRAMEWORK 75

Note that the above observation is similar to the one provided by Joachims [83] for his

local search scheme depicted in Algorithm 5.1.

5.3.3 Convex Intermediate Tasks

Let us now consider how to solve the intermediate optimization tasks (5.13) induced by

Step 4 of Algorithm 5.2. For a fixed partition vector ȳ, the gradient ∇c J(ȳ, c) is given

by

∇c J(ȳ, c) = −2(ΛK)T(Λȳ −ΛKc) + 2λKc (5.14)

and the Hessian by

∇2
c J(ȳ, c) = 2(ΛK)TΛK + 2λK � 0. (5.15)

Since the kernel matrix K � 0 is positive definite, the above Hessian is also positive definite

(for all c ∈ Rn).5 Thus, the intermediate optimization tasks are convex and ∇c J(ȳ, c)
!

= 0

is a necessary and sufficient condition for optimality [20]. This yields

−2(ΛK)T(Λȳ −ΛKc) + 2λKc
!

= 0

⇔ ((ΛK)TΛK + λK)c
!

= (ΛK)TΛȳ

⇔ (ΛK)T(ΛK + λΛ−1)c
!

= (ΛK)TΛȳ

⇔ (ΛK)T(ΛKΛ + λI)Λ−1c
!

= (ΛK)TΛȳ

Now, if K is strictly positive definite (and therefore invertible), then

c∗ = ΛGΛȳ (5.16)

is the optimal solution with G := (ΛKΛ + λI)−1.6 If K is only positive definite, then the

above equation determines one of the possible solutions since

(ΛK)TG−1Λ−1c∗ = (ΛK)TΛȳ (5.17)

holds as well, see Rifkin [120, p. 74] for a similar argumentation. Thus, the intermediate

solutions can be obtained analytically via Equation (5.16). Further, one can avoid cubic-

time operations for computing the desired objective values F (ȳ):

5The sum of two positive definite matrices is positive definite. Further, we have

zT(ΛK)T(ΛK)z = ((ΛK)z)T((ΛK)z) ≥ 0

for all z ∈ Rn, which shows the positive definiteness of the matrix (ΛK)T(ΛK) � 0.
6Note that ΛKΛ � 0 is positive definite since K � 0 is positive definite. Hence, ΛKΛ + λI � 0 is

strictly positive definite and thus invertible.

76 CHAPTER 5. SPEEDY LOCAL SEARCH

Lemma 5.2 For each vector ȳ ∈ {−1,+1}n, the associated optimal solution c∗ ∈ Rn as

well as its objective value F (ȳ) for the task (5.13) can be obtained in O(n2) time. Further,

O(n3) preprocessing time and O(n2) space is needed.

Proof: Since one can precompute the matrix ΛGΛ ∈ Rn×n, the optimal solution c∗ ∈
Rn for each new partition vector ȳ ∈ {−1,+1}n can be obtained in O(n2) time via

Equation (5.16). Further, the corresponding objective value

F (ȳ) = (Λȳ −ΛKc∗)T(Λȳ −ΛKc∗) + λ(c∗)TKc∗ (5.18)

can be obtained in O(n2) time: Both ΛKc∗ as well λ(c∗)TKc∗ can be computed in

quadratic time since Λ is a diagonal matrix and since c∗ ∈ Rn is a vector. Further, given

ΛKc∗, one can compute (Λȳ −ΛKc∗)T(Λȳ −ΛKc∗) in linear time. The preprocessing

time is cubic and quadratic space is needed to store the involved matrices. �

The above derivations show that quadratic time is needed to obtain solutions from scratch

for each modified ȳ. We will now show how to speed up these computations.

5.3.4 Speed-Ups via Matrix Calculus

The recurrent computation of the objective values in Step 4 of Algorithm 5.2 is still cum-

bersome if many iterations are needed and restarts are performed (to alleviate the problem

of bad local optima). However, it is possible to update these intermediate solutions effi-

ciently since only a single coordinate of an intermediate candidate solution is flipped per

iteration. We will now provide the details.

Coordinate Flips Revisited

The next lemma states that one can compute the objective values in Step 4 of Algorithm 5.2

in O(n) time, which greatly speeds up the overall execution of the local search.

Lemma 5.3 One can compute F (ȳ) in Step 4 of Algorithm 5.2 in O(n) time for each

modified ȳ ∈ {−1,+1}n. Further, O(n3) preprocessing time and O(n2) space is needed.

Proof: Let ȳ be the current candidate solution and let y be its predecessor. Further,

let c̄∗ = ΛGΛȳ denote the corresponding intermediate solution for ȳ determined by

5.3. ALGORITHMIC FRAMEWORK 77

Equation (5.16). Then, one can reformulate the objective value F (ȳ) as

F (ȳ) = (Λȳ −ΛKc̄∗)T(Λȳ −ΛKc̄∗) + λ(c̄∗)TKc̄∗

= ȳTΛ
(
I−KG−GK + GKKG + λGKG

)︸ ︷︷ ︸
=:H

Λȳ (5.19)

with K := ΛKΛ. Now assume that HΛ ∈ Rn×n and the auxiliary information HΛy ∈ Rn

for the predecessor is available (in memory). Then, for a flipped coordinate j, one can

update the right hand side of the above term via

HΛȳ = HΛy − 2yj(HΛ)[n],{j} (5.20)

in O(n) time, where (HΛ)[n],{j} denotes the j-th column of HΛ. Further, since Λ ∈ Rn×n

is a diagonal matrix and since HΛȳ ∈ Rn is a (column) vector, the remaining matrix

multiplication to compute F (ȳ) can be performed in O(n) time as well since Λ is a

diagonal matrix. Again, cubic preprocessing time as well as quadratic space is needed to

precompute the necessary matrices and auxiliary information. �

It is worth pointing out that the derivations depicted above are also applicable if a small

number s ≥ 1 of coordinates is flipped per iteration; this leads to an update time of O(sn)

per iteration. Note that updating c̄∗ ∈ Rn in linear time and plugging it directly into the

objective (5.18) to compute F (ȳ) only leads to an update time of O(n2). Further, various

other update schemes are possible like updating the two terms of (5.18) individually.

In case the initial partition vector y ∈ {−1,+1}n is initialized randomly (e.g., for

the unsupervised case), the local search is, in general, susceptible to the problem of local

optima. This problem is usually addressed by performing restarts (e.g., taking the best

result out of 100 runs). The following theorem shows that the computational shortcut

depicted above yields a significant computational speed-up for such scenarios:

Theorem 5.1 The overall runtime of Algorithm 5.2 is bounded by O(n3 +ST n2), where

S is the number of performed restarts and where T is an upper bound on the number of

rounds (induced by the round-robin scheme) needed by each of the runs. Further, O(n2)

space is needed in total.

Proof: Due to Lemma 5.3 the Step 4 of Algorithm 5.2 can be performed inO(n) time since

only a single coordinate is flipped per iteration. Thus, each round (i. e., u ≤ n consecutive

iterations) of the round-robin scheme takes O(n2) time. Further, O(n3) preprocessing

time as well as O(n2) space is needed to store all involved matrices. �

78 CHAPTER 5. SPEEDY LOCAL SEARCH

Thus, the cubic preprocessing time dominates the runtime as long as ST ≤ n. In that case,

performing the recurrent local search is essentially for free and is computationally as cheap

as training a single supervised least-squares support vector machine via the task (5.7) for

n labeled patterns.

We would like to point that (a) flipping a single coordinate or a small amount of

coordinates is quite reasonable for local search schemes like the one given in Algorithm 5.2

and that (b) the proposed shortcut greatly reduces the overall runtime of such optimization

schemes. However, for large-scale learning settings, the cubic preprocessing time and

the quadratic storage requirements of the proposed approach depict bottlenecks. In the

remainder of this chapter, we will propose two ways to shorten these drawbacks.

Low-Rank Approximation Schemes

We will now describe two schemes that approximate the objective F (ȳ) for a given vector

ȳ ∈ {−1,+1}n. Both schemes are based on a parameter r ≤ n that determines a trade-off

between computational savings and accuracy of the approximation. In a nutshell, these

approximations reduce the preprocessing time and the storage requirements to O(nr2) (in

practice and up to machine precision) and O(nr), respectively. Further, each evaluation

of the approximated objective for Step 4 of Algorithm 5.2 can be performed in O(r) time.

This leads to the following theorem:

Theorem 5.2 By applying one of the two approximation schemes depicted below with

r ≤ n, the total runtime of Algorithm 5.2 is bounded by O(nr2 + ST nr) (in practice and

up to machine precision), where S is the number of restarts and where T is an upper

bound on the number of rounds (induced by the round-robin scheme) needed by each of

the runs. Further, O(nr) space is needed in total.

Proof: As we will show below, both schemes reduce the preprocessing time as well as the

storage requirements. Further, due to the efficient update time of O(r), each round of the

local search now takes O(nr) time. �

Thus, similar to the non-approximation case, the preprocessing time dominates the run-

time until as long as ST ≤ r. It remains to show how to integrate the approximation

schemes efficiently. As sketched above, both ways essentially yield the same time and

space complexities. For the sake of completeness we will provide both alternatives.

Subset of Regressors. A popular choice for accelerating the (supervised) regularized

least-squares classification approach is the so-called subset of regressors [119] method:

Assume that only a subset of the coefficients c1, . . . , cn in Equation (5.11) is allowed to

5.3. ALGORITHMIC FRAMEWORK 79

be nonzero. More precisely, let R1 = {i1, . . . , ir1} ⊆ {1, . . . , l} and R2 = {j1, . . . , jr2} ⊆
{l + 1, . . . , n} be subsets of indices that are allowed to be nonzero in Equation (5.11).

Then, given a fixed partition vector ȳ ∈ {−1,+1}n, one searches for minimizers of the

form

f̂(·) =

r1∑
ν=1

ciνk(·,x′iν) +

r2∑
ν=1

cjνk(·,xjν−l) ∈ Hk (5.21)

with coefficients ĉ = (ci1 , . . . , cir1 , cj1 , . . . , cjr2)T ∈ Rr, where r = r1 + r2. The basic

intuition behind this approximation is that only few patterns (called basis vectors or

regressors) are needed to represent a reasonable hypothesis space while all patterns are

taken into account for the evaluation of the overall loss. Hence, one essentially reduces the

hypothesis space of possible functions and the parameter r determines the degree of this

reduction. This yields new intermediate optimization tasks for Step 4 of Algorithm 5.2

that are of the form

F̂ (ȳ) = minimize
ĉ∈Rr

Ĵ(ĉ, ȳ) (5.22)

with Ĵ(ĉ, ȳ) given by

Ĵ(ĉ, ȳ) = (Λȳ −Λ(KR)Tĉ)
T

(Λȳ −Λ(KR)Tĉ) + λĉTKR,Rĉ, (5.23)

where R = R1 ∪R2. The gradient is given by

∇ĉ Ĵ(ĉ, ȳ) = −2KRΛ(Λȳ −Λ(KR)Tĉ) + 2λKR,Rĉ (5.24)

and the Hessian by

∇2
ĉ Ĵ(ĉ, ȳ) = 2KRΛΛ(KR)T + 2λKR,R � 0. (5.25)

Since the Hessian is positive definite, this new task is convex as well. Thus,

∇ĉ Ĵ(ĉ, ȳ) = −2KRΛ(Λȳ −Λ(KR)Tĉ) + 2λKR,Rĉ
!

= 0 (5.26)

is a necessary and sufficient condition for optimality and leads to the optimal solution

given by

ĉ∗ = (KRΛ2(KR)T + λKRR)−1KRΛΛȳ = ĜKRΛΛȳ (5.27)

with Ĝ := (KRΛ2(KR)T+λKRR)−1.7 Note that, since the matrix KRΛ2(KR)T is positive

definite and since λKRR is strictly positive definite, the sum of both matrices is strictly

7We will assume |R| to be small enough and R to be selected appropriately such that KR,R is strictly
positive definite (which is a standard assumption for this approximation scheme [120, p. 107]). In case this
is not possible, one can replace KR,R by the shifted variant KR,R+δI, where δ is a small positive constant,
called jitter factor [147]. This guarantees the strictly positive definiteness of the modified matrix KR,R.

80 CHAPTER 5. SPEEDY LOCAL SEARCH

positive definite and therefore invertible. The following lemma shows that the above

approximation scheme can be efficiently integrated into the framework.

Lemma 5.4 The subset of regressors scheme with R1 = {i1, . . . , ir1} ⊆ {1, . . . , l}, R2 =

{j1, . . . , jr2} ⊆ {l + 1, . . . , n} and r = r1 + r2 leads to a preprocessing time of O(nr2) (in

practice and up to machine precision) and to a space consumption of O(nr). In addition,

the computation of the approximated objective values F̂ (ȳ) for Step 4 of Algorithm 5.2

can be performed in O(r) time per iteration.

Proof: One can reformulate the new objective as

F̂ (ȳ) = (Λȳ −Λ(KR)Tĉ∗)
T

(Λȳ −Λ(KR)Tĉ∗) + λ(ĉ∗)TKR,Rĉ∗

= 1 + γ − 2ȳTΛ2(KR)Tĉ∗ + (Λ(KR)Tĉ∗)
T
Λ(KR)Tĉ∗ + λ(ĉ∗)TKR,Rĉ∗,

where we used (Λȳ)TΛȳ = 1 + γ and (Λȳ)TΛ(KR)Tĉ∗ = (Λ(KR)Tĉ∗)
T
Λȳ. Further, one

can simplify the above objective via

F̂ (ȳ) = 1 + γ − ȳTΛ2(KR)T
(

2ĜĜ−1Ĝ− ĜKRΛΛ(KR)TĜ− λĜKR,RĜ
)

KRΛ2ȳ

= 1 + γ − ȳTΛ2(KR)T
(
Ĝ
(

2Ĝ−1 −KRΛΛ(KR)T − λKR,R

)
Ĝ
)

KRΛ2ȳ

= 1 + γ − ȳTΛ2(KR)T
(
Ĝ
(
KRΛ2(KR)T + λKR,R

)
Ĝ
)

KRΛ2ȳ

= 1 + γ − ȳTΛ2(KR)T
(

Ĝ
(
Ĝ
)−1

Ĝ

)
KRΛ2ȳ,

where the last two steps are due to the definition of Ĝ. Now, let Ĝ = BBT ∈ Rr×r be the

Cholesky decomposition [69, p. 143] of the strictly positive definite matrix Ĝ with lower

triangular matrix B ∈ Rr×r and let

(KR)TB = UΣVT ∈ Rn×r (5.28)

be the thin singular value decomposition [69, p. 72] of (KR)TB with U ∈ Rn×r, Σ ∈ Rr×r,
and V ∈ Rr×r. Then one can reformulate the objective as

F̂ (ȳ) = 1 + γ − ȳTΛ2(KR)TĜKRΛ2ȳ

= 1 + γ − ȳTΛ2(KR)TBBTKRΛ2ȳ

= 1 + γ − ȳTΛ2UΣ2UTΛ2ȳ. (5.29)

5.3. ALGORITHMIC FRAMEWORK 81

Similar to the non-approximation case one can now update the term UTΛ2ȳ via

UTΛ2ȳ = UTΛ2y − 2yj(U
TΛ2)[r],{j}, (5.30)

where y is the predecessor of ȳ and where j is the flipped coordinate. This update can be

performed in O(r) time since UTΛ2 ∈ Rr×n. Further, one can obtain F̂ (ȳ) in O(r) per

iteration because Σ ∈ Rr×r is a diagonal matrix. From a computational point of view, the

computation of the Cholesky decomposition can be performed in O(r3) time [69, p. 145]

and the computation of the thin singular value decomposition in O(nr2) time [69, p. 254]

(in practice and up to machine precision), respectively. The space requirement for storing

all matrices and vectors is O(nr). �

Thus, the efficient integration of the subset of regressors method is based on making use of

the low-rank nature of the involved matrices. In the following, we will depict an alternative

way to obtain such a speed-up. It should be pointed out that the rather longish derivations

depicted above can be simplified in case an update time of O(n) is sufficient. However,

depending on the task at hand, the parameter r can be significantly smaller than n. For

such settings, the update time of O(r) greatly reduces the overall runtime.

Nyström Approximation. Another way to obtain the above runtime and space bounds

is based on the Nyström approximation [120, 147] that replaces the kernel matrix K ∈
Rn×n by

K̃ := (KR)T(KR,R)−1KR ∈ Rn×n, (5.31)

where R ⊆ {1, . . . , n} = [n] is a subset of indices.8 Aiming at the efficient incorporation

of this approximation scheme, let us consider the eigendecomposition [69]

K = VDVT (5.32)

of the real symmetric (positive definite) matrix K = ΛKΛ with orthogonal matrix V ∈
Rn×n and diagonal matrix D ∈ Rn×n. One can then rewrite the original objective F (ȳ)

given by (5.19) as

F (ȳ) = (Λȳ −ΛKc̄∗)T(Λȳ −ΛKc̄∗) + λ(c̄∗)TKc̄∗

= ȳTΛ
(
I−KG−GK + GKKG + λGKG

)
Λȳ

= ȳTΛV
(
I− 2DDλ + D2Dλ

2 + λDDλ
2
)
VTΛȳ (5.33)

where Dλ := (D + λI)−1. The last equation needs further explanations: Since the matrix

V ∈ Rn×n is orthogonal, we have VVT = VTV = I and, thus, V−1 = VT [69]. Hence,

8Again, we assume the matrix KR,R to be a strictly positive definite.

82 CHAPTER 5. SPEEDY LOCAL SEARCH

one can rewrite G as

G = (K + λI)
−1

= (VDVT + λVVT)
−1

= (V(D + λ)VT)
−1

= VDλV
T, (5.34)

where we used the fact that (A1A2)
−1 = A−12 A−11 holds for two invertible matrices A1 ∈

Rn×n and A2 ∈ Rn×n [113]. By using the above equality, one can reformulate

KG = VDVTVDλV
T = VDDλV

T,

GK = VDλV
TVDVT = VDλDVT,

GKKG = VDλV
TVDVTVDVTVDλV

T = VDλDDDλV
T,

GKG = VDλV
TVDVTVDλV

T = VDλDDλV
T,

and, thus, obtains Equation (5.33). Since the involved diagonal matrices commute, one

can further decompose this objective as:

F (ȳ) = ȳTΛV
(
I− 2DDλ + D2Dλ

2 + λDDλ
2
)
VTΛȳ

= ȳTΛV (I + (−2I + DλD + λDλ)DDλ) VTΛȳ

= ȳTΛV (I + (−2I + Dλ(D + λI))DDλ) VTΛȳ

= ȳTΛV (I + (−2I + I)DDλ) VTΛȳ

= ȳTΛV (I−DDλ) VTΛȳ

= ȳTΛ2ȳ − ȳTΛVDDλV
TΛȳ

= 1 + γ − ȳTΛVDDλV
TΛȳ (5.35)

Hence, given the vector VTΛȳ, one can compute F (ȳ) in O(n) time since DDλ is a

diagonal matrix. Further, this auxiliary information can also be updated in linear time

given the information for the predecessor y of ȳ via

VTΛȳ = VTΛy − 2yjV
TΛ[n],{j}. (5.36)

Thus, the above scheme depicts an alternative way to update the objective value F (ȳ), in

addition to the one given by Equation (5.19). However, this new scheme also permits an

efficient integration of the Nyström approximation:

Lemma 5.5 The replacement of the kernel matrix K by its Nyström approximation K̃ =

(KR)T(KR,R)−1KR with R ⊆ {1, . . . , n} = [n] and r = |R| leads to a preprocessing time

of O(nr2) (in practice and up to machine precision) and to a space consumption of O(nr).

In addition, the computation of the corresponding approximated objective values in Step 4

of Algorithm 5.2 can be performed in O(r) time per iteration.

5.3. ALGORITHMIC FRAMEWORK 83

Proof: To obtain an efficient update scheme, one has to make use of the low-rank nature

of the matrix K̃ = (KR)T(KR,R)−1KR ∈ Rn×n. More specifically, one can compute the

nonzero eigenvalues and corresponding eigenvectors of the modified matrix K = ΛK̃Λ in

the following manner: Let

(KR,R)−1 = BBT ∈ Rr×r (5.37)

be the Cholesky decomposition [69, p. 143] of the strictly positive definite matrix (KR,R)−1

with lower triangular matrix B ∈ Rr×r and let

Λ(KR)TB = VΣUT ∈ Rn×r (5.38)

be the thin singular value decomposition [69, p. 72] with V ∈ Rn×r, Σ ∈ Rr×r, and

U ∈ Rr×r.9 The r nonzero eigenvalues of

K = ΛK̃Λ = Λ(KR)TBBTKRΛ = VΣUTUΣVT = VΣ2VT (5.39)

can then be obtained from Σ2 ∈ Rr×r and the matrix V ∈ Rn×r consists of the corre-

sponding eigenvectors (note that we have UTU = I [69, 121]).

Again, the computation of the Cholesky decomposition can be performed in O(r3)

time [69, p. 145] and the computation of the thin singular value decomposition in O(nr2)

time [69, p. 254], respectively. Thus, due to the low-rank nature of the matrix K, the

nonzero eigenvalues and corresponding eigenvectors of K can be obtained in O(nr2) time

(in practice and up to machine precision) using O(nr) space. Now assume that these r

nonzero eigenvalues are the first elements of the diagonal matrix D ∈ Rn×n defined in

(5.32) and that the remaining entries of D are zero. Then, we have [DD̃]i,i = 0 for i = r+

1, . . . , n for the two diagonal matrices occurring in Equation (5.35). Thus, considering the

computational shortcut (5.35), the remaining eigenvectors with zero eigenvalue (extending

the matrix V) do not have to be computed since the last n− r rows of VTΛȳ ∈ Rn×1 are

multiplied by 0. In other words, it is sufficient to compute only the eigenvectors given in

V ∈ Rn×r corresponding to nonzero eigenvalues and to update

VTΛȳ = VTΛy − 2yj(V
TΛ)[n],{j} (5.40)

inO(r) time per iteration, where y is the predecessor of ȳ. Thus, all preprocessing matrices

can be obtained in O(nr2) time (in practice and up to machine precision) using O(nr)

space. Further, the auxiliary information VTΛȳ can be updated in O(r) time per single

coordinate flip. �

9Since the matrix KR,R is strictly positive definite, its inverse is also strictly positive definite [69].

84 CHAPTER 5. SPEEDY LOCAL SEARCH

(a) Gaussian5 (b) Gaussian6 (c) Gaussian7 (d) Moons

Figure 5.1. The four artificial data sets used for the experimental evaluation. The red squares and blue
triangles depict the labeled patterns and the black dots the unlabeled ones, respectively.

To sum up, the key observation of the above derivations is the fact that one can reformulate

F (ȳ) in terms of Equation (5.35) and that one can efficiently compute the r nonzero

eigenvalues of K = ΛK̃Λ in O(nr2) time using O(nr) space via the thin singular value

decomposition.

5.4 Experimental Analysis

In the following, we will analyze several properties of the proposed local search scheme.

For the sake of exposition we will mostly focus on semi-supervised learning settings and

will only sketch unsupervised ones. Further, we will defer the comparison with competing

semi-supervised methods to Chapter 6.

5.4.1 Experimental Setup

We start by describing the experimental setup including a description of the considered

data sets, implementation details, and model selection issues.

Data Sets

In addition to the data sets described in Chapter 4, we will consider additional artificial

and real-world data sets to demonstrate certain properties of the optimization framework.

Artificial Data. We extend the artificial data sets presented in Chapter 4 to higher

dimensions: The variant of the Gaussian1 data set, called Gaussian5 data set, is now

based on two Gaussian clusters generated by drawing N/2 points from each of two mul-

tivariate Gaussian distributions Xi ∼ N (mi, I), where m1 = (−2.5, 0.0, . . . , 0.0) ∈ Rd

and m2 = (+2.5, 0.0, . . . , 0.0) ∈ Rd. Again, the class label of a point corresponds to the

distribution it was drawn from, see Figure 5.1 (a). A similar extension to high dimensions

is performed for the old Gaussian2 data set, now called Gaussian6, see Figure 5.1 (b).

Further, we consider a variant of the old Gaussian3 data set, which exhibits a misleading

5.4. EXPERIMENTAL ANALYSIS 85

Figure 5.2. The USPS data set [42, 73] containing images of handwritten digits. Each digit is represented
by a 16× 16 grayscale image (8 bits).

structure for semi-supervised learning tasks: Here, N/4 points are drawn from each of

four multivariate Gaussian distributions Xi ∼ N (mi, I) with:

m1 = (−2.5,−5.0, 0.0, . . . , 0.0) ∈ Rd m2 = (−2.5,+5.0, 0.0, . . . , 0.0) ∈ Rd

m3 = (+2.5,−5.0, 0.0, . . . , 0.0) ∈ Rd m4 = (+2.5,+5.0, 0.0, . . . , 0.0) ∈ Rd

The points drawn from the first two distributions belong to the first class and the remaining

one to the second class. Thus, the best pure clustering partition might differ from the

pure desired classification partition. We denote this new data set by Gaussian7, see

Figure 5.1 (c). If not noted otherwise, we use N = 500 and d = 500 for these three data

sets. Finally, we consider the well-known two-dimensional Moons data set with N = 500

points, see Figure 5.1 (d).

Real-World Data. We consider the USPS data set as real-world example in this chapter

(consisting of both the training and test set of the original data set [42, 73]) and use

USPS(i,j) to denote the binary classification task induced by the classes (i. e., numbers)

i and j. Further, we rescale the pixels such that the resulting values lie between 0.0 and

1.0. Each digit is represented as a grayscale image (8 bits) with 16× 16 pixels (d = 256).

Implementation Details

We use the programming language Python to implement the local search, where the time-

consuming (matrix) operations are implemented via the Numpy package. Further, we con-

86 CHAPTER 5. SPEEDY LOCAL SEARCH

sider the round-robin scheme to select the coordinate j per iteration and stop the iterative

process if no changes have occured for u consecutive iterations. The initial candidate so-

lutions are generated randomly or initialized via a supervised regularized least-squares

classification model trained on the labeled patterns, depending on the context. Fur-

ther, we resort to the subset of regressors method as approximation scheme. We call

the resulting approaches unsupervised regularized least-squares classification (URLSC) and

semi-supervised regularized least-squares classification (S2RLSC), respectively.

Model Selection

Both the semi- and the unsupervised task require parameters to be set by the user (e.g.,

the regularization parameter λ ∈ R+). In the context of semi- and unsupervised learning,

this is in general a quite sensitive issue, as we will describe next.

Lack of Labeled Data. In supervised learning settings, model selection, i. e., assigning

reasonable values to the non-fixed parameters of the considered model, is usually per-

formed via cross-validation and grid search on the training set [73]. The final model is

then evaluated on the test set, which has not been used during the training phase. How-

ever, in realistic semi-supervised learning settings, one usually does not have sufficient

labeled data for reliably selecting an appropriate model and this model selection problem

is widely considered to be an open issue [34]. The situation is even more severe for unsuper-

vised classification settings since one does not have any labels at all and “cross-validation

techniques, so useful for model selection in supervised learning, cannot be utilized in this

context” [73, p. 519]. Thus, for unsupervised settings, one has to fix the parameters

manually to reasonable values or one has to resort to other measures for evaluating the

quality of the computed model [73].

Non-Realistic Scenario. In this chapter, we will therefore consider a non-realistic sce-

nario to select the non-fixed model parameters. More specifically, we will make use of

the labels given in the test set to tune the parameters and to evaluate the classification

performance. The reason for this non-realistic scenario is the fact that, by making use

of the test set (with a large amount of labeled patterns), one can evaluate the flexibility

of the model, i. e., one can investigate if the model is in principle capable of adapting

to the inherent structure of the data. We would like to point out that this non-realistic

scenario is often used in the literature for the evaluation of both semi- and unsupervised

approaches [34, 149]. Note that, even given a perfect assignment for the involved param-

eters (provided via an oracle or test set), one still has to address the combinatorial tasks.

Thus, for the time being, we will ignore these model selection problems by resorting to

5.4. EXPERIMENTAL ANALYSIS 87

the non-realistic scenario; however, a corresponding realistic scenario will be the basis for

the comprehensive comparison provided in Chapter 6.

Training and Test Set. Each data set consists of N elements. If not noted otherwise,

the first half of each data set is used as training and the second half as test set. To

induce unsupervised and semi-supervised learning settings, we split up the training set

into a labeled and an unlabeled part and use different ratios for the particular setting.

The specific amount of patterns is given in brackets for each instance of a data set, where

l, u, and t denote the numbers of labeled, unlabeled, and test patterns, respectively

(e.g., Gaussian5[l=25,u=225,t=250]). If not noted otherwise, we consider 10 random

partitions (into these three parts) for a particular experiment and report the average

classification error on the test set (along with the one standard deviation).

Model Parameters. We first tune the non-fixed parameters via grid search and sub-

sequently retrain the final model on the training set with the best performing set of

parameters. To simplify the experimental setup, we consider a linear kernel as simi-

larity measure for most of the experiments. Further, if not stated otherwise, we set

the balance constraint parameters ε to 0.1 and bc to the (true) ratio estimated on the

whole data set, respectively. The cost parameters λ and γ are tuned on a small grid

(λ, γ) ∈ {2−10, . . . , 210} × {0.01, 1, 100} of possible assignments. Local search schemes are

(in general) susceptible to the problem of local optima. Thus, if not noted otherwise, we

take the best out of 25 runs during model selection (i. e., during grid search) and the best

out of 200 runs for generating the final model, in both cases with respect to the objec-

tive value. As a baseline we consider the regularized least-squares classification approach

(RLSC) trained on the labeled part of the data and tune the parameter λ ∈ R+ in the same

manner (non-realistic scenario) with λ ∈ {2−10, . . . , 210}.

5.4.2 Semi-Supervised Learning Settings

We will now depict several properties of the local search scheme in the context of semi-

supervised learning settings including its dependence on the amount of used labeled and

unlabeled data, its performance in classification settings, and its computational behavior.

Amount of Data

As shown in Chapter 3, sufficient labeled data are essential for supervised learning ap-

proaches to yield good models. However, for semi- and unsupervised learning schemes,

the amount of unlabeled data used for training is an important issue as well. To analyze

how much labeled and unlabeled data are needed, we consider the three high-dimensional

88 CHAPTER 5. SPEEDY LOCAL SEARCH

0

5

10

15

20

25

10 20 30 40 50 60 70 80

T
es
t
E
rr
or

(%
)

Amount of Labeled Data (%)

RLSC (Gaussian5)
S
2
RLSC (Gaussian5)

(a)

0

5

10

15

20

25

10 20 30 40 50 60 70 80

T
es
t
E
rr
or

(%
)

Amount of Unlabeled Data (%)

RLSC (Gaussian5)
S
2
RLSC (Gaussian5)

(b)

0
5
10
15
20
25
30
35
40

10 20 30 40 50 60 70 80

T
es
t
E
rr
or

(%
)

Amount of Labeled Data (%)

RLSC (Gaussian6)
S
2
RLSC (Gaussian6)

(c)

0
5
10
15
20
25
30
35
40

10 20 30 40 50 60 70 80

T
es
t
E
rr
or

(%
)

Amount of Unlabeled Data (%)

RLSC (Gaussian6)
S
2
RLSC (Gaussian6)

(d)

0

10

20

30

40

50

10 20 30 40 50 60 70 80

T
es
t
E
rr
or

(%
)

Amount of Labeled Data (%)

RLSC (Gaussian7)
S
2
RLSC (Gaussian7)

(e)

0

10

20

30

40

50

10 20 30 40 50 60 70 80

T
es
t
E
rr
or

(%
)

Amount of Unlabeled Data (%)

RLSC (Gaussian7)
S
2
RLSC (Gaussian7)

(f)

Figure 5.3. If not sufficient labeled data are available, the supervised approach (RLSC) fails to yield good
models on both data sets. Our semi-supervised approach (S2RLSC) can successfully incorporate unlabeled
data to improve the generalization performance, see Figures (a) and (c). The Gaussian7 data set exhibits
a misleading structure and is, thus, difficult to address by the local search scheme. Sufficient unlabeled
data are needed as well for the semi-supervised approach, see Figures (b), (d), and (f).

artificial data sets and vary the amount of labeled and unlabeled data. Further, we use the

supervised RLSC approach trained on the labeled part of the data as baseline. Note that,

while the induced classification tasks are quite simple to approach for d = 2 even in case

only few labeled patterns are given, they depict challenging learning tasks for supervised

methods in higher dimensions (given only few labeled patterns).

For the first experiment we vary the amount of labeled patterns from 5% to 80%

with respect to the size of the training set (i. e., N/2 = 250). The remaining training

patterns are used as unlabeled data (for each setting, we report the test error averaged

over 10 random partitions). In Figures 5.3 (a), (c), and (e), the result of this experiment is

5.4. EXPERIMENTAL ANALYSIS 89

0

5

10

15

20

25

30

0 5 10 15 20 25 30

S
2
R
L
S
C

RLSC

(a)

0

2

4

6

8

10

12

0 2 4 6 8 10 12

S
2
R
L
S
C

RLSC

(b)

0

2

4

6

8

10

0 2 4 6 8 10

S
2
R
L
S
C

RLSC

(c)

Figure 5.4. All three plots depict the classification performance on the four binary tasks USPS(2,5),
USPS(2,7), USPS(3,8), and USPS(8,0), both for RLSC and S2RLSC. The amount of labeled data is increased
from (a) 1%, (b) 2%, and (c) 5%; half of the patterns are used as test set, the remaining ones as unlabeled
patterns (in the training set). For each task, the average test error is reported resulting in 40 points.
The performance of the semi-supervised approach is clearly better compared to the one of the supervised
approach (points below the line correspond a better performance of S2RLSC).

shown: For both the Gaussian5 and the Gaussian6 data set, the semi-supervised approach

performs significantly better compared to the supervised one. For the Gaussian7 data set,

however, the performance of the semi-supervised approach is worse. This is due to the fact

that the data set exhibits a misleading structure: The pure clustering solution corresponds

to a (reasonable) local optimum and leads to a classification error of about 50%. Thus,

for this data set, such a single (undesired) clustering solution can jeopardize the overall

averaged classification error.

For the second experiment we fix the amount of labeled patterns to 20% and vary

the amount of unlabeled patterns from 5% to 80%, again with respect to the size of the

training set, see Figures 5.3 (b), (d), and (f). Clearly, the semi-supervised approach is only

capable of generating an appropriate model once sufficient unlabeled data are given. To

conclude, given only a small amount of labeled but a large amount of unlabeled patterns,

our semi-supervised approach can help to improve the classification performance compared

to the supervised RLSC baseline. However, incorporating unlabeled data might also lead

to worse results (as it is sometimes the case for the Gaussian7 data set).

Classification Performance

We will briefly sketch the classification performance on real-world data; a detailed compar-

ison with competing approaches will be provided in Chapter 6. The previous experiment

demonstrates that (1) not every data set is well-suited for the semi-supervised learning

scheme and that (2) both sufficient labeled as well as sufficient unlabeled data is needed for

training. To analyze these issues on real-world data, we consider four binary classification

tasks induced by the USPS data set, namely the USPS(2,5), USPS(2,7), USPS(3,8), and

90 CHAPTER 5. SPEEDY LOCAL SEARCH

0
2
4
6
8
10
12
14

0.02 0.04 0.06 0.08 0.1

T
es
t
E
rr
or

(%
)

r

Sparse S2RLSC
S2RLSC

(a) USPS(2,5)[l=16,u=806,t=823]

0
2
4
6
8
10
12
14

0.02 0.04 0.06 0.08 0.1

T
es
t
E
rr
or

(%
)

r

Sparse S2RLSC
S2RLSC

(b) USPS(2,7)[l=17,u=843,t=861]

0
2
4
6
8
10
12
14

0.02 0.04 0.06 0.08 0.1

T
es
t
E
rr
or

(%
)

r

Sparse S2RLSC
S2RLSC

(c) USPS(3,8)[l=15,u=751,t=766]

0
2
4
6
8
10
12
14

0.02 0.04 0.06 0.08 0.1

T
es
t
E
rr
or

(%
)

r

Sparse S2RLSC
S2RLSC

(d) USPS(8,0)[l=22,u=1108,t=1131]

Figure 5.5. The influence of the parameter r = |R| is demonstrated. All plots indicate that if a reasonable
amount of indices is used, the classification performance is not affected by the approximation scheme.

USPS(8,0) data set instances. As for the previous experiment, we consider 10 random

partitions into labeled, unlabeled, and test patterns for each such task and use the RLSC ap-

proach as a baseline. Further, we consider three different amounts of labeled patterns (1%,

2%, and 5% with respect to the size of the training set) and use the remaining patterns

as unlabeled data. In Figure 5.4, the outcome of this experiment is shown. Clearly, the

semi-supervised S2RLSC approach can successfully incorporate unlabeled data and leads

to a better error on the test set. Further, as the amount of labeled data is increased, the

performances become more and more similar. Thus, these instances of the USPS data set

seem to be adequate candidates for the proposed local search scheme.

Computational Considerations

From a theoretical perspective the runtime of the local search depicted in Algorithm 5.2

is bounded by O(n3 + ST n2) for the case with exact objective evaluations and O(nr2 +

ST nr) for the approximation cases, where S is the number of restarts and where T
is the number of rounds (each involving u < n coordinate-flips). Thus, as long as we

have ST ≤ n, the overall time complexity of the local search is no more than training a

single RLSC classifier on n labeled training patterns (which takes O(n3) time). A similar

observation holds for the approximation case (if ST ≤ r) where the training of single

classifier takes O(nr2) time for n patterns [120]. From a computational point of view two

5.4. EXPERIMENTAL ANALYSIS 91

0

10

20

30

40

50

500 1500 2500

T

n

Gaussian5

(a)

0

10

20

30

40

50

500 1500 2500

T

n

Gaussian6

(b)

0

10

20

30

40

50

500 1500 2500

T

n

Gaussian7

(c)

Figure 5.6. Number of rounds T (i. e., u consecutive iterations) needed for the local search to converge.
For the considered data sets a small amount of rounds seems to be sufficient for convergence.

questions arise, namely (1) how many rounds T are needed in practice and (2) how is the

classification performance affected by the approximation scheme. We will now investigate

both questions. Further, we will show that the number S of restarts can be reduced

significantly for semi-supervised learning settings in case one can obtain a reasonable initial

guess via the available labeled patterns. Note that we will defer a runtime comparison of

several competing semi-supervised methods to Chapter 6.

Sparse Approximation. The size r = |R| ∈ {1, . . . , n} of the indices for the subset of

regressors scheme determines the trade-off between computational savings and accuracy

of the approximation. A natural question is how the accuracy is affected by using small

values for r. To investigate this issue, we again consider the four instances of the USPS data

set and vary the assignment for the approximation parameter r from 0.01n to 0.1n (where

n = N/2 is the size of the training set). The subset R of indices is selected uniformly at

random.10 For the sake of exposition we fix both cost parameters λ = 1 and γ = 1. The

result of this experiment is given in Figure 5.5, where the term sparse denotes the approach

with approximated objective value. All plots indicate that the classification performance

is not affected as long as a subset R of reasonable size is selected (i. e., roughly 5% of all

possible indices). Naturally, the amount of indices needed to yield a good classification

performance depends heavily on the particular data set and the used kernel function, see,

e.g., Williams and Seeger [147] who report that one can set r � n “without any significant

decrease in the accuracy of the solution” for the USPS data set.

Number of Rounds. The next experiment is devoted to the question how many rounds

T are needed for the local search to converge in practice. For this purpose we consider the

three Gaussian data sets and fix the model parameters to λ = 1 and γ = 0.1. Further, we

10Kumar et al. [93] point out ”that uniform sampling without replacement, in addition to being more
efficient both in time and space, produces more effective approximations”. For the sake of simplicity we
therefore consider a random selection of the indices.

92 CHAPTER 5. SPEEDY LOCAL SEARCH

0

5

10

15

20

25

30

0 5 10 15 20 25 30

S
2
R
L
S
C
(
m
u
l
t
i
p
l
e
)

S2RLSC (single)

(a)

0

2

4

6

8

10

12

0 2 4 6 8 10 12
S
2
R
L
S
C
(
m
u
l
t
i
p
l
e
)

S2RLSC (single)

(b)

0

2

4

6

8

10

12

0 2 4 6 8 10 12

S
2
R
L
S
C
(
m
u
l
t
i
p
l
e
)

S2RLSC (single)

(c)

Figure 5.7. Comparison of S2RLSC with multiple restarts and S2RLSC with a single restart (using the
predictions of the supervised RLSC model as initial candidate solution). The results are slightly better for
the single restart variant. Thus, in this case, improving a single candidate solution seems to be sufficient.

perform a single run and report the number T of needed rounds averaged over 10 random

partitions for each of the data sets. The results are given in Figure 5.6. It can be seen that

less than 50 rounds are needed for all data sets and that the number of needed rounds

seems to be independent of the number n of training patterns. Thus, although the number

T of rounds can be extremely large from a theoretical point of view, it is relatively small

in practice. This renders the local search efficient in practice.

Initial Candidate Solutions. Most of the related optimization heuristics for semi-

supervised support vector machines use the labeled part of the data to obtain an initial

guess via a supervised model. This guess is then improved by incorporating the available

unlabeled patterns. Such schemes are often deterministic (since they improve a single

initial guess in a deterministic manner) and, thus, do not require any restarts to be per-

formed. On the one hand, this sounds tempting since the computational cost is normally

reduced dramatically by this modification. On the other hand, considering only a single

candidate solution might not be sufficient for obtaining satisfying results, especially if the

initial guess is bad due to a very small labeled set of patterns.

To investigate this issue, we perform a similar experiment as the one depicted in

Figure 5.4, i. e., we resort to the four USPS data set instances and analyze the classification

performances for different amounts of labeled patterns. More specifically, we compare the

classification performances of

(a) S2RLSC multiple: The S2RLSC scheme with multiple restarts (200) and random

initialization of the initial candidate solutions.

(b) S2RLSC single: The S2RLSC scheme with a single restart and deterministic initial-

ization of the initial candidate solution via a RLSC model trained on the labeled part

of the data.

5.4. EXPERIMENTAL ANALYSIS 93

(a) S2RLSC (single) (21.3± 14.9) (b) S2RLSC (multiple) (0.0± 0.0)

Figure 5.8. If only one restart (with initial guess) is performed, the local search approach can converge
to a (bad) local optimum, see Figure (a). Performing sufficient restarts (with random initial candidates)
yields good solutions, see Figure (b). The average error (with one standard deviation) on the test set over
10 random partitions is given in brackets.

The new results, depicted in Figure 5.7, show that both approaches exhibit a quite similar

classification performance for these data set instances. Thus, for this setup, improving the

single initial guess seems to be sufficient (and even better compared to the multi-restart

strategy). However, improving only a single initial candidate solution can also lead to

worse results: Let us now consider the Moons data set and an RBF kernel as similarity

measure with kernel width σ = 0.1σ̂, where the value σ̂ is a rough estimate of the maximum

distance between any pair of samples.11 Further, we fix the two cost parameters λ = 2−10

and γ = 0.1. The comparison of S2RLSC single and S2RLSC multiple is depicted in

Figure 5.8. Clearly, the single-restart scheme fails on this particular problem instance

while using more restarts leads to the globally optimal solution. To sum up, there are

problem instances where the heuristic of improving a single guess works well and other ones

where it fails. For the latter ones, it pays off to spend more effort into optimization. We

will see below that not only the number of restarts but also the particular local/stochastic

search scheme play important roles on difficult learning tasks.

5.4.3 Unsupervised Learning Settings

In the remainder of this section we will sketch unsupervised learning settings. An im-

portant difference between the unsupervised and the semi-supervised case is the fact that

one cannot resort to initial guesses in the former case and, thus, usually has to explore

the search space extensively. This can be addressed, for instance, by performing many

restarts (as depicted above for the Moons data set). However, making use of more general

stochastic optimization frameworks can also be beneficial for specific settings. We will now

demonstrate such issues by means of one of the benchmark scenarios given in Chapter 4

and will further provide results in unsupervised real-world learning scenarios.

11Given by σ̂ =
√∑d

j=1 (max([x̄1]j , . . . , [x̄n]j)−min([x̄1]j , . . . , [x̄n]j))
2 for n patterns x̄1, . . . , x̄n ∈ X .

94 CHAPTER 5. SPEEDY LOCAL SEARCH

(a) bc = 0.1 (b) bc = 0.3 (c) bc = 0.5

(d) bc = 0.1 (e) bc = 0.3 (f) bc = 0.5

(g) bc = 0.1 (h) bc = 0.3 (i) bc = 0.5

Figure 5.9. Comparison of the exact approach (top row), the local search strategy (middle row), and a
more general stochastic search framework (bottom row) for the first benchmark scenario given in Chapter 4
that is based on the Gaussian1 data set. Except for bc = 0.5, the partitions obtained by the local search
scheme (middle row) and the more general stochastic search framework (bottom row) differ significantly
from the optimal results shown in the top row. Further, the local search strategy got stuck in (obvious)
local optima for bc = 0.1 and bc = 0.3 due to the fact that only single coordinates are flipped per iteration.
The more general stochastic search scheme yields better results for these two cases.

Scenario 1: Balance Constraint – Revisited

The first benchmark scenario given in Chapter 4 aimed at using the balance parameter bc

to induce non-obvious cluster partitions for the Gaussian1 data set. For this sake two of

the parameters were fixed (C = 1 and ε = 0.1) whereas the remaining parameter bc was

set to bc ∈ {0.1, 0.3, 0.5}, see Figure 5.9 (top row) for the optimal partitions computed via

the exact approach for this setup. Let us now consider the corresponding results obtained

via the local search scheme derived in this chapter (with new objective (5.9)). We consider

the same experimental setup, i. e., we fix ε = 0.1 and γ = 1
2uC .12 Further, we consider the

same three assignments for the balance parameter bc ∈ {0.1, 0.3, 0.5} and take the best

12Note that, since the square loss is used as surrogate for the hinge loss, different objectives are minimized.
Since the LIBSVM implementation [29, 48] aims at computing solutions for the objective (3.39), we set
γ = 1

2uC
for the URLSC implementation to make both objectives as similar as possible.

5.4. EXPERIMENTAL ANALYSIS 95

result out of 200 runs with respect to the objective.

The results are given in Figure 5.9: Except for bc = 0.5, the partitions obtained via the

local search scheme (middle row) are quite different from those of the exact approach (top

row). Further, the local scheme got stuck in (obvious) bad candidate solutions for both

bc = 0.1 and bc = 0.3. The reason for this behavior is the fact that the local search scheme

only flips a single coordinate per iteration, which can lead to situations where no labels are

flipped anymore although the objective could still be improved. In Figure (d), for instance,

the approach is not willing to generate any new red squares due to the balance constraint

and, at the same time, does not generate any new blue triangles since this would lead

to a worse objective. Hence, these benchmark scenarios depict challenging tasks for the

local search scheme and reveal one of its possible disadvantages: Switching only a single

coordinate per iteration can be insufficient for specific problem instances (depending on

the balance constraint and the structure of the data).

The bottom row of Figure 5.9 shows the results of a more general stochastic search

scheme (depicted below) that flips a small amount of coordinates per iteration. While the

computed partitions are not optimal as well, the obtained results are clearly better for

bc = 0.1 and bc = 0.3 compared to the local search scheme. Hence, for these benchmark

scenarios, not only the amount of restarts but also the particular scheme to switch the

involved labels is important.

Fast Evolutionary Clustering

While the proposed local search scheme works extremely well on a variety of learning

tasks, the above example indicates that it might be useful to resort to other label-

switching or stochastic optimization schemes for specific tasks. A well-known class of

combinatorial optimization schemes are evolutionary algorithms [13]. In Algorithm 5.3,

such an approach is given: Here, the starting point of the stochastic search is a popu-

lation P0 = {y1, . . . ,yµ} ⊆ {−1,+1}u consisting of µ ∈ N random candidate solutions,

also called individuals. In Step 2, the fitness F (y) is computed for each of these initial

individuals, where

F (y) = minimize
c∈Ru

Q(y, c) (5.41)

is determined via the task (5.9). The iteration over all generations 1, . . . , τ is started in

Step 4. For each generation t, one randomly selects ν parental individuals to produce

mutated individuals and each of these mutated individuals is created by (uniformly at

random) flipping a small number of coordinates of the parental individual. After the

computation of the fitness values for the mutated individuals, all resulting individuals

are sorted upwards by their objective values yielding a sorted sequence yi1 , . . . ,yiµ+ν .

Finally, the population Pt is updated by selecting the µ candidate solutions having the

96 CHAPTER 5. SPEEDY LOCAL SEARCH

Input: An unlabeled training set TU = {x1, . . . ,xu} ⊂ X and parameters µ ∈ N, ν ∈ N,
τ ∈ N, C ∈ R+, bc ∈ [0, 1], and ε ∈ R+.

Output: An approximation (c∗,y) ∈ {−1,+1}u × Ru for the task (5.9).
1: Initialize P0 = {y1, . . . ,yµ} ⊆ {−1,+1}u.
2: Compute the fitness F (yj) for each yj ∈ P0.
3: t = 0
4: while t ≤ τ do
5: for i = 1 to ν do
6: Randomly select parent y ∈ Pt.
7: Generate valid mutated individual yµ+i.
8: Compute fitness F (yµ+i).
9: end for

10: Compute sorted sequence yi1 , . . . ,yiµ+ν .
11: Pt+1 = {yi1 , . . . ,yiµ}
12: t = t+ 1
13: end while
14: Compute solution c∗ for minimizec∈Ru Q(yi1 , c)
15: return (c∗,yi1)

Algorithm 5.3. Simple stochastic optimization framework for the objective (5.9). In each generation
of the search a small amount of labels is flipped. For such settings, the proposed computational shortcuts
reduce the runtime of such a scheme dramatically, as shown by Gieseke et al. [59].

best objective values. When generation τ is reached, the best individual along with its

corresponding vector ĉ is returned. Throughout the search only valid candidate solutions

fulfilling the balance constraint are created.

Similar to the local search considered above, the main computational bottleneck of

this more general stochastic search is the recurrent computation of the fitness values

in Step 8. However, as mentioned above, the computational shortcuts derived in this

chapter can also be applied in case multiple labels are switched per iteration. This greatly

reduces the runtime of such an exhaustive search and paves the way for efficiently testing

a massive amount of candidate solutions. This is, in turn, important to obtain a good

clustering performance: In Table 5.1, a comparison of the classical k-means approach

(k-means) [101], the iterative scheme proposed by Zhang et al. [153] (IterSVR), and two

instances of the above evolutionary framework on real-world data is given. Here, EvoMMC

is based on the exact computational shortcut, whereas FastEvoMMC is based on the kernel

matrix approximation scheme depicted above, see Gieseke et al. [59] for details related to

the experimental setup. The results indicate that unsupervised support vector machines

depict a valuable alternative to classical clustering schemes, at least in case the search

space is explored in a sufficient kind of way.

5.5. CONCLUDING REMARKS 97

Data u k-means IterSVR EvoMMC FastEvoMMC

UCIDigits(3,8) 357 5.3± 0.0 3.4± 0.0 2.5± 0.0 2.6± 0.5

UCIDigits(1,7) 361 0.6± 0.0 0.6± 0.0 0.0± 0.0 0.0± 0.0

UCIDigits(2,7) 356 3.1± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0

UCIDigits(8,9) 354 9.3± 0.0 3.7± 0.0 3.2± 0.4 3.8± 4.1

Ionosphere 351 32.0± 17.9 32.3± 16.6 17.9± 6.8 18.8± 3.2

Letter 1, 555 17.9± 0.0 7.2± 0.0 3.7± 0.3 3.3± 1.1

Satellite 2, 236 4.1± 0.0 3.2± 0.0 1.2± 0.5 1.1± 0.7

Table 5.1. The table shows the clustering error (disagreement of the computed and the true partition) in
percent on several real-world data sets of k-means [101], IterSVR [153], EvoMMC [59], and FastEvoMMC [59]
(averaged errors and standard deviation over 10 random partitions are reported). The results indicate
that the concept of unsupervised support vector machines depicts a meaningful alternative to classical
clustering schemes. Further, the results obtained by the evolutionary framework (EvoMMC and FastEvoMMC)
are superior to those of the iterative scheme (IterSVR), which indicates that putting more effort into
optimization pays off for such learning settings.

5.5 Concluding Remarks

Both the semi- and the unsupervised learning task are promising from a practical point

of view. However, the combinatorial nature of the induced optimization problems renders

a direct application of the corresponding concepts difficult in real-world settings. In this

chapter, we have proposed least-squares variants of the original problem formulations

along with simple local search schemes for addressing the resulting optimization tasks.

While a naive implementation of the considered search strategies is computationally very

demanding, we have shown how to speed-up their execution by means of efficient matrix

updates of the intermediate solutions. These computational shortcuts render an exhaustive

search possible. The experimental evaluation indicates that the (conceptually very simple)

local search scheme yields good classification results in most cases. For difficult problem

instances, however, it might be useful to employ more sophisticated search heuristics like

general evolutionary algorithms.

98 CHAPTER 5. SPEEDY LOCAL SEARCH

CHAPTER 6

Sparse Quasi-Newton Optimization

T
he efficient implementation of the local search strategy proposed in the previous

chapter was based on the fact that, given a fixed partition vector for the unlabeled

patterns, the remaining real-valued variables could be directly obtained since they

induced a convex optimization task. In this chapter, we will see that a similar observation

also holds if one considers the real-valued part of the corresponding optimization tasks

to be fixed (and by reformulating the balance constraint). More precisely, the optimal

assignments for the remaining integer variables are directly known and, thus, do not occur

as optimization variables anymore. This is quite a remarkable property of the learning

tasks at hand giving rise to continuous (but non-convex) optimization problems that can be

addressed by a completely different branch of mathematical optimization methods. In the

following, we will propose the use of quasi-Newton optimization schemes [108] to address

the corresponding optimization tasks. The resulting approaches can be implemented easily

using black box optimization engines and exhibit an excellent classification and runtime

performance that is superior (or at least competitive) to state-of-the-art implementations.

Outline. We will start with a short motivation in Section 6.1 and will subsequently

derive the continuous optimization variants in Section 6.2. In general, the resulting ob-

jectives are not differentiable. Aiming at the application of gradient based schemes, we

will show how to employ surrogate loss functions that render the objective functions at

hand more amenable to efficient optimization. The definition of these variants as well as

the application of quasi-Newton optimization schemes will be subject of Section 6.3. A

detailed experimental evaluation will be given in Section 6.4, followed by a discussion of

99

100 CHAPTER 6. SPARSE QUASI-NEWTON OPTIMIZATION

optimization and model selection issues in Section 6.5. Finally, concluding remarks will

be given in Section 6.6.

6.1 Motivation

As shown in the previous chapter, using the square loss instead of the hinge loss can

be appealing since it seems to be well-suited for label-switching optimization schemes

(at least in the unsupervised case, as demonstrated by Zhang et al. [153]) and can lead

to efficient computational update-schemes. Reformulating the original learning tasks and

subsequently approaching these corresponding surrogates is a standard procedure for both

learning settings. However, whether such a reformulation has a negative effect on the gen-

eralization performance of the resulting model or not is unclear. One possible disadvantage

of the square loss is, for instance, the fact that outliers (i. e., single patterns lying far away

from the remaining ones) can have a significant influence on the overall model [120].

In the following, we will aim at minimizing the problem formulation induced by the

hinge loss. As mentioned above, the tasks give rise to continuous but non-convex optimiza-

tion problems. Using the hinge loss leads to a non-differentiable problem and is therefore

not amenable to, e.g., gradient based optimization schemes [108]. A well-known algorith-

mic idea in the related literature is to resort to differentiable surrogates for the original

objectives, see, e.g., Chapelle and Zien [32]. In this chapter, we will propose a particular

combination of surrogates for the loss on the labeled and unlabeled parts of the data.

This will pave the way for the application of two particular instances of the quasi-Newton

family of optimization methods [108]. While the general idea of using differentiable loss

surrogates and gradient based optimization schemes is not new in this context, we would

like to point out

(a) that the resulting approach is conceptually very simple since one can resort to black

box optimization engines,

(b) that computational speed-ups for sparse and non-sparse data can easily be integrated

into the overall framework, which is not always the case for competing approaches,

and

(c) that the two selected representatives of the quasi-Newton framework depict ideal

candidates for the induced optimization tasks (and have not yet been considered in

the context of semi-supervised support vector machines).

As we will see below, only the surrogate objective function and its gradient need to be

supplied to the main optimization scheme.

6.2. CONTINUOUS OPTIMIZATION 101

0

0.2

0.4

0.6

0.8

1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

(a)

0

0.2

0.4

0.6

0.8

1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

(b)

Figure 6.1. The effective loss functions Le(t) = max(0, 1− |t|) and Le(t) = (t− sgn(t))2 induced by (a)
the hinge loss and (b) the square loss. Both effective loss functions penalize predictions around zero and,
thus, enforce the prediction function to avoid high-density areas induced by the unlabeled patterns.

6.2 Continuous Optimization

We will focus on the semi-supervised case and will show how to obtain a continuous

optimization variant for this setting. In general, unsupervised settings can be handled in

a similar manner.

6.2.1 Non-Convex Task

Again, we are given both a set TL = {(x′1, y′1), . . . , (x′l, y′l)} ⊂ X × {−1,+1} of labeled

patterns as well as a set TU = {x1, . . . ,xu} ⊂ X of unlabeled ones from an arbitrary set

X . As shown in Chapter 5, the semi-supervised setting gives rise to an optimization task

of the form

minimize
y∈{−1,+1}u, f∈Hk, b∈R

1

l

l∑
i=1

L
(
y′i, f(x′i) + b

)
+ γ

1

u

u∑
i=1

L
(
yi, f(xi) + b

)
+ λ‖f‖2Hk (6.1)

with cost parameters λ ∈ R+ and γ ∈ R+, hypothesis space Hk, and loss function L : Y ×
R → [0,∞). The balance constraint, omitted above, is not obligatory in semi-supervised

learning settings (see below). Now, instead of fixing the partition vector y ∈ {−1,+1}u,

let us assume that the hypothesis (f, b) ∈ Hk ×R is fixed. Then, the optimal assignments

yi for the unlabeled patterns xi are given by yi = sgn(f(xi) + b) and are, thus, directly

known [32].1 Therefore, one can rewrite the above task as:

minimize
f∈Hk, b∈R

1

l

l∑
i=1

L
(
y′i, f(x′i) + b

)
+ γ

1

u

u∑
i=1

Le
(
f(xi) + b

)
+ λ‖f‖2Hk (6.2)

1For this observation, the loss function has to fulfill the reasonable assumption that L(+1, t) ≤ L(−1, t)
for t ≥ 0 as well as L(+1, t) ≥ L(−1, t) for t ≤ 0 holds.

102 CHAPTER 6. SPARSE QUASI-NEWTON OPTIMIZATION

Here, the function Le(t) = L(sgn(t), t) is called the effective loss induced by the loss

function L. Note that vector y ∈ {−1,+1}u does not occur anymore in the above task.

The two effective loss functions induced by the hinge and the square loss are depicted

in Figure 6.1. A common property of both induced functions is the fact that they penalize

predictions around zero. Therefore, the second term of the above objective increases if

the prediction function passes through over-densities caused by the unlabeled patterns. In

other words, the second term favors decision hyperplanes going through low-density areas

induced by the unlabeled patterns. Again, due to the semiparametric representer theorem

(Fact 3.2), any optimal (f∗, b∗) ∈ Hk × R for the problem (6.2) can be written as

f∗(·) + b∗ =
l∑

i=1

cik(·,x′i) +
l+u∑
i=l+1

cik(·,xi−l) + β (6.3)

with appropriate coefficients c1, . . . , cl+u, β ∈ R. Hence, one ends up with searching for

appropriate assignments for these real coefficients and, thus, with a continuous optimiza-

tion task [108]. Plugging in different loss functions leads to various problem instances.

The hinge loss leads to the standard formulation and renders the task non-convex and

non-differentiable (since the partial derivatives do not exist).

6.2.2 Balance Constraint

The ideas depicted above depend on the assumption that no balance constraint of the

form

−ε < 1

u

u∑
i=1

max(0, yi)− bc < ε (6.4)

with ε ∈ R+ is used to enforce partitions of the unlabeled patterns fulfilling a certain ratio

of positive and negative elements. While this is, in general, not a problem for the semi-

supervised case (since the labeled part prevents unbounded solutions), the unsupervised

setting requires an appropriate constraint.2 It should be pointed out that the balance

constraint is also often used in semi-supervised settings since it provides additional infor-

mation and might help yielding good solutions for local search strategies (given a good

estimate for bc). Incorporating the original balance constraint into the continuous opti-

mization framework, however, seems to be more difficult. This is due to the fact that,

by considering the balance constraint, the optimal assignments for the partition vector

y ∈ {−1,+1}u are not necessarily given by yi = sgn(f(xi)+b), as shown in Chapter 4. To

2For unsupervised settings, assigning all unlabeled patterns to only one class corresponds to an optimal
solution and the resulting margin becomes arbitrary large. Note that assigning all unlabeled patterns to
only one class can also depict an optimal solution for the semi-supervised setting, but the resulting margin
is not unbounded.

6.2. CONTINUOUS OPTIMIZATION 103

add a balance constraint for the continuous optimization perspective, Chapelle et al. [32]

propose to consider a relaxed version of the form

1

u

u∑
i=1

〈w,xi〉+ b = bc (6.5)

for the linear kernel (and for semi-supervised settings). Thus, by preprocessing all patterns

such that
∑u

i=1 xi = 0, one can enforce the balance constraint by fixing b = bc. Further,

for non-linear kernel functions, one can resort to the kernel PCA map [124] to implicitly

obtain a more flexible model, see Chapelle and Zien [32] for details.3

6.2.3 Related Work

Let us finally sketch the related semi-supervised approaches that are based on the contin-

uous optimization perspective. Again, these approaches usually compute an initial guess

via the labeled part of the data (as already sketched in the previous chapter) and sub-

sequently improve this guess by means of some kind of local search scheme. Most of the

related approaches actually only differ in the way such a local search phase is performed.

As mentioned above, the hinge loss leads to a non-differentiable objective function,

which necessitates the use of derivative-free optimization frameworks (or, at least, the use

of subgradient methods [108]). A common strategy in the related literature is based on

using differentiable surrogates that render the application of sophisticated gradient based

optimization schemes possible and usually lead to a better convergence behavior (at least,

in practice). Originally, the idea of using such a replacement was proposed by Chapelle

and Zien [32]. They consider a similar differentiable surrogate as the one proposed in this

chapter and resort to a gradient descent strategy as optimization framework. A refinement

of this approach, based on the so-called continuation method [108], has later been proposed

by Chapelle et al. [33]. The key idea of this variant is to minimize a smoothed (convex)

version of the original task at the beginning of the optimization process and to iteratively

decrease the smoothing (where the outcome of an iteration serves as a starting point

for the next iteration). Another approach is given by Collobert et al. [38, 39]. Instead

of using a differentiable surrogate, they show how to split up the objective term into

a convex part and a concave part (using a ramp loss as surrogate) and resort to the

constrained concave-convex procedure [133, 152] as optimization engine. Zhao et al. [155]

also consider this kind of optimization framework, but resort to a cutting-plane technique

for addressing the intermediate optimization tasks. Finally, Reddy et al. [117] propose a

3This way, one essentially removes the offset term from the optimization process. If one does not
consider such a term at all while using a linear kernel, then the decision hyperplane passes through the
origin and the loss on the unlabeled patterns will avoid arbitrary large margins as well (without imposing
any ratio between positive and negative entries).

104 CHAPTER 6. SPARSE QUASI-NEWTON OPTIMIZATION

quasi-Newton framework in combination with a label-switching strategy. Further, instead

of using differentiable surrogates, they resort to subgradient methods to alleviate the

problem of the non-differentiability of the hinge loss.

Both the approach proposed by Chapelle and Zien [32] and the just mentioned quasi-

Newton framework proposed by Reddy et al. [117] are quite close to what is presented in

this chapter. However, compared to the scheme of Reddy et al., we resort to simple differ-

entiable surrogates and propose effective ways to deal with large-scale learning settings.

The differentiable surrogates considered in this chapter are related (but not identical) to

the ones proposed by Chapelle and Zien [32]. Further, we suggest specific instances of

the quasi-Newton family of optimization frameworks to deal with the continuous tasks at

hand that seem to be more appropriate than the gradient descent.

6.3 Algorithmic Framework

We will consider two quasi-Newton optimization schemes [108] and will justify their use

in this context. For this sake, we will start by deriving an appropriate differentiable

surrogate of the objective. Afterwards, we will depict the algorithmic framework as well

as computational shortcuts that speed up the overall execution.

6.3.1 Differentiable Surrogates

Aiming at the application of such gradient based optimization schemes, we introduce

the following differentiable surrogate loss functions depicted in Figure 6.2. Here, the

differentiable replacement for the hinge loss is the modified logistic loss L(y, t) = 1
η log(1+

exp(η(1 − yt))) with η = 20 [154] and the one for the effective hinge loss is given by

Le(t) = exp(−st2) with s = 3 [32].4 For the sake of exposition, we will again omit the

offset term b ∈ R. By defining x̄i = x′i for i = 1, . . . , l and x̄i = xi−l for i = l + 1, . . . , n,

the new surrogate objective is given by

Fγ(c) =
1

l

l∑
i=1

1

η
log
(
1 + exp(η(1− y′if(x̄i)))

)
(6.6)

+
γ

u

u∑
i=1

exp(−3(f(x̄l+i))
2) + λ

n∑
i=1

n∑
j=1

cicjk(x̄i, x̄j),

4The surrogate for the unlabeled patterns was initially proposed by Chapelle and Zien [32] in the
context of semi-supervised support vector machines. For the labeled part, however, they consider the
squared version of the hinge loss. Surprisingly, it seems that this particular combination of surrogates
proposed here has not yet been considered in the literature (although they depict perfect differentiable
replacements for the original loss functions).

6.3. ALGORITHMIC FRAMEWORK 105

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5 2

max(0, 1− yt)
1

η
· log(1 + exp(η(1− yt)))

(a)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

-3 -2 -1 0 1 2 3

max(0, 1− |t|)
exp(−st2)

(b)

Figure 6.2. The hinge loss L(y, t) = max(0, 1 − yt) and its differentiable surrogate L(y, t) = 1
η

log(1 +
exp(η(1− yt))) with y = +1 and η = 20 are shown in Figure (a). The effective loss L(t) = max(0, 1−|t|)
induced by the hinge loss along with its surrogate Le(t) = exp(−st2) with s = 3 are given in Figure (b).

where f(·) =
∑n

j=1 cjk(·, x̄j) and ‖f‖2Hk =
∑n

i=1

∑n
j=1 cicjk(x̄i, x̄j). The following lemma

shows that one can compute both the new objective and its gradient efficiently:

Lemma 6.1 For a given c ∈ Rn, one can compute both the objective value Fγ(c) as well

as its gradient ∇Fγ(c) in O(n2) time. The overall space consumption is O(n2).

Proof: The partial derivatives are given by

∂Fγ(c)

∂cp
= −1

l

l∑
i=1

exp(η(1− y′if(x̄i)))

(1 + exp(η(1− y′if(x̄i))))
y′ik(x̄i, x̄p)

−γ 6

u

u∑
i=1

exp(−3(f(x̄l+i))
2)f(x̄l+i)k(x̄i, x̄p) + 2λ

n∑
i=1

cik(x̄i, x̄p)

and, thus, the gradient by

∇Fγ(c) = Ka + 2λKc (6.7)

with a ∈ Rn defined via:

ai :=

−1

l
· exp(η(1− f(x̄i)y

′
i))

1 + exp(η(1− f(x̄i)y′i))
· y′i for i = 1, . . . , l

−γ 6

u
· exp

(
−3(f(x̄i))

2
)
· f(x̄i) for i = l + 1, . . . , n

(6.8)

Since each f(x̄i) can be computed in O(n) time, one can precompute all predictions

f(x̄1), . . . , f(x̄n) and, thus, the vector a ∈ Rn in O(n2) time. Further, given these pre-

dictions, the remaining operations to compute the objective (6.6) and the gradient (6.7)

106 CHAPTER 6. SPARSE QUASI-NEWTON OPTIMIZATION

Input: A labeled training set TL = {(x′1, y′1), . . . , (x′l, y
′
l)} ⊂ X × {−1,+1}, an unlabeled training

set TU = {x1, . . . ,xu} ⊂ X , model parameters λ ∈ R+ and γ ∈ R+, an initial (positive definite)
inverse Hessian approximation H0, and a sequence 0 = α1 < . . . < ατ of real (annealing)
parameters.

Output: An approximate solution c ∈ Rn for the objective (6.6).
1: c0 = 0
2: for i = 1 to τ do
3: j = 0
4: while termination criteria not fulfilled do
5: Compute search direction pj via (6.10)
6: Update cj+1 = cj + βjpj
7: Update Hj+1 via (6.11)
8: j = j + 1
9: end while

10: c0 = cj
11: end for
12: return c0

Algorithm 6.1. The quasi-Newton optimization framework for addressing the differentiable surrogate
objective (6.6): Since the first parameter α1 in the sequence of parameters is zero, one initially trains
a supervised model on the labeled part of the data and, thus, also starts with an initial guess for the
desired decision function. The influence of the unlabeled part is then increased gradually. For each step,
a standard BFGS scheme is applied [108].

can be performed in O(n2) time as well. The space requirements are dominated by the

quadratic space consumption of the kernel matrix K ∈ Rn×n. �

Note that numerical instabilities might occur when evaluating log(exp(η(1−f(x̄i)y
′
i))) for

the computation of the objective (6.6) and exp(η(1− y′if(x̄i)))(1 + exp(η(1− y′if(x̄i))))
−1

for the computation of the gradient (6.7). However, one can deal with these possible

instabilities in a safe manner since log(1 + exp(t))− t→ 0 and exp(t)
1+exp(t) − 1→ 0 converge

rapidly for t→∞. Thus, aiming at a numerically stable implementation, one can replace

these values by their limits for t larger than, e.g., 500.

6.3.2 Quasi-Newton Optimization

One of the most popular quasi-Newton schemes is the so-called Broyden-Fletcher-Goldfarb-

Shanno (BFGS) [108] method, which we will now sketch in the context of the given task.

Quasi-Newton Framework

The overall algorithmic framework is provided in Algorithm 6.1: The influence of the

unlabeled part is increased gradually via the sequence 0 = α1 < . . . < ατ . This sequence

can be seen as annealing sequence and depicts another well-known strategy for the tasks

at hand to create easier problem instances at early stages of the optimization process and

6.3. ALGORITHMIC FRAMEWORK 107

to transform these instances towards the final task throughout the overall execution [33,

83, 131]. Note that we have α1 = 0 for the first parameter. Thus, for the first optimization

stage, we essentially train a supervised model only based on the labeled part of the data.5

For each parameter αi, a standard BFGS optimization phase is performed (Steps 4–9).

For the sake of exposition, we will briefly sketch the main steps [108]: In each of these

intermediate optimization stages, a sequence

cj+1 = cj + βjpj (6.9)

of candidate solutions is generated, where the search direction pj is computed via

pj = −Hj∇Fγ·αi(cj) (6.10)

and where the step length βj is computed via line search [108]. Here, Hj is an approxima-

tion of the inverse of the objective’s Hessian and is updated via

Hj+1 = (I− ρjsjzTj)Hj(I− ρjzjsTj) + ρjsjs
T
j (6.11)

with zj = ∇Fγ·αi(cj+1) − ∇Fγ·αi(cj), sj = cj+1 − cj , and ρj = (zTj sj)
−1

. As initial

approximation H0, one usually resorts to H0 = δI with δ ∈ R+. An important prop-

erty of the update scheme is that it preserves the positive definiteness of such an initial

approximation, see Nocedal and Wright [108] for details.

Termination Criteria and Convergence

The approach depicted in Algorithm 6.1 performs τ annealing steps, and for each of these

steps, a standard BFGS optimization scheme is applied. Thus, the convergence of the

overall approach depends on the stopping criterion used in Step 4. A trivial approach

consists in stopping the intermediate optimization stages after a fixed (and user-defined)

number of iterations T . In general, other stopping criteria can be considered like, e.g.,

stopping as soon as

‖∇Fγ·αi(ck)‖ ≤ ε̂ (6.12)

is fulfilled for a small constant ε̂ ∈ R+. However, whether such stopping criteria lead to

a (theoretically) guaranteed convergence behavior for (general) non-convex optimization

tasks is not clear and is subject of ongoing research [108]. For the experimental evaluation,

5By ignoring the second part of the objective (6.6), one obtains a convex optimization task that can be
easily addressed by the quasi-Newton scheme. The convexity of the new objective is due to the convexity
of the modified logistic loss; the argumentation is the same as for the hinge loss depicted in Section 3.3.
As a side note, we would like to point out that these derivations yield an efficient implementation for the
standard support vector machine optimization task, especially for sparse data (see below).

108 CHAPTER 6. SPARSE QUASI-NEWTON OPTIMIZATION

stopping the iterative process after T = 1, 000 iterations was sufficient for all considered

tasks (and only few more function and gradient evaluations were needed).

It should be pointed out that, so far, no rigorous theoretical convergence analyses seem

to exist for related local search strategies that address the non-convex task induced by

semi-supervised support vector machines. This is, in general, the case for all CCCP-based

approaches, where the convergence analysis is subject of ongoing research as well.6

6.3.3 Computational Speed-Ups

Two main computational bottlenecks arise for the above scheme: Firstly, the recurrent

computation of the objective and gradient needed by the quasi-Newton framework is cum-

bersome. Secondly, the approximation of the Hessian’s inverse is, in general, not sparse,

which leads to quadratic-time operations for the quasi-Newton framework itself [108]. In

the following, we will show how to alleviate these two problems.

Limited Memory Quasi-Newton

The non-sparse approximation of the Hessian’s inverse leads to quadratic time and space

requirements. To reduce these computational costs, we consider the L-BFGS meth-

ods [108], which depicts a memory and time saving variant of the original BFGS scheme.

In a nutshell, the idea consists in generating the approximations H0,H1, . . . only based

on the last m� n iterations and to perform low-rank updates on the fly without storing

the involved matrices explicitly (which would take quadratic time and space) [108]. This

leads to an update time of O(mn) for all operations related to the intermediate optimiza-

tion phases (not counting the time for function and gradient calls). As pointed out by

Nocedal and Wright [108], small values for m are usually sufficient in practice (ranging

from, e.g., m = 3 to m = 50). Thus, assuming m to be a relatively small constant, the

operations needed by the optimization engine essentially scale linearly with the number n

of optimization variables.

Low-Dimensional Search Space

It remains to show how to reduce the second bottleneck, i. e., the recurrent computation

of both the objective and the gradient. Similar to the previous chapter, one can resort to,

e.g., the subset of regressors method [119, 120] to reduce these computational costs, i. e.,

6See, e.g., Sriperumbudur and Lanckriet [134], who report that “though widely used in many applica-
tions, the convergence behavior of CCCP has not gotten a lot of specific attention”.

6.3. ALGORITHMIC FRAMEWORK 109

one approximates the original hypothesis f(·) =
∑n

j=1 cjk(·, x̄j) via

f̂(·) =
r∑
p=1

ĉjpk(·, x̄jp), (6.13)

where R = {j1, . . . , jr} ⊆ {1, . . . , n} is a subset of indices. Using this approximation

scheme leads to a slightly modified objective F̂γ(ĉ) for ĉ ∈ Rr, where the predictions

f(x̄1), . . . , f(x̄n) are replaced by their corresponding approximations f̂(x̄1), . . . , f̂(x̄n) in

(6.6). Similar derivations as for the non-approximation case show that the gradient∇F̂γ(ĉ)

is then given as

∇F̂γ(ĉ) = KR a + 2λKRR ĉ, (6.14)

where f has to be replaced by f̂ in the former definition (6.8) of the vector a ∈ Rn. It

is easy to see that one can compute both the new objective as well as its gradient in an

efficient kind of way:

Lemma 6.2 For a given candidate solution ĉ ∈ Rr, the approximated objective F̂γ(ĉ) as

well as its associated gradient ∇F̂γ(ĉ) can be computed in O(nr) time spending O(nr)

space.

Proof: All predictions f̂(x̄1), . . . , f̂(x̄n) can be computed in O(nr) time for a ĉ ∈ Rr.
Given these predictions, one can compute the modified vector a ∈ Rn in O(n) time.

Further, the remaining operations for obtaining the new objective F̂γ(ĉ) and its gradient

∇F̂γ(ĉ) can be performed in O(nr+r2) = O(nr) time. The space consumption, dominated

by KR, is O(nr). �

Thus, in combination with the L-BFGS scheme depicted above, both the runtime as well

as the space consumption are reduced significantly. Again, as pointed out in Chapter 5,

the parameter r ∈ {1, . . . , n} determines the trade-off between the achieved speed-up and

the accuracy of the approximation. Another way to obtain (considerable) speed-ups can

be achieved for the special case of a linear kernel, which we will describe next.

Linear Kernel and Sparse Data

Assume that we are given patterns in X = Rd and let X ∈ Rn×d denote the data matrix

containing the training patterns as rows. In case of the linear kernel, one can write the

kernel matrix as K = XXT ∈ Rn×n and can achieve substantial computational savings

by avoiding its explicit construction. This is the case, for instance, if the data resides

110 CHAPTER 6. SPARSE QUASI-NEWTON OPTIMIZATION

in a low-dimensional feature space (i. e., d � n) or due to the data matrix being sparse,

meaning that it contains only few nonzero entries.7

Lemma 6.3 For a linear kernel with patterns in X = Rd, one can compute the objective

Fγ(c) and the gradient ∇Fγ(c) in O(nd) time using O(nd) space for a given candidate

solution c ∈ Rn.

Proof: Due to the linear kernel, one can compute

Kc = X(XTc) (6.15)

and thus all predictions f(x̄1), . . . , f(x̄n) in O(nd) time. In the same manner, one can

obtain cTKc and Ka in O(nd) time (where the vector a ∈ Rn can be computed in O(n)

time given the predictions). Thus, both the objective Fγ(c) and the gradient ∇Fγ(c) can

be obtained in O(nd) time. The space requirements are bounded by the space needed to

store the data matrix X ∈ Rn×d, which is O(nd). �

Hence, compared to a naive computation of the kernel matrix that takes O(n2d) time and

O(n2 + nd) space, one only needs both O(nd) time and space, which depicts a significant

speed-up. For high-dimensional but sparse data (i. e., if the matrix X ∈ Rn×d contains only

s � nd nonzero entries), one can further reduce the computational cost in the following

kind of way:8

Lemma 6.4 For a linear kernel with patterns in X = Rd and data matrix X ∈ Rn×d with

s� nd nonzero entries, one can compute the objective Fγ(c) and the gradient ∇Fγ(c) in

O(s) time using O(s) space for a given candidate solution c ∈ Rn.

Proof: Without loss of generality, we assume that s ≥ n − 1 holds (since all but one

patterns consisting of zeros can be removed). Similar to the derivations above, one can

compute Kc = X(XTc) and therefore the predictions f(x̄1), . . . , f(x̄n) as well as a ∈ Rn

in O(s) time using standard sparse matrix multiplication techniques. In the same way,

one can compute cTKc and Ka in O(s) time. Hence, both the objective Fγ(c) and the

gradient ∇Fγ(c) can be obtained in O(s) time spending O(s) space. �

The experimental evaluation in the next section will demonstrate that sparse data sets

can be handled in an extremely effective manner based on the shortcut depicted above.

7A popular example of sparse data are text data sets, where one usually simply counts the occurrences
of words. Here, the dimension d of the input space corresponds to each possible word and is, thus, very
large. However, only few of these words occur in a particular text, which leads to a sparse data matrix.

8Note that the term s is sometimes used to denote the average number of nonzero entries per pattern
xi ∈ X in the training set.

6.4. EXPERIMENTAL ANALYSIS 111

6.3.4 Competitors: Steepest Descent and Newton’s Method

Let us briefly sketch the benefits of using the BFGS scheme as well as its limited memory

variant compared to its direct competitors, steepest descent and Newton’s Method. Since

steepest descent only resorts to function and gradient calls as well, the corresponding

computational costs are the same and the shortcuts depicted above can be integrated in the

same manner. However, the quasi-Newton schemes incorporate second order information

via the approximation of the inverse of the Hessian and “the improvement over steepest

ascent is dramatic, especially on difficult problems” [108, p. 136]. Thus, it makes sense

to resort to the more sophisticated search directions used by the quasi-Newton schemes.

Newton’s method makes use of the Hessian and, thus, directly resorts to the second order

information. This usually results in a better convergence behavior, at least on convex

tasks. However, there are two clear disadvantages of this approach in this context:

(a) Firstly, the computational cost per iteration is O(n3) (for the exact case), and, thus,

the number of iterations has to be far less compared to the quasi-Newton schemes

in order to justify this additional effort. Further, for non-convex tasks, the Hessian

might not be positive definite and, thus, might not yield a descent direction. Here,

additional care has to be taken to ensure the positive definiteness [36].

(b) Secondly, exploiting the specific properties of a linear kernel (for sparse data) as well

as a incorporating kernel matrix approximation schemes seem to be more difficult.

Thus, both the simplicity of the approach (no matrices have to be adapted) and its superior

computational behavior compared to steepest descent render quasi-Newton schemes well-

suited candidates for the task.

6.4 Experimental Analysis

We will now provide the experimental evaluation including further data sets and a com-

parison of several competing methods.

6.4.1 Experimental Setup

The runtime experiments were performed on a 3 GHz Intel CoreTM Duo PC running

Ubuntu 10.04. We will start by providing the experimental setup, which encompasses

implementation details, the considered data sets, model selection issues, and a description

of the different learning schemes used for the comparison.

112 CHAPTER 6. SPARSE QUASI-NEWTON OPTIMIZATION

Data Set N d Comment Data Set N d Comment

Gaussian5 500 500 artificial USPS(8,0) 2,261 256 rescaled

Gaussian6 500 500 artificial MNIST(1,7) 2,000 784 rescaled

Gaussian7 500 500 artificial MNIST(2,5) 2,000 784 rescaled

Moons 500 2 artificial MNIST(2,7) 2,000 784 rescaled

USPS(2,5) 1,645 256 rescaled MNIST(3,8) 2,000 784 rescaled

USPS(2,7) 1,721 256 rescaled TEXT 1,946 7,511 sparse

USPS(3,8) 1,532 256 rescaled

Table 6.1. All artificial and real-world data sets used in the experimental evaluation.

Implementation Details

The implementation of the framework proposed in this chapter (QN-S3VM) is based on the

programming language Python, the Scipy package (using the L-BFGS implementation

optimize.fmin l bfgs b [26] with m = 50, factr = 1010, and maxfun = 1, 000), and

the Numpy package. The function and gradient evaluations are based on efficient matrix

operations provided by the Numpy package. Further, to avoid numerical instabilities, we

make use of log(1 + exp(t)) ≈ t and exp(t)
1+exp(t) ≈ 1 given t ≥ 500 for both the function and

gradient calls.

Data Sets

In addition to the data sets introduced in the previous chapters, we consider further real-

world data sets: The first ones are based on the MNIST database [97], where we focus on

similar pairs of classes as for the USPS data set (which seem to be difficult to separate).

We also perform the same rescaling for the pixel values as for the USPS data set, i. e., we

rescale all pixel values such that they fit into the unit interval [0, 1]. Except for the runtime

experiments, we restrict the size of each data set instance to N = 2, 000. In addition, we

consider the sparse TEXT data set (with s
Nd ≈ 0.0073) that is composed of the mac and

mswindows classes of the Newsgroup20 data set (and that is preprocessed as described by

Chapelle and Zien [32]). See Table 6.1 for an overview of all data sets considered in this

chapter.

Model Selection

Model selection is difficult in semi-supervised learning settings since the amount of labeled

patterns is usually very small. For this reason, we considered non-realistic scenarios in

Chapter 5 for tuning the non-fixed parameters, i. e., we used the labeled patterns given

in the test set. On the one hand, this scenario can be used to analyze if the model is, in

principle, capable of adapting to the structure of the data at hand. On the other hand,

6.4. EXPERIMENTAL ANALYSIS 113

the obtained results are not meaningful for real-world settings.9

In this chapter, we will therefore consider an additional realistic scenario, where only

the labels in the training set are used (which consists of both a small amount of labeled

and a large amount of unlabeled patterns). The non-fixed parameters are then tuned on

the training set via 5-fold cross-validation [73]. Again, we make use of a linear kernel and

an RBF kernel, depending on the particular experiment.

Competing Approaches

We will consider a standard support vector machine implementation as a baseline. Further,

in addition to the two semi-supervised local search strategies presented in this work, we

will resort to another state-of-the-art method in this field. Note again that the key idea

of all semi-supervised approaches is quite similar, i. e., a single initial guess is improved

via some kind of local search. However, for each of these schemes, the particular objective

function and the local search framework are different. For most experiments, we will use

a linear kernel. If an RBF kernel is used, we will tune the kernel width σ ∈ R+ via

the set {0.01σ̂, 0.1σ̂, 1σ̂, 10σ̂, 100σ̂} of possible assignments, where σ̂ is (as in the previous

chapter) an estimate of the maximum distance between any pair of patterns.10

LIBSVM. We consider the LIBSVM implementation for support vector machines pro-

vided by Chang and Lin [29] as a supervised baseline. Except for the two parameters

C and gamma, we resort to the default values for all other parameters. The parameter C

determines the trade-off between large margin and loss caused by the labeled patterns

lying within the margin, and we use the set C ∈ {2−10, . . . , 210} as possible assignments.

The LIBSVM implementation resorts to a slightly different definition of the RBF kernel

that is given by k(u,v) = exp(−gamma‖u−v‖2) for two patterns u ∈ Rd and v ∈ Rd with

gamma ∈ R+. To obtain a similar setting as for the other definition of the RBF kernel, we

set gamma = 1
2σ2 and use the same assignments for σ as depicted above.

UniverSVM. As semi-supervised state-of-the-art method, we consider the UniverSVM ap-

proach proposed by Collobert et al. [38]. The involved parameters are tuned via (C, C*) ∈
{2−10, . . . , 210} × {0.01u , 1.0u ,

100.0
u }. Further, the ratio between the two classes is provided

to the algorithm via the -w option (which is obtained on the whole data set in the non-

realistic scenario; for the realistic scenario, only the labels in the training set are used).

Except for the -S option (which we set to −0.3), the default values for the remaining

parameters are used.

9Again, we would like to point out that this non-realistic scenario is often used for the experimental
evaluation in the related literature [34, 149].

10Given by σ̂ =
√∑d

j=1 (max([x̄1]j , . . . , [x̄n]j)−min([x̄1]j , . . . , [x̄n]j))
2 for n patterns x̄1, . . . , x̄n ∈ X .

114 CHAPTER 6. SPARSE QUASI-NEWTON OPTIMIZATION

S2RLSC. Further, we consider the S2RLSC approach derived in Chapter 5 as semi-

supervised competitor, where we consider the single-restart variant that improves the

initial guess obtained via the labeled part of the data. Concerning the parameters, we

resort to the same experimental setup as depicted in Chapter 5, i. e., we use the initial

guess obtained via the supervised RLSC model, tune the two non-fixed parameters via

(λ, γ) ∈ {2−10, . . . , 210}×{0.01, 1, 100}, set ε = 0.1, and set the parameter bc to an appro-

priate estimate obtained via the labeled patterns (similar to the UniverSVM approach).

QN-S3VM. Finally, we will consider the QN-S3VM scheme derived in this chapter. The

cost parameters λ and γ are tuned on the grid (λ, γ) ∈ {2−10, . . . , 210} × {0.01, 1, 100} of

possible assignments. If not noted otherwise, we use a short sequence of annealing steps

(i. e., α1 = 0, α2 = 0.01, α3 = 0.1, α4 = 1.0). Further, we do not consider any balance

constraint.

6.4.2 Results

We will provide both experiments related to the model flexibility and the classification

performance as well as experiments related to the computational behavior of all methods.

Model Flexibility

Let us again consider the Moons data set, which is said to be a difficult task for semi-

supervised support vector machines due to its non-linear structure. In Figure 6.3, the

results of the LIBSVM implementation (top row) and of the QN-S3VM implementation (bot-

tom row) are given using slightly varying distributions of the data set (for both methods,

an RBF kernel is used). To select the model parameters, we consider the non-realistic

scenario. For all figures, the average test error (with one standard deviation) over 10 ran-

dom partitions into labeled, unlabeled, and test patterns is given. Clearly, the supervised

approach is not able to generate reasonable models. The semi-supervised approach, how-

ever, can successfully incorporate the additional information provided by the unlabeled

patterns, even for the Moons data set instance with a less obvious cluster structure, see

Figure 6.3 (f). Note that these examples also demonstrate that no balance constraint is

needed in principle for semi-supervised support vector machines.

Classification Performance

We will now evaluate the classification performances of all competing approaches given

both the non-realistic scenario as well as the realistic one. For each data set, we will

further consider two different amounts of labeled, unlabeled, and test patterns. For the

sake of simplicity, we will resort to a linear kernel for all methods.

6.4. EXPERIMENTAL ANALYSIS 115

(a) 14.9± 8.6 (b) 15.0± 9.1 (c) 16.0± 10.0

(d) 0.0± 0.0 (e) 1.2± 2.5 (f) 2.6± 2.3

Figure 6.3. The large red squares and blue triangles depict the labeled data; the small black dots the
unlabeled data. Further, the smaller red squares and blue triangles depict the partition of the unlabeled
patterns computed by the semi-supervised approach. Clearly, the LIBSVM implementation (top row) is not
able to generate appropriate models due to the lack of labeled data, whereas the QN-S3VM approach (bottom
row) can successfully incorporate the unlabeled data. The average test errors (with one standard deviation)
over 10 random partitions are reported.

Non-Realistic Scenario. In Table 6.2, the test errors (along with the one standard

deviations) averaged over 10 random partitions are given for the non-realistic scenario.

It can be clearly seen that the semi-supervised approaches yield better results compared

to the supervised LIBSVM baseline, even if only few labeled patterns are given. Thus, all

these approaches can successfully incorporate the additional information provided by the

unlabeled data. While the performance of the semi-supervised approaches is promising

on all considered data sets, it seems to be especially well-suited for data sets exhibiting

a clear low-density area between the two classes. This is the case, for instance, for the

Gaussian5 and for the Gaussian7 data sets. A significant improvement is also given

for the Text data set. Here, for one of the two data set instances, the semi-supervised

approaches can reduce the error on the test set by about 20%. Further, the approaches

seem to perform well on the USPS data set, when only a small amount of labeled data is

given (e.g., the USPS(2,5) data set with only 16 labeled patterns). However, the results

are obtained by tuning the model parameters on the test set, which is a non-realistic

assumption. In realistic scenarios, only the labeled patterns given in the training set can

be used. As we will see now, this (naturally) leads to worse results.

116 CHAPTER 6. SPARSE QUASI-NEWTON OPTIMIZATION

Data Set l u t LIBSVM UniverSVM S2RLSC QN-S3VM

Gaussian5 25 225 250 13.0± 2.9 1.0± 0.5 0.6± 0.5 0.4± 0.4

Gaussian5 50 250 250 5.8± 2.2 1.0± 0.4 0.6± 0.5 0.4± 0.4

Gaussian6 25 225 250 32.6± 3.2 24.4± 3.0 20.7± 2.0 17.9± 1.4

Gaussian6 50 250 250 25.1± 3.2 19.7± 3.0 16.5± 3.2 16.1± 2.4

Gaussian7 25 225 250 17.4± 6.6 7.6± 12.1 6.8± 12.5 1.0± 0.5

Gaussian7 50 250 250 6.7± 1.5 1.6± 0.8 0.8± 0.6 0.8± 0.6

USPS(2,5) 16 806 823 9.4± 5.1 3.2± 0.5 2.9± 0.4 3.2± 2.4

USPS(2,5) 32 790 823 4.7± 0.7 3.2± 0.5 2.9± 0.4 2.8± 0.7

USPS(2,7) 17 843 861 4.6± 3.0 1.5± 0.3 1.0± 0.1 1.2± 0.2

USPS(2,7) 34 826 861 2.5± 1.0 1.4± 0.2 1.0± 0.1 1.2± 0.2

USPS(3,8) 15 751 766 12.0± 8.2 4.8± 1.1 4.1± 1.3 5.7± 4.8

USPS(3,8) 30 736 766 6.6± 2.1 4.0± 1.1 3.9± 1.2 3.9± 1.3

USPS(8,0) 22 1, 108 1, 131 4.8± 1.7 1.7± 0.7 1.2± 0.2 1.4± 0.6

USPS(8,0) 45 1, 085 1, 131 2.7± 0.8 1.3± 0.4 1.1± 0.2 1.4± 0.6

MNIST(1,7) 40 960 1, 000 2.8± 1.1 1.9± 0.3 1.6± 0.3 1.5± 0.3

MNIST(1,7) 100 900 1, 000 1.9± 0.4 1.8± 0.3 1.5± 0.2 1.4± 0.2

MNIST(2,5) 40 960 1, 000 4.4± 1.0 2.8± 0.4 2.3± 0.3 2.3± 0.3

MNIST(2,5) 100 900 1, 000 3.3± 0.5 2.9± 0.4 2.3± 0.3 2.4± 0.3

MNIST(2,7) 40 960 1, 000 4.0± 0.8 2.6± 0.3 2.3± 0.1 2.5± 0.3

MNIST(2,7) 100 900 1, 000 2.9± 0.7 2.4± 0.4 2.3± 0.3 2.2± 0.4

MNIST(3,8) 40 960 1, 000 8.8± 1.8 6.9± 2.0 6.6± 1.3 6.5± 1.9

MNIST(3,8) 100 900 1, 000 5.9± 0.8 4.9± 0.5 5.3± 3.4 4.7± 0.3

TEXT 48 924 974 23.5± 6.7 6.5± 0.9 5.5± 0.9 6.2± 1.4

TEXT 389 584 973 4.8± 0.7 4.2± 0.6 3.8± 0.7 4.1± 0.5

Table 6.2. Classification performances of all competing approaches for the non-realistic scenario.
Clearly, the semi-supervised approaches yield better results in general. This seems to be especially the
case if (1) the data exhibits a clear low-density area between both classes and if (2) sufficient unlabeled
patterns are used to describe the (high-dimensional) structure of the data.

Realistic Scenario. For the realistic scenario, the classification performances of all

approaches are clearly worse compared to those of the non-realistic scenario, see Table 6.3.

A reasonable explanation for this fact is that a small set of labeled patterns might not be

sufficient for the model selection phase and that the best performing parameters cannot be

selected in a reliable manner. Further, the performances of all semi-supervised approaches

is quite similar, and none of the three methods seems to outperform the two other ones.

Still, the results of the semi-supervised approaches are not worse compared to the ones

of the supervised baseline in most cases. This is quite reasonable since all local search

schemes improve a single guess obtained via a corresponding supervised model. On the

one hand, one gets stable results via such an approach since the subsequent local search

schemes only fine-tune these initial guesses. However, on the other hand, a small set of

labeled patterns might lead to a bad initial guess, and thus, to bad results in general. We

6.4. EXPERIMENTAL ANALYSIS 117

Data Set l u t LIBSVM UniverSVM S2RLSC QN-S3VM

Gaussian5 25 225 250 13.2± 2.8 1.5± 0.6 6.6± 2.6 1.7± 0.6

Gaussian5 50 250 250 6.3± 2.4 1.6± 0.7 3.3± 2.6 1.3± 0.9

Gaussian6 25 225 250 38.2± 6.7 25.8± 3.4 27.5± 5.2 27.4± 4.9

Gaussian6 50 250 250 25.4± 3.2 22.2± 3.3 23.1± 4.8 24.6± 3.9

Gaussian7 25 225 250 20.6± 11.5 13.1± 15.6 12.0± 13.6 1.8± 0.5

Gaussian7 50 250 250 6.9± 1.6 2.2± 1.3 4.1± 2.4 2.4± 1.2

USPS(2,5) 16 806 823 10.5± 4.7 5.6± 3.6 6.3± 2.8 5.4± 1.7

USPS(2,5) 32 790 823 5.4± 0.8 3.9± 0.6 6.4± 2.0 5.1± 1.5

USPS(2,7) 17 843 861 4.9± 2.9 2.3± 1.0 1.4± 0.2 3.6± 3.3

USPS(2,7) 34 826 861 2.8± 1.1 2.1± 1.0 1.3± 0.2 2.2± 0.6

USPS(3,8) 15 751 766 12.9± 8.3 8.0± 3.5 6.2± 2.7 10.8± 8.9

USPS(3,8) 30 736 766 7.3± 2.1 6.9± 2.2 6.4± 2.8 6.0± 2.9

USPS(8,0) 22 1, 108 1, 131 5.0± 2.0 2.8± 1.8 1.8± 0.6 3.4± 1.3

USPS(8,0) 45 1, 085 1, 131 3.0± 0.8 3.0± 1.8 2.0± 0.5 2.7± 1.0

MNIST(1,7) 40 960 1, 000 3.0± 1.2 3.4± 1.5 2.4± 1.0 2.6± 0.9

MNIST(1,7) 100 900 1, 000 2.0± 0.3 2.3± 0.8 2.3± 0.7 2.0± 0.5

MNIST(2,5) 40 960 1, 000 4.9± 1.2 3.8± 1.2 4.2± 1.5 4.1± 1.3

MNIST(2,5) 100 900 1, 000 3.7± 0.4 3.6± 0.6 3.3± 0.8 3.4± 0.6

MNIST(2,7) 40 960 1, 000 4.3± 1.1 3.6± 0.6 3.6± 1.2 4.0± 1.1

MNIST(2,7) 100 900 1, 000 3.3± 1.0 3.3± 0.4 3.2± 0.8 3.1± 0.6

MNIST(3,8) 40 960 1, 000 9.4± 2.0 10.1± 2.8 9.2± 2.2 8.8± 2.7

MNIST(3,8) 100 900 1, 000 6.9± 1.9 5.9± 0.7 6.9± 1.7 5.8± 0.9

TEXT 48 924 974 24.8± 9.6 6.7± 0.9 6.2± 0.9 8.2± 3.2

TEXT 389 584 973 4.9± 0.7 4.7± 0.4 5.0± 1.1 4.6± 0.6

Table 6.3. Classification performances of all competing approaches for the realistic scenario. As expected,
the performances for all approaches (including the supervised LIBSVM baseline) are worse compared to the
ones for the non-realistic scenario. However, the semi-supervised approaches are still capable of generating
better models in general. This is especially the case if a reasonable amount of labeled data is given in the
training set so that the model parameters can be selected in a reliable manner. Note that the performance
gain is (still) dramatic on some data set instances like the artificial data sets or the Text data set.

would like to point out that all considered methods are deterministic (i. e., no restarts are

performed). It is an important question if the results can be improved by putting more

effort into optimization. We will discuss this question below in a more detailed manner.

Computational Considerations

Let us finally analyze the practical runtime of the considered semi-supervised approaches.

Naturally, the runtimes depend heavily on the particular implementation and the used

programming language.11 Thus, the experiments depicted below shall only give a rough

idea of the runtimes needed in practice (e.g., for generating the above tables). Again, we

11The UniverSVM implementation is based on C, whereas S2RLSC and QN-S3VM are implemented in Python.
In general, implementations based on Python are said to be much slower than pure C-implementations.

118 CHAPTER 6. SPARSE QUASI-NEWTON OPTIMIZATION

0

2

4

6

8

10

50 150 300 400 500

R
u
nt
im

e
(s
ec
on
d
s)

Unlabeled Patterns

QN-S3VM
UniverSVM

S2RLSC

(a) Gaussian5

0
2
4
6
8
10
12
14

100 300 500 700 1000

R
u
nt
im

e
(s
ec
on
d
s)

Unlabeled Patterns

QN-S3VM
UniverSVM

S2RLSC

(b) USPS(8,0)

0

1

2

3

4

5

100 300 500 800

R
u
nt
im

e
(s
ec
on
d
s)

Unlabeled Patterns

QN-S3VM
UniverSVM

S2RLSC

(c) Text

Figure 6.4. Practical runtimes of all semi-supervised competitors on the Gaussian5, the USPS(8,0), and
the Text data set. The amount of labeled patterns is fixed, whereas the amount of unlabeled patterns is
varied. For all data sets and all semi-supervised approaches, the average runtimes of 10 single executions
are reported.

would like to point out that all schemes only improve a single guess via some kind of local

search and that no restarts are performed.

Small-Scale Settings. For the analysis of the practical runtimes to obtain the above

results, we consider the Gaussian5, the USPS(8,0), and the TEXT data sets. Again, we

resort to a linear kernel and fix the involved model parameters (λ = 1 and γ = 1 for

both S2RLSC and QN-S3VM and C = 1 and C* = 1 for UniverSVM). Further, the amount of

labeled patterns is fixed to l = 50, l = 22, and l = 48, respectively. In Figure 6.4, the

runtime behavior for all approaches given a varying amount of unlabeled patterns is shown.

For the Gaussian5 data set, both the S2RLSC and the QN-S3VM implementations seem to

outperform the UniverSVM implementation. For the USPS(8,0) data set, all methods

exhibit a quite similar runtime performance. This is not the case for the sparse Text data

set: Here, the S2RLSC implementation clearly shows a worse runtime behavior compared

to the other two ones. However, for this data, the QN-S3VM implementation can benefit

from the computational shortcut for sparse data depicted above. Note that even with 800

unlabeled examples, the practical runtime is less than a tenth of a second for QN-S3VM.

Again, we would like to point out that these results should only give a vague idea of

the runtime behavior. Especially for the S2RLSC implementation, it seems that significant

speed-ups could be obtained via a pure C implementation (the iteration over all iterations

forms a bottleneck for the Python implementation).

Large-Scale Settings. To sketch the applicability in large-scale scenarios, we consider

the MNIST(1,7) data set instance, where we now use all patterns and do not restrict the size

of the training set (as done for the exhaustive comparison given above): For such a large-

scale setting, approximation schemes like the ones depicted for both the S2RLSC and the

QN-S3VM approach become essential. On some data sets, such a scheme has the potential

6.5. DISCUSSION: MODEL SELECTION AND OPTIMIZATION 119

0
20
40
60
80
100
120
140

2000 3000 4000 5000

R
u
nt
im

e
(s
ec
on
d
s)

Unlabeled Patterns

QN-S3VM
UniverSVM

S2RLSC

(a) r = 500

0
20
40
60
80
100
120
140

2000 3000 4000 5000

R
u
nt
im

e
(s
ec
on
d
s)

Unlabeled Patterns

QN-S3VM
UniverSVM

S2RLSC

(b) r = 1, 000

Figure 6.5. Runtime results on the MNIST(1,7) data set for r = 500 and r = 1, 000. All approaches
exhibit a comparable runtime performance. Further, the kernel matrix scheme has the potential to signif-
icantly reduce the practical runtimes.

to dramatically reduce the runtime while not sacrificing a good classification performance,

see Chapter 5. For the following evaluation, we set the number of sub-columns/regressors

to r = 500 and r = 1, 000, respectively, and select the sub-columns/regressors uniformly

at random; the remaining setup is the same as above. Again, the amount of unlabeled

patterns is varied, see Figure 6.5. The runtime performances indicate a similar runtime

behavior of all approaches. Naturally, the practical runtime increases for both S2RLSC and

QN-S3VM in case the number of sub-columns/regressors is increased. Thus, in situations

where such a kernel matrix scheme can be applied without sacrificing the accuracy, both

methods can be accelerated significantly.

6.5 Discussion: Model Selection and Optimization

The above derivations show that (a) the semi-supervised approaches can successfully in-

corporate unlabeled data in an efficient manner, and that (b) even model selection seems

to work (to some degree) in realistic scenarios with only few labeled patterns. However,

the out of the box application of such semi-supervised schemes does not work in general

for all data sets. We will now discuss possible problems related to model selection and

optimization issues that arise in the considered semi-supervised learning settings.

6.5.1 Parameters, Parameters, and Parameters

Let us assume that one is capable of computing exact solutions for the combinatorial/non-

convex tasks at hand. Aiming at a comparison of different methods or at an application

of such schemes on real-world data, one is still faced with the following problems:

(a) Data Sets: Each data set and each partition into labeled, unlabeled, and test patterns

give rise to a particular classification task. This renders a meaningful comparison of

competing semi-supervised schemes difficult since it requires even more settings to

120 CHAPTER 6. SPARSE QUASI-NEWTON OPTIMIZATION

be compared (in contrast to, e.g., pure supervised learning settings).

(b) Model Parameters: Given a particular data set and a fixed partition, each assignment

of the model parameters gives rise to a particular optimization task. Thus, one is

given a huge variety of possible problem instances that have to be evaluated for

a meaningful comparison (in contrast to, e.g., the benchmark tasks given in non-

convex global stochastic optimization).

(c) Objective Functions: As depicted above, a common approach is to employ surrogate

loss functions that render the original task more amenable to efficient optimization.

While this is a reasonable approach for approximating the tasks at hand, it renders a

mutual comparison of competing methods difficult. This is due to the fact that one

cannot simply assess the performances based on the objective values (since different

objectives are minimized).

(d) Labeled Data: The non-realistic scenario is reasonable since one can analyze if the

model is capable of adapting to the structure of the data at hand (e.g., a linear

support vector machine cannot adapt to the non-linear structure present in the

Moons data set). However, in real-world settings, one has only access to a small

set of labeled patterns for model selection. As mentioned above, common methods

like cross-validation might not yield reasonable parameters in a stable manner. This

renders the out-of-the-box application of semi-supervised approaches difficult in real-

world settings.

(e) Misleading Parameters: Assume that one fixes the parameters beforehand. Then,

these parameters can also be misleading and an optimal solution could consists in, for

instance, assigning all parameters to one and the same class (for the semi-supervised

setting). Thus, the performance would become worse compared to a supervised

model even though an optimal solution is computed.

Hence, even if one is able to compute optimal solution in an efficient manner, one will still

be faced with the parameter problems depicted above. Note that the local search strategies

have the potential to work extremely well on data sets and parameter configurations giving

rise to somewhat easy tasks. However in real-world settings, one usually has to fix the

parameters beforehand. As we will show now, for such a fixed setup, it makes sense to

put more effort into optimization.

6.5.2 More Optimization

For a fixed setup (i. e., fixed data set, fixed partition for the unlabeled patterns, fixed model

parameters, and fixed objective function), one has to address the combinatorial/non-

6.5. DISCUSSION: MODEL SELECTION AND OPTIMIZATION 121

(a) Fγ(c) = 0.18342 (b) Fγ(c) = 0.13661

Figure 6.6. The large red squares and blue triangles depict the labeled patterns; the final partitions
of the unlabeled patterns are shown as small red squares and blue triangles. For this fixed setup, the
QN-S3VM approach shown in Figure (a) yields a worse solution compared to the more exhaustive stochastic
search performed by the CMA-ES implementation that is depicted in Figure (b).

convex optimization task itself. The results provided in Chapter 4 indicate that com-

puting exact solutions is possible but extremely time-consuming. Thus, in order to apply

the concept of semi-supervised support vector machines on real-world data, one has to

resort to heuristics that compute (possibly) suboptimal solutions. As we have seen above,

improving a single initial guess via a local search scheme is a well-known strategy in this

field and has the potential to yield good candidate solutions in an efficient kind of way.

However, such a local search strategy might also fail. As pointed out by Joachims [83], an

important question in this field is if the “results get even better, if we invest more time

into search”? We will now investigate this question briefly.

More Optimization Pays Off

The results given in Chapter 5 indicate that using a large number of restarts instead

of improving a single guess can lead to better results. We will now perform a similar

experiment for the continuous optimization perspective and compare the QN-S3VM approach

with another stochastic optimization framework. For this sake, we consider a fixed setup,

i. e., we use the Moons data set (with N = 100) and a particular partition of the patterns

into labeled and unlabeled patterns, see Figure 6.6. Further, we fix the model parameters

to σ = 0.1σ̂, λ = 2−7, and γ = 1, and use the subset of regressors approximation scheme

with r = 20. Thus, this setup gives rise to a single non-convex optimization task in R20

with the associated objective F̂γ(ĉ) to be minimized.

As a competitive optimization engine, we consider the covariance matrix adaptation

evolution strategy [109], which depicts a stochastic search method for addressing non-

convex tasks. For the considered implementation (CMA-ES) [72], we resort to the default

parameter setting. In Figure 6.6, the outcome of a comparison of the QN-S3VM and the

CMA-ES implementation is given. It can be seen that the latter implementation yields

122 CHAPTER 6. SPARSE QUASI-NEWTON OPTIMIZATION

a smaller objective (and the desired partition). Hence, this particular example clearly

demonstrates that putting more effort into optimization can be useful.12

The Curse of Dimensionality

In general, putting more effort into optimization is, of course, a good idea. However,

exploring the search space extensively becomes more and more difficult in high-dimensional

search spaces (in the above case, the dimension of the search space is determined by the

parameter r ≤ n). This is another example of the curse of dimensionality sketched in

Chapter 2: With increasing dimension of the search space, more and more candidate

solutions need to be evaluated for a meaningful exploration. In other words, the search

space becomes sparsely populated by the candidate solutions in high dimensions.

For the continuous optimization task considered in this chapter, the search space is

given by Rn for the general case and by Rr for the subset of regressors scheme with r ≤ n.

Hence, global stochastic optimization schemes are (only) feasible as long as n (or r) is not

too large. If this is not the case, one has to resort to local search heuristics like the ones

used in this chapter.

6.6 Concluding Remarks

In this chapter, we depicted the application of quasi-Newton schemes for the continuous

optimization task induced by semi-supervised support vector machines. It turns out that

this type of optimization scheme is well-suited for the given task due to its conceptual sim-

plicity and the possibility to greatly reduce the needed runtime by means of the proposed

shortcuts, both for sparse and non-sparse data. The experiments conducted in this chapter

indicate a similar classification performance of all competing semi-supervised approaches,

which was clearly better than the one of the supervised baseline. This was especially the

case for data sets exhibiting a low-density between the classes to be separated (as it seems

to be the case for, e.g., the TEXT data set). The superior performance compared to the su-

pervised model is not surprising since the considered semi-supervised schemes are all based

on the idea to improve a single initial guess obtained via a supervised model. Thus, such

frameworks can be seen as a rather conservative approach since one aims at computing

solutions that are, at least, not worse compared to the initial candidate solution.

12It seems that this is especially the case when only few unlabeled patterns are given since the structure
of the data is not well described in these cases (and this gives rise to more complicated tasks). Note that
a smaller objective value does not necessarily correspond to a better partition, i. e., a non-optimal solution
with respect to the objective might correspond to a desired partition of the unlabeled patterns.

Part III

Applications in Astronomy

123

CHAPTER 7

Machine Learning on Earth

M
odern telescopes in the field of astronomy gather huge amounts of data. On the

one hand, this offers the opportunity to generate meaningful machine learning

models and, hence, to automatically retrieve useful information from the corre-

sponding databases in an efficient kind of way. On the other hand, the sheer data volume

and the lack of labeled data lead to problem-specific challenges that render sophisticated

strategies essential for taking advantage of the data-rich situation. Surprisingly, machine

learning techniques have not been applied extensively in this field and are identified to

become essential for the analysis of astronomical data in the future [6, 17]. In this chapter,

we will describe the extraction of physically motivated features from raw spectra for the

task of identifying so-called quasars (a special type of astronomical objects) in spectro-

scopic surveys. As we will see, the extraction of such features in the preprocessing phase

can lead to a significantly better classification performance compared to a straightforward

use of the raw data. Continuum-subtracted versions of the spectra are the basis for this

extraction phase. To obtain these versions, we will propose modified support vector re-

gression models and will show (a) how to incorporate adaptable loss functions into the

framework and (b) how to address the induced optimization tasks efficiently. In addition to

this classification approach, we will sketch possible application domains of semi-supervised

learning schemes in astronomy like the ones discussed in the previous chapters.

Outline. In Section 7.1, we will start by describing the data situation for one of the

largest astronomical catalogs nowadays available in the field of astronomy and will provide

a brief physical background related to quasars. Afterwards, in Section 7.2, we will describe

125

126 CHAPTER 7. MACHINE LEARNING ON EARTH

(a) Apache Point Observatory

0
5
10
15
20
25
30
35
40

3000 4000 5000 6000 7000 8000 9000

F
lu
x
(1

0
−
1
7
e
rg

c
m

2
s
Å

)

Wavelength (Å)

u

g

r i

z

(b) Spectroscopic and Photometric Data

Figure 7.1. The telescope at the Apache Point Observatory collects both photometric and spectroscopic
data [132]. The photometric data is given in terms of grayscale photos that are obtained via five filters
covering different wavelength ranges, called the u, g, r, i, and z bands, see Polsterer [115] for details.
For a small subset of detected objects, detailed follow-up observations in terms of spectra are available.

the feature extraction scheme as well as the adaptable continuum fitting framework. The

potential of semi-supervised learning schemes in the field of astronomy will be sketched in

Section 7.3; concluding remarks will be provided in Section 7.4.

7.1 Motivation

The Sloan Digital Sky Survey (SDSS) is among the most important astronomical catalogs

nowadays available and is currently based on raw data of about 60 terabytes. One of the

main objectives of this survey is to find so-called quasi-stellar radio sources (quasars).

In this section, we will provide a brief overview of the collected data and will sketch the

physical background related to these objects.

7.1.1 Massive Data in Astronomy

A wide range of different types of data is collected in the field of astronomy. In this

chapter, we will focus on the data gathered for the above catalog. The associated 2.5-

meter telescope of this project is equipped with two special-purpose instruments: a 120

mega pixel camera and a pair of spectrographs, see Figure 7.1 (a). The former instrument

produces photometric data whereas the latter one collects spectroscopic data.

Photometric Data

Photometric data corresponds to grayscale photos obtained at different wavelengths. The

120 mega pixel camera, for instance, gathers this type of data through five filters that cover

different wavelength ranges, called the u, g, r, i, and z bands [132], see Figure 7.1 (b).

Thus, for each region of the observed sky, five grayscale photos are given as raw data

for the anticipated catalog. This raw data usually forms the basis for a preprocessing

phase that aims at (a) detecting the visible objects (e.g., stars, galaxies, quasars, . . .),

7.1. MOTIVATION 127

and at (b) retrieving physically motivated features for each of the detected objects. One

group of these features are the so-called magnitudes, which depict logarithmic measures of

the brightness. Among the most established feature extraction schemes (leading to these

magnitudes) are the PSF and the Model approach [132], each yielding a single feature per

object and per band. These ten photometric features are stored in the catalog, along with

other extracted features and data items. An important issue in this context is the fact

that this type of data is used for the spectroscopic target selection, i. e., the spectroscopic

follow-up observations are usually made based on such extracted photometric features.

Spectroscopic Data

While obtaining photometric data is relatively inexpensive, more detailed observations

in terms of spectra are only given for a comparable small amount of objects due to the

involved time-consuming collection process.1 A spectrum of an astronomical object con-

tains precise information about the light reaching the earth at the different wavelengths,

see again Figure 7.1 (b). The importance of spectra in the field of astronomy is due to

the fact that ground-truth information can often only be obtained via this type of data,

i. e., given only the photometric data, an expert in this field might not be able to differen-

tiate between similar objects like special stars and quasars. Thus, these time-consuming

follow-up observations are important to obtain information about an object’s true nature.

Lack of Labels

Although a huge amount of unlabeled (photometric) data is given, labeled data are usually

scarce in astronomy. This is mainly due to two issues: Firstly, obtaining labels usually

requires expert knowledge (or at least a careful visual inspection). For instance, obtaining

good labels for the task of classifying galaxies based on their shapes is quite a difficult

task and led to citizen science projects like Galaxy Zoo [57] that aim at gathering a huge

amount of labels provided by human beings. Secondly, obtaining reliable labels for, e.g.,

photometric data items might require time-consuming spectroscopic observations. Both

problems lead to a general lack of reliable labels in this field and, thus, render a direct

application of pure supervised models difficult for specific learning tasks.

7.1.2 Quasi-Stellar Radio Sources

One of the most interesting challenges in astronomy is the one of detecting distant quasi-

stellar radio sources (quasars). Due to their extreme luminosities, quasars are among the

1The current release of the SDSS contains photometric data of about one billion objects whereas spectra
are only available for about two million objects. However, the amount of spectra will greatly increase with
future projects like the Large Sky Area Multi-Object Fiber Spectroscopic Telescope [138].

128 CHAPTER 7. MACHINE LEARNING ON EARTH

0
5
10
15
20
25
30
35
40
45

4000 5000 6000 7000 8000 9000F
lu
x
(1
0−

1
7
er
g
c
m

−
2
s−

1
Å

−
1
)

Wavelength (Å)

(a)

-5

0

5

10

15

20

25

4000 5000 6000 7000 8000 9000F
lu
x
(1
0−

1
7
er
g
c
m

−
2
s−

1
Å

−
1
)

Wavelength (Å)

(b)

-5

0

5

10

15

20

25

30

4000 5000 6000 7000 8000 9000F
lu
x
(1
0−

1
7
er
g
c
m

−
2
s−

1
Å

−
1
)

Wavelength (Å)

(c)

-10
-5
0
5
10
15
20
25
30

4000 5000 6000 7000 8000 9000F
lu
x
(1
0−

1
7
er
g
c
m

−
2
s−

1
Å

−
1
)

Wavelength (Å)

(d)

-10

-5

0

5

10

15

20

4000 5000 6000 7000 8000 9000F
lu
x
(1
0−

1
7
er
g
c
m

−
2
s−

1
Å

−
1
)

Wavelength (Å)

(e)

-2
0
2
4
6
8
10
12
14
16
18

4000 5000 6000 7000 8000 9000F
lu
x
(1
0−

1
7
er
g
c
m

−
2
s−

1
Å

−
1
)

Wavelength (Å)

(f)

Figure 7.2. Spectroscopic data for objects of type other (top row) and of type quasar (bottom row).
The typical spectrum of a quasar shows broad emission lines and almost no absorption lines [132].

most distant objects in the universe that can be observed. Depending on the distance of

an object at hand, it takes up to billions of years for the emitted radiation to reach the

earth. Therefore, this radiation reveals important information about the long-ago state

of a quasar and, thus, about the early universe [62]. Such objects depict point sources

and often look very similar to stars if only photometric data is considered. However,

quasars exhibit remarkable spectra that look quite different from those of other objects.

In Figure 7.2, several spectra of other objects (top row) and quasars (bottom row) are

shown. Note that the typical spectrum of a quasar shows broad emission lines and almost

no absorption lines. Here is an explanation for this phenomenon provided by an expert in

this field [62]:

“The broad emission lines in the spectrum of a quasar result from the fact that,

while observing the direct vicinity of the supermassive black hole, one observes a

region with a higher gravitational potential and thus higher orbiting velocities of

the accretion disk material. Such high velocities yield to a Doppler broadening of

the emission lines, in this strength only present for active galactic nuclei-powered

sources.”

In the following, we will derive an efficient and adaptable approach to extract the contin-

uum (i. e., the rough shape) of a given spectrum and will demonstrate that such models

can be used to extract meaningful, physically motivated features that capture the charac-

teristic properties of quasars.

7.2. DETECTING QUASARS IN LARGE-SCALE SPECTROSCOPIC SURVEYS 129

7.2 Detecting Quasars in Large-Scale Spectroscopic Surveys

Experts in the field of astronomy can easily identify quasars given spectroscopic data.

Note that while such features are quite obvious for human beings, they can remain hidden

for machine learning models due to the huge number of small emission lines and absorption

lines. In this section, we will make use of expert-based features for the task of discrimi-

nating quasars from other objects given spectroscopic data. As we will see, these features

will lead to a significant better classification performance compared to the direct use of

the raw spectra. The basis for the definition of these features are appropriate continuum

fits that are obtained via an adapted version of support vector regression schemes. We

will now provide the details.

7.2.1 Speedy Adaptable Continuum Extraction

Standard schemes for obtaining continuum fits in the field of astronomy are based on,

e.g., spline models [75, 132]. As an alternative approach, we propose the use of modified

support vector regression models in this context. For this sake, we consider each spectrum

as labeled training set TL = {(x′1, y′1), . . . , (x′l, y′l)} ⊂ R×R with patterns corresponding to

wavelengths and labels corresponding to flux values. As depicted in Chapter 3, standard

regression models are of the form

inf
f∈Hk, b∈R

1

l

l∑
i=1

L(y′i, f(x′i) + b) + λ‖f‖2Hk (7.1)

with feature space Hk and appropriate loss function L : R×R→ [0,∞). Two issues arise

in this context: Firstly, the task of estimating such a continuum actually differs from

a standard regression task. Given a spectrum of a quasar, for instance, one would like

to ignore the typical broad emission lines. This can be achieved by penalizing complex

functions; however, too simple models that are not capable of adapting to the spectra at

hand are not desired as well. Secondly, recurrently training a support vector regression

model for high-dimensional spectra can be quite time-consuming (since the amount of

needed operations is usually cubic in the number of input patterns for generating such

models).

To alleviate these two problems, we propose a variant of the well-known support vector

regression concept: The semiparametric representer theorem (Fact 3.2) states that every

optimal hypothesis function for the above task is of the form

f(·) =

l∑
j=1

cjk(·,x′j) + b (7.2)

130 CHAPTER 7. MACHINE LEARNING ON EARTH

with appropriate coefficients c1, . . . , cl ∈ R, i. e., the optimal function is composed of the

sum of weighted kernel expansions, called basis vectors, that are centered on the training

patterns (and shifted by the offset term b).2 The efficient optimization framework we

consider in this context is based on a simple yet crucial observation: In contrast to standard

regression problems, one is only given a one-dimensional input space (i. e., X = R). This

means that a representation of the above form is lavish since a smooth model (desired in

this context) does not require, e.g., thousands of basis vectors.3 This leads to the subset

of regressors scheme [120] that was also considered in the previous chapters, i. e., instead

of making use of all l basis vectors, we will consider functions of the form

f̂(·) =
r∑
j=1

ĉijk(·,x′ij) + b (7.3)

with index set R = {i1, . . . , ir} and r � l. This observation can be used to greatly speed

up the computation of the desired models (see below).4

Non-Symmetric Differentiable Loss Functions

The considered loss function plays an important role in this context. For instance, using

the square loss might be a bad choice since large emission and absorption lines are penalized

heavily, and, hence, could lead to inappropriate fits for, e.g., quasars. The ε-insensitive

loss shown in Figure 7.3 (b) is a better choice for such scenarios since outliers are only

penalized in a linear manner. Unfortunately, the ε-insensitive loss is not differentiable,

which precludes a direct application of gradient based methods. Aiming at the application

of such optimization schemes, we consider

L(ζ1,ζ2,η,ε)(y, t) =
ζ1
η

log (1 + exp (−η (t− y + ε)))+
ζ2
η

log (1 + exp (+η (t− y − ε))) (7.4)

as surrogate loss function. Here, the parameters ζ1, ζ2, and ε ∈ R+ determine the left

slope, the right slope, and the region [y − ε, y + ε] of predictions that are not penalized,

respectively; the parameter η ∈ R+ defines the smoothness of the hinges at y ± ε (and is

fixed to η = 20 throughout this chapter). In Figure 7.3, several loss function instances

are shown. Note that this type of surrogate loss function has the following two beneficial

properties: Firstly, it can be adapted to the task at hand. For instance, to reduce the

2For the RBF kernel, for instance, each such basis vector corresponds to a Gaussian bump.
3More precisely, a small amount of basis vectors (e.g., 50) should be sufficient for most spectra. Of

course, this depends on the particular fitting task, the used kernel function, and the particular assignments
for the (kernel) parameters.

4Note that the loss is still evaluated on all patterns in this case; simply considering only a small set of
patterns (wavelengths) as input might not be reasonable due to large emission lines and absorption lines
present in such spectroscopic data.

7.2. DETECTING QUASARS IN LARGE-SCALE SPECTROSCOPIC SURVEYS 131

0

0.5

1

1.5

2

2.5

-2 -1 0 1 2 3 4

(a)

0

0.5

1

1.5

2

2.5

-2 -1 0 1 2 3 4

(b)

0

0.5

1

1.5

2

2.5

-2 -1 0 1 2 3 4

(c)

0

0.5

1

1.5

2

2.5

-2 -1 0 1 2 3 4

(d)

0

0.5

1

1.5

2

2.5

-2 -1 0 1 2 3 4

(e)

0

0.5

1

1.5

2

2.5

-2 -1 0 1 2 3 4

(f)

Figure 7.3. The figures depict the square and the ε-insensitive loss as well as (non-symmetric) differen-
tiable surrogates of the latter one defined via Equation (7.4). For all surrogate functions, the parameter
η is fixed to 20. The appearance of these loss functions can be adapted via the parameters ζ1, ζ2, and ε.
For instance, Figure (c) stems from y = 1, ζ1 = 1.0, ζ2 = 1.0, and ε = 0.5, whereas Figure (f) is induced
by y = 1, ζ1 = 0.1, ζ2 = 1, and ε = 0.1.

influence of broad emission peaks (typical of quasars), one can resort to Figure (f) as

loss function since downward deviations are less penalized than upward deviations. Sec-

ondly, the loss function is differentiable, which renders the application of gradient based

optimization schemes possible. As we will see, these two properties will lead to highly

adaptable continuum models that can be obtained in an efficient kind of way.

Gradient Based Optimization

We will now show how to address the induced optimization task. By plugging the differen-

tiable surrogate (7.4) into the objective (7.1) and by making use of the subset of regressors

scheme, one obtains

minimize
ĉ∈Rr, b∈R

F (ĉ) =
1

l

l∑
i=1

ζ1
η

log
(

1 + exp
(
−η
(
f̂(x′i) + b− y′i + ε

)))
(7.5)

+
1

l

l∑
i=1

ζ2
η

log
(

1 + exp
(

+η
(
f̂(x′i) + b− y′i − ε

)))
+ λĉTK̂ĉ

as optimization task with kernel matrix K̂ ∈ Rr×r and f̂ defined via Equation (7.3).

Similar to the standard support vector regression framework depicted in Chapter 3, one

can easily show the convexity of this new task: The surrogate loss function L(ζ1,ζ2,η,ε)(y, ·)
is convex on R for fixed y ∈ R. This yields the convexity of the first two terms since the

132 CHAPTER 7. MACHINE LEARNING ON EARTH

sum of convex functions is convex. The last term is convex due to the kernel matrix being

positive definite [20]. It is easy to show that both the objective and the gradient can be

computed efficiently for an intermediate solution ĉ ∈ Rr:

Lemma 7.1 Given a spectrum represented as training set TL = {(x′1, y′1), . . . , (x′l, y′l)} ⊂
R× R, the above objective F (ĉ) and gradient ∇F (ĉ) can be computed in O(rl) time for

each intermediate solution ĉ ∈ Rr.

Proof: The partial derivative with respect to cip is given by

∂F (c)

∂cip
= −1

l

l∑
i=1

ζ1 exp
(
−η
(
f̂(x′i) + b− y′i + ε

))
k(x′i,x

′
ip

)

1 + exp
(
−η
(
f̂(x′i) + b− y′i + ε

)) (7.6)

+
1

l

l∑
i=1

ζ2 exp
(

+η
(
f̂(x′i) + b− y′i − ε

))
k(x′i,x

′
ip

)

1 + exp
(

+η
(
f̂(x′i) + b− y′i − ε

)) + 2λ
r∑
j=1

cijk(x′ij ,x
′
ip).

A similar term can be obtained for the partial derivative with respect to b. Since the term

ĉTK̂ĉ and all predictions f̂(x′1), . . . , f̂(x′l) can be obtained in O((r + 1)2) = O(r2) and

O((r + 1)l) = O(rl) time, respectively, each function and gradient call can be performed

in O(rl) total time. �

Hence, the differentiable surrogate loss renders the application of gradient based optimiza-

tion engines like Newton or quasi-Newton schemes [108] possible.5 Note that numerical

instabilities might again occur when performing a function or gradient call. However,

exactly as in the the previous chapter, one can handle these issues in a safe manner since
exp(t)

1+exp(t) − 1→ 0 converges rapidly for t→∞ and, thus, permits a replacement of critical

values by the above limit for, e.g., t > 500.

Adaptable Continuum Models

Besides rendering the application of gradient based methods possible, the above differen-

tiable surrogate loss function can also be used to adapt to the specific tasks at hand: In

Figure 7.4, the obtained continuum models for three different spectra are shown. Here, an

RBF kernel with varying kernel width σ is used to generate all models. Further, for each

row, different assignments for the parameters ζ1 and ζ2 are considered (the top row corre-

sponds to the loss function shown in Figure 7.3 (c), whereas the middle and bottom rows

5For the sake of simplicity, we will resort to the latter class of techniques that only require the objective
and its associated gradient to be provided. From a practical and theoretical point of view, the application
of Newton’s method might be beneficial in this context as well and will be subject of future work.

7.2. DETECTING QUASARS IN LARGE-SCALE SPECTROSCOPIC SURVEYS 133

-5

0

5

10

15

20

25

30

4000 5000 6000 7000 8000 9000F
lu
x
(1
0−

1
7
er
g
c
m

−
2
s−

1
Å

−
1
)

Wavelength (Å)

(a) σ = 250

-5

0

5

10

15

20

25

30

4000 5000 6000 7000 8000 9000F
lu
x
(1
0−

1
7
er
g
c
m

−
2
s−

1
Å

−
1
)

Wavelength (Å)

(b) σ = 500

-5

0

5

10

15

20

25

30

4000 5000 6000 7000 8000 9000F
lu
x
(1
0−

1
7
er
g
c
m

−
2
s−

1
Å

−
1
)

Wavelength (Å)

(c) σ = 1, 000

0
5
10
15
20
25
30
35
40
45

4000 5000 6000 7000 8000 9000F
lu
x
(1
0−

1
7
er
g
c
m

−
2
s−

1
Å

−
1
)

Wavelength (Å)

(d) σ = 250

0
5
10
15
20
25
30
35
40
45

4000 5000 6000 7000 8000 9000F
lu
x
(1
0−

1
7
er
g
c
m

−
2
s−

1
Å

−
1
)

Wavelength (Å)

(e) σ = 500

0
5
10
15
20
25
30
35
40
45

4000 5000 6000 7000 8000 9000F
lu
x
(1
0−

1
7
er
g
c
m

−
2
s−

1
Å

−
1
)

Wavelength (Å)

(f) σ = 1, 000

-15
-10
-5
0
5
10
15
20
25

4000 5000 6000 7000 8000 9000F
lu
x
(1
0−

1
7
er
g
c
m

−
2
s−

1
Å

−
1
)

Wavelength (Å)

(g) σ = 250

-15
-10
-5
0
5
10
15
20
25

4000 5000 6000 7000 8000 9000F
lu
x
(1
0−

1
7
er
g
c
m

−
2
s−

1
Å

−
1
)

Wavelength (Å)

(h) σ = 500

-15
-10
-5
0
5
10
15
20
25

4000 5000 6000 7000 8000 9000F
lu
x
(1
0−

1
7
er
g
c
m

−
2
s−

1
Å

−
1
)

Wavelength (Å)

(i) σ = 1, 000

Figure 7.4. The figures depict the continuum fits obtained via the adaptable approach proposed in this
chapter. For all figures, an RBF kernel with kernel width σ ∈ {250, 500, 1000} is used and λ is set to
λ = 1

2l
. Each spectrum is represented as labeled training set TL = {(x′1, y′1), . . . , (x′l, y

′
l)} ⊂ R × R with

l = 3, 825 and r is set to 50. For the top row, the loss function depicted in Figure 7.3 (c) is used; for the
middle and bottom rows, the functions given in Figure 7.3 (e) and (f) are used, respectively. The kernel
width determines the influence of neighbored wavelength patterns and is increased from left to right. The
final continuum is given as a black dashed line.

correspond to Figures 7.3 (e) and (f), respectively). Clearly, the models get less complex

from left to right (i. e., for increasing kernel widths); a similar effect can be obtained by

modifying the parameter λ. In addition, by using the particular loss function instances,

one can determine whether the model should go through, above, or below the spectra.

Note, for instance, that the continuum models in the last row of Figure 7.3 lie below the

considered spectrum and are less influenced by the existent broad emission lines.

It is worth pointing out that even more flexible models can be obtained by considering

different loss function instances for specific regions of wavelengths. For instance, one could

enforce the continuum model to lie below the spectrum at hand for smaller wavelengths

and above the spectrum for larger ones. In addition, other kernel functions than the

134 CHAPTER 7. MACHINE LEARNING ON EARTH

0

2

4

6

8

10

3000 4000 5000 6000 7000 8000 9000 10000

R
u
n
ti
m
e
(s
ec
on

d
s)

Dimension of Spectrum

SVR

QN-SVR

(a)

0

2

4

6

8

10

50 100 150 200 250 300 350 400 450 500

R
u
n
ti
m
e
(s
ec
on

d
s)

Number of Basis Vectors

(b)

Figure 7.5. The runtime of the adapted continuum model scheme (QN-SVR) is compared to the one of a
standard support vector regression model (LIBSVM) in Figure (a). Further, the dependence of the practical
runtime with respect to the number of considered basis vectors is analyzed in Figure (b) for an artificially
created input spectrum of dimension 10, 000.

RBF kernel could be employed. This yields extremely flexible continuum models that are

well-suited for approaching a variety of tasks in the field of astronomy.

Computational Considerations

In addition to such flexible continuum models, future spectroscopic surveys will require

methods that can handle high-dimensional spectra in an efficient kind of way. To analyze

the runtime behavior of the proposed approach in this context, we consider artificially cre-

ated spectra of increasing dimensions. In Figure 7.5 (a), a runtime comparison between a

standard support vector regression implementation (LIBSVM) and the above quasi-Newton

framework (QN-SVR) is given (for fixed parameter assignments and r = 50).6 It can be

clearly seen that the latter scheme exhibits a superior runtime performance.7 In general,

a small number r of basis vectors should be sufficient for most spectra (see above). In

case more basis vectors are needed for representing appropriate continuum models, one

can increase the amount of basis vectors while still being computationally efficient, see

Figure 7.5 (b).

From High- to Low-Dimensional Features

Below, we will consider expert-based features that are defined on continuum-subtracted

versions of the raw spectra. For this sake, we apply the QN-SVR approach depicted above

with fixed model parameters (RBF kernel with σ = 1000 and ζ1 = 0.5, ζ2 = 1.0, ε = 0.1,

r = 50, and λ = 1
2l) and consider the differences between the raw spectra and the resulting

6As optimization engine, we resort to the L-BFGS implementation optimize.fmin l bfgs b [26] pro-
vided by the Scipy package with m = 50, factr = 105, and maxfun = 1, 000. The runtime experiments
were conducted on a 2.8 GHz Intel Quad CoreTMPC running Ubuntu 11.10.

7Further, the needed function calls for QN-SVR were less than 100 for all runs.

7.2. DETECTING QUASARS IN LARGE-SCALE SPECTROSCOPIC SURVEYS 135

-10
-5
0
5
10
15
20
25
30

4000 5000 6000 7000 8000 9000F
lu
x
(1
0−

1
7
er
g
c
m

−
2
s−

1
Å

−
1
)

Wavelength (Å)

(a)

-30
-20
-10
0
10
20
30
40
50

4000 5000 6000 7000 8000 9000F
lu
x
(1
0−

1
7
er
g
c
m

−
2
s−

1
Å

−
1
)

Wavelength (Å)

(b)

-10

-5

0

5

10

15

20

4000 5000 6000 7000 8000 9000F
lu
x
(1
0−

1
7
er
g
c
m

−
2
s−

1
Å

−
1
)

Wavelength (Å)

(c)

Figure 7.6. Continuum-subtracted versions of raw spectra that form the basis for the extraction of expert-
based features. As input for the extraction chain, binned versions of the spectra of dimension d = 500 are
considered, i. e., consecutive flux values are merged such that the desired dimension is obtained [62].

continuum models. Further, we set those differences to zero that are smaller than a spe-

cific threshold δ (set to the one standard deviation of all differences), and consider binned

versions of the raw spectra as input for the extraction phase that stem from averaging

consecutive flux values (resulting in spectra of dimension d = 500). The output of this

preprocessing chain is depicted in Figure 7.6. It can be clearly seen that the character-

istic features of quasars (i. e., the broad emission lines) are emphasized. The resulting

continuum models and the associated continuum-subtracted spectra can be used to define

a small set of ten physically motivated features (the first/last values of the continuum

model, the sum of all positive/negative peaks, the width of the broadest negative/positive

peaks, the major/minor peak intensity, and the major face of positive/negative peaks),

see Gieseke et al. [62] for details. As we will see below, such features are well-suited for

the task of discriminating quasars from other objects.

7.2.2 Discriminating Quasars from Other Objects

We will now discuss the benefits of the above extraction scheme in the context of identifying

quasars in large-scale spectroscopic surveys. It should be pointed out, however, that the

generation of adaptable continuum models is of independent interest in astronomy and

other application fields.

Experimental Setup

The data set used for the experimental evaluation is based on the sixth data release of the

SDSS and contains N = 1, 024 patterns with 512 objects of type quasar and 512 objects

of type other; the labels for these objects were obtained by an expert in this field [62].

As classification model, we consider a standard support vector machine implementation

(LIBSVM) [29] and make use of both a linear and an RBF kernel. To train and evaluate

the classifier, half of the data set is used as training and the other half as test set. Model

136 CHAPTER 7. MACHINE LEARNING ON EARTH

0

5

10

15

20

25

30

35

5 10 15 20 25 30 35 40 45 50
T
es
t
E
rr
or

(%
)

Amount of Labeled Data (%)

spectroscopic
combined differences

extracted features

Figure 7.7. The classification performances of a support vector machine based on three different feature
sets for a varying amount of labeled input patterns is shown. It can be observed that the extraction
of expert-based features leads to the best performance. Further, the feature set based on the continuum-
subtracted versions of the spectra exhibits a better performance compared to a direct use of the raw spectra.

selection is done via 5-fold cross validation performed on the training set, and the final

performance is measured via the test error. To tune the non-fixed parameters, we con-

sider σ ∈ {2−5σ̂, . . . , 25σ̂} (see page 113 for the definition of σ̂) and C ∈ {2−10, . . . , 210}
as possible parameter assignments. Further, we resort to three different feature sets:

The first one is based on the binned versions of the raw spectra (spectroscopic) with

dimension d = 500. The second one is based on the continuum models and the continuum-

subtracted spectra (combined differences). Here, each continuum model and its associ-

ated continuum-subtracted spectrum are concatenated (d = 1000), and the influence of a

continuum value is reduced by a factor of ten. The third set is based on the expert-based

features (extracted features) described above with d = 10. A linear kernel is used for

the first two data sets, whereas an RBF kernel is employed for the last one.

Classification Performance

The classification performance of the support vector machine for the three different feature

sets is given in Figure 7.7 for a varying amount of labeled patterns (the remaining patterns

in the training set are ignored for each setting). It can be seen that the best performance

is obtained using the low-dimensional expert-based feature space as input (extracted

features). Further, the feature set based on the continuum-subtracted versions of the

raw spectra (combined differences) lead to a superior performance compared to the raw

spectra (spectroscopic). Hence, for this particular task, emphasizing the characteristic

features of quasars via the proposed extraction scheme depicts a simple but effective way

to obtain valuable classification models.

7.3 Semi-Supervised Learning Perspectives

Note that the feature extraction framework given above depicts an alternative way to

cope with the curse of dimensionality, i. e., to reduce the amount of needed labeled data

7.3. SEMI-SUPERVISED LEARNING PERSPECTIVES 137

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10

T
es
t
E
rr
or

(%
)

Amount of Labeled Data (%)

SVM

QN-S3VM

(a) combined differences

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10

T
es
t
E
rr
or

(%
)

Amount of Labeled Data (%)

SVM

QN-S3VM

(b) extracted features

Figure 7.8. The outcome of a semi-supervised support vector machine compared to a support vector
machine base. The results depicted in Figure (a) show that significant improvements can be obtained by
incorporating the unlabeled data. For the extracted features, only minor improvements can be observed.

for achieving a satisfying performance. However, such features might not be available for

specific learning tasks. Further, the labeling of such objects is time-consuming and might

only be given for a small set of labeled objects. In this section, we will depict the use of

semi-supervised support vector machines for the above task. In addition, we will sketch

multi-view learning settings that might play an important role as well for the automatic

analysis of astronomical data sets in the near future.

7.3.1 Semi-Supervised Support Vector Machines for Spectroscopic Data

We will briefly sketch the possible application of semi-supervised support vector machines

in the above context.

Experimental Setup

We resort to the QN-S3VM implementation derived in the previous chapter (using the ex-

perimental setup described in Section 6.4). Again, we increase the amount of labeled

patterns (with respect to the size of the training set) and consider the remaining patterns

in the training set as unlabeled patterns. The involved model parameters are tuned via

5-fold cross validation on the labeled part of the training set (i. e., the realistic scenario is

considered). As supervised competitor, we consider the LIBSVM implementation using the

experimental setup depicted above.

Classification Performance

The outcome of this experiment is shown in Figure 7.8 for the two feature sets combined

differences and extracted features. For the first one, a linear kernel is used, whereas

an RBF kernel is employed for the second one. It can be clearly seen that the semi-

supervised scheme outperforms the supervised baseline for the combined differences

138 CHAPTER 7. MACHINE LEARNING ON EARTH

feature set; for instance, considering only five percent of the patters in the training set as

labeled data, an improvement of about three percent with respect to the test error can be

observed. Further, slight improvements can also be observed for the second feature set.

Hence, these results indicate the potential of semi-supervised support vector machines in

this context. Note that a lot of the values in the continuum-subtracted versions of the

raw spectra are zero, i. e., such continuum-subtracted spectra exhibit desired sparseness

properties. An interesting future research direction is the question whether appropriate

machine learning techniques can be applied to take advantage of this data situation.

7.3.2 Multiple Views: Photometric and Spectroscopic Data

Several other semi-supervised concepts can be found in the machine learning field. One

of these concepts is multi-view learning [22, 23, 122, 129, 130]. Frameworks belonging to

this class of learning schemes split up the features into independent sets, called views, and

the model is built based on these views. A typical example of such views are web pages,

where each document can be represented by (a) the words occurring on the page and by

(b) the images shown on it. In the context of multi-view learning, the goal of the learning

task consists in finding, for each view, a prediction function that performs well on the

labeled data of the designated view, and, at the same time, agrees on the unlabeled data

with the prediction functions learned on the remaining views. Such multi-view schemes

do not only exist for classification scenarios, but also for a variety of other learning tasks

like clustering or regression. In the context of astronomy, so-called ranking tasks could

play an important role in future. In the remainder of this section, we will briefly describe

both concepts and will sketch their potential in the field of astronomy.

Co-Regularization Frameworks

The concept of co-regularization depicts one possible formalization of the multi-view

learning concept [130]. Briefly stated, algorithms based upon such frameworks search

for hypotheses f1 ∈ H1, . . . , fM ∈ HM from different reproducing kernel Hilbert spaces

H1, . . . ,HM such that the error of each hypothesis on the labeled part of the data is

small and that, at the same time, all hypotheses give similar predictions for the unlabeled

data patterns. Within such frameworks, the hypothesis spaces H1, . . . ,HM can stem from

different features (like, e.g., photometric and spectroscopic data) and/or different kernel

functions and the disagreement between the prediction functions is taken into account via

a so-called co-regularization term (see below). In the literature, both empirical [22, 23, 130]

and theoretical [122, 129] results indicate the potential of co-regularization frameworks.

7.3. SEMI-SUPERVISED LEARNING PERSPECTIVES 139

Ranking

The goal of ranking consists in deriving a model that can order objects. There are several

definitions of such ranking tasks. One of them is object ranking [56], where one aims at

predicting the rank for any unseen subset O ⊆ C of a class of possible objects C. Another

popular one is label ranking, where the goal consists in predicting, for every instance

x ∈ X of the input space X , a preference relation Px ⊆ L × L among a finite set of

possible labels/alternatives. Here, a pair (ρ, ρ′) ∈ Px means that the instance x prefers

label ρ to ρ′ [56]. A typical label ranking example is, for instance, the task to predict, for

each search engine query, a ranking of available web pages.

Outlook: Multi-View Ranking in Astronomy

For general ranking tasks, a variety of supervised learning schemes exist, see, e.g., Her-

brich et al. [74] and Joachims [85]. A recent semi-supervised approach that combines

both the concept of ranking and the one of multi-view learning is given by Tsivtsivadze et

al. [139].

Co-Regularized Least-Squares Ranking in Short. We will briefly sketch the main

idea of this learning approach and refer the reader to Tsivtsivadze et al. [139] for a de-

tailed description. As for every semi-supervised learning framework, one is given a labeled

training set TL and an unlabeled one TU . Further, one is given M different reproducing

kernel Hilbert spaces H1, . . . ,HM and associated kernel functions k1, . . . , kM . The goal

of the learning process is to find a tuple f = (f1, . . . , fM) ∈ H1 × . . . ×HM of prediction

functions that minimizes an objective of the form:

J(f) =

M∑
v=1

c(fv, TL) + β

M∑
v,u=1

V (fv, fu, TU) + λ

M∑
v=1

‖fv‖2Hv (7.7)

Here, the function c measures the loss c(fv, TL) for each prediction function fv on the

labeled part of the data, and the second term measures the mutual disagreement of all

prediction functions on the unlabeled part. The third term penalizes complex prediction

functions. Hence, the second summand can be seen as an additional co-regularization

term that enforces the prediction functions (trained on the different views) to yield similar

predictions for unlabeled patterns. Again, the parameters λ ∈ R+ and β ∈ R+ can be

used to determine the trade-off between all objectives. Both the cost function c for the

labeled patterns and the cost function V for the unlabeled ones take the specific properties

of the ranking task into account. In contrast to the optimization tasks induced by semi-

supervised support vector machines, however, the above learning setting leads to a convex

140 CHAPTER 7. MACHINE LEARNING ON EARTH

optimization task whose solution can be obtained analytically by solving a system of

linear equations. We omit the lengthy mathematical derivations here and refer the reader

to Tsivtsivadze et al. [139] for a comprehensive description of this learning concept.

Applications in Astronomy. An interesting future research direction is the question if

such sophisticated semi-supervised ranking methods can outperform standard supervised

(regression) techniques for specific learning tasks in astronomy. Note that for objects in

the Sloan Digital Sky Survey that have already been target of a spectroscopic follow-up

observation, one is also given photometric data. Hence, for those objects, one has access to

two different views as well. While the information gain might be limited for point-shaped

objects like stars or quasars (since one already has the detailed information provided by

the associated spectra), photometric data provides valuable additional information for

extended objects like galaxies. One possible task could consist, for instance, in ranking

all elliptical, spiral, or lenticular galaxies (according to, e.g., the Hubble sequence [78])

while taking both photometric and spectroscopic data into account for generating the

anticipated model.

7.4 Concluding Remarks

In this chapter, we have derived an adaptable continuum fitting method that can be applied

to spectroscopic data in astronomy and other application fields. The proposed models de-

pict variants of standard support vector regression schemes and can be efficiently obtained

by making use of the special properties of the input space in this context. In addition to

being computationally extremely efficient (even for high-dimensional spectra), the models

can be adapted to the specific tasks at hand. While being of independent interest, we

showed the use of this continuum extraction scheme in the context of classifying quasars

in spectroscopic surveys. More precisely, we made use of continuum-subtracted versions

of the raw spectra to define a small set of physically motivated features. These features

led to a significantly better classification performance compared to a straightforward use

of the raw data. In addition, we described the use of semi-supervised support vector ma-

chines for this particular task. Finally, we sketched the concepts of multi-view learning

and ranking, which depict promising learning techniques in the field of astronomy as well.

CHAPTER 8

Machine Learning in Space

T
he previous chapter dealt with the automatic analysis of astronomical data sets on

earth. For such settings, the lack of labeled data and the sheer data volumes render

the direct application of machine learning methods challenging. In this chapter,

we will focus on the data analysis in space, i. e., on the analysis taking place on today’s

spacecraft systems. While similar problems have to be tackled for such scenarios as for the

ones on earth, one is additionally faced with computational problems that are related to

(a) the limited computational resources of such spacecraft systems and to (b) the cosmic

radiation present in space. As we will see, both issues can lead to undesired memory

corruptions (bit flips) that can have a severe influence on the performed computations.

To shorten such negative influences, software- and hardware-based countermeasures are

usually employed. In this chapter, we will sketch an alternative way to deal with such

situations, which is based on so-called resilient algorithms. More specifically, we will

propose a modification of the classical k-means clustering scheme (that is based on a

resilient version of the well-known k-d tree data structure) and will demonstrate its use in

the context of clustering hyperspectral image data.

Outline. We will start by describing the computational problems arising on spacecraft

systems in Section 8.1. The classical k-means approach along with a (non-resilient)

k-d tree-based variant will be depicted in Section 8.2. Afterwards, in Section 8.3, we

will describe the modified k-d tree data structure as well as the corresponding adaption

of the classical k-d k-means approach. The experimental analysis of the resulting scheme

will be subject of Section 8.4, followed by concluding remarks given in Section 8.5.

141

142 CHAPTER 8. MACHINE LEARNING IN SPACE

L1 L2 L3

CPU

Registers

Memory
Main

Radiation-Hardened Components

Figure 8.1. Today’s spacecraft systems operate in high-radiation environments with possible memory
corruptions caused by cosmic rays or alpha particles [103, 144]. For the layers of the memory hierarchy
close to the CPU (e.g., registers, L1-cache, L2-cache, L3-cache, . . .), the disturbing influence of memory
corruptions is usually addressed by using radiation-hardened components (or by software-based counter-
measures). However, due to the increase of mass caused by such components, the remaining layers (e. g.,
the main memory) can usually not be protected in this manner.

8.1 Motivation

While the massive amount of data on earth necessitates the use of machine learning tech-

niques to automatically retrieve useful information, the data analysis aboard of spacecrafts

has become an important issue in recent years too. For instance, the spacecraft associated

with the Earth Observing-1 (EO-1) mission already makes use of classification schemes to

automatically analyze hyperspectral image data such that follow-up observations of inter-

esting regions or events can be made (without any human interaction) [28, 37]. As pointed

out by Wagstaff and Bornstein [144, 145], on board autonomy will be an important issue

for future missions in general and in particular for those involving large one-way com-

munication times like missions to Jupiter or Saturn. Hence, machine learning techniques

have the potential to dramatically reduce idle times by prioritizing data and by creating

bandwidth-saving compressed previews for transmission to earth.

Spacecraft systems differ significantly from standard computers in terms of computa-

tional power, available memory, electricity consumption, and operating systems. Further,

these systems operate in high-radiation environments with interference caused by cosmic

rays and alpha particles [103, 144].1 These disturbing influences can cause memory cor-

ruptions (e.g., bit flips) in the systems’ memory hierarchies which, in turn, can severely

affect the computations aboard such systems. For modern spacecraft systems, the in-

fluence of memory corruptions in the CPU (e.g., registers) and memory layers close to

the CPU (e.g., caches) is usually addressed by using fully radiation-hardened hardware

1The influence can even be observed on earth (sea-level) but is already two orders of magnitude larger
at 10,000 meters [90].

8.2. ACCELERATING K-MEANS 143

components [144]. For the remaining parts of the memory hierarchy (e.g., main mem-

ory), software- or hardware-based concepts (or combinations thereof) can be employed to

reduce the negative effect of the undesired memory corruptions. However, both schemes

lead to higher costs, an increase of mass and a reduction in capability and speed in most

cases [144], see Figure 8.1. These are undesirable side-effects, especially for spacecraft

systems due to the enormous transportation costs. An alternative approach to standard

software-based countermeasures are resilient algorithms [24, 49, 50, 87, 114] that guar-

antee reasonable outputs in the presence of memory corruptions. Further, they usually

exhibit only a small overhead in space and runtime. In the following, we will describe a

resilient version of the k-d tree data structure [11] and will demonstrate how to use it to

improve the resiliency of the k-means clustering approach.

8.2 Accelerating K-Means

One of the bottlenecks of a naive k-means implementation is the recurrent computation

of nearest neighbors. A variant that aims at accelerating these computations is given by

Kanungo et al. [88]. Their algorithm first builds a k-d tree [11] for the input data and uses

this data structure to speed up the involved nearest neighbor computations. We briefly

review their approach since it forms the basis for our resilient clustering scheme.

8.2.1 K-d Trees

The classical k-d tree data structure [11] can be used to partition a given set of patterns

T = {x1, . . . ,xn} ⊂ Rd in the d-dimensional Euclidean space. An internal node v of such

a tree corresponds to (and stores) the d-dimensional box v.box, which contains all patterns

stored in the subtree rooted at v. Further, each leaf corresponds to (and stores) a single

pattern v.p. The construction of a k-d tree is usually performed in a level-wise manner

from top to bottom (i = 0, 1, . . .), i. e., for each node v on the i-th level, one considers

the median of the patterns’ coordinates in dimension (i mod d) to partition the set of

patterns associated with v into two (almost) equal-sized subsets. These subsets (along

with the corresponding boxes induced by the splitting hyperplane) are then assigned to

the children of the node v. Since the median of a set of n numbers can be found in linear

time, the construction of such a tree can easily be performed in a recursive manner taking

O(n log n) overall time [11]. The space consumption is O(n).

8.2.2 Speed-Up with K-d Trees

Each iteration of the standard k-means approach involves finding the nearest candidate

center for each input pattern, see again Algorithm 2.1. The key idea of the variant of Ka-

144 CHAPTER 8. MACHINE LEARNING IN SPACE

nungo et al. [88] depicted below is to speed up these computations by using an adapted ver-

sion of the k-d tree data structure. In a nutshell, for each iteration of the k-means scheme,

the possible patterns that might be relevant for a (new) cluster center are computed effi-

ciently based on the hierarchical subdivision provided by the tree structure.

Adapted Tree Structure

For the sake of the efficient implementation of k-means, additional information is stored

in the k-d tree data structure. More precisely, for each node v of the given tree, one

additionally stores the number v.c and the weighted centroid v.wcent (defined as vector

sum) of all patterns that are stored in the subtree rooted at v. Hence, one can retrieve,

for each node v, the associated centroid of patterns stored in the subtree rooted at v via

v.wcent/v.c. The filtering approach depicted below involves adding cluster centers and the

centroids stored in the nodes of the k-d tree. For this sake, each of the k cluster centers

z will also be represented via z.c and z.wcent, i. e., via the number and the corresponding

weighted centroid of patterns associated with the cluster center z. This allows efficient

updates of the intermediate cluster centers, as we will describe next.

Filtering Cluster Centers

In each iteration of the classical k-means scheme, the patterns are reassigned to their near-

est cluster centers and the positions of the resulting modified cluster centers are updated.

This recurrent computation of nearest neighbors and the necessary update of the cluster

centers can be very time-consuming. The acceleration proposed by Kanungo et al. [88]

invokes the procedure given in Algorithm 8.1 on the root of the associated k-d tree as a

replacement for these two steps: The algorithm recursively traverses the tree and main-

tains, for each visited node, a set of possible candidate centers (starting with the root of

the k-d tree and all k cluster candidate centers). At each node v, all candidate centers that

are strictly farther away from the box associated with v than the candidate center closest

to the center of v.box are excluded from further consideration (since no point stored in

the subtree rooted at v has to be assigned to them). This filtering step is performed in

Steps 7–12. If only one candidate center is left after this filtering phase, all points stored in

the subtree will belong to the remaining center, which can then be updated appropriately

(Steps 14 and 15). Otherwise, the algorithm recurses (Steps 17 and 18). If the recursion

reaches at a leaf w, the point w.p is checked against all remaining candidate centers, and

the center closest to w.p is updated accordingly (Steps 3–5).

Hence, the key idea of this filtering scheme is to distribute the points stored in the

k-d tree to the k cluster centers in an efficient kind of way. The approach is based on the

assumption that Step 13 of Algorithm 8.1 is often fulfilled (which is usually the case for

8.3. RESILIENT K-D K-MEANS 145

Input: Node v of the associated k-d tree and the set Z = {z1, . . . , zk} of cluster candidate centers.
1: procedure Filter(v, Z)
2: if v is leaf then
3: z∗ = candidate center in Z closest to v.p
4: z∗.wcent = z∗.wcent+ v.p
5: z∗.c = z∗.c+ 1
6: else
7: z∗ = candidate center in Z closest to the center of v.box
8: for each z ∈ Z do
9: if z∗ strictly closer to the boundary of v.box than z then

10: Z ← Z \ {z}
11: end if
12: end for
13: if |Z| = 1 then
14: z∗.wcent = z∗.wcent+ v.wcent
15: z∗.c = z∗.c+ v.c
16: else
17: Filter(v.left , Z)
18: Filter(v.right , Z)
19: end if
20: end if
21: end procedure

Algorithm 8.1. The filtering scheme proposed by Kanungo et al. [88] used to speed up the classical
k-means clustering scheme. Initially, the procedure is invoked on the root of the associated k-d tree.

low-dimensional data). Since updating the corresponding cluster center with the needed

information can be performed efficiently using the k-d tree structure (Steps 14–15), these

steps usually yield a significant speed-up compared to a naive k-means implementation.

8.3 Resilient K-d K-Means

We will now propose modifications of the above k-d tree based clustering scheme that

render it more resilient against memory corruptions. The basis for these modifications is

a resilient version of the classical k-d tree, which we will describe next.

8.3.1 Resilient K-d Tree

We start by describing an appropriate model of computation that is usually used to analyze

resilient algorithms. Afterwards, we will describe the resilient k-d tree and will analyze

both its space consumption and the time needed to construct it.

146 CHAPTER 8. MACHINE LEARNING IN SPACE

0

1

6

2

3 4 5

2
3

5
6

4

0

1

Figure 8.2. The resilient k-d tree (left) and the memory layout used to store its top tree (right). Each
node v of the top tree reliably stores the associated d-dimensional box v.box, the weighted centroid v.wcent,
and the number v.c of points stored in the subtree rooted at v (in unsafe memory). The top tree can be
embedded in a breadth-first-search order in an array, where the children of a node at index i are stored at
the indices 2i + 1 and 2i + 2. Each leaf structure (depicted as square) can accommodate up to Bδ input
patterns with an integer label each, which are stored unreliably in unsafe memory.

Model of Computation

The faulty-memory RAM model [49] can be employed to analyze the theoretical properties

of resilient algorithms. In addition to the assumptions made for the classical random access

machine (RAM) model [116], memory cells can get corrupted at any place and at any time

during the execution of an algorithm. Further, corrupted and uncorrupted cells cannot

be distinguished. The only exception are O(1) safe memory cells (representing, e.g., the

CPU registers in real-world architectures), which are not affected by these corruptions.

Thus, these cells can be used to store, e.g., loop indices and program counters.

In addition to these safe memory cells, one is given an upper bound δ ∈ N on the num-

ber of memory corruptions that may occur during the overall execution of an algorithm.

Due to this bound, one can store a data item safely in unsafe memory by replicating it

2δ + 1 times in consecutive memory cells. Such a value is called a reliable value. Since

there are at most δ corruptions taking place during the execution of an algorithm, the

majority of all copies are uncorrupted and the original value can be retrieved in linear

time using the majority vote algorithm that scans all consecutive values while maintaining

a candidate and a confidence value, see Boyer [21] for details. Note that a trivial way of

ensuring resiliency is to apply this replication to all data items. This, however, increases

both space and time by a factor of Θ(δ). One of the goals of resilient algorithms is to

guarantee a certain outcome while storing as little as possible values in a reliable manner.

Note that, due to only O(1) safe memory cells, specific techniques cannot be easily

applied in the context of the fault-memory RAM model. For instance, a direct application

of recursion schemes is largely prohibited due recursion stacks of (usually) non-constant

sizes. Further, using pointers can lead to a loss of data (unless they are stored reliably).

8.3. RESILIENT K-D K-MEANS 147

Structure

The resilient k-d tree proposed below consists of a top tree and a number of leaf structures

and stores the auxiliary information needed for the filtering scheme depicted above (used

to accelerate the classical k-means approach): The top tree is a complete binary tree of

height h = dlog(n
Bδ)e corresponding to the top part of a standard k-d tree, where B ∈ N is

a user-defined constant. Further, each data item is stored reliably in unsafe memory, i. e.,

each internal node v reliably stores (1) the associated d-dimensional box v.box, (2) the

weighted centroid v.wcent, and (3) the number v.c of points stored in the subtree rooted

at v. Note that, since the top tree is complete, one does not have to resort to pointers but

can store the tree in a breadth-first-search order in an array, i. e., the children of a given

node v at index i are stored at the indices 2i+ 1 and 2i+ 2, see Figure 8.2.

Each leaf of the top tree corresponds to at most Bδ points and is associated with

exactly one leaf structure. All leaf structures are stored in a common array, and for

each leaf structure space is allocated to accommodate up to Bδ patterns along with a

cluster label per pattern (used to store the final assignment). Note that one does not

need additional pointers to link the leaves of the top tree with their corresponding leaf

structures due to the breadth-first-search layout used for storing the top tree (and the fact

that the top tree is complete). The following lemma summarizes the space consumption

of the resulting data structure.

Lemma 8.1 Given B ∈ N, the resilient k-d tree data structure for n patterns in Rd stores

at most 2n+ 12n(2δ+ 1)/(Bδ) d-dimensional points and 2n+ 4n(2δ+ 1)/(Bδ) integers in

the faulty-memory RAM model of computation with parameter δ ∈ N.

Proof: The binary top tree has height h = dlog(n
Bδ)e. At each stage of the recursive

construction (of a standard k-d tree) the current point set is split into two sets of (almost)

the same size. In the best case (with respect to the space consumption) each leaf of the

top tree corresponds to exactly Bδ points, and one is given (exactly) n/(Bδ) leaves and,

thus, n/(Bδ) + (n/(Bδ)− 1) < 2n/(Bδ) nodes in the binary top tree (in total). For each

node v in the top tree one stores the bounding box (2 points), the weighted centroid (1

point), and the number of points stored in the subtree of v (1 integer). Since one reliably

stores this information for each node, the top tree structure occupies 3(2δ+1) ·2n/(Bδ) =

6n(2δ + 1)/(Bδ) points and (2δ + 1) · 2n/(Bδ) = 2n(2δ + 1)/(Bδ) integers. For each leaf

structure space is allocated to store Bδ points with an integer label each, which results in

n points and n integers to be stored for all n/(Bδ) leaf structures (in the best case).

Hence, for both the leaf structures and the top tree, one needs at most n + 6n(2δ +

1)/(Bδ) points and n + 2n(2δ + 1)/(Bδ) integers in the best case. In general, the leaf

148 CHAPTER 8. MACHINE LEARNING IN SPACE

structures might not be fully occupied. In the worst case, exactly one of the leaf structures

has to store 1 + Bδ/2 points, whereas all other ones have to store exactly Bδ/2 points.

Due to the layout of the top tree twice as many leaves (and leaf structures) are needed in

this case, which means that twice as much space as in the best case is sufficient for the

worst case. �

The size of the top tree (for fixed point set and model parameter δ) is determined by

the particular assignment for the parameter B ∈ N. Since all data items are stored in a

resilient manner for the top tree, memory corruptions will not have any influence on the

top tree. Thus, the parameter B determines a trade-off between a large resilient top tree

and the space requirements needed to accommodate all data items.

Construction

The construction phase of the resilient k-d tree is similar to the one of the classical k-d tree:

Starting with the d-dimensional bounding box (stored at the root of the tree) containing

all the input points, the box is split into two orthogonal to its longest side (and with

respect to the corresponding median). The resulting two boxes and the necessary auxiliary

information are stored in the two children of the root. These splitting operations are

performed until the maximum level h = dlog(n
Bδ)e of the top tree is reached. The remaining

points are then stored in the corresponding leaf structures, where each leaf structure can

accommodate up to Bδ points and associated labels. So far, no resilient median selection

algorithm has been proposed in the literature. Thus, one has to resort to resilient sorting

for computing the medians [50]. This leads to the following lemma.

Lemma 8.2 Given B ∈ N, the resilient k-d tree data structure for n patterns in Rd can

be constructed in O(n log2 n+ δ2) time in the faulty-memory RAM model of computation

with parameter δ ∈ N.

Proof: Sorting n data items resiliently can be performed in O(n log n + αδ) worst-case

time and linear space, where α is the number of actual memory corruptions that happen

during the execution of the algorithm [50]. Without loss of generality, let us assume that

n is a power of two. In this case, the recursive construction spends

T (n) ∈ O
(
n log n+ α0δ +

n

2
log(

n

2
) +

n

2
log(

n

2
) + α1δ + . . .

)
(8.1)

time, where αi denotes the number of actual memory corruptions happened during all

sorting operations on level i. Since the amount of actual memory corruptions over all

levels of the tree add up to at most δ, the overall runtime is bounded by O(n log2 n+δ2).�

8.3. RESILIENT K-D K-MEANS 149

8.3.2 Resilient K-d K-Means

The non-resilient k-d tree-based variant can yield significant practical speed-ups for low-

dimensional data compared to a naive implementation of the k-means clustering scheme.

However, as reported by Wagstaff and Bornstein [144], it is vulnerable against memory

corruptions. We will now discuss the modifications needed to adapt this filtering scheme

so that it benefits from the resilient k-d tree variant depicted above.

Safe Flow Control

Since only a constant amount of safe memory cells is available in the faulty-memory RAM

model, recursion stacks are prone to corruptions which can result in segmentation faults

and other memory-related errors. The recursion stack induced by the Filter procedure

depicted in Algorithm 8.1 has depth O(log(n
Bδ)) and can, thus, not be stored in safe

memory. Due to the breadth-first-search layout used for storing the top tree, however,

one can navigate in a pointerless manner (the children of node i are stored at the indices

2i+ 1 and 2i+ 2). Further, due to this layout, one can deduct from these indices whether

a child returned from is a left or a right child when mimicking the recursive calls.2 Thus,

navigating in the induced recursion stack can be performed in a safe manner.

Protecting the Candidate Centers

The corruption of a single candidate center can severely affect the overall outcome of the

adapted clustering scheme. To avoid this we store this small (but non-constant) amount

of data reliably. Further, while traversing the resilient k-d tree up and down, one needs

to reliably reconstruct the set of candidate centers that are already filtered out. For this

sake we store a bit vector Iv of length k (bits) for each node v on the recursion path,

which indicates whether the i-th candidate center is (still) relevant for v or not. Thus,

we explicitly (and reliably) maintain a recursion stack of these bit vectors, which takes

dlog ke(2δ + 1) integers per level of the top tree of the resilient k-d tree structure

Consistency Check for the Filtering Phase

To filter the cluster candidate centers we distinguish between internal nodes and leaves

of the top tree. For an internal node we simply resort to Algorithm 8.1. Since each data

item of the top tree is stored reliably, memory corruptions will not affect the recursive

calls (which are handled as described above). For a leaf of the top tree we make use

of the associated leaf structure to update the remaining candidate centers. To avoid

2For a given even index j the parental node has index i = (j − 2)/2; for an uneven one the parental
index is given by i = (j − 1)/2.

150 CHAPTER 8. MACHINE LEARNING IN SPACE

(a) RGB (b) Labels (c) K-Means

Figure 8.3. The images depict the Qinghai Large data set along with a clustering result [144]: (a)
RGB image based on the 11 bands, (b) manually obtained labels (clouds, ground, water), and (c) standard
k-means clustering result (ARI=0.749).

severe corruptions caused by updating candidate centers with corrupted points stored in

the leaf structures we make use of a simple consistency check performed on each point

before assigning it to one of the centers: Due to the hierarchical structure of the resilient

k-d tree, we know that every point in a particular leaf structure must be contained in the

box associated with this leaf structure. Since this information is stored reliably in the top

tree, one knows that if a point is out of range, it must be corrupted. In this case, one can

therefore resort to the center of the corresponding box as surrogate for the point itself.

8.4 Experimental Analysis

For the experimental analysis we consider the standard k-means algorithm (k-means),

its variant based on k-d trees (k-d k-means), and our resilient k-d tree-based approach

(resilient k-d k-means) as clustering schemes. Further, following Wagstaff and Born-

stein [144], we use several real-world data sets to investigate the behavior of all approaches

given certain setups for the involved parameters.

8.4.1 Experimental Setup

The results were obtained on a standard Desktop PC having an Intel Dual Core CPU at

2.66 GHz and 4 GB RAM running Debian Linux (kernel version 2.6.26). All algorithms

as well as the testbed allowing for injecting memory corruptions were implemented in the

programming language C and were compiled using the gcc compiler (version 4.3.2) with

optimization level -O3.

8.4. EXPERIMENTAL ANALYSIS 151

(a) RGB (b) Labels (c) K-Means

Figure 8.4. The Qinghai Small data set is a subset of the Qinghai Large data set [144]: (a) RGB
image based on the 11 bands, (b) manually obtained labels (clouds, ground), and (c) standard k-means
clustering result (ARI=0.940).

Data Sets

Following Wagstaff and Bornstein [144], we use the Iris data set from the UCI reposi-

tory [53], which consists of N = 150 patterns each having d = 4 features. Furthermore, we

test all approaches on satellite data obtained from the Hyperion instrument that is aboard

of the EO-1 Earth orbiter. This instrument collects data at 242 wavelengths, but on board

computations can only be performed on a selectable subset of up to 12 bands [28, 144]. For

our experiments we consider the same 11 bands used by the on board pixel SWIL classifier

described by Castano et al. [28]. We consider two particular data sets that are based on

observations of the Qinghai province in China made on October 3, 2002.3 The first data

set (Qinghai Large) contains N = 179, 200 patterns (i. e., pixels) each having d = 11

features (bands), see Figure 8.3. The second data set (Qinghai Small) is a subset of the

previous one and contains N = 1, 600 patterns with d = 11 features. For all experiments

no model selection is performed (since the true number of clusters is known), and we use

all patterns for training (n = N).

Clustering Evaluation

For both the Qinghai Large and the Qinghai Small data set the labels were manually

obtained for all pixels (clouds, ground, water), see Figures 8.3 and 8.4. The quality of a

computed partition with respect to these true labels is then measured via the Adjusted

Rand Index (ARI) [79]. This index is a measure for the agreement of two given partitions

of a set. A value of 1.0 indicates a perfect agreement of both partitions and a value of

0.0 is obtained in expectation by random partitions for the set. Negative values stem

from anti-correlated partitions. Figures 8.3 and 8.4 show the clustering accuracies of the

(unmodified) k-means clustering algorithm for both the Qinghai Large (ARI=0.749) and

the Qinghai Small data set (ARI=0.940).

3Both data sets were kindly provided by the authors of [144, 145].

152 CHAPTER 8. MACHINE LEARNING IN SPACE

Parameters

Various parameters need to be set for all approaches. We set the number of designated

clusters k to the true number of classes for each data set (i. e., k = 3 for Iris and

Qinghai Large and k = 2 for Qinghai Small). Since all convergence guarantees of the

k-means clustering approach are invalid due to the (possible) corruption of memory infor-

mation, we fix the number of iterations to 30 for all experiments. The k-means approach

is, in general, susceptible to the problem of local optima. In addition, the memory corrup-

tions can lead to unstable results. We therefore average the achieved clustering results over

30 runs. For our resilient k-d k-means variant two additional parameters δ and B have to

be set. If not noted otherwise, we fix δ = 10 and B = 5. The memory corruptions can

lead to unpredictable behavior of all implementations and, hence, to unlimited practical

runtimes. We therefore restrict all algorithms to finish within a user-defined time interval,

which we set to 500 seconds.

Memory Manager

The testbed for performing memory corruptions is based on a memory manager. The

memory manager can be used to allocate corruptible cells, i. e., bytes of memory which can

be affected by bit flips. The O(1) corruption-free cells can be obtained using the standard

C-routines for memory administration. In addition to the allocation of sufficient bytes of

memory, the memory manager also takes care of an auxiliary data structure which can be

used to perform memory corruptions at arbitrary positions of the space allocated through

it. A memory corruption consists of a single bit flip. Note that, since all algorithms make

use of corruptible indices (e.g., the current assignments of the patterns), access to arbitrary

memory positions might occur (see below). Following Wagstaff and Bornstein [144], we

do not corrupt the program code itself.

Implementation Issues

To assure a corruption-free execution of the code, we endow all algorithms with a getIndex-

routine that prevents out-of-bounds accesses to invalid memory locations. The access of

a memory position via a possibly corrupted index is safeguarded by this routine, i. e., if

a non-valid (corrupted) index is used to access a memory location, the routine redirects

the access by setting the index to a predefined valid value. Since Wagstaff and Born-

stein [144] observed that the k-d k-means algorithm is most vulnerable if the k-d tree is

affected by bit flips, we further improve the resiliency of our competitor by implementing

the non-resilient k-d k-means variant using a pointerless k-d tree, i. e., we embed this tree

in breadth-first-search order in an array as well.

8.4. EXPERIMENTAL ANALYSIS 153

0

0.2

0.4

0.6

0.8

1

10
−7

10
−6

10
−4

10
−3

10
−2

10
0

A
R
I

Radiation Rate

k-means
k-d k-means

resilient k-d k-means

(a) Iris

0

0.2

0.4

0.6

0.8

1

10
−7

10
−6

10
−4

10
−3

10
−2

10
0

A
R
I

Radiation Rate

k-means
k-d k-means

resilient k-d k-means

(b) Qinghai Small

0

0.2

0.4

0.6

0.8

1

10
−8

10
−7

10
−6

10
−4

A
R
I

Radiation Rate

k-means
k-d k-means

resilient k-d k-means

(c) Qinghai Large

Figure 8.5. Clustering performance of all approaches under the disturbance of memory corruptions
(determined by the radiation rate). Averaged results with one standard deviation are reported.

Memory Corruptions

Following Wagstaff and Bornstein [144], we consider a radiation rate that determines

the amount of single-event upsets (SEUs) per byte and per second. Hence, the amount

of memory corruptions depends on both the runtime and the (current) space usage of an

algorithm, i. e., corruptions are performed proportional to the radiation rate, the execution

time, and the allocated space (as recorded by the memory manager). In a real-world

scenario memory corruptions can happen at any time. To simplify the implementation,

we inject a batch of memory corruptions after each iteration (based on the runtime of the

last iteration and global space usage). Finally, we do not inject any corruptions during

the building phase of both k-d tree-based approaches. This is justified by the insignificant

relative running time of the building phase.4

8.4.2 Results

In the remainder of this section we will evaluate the clustering performances of all ap-

proaches under the influence of memory corruptions.

Clustering Accuracy

A natural question is how varying radiation rates affect the clustering performances of

the different approaches. In Figure 8.5, the behavior of all implementations on the three

data sets given varying rates of radiation is given. On the Iris data set all approaches

exhibit a quite similar clustering performance. On the other two data sets the resilient

version shows a superior clustering accuracy. This might be due to the fact that both

k-d tree variants are well-suited for data sets with a large amount of patterns (i. e., large

n) in a low-dimensional feature space (i. e., small d). Here, the practical runtime depends

4Profiling our implementation indicated that consistently less than 6% of the overall running time were
spent during the building phase of the (resilient) k-d trees.

154 CHAPTER 8. MACHINE LEARNING IN SPACE

(a) (b) (c)

Figure 8.6. Final clustering result on the Qinghai Small data set of all approaches given a radiation
rate of 10−2. For (a) k-means and (b) k-d k-means one of the two final cluster centers has only a single
training pattern assigned to it. The latter outcomes supposedly stem from a single corrupted training
pattern (where the exponent of its floating point representation is hit). The resilient k-d k-means is
not affected by such corruptions in this case, see Figure (c).

on the efficiency of the pruning approach, which takes place in the upper region of the

associated k-d tree. Since this information is stored resiliently for the resilient k-d

k-means approach, memory corruptions should have less influence on the final clustering

performance (compared to k-d k-means).

A comparison of the clustering results for our resilient approach on Qinghai Small

and Qinghai Large also indicates that the influence of the radiation rate increases with

increasing size of the data set for the non-resilient schemes. An explanation for this be-

havior might be that even a single bit flip can have a significant influence on the final

clustering result for such settings (for instance, if the exponent of a floating point rep-

resentation is corrupted). This issue is depicted in Figure 8.6. Since the probability for

memory corruptions increases with increasing size of the data set (given a fixed radiation

rate), we expect worse results when clustering large data sets with non-resilient algorithms.

Thus, data scenarios like the one induced by the Qinghai Large data set depict excellent

candidates for the resilient clustering approach proposed in this chapter.

Trade-Off Parameter B

The parameter B induces a trade-off between space usage and likelihood of resiliently

filtering candidate centers: Here, a large value leads to leaf structures corresponding to

many points and, thus, to a top tree containing few nodes. In this case, the chances

of resiliently filtering candidates before reaching the leaf structures are diminished. The

extreme case takes place for B = n/δ, and the resulting algorithm corresponds to the

standard k-means scheme.

To analyze the influence of the parameter B on the runtime and space consumption,

we consider the Qinghai Large data set and fix the model parameter δ = 100. Further,

we set the radiation rate to 10−8 (SEUs per byte and per second). The results are depicted

in Figure 8.7: Clearly, for increasing B, the runtime increases as well. Thus, the benefits

of the filtering approach in such settings are not diminished due the additional cost in-

8.5. CONCLUDING REMARKS 155

20

40

60

80

100

120

0 20 40 60 80 100 120

R
u
n
n
in
g
T
im

e
[s
]

B

(a) Running Time

64

96

128

0 20 40 60 80 100 120

M
em

or
y
[M

B
]

B

(b) Memory Usage

Figure 8.7. Running time behavior and space consumption of the resilient k-d k-means implementa-
tion for varying assignments of the parameter B. The plots indicate that the running time increases and
the space consumption decreases for increasing B, respectively. A reasonable trade-off between running
time and space consumption is given for, e. g., B = 10 or B = 20.

duced by storing the data items reliably in the top tree. Further, as expected, the space

requirements decrease for increasing B due to the top tree structure becoming smaller.

Taking both plots into account indicate that B = 10 or B = 20 seem to be appropriate

assignments for inducing a reasonable space/time trade-off.

8.5 Concluding Remarks

Computational problems in terms of memory corruptions can occur during the auto-

matic data analysis taking place on today’s spacecraft systems. In general, software-

and hardware-based countermeasures can be employed to shorten the disturbing influence

of such memory corruptions. Both concepts, however, lead to an increase of mass and

in a reduction of computational capabilities, which are undesired side-effects due to the

enormous transportation costs for such systems. Resilient algorithms and data structures

depict a valuable alternative to cope with such settings. In this chapter, we have proposed

a resilient version of the k-d tree data structure and showed how to incorporate it into

the (standard) k-d tree enhanced k-means clustering scheme. The conducted experiments

indicate that the resulting clustering framework exhibits a superior clustering accuracy

under the influence of memory corruptions than competing methods. This seems to be

especially the case for large data sets in low-dimensional feature spaces (like, e.g., hy-

perspectral image data). In these scenarios, the negative effect of memory corruptions

seems to be even more severe since single bit flips can jeopardize the overall outcome of a

clustering algorithm.

156 CHAPTER 8. MACHINE LEARNING IN SPACE

Part IV

Summary

157

CHAPTER 9

Summary and Outlook

In this chapter, the main results provided in this thesis will be summarized. In addition

to that, we will depict future research directions related to both the extensions of sup-

port vector machines to semi- and unsupervised learning settings as well as to possible

application domains of machine learning tools in the field of astronomy.

9.1 Summary

After providing machine learning basics as well as a description of support vector machines

in Part I, we showed how to extend these concepts to semi- and unsupervised learning

scenarios in Part II of this work. Part III was devoted to specific algorithmic issues in the

emerging field of astroinformatics [6, 17].

9.1.1 Semi- and Unsupervised Support Vector Machines

While several heuristics can be found in the literature that try to tackle the combinatorial

optimization problems induced by semi- and unsupervised support vector machines, only

few attempts have been made to approach the question of how to efficiently compute so-

lutions with guaranteed accuracy. In Chapter 4, we studied this question and provided a

polynomial-time algorithm that is capable of computing such solutions for the special case

of a linear kernel. The resulting framework provides valuable insights into the computa-

tional complexity of the induced combinatorial optimization tasks. Further, an interesting

connection between the problems at hand and the field of computational geometry was

derived that is based on arrangements and associated incidence graphs.

159

160 CHAPTER 9. SUMMARY AND OUTLOOK

Although the exact approach is interesting from a theoretical point of view, its practical

use is limited due to the involved computational complexities. In Chapter 5, we therefore

proposed an efficient implementation of a simple label-switching strategy to address the

optimization tasks. The idea was to resort to a least-squares variant of support vector

machines and to perform efficient matrix-based updates of the intermediate candidate

solutions. This led to linear-time operations per iteration of the local search and paved

the way for efficiently testing a massive amount of possible solutions. The proposed

framework is applicable to both semi- and unsupervised learning settings. While the

shortcuts render the local search approach competitive with state-of-the-art schemes in

the context of semi-supervised learning, they become even more useful in unsupervised

scenarios (due to missing initial guesses provided by labeled patterns).

The alternative continuous optimization perspective on the tasks was depicted in Chap-

ter 6. Here, a conceptually very simple quasi-Newton framework turned out to be well-

suited for the induced tasks. For large-scale settings, we demonstrated how to make use

of a memory-saving quasi-Newton scheme in combination with kernel matrix approxima-

tion techniques as well as in combination with computational shortcuts that make use of

the properties of sparse data. The experimental evaluation indicated that the resulting

approach yields a superior performance compared to state-of-the-art methods, both with

respect to the practical runtime as well as with respect to the classification performance.

9.1.2 Applications in Astronomy

The third part of this thesis dealt with the application of machine learning tools in the field

of astronomy. In particular, we considered learning settings on earth as well as learning

settings in space. For the data analysis on earth, we approached the task of discriminat-

ing quasars from other objects based on spectroscopic data. Aiming at a meaningful and

efficient feature extraction, we proposed a variant of standard support vector regression

models to obtain continuum-subtracted versions of the raw spectra and showed how to

efficiently address the induced optimization tasks. The reduced spectra formed the basis

for extracting a small set of expert-based features that led to a significantly better clas-

sification performance. In addition to these extraction schemes, we briefly investigated

the use of semi-supervised support vector machines in this context and sketched research

perspectives related to multi-view learning.

For the data analysis in space, we considered the task of clustering hyperspectral image

data. As depicted in Chapter 8, such schemes are already in use aboard today’s spacecraft

systems to preprocess the data. In contrast to the analysis taking place on earth, the

one in space induces computational problems caused by the cosmic radiation that leads

to memory corruptions. To cope with such corruptions, one can resort to software- or

9.2. RESEARCH DIRECTIONS 161

hardware-based countermeasures. However, such schemes usually lead to a significant

increase of needed physical memory (and, thus, to an increase of mass and transportation

costs). As an alternative, we proposed the use of resilient algorithms in this context. In

particular, we demonstrated that a resilient version of the classical k-d tree can be used

to reduce the negative influence of memory corruptions in an efficient kind of way.

9.2 Research Directions

This work motivates several research directions, which will be described in the following.

9.2.1 Semi- and Unsupervised Learning

Three research directions could be addressed in the context of semi- and unsupervised

support vector machines: Firstly, the theoretical complexities of the induced optimization

tasks could be analyzed in a more detailed manner. Secondly, the particular optimization

heuristics could be improved (while not only focussing on computational aspects). Thirdly,

sophisticated model selection schemes could be developed for the two learning scenarios.

Exact Solutions in Less Time

The polynomial-time approach derived in Chapter 4 yields exact solutions with guaranteed

accuracy. An interesting future research direction is the question if one can obtain exact

solutions with infinite accuracy in polynomial time. Note that for hard-margin unsuper-

vised support vector machines, this is the case due to a connection between hard-margin

support vector machines and convex hulls [12, 70, 102, 116]. For the soft-margin case, a

similar connection to the field of computational geometry is given via the concept of re-

duced convex hulls [102]. However, only exact solutions with guaranteed (but not infinite)

accuracy can be obtained this way.

The exact scheme is only applicable for the special case of a linear kernel. A more

general approach to obtain exact solutions (for arbitrary kernels) are branch-and-bound

strategies like the one proposed by Chapelle et al. [35] for semi-supervised support vector

machines. For such settings, the computational shortcuts depicted in Chapter 5 should

also be applicable to accelerate the overall execution. Hence, in the future, efforts could

be made to develop efficient updating schemes for such exact frameworks as well.

Towards Better Heuristics

The local search scheme presented in Chapter 5 is quite simple. In this context, more

sophisticated heuristics have the potential to improve the quality of the obtained solutions.

The approach given by Adankon et al. [2], e. g., resorts to an alternating optimization

162 CHAPTER 9. SUMMARY AND OUTLOOK

framework that is also based on the square loss. This and other schemes can be accelerated

by means of the matrix-based updates provided in this work. Future heuristics could also

have some kind of greedy character, i. e., they could aim at flipping the pair of labels

that leads to the best improvement per iteration. An interesting question is how to

detect such pairs efficiently (in, e.g., linear time). Another future research direction is the

analysis of the theoretical convergence behavior of such local search schemes for the tasks

at hand (similar to the analysis conducted for simple evolutionary algorithms in the field

of stochastic optimization [44]).

Almost all semi-supervised state-of-the-art methods are based on a single local search

(without any restarts). As shown in Chapters 5 and 6, putting more effort into opti-

mization can lead to better results. In general, more work has to be spent on the mutual

assessment of competing optimization frameworks. Since the difficulty of the induced tasks

strongly depends on the particular assignments for the involved parameters, one should

conduct such an analysis independently of model selection issues. This could be achieved,

for instance, by establishing benchmark data sets (with fixed parameter assignments) like

it is the case in the field of stochastic optimization [13], where competing approaches are

evaluated and compared on challenging benchmark functions.

Model Selection Issues

Part II of this work focussed on optimization issues. An important research direction

(usually not addressed in the literature) is the question of how to select appropriate model

parameters. While one can still fall back on a small set of labeled patterns in semi-

supervised learning settings, this is not the case for unsupervised ones anymore. In this

context, concepts like transfer learning [110] might play an important role in the future.

9.2.2 Astroinformatics: An Emerging Discipline

In today’s and near-future astronomy, a variety of different learning tasks have or will

have to be addressed. Further, labeled data is usually scarce in this field while unlabeled

data is available in huge quantities. Two important research directions arise in astronomy,

namely how one can cope with the lack of labeled data and how one can handle the sheer

(upcoming) data volume.

Lack of Labeled Data

As sketched in Chapter 7, the lack of labeled data is a crucial issue in astronomy. As an

example, consider the task of estimating the redshift of quasars given only photometric

data: In Figure 9.1 (a), the outcome of a k-nearest neighbor regression model [73] trained

on about 100, 000 photometric patterns is given (where the true redshift labels are obtained

9.2. RESEARCH DIRECTIONS 163

0.0 1.0 2.0 3.0 4.0 5.0 6.0

zspectroscopic

0.0

1.0

2.0

3.0

4.0

5.0

6.0

z
e
s
ti
m
a
te
d

0

100

200

300

400

500

600

700

800

900

(a) Nearest Neighbor Classifier

0.0 1.0 2.0 3.0 4.0 5.0 6.0

zspectroscopic

0.0

1.0

2.0

3.0

4.0

5.0

6.0

z
e
s
ti
m
a
te
d

0

200

400

600

800

1000

1200

1400

1600

(b) Linear Support Vector Regression

Figure 9.1. A current research topic in astronomy is the search for new, distant quasars [106]. This task
can be approached by standard regression models. In Figure (a), the output of a k-nearest neighbor model
is shown, where a data set of about 100, 000 objects with four photometric features [65] per object is used
for training and evaluating the model; see Polsterer [115] for a detailed description of the experimental
setting and a comprehensive analysis of the results. In Figure (b), a support vector regression model is
shown that has only been trained on a subset of quasars with redshifts z ∈ [3, 4] (highlighted region).

via the spectroscopic information that is also available for these particular objects). Such

models can be used to predict redshift values for photometric objects that have not yet

been target of a spectroscopic follow-up observation.1 While there is a large amount of

labeled patterns corresponding to low-redshift quasars, only very few quasars are known

that exhibit higher redshifts. This results in very sparsely populated regions in the feature

space and, thus, renders such prediction models imprecise for distant quasars. Another

important issue is the fact that for detecting new, unseen quasars, no labels at all are

given. In Figure 9.1 (b), the output of a linear support vector regression model is shown

that is only trained on quasars having a redshift of z ∈ [3, 4]. It can be seen that the model

is still capable of extrapolating to some degree, i. e., it can make reasonable predictions

for quasars with z ∈ [4, 5]. An interesting future research direction is, for instance, the

question which particular feature space (i. e., combinations of photometric features) gives

rise to the best extrapolation performance. Further, semi-supervised approaches have

not been considered in this context. Such schemes might be extremely useful to reveal

additional information about the structure of the data.

Dealing with Massive Data Sets

From a computational point of view, current and near-future projects in astronomy are

faced with the problem that standard algorithmic schemes will not be capable to deal with

1It is worth pointing out that this simple classification scheme yields results that are competitive with
state-of-the-art frameworks in the field of astronomy [65, 96].

164 CHAPTER 9. SUMMARY AND OUTLOOK

the massive amounts of data. While classical data structures like k-d trees can accelerate

search queries for relatively large data sets, such schemes will also fail if huge data sets in

the tera- and petabyte range are considered. As an example, consider the task of sorting all

about one billion photometric objects in the current release of the Sloan Digital Sky Survey.

Even if only 20 data items are considered per object (as double precision numbers), one

already has to deal with 16 gigabytes of data. For such settings, not the pure computation

time but memory-related issues like the transfer of data items from, e.g., hard disk to

internal memory can dominate the overall runtime. External memory algorithms aim

at dealing with such scenarios in an efficient kind of way. Such algorithms are usually

analyzed in the context of the so-called I/O-model [3] that defines the parameters N

(number of objects of the problem instance), M (size of internal memory), and B (size

of objects per disk block). In this model, an I/O-operation consists of reading a block of

contiguous elements from external into internal memory or writing a block from internal

into external memory. Further, computations can only be performed on objects that are

given in internal memory. Besides being efficient with respect to the computation time,

external memory algorithms also aim at reducing the amount of needed I/O-operations.

Hence, this model of computation captures the characteristics of working with massive

data sets that are too large to fit into main memory.

From a machine learning point of view, it might be desirable to take as much as

possible of the given data into account to construct appropriate prediction models. As

sketched above, for instance, the efficient computation of nearest neighbors for large sets

of photometric objects could be required. Such computations can also be performed

efficiently in the context of the I/O-model [27], where the so-called well-separated pair

decomposition (WSPD) is one of the key algorithmic ingredients for the overall framework.

A possible drawback of such schemes, however, is the fact that the resulting algorithms

and data structures are often quite difficult to implement. The cache-oblivious model of

Frigo et al. [54] aims at simplifying the induced implementations. A promising result in

this context is given by Gieseke et al. [58, 60] who demonstrated that a WSPD can be

computed efficiently in the cache-oblivious model as well. This result could pave the way

for efficient cache-oblivious nearest neighbor schemes that can deal with huge data sets.

These external memory algorithms could be used in case huge data sets are stored

on disk and in case all data items have to be examined (e.g., when sorting all patterns).

However, future research projects in astronomy will produce data volumes in the peta-

or exabyte range, which cannot even be stored [95, 138]. For such scenarios, on-line

monitoring and analysis schemes will play an important role (like, e.g., the automatic

detection of rare events). For such settings, techniques like time-series analysis and visual

monitoring of events [91, 92] will be important to identify relevant data items.

Appendix

165

Author’s Contribution

Most parts of this work are based on published and not yet published results that stem

from collaborations with other authors. This chapter depicts the author’s contribution to

these co-authored publications and manuscripts.

Chapter 4: The results provided in this chapter are based on the following work:

• F. Gieseke, J. Vahrenhold, and X. Jiang. Exact linear semi-and unsupervised support

vector machines in polynomial time. 2011. Manuscript.

The article has mainly been written by me; all the authors contributed to prepare the final

manuscript. Xiaoyi Jiang drew my attention to this interesting problem and provided

various helpful suggestions and comments with respect to both theoretical as well as

practical issues. The polynomial-time scheme for the hard-margin case is based on a

discussion with Jan Vahrenhold. The extension of these initial ideas to the soft-margin

case, the handling of degenerated cases via the incidence graph structure, the extension

to the semi-supervised case, and the classification of the obtained results in the context

of the related literature are by me. In addition, the experimental evaluation including

the implementation of the approach and the generation of benchmark data sets have been

conducted by me.

Chapter 5: This chapter is based on the following two publications:

• F. Gieseke, T. Pahikkala, and O. Kramer. Fast evolutionary maximum margin clus-

tering. In Proceedings of the 26th International Conference on Machine Learning,

pages 361–368, 2009.

167

168 AUTHOR’S CONTRIBUTION

• F. Gieseke, O. Kramer, A. Airola, and T. Pahikkala. Speedy local search for semi-

supervised regularized least-squares. In Proceedings of the 34th Annual German

Conference on Artificial Intelligence, pages 87–98, 2011.

Both papers have mainly been written by me; all the authors have contributed to writing

up the manuscripts. The main idea of using matrix-based computational shortcuts, the

mathematical derivations, the implementation, and the conducted experiments are for

the most part by me. Tapio Pahikkala and Antti Airola provided valuable comments

and improvements related to matrix calculus and kernel methods. In addition, Tapio

Pahikkala contributed to the depicted computational shortcuts. Oliver Kramer supported

me through all the stages of the work and provided valuable comments and improvements

related to stochastic search issues and kernel methods.

Chapter 6: The results provided in this chapter are based on the following manuscript:

• F. Gieseke, A. Airola, T. Pahikkala, and O. Kramer. Sparse quasi-Newton opti-

mization for semi-supervised support vector machines. In Proceedings of the 1st

International Conference on Pattern Recognition Applications and Methods, pages

45–54, 2012.

The work has mainly been conducted by me. Tapio Pahikkala and Antti Airola gave

useful comments related to the considered surrogate loss functions and the handling of

sparse data. Oliver Kramer gave valuable comments related to optimization issues in

high-dimensional search spaces.

Chapter 7: This chapter is partially based on two publications. The first one stems

from a collaboration with astronomers of the Ruhr-Universität Bochum:

• F. Gieseke, K. L. Polsterer, A. Thom, P. Zinn, D. Bomans, R.-J. Dettmar, O. Kramer,

and J. Vahrenhold. Detecting quasars in large-scale astronomical surveys. In Pro-

ceedings of the 9th International Conference on Machine Learning and Applications,

pages 352–357, 2010.

The feature extraction scheme is based on a joint work with Kai Lars Polsterer, Andreas

Thom, and Peter Zinn. All co-authors were involved in the collaboration and in preparing

the final manuscript. The second publication is a result of a joint work conducted at the

Turku Centre for Computer Science:

• E. Tsivtsivadze, F. Gieseke, T. Pahikkala, J. Boberg, and T. Salakoski. Learning

preferences with co-regularized least-squares. In Proceedings of the ECML/PKDD

Workshop on Preference Learning, pages 52–66, 2008.

AUTHOR’S CONTRIBUTION 169

Evgeni Tsivtsivadze had the idea to combine multi-view and preference learning; I con-

tributed to the mathematical formalization of these ideas. All the five authors were in-

volved in preparing the final manuscript.

Chapter 8: This chapter is based on the following two publications:

• F. Gieseke, G. Moruz, and J. Vahrenhold. Resilient k-d trees: K-means in space

revisited. In Proceedings of the 10th IEEE International Conference on Data Mining,

pages 815–820, 2010.

• F. Gieseke, G. Moruz, and J. Vahrenhold. Resilient k-d trees: K-means in space

revisited. Frontiers of Computer Science, 2011. Accepted.

All the authors contributed to the writing of both papers. I contributed to the exper-

imental setup, the implementation of the memory manager used for injecting memory

corruptions, and the implementation of the different k-means variants.

Chapter 9: In addition to providing concluding remarks, future research directions

were sketched in this chapter. Among other things, two possible research fields have been

suggested that might play an important role for the automatic analysis of astronomical

data sets in the near future, namely how to deal with the lack of labeled data and how to

cope with the sheer data volumes in this field. For both settings, the following work has

(partially) been conducted by me:

• F. Gieseke, J. Gudmundsson, and J. Vahrenhold. Pruning spanners and constructing

well-separated pair decompositions in the presence of memory hierarchies. Journal

of Discrete Algorithms, 8(3):259–272, 2010

• F. Gieseke and J. Vahrenhold. Cache-oblivious construction of a well-separated pair

decomposition. In Proceedings of the 25th European Workshop on Computational

Geometry, pages 341–344, 2009

• O. Kramer and F. Gieseke. Short-term wind energy forecasting using support vector

regression. In Proceedings of the International Conference on Soft Computing Mod-

els in Industrial and Environmental Applications, Advances in Intelligent and Soft

Computing, pages 271–280, 2011

• O. Kramer and F. Gieseke. Analysis of wind energy time series with kernel methods

and neural networks. In Proceedings of the 7th International Conference on Natural

Computation, pages 2381–2385, 2011

170 AUTHOR’S CONTRIBUTION

• F. Gieseke, K. Polsterer, and P. Zinn. Photometric redshift estimation of quasars:

Local versus global regression. In Proceedings of the Astronomical Data Analysis

Software and Systems, 2011. In print

Although these publications are only slightly related to the work at hand, they can serve

as a source for further reading. The first two articles are based on my master’s thesis.

One of the key contributions is a cache-oblivious well-separated pair decomposition that

can potentially be used to accelerate nearest neighbor computations in a cache-oblivious

manner. Further, I contributed to the writing and the experimental evaluation of the last

three publications and manuscripts.

List of Figures

1.1 The concept of supervised, semi-supervised, and unsupervised support vec-

tor machines with non-linear decision hyperplanes. 3

1.2 Application examples for support vector machines and their semi- and un-

supervised extensions. 4

1.3 Classification of galaxies based on their shapes. 5

2.1 The concept of regularized risk minimization. 13

2.2 Elementary algorithms for supervised, unsupervised, and semi-supervised

classification settings. 17

2.3 The effect of the curse of dimensionality for a simple classification task

addressed by a k-nearest neighbor model. 21

2.4 Selected and projected features for an artificial toy example. 23

3.1 The concept of the geometrical margin. 27

3.2 Influence of the parameter C ′ for an artificial toy example. 29

3.3 The hinge, the square, and the ε-insensitive loss. 33

3.4 Influence of the model parameters of a non-linear support vector machine

for a two-dimensional toy example. 35

3.5 The effect of the curse of dimensionality on both a k-nearest neighbor and

a support vector machine model. 42

4.1 Linear support vector machines and their semi- and unsupervised extensions. 46

4.2 The concept of arrangements and the concept of duality. 49

4.3 An arrangement in the plane and its associated incidence graph. 51

4.4 Connection between linearly separable sets and cells in the arrangement. . . 53

171

172 LIST OF FIGURES

4.5 Non-degenerated and degenerated cases for the hyperplane hcut. 55

4.6 Four artificial data sets in the Euclidean plane. 59

4.7 Runtime performance on a two-dimensional toy example. 60

4.8 Influence of the balance parameter bc on the computed partitions. 61

4.9 Influence of the balance parameter ε on the computed partitions. 61

4.10 Sensitivity with respect to variations of the data set’s distribution. 62

4.11 Influence of the model parameter C on the computed partitions. 62

4.12 The COIL data set. 63

4.13 Four embeddings along with the corresponding clustering results. 64

5.1 Four artificial data sets used for the experimental evaluation. 84

5.2 The USPS data set. 85

5.3 Influence of the amount of labeled and unlabeled data used for training the

semi-supervised model. 88

5.4 Classification performance on the USPS data set. 89

5.5 The influence of the parameter r = |R|. 90

5.6 Number of rounds T needed for the local search to converge 91

5.7 Comparison of a single and a multiple restart strategy. 92

5.8 Single vs. multiple restart strategy. 93

5.9 Comparison of the exact approach, the local search strategy, and a more

general stochastic search scheme on the Gaussian1 data set. 94

6.1 The effective loss functions induced by the hinge and the square loss. 101

6.2 The hinge loss and its effective loss along with the corresponding differen-

tiable surrogates. 105

6.3 Model flexibility on the two-dimensional Moons data set. 115

6.4 Practical runtimes of all semi-supervised competitors. 118

6.5 Runtime results on the MNIST data set. 119

6.6 Better solutions via more optimization. 121

7.1 The telescope at the Apache Point Observatory as well as photometric and

spectroscopic data. 126

7.2 Spectroscopic data for objects of type other and of type quasar. 128

7.3 The square and the ε-insensitive loss as well as several (non-symmetric)

differentiable loss functions of the latter one. 131

7.4 Adaptable continuum models that stem from different instances of the dif-

ferentiable surrogate loss function. 133

7.5 Runtime performance of the adaptable continuum extraction scheme. 134

LIST OF FIGURES 173

7.6 Continuum-subtracted versions of raw spectra that form the basis for the

extraction of expert-based features. 135

7.7 Classification performance of a support vector machine based on three dif-

ferent feature sets. 136

7.8 Application of a semi-supervised support vector machine for the task of

identifying quasars based on spectroscopic data. 137

8.1 Memory corruptions occuring aboard of today’s spacecraft systems. 142

8.2 The resilient k-d tree and the memory layout used to store its top tree. . . 146

8.3 The Qinghai Large data set. 150

8.4 The Qinghai Small data set. 151

8.5 Clustering performance of all approaches. 153

8.6 Final clustering result on the Qinghai Small data set of all approaches

given a radiation rate of 10−2. 154

8.7 Behavior of running time and memory usage for varying B. 155

9.1 A nearest neighbor regression model for the task of estimating the redshift

of quasars and a support vector regression model used for extrapolation

purposes. 163

174 LIST OF FIGURES

List of Tables

5.1 Comparison of the clustering performance with several competing methods. 97

6.1 All artificial and real-world data sets used in the experimental evaluation. . 112

6.2 Classification performances of all competing approaches for the non-realistic

scenario. 116

6.3 Classification performances of all competing approaches for the realistic

scenario. 117

175

176 LIST OF TABLES

List of Algorithms

2.1 The k-means algorithm. 18

2.2 The propagating 1-nearest neighbor classifier. 19

4.1 The polynomial-time framework for addressing linear unsupervised support

vector machines. 56

5.1 Local search scheme for linear semi-supervised support vector machines. . . 66

5.2 Local search scheme for semi-supervised regularized least-squares classifica-

tion. 73

5.3 Simple stochastic optimization framework for the unsupervised case. 96

6.1 The quasi-Newton optimization framework for addressing the differentiable

surrogate objective. 106

8.1 Filtering approach for accelerating the classical k-means clustering scheme. 145

177

178 LIST OF ALGORITHMS

Bibliography

[1] S. Abe. Support Vector Machines for Pattern Classification. Springer, Secaucus,

NJ, USA, 2005.

[2] M. Adankon, M. Cheriet, and A. Biem. Semisupervised least squares support vector

machine. IEEE Transactions on Neural Networks, 20(12):1858–1870, 2009.

[3] A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and related

problems. Communications of the ACM, 31(9):1116–1127, 1988.

[4] D. Aloise, A. Deshpande, P. Hansen, and P. Popat. Np-hardness of euclidean sum-

of-squares clustering. Machine Learning, 75:245–248, 2009.

[5] E. Alpaydin. Introduction to Machine Learning. MIT Press, 2 edition, 2010.

[6] N. M. Ball and R. J. Brunner. Data Mining and Machine Learning in Astronomy.

ArXiv e-prints, 2010. arXiv:0906.2173v2.

[7] R. G. Bartle. The Elements of Integration and Lebesgue Measure. Wiley-Interscience,

1995.

[8] S. Basu, I. Davidson, and K. Wagstaff. Constrained Clustering: Advances in Algo-

rithms, Theory, and Applications. Chapman & Hall/CRC, 1 edition, 2008.

[9] K. P. Bennett and E. J. Bredensteiner. Duality and geometry in svm classifiers. In

Proceedings of the 17th International Conference on Machine Learning, pages 57–64,

San Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc.

[10] K. P. Bennett and A. Demiriz. Semi-supervised support vector machines. In Ad-

vances in Neural Information Processing Systems 11, pages 368–374. MIT Press,

1999.

179

180 BIBLIOGRAPHY

[11] J. L. Bentley. Multidimensional binary search trees used for associative searching.

Communications of the ACM, 18(9):509–517, 1975.

[12] M. W. Bern and D. Eppstein. Optimization over zonotopes and training support

vector machines. In Proceedings of the 7th Workshshop on Algorithms and Data

Structures, number 2125 in Lecture Notes in Computer Science, pages 111–121.

Springer, 2001.

[13] H.-G. Beyer and H.-P. Schwefel. Evolution strategies - A comprehensive introduc-

tion. Natural Computing, 1:3–52, 2002.

[14] T. D. Bie and N. Cristianini. Convex methods for transduction. In Advances in

Neural Information Processing Systems 16, pages 73–80. MIT Press, 2004.

[15] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2007.

[16] K. M. Borgwardt. Graph Kernels. PhD thesis, Fakultät für Mathematik, Informatik

und Statistik der Ludwig-Maximilians-Universität München, 2007.

[17] K. Borne. Scientific data mining in astronomy. 2009. arXiv:0911.0505v1.

[18] B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal

margin classifiers. In Proceedings of the 5th Annual Workshop on Computational

Learning Theory, pages 144–152, 1992.

[19] O. Bousquet, S. Boucheron, and G. Lugosi. Introduction to statistical learning

theory. In Advanced Lectures on Machine Learning, volume 3176 of Lecture Notes

in Computer Science, pages 169–207. Springer, 2004.

[20] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,

2004.

[21] R. S. Boyer and J. S. Moore. MJRTY: A fast majority vote algorithm. In Automated

Reasoning: Essays in Honor of Woody Bledsoe, pages 105–118, 1991.

[22] U. Brefeld and T. Scheffer. Co-EM support vector learning. In Proceedings of the

21st International Conference on Machine Learning, page 16, New York, NY, USA,

2004. ACM.

[23] U. Brefeld, T. Gärtner, T. Scheffer, and S. Wrobel. Efficient co-regularised least

squares regression. In Proceedings of the 23rd International Conference on Machine

learning, pages 137–144, New York, NY, USA, 2006. ACM.

BIBLIOGRAPHY 181

[24] G. S. Brodal, R. Fagerberg, I. Finocchi, F. Grandoni, G. Italiano, A. G. Jørgensen,

G. Moruz, and T. Mølhave. Optimal resilient dynamic dictionaries. In Algorithms

– ESA 2007. 15th Annual European Symposium, volume 4698 of Lecture Notes in

Computer Science, pages 347–358. Springer, 2007.

[25] C. J. C. Burges and D. J. Crisp. Uniqueness of the SVM solution. In Advances in

Neural Information Processing Systems 12, pages 223–229, 2000.

[26] R. H. Byrd, P. Lu, P. Lu, J. Nocedal, J. Nocedal, C. Zhu, and C. Zhu. A limited

memory algorithm for bound constrained optimization. SIAM Journal on Scientific

Computing, 16(5):1190–1208, 1995.

[27] P. B. Callahan and S. R. Kosaraju. A decomposition of multidimensional point sets

with applications to k-nearest-neighbors and n-body potential fields. Journal of the

ACM, 42(1):67–90, 1995.

[28] R. Castano, D. Mazzoni, N. Tang, T. Doggett, S. Chien, R. Greeley, B. Cichy, and

A. Davies. Learning classifiers for science event detection in remote sensing imagery.

In Proceedings of the International Symposium on Artificial Intelligence, Robotics

and Automation in Space, 2005.

[29] C.-C. Chang and C.-J. Lin. LIBSVM: a library for support vector machines, 2001.

Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[30] K.-W. Chang, C.-J. Hsieh, and C.-J. Lin. Coordinate descent method for large-scale

l2-loss linear support vector machines. Journal of Machine Learning Research, 9:

1369–1398, 2008.

[31] O. Chapelle. Training a support vector machine in the primal. Neural Computation,

19:1155–1178, 2007.

[32] O. Chapelle and A. Zien. Semi-supervised classification by low density separation.

In Proceedings of the 10th International Workshop on Artificial Intelligence and

Statistics, pages 57–64, 2005.

[33] O. Chapelle, M. Chi, and A. Zien. A continuation method for semi-supervised svms.

In Proceedings of the 23rd International Conference on Machine Learning, pages

185–192, 2006.

[34] O. Chapelle, B. Schölkopf, and A. Zien, editors. Semi-Supervised Learning. MIT

Press, Cambridge, MA, 2006.

182 BIBLIOGRAPHY

[35] O. Chapelle, V. Sindhwani, and S. S. Keerthi. Branch and bound for semi-supervised

support vector machines. In Advances in Neural Information Processing Systems 19,

pages 217–224. MIT Press, 2007.

[36] O. Chapelle, V. Sindhwani, and S. S. Keerthi. Optimization techniques for semi-

supervised support vector machines. Journal of Machine Learning Research, 9:203–

233, 2008.

[37] S. Chien, R. Sherwood, D. Tran, B. Cichy, G. Rabideau, R. Castano, A. Davis,

and D. Boyer. Using autonomy flight software to improve science return on earth

observing one. Journal of Aerospace Computing, Information, and Communication,

2:196–216, 2005.

[38] R. Collobert, F. Sinz, J. Weston, and L. Bottou. Trading convexity for scalability.

In Proceedings of the 23rd International Conference on Machine Learning, pages

201–208, 2006.

[39] R. Collobert, F. Sinz, J. Weston, and L. Bottou. Large scale transductive svms.

Journal of Machine Learning Research, 7:1687–1712, 2006.

[40] C. Cortes and V. Vapnik. Support vector networks. Machine Learning, 20:273–297,

1995.

[41] D. J. Crisp and C. J. C. Burges. A geometric interpretation of ν-svm classifiers. In

Advances in Neural Information Processing Systems 12, pages 244–250, Cambridge,

MA, 2000. MIT Press.

[42] L. Cun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and

L. D. Jackel. Handwritten digit recognition with a back-propagation network. In

Advances in Neural Information Processing Systems 2, pages 396–404, 1990.

[43] M. de Berg, O. Cheong, M. van Krefeld, and M. Overmars. Computational Geometry:

Algorithms and Applications. Springer-Verlag, 3 edition, 2008.

[44] S. Droste, T. Jansen, and I. Wegener. On the analysis of the (1+1) evolutionary

algorithm. Theoretical Computer Science, 276(1-2):51–81, 2002.

[45] H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer-Verlag, New

York, NY, USA, 1987.

[46] H. Edelsbrunner, J. O’Rourke, and R. Seidel. Constructing arrangements of lines

and hyperplanes with applications. SIAM Journal on Computing, 15:341–363, 1986.

[47] J. Elstrodt. Maß und Integrationstheorie. Springer, 2004.

BIBLIOGRAPHY 183

[48] R.-E. Fan, P.-H. Chen, and C.-J. Lin. Working set selection using second order

information for training support vector machines. Journal of Machine Learning

Research, 6:1889–1918, 2005.

[49] I. Finocchi, F. Grandoni, and G. F. Italiano. Designing reliable algorithms in unre-

liable memories. Computer Science Review, 1(2):77–87, 2007.

[50] I. Finocchi, F. Grandoni, and G. F. Italiano. Optimal resilient sorting and searching

in the presence of dynamic memory faults. Theoretical Computer Science, 410(44):

4457–4470, 2009.

[51] C. A. Floudas. Nonlinear and Mixed-Integer Optimization: Fundamentals and Ap-

plications. Oxford University Press, USA, 1995.

[52] I. K. Fodor. A survey of dimension reduction techniques. Technical report, Lawrence

Livermore National Laboratory, 2002. UCRL-ID-148494.

[53] A. Frank and A. Asuncion. UCI machine learning repository. http://archive.

ics.uci.edu/ml, 2010.

[54] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious algo-

rithms. In Proceedings of the 40th Symposium on Foundations of Computer Science,

pages 285–299, 1999.

[55] G. Fung and O. L. Mangasarian. Semi-supervised support vector machines for un-

labeled data classification. Optimization Methods and Software, 15:29–44, 2001.

[56] J. Fürnkranz and E. Hüllermeier. Preference learning. Künstliche Intelligenz, 19(1):

60–61, 2005.

[57] Galaxy Zoo: Hubble. http://www.galaxyzoo.org/, November 2011.

[58] F. Gieseke and J. Vahrenhold. Cache-oblivious construction of a well-separated pair

decomposition. In Proceedings of the 25th European Workshop on Computational

Geometry, pages 341–344, 2009.

[59] F. Gieseke, T. Pahikkala, and O. Kramer. Fast evolutionary maximum margin

clustering. In Proceedings of the 26th International Conference on Machine Learning,

pages 361–368, 2009.

[60] F. Gieseke, J. Gudmundsson, and J. Vahrenhold. Pruning spanners and constructing

well-separated pair decompositions in the presence of memory hierarchies. Journal

of Discrete Algorithms, 8(3):259–272, 2010.

184 BIBLIOGRAPHY

[61] F. Gieseke, G. Moruz, and J. Vahrenhold. Resilient k-d trees: K-means in space

revisited. In Proceedings of the 10th IEEE International Conference on Data Mining,

pages 815–820, 2010.

[62] F. Gieseke, K. L. Polsterer, A. Thom, P. Zinn, D. Bomans, R.-J. Dettmar,

O. Kramer, and J. Vahrenhold. Detecting quasars in large-scale astronomical sur-

veys. In Proceedings of the 9th International Conference on Machine Learning and

Applications, pages 352–357, 2010.

[63] F. Gieseke, O. Kramer, A. Airola, and T. Pahikkala. Speedy local search for semi-

supervised regularized least-squares. In Proceedings of the 34th Annual German

Conference on Artificial Intelligence, pages 87–98, 2011.

[64] F. Gieseke, G. Moruz, and J. Vahrenhold. Resilient k-d trees: K-means in space

revisited. Frontiers of Computer Science, 2011. Accepted.

[65] F. Gieseke, K. Polsterer, and P. Zinn. Photometric redshift estimation of quasars:

Local versus global regression. In Proceedings of the Astronomical Data Analysis

Software and Systems, 2011. In print.

[66] F. Gieseke, J. Vahrenhold, and X. Jiang. Exact linear semi-and unsupervised support

vector machines in polynomial time. 2011. Manuscript.

[67] F. Gieseke, A. Airola, T. Pahikkala, and O. Kramer. Sparse quasi-Newton opti-

mization for semi-supervised support vector machines. In Proceedings of the 1st

International Conference on Pattern Recognition Applications and Methods, pages

45–54, 2012.

[68] G. H. Golub and C. Van Loan. Matrix Computations. Johns Hopkins University

Press, Baltimore and London, second edition, 1989.

[69] G. H. Golub and C. Van Loan. Matrix Computations. Johns Hopkins University

Press, Baltimore and London, third edition, 1996.

[70] J. E. Goodman and J. O’Rourke, editors. Handbook of Discrete and Computational

Geometry. CRC Press, Boca Raton, FL, USA, 1997.

[71] I. Guyon. An introduction to variable and feature selection. Journal of Machine

Learning Research, 3:1157–1182, 2003.

[72] N. Hansen. The CMA evolution strategy: A tutorial. Technical report, TU Berlin,

ETH Zürich, 2005.

BIBLIOGRAPHY 185

[73] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning.

Springer, 2 edition, 2009.

[74] R. Herbrich, T. Graepel, and K. Obermayer. Support vector learning for ordinal

regression. In Proceedings of the 9th International Conference on Articial Neural

Networks, pages 97–102, London, 1999. Institute of Electrical Engineers.

[75] B. F. Hildebrand. Introduction to numerical analysis: 2nd edition. Dover Publica-

tions, Inc., New York, NY, USA, 1987.

[76] T. Hofmann, B. Schölkopf, and A. J. Smola. Kernel methods in machine learning.

The Annals in Statistics, 36(3):1171–1220, 2008.

[77] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, 1990.

[78] E. P. Hubble. Extragalactic nebulae. Astrophysical Journal, 64:321–369, 1926.

[79] L. Hubert and P. Arabie. Comparing partitions. Journal of Classification, 2(1):

193–218, 1985.

[80] G. F. Hughes. On the mean accuracy of statistical pattern recognizers. IEEE

Transactions on Information Theory, 15(1):55–63, 1968.

[81] D. Hush, P. Kelly, C. Scovel, and I. Steinwart. QP algorithms with guaranteed

accuracy and run time for support vector machines. Journal of Machine Learning

Research, 7:733–769, 2006.

[82] M. Inaba, N. Katoh, and H. Imai. Applications of weighted voronoi diagrams and

randomization to variance-based k-clustering (extended abstract). In Proceedings

of the 10th Annual Symposium on Computational Geometry, pages 332–339, New

York, NY, USA, 1994. ACM.

[83] T. Joachims. Transductive inference for text classification using support vector

machines. In Proceedings of the International Conference on Machine Learning,

pages 200–209, 1999.

[84] T. Joachims. Learning to Classify Text Using Support Vector Machines: Methods,

Theory and Algorithms. Kluwer, 2002.

[85] T. Joachims. Optimizing search engines using clickthrough data. In Proceedings

of the ACM Conference on Knowledge Discovery and Data Mining, pages 133–142,

New York, NY, USA, 2002. ACM.

186 BIBLIOGRAPHY

[86] T. Joachims. Training linear SVMs in linear time. In KDD’06: Proceedings of

the 12th ACM SIGKDD international conference on Knowledge discovery and data

mining, pages 217–226. ACM, 2006.

[87] A. G. Jørgensen, G. Moruz, and T. Mølhave. Priority queues resilient to mem-

ory faults. In Algorithms and Data Structures, 10th International Workshop 2007,

volume 4619 of Lecture Notes in Computer Science, pages 127–138. Springer, 2007.

[88] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, and A. Y.

Wu. An efficient k-means clustering algorithm: Analysis and implementation. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 24(7):881–892, 2002.

[89] M. Kojima, S. Mizuno, and A. Yoshise. A polynomial-time algorithm for a class of

linear complementarity problems. Mathematical Programming, 44:1–26, 1989.

[90] H. Kopetz. Mitigation of transient faults at the system level – the TTA approach.

In Online Proceedings of the 2nd Workshop on System Effects of Logic Soft Errors,

2006.

[91] O. Kramer and F. Gieseke. Short-term wind energy forecasting using support vector

regression. In Proceedings of the International Conference on Soft Computing Mod-

els in Industrial and Environmental Applications, Advances in Intelligent and Soft

Computing, pages 271–280, 2011.

[92] O. Kramer and F. Gieseke. Analysis of wind energy time series with kernel methods

and neural networks. In Proceedings of the 7th International Conference on Natural

Computation, pages 2381–2385, 2011.

[93] S. Kumar, M. Mohri, and A. Talwalkar. Sampling techniques for the nyström

method. Journal of Machine Learning Research, 5:304–311, 2009.

[94] J. Lafferty and L. Wasserman. Statistical analysis of semi-supervised regression. In

J. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information

Processing Systems 20, pages 801–808. MIT Press, Cambridge, MA, 2008.

[95] Large Synoptic Survey Telescope. http://www.lsst.org, August 2011.

[96] O. Laurino, R. D’Abrusco, G. Longo, and G. Riccio. Astroinformatics of galaxies

and quasars: a new general method for photometric redshifts estimation. 2011.

arXiv:1107.3160.

[97] Y. LeCun and C. Cortes. The MNIST database. http://yann.lecun.com/exdb/

mnist/, July 2011.

BIBLIOGRAPHY 187

[98] Y.-F. Li, I. W. Tsang, J. T. Kwok, and Z.-H. Zhou. Tighter and convex maximum

margin clustering. In Proceedings of the 12th International Conference on Artificial

Intelligence and Statistics, pages 344–351. JMLR: W&CP 5, 2009.

[99] N. List and H. U. Simon. General polynomial time decomposition algorithms. Jour-

nal of Machine Learning Research, 8:303–321, 2007.

[100] U. Luxburg and B. Schölkopf. Statistical learning theory: Models, concepts, and

results. In Handbook of the History of Logic, volume 10, pages 751–706. Elsevier,

2011.

[101] J. B. MacQueen. Some methods for classification and analysis of multivariate obser-

vations. In Proceedings of 5th Berkeley Symposium on Mathematical Statistics and

Probability, pages 281–297, 1967.

[102] M. E. Mavroforakis and S. Theodoridis. A geometric approach to support vector

machine (svm) classification. IEEE Transactions on Neural Networks, 17(3):671–

682, 2006.

[103] T. C. May and M. H. Woods. Alpha-particle-induced soft errors in dynamic memo-

ries. IEEE Transactions on Electron Devices, ED-26(1):2–9, Jan. 1979.

[104] I. Mierswa. Non-convex and multi-objective optimization in data mining. PhD thesis,

Technische Universität Dortmund, 2009.

[105] T. M. Mitchell. Machine Learning. McGraw-Hill, New York, 1997.

[106] D. J. Mortlock, S. J. Warren, B. P. Venemans, M. Patel, P. C. Hewett, R. G.

McMahon, C. Simpson, T. Theuns, E. A. Gonzales-Solares, A. Adamson, S. Dye,

N. C. Hambly, P. Hirst, M. J. Irwin, E. Kuiper, A. Lawrence, and H. J. A. Rottgering.

A luminous quasar at a redshift of z = 7.085. Nature, 474(7353):616–619, 2011.

[107] S. Nene, S. Nayar, and H. Murase. Columbia object image library (coil-100). Tech-

nical report, 1996.

[108] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, 2 edition, 2000.

[109] A. Ostermeier, A. Gawelczyk, and N. Hansen. A derandomized approach to self

adaptation of evolution strategies. Evolutionary Computation, 2(4):369–380, 1994.

[110] S. J. Pan and Q. Yang. A survey on transfer learning. IEEE Transactions on

Knowledge and Data Engineering, 22:1345–1359, 2010.

188 BIBLIOGRAPHY

[111] K. Pearson. On lines and planes of closest fit to systems of points in space. Philo-

sophical Magazine, 2(6):559–572, 1901.

[112] J. Peng, L. Mukherjee, V. Singh, D. Schuurmans, and L. Xu. An efficient algorithm

for maximal margin clustering. Journal of Global Optimization, 2011. To appear.

[113] K. B. Petersen and M. S. Pedersen. The matrix cookbook, 2008. Version 20081110.

[114] U. F. Petrillo, I. Finocchi, and G. F. Italiano. The price of resiliency: a case study

on sorting with memory faults. In Algorithms – ESA 2006. 14th Annual European

Symposium, volume 4168 of Lecture Notes in Computer Science, pages 768–779.

Springer, 2006.

[115] K. L. Polsterer. The LUCIFER Control Software: The Core System, Instrument

Control and Scientific Applications. PhD thesis, Ruhr-Universität-Bochum, 2011.

[116] F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction.

Springer, 1985.

[117] I. S. Reddy, S. Shevade, and M. Murty. A fast quasi-Newton method for semi-

supervised SVM. Pattern Recognition, 44(10-11):2305–2313, 2011.

[118] R. Rifkin, M. Pontil, and A. Verri. A note on support vector machine degeneracy. In

Proceedings of the 10th International Conference on Algorithmic Learning Theory,

pages 252–263, London, UK, 1999. Springer-Verlag.

[119] R. Rifkin, G. Yeo, and T. Poggio. Regularized least-squares classification. In Ad-

vances in Learning Theory: Methods, Models and Applications. IOS Press, 2003.

[120] R. M. Rifkin. Everything Old is New Again: A Fresh Look at Historical Approaches

in Machine Learning. PhD thesis, MIT, 2002.

[121] R. M. Rifkin and R. A. Lippert. Notes on regularized least-squares. Technical

Report MIT-CSAIL-TR-2007-025, MIT Computer Science and Artificial Intelligence

Laboratory, 2007.

[122] D. S. Rosenberg and P. L. Bartlett. The rademacher complexity of co-regularized

kernel classes. Journal of Machine Learning Research - Proceedings Track, 2:396–

403, 2007.

[123] S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally linear

embedding. Science, 290:2323–2326, 2000.

BIBLIOGRAPHY 189

[124] B. Schölkopf and A. J. Smola. Learning with Kernels: Support Vector Machines,

Regularization, Optimization, and Beyond. MIT Press, Cambridge, MA, USA, 2001.

[125] B. Schölkopf, R. Herbrich, and A. J. Smola. A generalized representer theorem.

In Proceedings of the 14th Annual Conference on Computational Learning Theory,

pages 416–426, 2001.

[126] S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Primal estimated sub-gradient

solver for svm. In Proceedings of the 24th International Conference on Machine

learning, pages 807–814, New York, NY, USA, 2007. ACM.

[127] C. Silva, J. S. Santos, E. F. Wanner, E. G. Carrano, and R. H. C. Takahashi. Semi-

supervised training of least squares support vector machine using a multiobjective

evolutionary algorithm. In Proceedings of the 11th Conference on Congress on Evo-

lutionary Computation, pages 2996–3002, Piscataway, NJ, USA, 2009. IEEE Press.

[128] H. U. Simon. On the complexity of working set selection. Theoretical Computer

Science, 382:262–279, 2007.

[129] V. Sindhwani and D. Rosenberg. An RKHS for multi-view learning and manifold

co-regularization. In Proceedings of the 25th Annual International Conference on

Machine Learning, pages 976–983. Omnipress, 2008.

[130] V. Sindhwani, P. Niyogi, and M. Belkin. A co-regularization approach to semi-

supervised learning with multiple views. In Proceedings of ICML Workshop on

Learning with Multiple Views, pages 74–79, 2005.

[131] V. Sindhwani, S. Keerthi, and O. Chapelle. Deterministic annealing for semi-

supervised kernel machines. In Proceedings of the 23rd International Conference

on Machine Learning, pages 841–848, New York, NY, USA, 2006. ACM.

[132] Sloan Digital Sky Survey. http://www.sdss.org, August 2011.

[133] A. J. Smola, S. Vishwanathan, and T. Hofmann. Kernel methods for missing vari-

ables. In Proceedings of the 10th International Workshop on Artificial Intelligence

and Statistics, pages 325–332, 2005.

[134] B. Sriperumbudur and G. Lanckriet. On the convergence of the concave-convex

procedure. In Advances in Neural Information Processing Systems 22, pages 1759–

1767, 2009.

[135] I. Steinwart and A. Christmann. Support Vector Machines. Springer-Verlag, New

York, NY, USA, 2008.

190 BIBLIOGRAPHY

[136] J. A. K. Suykens and J. Vandewalle. Least squares support vector machine classifiers.

Neural Processing Letters, 9(3):293–300, 1999.

[137] J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric framework

for nonlinear dimensionality reduction. Science, 290:2319–2323, 2000.

[138] The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST). http:

//www.lamost.org/, August 2011.

[139] E. Tsivtsivadze, F. Gieseke, T. Pahikkala, J. Boberg, and T. Salakoski. Learning

preferences with co-regularized least-squares. In Proceedings of the ECML/PKDD

Workshop on Preference Learning, pages 52–66, 2008.

[140] H. Valizadegan and R. Jin. Generalized maximum margin clustering and unsuper-

vised kernel learning. In Advances in Neural Information Processing Systems 19,

pages 1417–1424, 2007.

[141] V. Vapnik. Statistical Learning Theory. Wiley, New York, 1998.

[142] V. Vapnik and A. Sterin. On structural risk minimization or overall risk in a problem

of pattern recognition. Automation and Remote Control, 10(3):1495–1503, 1977.

[143] S. Vavasis. Nonlinear Optimization: Complexity Issues. Oxford University Press,

1991.

[144] K. L. Wagstaff and B. Bornstein. K-means in space: A radiation sensitivity eval-

uation. In Proceedings of the 26th International Conference on Machine Learning,

pages 1097–1104, 2009.

[145] K. L. Wagstaff and B. Bornstein. How much memory radiation protection do onboard

machine learning algorithms require? In Proceedings of the IJCAI-09/SMC-IT-

09/IWPSS-09 Workshop on Artificial Intelligence in Space, 2009.

[146] F. Wang, B. Zhao, and C. Zhang. Linear time maximum margin clustering. IEEE

Transactions on Neural Networks, 21(2):319–332, 2010.

[147] C. Williams and M. Seeger. Using the nyström method to speed up kernel machines.

In Advances in Neural Information Processing Systems 13, pages 682–688. MIT

Press, 2001.

[148] L. Xu and D. Schuurmans. Unsupervised and semi-supervised multi-class support

vector machines. In Proceedings of the National Conference on Artificial Intelligence,

pages 904–910, 2005.

BIBLIOGRAPHY 191

[149] L. Xu, J. Neufeld, B. Larson, and D. Schuurmans. Maximum margin clustering. In

Advances in Neural Information Processing Systems 17, pages 1537–1544, 2005.

[150] M.-H. Yang and N. Ahuja. A geometric approach to train support vector machines.

In Proceedings of the Conference on Computer Vision and Pattern Recognition, pages

430–437. IEEE Computer Society, 2000.

[151] X. Yang, H. Fu, H. Zha, and J. Barlow. Semi-supervised nonlinear dimensionality

reduction. In Proceedings of the 23th International Conference on Machine Learning,

pages 1065–1072, New York, NY, USA, 2006. ACM.

[152] A. L. Yuille and A. Rangarajan. The concave-convex procedure (CCCP). In Ad-

vances in Neural Information Processing Systems 14, 2002.

[153] K. Zhang, I. W. Tsang, and J. T. Kwok. Maximum margin clustering made practical.

In Proceedings of the 24th International Conference on Machine Learning, pages

1119–1126, 2007.

[154] T. Zhang and F. J. Oles. Text categorization based on regularized linear classification

methods. Information Retrieval, 4:5–31, 2001.

[155] B. Zhao, F. Wang, and C. Zhang. CutS3VM: a fast semi-supervised svm algorithm.

In Proceedings of the 14th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, pages 830–838, 2008.

[156] B. Zhao, F. Wang, and C. Zhang. Efficient maximum margin clustering via cutting

plane algorithm. In Proceedings of the SIAM International Conference on Data

Mining, pages 751–762, 2008.

[157] X. Zhu and A. B. Goldberg. Introduction to Semi-Supervised Learning. Morgan and

Claypool, 2009.

	Abstract
	Zusammenfassung
	Acknowledgments
	Mathematical Notation
	Introduction
	Motivation
	Support Vector Machines
	Semi- and Unsupervised Extensions
	Application Examples

	Related Work
	Overview on this Thesis

	I Foundations
	Machine Learning Background
	Statistical Learning in a Nutshell
	Expected and Empirical Risk
	Regularized Risk
	Generalization Bounds

	From Supervised to Unsupervised Learning
	Supervised Learning
	Unsupervised Learning
	Semi-Supervised Learning
	Elementary Algorithms
	Related Work

	Model Selection
	Training, Validation, and Test Set
	K-Fold Cross-Validation

	The Curse of Dimensionality
	The Hughes Effect
	Dimension Reduction

	Concluding Remarks

	Support Vector Machines Revisited
	Linear Support Vector Machines
	Preliminaries
	Large Margin Separation

	Non-Linear Support Vector Machines
	Kernels and Feature Spaces
	Generalized Representer Theorem
	Support Vector Classification
	Support Vector Regression

	Computational Considerations
	Primal and Dual Problems
	Mathematical Optimization

	The Hughes Effect Revisited
	Experimental Setup
	Results

	Concluding Remarks

	II Semi- and Unsupervised Support Vector Machines
	Exact Solutions in Polynomial Time
	Mathematical Framework
	Learning Tasks
	Related Work

	Geometric Background
	Arrangements and Duality
	Constructing Arrangements

	Polynomial-Time Framework
	Connection to Arrangements
	Polynomial-Time Algorithm

	Experimental Analysis
	Experimental Setup
	Results

	Concluding Remarks

	Speedy Local Search
	Motivation
	General Classification Framework
	Non-Linear Extensions
	Related Work

	Algorithmic Framework
	Least-Squares Variants
	Local Search Strategy
	Convex Intermediate Tasks
	Speed-Ups via Matrix Calculus

	Experimental Analysis
	Experimental Setup
	Semi-Supervised Learning Settings
	Unsupervised Learning Settings

	Concluding Remarks

	Sparse Quasi-Newton Optimization
	Motivation
	Continuous Optimization
	Non-Convex Task
	Balance Constraint
	Related Work

	Algorithmic Framework
	Differentiable Surrogates
	Quasi-Newton Optimization
	Computational Speed-Ups
	Competitors: Steepest Descent and Newton's Method

	Experimental Analysis
	Experimental Setup
	Results

	Discussion: Model Selection and Optimization
	Parameters, Parameters, and Parameters
	More Optimization

	Concluding Remarks

	III Applications in Astronomy
	Machine Learning on Earth
	Motivation
	Massive Data in Astronomy
	Quasi-Stellar Radio Sources

	Detecting Quasars in Large-Scale Spectroscopic Surveys
	Speedy Adaptable Continuum Extraction
	Discriminating Quasars from Other Objects

	Semi-Supervised Learning Perspectives
	Semi-Supervised Support Vector Machines for Spectroscopic Data
	Multiple Views: Photometric and Spectroscopic Data

	Concluding Remarks

	Machine Learning in Space
	Motivation
	Accelerating K-Means
	K-d Trees
	Speed-Up with K-d Trees

	Resilient K-d K-Means
	Resilient K-d Tree
	Resilient K-d K-Means

	Experimental Analysis
	Experimental Setup
	Results

	Concluding Remarks

	IV Summary
	Summary and Outlook
	Summary
	Semi- and Unsupervised Support Vector Machines
	Applications in Astronomy

	Research Directions
	Semi- and Unsupervised Learning
	Astroinformatics: An Emerging Discipline

	Appendix
	Author's Contribution
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

