
Carl von Ossietzky Universität Oldenburg

Fakultät II – Informatik, Wirtschafts- und Rechtswissenschaften
Department für Informatik

Resilience of

Graph Transformation Systems:

Modeling Adverse Conditions

and Infinite-state Verification

von der Fakultät für Informatik, Wirtschafts- und
Rechtswissenschaften der Carl von Ossietzky Universität

Oldenburg zur Erlangung des Grades und Titels

Doktor der Naturwissenschaften (Dr. rer. nat.)

angenommene Dissertation von

Okan Özkan, M.Sc.

geboren am 1. Dezember 1993 in Oldenburg

Gutachterin: Prof. Dr. Annegret Habel
Gutachterin: Prof. Dr. Barbara König

Tag der Disputation: 22. Mai 2023

Abstract

Graph transformation systems are a visualizable, yet mathematically precise
formalism for modeling systems. In this perception, system states are cap-
tured by graphs and state changes by graph transformations. Other model
formalisms can often be easily translated into the graph-transformational
setting. Correctness and resilience are broadly used concepts in computer sci-
ence and software engineering. For systems in which correctness w.r.t. a safety
constraint is unachievable, fast recovery is demanded. In general systems
engineering, fast recovery from a degraded state is often termed resilience.
Correctness under adverse conditions addresses systems interacting with
an adversary environment. Correctness in this context means that the
interaction between system and environment satisfies desired behavioral
properties.

The use of visual modeling techniques alone does not guarantee the
resilience of a design. In the context of rising standards for trustworthy sys-
tems, there is a growing need for formal verification of graph transformation
systems. First we present an approach for modeling adverse conditions by
graph transformation systems. We show how to express resilience notions
in temporal logics. Second, we investigate on the decidability of resilience
problems. Given a graph transformation system, a graph set INIT, and
graph constraints Bad and Safe, we ask: starting from any INITial graph,
whenever we reach a graph satisfying Bad, can we reach a graph satisfying
Safe in a bounded number of steps? Solving the corresponding problem for
well-structured transition systems by an ideal-based approach and applying
it to graph transformation systems, we obtain decidability results for suitable
subclasses of graph transformation systems of bounded path length and
so-called proper graph constraints Bad and Safe. Moreover, we identify
sufficient, rule-specific criteria for decidability.

i

ii

Zusammenfassung

Graphtransformationssysteme sind ein visualisierbarer Formalismus für das
Modellieren von Systemen. Systemzustände werden als Graphen aufge-
fasst und Zustandsänderungen als Graphtransformationen. Andere Modell-
Formalismen können oft einfach in den Graphtransformations-Formalismus
übersetzt werden. Korrektheit und Resilienz sind Konzepte, die breite An-
wendung in der Informatik und Softwaretechnik finden. Für Systeme, in
denen Korrektheit nicht erreichbar ist, ist eine schnelle Wiederherstellung
gefragt. In der allgemeinen Systemtechnik wird eine schnelle Wiederherstel-
lung ausgehend von einem schlechten Zustand oft als Resilienz bezeichnet.
Korrektheit unter widrigen Umständen spricht Systeme an, die mit einer
Umgebung als Kontrahenten interagieren. Korrektheit in diesem Sinne be-
deutet, dass die Interaktion zwischen System und Umgebung erwünschte
Verhaltenseigenschaften erfüllt.

Der bloße Einsatz visueller Modellierungsmethoden garantiert noch keine
Resilienz des Designs. Im Zuge steigender Anfordungen an zuverlässige Sys-
teme gibt es einen zunehmenden Bedarf an formaler Verifikation von Graph-
transformationssystemen. Zunächst präsentieren wir einen Ansatz für die
Modellierung von widrigen Umständen durch Graphtransformationssysteme.
Wir zeigen, wie Resilienz-Begriffe in temporaler Logik ausgedrückt werden
können. Anschließend untersuchen wir die Entscheidbarkeit von Resilienz-
Problemen. Gegeben ein Graphtransformationssystem, eine Graphenmenge
INIT und Graphbedingungen Bad und Safe, stellen wir folgende Frage:
Beginnend von einem INITialen Graphen, können wir, wann immer wir
einen Graphen, der Bad erfüllt, erreichen, in einer beschränkten Anzahl an
Schritten einen Graphen, der Safe erfüllt, erreichen? Durch das Lösen des
korrespondierenden Problems für wohlstrukturierte Transitionssyteme mittels
eines ideal-basierten Ansatzes und das Anwenden auf Graphtransformations-
systeme erhalten wir Entscheidbarkeitsresultate für geeignete Teilklassen von
Graphtransformationssystemen von beschränkter Pfadlänge und sogenannte
propere Graphbedingungen Bad und Safe. Darüberhinaus ermitteln wir
hinreichende, regelspezifische Kriterien für die Entscheidbarkeit.

iii

iv

Danksagung

Über den gesamten Zeitraum meiner Promotion, insbesondere beim Schreiben
dieser Arbeit, haben viele Personen einen Beitrag dazu geleistet, diese Arbeit
zu verbessern, mich zu unterstützen und letztendlich mir den erfolgreichen
Abschluss zu ermöglichen. An dieser Stelle möchte ich euch meinen Dank
aussprechen:

Mein erster Dank gilt meiner Betreuerin Annegret Habel, die keine Mühe
gescheut hat, meine Arbeit zu betreuen und mich auf einen guten Weg zu
lenken. Ich danke Dir!

Diese Arbeit ist im Rahmen des DFG-Graduiertenkollegs SCARE ent-
standen. Einen herzlichen Dank richte ich an den SCARE-Vorsitzenden
Ernst-Rüdiger Olderog, der als mein zweiter Betreuer durch kritische Fra-
gen einen positiven Einfluss auf die Entwicklung dieser Arbeit hatte. Ich
danke sehr herzlich Barbara König für die hilfreichen fachlichen Diskussio-
nen, die wertvollen kreativen Impulse und die Begutachtung meiner Arbeit.
Ich danke auch Ingo Stierand, der sich bereit erklärt hat, Mitglied der
Prüfungskommission zu sein, und mir Denkanstöße zur Weiterentwicklung
der Resilienz-Begriffe gegeben hat. Vielen Dank an alle Beteiligte!

Für hilfreiche Anmerkungen zu dieser Arbeit danke ich Nils Erik Flick
und Christian Sandmann. Für das Korrekturlesen dieser Arbeit danke
ich Gülcan Solak und meiner Schwester. Ich danke meinen Kollegen Tim
Cofala, Erzana Berani Abdelwahab, Christopher Bischophink, Lars Elend,
Grigorios Giotas, Paul Jonathan Hannibal, Farzaneh Moradkhani, Heinrich
Ody, Christoph Peuser, Seyed Mehrdad Poorhosseini, Uli Schlachter und
Maike Schwammberger für die interessanten Gespräche und die herzliche
Atmosphäre bei gemeinsamen Treffen. Für die administrative Hilfe danke
ich Marion Bramkamp, Andrea Göken, Anna Schlünzen und ganz besonders
Ira Wempe.

Besonders danke ich auch meinem Freund und Kollegen Nick Würdemann,
der mir schon seit der Studienzeit fachlich und persönlich zur Seite stand,
wenn ich seinen Rat brauchte. Danke, Nick! Ebenso geht mein Dank an
meine Freunde Niko, Helen und Piet – danke für die gemeinsame Zeit!

Ich danke meiner Familie, die immer ein sicherer Hafen des Rückhalts
für mich war. Mein größter Dank gilt meinen Eltern, die mich in jeder
Lebenssituation und in jeder Hinsicht unterstützt haben. Danke!

v

Anneme Ve Babama
Meinen Eltern

Contents

Page

1 Introduction 1

2 Preliminaries 7

2.1 Graph Transformation Systems 7

2.2 Well-structured Transition Systems 14

3 Modeling Adverse Conditions 21

3.1 Joint Graph Transformation Systems 22

3.2 Resilience Notions . 26

3.3 Reduction to Temporal Logics 30

3.4 Related Concepts . 33

3.5 Summary . 35

4 Verifying Resilience in a Well-structured Framework 37

4.1 Resilience Problem . 38

4.2 Decidability . 40

4.3 Algorithms and Approximations 52

4.4 Related Concepts . 60

4.5 Summary . 61

5 Verifying Resilience of Graph Transformation Systems 63

5.1 Resilience Problem . 64

5.2 Decidability . 66

5.3 Example: Circular Process Protocol 78

5.4 Example: Logistic System . 81

5.5 Rule-specific Criteria . 86

5.6 Related Concepts . 98

5.7 Summary . 103

6 Conclusion 107

6.1 Related Concepts . 107

6.2 Summary . 110

6.3 Further Topics . 111

vii

viii CONTENTS

A Related Formalisms 115

B Proofs 123

C Computations 131

Bibliography 163

List of Symbols 169

Index 171

Chapter 1

Introduction

There is a great demand for visual notations in the software development
process and related activities. Graph transformation systems (GTSs), as
considered, e.g., in Ehrig et al. [EHK+97, EEPT06], are a visualizable, yet
mathematically precise formalism for modeling a system. In this perception,
system states are captured by graphs and state changes by graph transforma-
tions. Topics in graph transformation are growing in popularity. Other model
formalisms can often be easily translated into the graph-transformational
setting, see, e.g., Baldan et al. [BCM05].

Trustworthiness is a fundamental paradigm for contemporary system
design. As a matter of fact, correctness of computational systems has proven
to be a key principle throughout almost all areas of computer science, e.g., Apt
et al. [AOdB09]. In particular, system correctness under adverse conditions
is a topic of recent research, see, e.g., Olderog et al. [OFTK21]. This concept
addresses systems which interact with an environment and finds use also
in the development of evolving technologies such as autonomous driving
(Schwammberger [Sch18]) and neural networks (Worzyk et al. [WKK19]).
For further topics, consult, e.g., [OFTK21]. Correctness in this context
means that the interaction between system and environment satisfies desired
behavioral properties. One assumes that the environment exhibits an only
partially predictable behavior or may have an adverse effect.

Resilience is a broadly used concept in computer science and software en-
gineering with varying notions, see, e.g., Jackson & Ferris [JF13]. For systems
in which correctness w.r.t. a safety constraint is unachievable, fast recovery
is demanded. In general systems engineering, fast recovery from a degraded
state is often termed resilience, e.g., Trivedi et al. [TKG09]. This underlying
idea can be recognized in several (resilience) notions in the literature, e.g.,
self-stabilization (see Dijkstra [Dij74] and Dolev [Dol00]) and resilience of
timed automata, see Akshay et al. [ACD+17]. Resilience can be classified
as a special case of system correctness under adverse conditions.

The use of visualizable modeling techniques alone does not guarantee the

1

Chapter 1 Introduction

resilience of a design. In view of rising standards for trustworthy systems,
there is a growing need for formal verification of graph transformation systems.
This thesis addresses this need.

Our first objective tackles the following questions:

(1) How can adverse conditions be modeled by graph transformation
systems?

(2) What are meaningful notions of resilience in the setting of adverse
conditions?

(3) How can resilience be checked?

We present an approach for modeling adverse conditions by graph trans-
formation systems. That is, we show how to construct a joint graph trans-
formation system from a system, an environment, and a control automaton.
Both, system and environment, are graph transformation systems. The
control automaton is modeling their interaction. We introduce meaningful
resilience notions for joint graph transformation systems. These notions
capture the recovery of a safety constraint Safe after an interference of the
environment, i.e.,

interference of environment ⇒ recovery of Safe.

Resilience of the joint system generalizes classical correctness of safety
constraints. A safety constraint may be violated but must be recovered
within a specified time window. We express these resilience notions by
means of temporal logics s.t. a model checker, e.g., the tool GROOVE by
Kastenberg & Rensink [KR06] can be applied. The temporal logics we use
are linear temporal logic (LTL) and computation tree logic (CTL), see, e.g.,
Baier & Katoen [BK08]. As atomic propositions we use graph constraints.

Construction

Reduction

Model
Checking
Method

system

environment

control automaton

resilience notion

joint GTS

temporal formula

yes

no

(no answer)

Construction & Reduction to Model Checking

We perform the construction and reduction as preparation for model
checking of meaningful resilience notions. Unfortunately, decidability is, in
general, not guaranteed and the model checker might deliver no result. The
reason is that graph transformation systems are, in general, working over

2

Introduction Chapter 1

infinite sets of graphs. For finite-state graph transformation systems, this
approach works without major obstacles.

Our second objective is the verification of resilience for graph trans-
formation systems. Abstracting from the original setting, we investigate
on the following bounded resilience problem for marked graph transforma-
tion systems each consisting of a graph transformation system together
with a graph class closed under rule application and an INITial subset of
graphs: Given a marked graph transformation system and sets BAD and
SAFE of graphs, we ask whether there exists a bound k s.t. starting from
any INITial graph, whenever we reach a BAD graph, we can reach a SAFE
graph in at most k steps. A BAD (SAFE) graph is a graph satisfying a graph
constraint Bad (Safe). The bounded resilience problem can analogously be
formulated for marked systems, replacing the graph constraints Bad and
Safe by subsets BAD and SAFE of states.

(1) Under which general assumptions of a system class and sets BAD and
SAFE is the bounded resilience problem decidable?

(2) For which subclasses of marked graph transformation systems and
graph constraints Bad and Safe is the bounded resilience problem
decidable?

(3) What are sufficient, rule-specific criteria for decidability?

In order to analyze graph transformation systems, we consider their
induced transition systems. A transition system consists of a set of states of
any kind (not necessarily graphs) and a transition relation on the state set.
Usually, the state set – also in the context of graph transformation systems
– is infinite. For handling infinite state sets (sets of graphs), we exploit
the concept of well-structuredness, e.g., Abdulla et al. [AČJT96], Finkel &
Schnoebelen [FS01], König & Stückrath [KS17]. A well-structured transition
system (WSTS) is, informally, a transition system equipped with a well-quasi-
order satisfying that “larger” states simulate “smaller” states and that certain
predecessor sets can be effectively computed. In this well-structured setting,
ideal-based sets (upward- or downward-closed sets) play an important role.
They enjoy a number of properties simplifying verification such as a finite
representation and closure properties. For well-structured transition systems,
the ideal reachability problem is decidable, see, e.g., Abdulla et al. [AČJT96],
Finkel & Schnoebelen [FS01], which is an integrant of our results.

Well-structuredness of graph transformation systems is investigated, e.g.,
in König & Stückrath [KS17] for several well-quasi-orders. The well-quasi-
order we use is the subgraph order which permits strong compatibility but
comes with the restriction of the boundedness of the path length on the
graph class. We show decidability for suitable subclasses of well-structured

3

Chapter 1 Introduction

transition systems. Applying them, we obtain decidability results for suit-
able subclasses graph transformation systems of bounded path length, as
illustrated below.

Bounded Path Length
subgraph order [KS17]

Semantics

Decidability
for WSTSs

graph constraints

(requirement)

marked GTS

(requirement)

marked WSTS

(requirement)

sets

(requirement)

yes, ∃k...

no, ̸ ∃k...

Decidability for GTSs

Each subclass exhibits additional requirements, i.e., effectiveness or unre-
liability properties. Ultimately, we apply our results to joint graph transfor-
mation systems, i.e., to the setting of adverse conditions. This is a special
case of the decidability results for graph transformation systems.

Thesis Structure

In Chapter 2, we present the main concepts used in this thesis, namely,
graph transformation systems and well-structured transition systems. In
Chapter 3, we present an approach for modeling adverse conditions by graph
transformation systems and express resilience notions in temporal logics.
In Chapter 4, we show the decidability of resilience problems for suitable
subclasses of well-structured transition systems. In Chapter 5, we show the
decidability of resilience problems for subclasses of graph transformation
systems (including results for the setting of Chapter 3) by applying our
results from Chapter 4. Moreover, we identify sufficient criteria of graph
transformations for decidability. In Chapter 6, we recapitulate related
concepts, give a concluding summary, and discuss further topics. In the
Appendix, related formalisms, proofs, and computations can be found.
The preliminaries on graph transformation systems are orientated on Ehrig
et al. [EHK+97, EEPT06]. The preliminaries on well-structured transition
systems are orientated on Abdulla et al. [AČJT96], Finkel & Schnoebelen
[FS01], and König & Stückrath [KS17].

The following publications form the basis of this work. Their content has
been revised and extended.

4

Introduction Chapter 1

[Özk20] Okan Özkan. Modeling Adverse Conditions in the Framework of
Graph Transformation Systems. In Proc. Graph Computational
Models, volume 330 of EPTCS, pages 35–54, 2020. ⇒ Chapter 3 is
based on this paper.

[Özk21] Okan Özkan. Infinite-state Graph Transformation Systems under
Adverse Conditions. it Inf. Technol., 63(5–6): 311–320, 2021.
⇒ This is an overview paper which contains ideas used in Chap-
ter 3, 4, and 5.

[ÖW21] Okan Özkan and Nick Würdemann. Resilience of Well-structured
Graph Transformation Systems. In Proc. Graph Computational
Models, volume 350 of EPTCS, pages 69–88, 2021. ⇒ Some parts
of Chapter 4 and 5 are based on this paper.

[Özk22] Okan Özkan. Decidability of Resilience for Well-structured Graph
Transformation Systems. In Proc. Int. Conference on Graph
Transformation, volume 13349 of LNCS, pages 38–57, 2022. ⇒ Most
parts of Chapter 4 and 5 are based on this paper.

Chapter 5

Chapter 4

Chapter 3

Chapter 2

Chapter 6

Adverse Conditions Verification of Resilience

Figure 1.1: Reading guide.

5

Chapter 1 Introduction

In Figure 1.1, ways to read this thesis are depicted. The solid arrows represent
the recommended reading directions, i.e., in the numerical order. The dashed
edges are other possible reading directions.

This work comprises three main aspects: the modeling of adverse con-
ditions, the verification of resilience for well-structured transition systems,
and the verification of resilience for graph transformation systems. The
modeling of adverse conditions is based on graph transformation systems,
graph constraints, and temporal logics. The verification of resilience for
well-structured transition systems is based on the established theory of well-
structuredness which uses the concept of ideals in well-quasi-orders. The
verification of resilience for graph transformation systems is based on our
results for well-structured transition systems and the theory of graph trans-
formation systems. Our results for graph transformation systems can be
used for the verification in the context of adverse conditions. An overview is
depicted in Figure 1.2.

Verification of
Resilience for GTSs

[ÖW21, Özk22]
decidability
for subclasses

Verification of
Resilience for WSTSs

[ÖW21, Özk22]
decidability
for subclasses

Modeling Adverse Conditions

[Özk20, ÖW21]
resilience notions for joint GTSs
reduction to model checking

transition system
well-quasi-order

ideals & anti-ideals
ideal reachability

single-pushout
well-structured GTSs

subgraph order
graph constraints

transition systems
LTL & CTL

WSTSsGTSs
Temporal Logics

Figure 1.2: Overview of this thesis.

6

Chapter 2

Preliminaries

We present the main concepts used in this thesis, namely graph transfor-
mation systems and well-structured transition systems. In Section 2.1, we
give a review on the basic notions of graphs and graph transformation sys-
tems. In Section 2.2, we recapitulate the basic notions of well-structured
transition systems.

2.1 Graph Transformation Systems

In the following, we present the definitions of graphs, graph constraints, rules,
and graph transformation systems, see, e.g., Ehrig et al. [EPS73, EHK+97,
EEPT06].

A directed, labeled graph consists of a set of nodes and a set of edges
where each edge is equipped with a source and a target node and where each
node and edge is equipped with a label. This kind of graphs are a special
case of the hypergraphs introduced in [Hab92].

Definition 2.1 (graphs). A (directed) (labeled)1 graph over a finite label
alphabet Λ = ΛV ∪ ΛE is a tuple G = ⟨V,E, src, tgt, labV , labE⟩, with finite
sets V and E of nodes (or vertices) and edges, functions srcG, tgtG : E → V as-
signing source and target to each edge, and labeling functions labV : VG → ΛV ,
labE : EG → ΛE . We may denote the components of a graph G with an
index G. A node v is incident to an edge e, and vice versa, if src(e) = v or
tgt(e) = v.

Convention. We draw graphs as follows. Nodes are drawn as circles and
edges as arrows. Labels are indicated by a symbol or a color. If we consider
only one label, we do not indicate the label. Opposite edges may be drawn
as one line without an arrow tip or as one line with two arrow tips.

1In definitions, words in brackets are optional, i.e., we allow to leave out words in
brackets. E.g., if (directed) (labeled) graphs are defined, we allow to speak of “directed,
labeled graphs”, “labeled graphs”, “directed graphs”, as well as shortly of “graphs”.

7

Chapter 2 Preliminaries

Example 2.1. Consider a graph G with the nodes v0, v1, v2, the edges
e0, e1, e2, e

′
0, e

′
1, e

′
2, and the following source, target, and labeling functions:

labV (vi) = □ for i = 0, 1, 2

src(ei) = vi, tgt(ei) = vi, labE(ei) = ci for i = 0, 1, 2

src(e′i) = vi, tgt(e′i) = vi+1, labE(e′i) = Pi for i = 0, 1

src(e′2) = v2, tgt(e′2) = v0, labE(e′2) = P2

The drawing below is a representation of G.

P0 P1

P2

c2c0

c1

It consists of three nodes with the same label (□), three loops with three
different labels c0, c1, c2, and three edges, which are not loops, with three
different labels P0, P1, P2. Every node is incident to one loop and has, besides
the loop, one incoming and one outgoing edge.

Graph morphisms consist of partial functions between nodes and edges,
which preserve the graph structure.

Definition 2.2 (graph morphisms). Given graphs G and H, a (partial)
(graph) morphism g : G ⇀ H consists of partial functions gV : VG ⇀ VH and
gE : EG ⇀ EH which preserve sources, targets, and labels, i.e., gV ◦srcG(e) =
srcH ◦ gE(e), gV ◦ tgtG(e) = tgtH ◦ gE(e), labVG(v) = labVH ◦ gV (v), and
labEG(e) = labEH ◦ gE(e) on all nodes v and edges e, for which gV (v), gE(e)
is defined. Furthermore, if a morphism is defined on an edge, it must be
defined on all incident nodes. The morphism g is total (injective, surjective)
if both gV and gE are total (injective, surjective). If g is total (and injective),
we write g : G → H (g : G ↪→ H). The composition of morphisms is
defined componentwise. An isomorphism is a total, bijective morphism.
Two graphs G and H are isomorphic, written as G ∼= H, if there exists an
isomorphism from G to H.

Convention. In drawings of (partial) morphisms, we equip the image
of a node with the same index. Nodes on which the partial morphism is
undefined have no index.

Example 2.2. Consider the graph G with nodes v1, v2, v3, edges e1, e2, e3
labeled with P0, P1, P2, and a c1-labeled loop e4 and the graph H with
nodes v′1, v

′
2, edges e

′
1, e

′
2 labeled with P0, P2, and a c2-labeled loop e′3, both

as in the drawing representations below. The morphism g : G ⇀ H is
formally given by the partial functions gV : {v1, v2, v3} ⇀ {v′1, v′2} and
gE : {e1, e2, e3, e4}⇀ {e′1, e′2, e′3}:

8

Preliminaries Chapter 2

gV (v1) = v′1, gV (v2) = v′2, gV (v3) = v′2,
gE(e1) = e′1, gE(e3) = e′2.

It is represented as follows:

G
1

2
3

P0 P1

P2

c1

⇀
1 2, 3

P0

P2

c2

H

The nodes v1, v2, v3 with indices 1, 2, 3 are mapped to the nodes with the
indices 1, 2, 3. In particular, the nodes with indices 2 and 3 are identified.
The morphism g is undefined on the c1-labeled loop and the P1-labeled edge.
The c2-labeled loop is not in the image of the morphism.

Graph constraints are well-known (e.g., Rensink [Ren04], [HP09]) and
equivalent to first-order graph formulas in the sense of Courcelle [Cou90,
Cou97]. We focus on a special case of graph constraints, which are non-
nested and based on “pure positive” / “pure negative” constraints, considered,
e.g., in [HST18]. A definition of general graph constraints can be found in
Appendix A.

Definition 2.3 (positive & negative constraints). A pure positive con-
straint is an expression of the form ∃C where C is a graph. A pure negative
constraint is an expression of the form ¬∃C where C is a graph. A pure
constraint is a pure positive or pure negative constraint.
The class of positive constraints is the smallest class of expressions, which
(i) contains all pure positive constraints and (ii) is closed under ∧,∨. The
class of negative constraints is the smallest class of expressions, which (i) con-
tains all pure negative constraints and (ii) is closed under ∧,∨. A proper2

constraint is a positive or negative constraint.
The class of non-nested constraints is the smallest class of expressions, which
(i) contains all pure positive constraints and (ii) is closed under ¬,∧,∨.
A graph G satisfies ∃C if there is a total, injective morphism C ↪→ G. It
satisfies the negation ¬∃C (the negation ¬c) if it does not satisfy ∃C (the non-
nested constraint c). A graph satisfies a disjunction of non-nested constraints
if it satisfies one of them, and a conjunction of non-nested constraints if it
satisfies both of them. We write G |= c if the graph G satisfies the non-
nested constraint c. For a non-nested constraint c, we denote by JcK the class
of all graphs G with G |= c. Two non-nested constraints c, c′ are equivalent
if JcK = Jc′K.

Assumption. In the following, we focus on proper, i.e., positive and negative
constraints.

9

Chapter 2 Preliminaries

pure
positive negative

proper

non-nested

∃C1∨
∃C2

∃C1∧
∃C2

¬∃C1∨
¬∃C2

¬∃C1∧
¬∃C2

∃C1 ∧ ¬∃C2

∃C ¬∃C

Figure 2.1: Non-nested constraints.

In Figure 2.1, the subclasses of non-nested constraints are illustrated:
Proper constraints subsume positive (e.g., ∃C1 ∨ ∃C2) and negative con-
straints (e.g., ¬∃C1 ∧ ¬∃C2). The non-nested constraint ∃C1 ∧ ¬∃C2 is not
proper. Pure constraints subsume pure positive (∃C) and pure negative
(¬∃C) constraints.

Example 2.3. Consider a single node label and three edge labels c0, c1, c2.
The expressions

Loop(c0) = ∃
(

c0
)

and NoLoop(c0) = ¬∃
(

c0
)

are pure constraints. The pure positive constraint Loop(c0) expresses that
there exists a c0-labeled loop. The pure negative constraint NoLoop(c0)
expresses that there does not exist a c0-labeled loop. The expressions

Loop =
∨

i=0,1,2

∃
(

ci
)

and NoLoop =
∧

i=0,1,2

¬∃
(

ci
)

are proper constraints. The positive constraint Loop expresses that there
exists a loop. The negative constraint NoLoop expresses that there does not
exist a loop.

2In Sandmann [San22], another type of proper constraints is defined.

10

Preliminaries Chapter 2

The validity of positive contraints is inherited to “larger” graphs. Analo-
gously, the validity of negative contraints is inherited to “smaller” graphs.

Fact 2.1 (upward & downward inheritance). Let G ↪→ H.

(a) For a positive constraint c, G |= c implies H |= c.

(b) For a negative constraint c, H |= c implies G |= c.

Proof. We show (a) by structural induction over positive constraints. Let
h : G ↪→ H be a total, injective morphism and c a positive constraint.
Hypothesis. G |= c implies H |= c.
Base case. Let c = ∃C and G |= c, i.e., there exists g : C ↪→ G. Then,
h ◦ g : C ↪→ H is a total, injective morphism, i.e., H |= ∃C.
Induction Step. (i) Let c = c1 ∨ c2 and G |= c, i.e., G |= ci where i = 0 or
i = 1. We apply the induction hypothesis to ci. We obtain H |= ci where
i = 1 or i = 2. Thus, H |= c. (ii) Let c = c1 ∧ c2 and and G |= c, i.e., G |= c1
and G |= c2. We apply the induction hypothesis to both c1 and c2. We
obtain H |= c1 and H |= c2. Thus, H |= c.
Statement (b) follows by the contraposition of statement (a).

For every positive constraint, an equivalent constraint in “reduced ∨-
normal form” is computable. A disjunction of pure positive constraints is
reduced if for different graphs C, C ′ in the disjunction, there is no total,
injective morphism from C to C ′.

Lemma 2.1 (∨-normal form). For every positive contraint, we can ef-
fectively construct an equivalent, reduced disjunction of pure positive con-
straints.

Proof sketch. The conjunction of two pure positive constraints can be
expressed as an equivalent disjunction of pure positive constraints. This is
done by considering all possible overlappings of two graphs. Thus, every
positive constraint can be written in a disjunctive normal form. Formally, we
perform a structural induction over positive constraints, see Appendix B.

In graph transformation, the most popular approaches are the double-
pushout approach (DPO) and the single-pushout approach (SPO). We use
the single-pushout approach with injective “matches” for modeling graph
transformations, see, e.g., Löwe [Löw93], Ehrig et al. [EHK+97]. For our
purpose, SPO is favorable, see Fact 2.8. In [Par92], Parisi-Presicce pro-
vides a comparison of DPO and SPO.

A rule is given by a graph morphism. It is applied to a graph by means
of a set-theoretical or “pushout” construction. In a set-theoretical manner,
the result of the application of the rule r = ⟨p : L ⇀ R⟩ according to the
“match” m : L ↪→ G is constructed from the graph G as follows:

11

Chapter 2 Preliminaries

(1) Delete all “dangling edges”, i.e., egdes incident to nodes which are
undefined under p.
Delete all items which are undefined under p.

(2) Add all items which are new in R.

The construction is illustrated in Figure 2.2.

(PO)

p

m

L

G

R

H

Figure 2.2: Illustration of a pushout.

The red area is undefined under p and therefore deleted. The green area
is added. The light-blue area is preserved. The gray area illustrates the
context of the left-hand side.

Definition 2.4 (rules & transformations). A (graph transformation) rule
r = ⟨p : L ⇀ R⟩ is given by a partial morphism from a graph L to a graph R.3

A (direct) transformation G⇒ H from a graph G to a graph H via (applica-
tion of) the rule r according to a total, injective match morphism m : L ↪→ G
is given by a pushout of r and m as shown below. For a formal definition of
pushouts, see Appendix A.

L R

G H

(PO)

p

m

We write G ⇒r H to indicate the applied rule, and G ⇒R H if G ⇒r H
for a rule r in a rule set R.
A transformation sequence is a (possibly infinite) sequence G0 ⇒ G1 ⇒ . . .
of consecutive transformations. A transformation sequence (from G0 to Gk)
of length k is a finite transformation sequence G0 ⇒ G1 ⇒ . . . ⇒ Gk. We
denote a transformation sequence from G to H of length k by G⇒k H, of
length ≤ k by G⇒≤k H, and of length ≥ 0 by G⇒∗ H.

3We use rules with names for referring to them.

12

Preliminaries Chapter 2

Example 2.4. In Figure 2.3, the rule on the top is applied to the graph in
the bottom left corner. The construction of the pushout yields the graph in
the bottom right corner. This transformation deletes (creates) one c0-labeled
loop at the source (target) node of the P1-labeled edge.

1 2

P1

c0

1 2

P1

c0

3

1
2

P0 P1

P2

c0

3

1

2

P0 P1

P2

c0

⇀

⇀

↪→ ↪→

(PO)

Figure 2.3: Example of a transformation.

For obtaining a graph transformation system, we restrict the graphs to
which the rules shall be applied to a specified “closed” graph class. A graph
class S is closed under (rule application of) R if for every transformation
G⇒R H with G ∈ S, also H ∈ S.

Definition 2.5 (graph transformation system). A graph transforma-
tion system (GTS) ⟨S,R⟩ is a finite set R of rules together with a graph
class S closed under R.

Example 2.5. The Initiate-rule and the two Forward-rules in Figure 2.4
together with the class of “cyclic” graphs of the form

P0 P1

P2

with some additional c0-labeled loops form a GTS. The application of the
Initiate-rule creates one c0-labeled loop at the target node of a P0-labeled
edge. The application of the Forward-rules delete (create) one c0-labeled
loop at the source (target) node of a Pi-labeled edge where i = 1, 2.

Initiate:

〈
1 2

P0
⇀

1 2

P0

c0 〉
Forward

〈
1 2

P1

c0

⇀
1 2

P1

c0 〉
〈

1 2

P2

c0

⇀
1 2

P2

c0 〉

Figure 2.4: The Initiate-rule and two Forward-rules.

13

Chapter 2 Preliminaries

Example 2.6 (reset Petri nets). Petri nets and reset Petri nets4 can be
seen as graph transformation systems. There are several possibilities for the
encoding. Kreowski [Kre80] shows that Petri nets can be described by graph
transformation in a very intuitive way. Baldan et al. [BCGM10] compare
different variations of generalized Petri nets regarding their encodings.

2.2 Well-structured Transition Systems

Transition systems are an abstract model for describing transitions between
the states of a system. The concept of well-structuredness (e.g., Abdulla et
al. [AČJT96], Finkel & Schnoebelen [FS01], König & Stückrath [KS17]) is
built upon the notion of transition systems.

Definition 2.6 (transition system). A transition system ⟨S,→⟩ consists
of a (possibly infinite) set S of states and a transition relation →⊆ S × S.
Let →0= IdS (identity on S), →1=→, and →k=→k−1 ◦ → for every k ≥ 2.
Let →≤k=

⋃
0≤j≤k →j for every k ≥ 0. The transitive closure is given

by →∗=
⋃

k≥0 →k. A transition sequence is a (possibly infinite) sequence
s0 → s1 → . . . of consecutive transitions.

Fact 2.2 (induced transition system). Every GTS ⟨S,R⟩ induces the
(graph) transition system ⟨S,⇒R⟩. Every reset Petri net together with
the set of all markings and the firing as transition relation induces a (net)
transition system.

The graph class is usually infinite as in the following example.

Example 2.7. Consider the graph class which consists of “cyclic” graphs
with additional loops. The basic structure of these graphs is given by a cycle
of three nodes connected by three edges labeled with P0, P1, and P2 (the
graph on the top left in Figure 2.5). Every loop is labeled with c0. This
graph class is closed under application of the Initiate-rule and Forward-
rules shown in Figure 2.4. These rules together with the depicted graph
class induce a transition system. An excerpt of the transition is shown in
Figure 2.5.

Often we are interested in the predecessors or successors of a set of states.

Definition 2.7 (pre- & postsets). Let ⟨S,→⟩ be a transition system. For
S′ ⊆ S and k ≥ 0, we define prek(S′) = {s ∈ S | ∃s′ ∈ S′ : s →k s′} and
postk(S′) = {s ∈ S | ∃s′ ∈ S′ : s′ →k s}. Let pre≤k(S′) =

⋃
j≤k pre

j(S′),

pre∗(S′) =
⋃

k≥0 pre
k(S′), post≤k(S′) =

⋃
j≤k post

j(S′), and post∗(S′) =⋃
k≥0 post

k(S′). We abbreviate post1(S′) by post(S′) and pre1(S′) by pre(S′).
For a singleton S′ = {s}, we omit the braces.

4For a formal definition of reset Petri nets, see Appendix A.

14

Preliminaries Chapter 2

P0 P1

P2

P0 P1

P2

c0
P0 P1

P2

c0 c0

P0 P1

P2

c0 P0 P1

P2

c0

c0

. . .

. . .

...
...

Figure 2.5: Transition system induced by a GTS.

A transition system ⟨S,→⟩ is recursively finite-branching5 if post(s) is finite
and computable for every given state s.

Example 2.8. An example of a transition system consisting of four states
s0, s1, s2, s3 and transitions s0 → s1, s0 → s2, s1 → s3, s2 → s3 is given below.
The set post∗(s0) of all states reachable from s0 contains all four states. The
set pre≤1(s3) of states from which s3 can be reached in at most one step
contains only s1, s2, s3.

s3s0

s1

s2

pre≤1(s3)

post∗(s0)

Pre- and postsets exhibit a “duality” in the following sense: for a predeces-
sor s of a state s′, the state s′ is a successor of s, and vice versa.

Fact 2.3 (pre- & postsets). Let ⟨S,→⟩ be a transition system and s, s′ ∈ S.
For every k ≥ 0,

s ∈ prek(s′) ⇐⇒ s′ ∈ postk(s).

5The same terminology is used, e.g., in Abdulla et al. [AČJT96]. The word “recursively”
refers to the computability of the postset.

15

Chapter 2 Preliminaries

Several problems are undecidable for transition systems, in general, due
to their infinite state space. However, interesting decidability results can be
achieved if the system is well-structured, see, e.g., Abdulla et al. [AČJT96],
Finkel & Schnoebelen, [FS01]. A prerequisite for this concept is a well-quasi-
order on the set of states.

Definition 2.8 (well-quasi-order). A quasi-order is a reflexive, transitive
relation. A well-quasi-order (wqo) over a set S is a quasi-order ≤⊆ S ×S s.t.
every infinite sequence ⟨s0, s1, . . .⟩ in S contains an increasing pair si ≤ sj
with i < j. A (well-)quasi-order is decidable if it can be decided whether
s ≤ s′ for every s, s′ ∈ S.

In our setting, the subgraph order is of crucial importance.

Definition 2.9 (subgraph order). The subgraph order ≤ is given by
G ≤ H iff there exists a total, injective morphism G ↪→ H for graphs G,H.

The subgraph order is a quasi-order on all graphs. However, it is not a well-
quasi-order on all graphs.

Example 2.9 (no increasing pair). The infinite sequence , , , . . .
of cyclic graphs of increasing length contains no increasing pair.

To obtain a well-quasi-order, we restrict the graph class.

Definition 2.10 (bounded path length). A graph class S is of bounded
path length if the length of any path6 in any graph G ∈ S is bounded.

König & Stückrath show that the subgraph order is a well-quasi-order on
graphs of bounded path length, based on a result of Ding.

Fact 2.4 (subgraph order [KS17, Prop. 6], [Din92, Thm. 2.1]).
For a graph class S of bounded path length, the restriction ≤S of the subgraph
order ≤ to S is a wqo.

Upward- and downward-closed sets w.r.t. a given well-quasi-order are of
special interest. Such sets are called ideals and anti-ideals. Ideals are, in
general, infinite but can be represented by a finite basis (a minimal generating
set), similar to algebraic structures.

Definition 2.11 (ideal & basis). Let ≤ be a quasi-order on the set S.
For every subset A of S, we denote by ↑A = {s ∈ S | ∃a ∈ A : a ≤ s} the
upward-closure and by ↓A = {s ∈ S | ∃a ∈ A : s ≤ a} the downward-closure
of A. An ideal I ⊆ S is an upward-closed set, i.e., ↑ I = I. An anti-ideal
J ⊆ S is a downward-closed set, i.e., ↓J = J . An (anti-)ideal is decidable
if membership is decidable. A basis of an ideal I is a subset B ⊆ I s.t.
(i) ↑B = I and (ii) b ̸= b′ ⇒ b ̸≤ b′ for all b, b′ ∈ B.

6A path in a graph G of length ℓ is a sequence v1, e1, v2 . . . , vℓ, eℓ, vℓ+1 of nodes and
edges s.t. srcG(ei) = vi and tgtG(ei) = vi+1, or tgtG(ei) = vi and srcG(ei) = vi+1 for every
1 ≤ i ≤ ℓ, and all contained nodes and edges occur at most once.

16

Preliminaries Chapter 2

Since a downward-closed set does not have a finite representation in
general, we will demand that membership is decidable.

Convention. The symbols “↑” and “↓” are binding stronger than the
symbols “∩” and “∪”, e.g., ↑A ∩B is the intersection of the upward-closure
of the set A with the set B.

The upward- and downward-closure of a set A with three elements are
visualized in Figure 2.6. The nearer to the bottom an element, the “smaller”
the element. All elements “larger” (“smaller”) than an element are located
in the “cone” above (below) that element.

S ≥
≥ ≤

≤
↑A

↓A

A

Figure 2.6: Visualization of upward- and downward-closure of a finite set A.

An ideal and an anti-ideal (its complement) are visualized in Figure 2.7.
The basis of the ideal is given by the three elements represented by blue
nodes.

S ≥

≤

ideal

anti-ideal

basis

Figure 2.7: Visualization of an (anti-)ideal.

Regarding the subgraph order, positive and negative constraints constitute
ideals and anti-ideals, respectively. For a graph class S, JcKS denotes the
class of all graphs in S satisfying c.

17

Chapter 2 Preliminaries

Fact 2.5 (ideals of graphs). Let S be a graph class. For every positive
(negative) constraint c, the set JcKS is an ideal (anti-ideal).

Proof. Let c be a positive constraint and G ∈ S a graph with G |= c. By
Fact 2.1, for every graph H ∈ S with G ≤ H, also H |= c. Thus, JcKS is an
ideal. The statement for negative constraints follows analogously.

Example 2.10. Let S be the class of all graphs over the node label □ and
edge labels c1, c2, c3. For the proper constraints

Command =
∨

i=0,1,2

∃
(

ci
)

and NoCommand =
∧

i=0,1,2

¬∃
(

ci
)
,

the set JCommandKS is an ideal consisting of all graphs in S with a c0-, c1-,
or c2-labeled loop and the set JNoCommandKS is an anti-ideal consisting of
all graphs in S without c0-, c1-, and c2-labeled loops. The set

{ c0

,

c1

,

c2 }
is a basis of the ideal JCommandKS .

For a well-quasi-order, every ideal can be represented by a finite basis.

Fact 2.6 (finite basis [AČJT96, Lemma 3.3]). Every ideal has a basis
and every basis is finite, provided that the superset is equipped with a wqo.
Given a finite set A, we can compute a basis of ↑ A, provided that the
quasi-order is decidable.

For well-structuredness, we demand that the well-quasi-order yields a sim-
ulation of “smaller” states by “larger” states. This condition is called com-
patibility.

Definition 2.12 (well-structured transition systems). Let ⟨S,→⟩
be a transition system and ≤ a decidable wqo on S, i.e., for each two
given states s, s′ ∈ S, it is decidable whether s ≤ s′. The tuple ⟨S,≤,→⟩
is a well-structured transition system (WSTS), if:

(i) The wqo is compatible with the transition relation, i.e., for all s1, s
′
1,

s2 ∈ S with s1 ≤ s′1 and s1 → s2, there exists s′2 ∈ S with s2 ≤ s′2 and
s′1 →∗ s′2. If s

′
1 →1 s′2, we say that it is strongly compatible.

s1 s2

s′1 s′2

≤ ≤

∗

∀
∃

(a) Compatibility

s1 s2

s′1 s′2

≤ ≤

1

∀
∃

(b) Strong compatibility

s1 s2

s′1 s′2

≤ ≤

≤ℓ

∀
∃

(c) Bounded compatibility

1

18

Preliminaries Chapter 2

(ii) Pre-effectiveness : For every s ∈ S, a basis of ↑pre(↑{s}) is computable.

A strongly WSTS (SWSTS) is a WSTS with strong compatibility.

Fact 2.7. Every SWSTS is a WSTS.

Fact 2.8. For the single-pushout approach, the strong compatibility condition
is satisfied. For the double-pushout approach, the compatibility condition is,
in general, not satisfied.

Consider, e.g., the rule ⟨ 1 ⇀ 1 ⟩ which requires the existence
of two nodes, deletes a node, and adds a loop to other node.
In SPO, this rule can be applied to the graph consisting of two nodes, yielding
the graph consisting of one node with an incident loop. It can also be applied
to the “larger” graph consisting of two nodes each of which has one incident
loop yielding the “larger” graph consisting of one node with two incident
loops.

1 1

1
=⇒

=⇒

1

≤≤

In DPO, the application of the same rule to a “larger” graph is not possible,
in general. E.g., the latter rule is applicable to the graph consisting of two
nodes, but not to the “larger” graph consisting of two nodes each of which has
an incident loop. The dangling condition in DPO prohibits a rule application
if incident edges of a node to be deleted are not specified to be deleted.

Assumption. In the following, let ⟨S,≤,→⟩ be a well-structured transition
system.

The set of ideals of S is closed under union, intersection, and preset.

Fact 2.9 (stability of ideals [AČJT96, Lemma 3.2]). Let I, I ′ ⊆ S be
ideals and J, J ′ ⊆ S anti-ideals. Then the sets I ∪ I ′, and I ∩ I ′ are ideals
and the sets J ∪ J ′, J ∩ J ′ are anti-ideals. For WSTSs, the set pre∗(I) is an
ideal. For SWSTSs, also the sets pre(I), pre≤k(I) for every k ≥ 0 are ideals.

Remark. The upward-closedness of pre∗(I) for WSTSs, where I is an ideal,
is shown, e.g., in [FS01, Proof of Prop. 3.1].

A major point in our argumentation is the observation that every infinite,
ascending sequence of ideals w.r.t. a well-quasi-order eventually becomes
stationary.

19

Chapter 2 Preliminaries

Lemma 2.2 (termination [AČJT96, Lemma 3.4]). For every infinite,
ascending sequence I0 ⊆ I1 ⊆ . . . of ideals, there exists a k0 ≥ 0 s.t. Ik = Ik0
for all k ≥ k0.

The statement of the latter lemma is indeed equivalent to the definition
of a well-quasi-order (Definition 2.8) as well as to the existence of bases
(Fact 2.6).

Fact 2.10 ([Mil85, Thm. 1.2]). For a quasi-order, the following statements
are equivalent:

(1) The quasi-order is a wqo.

(2) Every ideal has a basis.

(3) Every infinite, ascending sequence of ideals becomes stationary.

Abdulla et al. exploit Lemma 2.2 to show the decidability of the ideal
reachability problem for SWSTSs.

Lemma 2.3 (ideal reachability [AČJT96, Thm. 4.1]).
Given a state s of a SWSTS and a basis of an ideal I ⊆ S, we can decide
whether we can reach a state sI ∈ I from s. In particular, a basis of pre∗(I)
is computable and pre≤k(I) = pre∗(I) ⇐⇒ pre≤k+1(I) = pre≤k(I).

The proof idea as well as the decidability of the ideal reachability problem
will be used in Chapter 4 and 5 as an important integrant for the decidability
proofs. For this reason, we present a sktech of the proof.

Proof sketch. We sketch the proof of Abdulla et al.: For an ideal I, an-
other ideal I∗ is constructed s.t. ∃s′ ∈ I : s →∗ s′ iff s ∈ I∗, i.e., I∗ =
pre∗(I) =

⋃
j≥0 pre

j(I). The idea is to iteratively construct the sequence of

the ideals Ik = pre≤k(I) until it becomes stable. It is shown that Ik = Ik+1

is a decidable stop condition, i.e., a condition which guarantees that we can
stop the algorithm, since Ik+1 = I ∪ pre(Ik). Since ideals are infinite, this
construction cannot be carried out directly but using bases for representing
ideals. By the definition of SWSTSs, we can iteratively compute bases of
the predecessors of an ideal with a given basis. These considerations are
similarly feasible for WSTSs. Instead of the preset pre(I ′) of an ideal I ′, one
can consider the ideal ↑pre(I ′), see, e.g., Finkel & Schnoebelen, [FS01, Proof
of Thm. 3.6].

20

Chapter 3

Modeling Adverse Conditions

The concepts of resilience (e.g., Jackson & Ferris [JF13]) and adverse condi-
tions (e.g., Olderog et al. [OFTK21]) are topics of recent research. Correctness
under adverse conditions captures a variety of areas. To the best of our
knowledge, there is little research on adverse conditions modeled by graph
transformation, e.g., [Fli16, Peu18].

The concept of adverse conditions addresses systems interacting with
an adversary environment. System correctness under adverse conditions
means that the system withstands the adverse effect of the environment. It
generalizes common notions of correctness. Models of adverse conditions
include, e.g., graph transformational units (Hölscher et al. [HKK09]), adverse
reconfiguration and 2-player programs (Flick [Fli16]), and 2-player hyperedge
replacement games (Peuser [Peu18]).

In this chapter, we introduce the model of so-called joint graph transfor-
mation systems each of which arises from the interplay of a system and an
environment. Their interaction is modeled by a so-called control automaton.

Construct

system

environment

control automaton

joint GTS

The constructed joint system is again a graph transformation system s.t.
graph-based methods and tools can be directly applied. We introduce
meaningful notions of resilience for this kind of systems. These notions
capture the recovery of a safety constraint Safe after an interference of the
environment, i.e.,

interference of environment ⇒ recovery of Safe.

In this approach, we reduce verification of resilience to temporal model
checking.

21

Chapter 3 Modeling Adverse Conditions

Construction

Reduction

Model
Checking
Method

system

environment

control automaton

resilience notion

joint GTS

temporal formula

yes

no

(no answer)

For the constructed joint graph transformation system, we try to check
whether the temporal formula expressing a given resilience notion holds. To
this aim, one may use a graph-based model checker.

In Section 3.1, we introduce the model of joint graph transformation
systems. In, Section 3.2, we define meaningful resilience notions for this
kind of systems. In Section 3.3, we show how these resilience notions can
be expressed in temporal logics as a preparation for model checking. An
introduction to temporal logics can be found in Appendix A.

3.1 Joint Graph Transformation Systems

We define so-called joint graph transformation systems, each of which involves
the system, the environment, and a so-called control automaton modeling
the interaction between them. Both, system and environment, are graph
transformation systems.

Example 3.1 (traffic network system). We model a traffic network
system where the adverse conditions are blocked connections due to jams,
accidents, or damages on the tracks. Nodes correspond to traffic junctions
while an edge of the form represents a connection between them.
An edge labeled with the symbol describes a vehicle in the traffic line
between the traffic junctions. The rule Ascend (Descend) formalizes the
ascent (descent) of a vehicle onto (off) the traffic network. We realize a traffic
flow by the rule Move, which enables vehicles to change their position to an

adjacent track. Blocked tracks (�) occur only if a connection is highly
frequented, i.e., if n vehicles are on the same track. This is formalized by
the environment rule Block. For the sake of simplicity, let n = 2. Blocked
tracks can be repaired by the rule Repair. Formally, we consider the system
rule set S and environment rule set E represented in Figure 3.1.

22

Modeling Adverse Conditions Chapter 3

S

Ascend :

〈
1 2

⇒

1 2

〉

Descend :

〈

1 2
⇒

1 2

〉

Move :

〈

1 2 3
⇒

1 2 3

 〉

Repair :

〈
�

1 2
⇒

1 2

〉

E

 Block :

〈

1 2

⇒
1 2

�

〉

Figure 3.1: System and environment rules of the traffic nework system.

Assumption. In the following, let S and E be rule sets over a joint label
alphabet Λ, called system and environment rule set, respectively.

We specify the class of automata which are used to model the interaction
between system and environment. These “control automata” are similar
to ω-automata, see, e.g., Thomas [Tho90]. Each of the former consists
of a finite set of states, an initial state, and a labeled transition relation.
Labeling the transitions with system or environment would allow us to
determine an “order” according to which system and environment interact.
For more precise modeling, the transitions are labeled with a subset of
rules which are admissible for the respective transition in the automaton.
Equivalently, a transition can be labeled with a single rule. The representation
of the automaton is better comprehensible with subsets of rules.

Definition 3.1 (control automaton). A control automaton (of S and E)
is a tuple A = ⟨Q, δ, q0⟩ consisting of a finite set Q disjoint from Λ, called
the state set, an initial state q0 ∈ Q, and a (rule-labeled) transition relation
δ ⊆ Q × P(S ∪ E) × Q where P(S ∪ E) is the power set of S ∪ E . For
R ⊆ S ∪ E , we write q →R q′ for ⟨q,R, q′⟩ ∈ δ and q →r q

′ for a rule r ∈ R
with q →R q′.

Convention. In a graphical representation, a node labeled with q repre-
sents a state q and a R-labeled edge from q to q′ represents a transition
q →R q′. For a set R = {r1, . . . , rn}, we allow to omit the brackets.

Example 3.2. A control automaton modeling the interaction between system
and environment in Example 3.1 is given below.

23

Chapter 3 Modeling Adverse Conditions

q0 q1
A

Block

Move, Ascend, Descend

Repair

We assume that for a given rule r ∈ S ∪ E , we can infer the information
whether r is meant as a system or an environment rule. Formally, this can be
done by considering the disjoint union of S and E in the set-theoretic sense.

For the synchronization on the level of transition systems, one may
use tuples ⟨G, q⟩ of graphs and states and transitions ⟨G, q⟩ → ⟨H, q′⟩ if
G ⇒r H for some rule r ∈ S ∪ E and q →r q

′ for some q, q′ ∈ Q. For the
synchronization on the level of graph transformation systems, instead of
tuples ⟨G, q⟩, we use graphs Gq, i.e., G equipped with a q-labeled node, and
rules ⟨Lq ⇀ Rq′⟩ for some rule r = ⟨L ⇀ R⟩ ∈ S ∪ E and q →r q

′ for some
q, q′ ∈ Q. This yields transformations Gq ⇒ Hq′ if G ⇒r H for some rule
r ∈ S ∪ E and q →r q

′ for some q, q′ ∈ Q.
A so-called joint graph transformation system is obtained by synchronizing

each rule set, the system and the environment, with the control automaton,
and then joining both sets of “enriched” rules.

Construction 3.1 (joint graph transformation system). Let A =
⟨Q, δ, q0⟩ be a control automaton of S and E . A joint graph transformation
system is a graph transformation system ⟨S,SA ∪ EA⟩ where S consists of
graphs of the form Gq, i.e., the disjoint union of a graph G and a node
labeled with q for a state q of the control automaton, and the joint rule set
SA ∪ EA of S and E w.r.t. A is constructed as follows: The enriched rule
set SA is constructed as

SA = {⟨Lq ⇀ Rq′⟩ | r = ⟨L ⇀ R⟩ ∈ S and q →r q
′},

and Lq (Rq′) denotes the disjoint union of L (R) and a node labeled with q (q′).
In the partial morphism Lq ⇀ Rq′ , the node labeled with q is not in the
domain, i.e., deleted, and the node labeled with q′ is not in the image, i.e.,
created. The enriched rule set EA is defined analogously. If the control
automaton A is known from the context, the joint rule set SA ∪ EA is shortly
denoted by SE .
Example 3.3. The traffic network in Example 3.1 synchronized with the
control automaton A in Example 3.2 yields the joint rule set in Figure 3.2.

Joint graph transformation systems may be annotated with the symbols
s,e,⊤ standing for
s: “last applied rule was system rule”
e: “last applied rule was environment rule”
⊤: “no last applied rule”.

24

Modeling Adverse Conditions Chapter 3

SA

AscendA :

〈
1 2

q0 ⇀

1 2
q0

〉

DescendA :

〈

1 2
q0 ⇀

1 2
q0

〉

MoveA :

〈

1 2 3
q0 ⇀

1 2 3

q0

〉

RepairA :

〈
�

1 2

q1 ⇀
1 2

q0

〉

EA

 BlockA :

〈

1 2

q0 ⇀
1 2

� q1

〉

Figure 3.2: The joint rule set of the traffic network.

The obtained graph transformation system is called “annotated” joint graph
transformation system. This annotation will be used for the reduction to
temporal logics.

It is expedient to include all possible combinations of annotation symbols
and enriched rules. However, this may lead to a large number of annotated
rules. To reduce the number of annotated rules, we use “presymbols” of a state
describing which of the symbols s, e,⊤ can occur before a rule application in
this state. For a joint rule set SE , the symbol σ(S) = s or σ(E) = e, is the
annotation symbol of S or E , respectively. For a rule r ∈ R and R ∈ {S, E},
let σ(r) = σ(R) be the annotation symbol of r. The set of all annotation
symbols {s, e,⊤} includes also the symbol ⊤, indicating an initial graph.

Construction 3.2 (presymbols). The set of presymbols presym(q)
of a state q of the control automaton is constructed as follows.

(1) For every transition of the control automaton going to q, consider its
label, i.e., the subset of rules.

(2) For each such rule, include its annotation symbol into the set of
presymbols of q, i.e., if a system (environment) rule is contained,
include the symbol s (e). If q is the initial state, include also the
symbol ⊤.

Example 3.4. In the situation below, the presymbols of the state q0 are
the presymbols of R1 ∪R2. Since q0 is the initial state, we also include the
symbol ⊤. These presymbols are used to annotate each rule r with q0 →r q.

25

Chapter 3 Modeling Adverse Conditions

q0 q

q1

q2

R1

R2

r

In Example 3.2, the set of presymbols of q0 of the control automaton consists
of σ(Move), σ(Ascend), σ(Descend), σ(Repair),⊤, i.e., the symbols s,⊤. The
set of presymbols of q1 consists of σ(Block), i.e., the symbol e.

Fact 3.1. For every joint GTS, there is an “equivalent” annotated one.

For simplicity, one may replace presym(r) by the set of all three annota-
tion symbols in the following construction. However, the number of rules
may be larger than in the case using presymbols presym(q).

Construction 3.3 (annotated joint graph transformation system).
Let ⟨S,SE⟩ be a joint graph transformation system w.r.t. a control automaton
A = ⟨Q, δ, q0⟩. The tuple ⟨S′,S ′A ∪ E ′A⟩ is the annotated joint graph transfor-
mation system of ⟨S,SE⟩ where S′ consists of graphs of the form Gqς , i.e., the
disjoint union of G, a node labeled with a state q ∈ Q, and a node labeled
with an annotation symbol ς, and the annotated joint rule set S ′A ∪ E ′A
of S and E w.r.t. A is constructed as follows: The annotated rule set S ′A is
constructed as

S ′A = {⟨Lqς ⇀ Rq′ς′⟩ | ⟨Lq ⇀ Rq′⟩ ∈ SA, ς ∈ presym(q), ς ′ = s},

where Lqς (Rq′ς′) denotes the disjoint union of L (R), a node labeled
with a state q (q′), and a node labeled with an annotation symbol ς (ς ′). In the
partial morphism Lqς ⇀ Rq′ς′ , the node labeled with ς is not in the domain,
i.e., deleted, and the node labeled with ς ′ is not in the image, i.e., created.
The annotated rule set E ′A is defined analogously, replacing S by E (s by e).
If the control automaton A is known from the context, the annotated joint
rule set S ′A ∪ E ′A is shortly denoted by (SE)′.
Fact 3.2. By construction of annotated joint GTSs, the positive constraint
∃(e) is equivalent to the negative constraint ¬∃(s) ∧ ¬∃(⊤).

Example 3.5. Consider the system rule set S, the environment rule set E , and
the control automaton A given in Example 3.1. The annotated joint rule set
S ′A ∪ E ′A is represented in Figure 3.3.

3.2 Resilience Notions

In this section, we give a notion of correctness for graph transformation
systems and introduce three instances of resilience notions for joint graph
transformation systems, which generalize correctness.

26

Modeling Adverse Conditions Chapter 3

S ′A

Ascend′A,⊤ :

〈
1 2

q0 ⊤ ⇀

1 2
q0 s

〉

Ascend′A,s :

〈
1 2

q0 s ⇀

1 2
q0 s

〉

Descend′A,⊤ :

〈

1 2
q0 ⊤ ⇀

1 2
q0 s

〉

Descend′A,s :

〈

1 2
q0 s ⇀

1 2
q0 s

〉

Move′A,⊤ :

〈

1 2 3
q0 ⊤ ⇀

1 2 3

q0 s

〉

Move′A,s :

〈

1 2 3
q0 s ⇀

1 2 3

q0 s

〉

Repair′A :

〈
�

1 2

q1 e ⇀
1 2

q0 s

〉

E ′A

Block′A,⊤ :

〈

1 2

q0 ⊤ ⇀
1 2

� q1 e

〉

Block′A,s :

〈

1 2

q0 s ⇀
1 2

� q1 e

〉

Figure 3.3: The annotated joint rule set of the traffic network.

Definition 3.2 (marked GTS). A marked GTS is a tuple ⟨S,R, INIT⟩
where ⟨S,R⟩ is a GTS and INIT ⊆ S. It is finite-marked if INIT is finite.
A marked (annotated) joint GTS is a marked GTS ⟨S,SE , INIT⟩ where
⟨S,SE⟩ is a(n) (annotated) joint GTS and INIT ⊆ S.
Example 3.6. The tuple ⟨S,SE , INIT⟩ is a marked joint GTS where SE is
the joint GTS of the traffic network in Example 3.3, INIT consists of the
single graph q0 , and S is the set of graphs reachable from the
latter graph.

Correctness of a marked GTS w.r.t. a safety constraint Safe means that
every graph, reachable from an initial graph, satisfies Safe. This notion
corresponds to safety correctness in the usual sense, see, e.g., Apt et al.
[AOdB09, p. 283].

27

Chapter 3 Modeling Adverse Conditions

Definition 3.3 (correctness). A marked GTS ⟨S,R, INIT⟩ is correct
w.r.t. a graph constraint Safe if for all graphs G ∈ INIT, G ⇒∗

R H im-
plies H |= Safe.

Example 3.7. The marked joint GTS of the traffic network (Example 3.6) is

not correct w.r.t. Safe = NoBlocked = ¬∃(�). A graph with a blocked
track can be derived by applying Block.

For joint GTSs, this correctness notion is too restrictive. Instead of
correctness, we consider resilience. We allow that the validity of the safety
constraint is violated for a certain number of steps after an interference of the
environment. Nonetheless, the safety constraint must be recovered. We give
instances of resilience notions. A natural approach is to limit the maximal
number of steps after which the safety constraint must be recovered.

Assumption. In the following, let ⟨S,SE , INIT⟩ be a marked joint GTS
w.r.t. a control automaton A = ⟨Q, δ, q0⟩, Safe a graph constraint, and
k ≥ 0 a natural number.

The notion of k-step∀ resilience demands that after an interference of the
environment, in every following sequence, recovery of the safety constraint
occurs in at most k steps. By contrast, the notion of k-step∃ resilience
demands that after an interference of the environment, in at least one
following sequence, recovery of the safety constraint occurs in at most k steps.
There are similar resilience notions in the literature [Dij74, Dol00, ACD+17],
see Related Concepts in this chapter and Chapter 6.

Definition 3.4 (k-step resilience). A marked joint GTS ⟨S,SE , INIT⟩ is

(1) k-step∀ resilient w.r.t. Safe if, for every graph G0 ∈ INIT and every
transformation sequence G0 ⇒∗

SE H ⇒EA M ⇒k
SE N , there exists a sub-

sequence7 M ⇒≤k
SE N

′ |= Safe, and

(2) k-step∃ (or simply k-step) resilient w.r.t. Safe if, for every graph
G0 ∈ INIT and every transformation sequence G0 ⇒∗

SE H ⇒EA M ,

there exists a transformation sequence M ⇒≤k
SE N |= Safe.

Example 3.8. (1) For Safe = NoBlocked, the marked joint GTS of the
traffic network system (Example 3.6) is neither correct w.r.t. Safe nor 0-step∀
resilient, but 1-step∀ resilient w.r.t. Safe since after applying Block, there
exists a blocked track and, by applying Repair, which is the only option in
the state q1, the blocked track vanishes.
(2) Consider the marked joint GTS obtained by replacing the control au-
tomaton A by B below.

7A subsequence of a transformation sequence G0 ⇒ G1 ⇒ . . . ⇒ Gk is a (connected)
sequence G0 ⇒ G1 ⇒ . . .⇒ Gℓ with ℓ ≤ k.

28

Modeling Adverse Conditions Chapter 3

q0 q1
B

Block

Move, Ascend, Descend S

Repair

In this case, it is 1-step∃ resilient w.r.t. Safe since Repair can be applied after
an application of Block and before Block is applied again. By the proposition
below, it is k-step∃ resilient for k ≥ 1. It is not k-step∀ resilient w.r.t. Safe
for any k since, e.g., the system rule Ascend may be applied arbitrarily often
after an application of Block.

k-step∀ resilience yields a hierarchy: k-step∀ resilience implies (k + 1)-
step∀ resilience for k ≥ 0. A deadlock of a marked joint GTS ⟨S,SE , INIT⟩
is a graph H reachable from a graph G0 ∈ INIT s.t. no rule in SE is
applicable to H. For marked joint GTSs without deadlocks, k-step∃ resilience
is a weaker notion than k-step∀ resilience. Similar to k-step∀ resilience, we
obtain a hierarchy for k-step∃ resilience.

Proposition 3.1 (hierarchy of k-step resilience). Let ⟨S,SE , INIT⟩
be a marked joint GTS and k ≥ 0.

(i) If the marked joint GTS is correct w.r.t. Safe,
then it is 0-step∀ resilient w.r.t. Safe.

(ii) If the marked joint GTS is k-step∀ resilient w.r.t. Safe,
then it is (k + 1)-step∀ resilient w.r.t. Safe.

(iii) If the marked joint GTS has no deadlocks and
is k-step∀ resilient w.r.t. Safe,
then it is k-step∃ resilient w.r.t. Safe.

(iv) If the marked joint GTS is k-step∃ resilient w.r.t. Safe,
then it is (k + 1)-step∃ resilient w.r.t. Safe.

correct w.r.t. Safe

k-step∃ resilient w.r.t. Safek-step∀ resilient w.r.t. Safe

(k + 1)-step∃ resilient w.r.t. Safe(k + 1)-step∀ resilient w.r.t. Safe

29

Chapter 3 Modeling Adverse Conditions

Proof. (i) Let G0 ∈ INIT and let G0 ⇒∗
SE H ⇒E M be a transformation

sequence. The correctness of ⟨S,SE , INIT⟩ implies that M |= Safe.
(ii) If M ⇒≤k

SE N |= Safe, then M ⇒≤k+1
SE N |= Safe.

(iii) By deadlock-freeness, every transformation sequence G⇒∗
SE H ⇒EA M

can be completed to a sequence G ⇒∗
SE H ⇒EA M ⇒k

SE N . By k-step∀
resilience, there exists a subsequence M ⇒≤k

SE N
′ with N ′ |= Safe.

(iv) If M ⇒≤k
SE N |= Safe, then M ⇒≤k+1

SE N |= Safe.

We exemplarily introduce a notion of resilience which demands not
recovery after a number of steps but recovery until the next environment
step, i.e., the safety constraint must hold before the next environment rule is
applied.

Definition 3.5 (E-step resilience). A marked joint GTS ⟨S,SE , INIT⟩ is
E-step resilient w.r.t. Safe if, for every G0 ∈ INIT and every infinite trans-
formation sequence G0 ⇒∗

SE H ⇒EA M ⇒SA
N ⇒ . . ., there exists a subse-

quence M ⇒∗
SA

N ′ with N ′ |= Safe.

Example 3.9. Let Safe = NoBlocked. The traffic network system is E-step
resilient w.r.t. Safe: after applying Block there exists a blocked track but
immediately, by applying Repair, the blocked track vanishes.

3.3 Reduction to Temporal Logics

We propose a method for checking resilience by a reduction to temporal
model checking, i.e., we express the resilience notions by means of temporal
logics. We can check whether a marked joint GTS is resilient w.r.t. Safe by
checking whether the marked annotated joint GTS satisfies a corresponding
temporal constraint of Safe.

Annotation

Reduction

marked

joint GTS

marked

annotated joint GTS

resilience notion

w.r.t. Safe

temporal constraint

ϕ(Safe)

⇐⇒

sa
tisfi

es

|=

Temporal formulas such as LTL and CTL formulas are well-known in
logic, see, e.g., [CE82, Eme90, BK08]. We adapt the notions and consider
so-called LTL and CTL graph constraints, i.e., temporal formulas whose

30

Modeling Adverse Conditions Chapter 3

atoms equate to graph constraints. A formal definition of LTL and CTL
graph constraints can be found in Appendix A.

First we consider LTL graph constraints. The temporality is interpreted
as the changes along a transformation sequence. Every direct transformation
correlates to a time step. Besides the common propositional operators there
are temporal operators, e.g., the operator X (NeXt) describes the validity
of a formula in the next step while the operator G (Globally) describes the
validity of a formula in every following step. E.g., the expression

G NoBlocked

describes that there exists no blocked track in any derived graph, i.e., correct-
ness w.r.t. NoBlocked. CTL graph constraints are, like LTL graph constraints,
temporal formulas where the atoms equate to the graph constraints.8 By
contrast, the temporality is here branching. Besides the common proposi-
tional operators, there are path-quantified temporal operators which are pairs
of operators: the first one is either A (for All following paths) or E (there
Exists a following path), the second one is a temporal operator. The operator
AG means the valdity of a formula in all following sequences, and EX means
that a graph can be reached in one step where the formula is valid. E.g., the
expression

AG NoBlocked

describes that there exists no blocked track in any derived graph, i.e., cor-
rectness w.r.t. NoBlocked.

First we consider the formalization of k-step∀ and E-step resilience as
LTL constraints. The following theorem states that checking k-step∀/E-step
resilience of a joint GTS without deadlocks is equivalent to checking whether
the annotated joint GTS satisfies a certain LTL constraint.

Theorem 3.1 (reduction to LTL). For every graph constraint Safe and
every natural number k ≥ 0, there exist LTL constraints ϕ(Safe) and ϕk(Safe)
s.t. for every marked joint GTS without deadlocks:

(1) the marked joint GTS is k-step∀ resilient w.r.t. Safe iff
the marked annotated joint GTS satisfies ϕk(Safe),

(2) the marked joint GTS is E-step resilient w.r.t. Safe iff
the marked annotated joint GTS satisfies ϕ(Safe).

Assumption. In the following, let Sys := ∃(s) and Env := ∃(e).

8Graph constraints are equivalent to graph formulas. Consequently, temporal graph
constraints are equivalent to temporal graph formulas.

31

Chapter 3 Modeling Adverse Conditions

Construction 3.4. For every graph constraint Safe and every natural
number k ≥ 0, let

ϕk(Safe) := G(Env⇒
k∨

j=0

XjSafe),

ϕ(Safe) := G((Env ∧XSys)⇒ (Safe ∨X(SysUSafe)))

where k is a natural number, X0 is “an empty operator”, and for j ≥ 0,
Xj+1 := XjX denotes the iterated next-operator in LTL. The positive
constraint Sys means that the last applied rule was a system rule. The
positive constraint Env means that the last applied rule was an environment
rule.

The LTL constraint ϕk(Safe) can be read as “Whenever an environment
rule was applied, there exists a 0 ≤ j ≤ k s.t. in j steps Safe holds”. The
LTL constraint ϕ(Safe) can be read as “Whenever an environment rule was
applied and a system rule is applied next, (Safe holds or) only system rules
are applied until Safe holds (and Safe holds eventually)”.

Proof. See Appendix B.

We consider the formalization of k-step∃ resilience as CTL constraint.
The following theorem states that checking k-step∃ resilience of a joint GTS
without deadlocks is equivalent to checking whether the annotated joint GTS
satisfies a certain CTL constraint.

Theorem 3.2 (reduction to CTL). For every graph constraint Safe and
every natural number k ≥ 0, there exists a CTL constraint φk(Safe) s.t. for
every marked joint GTS without deadlocks:

the marked joint GTS is k-step∃ resilient w.r.t. Safe iff
the marked annotated joint GTS satisfies φk(Safe).

Construction 3.5. For every graph constraint Safe and every natural
number k ≥ 0, let

φk(Safe) := AG(Env⇒
k∨

j=0

EXjSafe),

where k is a natural number, EX0 is “an empty operator”, and for j ≥ 0,
EXj+1 := EXjEX denotes the iterated existential next-operator in CTL.

The CTL constraint φk(Safe) can be read as “For all following sequences,
whenever an environment rule was applied, there exists a following sequence
and 0 ≤ j ≤ k s.t. Safe holds in j steps”.

Proof. See Appendix B.

32

Modeling Adverse Conditions Chapter 3

3.4 Related Concepts

Correctness

Correctness and verification of programs are addressed by Apt et al.
[AOdB09] including also verification of non-deterministic and distributed pro-
grams. In Pennemann [Pen09] and Poskitt & Plump [PP13], correctness
of graph programs is considered. Graph programs are programs whose basic
components are sets of rules, i.e., graph transformation systems, and which
are characterized by their closedness under non-deterministic composition,
sequential composition, and iteration (as-long-as-possible).

The concept of adverse conditions addresses systems interacting with an
adversary environment. Correctness in this sense means that the interaction
between system and environment satsifies desired properties. In Olderog
et al., [OFTK21], a number of results on system correctness under adverse
conditions in diverse contexts are presented.

In Flick [Fli16], correctness of adverse reconfiguration nets and graph
programs under adverse conditions is considered. Adverse reconfiguration
nets are structure-changing Petri nets. The structure change is realized
by context-free graph transformation rules. It is shown that the word
problem, the reachability problem, and the abstract reachability problem are
decidable under certain boundedness assumptions (at most one token in every
marking, boundedly many reconfigurations). Moreover, a correctness notion
for programs under adverse conditions (2-player programs) is introduced.
Correctness is defined w.r.t. pre- and postconditions which are realized in form
of µ-conditions, a generalization of graph conditions. A 2-player program has
one system and one environment player. While each step of the environment
player is considered, the system player can choose his step. It is shown that
the method of the weakest precondition for µ-conditions also applies to this
case. By constrast, we consider joint graph transformation systems where
the control automaton is the only option to control the application of rules.

In Peuser [Peu18], graph grammars under adverse conditions are investi-
gated. The considered grammars are hyperedge replacement grammars. The
specification is realized by a temporal (LTL) graph condition. The interaction
of system and environment is modeled by a finite labeled transition system.
The two labels correspond to “system” and “environment”, respectively.
System and environment play against each other, i.e., their interaction is
transformed into a hyperedge replacement game. Correctness is achieved
by a winning strategy. In more detail, the (ordered) hyperegde replacement
grammar and the temporal graph condition are transformed into a pushdown
process. The temporal graph condition is translated into a parity automaton.
Synchronizing the pushdown process with the labeled transition system
and the parity automaton yields a pushdown process, a priority function,
and a partition function. The combination of the latter three components

33

Chapter 3 Modeling Adverse Conditions

is a hyperedge replacement game. By contrast, we consider control automata
to model the interaction of system and environment. Instead of considering
arbitrary temporal constraint, we show how to express meaningful resilience
notions as specific LTL or CTL constraints.

In [GMSS19], Giese et al. introduce a metric temporal logic over typed
attributed graphs. The atoms are graph conditions. Instead of discrete
temporality like in the case of LTL, the continuous set of non-negative
real numbers is considered. The main point of the definition is the until-
operator w.r.t. an interval of real numbers. This approach also incorporates
the tracking of elements over time, which is not possible with LTL/CTL
constraints.

Resilience

The concept of self-stabilization, introduced by Dijkstra [Dij74] and consid-
ered, e.g., in Dolev [Dol00], shows similarities with our resilience notions.
A system is self-stabilizing if it fulfills the following two conditions: Starting
from an arbitrary state, the system will eventually reach a safe state (conver-
gence). If the system is in a safe state, it will stay in a safe state (closure).
A probabilistic system is k-self-stabilizing if it satisfies the closure condition
and: starting from an arbitrary state, the system will reach a safe state
within an expected number of steps, which is bounded by a constant k (con-
vergence). Although we do not consider probabilistic systems, the latter
notion is very similar to k-step resilience where recovery in at most k steps
is demanded. In Müllner et al. [MTF13], verification of self-stabilizing
probabilistic systems by state space analysis is investigated. It is shown how
to compute the so-called limiting window availibility probability for reduced
Markov chains of subsystems. By recombination, the latter probability can
be computed for the whole system, often avoiding a state space explosion.

Akshay et al. [AGH+21] define and investigate resilience for timed
automata. In this context, k-resilience means that from any delayed state,
one gets “back to normal” in ≤ k steps. Similar to our notions of k-step∃
and k-step∀ resilience, Akshay et al. regard k-∃- and k-∀-resilience. They
obtain decidability and complexity results.

Methods and Tools for Model Checking

We adhered to Emerson [Eme90] and Baier & Katoen [BK08] for the
syntax and semantics of LTL and CTL. In [BK08], Baier & Katoen present
formal methods for temporal model checking of finite-state transition systems.
Besides LTL and CTL, they consider also CTL∗ – an extension of both –
as well as timed and probabilistic temporal logics. They discuss several
model checking techniques, e.g., automata-based model checking for LTL and
symbolic model checking for CTL. The tool GROOVE by Kastenberg &

34

Modeling Adverse Conditions Chapter 3

Rensink [KR06] provides the opportunity of LTL and CTL model checking
as well as state space exploration for (single-pushout) graph transformation
systems. The atomic proposition are given as rules. By considering identical
rules, also restricted graph constraints are included. By contrast, the tool
HENSHIN by Arendt et al. [ABJ+10] supports the more expressive µ-
calculus.

While most model checking methods are limited to finite-state systems,
the tools AUGUR 2 by König & Kozioura [KK08] and UNCOVER
by Stückrath [Stü15] provide the possibility to verify infinite-state graph
transformation systems. The former is based on methods of approximation
by Petri nets, see, e.g., Baldan et al. [BCK08], the latter on algorithms for
well-structured graph transformation systems, see, e.g., König & Stück-
rath [KS17]. Steenken [Ste15] proposes a method of abstraction by graph
shapes to verify infinite-state graph transformation systems. Using forward
methods, Blondin et al. [BFG20] show that LTL model checking is de-
cidable for a subclass of strongly well-structured transition systems and,
as a consequence, for so-called ω-Petri nets.

3.5 Summary

Joint GTSs are constructed from a system, an environment (both GTSs),
and a control automaton modeling their interaction. This construction
yields again a GTS. Meaningful resilience notions (k-step∀, k-step∃, and
E-step resilience) are presented for this kind of GTSs. These resilience
notions capture recovery of a safety constraint after an interference of the
environment. We showed how to express these resilience notions in temporal
logics.

Construction

Reduction

Model
Checking
Method

system

environment

control automaton

resilience notion

joint GTS

temporal formula

yes

no

(no answer)

In the Chapters 4 and 5, we investigate on the verification of k-step∃
resilience.

35

Chapter 3 Modeling Adverse Conditions

Takeaway (Chapter 3).

� GTSs under adverse conditions are modeled by two GTSs, a system,
an environment, and a control automaton specifying their interaction.
The constructed GTS is called joint GTS.

� Meaningful resilience notions for joint GTSs are presented.

� These resilience notions are expressible in temporal logics.

36

Chapter 4

Verifying Resilience in a
Well-structured Framework

Our goal is the verification of resilience for graph transformation systems.
To this aim, we use more abstract methods at the level of transition systems.
In the context of graph transformation, states are captured by graphs and
transitions by graph transformations. A transition system consists of a set
of states of any kind (not necessarily graphs) and a transition relation on
the state set.

This chapter deals with the decidability of resilience problems. We
investigate on the question whether, starting from any INITial state, a SAFE
state can be reached in a bounded number of steps from any BAD state
where BAD is not necessarily the complement of SAFE. Usually, the state
set of the transition system – also in the context of graph transformation
– is infinite. To handle infinite state sets (sets of graphs), we employ the
concept of well-structuredness as considered, e.g., in Abdulla et al. [AČJT96],
Finkel & Schnoebelen [FS01], König & Stückrath [KS17]. Recall that a well-
structured transition system is, informally, a transition system equipped
with a well-quasi-order satisfying that “larger” states simulate “smaller”
states and that certain predecessor sets can be effectively computed. In
this well-structured setting, ideal-based sets (upward- or downward-closed
sets) play an important role. They enjoy a number of properties simplifying
verification such as finite representation of upward-closed sets and closure
properties. For well-structured transition systems, the ideal reachability
problem is known to be decidable [AČJT96], which is an integrant of our
results. Our approach is ideal-based.

In Section 4.1, we introduce the resilience problem for well-structured
transition systems. In Section 4.2, we show the decidability of the resilience
problem for subclasses of well-structured transition systems. In Section 4.3,
we consider the algorithms in more detail as well as approximations.

37

Chapter 4 Verifying Resilience in a Well-structured Framework

4.1 Resilience Problem

We formulate resilience problems for WSTSs equipped with a specified set
INIT of initial states starting from which we investigate resilience.

Definition 4.1 (marked WSTS). A marked well-structured transition
system is a tuple ⟨S,≤,→, INIT⟩ where ⟨S,≤,→⟩ is a WSTS and INIT ⊆ S.
It is finite-marked if INIT is finite.

The following notion of resilience is motivated by the notion of k-step∃
resilience in Chapter 3.

Definition 4.2 (k-step resilience for WSTSs). A marked WSTS
⟨S,≤,→, INIT⟩ is k-step resilient w.r.t. sets BAD,SAFE ⊆ S if for every
s0 ∈ INIT and every transition sequence s0 →∗ s ∈ BAD, there exists a tran-
sition sequence s→≤k s′ ∈ SAFE.

We consider the bounded resilience problem which asks whether there
exists such a bound on the number of steps for recovery.

Bounded Resilience Problem for WSTSs

Given: A marked WSTS ⟨S,≤,→, INIT⟩ and sets BAD, SAFE ⊆ S.
Question: ∃k ≥ 0 s.t. the marked WSTS is k-step resilient w.r.t.

BAD,SAFE?

The answer to this question is yes if there is a natural number k ≥ 0 s.t.
starting from any state in INIT, whenever we reach a BAD state, we can
reach a SAFE state in ≤ k steps,9 and no otherwise. The set BAD specifies
which kind reachable states are of interest. We do not require that BAD is
the complement of SAFE.

INIT BAD SAFE

∗

∗

∀

∃
≤ k steps

∃
≤ k steps

We are interested in suitable subclasses of marked WSTSs and suitable
sets BAD and SAFE, for which the bounded resilience problem is decidable.

9A BAD (SAFE) state is a state in BAD (SAFE).

38

Verifying Resilience in a Well-structured Framework Chapter 4

Bounded
Resilience
Problem

marked WSTS ⟨S,≤,→, INIT⟩
(requirement)

sets BAD, SAFE

(requirement)

yes

no

We show that for suitable subclasses of finite-marked WSTSs and so-
called ideal-based sets BAD and SAFE, the bounded resilience problem is
decidable.

Example 4.1 (supply chain). We consider a marked Petri net (see Ap-
pendix A) modeling a simplified scenario of a supply chain. The supply
chain, depicted in Figure 4.1, consists of a production site labeled with
product, a warehouse labeled with warehouse, and two stores labeled with
store1 and store2, respectively. Products are produced in the production
site, transported to the warehouse, and shipped to one of the stores where
products can be bought. Products also may get lost by an accident in the
warehouse. As usual we depict places as circles, transitions as rectangles, and
the flow as weighted directed arcs between them. In the example, all weights
are 1 and therefore not indicated. Dots on places indicate the number of
tokens on the respective place in the marking. The initial marking is given
in Figure 4.1. The light-red transitions accident, buy1, and buy2 reduce the
number of tokens in the net.

produce

product

transport
warehouse

accident
ship1

ship2

store1

store2

buy1

buy2

Figure 4.1: A Petri net modeling a supply chain.

For the bounded resilience problem, we are interested in a bound k for
the number of steps needed for recovery. Let SAFE =

{M marking :M(warehouse),M(store1),M(store2) ≥ 1},

i.e., in the warehouse and in both stores products are available for shipping
or purchase, respectively. We ask whether we can reach a marking in SAFE
in ≤ k steps whenever we reach marking not in SAFE, i.e., BAD =

{M marking :M(warehouse) = 0 or M(storei) = 0 for some i}.

One may ask:

39

Chapter 4 Verifying Resilience in a Well-structured Framework

1. Does such a k exist?

2. Is there a generic method for problems of this kind?

We will answer these questions in this chapter.

4.2 Decidability

We show the decidability of resilience problems for subclasses of well-structured
transition systems with strong compatibility, i.e., we regard requirements.
These requirements ensure that we can (i) compute a finite representation of
reachable BAD states for (ii) checking inclusion in a predecessor set of the
SAFE states. While “post∗-effectiveness” or “lossiness” ensures the former,
“⊥-boundedness” ensures the latter in the case that SAFE is downward-closed.

Definition 4.3 (requirements). A marked WSTS ⟨S,≤,→, INIT⟩ is

(1) post∗-effective
if INIT is finite and a basis of ↑post∗(INIT) is computable,

(2) lossy if ↓post∗(INIT) = post∗(INIT),

(3) ⊥-bounded if there is a natural number ℓ ≥ 0 s.t. b ∈ post≤ℓ(s) for
every s ∈ S and every element b of a basis of S with s ≥ b.

The requirement of post∗-effectiveness describes that a basis of the
upward-closure of the reachable states from the initial states is computable,
i.e., we can effectively obtain a finite representation of the reachable states
(in the sense that we can compute the “smallest” reachable states). In the
example below, post∗(s0) consists of four states s0, s1, s2, s3. Since s2 ≤ s1,
the basis of ↑post∗(s0) consists of s0, s2, s3.

s3s0INIT:

s1

s2

≤ basis of ↑post∗(s0): s0, s2, s3

The notion of lossiness is an abstraction from the lossiness concept in
Finkel & Schnoebelen [FS01, p. 83]. Lossiness in our sense means that the
set of reachable states from the initital states is downward-closed. Usually,
“lossy” describes the circumstance that every “non-solid”10 component of every
state (in our sense: every state reachable from INIT) may get lost. Hence,
lossy systems are unreliable to some extent. Another kind of unreliability
is ⊥-boundedness. The notion of ⊥-boundedness means that from every
state, every “smaller” basis element, i.e., the bottom underneath, is reachable

10“Solid” components are the parts of a state belonging to a “smaller” basis element.

40

Verifying Resilience in a Well-structured Framework Chapter 4

in a bounded number of steps. Systems of this kind are unreliable in the
sense that all “non-solid components” of a state may get lost in a bounded
number of steps.

The following lemma is crucial for many following proofs. It states
that the inclusion of an intersection of set with an anti-ideal in an ideal is
equivalent to the inclusion of the intersection of the upward-closure of the
set with the anti-ideal.

Lemma 4.1 (ideal-inclusion). Let A ⊆ S be a set, I ⊆ S an ideal, and
J ⊆ S an anti-ideal. Then,

A ∩ J ⊆ I ⇐⇒ ↑A ∩ J ⊆ I.

Proof. “⇐”: Holds since A ⊆↑A.
“⇒”: Let s ∈↑A ∩ J . Then, ∃a ∈ A : s ≥ a. Thus, a ∈↓J = J . Hence, a ∈ I
and s ∈↑I = I.

Applying this lemma to a basis of an ideal, we obtain that the inclusion
of an intersection of an ideal and an anti-ideal in an ideal can be checked
by computing the intersection of the basis with the anti-ideal and checking
inclusion afterwards.

We give a characterization of post∗-effectiveness via the anti-ideal reach-
ability problem.

Proposition 4.1 (characterization of post∗-effectiveness). For a class
of recursively finite-branching WSTSs, a basis of ↑post∗(s) is computable
for a given state s iff the anti-ideal reachability problem is decidable, i.e.,
given a state s of a WSTS ⟨S,≤,→⟩ and an anti-ideal J ⊆ S with a given
basis of S \ J , it can be decided whether ∃s′ ∈ J : s→∗ s′.

Proof. On one hand, we can decide the anti-ideal reachability problem by
computing a basis of ↑post∗(s) and checking whether the intersection with the
anti-ideal is empty (Lemma 4.1). On the other hand, we can compute a basis
of ↑post∗(s) by computing the sequence of ideals Pk =↑post≤k(s) until it
becomes stationary (Lemma 2.2). The stop condition, i.e., the condition
which guarantees that we can terminate the algorithm, is formalized as
anti-ideal reachability:

“⇐”: Since the WSTS is recursively finite-branching, for every k ≥ 0,
post≤k(s) is finite and computable. By Fact 2.6, for every k ≥ 0, a basis
of ↑post≤k(s) is computable. We compute the sequence of ideals Pk =
↑post≤k(s) until it becomes stationary (Lemma 2.2). The decidable stop
condition is to ask whether the anti-ideal S \Pk is reachable from s. Namely,
it holds: post∗(s) ∩ S \ Pk = ∅ ⇐⇒ post∗(s) ⊆ Pk ⇐⇒ ↑post∗(s) = Pk, i.e.,
we stop the computation when S \ Pk is not reachable from s.
“⇒”: For deciding whether an anti-ideal J is reachable from s, we check

41

Chapter 4 Verifying Resilience in a Well-structured Framework

whether Bpost(s) ∩ J = ∅ where Bpost(s) is a basis of ↑ post∗(s). This is
equivalent to post∗(s)∩ J = ∅ by Lemma 4.1. Membership in J is decidable
since a basis of S \ J is given.

The characterization in Proposition 4.1 is used to show that Petri nets
are post∗-effective. It is well-known that Petri nets constitute SWSTSs, see,
e.g., Finkel & Schnoebelen [FS01, Thm. 6.1]. More generally, also reset Petri
nets constitute SWSTSs, see, e.g., Dufourd et al. [DFS98]. For a formal
definition of reset Petri nets, see Appendix A.

Convention. We say that a marked reset Petri net is post∗-effective if the
induced marked SWSTS is post∗-effective. The same convention applies to
“lossy” and “⊥-bounded”.

Example 4.2 (variations of Petri nets).

(1) Petri nets (equipped with any finite set of initial states) are post∗-
effective by Proposition 4.1 and results of Mayr [May84] and Hack
[Hac85]: Reachability for Petri nets is decidable [May84] and recursively
equivalent to submarking reachability [Hac85]. This corresponds to
the anti-ideal reachability problem for Petri nets.

(2) 1-Lossy Petri nets are Petri nets where in any state, one token may
get lost at any place. 1-Lossy Petri nets are lossy for every set of
initial states. (A more common notion of lossy Petri nets, which differs
slightly from ours, is given in Bouajjani & Mayr [BM99].)

(3) Reset-lossy (mixed-lossy) Petri nets are reset Petri nets where in any
state, all tokens (and one token) may get lost at any place. Reset-lossy
(mixed-lossy) Petri nets are ⊥-bounded (and lossy) for every set of
initial states. The bound for returning to the zero-marking is given by
the number of places.

For some results, we assume that a basis of all states of the consid-
ered WSTS is given. This is relevant when we use the basis elements for
computations as in the following proposition.

Notation. For a (S)WSTS ⟨S,≤,→⟩ with a given basis of S, we write shortly
(S)WSTSB. The index B stands for a given basis.

The next proposition shows how the requirements are related provided
that a basis of the set of all states is given.

Proposition 4.2. Lossy (⊥-bounded) finite-marked WSTSBs are post∗-
effective.

42

Verifying Resilience in a Well-structured Framework Chapter 4

post∗-effective

lossy ⊥-bounded

Petri nets

1-lossy Petri

nets

reset-lossy

Petri nets

mixed-lossy

Petri nets

Figure 4.2: Subclasses of finite-marked WSTSBs .

Proof. Let ⟨S,≤,→, INIT⟩ be a lossy (⊥-bounded) finite-marked WSTSB.
To compute a basis of ↑ post∗(INIT) for a finite set INIT, we look at the
reachable elements of a basis of the set S of all states. Such a basis element
is reachable iff its upward-closure is reachable:

Let B be a basis of S and s ∈ INIT. In both cases, a basis of ↑post∗(s)
is given by the set Bpost(s) = {b ∈ B :↑{b} is reachable from s} which can
be computed by Lemma 2.3. We show that ↑Bpost(s) = ↑post∗(s):
“⊇”: Let s′ be any element reachable from s. By definition of a basis, there
exists a basis element b ≤ s′. It follows that ↑{b} is reachable from s. We
showed post∗(s) ⊆↑Bpost(s) and thus, ↑post∗(s) ⊆↑Bpost(s).
“⊆”: By definition of lossiness and ⊥-boundedness, if ↑ {b} is reachable
from s, also b is reachable from s. We showed Bpost(s) ⊆ post∗(s) and hence,
↑Bpost(s) ⊆↑post∗(s).
The set INIT is finite and, by Fact 2.6, Bpost(s) is finite for every s ∈ S.
Hence,

⋃
s∈INIT Bpost(s) is finite. It holds

↑post∗(INIT) =↑
⋃

s∈INIT

post∗(s) =
⋃

s∈INIT

↑post∗(s) =
⋃

s∈INIT

↑Bpost(s)

=↑
⋃

s∈INIT

Bpost(s).

By Fact 2.6, we can compute a basis of ↑post∗(INIT).

In our setting, ideals and anti-ideals of the set of states play an important
role. Ideals and anti-ideals are, in general, infinite sets. However, every ideal
can be represented by a finite basis. For anti-ideals, we assume that they
are decidable.

Definition 4.4 (ideal-based). A set is ideal-based if it is

(a) an ideal with a given basis, or

(b) a decidable anti-ideal.

We denote the set of ideals with a given basis by I and the set of decidable
anti-ideals by J .

43

Chapter 4 Verifying Resilience in a Well-structured Framework

A main result of this chapter is the decidability of the bounded resilience
problem for subclasses of finite-marked WSTSs with bounded compatibility
and the respective requirements. Since our main objective is the decidability
for marked GTSs – and GTSs naturally satisfy strong compatibility w.r.t.
the subgraph order –, we formulate and prove the result for SWSTSs.

Theorem 4.1 (bounded resilience for finite-marked SWSTSs).
The bounded resilience problem is decidable for

(1) post∗-effective finite-marked SWSTSs if BAD ∈ J , SAFE ∈ I,

(2) lossy finite-marked SWSTSs if BAD,SAFE ∈ I,

(3) lossy, ⊥-bounded finite-marked SWSTSBs if BAD ∈ I, SAFE ∈ J ,

(4) ⊥-bounded finite-marked SWSTSBs if BAD, SAFE ∈ J .

Key Idea of the Proof. We aim to compute a finite representation of
post∗(INIT) ∩ BAD for checking inclusion in a decidable ideal I. The decid-
able ideal I is a predecessor set of SAFE.
The proof structure is shown in Figure 4.3: Lemma 4.2 states that for
post∗-effective (lossy) finite-marked SWSTSs, a finite representation of
post∗(INIT) ∩ BAD is computable, i.e., inclusion in a decidable ideal is
decidable. In the case SAFE ∈ I, the set pre≤k(SAFE) is a decidable ideal
for every k ≥ 0 [AČJT96]. Lemma 4.3 shows the existence of bounds for the
set of all predecessors of SAFE ∈ J provided that the SWSTS is ⊥-bounded.
Proposition 4.3 shows that pre∗(SAFE) constitutes a decidable ideal in the
case SAFE ∈ J if the SWSTSB is ⊥-bounded. □

The following lemma states that the inclusion of the intersection
post∗(INIT) ∩ BAD in an decidable ideal is decidable if we consider post∗-
effective in the case BAD ∈ J or lossy finite-marked WSTSs in the case
BAD ∈ I.

Lemma 4.2 (checking inclusion). Let ⟨S,≤,→, INIT⟩ be a finite-marked
WSTS, BAD ⊆ S, and I ⊆ S be a decidable ideal. It is decidable whether
post∗(INIT) ∩ BAD ⊆ I provided that the finite-marked WSTS is

(a) post∗-effective and BAD ∈ J ,

(b) lossy and BAD ∈ I.

Proof. The idea is to compute a finite representation of the intersections
post∗(INIT) ∩ BAD for checking inclusion in the decidable ideal I. To this
aim, we use Lemma 4.1:

44

Verifying Resilience in a Well-structured Framework Chapter 4

finite representation︷ ︸︸ ︷
post∗(INIT) ∩ BAD ⊆

decidable ideal︷ ︸︸ ︷
pre≤k/∗(SAFE)

decidable

post∗-eff WSTS
BAD ∈ J

lossy WSTS
BAD ∈ I

Lemma 4.2

SWSTS
SAFE ∈ I

⊥-bounded SWSTSB
SAFE ∈ J

[AČJT96]
Proposition 4.3

Figure 4.3: Decidability for finite-marked SWSTSs.

(a) We consider post∗-effective finite-marked WSTSs and BAD ∈ J . It
holds

post∗(INIT) ∩ BAD ⊆ I
⇐⇒ ↑post∗(INIT) ∩ BAD ⊆ I (Lemma 4.1)

⇐⇒ Bpost(INIT) ∩ BAD ⊆ I (Lemma 4.1)

where the set Bpost(INIT) is a basis of ↑post∗(INIT), i.e., ↑Bpost(INIT) =
↑ post∗(INIT). By post∗-effectiveness, Bpost(INIT) is computable. By
Fact 2.6, Bpost(INIT) is finite. The last inclusion is algorithmically checkable.
We take out all elements of Bpost(INIT) which are not in the decidable
anti-ideal BAD and then check inclusion of the remaining elements in the
decidable ideal I.

(b) We consider lossy finite-marked WSTSs and BAD ∈ I. We use the
same idea as in the previous case, but we change the roles of post∗(INIT)
and BAD. It holds

post∗(INIT) ∩ BAD ⊆ I
⇐⇒ ↓post∗(INIT) ∩ BAD ⊆ I (Def. lossy)

⇐⇒ ↓post∗(INIT) ∩ BBAD ⊆ I (Lemma 4.1)

where BBAD is a basis of BAD, i.e., ↑ BBAD = BAD. We show that
↓ post∗(INIT) is a decidable anti-ideal. It holds s ∈↓ post∗(INIT) iff
INIT ∩ pre∗(↑ {s}) ̸= ∅ for any s ∈ S. Since INIT is finite, we check

45

Chapter 4 Verifying Resilience in a Well-structured Framework

whether s′ ∈ pre∗(↑ {s}) for every s′ ∈ INIT. The latter is decidable by
Lemma 2.3. Hence, the last inclusion is decidable. We take out all elements
of BBAD which are not in ↓ post∗(INIT) and then check inclusion of the
remaining elements in the decidable ideal I.

The sets we want to check inclusion in are pre∗(SAFE) or pre≤k(SAFE),
k ≥ 0. In the case SAFE ∈ I, for SWSTSs, pre≤k(SAFE) is a decidable
ideal for every k ≥ 0.
By the next lemma, ⊥-boundedness implies that for any anti-ideal J , pre∗(J)
is an ideal and pre∗(J) = pre≤k(J) for a k ≥ 0.

Lemma 4.3 (existence of bounds). For every ⊥-bounded SWSTS and
decidable anti-ideal J ⊆ S, there exists a k ≥ 0 s.t. pre∗(J) =↑pre∗(J) =
pre≤k(J).

Proof. Recall that, by Lemma 2.2, for every set A of states of a WSTS, there
exists a k0 ≥ 0 s.t. ↑ pre∗(A) =↑ pre≤k0(A). By strong compatibility and
⊥-boundedness, we obtain ↑pre≤k(J) ⊆ pre≤k+ℓ(J) for every anti-ideal J and
every k ≥ 0 where ℓ is a constant:

We show ↑pre≤k(J) ⊆ pre≤k+ℓ(J) for every anti-ideal J and every k ≥ 0
where ℓ is a constant. Let s′1 ≥ s1 with s1 →≤k s2 ∈ J and k ≥ 0. By
strong compatibility, there exists s′2 ≥ s2 with s′1 →≤k s′2. By definition
of a basis, there exists a basis element b ≤ s2. It holds b ∈ J . Since b ≤ s′2,
by ⊥-boundedness, there exists a bound ℓ s.t. s′2 →≤ℓ b ∈ J .

s1

≤

s2 ∈ J

≤
≤

s′1 s′2

bJ ∋

≤ k

≤ k

≤ ℓ

By Lemma 2.2, there exists k0 ≥ 0 s.t. ↑pre∗(J) =↑pre≤k0(J). We obtain

pre∗(J) ⊆↑pre∗(J) =↑pre≤k0(J) ⊆ pre≤k0+ℓ(J) ⊆ pre∗(J).

Hence, pre∗(J) =↑pre∗(J) = pre≤k0+ℓ(J).

The following proposition identifies sufficient prerequisites s.t. pre∗(SAFE)
constitutes a decidable ideal in the case SAFE ∈ J .

Proposition 4.3 (decidable ideals). For every ⊥-bounded SWSTSB and
decidable anti-ideal J ⊆ S, the set pre∗(J) is a decidable ideal.

46

Verifying Resilience in a Well-structured Framework Chapter 4

Proof. By Lemma 4.3, ↑pre∗(J) = pre∗(J). Thus, it is an ideal. Let s ∈ S.
It holds

s ̸∈ pre∗(J)

⇐⇒ ̸ ∃s′ ∈ J : s→∗ s′ (Def. preset)

⇐⇒ post∗(s) ∩ J = ∅ (Def. postset)

⇐⇒ ↑post∗(s) ∩ J ⊆ ∅ (Lemma 4.1)

⇐⇒ Bpost(s) ∩ J ⊆ ∅ (Lemma 4.1)

where Bpost(s) is a basis of ↑post∗(s). By Proposition 4.2, ⊥-boundedness
implies post∗-effectiveness w.r.t. any finite set of initial states provided
that a basis of S is given. Hence, Bpost(s) is computable. Thus, the last
inclusion is decidable.

We compile our preparatory results to prove Theorem 4.1.

Proof of Theorem 4.1. We want to verify the property

∃k ≥ 0 : post∗(INIT) ∩ BAD ⊆ pre≤k(SAFE).

This property is indeed equivalent to the resilience property since it can be
formalized as

∃k ≥ 0 : ∀(INIT ∋ s0 →∗ s ∈ BAD) : ∃(s→≤k s′ ∈ SAFE).

Cases (1) & (2). By Fact 2.9, pre≤k(SAFE) is an ideal for every k ≥ 0 since
SAFE ∈ I and, by Definition 2.12, it is decidable. By Lemma 4.2, we can de-
cide whether post∗(INIT)∩BAD ⊆ pre≤k(SAFE) for (1) post∗-effective finite-
marked SWSTSs and (2) lossy finite-marked SWSTSs, respectively. By
Lemma 2.2, the sequence SAFE ⊆ pre≤1(SAFE) ⊆ pre≤2(SAFE) ⊆ . . .
becomes stationary, i.e., there is a minimal k0 ≥ 0 s.t. pre≤k0(SAFE) =
pre∗(SAFE). By Lemma 2.3, we can also determine this k0. Thus, we
can determine the minimal number k = kmin s.t. post∗(INIT) ∩ BAD ⊆
pre≤k(SAFE) (if it exists) and also whether it exists. Hence, we can decide
the bounded resilience problem. To sum up, the bounded resilience prob-
lem is decidable for (1) post∗-effective finite-marked SWSTSs and (2) lossy
finite-marked SWSTSs, respectively.
Cases (3) & (4). By Lemma 4.3, for ⊥-bounded SWSTSs, there ex-
ists a k ≥ 0 s.t. pre∗(SAFE) = pre≤k(SAFE). Hence, checking bounded re-
silience is equivalent to testing inclusion in pre∗(SAFE). By Proposition 4.3,
for ⊥-bounded SWSTSBs, pre

∗(SAFE) is a decidable ideal since SAFE ∈ J .
By Lemma 4.2, we obtain that checking post∗(INIT) ∩ BAD ⊆ pre∗(SAFE)
is decidable for (3) lossy, ⊥-bounded finite-marked SWSTSBs and (4) post∗-
effective, ⊥-bounded finite-marked SWSTSBs, respectively. By Proposi-
tion 4.2, ⊥-boundedness implies post∗-effectiveness provided that a basis of

47

Chapter 4 Verifying Resilience in a Well-structured Framework

all states is given. Hence, we can decide the bounded resilience problem
for (3) lossy, ⊥-bounded SWSTSBs and (4) ⊥-bounded SWSTSBs, respec-
tively.

Reset Petri nets can be seen as a special kind of graph transformation
systems. By replacing “SWSTSs” with “reset Petri nets”, we obtain the
decidability of the bounded resilience problem for finite-marked reset Petri
nets11 (including finite-marked Petri nets).

Corollary 4.1 (bounded resilience for finite-marked reset Petri
nets). The bounded resilience problem is decidable for

(1) post∗-effective finite-marked reset Petri nets if BAD ∈ J , SAFE ∈ I,

(2) lossy finite-marked reset Petri nets if BAD,SAFE ∈ I,

(3) lossy, ⊥-bounded finite-marked reset Petri nets if BAD ∈ I,
SAFE ∈ J ,

(4) ⊥-bounded finite-marked reset Petri nets if BAD, SAFE ∈ J .

Remark. The bounded resilience is decidable for finite-marked Petri nets if
BAD ∈ J , SAFE ∈ I since finite-marked Petri nets are post∗-effective.

Besides the bounded resilience problem, one may be interested in the
so-called explicit resilience problem where, additionally, a bound k is given
as input. We formulate the explicit resilience problem for marked WSTSs.

Explicit Resilience Problem for WSTSs

Given: A marked WSTS ⟨S,≤,→, INIT⟩, sets BAD, SAFE ⊆ S,
a natural number k ≥ 0.

Question: Is the marked WSTS k-step resilient w.r.t. BAD,SAFE?

We are interested in suitable subclasses of marked WSTSs and suitable
sets BAD and SAFE, for which the explicit resilience problem is decidable.

Remark. For the explicit resilience problem, “precision” is required, i.e., we
require that for every ideal I and every k ≥ 0, the sets pre≤k(I) are ideals.
Strong compatibility is crucial in this case.

For SAFE ∈ I, the decidability of the bounded resilience problem yields
the decidability of the explicit resilience problem: If the algorithm deciding
the bounded resilience problem gives the answer yes, it provides also the
minimal bound k. If the answer to the bounded resilience problem is no, the
answer to the explicit resilience problem is no for every k.

11In the literature, finite-marked (reset) Petri nets are just called “marked (reset) Petri
nets”. In contrast to Petri nets, reset Petri nets are, in general, not post∗-effective, i.e.,
there is no generic procedure to compute the basis of ↑post∗(INIT), see, Appendix B.

48

Verifying Resilience in a Well-structured Framework Chapter 4

Theorem 4.2 (explicit resilience for finite-marked SWSTSs). The
explicit resilience problem is decidable for finite-marked SWSTSs which are

(1) post∗-effective if BAD ∈ J , SAFE ∈ I,

(2) lossy if BAD,SAFE ∈ I.

Proof. Inspecting the proof of Theorem 4.1, we find that we can compute
the minimal k = kmin s.t. post∗(INIT) ∩ BAD ⊆ pre≤k(SAFE) if it exists.
Thus, given k, we can check kmin ≤ k to decide the explicit resilience problem.
If kmin does not exist, the answer to the explicit resilience problem is no for
every k.

Remark. For SAFE ∈ J , in general, we cannot derive kmin from the algorithm.
The argumentation above is not applicable.

By replacing “SWSTSs” with “reset Petri nets”, we obtain the decidability
of the explicit resilience problem for finite-marked reset Petri nets (including
finite-marked Petri nets).

Corollary 4.2 (explicit resilience for finite-marked reset Petri nets).

The explicit resilience problem is decidable for

(1) post∗-effective finite-marked reset Petri nets if BAD ∈ J , SAFE ∈ I,

(2) lossy finite-marked reset Petri nets if BAD,SAFE ∈ I.

Remark. The explicit resilience is decidable for finite-marked Petri nets if
BAD ∈ J , SAFE ∈ I since finite-marked Petri nets are post∗-effective.

Example 4.3 (supply chain). Consider again the marked Petri net model-
ing a simplified scenario of a supply chain, depicted in Figure 4.4.

produce

product

transport
warehouse

accident
ship1

ship2

store1

store2

buy1

buy2

Figure 4.4: A Petri net modeling a supply chain.

We considered the bounded resilience problem for

BAD = {M marking :M(warehouse) = 0 or M(storei) = 0 for some i},
SAFE = {M marking :M(warehouse),M(store1),M(store2) ≥ 1}.

49

Chapter 4 Verifying Resilience in a Well-structured Framework

SAFE is upward-closed by definition. The basis of SAFE is given by the
marking ⟨0, 1, 1, 1⟩ representing the number of tokens in the production
site, warehouse, the first store, and the second store. BAD is an anti-ideal
since it is the complement of SAFE (Fact 2.9). It is decidable by definition.
We can answer the raised question: By Corollary 4.1 (1), we can solve the
bounded resilience problem and, by Corollary 4.2 (1), we can solve the explicit
resilience problem. There exists a bound k s.t. the finite-marked Petri net
is k-step resilient w.r.t. BAD and SAFE. In fact, the minimal bound is
kmin = 8. For the computations, see Appendix C.

Remark. The finite-marked Petri net in Figure 4.4 is lossy.

Infinite Set of Initial States

One may ask for the decidability of the bounded and the explicit resilience
problem in the case where INIT is infinite and ideal-based. This case, is, in
general, not captured in Theorem 4.1 and 4.2. The following example shows
that k-step resilience w.r.t. a finite set INIT can be satisfied while it is not
satisfied w.r.t. the upward-closure of INIT.

Example 4.4. Consider the following finite-marked Petri net with two places
p1, p2 and two transitions t1, t2.

t1 p1 t2 p2

2

The transition t1 generates tokens in the place p1 provided that there ex-
ists a token in p1. The transition t2 deletes a token in each of both places.
Let

BAD = {M marking :M(p1) < 2},
SAFE = {M marking :M(p1) ≥ 2}.

For INIT = {⟨1, 0⟩}, the finite-marked Petri net is 1-step resilient w.r.t. BAD
and SAFE. One may ask whether this still holds if we include all markings
“larger” than ⟨1, 0⟩. For INIT = {M marking :M(p1) ≥ 1} ∈ I, there exists
no k s.t. the marked Petri net is k-step resilient w.r.t. BAD and SAFE: we
can reach a deadlock from the marking ⟨1, 1⟩ ∈ INIT.

t1 p1 t2 p2

2

[t2⟩
t1 p1 t2 p2

2

If INIT is an ideal with a given basis, a statement of the flavour of
Theorem 4.1 and 4.2 with adapted requirements holds. A marked WSTS
⟨S,≤,→, INIT⟩ is called I-marked if INIT ∈ I. For the requirements, we

50

Verifying Resilience in a Well-structured Framework Chapter 4

regard “weak invertibility”, lossiness, ⊥-boundedness, and “weak intersection-
effectiveness”.

Weak invertibility of I-marked WSTSs is the pendant to post∗-effective-
ness of finite-marked WSTSs, i.e., it means the computability of a basis of
↑ post∗(INIT) where INIT ∈ I. A WSTS is “invertible” if the transition
system obtained by reversing the direction of the transitions is a WSTS.
Weak invertibility is a weaker notion. Weak ∩-effectiveness generalizes
∩-effectiveness which means that a basis of I ∩ I ′ is computable for all ideals
I, I ′ with given bases, see, e.g., Abdulla et al. [AČJT96, p. 318].

Definition 4.5 (requirements for INIT ∈ I). An I-marked well-structured
transition system ⟨S,≤,→, INIT⟩ is
(1) weakly invertible if a basis of ↑post∗(INIT) is computable,

(2) weakly ∩-effective
if it is decidable whether INIT ∩ I = ∅ for every I ∈ I.

It can be shown that I-marked Petri nets are weakly invertible. This is
achieved by inverting the direction of the firing (transition relation). The
result is again a Petri net. By Lemma 2.3, the basis of pre∗(↑ INIT) in the
inverted Petri net is computable, which is the basis of ↑post∗(↑ INIT) in the
original Petri net.

Weak ∩-effectiveness is rather a property of the state set than of the
WSTS. For ideals of markings, the basis of the intersection is computable by
using their representation as tuples of natural numbers.

Example 4.5. Consider the finite-marked Petri net of the supply chain
(Figure 4.4). To compute the basis of ↑ post∗(INIT) with INIT as the
upward-closure of the marking ⟨0, 1, 1, 1⟩, we invert the Petri net. The result
is the Petri net represented below.

produce

product

transport
warehouse

accident
ship1

ship2

store1

store2

buy1

buy2

The basis of the intersection of the upward-closure of the single marking
⟨0, 1, 0, 0⟩ with the upward-closure of ⟨2, 0, 0, 0⟩ consists of the single marking
⟨2, 1, 0, 0⟩.

For I-marked SWSTSs, we obtain the decidability of the bounded
resilience problem from the one for finite-marked SWSTS by: replacing
finite-marked by I-marked, (1) replacing post∗-effective by weakly invertible,
(2)&(3) adding weakly ∩-effective, and (4) adding weakly invertible.

51

Chapter 4 Verifying Resilience in a Well-structured Framework

Theorem 4.3 (bounded resilience for I-marked SWSTSs).
The bounded resilience problem is decidable for

(1) weakly invertible I-marked SWSTSs if BAD ∈ J , SAFE ∈ I,

(2) lossy, weakly ∩-effective I-marked SWSTSs if BAD,SAFE ∈ I,

(3) lossy, weakly ∩-effective, ⊥-bounded I-marked SWSTSBs if BAD ∈ I,
SAFE ∈ J ,

(4) weakly invertible, ⊥-bounded I-marked SWSTSBs if BAD, SAFE ∈ J .

Proof. See Appendix B.

For the explicit resilience problem for I-marked SWSTSs, – by replacing
the requirements – we obtain a result of the flavour of Theorem 4.2.

Theorem 4.4 (explicit resilience for I-marked SWSTSs).
The explicit resilience problem is decidable for

(1) weakly invertible I-marked SWSTSs if BAD ∈ J , SAFE ∈ I,

(2) lossy, weakly ∩-effective I-marked SWSTSs if BAD,SAFE ∈ I.

Proof. As in the proof of Theorem 4.2, we derive the decidability of the
explicit resilience problem from the decidability of the bounded resilience
problem (Theorem 4.3).

Remark. For the case that INIT is a decidable anti-ideal, one could ob-
tain a result of the flavour of Theorem 4.3 and 4.4. However, it is unclear
how to compute a basis of ↑ post∗(INIT) for a decidable anti-ideal INIT
(except using the reachability of basis elements). In general, anti-ideals are
infinite and do not have a finite representation which could serve as input.

Concluding: This section provided a generic method for solving the bounded
and explicit resilience problem for subclasses of marked WSTSs (in particular,
for reset Petri nets) and ideal-based sets BAD and SAFE.

4.3 Algorithms and Approximations

From a more practical perspective, one is not only interested in decidability
but also in the algorithms. The proof of Theorem 4.1 includes a decidability
algorithm which can be used for automatic verification of resilience. An
overview is given in Figure 4.5. In the first step, a finite representation
finRepr of post∗(INIT) ∩ BAD is computed. The requirement for BAD ∈ J
is post∗-effectiveness and the requirement for BAD ∈ I is lossiness. In the
second step, inclusion of finRepr in the of predecessors of SAFE is checked.
Here, the algorithm splits in the cases SAFE ∈ I and SAFE ∈ J . For

52

Verifying Resilience in a Well-structured Framework Chapter 4

SAFE ∈ I, in the case that there exists a bound k, the algorithm returns
also the minimal k, called kmin. For SAFE ∈ J , the algorithm decides the
bounded resilience problem without returning a k. The requirement for
SAFE ∈ J is ⊥-boundedness.

Compute
finite representation
of post∗(INIT) ∩ BAD

requirements

BAD ∈ J BAD ∈ I
post∗-eff lossy

SAFE ∈ I
Compute kmin :=
minimal k s.t.

finRepr ⊆
pre≤k(SAFE)

If ̸ ∃k, return no

SAFE ∈ J
Check finRepr ⊆

pre∗(SAFE)

requirement
⊥-bounded

no, ̸ ∃k
yes, ∃k

finRepr

INIT finite

BAD ideal-based

SAFE ideal-based

yes, kmin

no, ̸ ∃k

Figure 4.5: Decidability algorithm for the bounded resilience problem.

The decidability algorithm for the explicit resilience problem in Figure 4.6
works for the case SAFE ∈ I. It can be derived from the proof of Theorem 4.2
and uses the decidability algorithm for the bounded resilience problem. More
precisely, in the case SAFE ∈ I, the decidability algorithm for the bounded
resilience problem delivers also kmin. Given any k, the algorithm checks
whether kmin ≤ k and returns the answer accordingly. If the decidability algo-
rithm for the bounded resilience problem detects that there is no such k, the
decidability algorithm for the explicit resilience problem returns no.

Bounded
Resilience
Problem

Check
kmin ≤ k

INIT finite

BAD ideal-based

SAFE ∈ I

yes, kmin

no

k ≥ 0

yes

no

Figure 4.6: Decidability algorithm for the explicit resilience problem.

In Figure 4.7, the second step for the case SAFE ∈ I is depicted in
more detail. Given a finite representation finRepr and a basis of SAFE,
it is first checked whether finRepr is included in pre≤k(SAFE). If so, the
algorithm returns yes and the current k as kmin. Otherwise, it is checked
whether pre≤k+1(SAFE) is included in pre≤k(SAFE) using the equation
pre≤k+1(SAFE) = SAFE ∪ pre(pre≤k(SAFE)). If so, the algorithm returns
no meaning that there exists no such k. Otherwise, k is increased by 1 and

53

Chapter 4 Verifying Resilience in a Well-structured Framework

the iteration is continued.

Check
finRepr ⊆ pre≤k(SAFE)

Check
pre≤k+1(SAFE) ̸⊆ pre≤k(SAFE)

pre≤k+1(SAFE) =
SAFE ∪ pre(pre≤k(SAFE))

SAFE ∈ I
finRepr

no

yes: kmin = k

no: ̸ ∃k
yesk ← k + 1

Figure 4.7: Checking inclusion for SAFE ∈ I.

We give an algorithmic description in pseudocode.
In Algorithm 1, the decidability algorithm for the bounded resilience

problem, respectively is depicted. It uses two main procedures: FinRepr
which returns a finite representation of post∗(INIT) ∩ BAD and CheckInc
which tests inclusion in pre∗(SAFE) or iteratively in pre≤k(SAFE) for an
increasing k ≥ 0.

Algorithm 1 Decidability Algorithm (Bounded Resilience)

Input: ⟨S,≤,→, INIT⟩, ideal-based sets BAD, SAFE
Output: kmin (minimal k)/ true/ false

1: procedure DecideRes(⟨S,≤,→, INIT⟩,BAD, SAFE) ▷ decide bounded resilience
2: return CheckInc(FinRepr(INIT,BAD), SAFE)
3: end procedure

Algorithm 2 depicts the algorithm for the explicit resilience problem.

Algorithm 2 Decidability Algorithm (Explicit Resilience)

Input: ⟨S,≤,→, INIT⟩, ideal-based set BAD, SAFE ∈ I, k ≥ 0
Output: true/ false

1: procedure DecideRes(⟨S,≤,→, INIT⟩,BAD,BSAFE, k) ▷ decide explicit resilience
2: if CheckInc(FinRepr(INIT,BAD),BSAFE) = false then ▷ SAFE ∈ I
3: return false
4: else
5: if CheckInc(FinRepr(INIT,BAD),BSAFE) ≤ k then
6: return true
7: else
8: return false
9: end if
10: end if
11: end procedure

54

Verifying Resilience in a Well-structured Framework Chapter 4

Algorithm 3 depicts the computation of a finite representation of
post∗(INIT) ∩ BAD. In the case BAD ∈ J , by post∗-effectiveness, we can
use a procedure PostBasis to compute a basis of ↑post∗(INIT). In the case
BAD ∈ I, we compute ↓post∗(INIT)∩BBAD where BBAD is a basis of BAD.
This is expedient by lossiness. The computation of ↓ post∗(INIT) ∩ BBAD

is based on the ideal reachability algorithm [AČJT96]. The procedure Min
computes a basis of ↑A for a given finite set of states A by minimizing A.

Algorithm 3 Computation of a finite representation
Input: INIT (finite set of states), ideal-based set BAD
Output: finRepr (finite representation)

1: procedure FinRepr(INIT,BAD) ▷ for the case BAD ∈ J
2: return PostBasis(INIT) ∩ BAD ▷ PostBasis(INIT) computes
3: end procedure ▷ a basis of ↑post∗(INIT)
4:
5: procedure FinRepr(INIT,BBAD) ▷ for the case BAD ∈ I; BBAD is a basis of BAD
6: finRepr ← ∅
7: for b ∈ BBAD do ▷ compute ↓post∗(INIT) ∩ BBAD

8: B1 ← {b} ▷ basis of the current pre≤k(↑{b})
9: B2 ← ∅ ▷ basis of the current pre≤k+1(↑{b})
10: while true do ▷ check whether INIT ∩ pre∗(↑{b}) ̸= ∅
11: if INIT∩ ↑B1 ̸= ∅ then
12: finRepr ← finRepr ∪ {b} ▷ ↑{b} is reachable from INIT
13: break
14: else
15: B2 ← {b} ∪ PreBasis(B1) ▷ PreBasis(B1) computes a basis of ↑B1

16: B2 ←Min(B2) ▷ Min(B2) minimizes the set B2

17: if B2 ⊆↑B1 then
18: break ▷ ↑{b} is not reachable from INIT
19: else
20: B1 ← B2 ▷ continue
21: end if
22: end if
23: end while
24: end for
25: return finRepr
26: end procedure

55

Chapter 4 Verifying Resilience in a Well-structured Framework

By Proposition 4.2, we can use lossiness or ⊥-boundedness also to de-
rive a procedure PostBasis for computing a basis of ↑post∗(INIT). In both
cases, the procedure is the same. We require a basis BS of the whole state
set S. In Algorithm 4, this procedure is depicted. It makes use of the ideal
reachability algorithm [AČJT96].

Algorithm 4 Computation of a Basis of ↑post∗(s) using a Basis of S

Input: s (state), BS (basis of S)
Output: postBasis

1: procedure PostBasis(s,BS) ▷ returns of a basis of ↑post∗(s)
2: postBasis ← ∅
3: for b ∈ BS do
4: B1 ← {b} ▷ basis of the current pre≤k(↑{b})
5: B2 ← ∅ ▷ basis of the current pre≤k+1(↑{b})
6: while true do ▷ check whether s ∈ pre∗(↑{b})
7: if s ∈↑B1 then
8: postBasis ← postBasis ∪ {b} ▷ ↑{b} is reachable from s
9: break
10: else
11: B2 ← {b} ∪ PreBasis(B1) ▷ PreBasis(B1) computes a basis of ↑B1

12: B2 ←Min(B2) ▷ Min(B2) minimizes the set B2

13: if B2 ⊆↑B1 then
14: break ▷ ↑{b} is not reachable from s
15: else
16: B1 ← B2 ▷ continue
17: end if
18: end if
19: end while
20: end for
21: return postBasis
22: end procedure

56

Verifying Resilience in a Well-structured Framework Chapter 4

The procedure CheckInc of Algorithm 5 tests inclusion in pre∗(SAFE)
(in pre≤k(SAFE) for an increasing k ≥ 0, and returns the minimal k if it
exists). In the case SAFE ∈ I, inclusion is checked iteratively and hence,
the minimal k is returned if it exists. This procedure (in this case) is based
on the ideal reachability algorithm [AČJT96]. In the case SAFE ∈ J , the
procedure only decides whether there exists such a k. Here we use that
⊥-boundedness implies post∗-effectiveness provided that a basis of all states
is given (cp. Proposition 4.2).

Algorithm 5 Checking Inclusion (Minimal k)

Input: finRepr (finite representation), ideal-based set SAFE
Output: kmin (minimal k)/ true/ false

1: procedure CheckInc(finRepr,BSAFE) ▷ for the case SAFE ∈ I; returns kmin/false
2: k ← 0 ▷ increasing counter
3: B1 ← BSAFE ▷ basis of the current pre≤k(SAFE); BSAFE is a given basis of SAFE
4: B2 ← ∅ ▷ basis of the current pre≤k+1(SAFE)
5: while true do
6: if finRepr ⊆↑B1 then
7: return k ▷ we found kmin

8: else
9: B2 ← BSAFE ∪ PreBasis(B1) ▷ PreBasis(B1) computes a basis of ↑B1

10: B2 ←Min(B2) ▷ Min(B2) minimizes the set B2

11: if B2 ⊆↑B1 then
12: return false ▷ there exists no such k
13: else
14: B1 ← B2 ▷ continue
15: k ← k + 1
16: end if
17: end if
18: end while
19: end procedure
20:
21: procedure CheckInc(finRepr,SAFE) ▷ for the case SAFE ∈ J ; returns true/false
22: for s ∈ finRepr do
23: if PostBasis(s,BS) ∩ SAFE = ∅ then
24: ▷ PostBasis(s,BS) computes a basis of
25: return false ▷ ↑post∗(s) using a given basis BS of S
26: end if
27: end for
28: return true
29: end procedure

57

Chapter 4 Verifying Resilience in a Well-structured Framework

Complexity

The algorithms in Section 4.3 exploit the fact that every infinite, ascending
sequence of ideals becomes stationary (cp. Lemma 2.2). Their complexity
highly depends on the k for which the considered sequence of ideals becomes
stationary. Schmitz & Schnoebelen [SS13] obtain non-primitive recursive
upper bounds on the k (on the length of sequences without increasing pairs).
Their general assumption is that the well-structured transition system cannot
“jump” to states of arbitrary “size”. They also identify principles to obtain
similar lower bounds in the sense of hardness results for the termination and
the coverability problem.

Despite all that, in specific (graph transformation) systems, the complex-
ity of the coverability (ideal reachability) problem is often manageable, see
Stückrath [Stü16, p. 16 and Chapter 7]. The computations we performed
are feasible without complications on a standard device, see Appendix C.

Another issue is that the post∗-effectiveness of Petri nets relies on the
reachability problem for Petri nets. The complexity of the reachability
problem for Petri nets has non-primitive recursive upper bounds and non-
elementary lower bounds, see, e.g., Czerwiński et al. [CLL+21]. This
establishes that, for Petri nets, the reachability problem is much harder than
the coverability problem.

In conclusion, the complexity of the algorithms in Section 4.3 highly
depends on the concrete system and the input. However, we can distinguish
between two kinds of procedures: forward and backward procedures. The
complexity of our backward procedures, i.e., ideal reachability, seems to be
more manageable. Our forward procedures use the post∗-effectiveness or
lossiness of a well-structured transition system. In the case of lossiness or in
the case where post∗-effectiveness is established by the reachability of basis
elements (cp. Proposition 4.2), one uses, in fact, also a backward procedure.
Proper forward procedures only occur when using the post∗-effectiveness of
Petri nets. The complexity of the latter may be considerable.

Approximation

In our setting, proper forward procedures are inequally costly compared to
backward procedures. Even for Petri nets, the computation of a basis of
↑post∗(INIT) is of considerable complexity since it relies on the reachability
algorithm for Petri nets. As suggested by König12, approximations are a way
to handle costly computations. We discuss which approximations for k-step
resilience are feasible in the case where BAD ∈ J and SAFE ∈ I. Only in
this case, we encounter proper forward procedures.

Assumption. Let ⟨S,≤,→, INIT⟩ be a marked SWSTS, BAD ∈ J , and
SAFE ∈ I.

12Private communication at Graph Computation Models 2021.

58

Verifying Resilience in a Well-structured Framework Chapter 4

The so-called µ-function approximates the minimal number of steps to
reach a SAFE state whenever a BAD state is reached. It is defined for all
subsets of states.

Definition 4.6 (µ-function). The function µ : P(S) → N ∪ {∞} from
the power set of S into the natural numbers extended by the symbol ∞ is
given as follows: µ(A) is the minimal k ∈ N s.t. A ∩BAD ⊆ pre≤k(SAFE) if
such a k exists and ∞ otherwise. Let

kℓun be the image of post≤ℓ(INIT) (for every ℓ ≥ 0),
kov be the image of post∗(↑ INIT), and
kmin be the image of post∗(INIT)

under µ.

kmin =∞ means that there exists no k s.t. the marked SWSTS is k-step
resilient w.r.t. BAD and SAFE. By definition, the µ-function is monotonic
and, by Lemma 4.1, it respects the upward-closure.

Fact 4.1. For subsets A ⊆ A′ ⊆ S, µ(A) ≤ µ(A′) and µ(↑A) = µ(A).

While the under-approximation is feasible for recursively finite-branching
SWSTSs, the over-approximation is feasible for “weakly invertible” finite-
marked SWSTSs.

A finite-marked WSTS ⟨S,≤,→, INIT⟩ is weakly invertible if a basis
of ↑ post∗(↑ INIT) is computable. By Fact 4.1, we obtain the following
approximations for k-step resilience.

Proposition 4.4 (approximation). Let ⟨S,≤,→, INIT⟩ be a marked
SWSTS, BAD ∈ J , and SAFE ∈ I.

(1) kℓun ≤ kℓ+1
un ≤ kmin for every ℓ ≥ 0 and the sequence k0un, k

1
un, . . .

converges to kmin eventually stabilizing. For finite-marked recursively
finite-branching SWSTSs, kℓun is computable for every ℓ ≥ 0.

(2) kov ≥ kmin and for weakly invertible finite-marked SWSTSs, kov is
computable.

0 kℓun ≤ kℓ+1
un

kmin ≤ kov

↑post≤ℓ(INIT) ↑post≤ℓ+1(INIT)⊆ ⊆ . . . ⊆↑post∗(INIT)⊆ ↑post∗(↑ INIT)

µ µ µ µ

ℓ→∞

59

Chapter 4 Verifying Resilience in a Well-structured Framework

Proof. (1) By Lemma 2.2, the sequence ↑ INIT ⊆↑ post≤1(INIT) ⊆ . . .
becomes stationary, i.e., there exists ℓ0 ≥ 0 (minimal) s.t. ↑post∗(INIT) =
↑post≤ℓ0(INIT). By Fact 4.1, kℓun = µ(↑post≤ℓ(INIT)) ≤ µ(post≤ℓ+1(INIT))
= kℓ+1

un and kℓun = µ(↑ post≤ℓ(INIT)) ≤ µ(post≤ℓ0(INIT)) = kmin for every
ℓ ≥ 0. Thus, the sequence k1un, k

2
un, . . . converges to kmin eventually stabilizing.

Since the SWSTS is recursively finite-branching, we can compute a basis of
↑ post≤ℓ(INIT) for every ℓ ≥ 0. By the proof of Theorem 4.1 (1), we can
compute kℓun for every ℓ ≥ 0.
Statement (2) follows similarly: by definition of weak invertibility, Fact 4.1,
and the proof of Theorem 4.1 (1).

Corollary 4.3 (decidable by approximation). If there exists ℓ ≥ 0 s.t.
kℓun = kov and kℓun or kov is computable, then the bounded and the explicit
resilience problem are decidable.

Proof. By Proposition 4.4 (1) & (2), kℓun = kmin = kov. Hence, kmin is
computable and the bounded (explicit) resilience problem is decidable.

Weak invertibility for Petri nets is achieved by inverting the direction of
the firing.

Fact 4.2. Finite-marked Petri nets are weakly invertible.

As a consequence, we can perform under- and over-approximations for
finite-marked Petri nets.

Corollary 4.4 (approximation for Petri nets). For finite-marked Petri
nets, kov and kℓun are computable for every ℓ ≥ 0.

Example 4.6. For the supply chain (Example 4.1), the over-approximation
yields kov = 8. This implies that kmin ≤ 8. In particular, kmin < ∞ which
means that there exists such a k. Thus, we solved the bounded resilience
problem for the supply chain. The under-approximations yield k0un = 0,
k1un = 3, k2un = 6, k3un = 8. This implies that kmin ≥ 8. We conclude that
kmin = 8, i.e., the over-(under-)approximation is exact (after 3 steps). Thus,
we solved the explicit resilience problem for the supply chain.

4.4 Related Concepts

The concept of resilience is broadly used in different areas with varying
definitions, see, e.g., Trivedi et al. [TKG09], Jackson & Ferris [JF13].
Our interpretation of resilience captures recovery in a bounded number of
steps.

Abdulla et al. [AČJT96] show the decidability of ideal reachability,
eventuality properties and simulation in (labeled) strongly well-structured
transition systems. We use the presented algorithm as an integrant of our

60

Verifying Resilience in a Well-structured Framework Chapter 4

decidability proof. Finkel & Schnoebelen [FS01] show that the concept
of well-structuredness is ubiquitous in computer science by providing a large
class of example models, e.g., Petri nets and their extensions, communicating
finite state machines, lossy systems, basic process algebras. Moreover, they
give several decidability results for well-structured systems with varying
notions of compatibility, e.g., decidability of the termination problem. They
also generalize the algorithm of [AČJT96] to not necessarily strongly well-
structured transition systems (without labels) to show decidability of the
coverability problem.

Karp & Miller [KM69] show the decidability of the ideal reachability
problem Petri nets. They construct a coverability tree which gives rise
to a “top basis”13 of the downward-closure of reachable states. In [BFG20],
Blondin et al. generalize this forward construction to a subclass of strongly
well-structured transition systems, concluding that LTL model checking
is decidable for this subclass. They show that ω-Petri nets satisfy their
requirements. For our purpose, “top bases” do not seem to be useful.
Graph transformation systems satisfy upward-compatibility but usually
not downward-compatibility which may fit to the notion of a “top basis”
of a downward-closed set.

Mayr [May84] shows that the reachability problem is decidable for Petri
nets. In his PhD thesis, Hack [Hac85] investigates decidability questions for
Petri nets. It is shown that submarking reachability is recursively equivalent
to reachability. We use the decidability of submarking reachability to show
that Petri nets are post∗-effective.

4.5 Summary

We provided a systematic investigation on resilience problems obtaining a de-
cidability theorem for subclasses of WSTSs. The key idea is to compute a fi-
nite representation of the reachable BAD states for checking inclusion in a pre-
decessor set of the SAFE states. The stated requirements for decidability are,
besides strong compatibility, an effectiveness requirement (post∗-effective)
or a kind of unreliability (lossy, ⊥-bounded). The requirement of post∗-
effectiveness is associated with the case that the set BAD is downward-closed.
Lossiness is associated with the case that the set BAD is upward-closed. The
requirement of ⊥-boundedness is associated with the case that the set SAFE
is downward-closed. As an immediate consequence, we obtain decidability
results for reset Petri nets.

13A “top basis” is a set K of ω-markings s.t. for every marking M : M ∈↓post∗(M0) iff
∃K ∈ K with M ≤ K, where M0 is the initial marking.

61

Chapter 4 Verifying Resilience in a Well-structured Framework

Takeaway (Chapter 4).

� The bounded resilience problem for WSTSs asks: Given a WSTS,
sets INIT, BAD, and SAFE, is there a bound k s.t. starting from any
INITial state, whenever we reach a BAD state, we can reach a SAFE
state in ≤ k steps? This problem is decidable for WSTSs with strong
compatibility satisfying additional requirements: post∗-effective, lossy,
⊥-bounded; INIT finite; BAD, SAFE ideal-based.

BAD decidable anti-ideal post∗-effective
BAD ideal with given basis lossy
SAFE decidable anti-ideal ⊥-bounded

� The explicit resilience problem for WSTSs is formulated as the bounded
resilience problem, except that a bound k ≥ 0 is given. It is decidable for
the cases where INIT is finite and SAFE is an ideal. The requirements
are: post∗-effective, lossy; BAD ideal-based.

62

Chapter 5

Verifying Resilience of Graph
Transformation Systems

In this chapter, we apply the ideal-based approach and decidability results
from Chapter 4 to graph transformation systems. The basic prerequisite is
the well-structuredness of the transition system induced by a graph trans-
formation system. Well-structuredness of graph transformation systems
is investigated by König & Stückrath [KS17] for several well-quasi-orders.
The well-quasi-order we use is the subgraph order which permits strong
compatibility but comes with the restriction of the boundedness of the path
length on the graph class. Boundedness of the path length means that the
length of any path in any graph of the class is bounded. Our general theory
applies to graph transformation systems of bounded path length satisfying
additional requirements.

Our results on strongly well-structured transition systems can be trans-
lated into the graph-transformational setting as follows.

marked SWSTS marked GTS

set of states set of graphs
well-quasi-order subgraph order
transition → transformation ⇒R
finite set INIT of states finite set INIT of graphs
ideal-based sets BAD, SAFE proper constraints Bad, Safe

In the context of graph transformation systems, the states are graphs and
the transitions are transformations. We consider the subgraph order as well-
quasi-order. At the level of well-structured transition systems, we assumed
that BAD and SAFE are ideal-based. Regarding the subgraph order, ideals
and anti-ideals of graphs are expressively equivalent to proper constraints, i.e.,
graph constraints describing the existence and absence of specified subgraphs,
respectively. Instead of ideal-based sets, we input proper constraints Bad
and Safe.

63

Chapter 5 Verifying Resilience of Graph Transformation Systems

In Section 5.1, we introduce the resilience problem for graph transfor-
mation systems. In Section 5.2, we show the decidability of the resilience
problem for subclasses of graph transformation systems of bounded path
length. In Section 5.5, we develop sufficient, rule-specific criteria for the
applicability of our results.

5.1 Resilience Problem

In Chapter 3, we considered several notions of resilience. The following
notion of resilience generalizes the notion of k-step∃ resilience.

Definition 5.1 (k-step resilience for GTSs). A marked GTS ⟨S,R, INIT⟩
is k-step resilient w.r.t. graph constraints Bad, Safe if for everyG0 ∈ INIT and
every transformation sequenceG0 ⇒∗ G |= Bad, there exists a transformation
sequence G⇒≤k H |= Safe.

We formulate the bounded resilience problem for marked GTSs.

Bounded Resilience Problem for GTSs

Given: A marked GTS ⟨S,R, INIT⟩, graph constraints Bad, Safe.

Question: ∃k ≥ 0 s.t. marked GTS is k-step resilient w.r.t. Bad,Safe?

The answer to this question is yes if there is a natural number k ≥ 0 s.t.
starting from any graph in INIT, whenever we reach a Bad graph, we can
reach a Safe graph in ≤ k steps,14 and no otherwise. The constraint Bad
specifies which kind reachable graphs are of interest. We do not require that
Bad is the negation of Safe.

INIT |=Bad |=Safe

∗

∗

∀

∃
≤ k steps

∃
≤ k steps

Note: While in Chapter 3, Bad graphs are obtained by application of
an environment rule, in this chapter, Bad graphs are defined by a graph
constraint. While in Chapter 3, k-step resilience is defined for marked joint
GTSs, the resilience notion considered in this chapter is a generalization

14A Bad (Safe) graph is a graph satisfying the graph constraint Bad (Safe).

64

Verifying Resilience of Graph Transformation Systems Chapter 5

to marked GTSs and arbitrary proper constraints Bad. The relation is as
follows.

Fact 5.1. A marked joint GTS is k-step resilient w.r.t. Safe iff the marked
annotated joint GTS is k-step resilient w.r.t. Bad = ∃(e) and Safe.

We are interested in suitable subclasses of marked GTSs and graph con-
straints Bad and Safe, for which the bounded resilience problem is decidable.

Bounded
Resilience
Problem

marked GTS ⟨S,R, INIT⟩
(requirement)

graph constraints Bad,Safe

(requirement)

yes

no

We show that for suitable subclasses of finite-marked GTSs and proper con-
straints Bad and Safe, the bounded resilience problem is decidable. The
following example is inspired by the leader election protocol in Joshi & König
[JK08].

Example 5.1 (circular process protocol). To illustrate the idea of our
resilience concept, we give an example. Consider a cycle of three processes
P0, P1, P2 each of which has an unordered waiting collection (multiset) con-
taining commands. Each command belongs to a process and is labeled
accordingly as c0, c1, or c2. The protocol is described below.

1. The process P0 is liberal, i.e., it can initiate (generate and forward) a com-
mand c0.

2. Every process Pi can forward a command cj , i ≠ j, not belonging to
itself.

3. If a process Pi receives a command ci, it is enabled and can

– execute its specific process action, or

– clear all commands in its waiting collection and forward a com-
mand of the next process, or

– leave the process cycle (if i ̸= 0) and forward a command of the
next process.

Afterwards, the command ci is deleted.

4. Any command may get lost in any state.

The process action of P0 is to forward two commands, c1 and c2. The process
action of P1 (P2) is to forward a command c2 (c1). The structure of the

65

Chapter 5 Verifying Resilience of Graph Transformation Systems

process cycle changes when a process leaves the cycle. Each of the two
processes P1, P2 can leave the cycle only if the other process has not left
the ring before. In Figure 5.1, the initial state where every process Pi has
one command ci in its collection and the three possible cycle structures
are shown. A process Pi is represented by an edge labeled with Pi. The
collections are represented by white nodes which may have loops labeled
with ci corresponding to the contained commands.

P0 P1

P2

c2c0

c1
P0

P1

⇝
P0 P1

P2

⇝
P0

P2

1

Figure 5.1: Initial state and structures of the circular process protocol.

A formalization as WSTS induced by a GTS can be found in Figure 5.5.
Consider the following instances of the bounded resilience problem with the
initial state as in Figure 5.1:

instance 1 2 3 4 5

BAD ¬AllEnabled Command(c2) AllEnabled NoCommand ¬3Processes
SAFE AllEnabled Collection(c0, c1) ¬AllEnabled ¬3Processes 3Processes

For every instance of the bounded resilience problem, we are interested
in a bound k for the number of steps needed for recovery. In the first instance,
we ask whether we can reach a state where every process is enabled in ≤ k
steps whenever we reach a state where this is not the case. In the second
instance, we ask whether we can reach a state with a collection containing
commands c0, c1 in ≤ k steps whenever we reach a state with a collection con-
taining c2. The third instance is the “dual” problem to the first one where
the constraints for BAD and SAFE are exchanged. In the fourth instance,
we ask whether we can reach a state not containing three processes in ≤ k
steps whenever we reach a state without commands. In the fifth instance,
we ask whether we can reach a state containing three processes in ≤ k steps
whenever we reach a state containing not three processes. One may ask:

1. Does such a k exist?

2. Is there a generic method for problems of this kind?

We will answer these questions in this chapter.

5.2 Decidability

We translate the results for strongly well-structured transition systems into
the graph-transformational setting. Our approach uses the subgraph order.

66

Verifying Resilience of Graph Transformation Systems Chapter 5

Convention. We equip every graph class with the subgraph order.

Remark. The subgraph order is anti-symmetric.15 As a consequence, bases
of ideals are unique up to isomorphism. For the subgraph order, we speak of
the basis of an ideal.

The following result of König & Stückrath terms a sufficient criterion
for GTSs to be well-structured. This result is essential for our translation.
König & Stückrath consider labeled hypergraphs.

Lemma 5.1 (well-structured GTSs [KS17, Prop. 7]).

(1) For every graph class S of bounded path length, the restriction of the
subgraph order to S is a wqo.

(2) Every graph transformation system induces a strongly compatible
transition system.

(3) For every rule set, the basis of pre(↑{G}) in the class of all graphs is
computable for every given graph G.

In a nutshell, this means that every GTS with a graph class of bounded
path length induces a SWSTS. All graphs satisfying the bounded path length
condition are included. We generalize and adapt the latter result for our
purpose. In the following table, the conditions to be met for marked SWSTSs
and marked GTSs are listed.

marked SWSTS marked GTS

set of states S set of graphs S
wqo on S subgraph order on S

bounded path length [KS17]
strong compatibility satisfied, see [KS17]
∀s ∈ S: basis of pre(↑{s}) pre-eff: ∀G ∈ S: basis of
is computable pre(↑{G}) is computable

basis of S given basis of S given

ideal with given basis c-eff: ∀ positive constraint c:
basis of JcKS is computable

decidable anti-ideal |= is decidable for
negative constraints

[KS17]

In the following, we restrict the upward-closure and the predecessor set
to a graph class S: By ↑S A we denote the upward-closure in S of A ⊆ S.
By preS(A) we denote the predecessor set in S of A ⊆ S. For the class of all
graphs, we omit the index.

The following notion of pre-effectiveness for GTSs corresponds directly
to the pre-effectiveness condition for WSTSs (Definition 2.12).

15anti-symmetric up to isomorphism, i.e., ∀G,G′ : (G ≤ G′ and G ≥ G′) implies G ∼= G′.

67

Chapter 5 Verifying Resilience of Graph Transformation Systems

Definition 5.2 (pre-effective). A (marked) GTS with graph class S is
pre-effective if there exists an effective procedure to obtain the basis of
preS(↑S{G}) for every graph G ∈ S.

We use the result of König & Stückrath to obtain an induced SWSTS.
A prerequisite is the boundedness of the path length on the graph class.

Definition 5.3 (GTSbp). A (marked) GTS is of bounded path length,
shortly a (marked) GTSbp, if its graph class is of bounded path length.

Example 5.2 (starry sky). The rules ⟨∅ ⇀ A ⟩ and ⟨ A1 ⇀ A1 ⟩
together with the set of disjoint unions of unboundedly many star-shaped
graphs (and any subset) form a (marked) GTSbp.

Lemma 5.2. Every pre-effective (marked) GTSbp induces a (marked) SWSTS.

Proof. This follows by the definition of SWSTSs (Definition 2.12) and
Lemma 5.1 (1) & (2).

Convention. We say that a pre-effective marked GTSbp is post∗-effective if
the induced marked SWSTS is post∗-effective. The same convention applies
to “lossy” and “⊥-bounded”.

For a given graph class S and a negative constraint c, the semantics JcKS
is in J , i.e., a decidable anti-ideal. For a positive constraint c, the semantics
is an ideal, but, in general, we do not know the basis of JcKS . A positive
constraint c with a given basis of JcKS is called positiveB.

Fact 5.2 (ideal-based graph sets). Let S be a graph class.
For a positiveB constraint c, JcKS ∈ I (ideal with given basis).
For a negative constraint c, JcKS ∈ J (decidable anti-ideal).

From the decidability results for SWSTSs, the relation of SWSTSs and pre-
effective GTSbps, and the relation of ideal-based sets and proper constraints,
we obtain the following result.

Theorem 5.1 (bounded resilience for finite-marked GTSs I).
The bounded resilience problem is decidable
for pre-effective finite-marked GTSbps which are

(1) post∗-effective if Bad is negative and Safe is positiveB,

(2) lossy if Bad and Safe are positiveB,

for pre-effective finite-marked GTSbpB s which are

(3) lossy and ⊥-bounded if Bad is positiveB and Safe is negative,

(4) ⊥-bounded if Bad and Safe are negative.

68

Verifying Resilience of Graph Transformation Systems Chapter 5

Proof. By Lemma 5.2, every pre-effective marked GTSbp induces a marked
SWSTSs. By Fact 5.2, for every positiveB (negative) constraint c, JcKS ∈ I
(∈ J). Thus, we can apply Theorem 4.1, setting BAD = JBadKS and
SAFE = JSafeKS .

This result is the direct translation of the decidability results for SWSTSs
into the graph-transformational setting. However, it has two drawbacks:
(i) We do not input solely a positive constraint c but require also a given
basis of JcKS , and (ii) it does not give us a procedure for pre-effectiveness.
To improve this result in terms of algorithmic realizability, we consider
requirements on the graph class.

Definition 5.4 (con-effective, ∩-based). A graph class S is con-effective
(constraint-effective) if the basis of JcKS is computable for every pure positive
constraint c. It is ∩-based if there exist I ∈ I, J ∈ J s.t. S = I ∩ J in the
class of all graphs.

Since we input proper graph constraints, a reasonable assumption for
the graph class is that we can compute the basis of the ideal JcKS for every
positive constraint c. However, the definition of a con-effectiveness does
not give us a concrete procedure for the computation of the basis of JcKS
for a given positive constraint c. Similarly, the definition of pre-effectiveness
does not give us a concrete procedure for the computation of the basis of
pre(↑{G}) for a given graph G. We illustrate what these procedures look
like in many use cases by considering ∩-basedness. While pre-effectiveness
is a property of a GTS, con-effectiveness and ∩-basedness are properties
of a graph class. We will show the implications depicted in Figure 5.2.

marked GTS with ∩-based graph class

marked GTS with con-effective graph class

pre-effective marked GTSmarked SWSTS

Lemma 5.4

Lemma 5.4

bounded path length

induces [KS17]

Figure 5.2: Hierarchy of the effectiveness requirements.

First we show that con-effectiveness is sufficient for computing the basis
of JcKS for every positive constraint c.

69

Chapter 5 Verifying Resilience of Graph Transformation Systems

Lemma 5.3. A graph class S is con-effective iff the basis of JcKS is computable
for every positive constraint c.

Proof. “⇒”: Let S be a con-effective graph class and c a positive constraint.
By Lemma 2.1, we can effectively transform c into an equivalent positive
constraint c′ of the form

∨
1≤i≤n ∃Ci. By con-effectiveness, we compute the

basis Bi of J∃CiKS . We obtain

↑S
⋃

1≤i≤n

Bi =
⋃

1≤i≤n

↑S Bi =
⋃

1≤i≤n

J∃CiKS = J
∨

1≤i≤n

∃CiKS

= Jc′KS = Jc′K ∩ S = JcK ∩ S = JcKS .

By Fact 2.6, each basis Bi is finite. Hence, by Fact 2.6, we can compute the
basis of ↑S

⋃
1≤i≤n Bi.

“⇐”: Holds since every pure positive constraint is a positive constraint.

Remark. The set {C} is the basis of J∃CKS iff C ∈ S.

Thus, con-effectiveness ensures that we can replace positiveB by positive
constraints in Theorem 5.1.

Example 5.3 (con-effective). Let S2lp be the class of graphs consisting of
one node and 2n loops for every n ≥ 0. We show that this graph class is con-
effective. For the graph D2 consisting of two isolated nodes, J∃D2KS2lp = ∅.
For every graph C ≥ D2, J∃CKS2lp ⊆ J∃D2KS2lp . Hence, J∃CKS2lp = ∅.
Let Dn

1 be the graph consisting of one node and n loops. For every n ≥ 0,
the set {D2n

1 } is the basis of J∃D2n
1 KS2lp and of J∃D2n+1

1 KS2lp . The set {D0
1}

is the basis of J∃∅KS2lp .

Lemma 5.4 (effectiveness lemma).

(i) Every (marked) GTS with con-effective graph class is pre-effective.

(ii) Every ∩-based graph class is con-effective.

Proof. (i) We show that there exists an effective procedure to obtain the
basis of preS(↑S {G}) for every graph G ∈ S. König & Stückrath [KS17] give
an effective procedure which works in the class of all graphs (Lemma 5.1 (3)).
Let G ∈ S be a graph and Bpre the basis of pre(↑ {G}) in the class of all

70

Verifying Resilience of Graph Transformation Systems Chapter 5

graphs. Let c be the positive constraint
∨

B∈Bpre
∃B. For every graph H,

H ∈ JcKS

⇐⇒ H ∈ S and H |=
∨

B∈Bpre

∃B (Def. J · KS)

⇐⇒ H ∈ S and ∃B ∈ Bpre : H |= ∃B (Def. |=)

⇐⇒ H ∈ S and ∃B ∈ Bpre : B ≤ H (Def. ≤)
⇐⇒ H ∈ S and H ∈ pre(↑{G}) (Def. basis)

⇐⇒ H ∈ S and ∃G′ ∈↑{G} : H ⇒ G′ (Def. pre)

⇐⇒ H ∈ S and ∃G′ : H ⇒ G′ ≥ G (Def. ↑)
⇐⇒ H ∈ S and ∃G′ ∈ S : H ⇒ G′ ≥ G (closed under ⇒)

⇐⇒ H ∈ S and ∃G′ ∈↑S {G} : H ⇒ G′ (Def. ↑S)
⇐⇒ H ∈ preS(↑S {G}). (Def. preS)

Thus, JcKS = preS(↑S{G}). By Lemma 5.3 and con-effectiveness, the basis
of JcKS is computable.
(ii) Let S = I ∩J be a graph class where I ∈ I and J ∈ J . Let b = ∨B∈B ∃B
where B is the basis of I and c a positive constraint. Then, b∧ c is a positive
constraint. By Lemma 2.1, we can compute a positive constraint c′ s.t.
Jc′K = Jb ∧ cK (in the class of all graphs) and c′ is of the form

∨
1≤i≤n ∃Bi.

Since J ∈ J , we can compute the set {Bi ∈ J : 1 ≤ i ≤ n} which is the basis
of JcKS = {G ∈ S : G |= c}.

First note that in case (1) of Theorem 5.1, pre-effectiveness is obsolete.

Fact 5.3. The bounded resilience problem for pre-effective finite-marked
GTSbps with graph class S can be solved by solving the problem for the
∩-based graph class ↓post∗(INIT).

Proof. By Lemma 2.3, ↓ post∗(INIT) is a decidable anti-ideal. Since
↓ post∗(INIT) =↑ {∅}∩ ↓ post∗(INIT), this graph class is ∩-based. By
the compatibility condition (Lemma 5.1), it is closed under rule application.
It is of bounded path length since post∗(INIT) ⊆ S.

Remark. This reduction by change of the graph class works only for case (1) of
Theorem 5.1. While post∗-effectiveness is not affected, a change of the graph
class may affect lossiness and ⊥-boundedness.

For the case where Bad and Safe are negative, con-effectiveness is not
required and we consider a pre-effective marked GTS and a given basis of
the graph class, shortly a pre-effective marked GTSB. From the decidability
results for pre-effective GTSbps, we obtain the following results by: replacing
positiveB by positive, (1) leaving out pre-effective, (2)&(3) replacing pre-
effective by con-effective.

71

Chapter 5 Verifying Resilience of Graph Transformation Systems

Theorem 5.2 (bounded resilience for finite-marked GTSs II).
The bounded resilience problem is decidable
for finite-marked GTSbps which are

(1) post∗-effective if Bad is negative and Safe is positive,

for finite-marked GTSbps with con-effective graph class, which are

(2) lossy if Bad and Safe are positive,

(3) lossy and ⊥-bounded if Bad is positive and Safe is negative,

for pre-effective finite-marked GTSbpB s which are

(4) ⊥-bounded if Bad and Safe are negative,

and, in particular, for finite-marked GTSbps with ∩-based graph class which
satisfy the respective requirement in the cases (2), (3), and (4).

Proof. Case (1). We show that (1) holds for post∗-effective finite-marked
GTSbps with ∩-based graph class. By Lemma 5.4, every finite-marked GTSbp

with ∩-based graph class is a pre-effective finite-marked GTSbp and every
∩-based graph class is con-effective. Thus, the basis of JSafeKS is com-
putable. By Theorem 5.1 (1), the bounded resilience problem is decidable
for post∗-effective finite-marked GTSbps with ∩-based graph class. For ev-
ery post∗-effective finite-marked GTSbps with graph class S, we solve the
bounded resilience problem for the post∗-effective finite-marked GTSbps with
∩-based graph class ↓post∗(INIT) (Fact 5.3).
Cases (2) & (3). By con-effectiveness, the basis B of S is computable
as the basis of J∃∅KS . Also by con-effectiveness, the basis of JBadKS (and
in case (3), also the basis of JSafeKS) is computable. By Lemma 5.4, ev-
ery finite-marked GTSbp with ∩-based graph class is a pre-effective finite-
marked GTSbp. By Theorem 5.1 (2) and (3), the bounded resilience problem
is decidable for lossy (and ⊥-bounded) finite-marked GTSbps with con-
effective graph class.
Case (4). This follows directly by Theorem 5.1 (4).

From the decidability results for finite-marked GTSbps (Theorem 5.2)
we obtain a decidability result for finite-marked (annotated) joint GTSbps:
Joint GTSs are special GTSs and Bad = ∃(e) is a fixed input. Moreover,
by construction, the positive constraint Bad = ∃(e) is equivalent to the
negative constraint ¬∃(s) ∧ ¬∃(⊤).

72

Verifying Resilience of Graph Transformation Systems Chapter 5

Corollary 5.1 (bounded resilience for finite-marked joint GTSs).
The bounded resilience problem with Bad = ∃(e) is decidable
for finite-marked annotated joint GTSbps which are

(1) post∗-effective if Safe is positive,

for pre-effective finite-marked annotated joint GTSbpB s which are

(2) ⊥-bounded if Safe is negative,

and, in particular, for ⊥-bounded finite-marked annotated joint GTSbps with
∩-based graph class if Safe is negative.

Proof. By construction of joint GTSs, Bad is equivalent to the negative
constraint ¬∃(s)∧¬∃(⊤). Since marked annotated joint GTSs are marked
GTSs, we can apply the cases (1) and (4) of Theorem 5.2.

Remark. Using Bad = ∃(e) as positive constraint, we obtain two statements
which are captured by Corollary 5.1 (lossiness and con-effectiveness are
obsolete).

Besides the bounded resilience problem, one may be interested in the
explicit resilience problem where, additionally, a bound k is given as input.
We formulate the explicit resilience problem for marked GTSs.

Explicit Resilience Problem for GTSs

Given: A marked GTS ⟨S,R, INIT⟩, graph constraints Bad, Safe,
a natural number k ≥ 0.

Question: Is the marked GTS k-step resilient w.r.t. Bad,Safe?

We are interested in suitable subclasses of marked GTSs and graph
constraints Bad, Safe, for which the explicit resilience problem is decidable.

Theorem 5.3 (explicit resilience for finite-marked GTSs).
The explicit resilience problem is decidable
for finite-marked GTSbps which are

(1) post∗-effective if Bad is negative and Safe is positive,

for finite-marked GTSbps with con-effective graph class, which are

(2) lossy if Bad and Safe are positive,

and, in particular, for lossy finite-marked GTSbps with ∩-based graph class
in the case (2).

Proof. We derive the decidability of the explicit resilience problem from
the decidability of the bounded resilience problem (Theorem 5.3). The
argumentation is as in the proof of Theorem 4.2.

73

Chapter 5 Verifying Resilience of Graph Transformation Systems

Since joint GTSs are GTSs, we obtain the decidability of the explicit
resilience problem for finite-marked joint graph transformation systems
considered in Chapter 3.

Corollary 5.2 (explicit resilience for finite-marked joint GTSs). The
bounded resilience problem with Bad = ∃(e) is decidable
for finite-marked annotated joint GTSbps which are

post∗-effective if Safe is positive,

and, in particular, for post∗-effective finite-marked annotated joint GTSbps with
∩-based graph class if Safe is positive.

Example 5.4 (path game). Consider two fixed locations represented by
nodes labeled with L. The middle points are represented by black nodes.
The system tries to construct directed paths of length 2 between them (one
path forth and one back) using the rules in Figure 5.3.

S

New :
〈
L

1
L

2
⇀ L

1
L

2

〉
Rev1 :

〈
L

1 2
⇀ L

1 2

〉
Para1 :

〈
L

1 2
⇀ L

1 2

〉
Rev2 :

〈
L

1 2
⇀ L

1 2

〉
Para2 :

〈
L

1 2
⇀ L

1 2

〉
Mer1 :

〈
L

1

3

4 L
2
⇀ L

1 3, 4
L

2

〉
Mer2 :

〈
L

1

3

4 L
2
⇀ L

1 3, 4
L

2

〉
Mer3 :

〈
L

1

3

4 L
2
⇀ L

1 3, 4
L

2

〉
E

{
Del1 :

〈
L

1 2
⇀ L

1 2

〉
Del2 :

〈
L

1 2
⇀ L

1 2

〉
Figure 5.3: System and environment of the path game.

The system can (i) create a new middle point connected to the locations
by the New-rule, (ii) create two parallel edges provided that there is one
by the Para-rules, (iii) reverse the direction of an edge by the Rev-rules,
and (iv) merge two middle points each of which are connected to a different
location by the Mer-rules. The environment deletes an edge. The control
automaton is alternating, i.e., given by:

q0 q1

A S

E

The joint rule set consists of enriched system rules of the form ⟨Lq1 ⇀ Rq0⟩
and enriched environment rules of the form ⟨Lq0 ⇀ Rq1⟩. We consider the
initial graph L L q0 . The positive constraint Safe is given by

Safe = ∃(L L) ∨ ∃(L L).

74

Verifying Resilience of Graph Transformation Systems Chapter 5

The graph class consists of all graphs with exactly two locations and arbi-
trarily many middle points connected to the locations by arbitrary edges.
The graphs are also equipped with a node labeled with q0 or q1. This graph
class is of path length ≤ 2. We can reach the graph L L q0 (modulo
isolated black nodes) when the system is only changing the direction of edges.
Hence, the finite-marked joint GTSbp is post∗-effective. By Corollary 5.1 and
5.2, we can solve both resilience problems: There exists a bound k s.t. the
finite-marked joint GTSbp is k-step resilient w.r.t. Safe. In fact, the minimal
bound is kmin = 13. For the computations, see Appendix C.

Example 5.5 (supply chain II). Consider again the simplified scenario
of a supply chain, depicted in Example 4.1. We model the latter example
by a marked joint GTS. The structure is given in the following initial graph:

P W
S1

S2

A production site (P) is connected to a warehouse (W) which again is
connected to two stores S1 and S2. Each of the black nodes indicates
one product at the corresponding connected location. The behavior in
this supply chain is modeled by the rules in Figure 5.4. The system rules
consist of Pr (the completion of a product at the production site P), Tr
(transporting a product from P to the warehouse W), and Sh1 and Sh2
(shipping a product fromW to one of the two stores S1, S2). The environment
rules describe adverse effects: Ac describes an accident in the warehouse
which leads to the loss of one product, and Bu1, Bu2 describe that a product
is bought from S1 or S2, respectively.

S

Pr :
〈

P1 ⇀ P1
〉

Tr :
〈

P 1
W

2
3 ⇀ P 1 W

2
3

〉
Sh1 :

〈
W 1

S1 2
3 ⇀ W 1

S1
2

3

〉
Sh2 :

〈
W 1

S2 2
3 ⇀ W 1

S2
2

3

〉 , E

Ac :

〈
W1 ⇀ W1

〉
Bu1 :

〈
S11 ⇀ S11

〉
Bu2 :

〈
S21 ⇀ S21

〉

q0
Pr

Tr
Pr Tr

Pr Tr
Shi Shi

Shi

Ac, Bui

Bui

Figure 5.4: System, environment, and control automaton of supply chain II.

The control automaton in Figure 5.4 describes the possible order of rule
applications. We are interested in the question when the product is again

75

Chapter 5 Verifying Resilience of Graph Transformation Systems

“in stock”, i.e., at least 1 product in the warehouse and in each of both stores,
whenever a customer buys a product or when an accident in the warehouse
happens. After each such step, the automaton is in the state q0. Formally,
we consider Bad = ∃(e) (“the last applied rule was an environment rule”),
as usual for marked joint GTSs, and the positive constraint

Safe = ∃(W) ∧ ∃(S1) ∧ ∃(S2).

We ask whether there exists a bound k s.t. starting from the initial graph,
whenever an environment rule was applied, we can reach a graph satisfying
Safe in ≤ k steps. As ∩-based graph class of bounded path length we
consider all graphs of the same structure as the initial graph, with an
arbitrary number of products at the warehouse and the stores. One can
show that the finite-marked (annotated) joint GTSbp is post∗-effective, e.g.,
by reducing the respective computation to the post∗-effectiveness of finite-
marked Petri nets (Example 4.2). By Corollary 5.1 and 5.2, we can solve
both resilience problems: There exists a bound k s.t. the finite-marked joint
GTSbp is k-step resilient w.r.t. Safe. In fact, the minimal bound is kmin = 6.
For the computations, see Appendix C.

Concluding: This section provided a generic method for solving the bounded
and explicit resilience problem for subclasses of marked GTSs and proper con-
straints Bad and Safe.

Remark. For marked GTSs without deadlocks, deciding the explicit resilience
problem is equivalent to checking the CTL constraint

AG(Bad⇒
k∨

j=0

EXjSafe).

Moreover, the presented methods may be used to check a class of temporal
constraints. E.g., by Proposition 4.1, for post∗-effective marked GTSbp, we
can check the CTL constraint EFSafe where Safe is a negative constraint.

More General Constraints

More general graph constraints as, e.g., in Rensink [Ren04] and [HP09] do
not constitue (anti-)ideals w.r.t. the subgraph order, in general.

Example 5.6. Consider the constraint AllLoop = ∀(, ∃()) express-
ing that every node has a loop. The graph consisting of one node and one
loop satisfies the latter constraint. However, the “larger” graph consisting
of two nodes and one loop does not satisfy it. Thus, the constraint AllLoop
does not constitute an ideal. By a similar argument, it does not constitute
an anti-ideal.

Moreover, we cannnot mix negative and positive constraints.

76

Verifying Resilience of Graph Transformation Systems Chapter 5

Example 5.7. Consider the constraint NodeNoLoop = ∃() ∧ ¬∃()
expressing that there is a node and there is no loop. The graph consisting
of one node satisfies the latter constraint. However, the “larger” graph
consisting of one node and one loop does not satisfy it. Thus, the constraint
NodeNoLoop does not constitute an ideal. By a similar argument, it does
not constitute an anti-ideal.

Regarding the induced subgraph order, considered, e.g., in [KS17] by
König & Stückrath, some nested constraints constitute ideals.

Example 5.8. The constraint ∃(,¬∃()) expresses that the graph
consisting of a single node is an induced subgraph of the considered graph.
More generally, consider the constraint ∃(C,∧C+∈Ext(C) ¬∃(C ↪→ C+)) where

Ext(C) is the set of “extended” graphs C+ obtained from C by adding one
edge. The latter constraint expresses that the graph C is an induced subgraph
of the considered graph and, hence, constitutes an ideal w.r.t. the induced
subgraph order.

Unbounded Path Length

In some cases, resilience problems for marked GTS of unbounded path length
can be reduced to resilience problems for marked GTSbp (of bounded path
length) and therefore be decided.

Example 5.9 (constellations in the sky). The rules ⟨ A1 ⇀ A1 A ⟩
and ⟨ A1 ⇀ A1 ⟩ together with the class of all graphs and the single initial
graph A form a marked GTS of unbounded path length. We consider both
resilience problems for

BrightStar = ∃(A), Bad = ¬BrightStar, Safe = BrightStar.

We notice that Bad Safe are “independent” from the paths connecting the
star-shaped graphs. Both resilience problems can be solved by considering
the following marked GTSbp: the rules ⟨ A1 ⇀ A1 A ⟩ and ⟨ A1 ⇀ A1 ⟩
together with the set of disjoint unions of unboundedly many star-shaped
graphs and the single initial graph A . We consider the same constraints for
Bad and Safe as before. Since the initial graph is the basis of ↑post∗(INIT),
the marked GTSbp is post∗-effective. By Theorem 5.2 (1) and 5.3 (1), we
can solve both resilience problems. There exists a bound k s.t. the (original)
marked GTS is k-step resilient. In fact, the minimal bound is kmin = 8.

77

Chapter 5 Verifying Resilience of Graph Transformation Systems

5.3 Example: Circular Process Protocol

We illustrate our decidability results by an example. Consider a ring of three
processes P0, P1, P2 each of which has an unordered waiting collection (mul-
tiset) containing commands. Each command belongs to a process and is
labeled accordingly as c0, c1, or c2. These commands are used for communi-
cation between the processes. An informal description of the circular process
protocol can be found in Section 5.1. The formalization as rule set is given in
Figure 5.5. Each Clear-rule is undefined on the node which has a ci-labeled
loop. This is indicated by a missing index at the node. In a rule application,
this node is deleted and a new node is created. Each Leave-rule identifies
two nodes.

Initiate :

〈

1 2

P0

⇀ 1 2

P0

c0 〉

Execute

〈

1 2

P0

c0

⇀ 1 2

P0

c1
c2

〉

〈

1 2

P1

c1

⇀ 1 2

P1

c2 〉

〈

1 2

P2

c2

⇀ 1 2

P2

c1 〉

Loose :

〈

1

ci

⇀ 1

〉

Forward :

〈

1 2

Pi

cj
i ̸= j
⇀ 1 2

Pi

cj 〉

Clear

〈

1

Pi

Pj

ci

⇀ 1

Pi

Pj

cj 〉

〈

1 2

Pk Pi

Pj

ci

⇀ 1 2

Pk Pi

Pj

cj
〉

Leave :

〈

1

2

3

Pk Pi

Pj

ci

i ̸= 0
⇀ 1 2, 3

Pk

Pj

cj 〉

Figure 5.5: Rules of the circular process protocol.

To obtain a marked GTS, we specify the set INIT: It consists of the single
graph on the left in Figure 5.6.

P0 P1

P2

c2c0

c1
P0

P1

⇝
P0 P1

P2

⇝
P0

P2

1

Figure 5.6: Initial graph and basis graphs.

78

Verifying Resilience of Graph Transformation Systems Chapter 5

Consider the following proper constraints:

AllEnabled = ∃
(

P0 P1

P2

c2c0

c1)
∨
∨

i=1,2

∃
(

P0

Pi

c0 ci)
,

Collection(c0, c1) = ∃
(

c0
c1

)
, Command(c2) = ∃

(
c2

)
,

3Processes = ∃
(

P0 P1

P2

)
, NoCommand =

∧
i=0,1,2

¬∃
(

ci
)
.

The graph class S consists of all graphs with arbitrarily many commands
of any kind labeled with c0, c1, or c2 in any collection, fitting to one of the
basis graphs shown in Figure 5.6.

Proposition 5.1. The rules in Figure 5.5 together with the depicted graph
class and the initial graph in Figure 5.6 form a finite-marked GTSbp satisfying
all requirements in Theorem 5.2 and 5.3.

Proof. (1) Finite-marked GTS. The latter graph class is closed under
rule application: For all rules except the Clear- the Leave-rules, the basis
graph is preserved. For the Clear-rules, a node is deleted, but the basis
graph is restored. For the Leave-rules, we transit from the underlying basis
graph with three nodes to an underlying basis graph with two nodes. For
all rules, if the original graph differs from a basis graph only by ci-labeled
loops, also the obtained graph differs from a basis graph only by ci-labeled
loops. Hence, the graph class is closed under rule application. The set INIT
consists of a single graph.
(2) Bounded path length. The latter graph class contains only graphs
with at most three nodes. Thus, it is of bounded path length.
(3) ∩-Basedness. We show that S = I ∩ J where

I =↑B with B =
{ P0

P1

,

P0 P1

P2

,
P0

P2

}
,

J = J NPL ∧ NCE ∧ NPP ∧ NOPN ∧ N4N K.

The anti-ideal J is the semantics of a conjunction of negative constraints16

where the negative constraints are as follows.

16The conjunction of negative constraints is again a negative constraint.

79

Chapter 5 Verifying Resilience of Graph Transformation Systems

abbreviation (name) description

NPL (NoProcessLoop) A process is not a loop.
NCE (NoCommandEdge) A command can only be a loop.
NPP (NoParallelProcesses) There are no parallel processes.
NOPN (NoOppositeProcessesNode) There are no opposite processes with

an additional node.
N4N (No4Nodes) There are no 4 nodes.

NPL =
∧

i=0,1,2

¬∃
(

Pi
)
, NCE =

∧
i=0,1,2

¬∃
(

ci
)
,

NPP =
∧

i,j=0,1,2

¬∃
(

Pi

Pj

)
, NOPN =

∧
i,j=0,1,2

¬∃
(

Pi

Pj

)
,

N4N = ¬∃
()

.

The set B is the basis of S since all three basis graphs are included in the
anti-ideal J . Indeed, this description of the graph class is equivalent to
the previous definition: For every graph G over the same label alphabet,
which is “larger” than a basis graph B, G ∈ S iff G differs from B only by
loops representing commands. The graph G cannot contain an additional
node by the negative constraints N4N and NOPN. It can also not contain
an additional Pi-labeled loop or a ci-labeled edge which is not a loop by
the negative constraints NPL and NCE. It remains the possibility that it
contains an additional Pi-labeled edge which is not a loop. However, this is
prohibited by the negative constraints NPP and NOPN.
(4) Lossiness & ⊥-boundedness. The marked GTSbp is lossy since the
rules for losing a command ci may be applied to any graph containing a com-
mand ci. It is ⊥-bounded since we can reach a graph with the same cycle
structure but containing no commands by (i) initiating a command c0, (ii) for-
warding it to the collection of P0, (iii) clearing all collections one after another,
and (iv) losing the only remaining command. By Proposition 4.2, it is post∗-
effective. Thus, all cases of Theorem 5.2 and 5.3 apply.

We can answer the raised questions: Using the algorithms in Section 4.3,
we can decide the bounded resilience problem for all instances and compute
the minimal bound kmin for the instances 1 and 2, see the tabular below. For
the computations, see Appendix C.

instance 1 2 3 4 5

Bad ¬AllEnabled Command(c2) AllEnabled NoCommand ¬3Processes
Safe AllEnabled Collection(c0, c1) ¬AllEnabled ¬3Processes 3Processes

bounded (answer) yes yes yes yes no

explicit (kmin) 6 4 (1) (5) –

80

Verifying Resilience of Graph Transformation Systems Chapter 5

If Safe is a negative constraint, our method provides only the answer
whether there is a bound k. For the third instance, we can infer that kmin = 1
by hand: By applying a Clear-rule to a graph in which all processes are
enabled, we can reach a graph in which at least one process is not enabled in
one step. Thus, kmin ≤ 1. Since ¬AllEnabled is the negation of AllEnabled,
kmin ̸= 0. For the fourth instance, we use that ¬3Processes can be expressed
as the positive constraint 2Processes

=∃
(

P0

P1

)
∨ ∃
(

P0

P2

)
.

These results are indicated in the table in brackets.

5.4 Example: Logistic System

We give examples of a logistic system each of which is more “typical” for the
requirements post∗-effectiveness, lossiness, and ⊥-boundedness.

Consider a logistic system with a unique logistic center C from where
goods represented by are shipped to their destination D . The shipment

can be direct or via an interim storage S . When an order is set, the good
enters the system at the logistic center together with the planned route
(edges labeled with rou) and the information of its destination and current
location. This information is represented by edges labeled with loc and dest,
respectively. Its destination D , a possible interim storage S , and routes
may already be registered in the system or will enter when the order is set.
The SetOrder-rules in Figure 5.7 depict the process of setting an order with
the planned route and information. Some rules are presented in the Backus-
Naur form, i.e., ⟨L ⇀ R1|R2⟩ depicts the rules ⟨L ⇀ R1⟩ and ⟨L ⇀ R2⟩. For
every dashed edge, one rule containing the edge in the left-hand side and one
rule not containing it are included, e.g., the last scheme depicts four rules.
The goods can only be shipped along routes. A good can only be delivered
to a destination if it fits to the destination information. The shipment is
formalized by the Ship-rules shown in Figure 5.8.

Some nodes are “C/S”-labeled meaning that both rules are included. This
system is erroneous in the sense that a good can be shipped to an interim
storage which is not the interim store on the planned route. Another “error”
is the loss of a good which is depicted by the GoodLost-rule in Figure 5.9.

81

Chapter 5 Verifying Resilience of Graph Transformation Systems

〈
C

1

⇀ C

1

D

loc dest

rou

∣∣∣∣∣ C

1

S D

loc dest

rou rou

〉

〈
C

1

D

2

⇀ C

1

D

2

loc dest

rou

∣∣∣∣∣ C

1

S D

2

loc dest

rou rou

〉

〈
C

1

D

2

rou ⇀ C

1

D

2

loc dest

rou

〉

〈
C

1

S

2

rou ⇀ C

1

S

2

D

loc dest

rou rou

〉

〈
C

1

S

2

D

3

rou rou ⇀ C

1

S

2

D

3

loc dest

rou rou

〉

Figure 5.7: The SetOrder-rules.

〈
C

1

S

2

3
loc

rou ⇀ C

1

S

2

3loc

rou

〉

〈
C/S

1

D

2

3
loc dest

rou ⇀ C/S

1

D

2

3loc dest

rou

〉

Figure 5.8: The Ship-rules.

Consider the logistic system R1 = SetOrder ∪ Ship ∪ {GoodLost}. To
obtain a marked GTS, we consider the intersection S of the downward-closure
of all graphs reachable from the graph C and all graphs “larger” than the

82

Verifying Resilience of Graph Transformation Systems Chapter 5

latter graph. The only basis graph is the graph C . The ∩-based graph
class S is of path length ≤ 3. By definition, it is closed under R1.〈

⇀ ∅

〉

Figure 5.9: The GoodLost-rule.

Proposition 5.2 (properties of R1).

(1) The rule set R1 together with the ∩-based graph class S and any
INIT ⊆ S forms a marked GTSbp.

(2) Every finite-marked GTSbp with rule set R1 and graph class S is
post∗-effective.

Proof. Statement (1) follows by definition.
(2) We show ↑ post∗(INIT) =↑post∗GoodLost(INIT) where post∗GoodLost(INIT)
consists of all graphs reachable from INIT via the GoodLost-rule.
“⊇”: It holds post∗GoodLost(INIT) ⊆ post∗(INIT).
“⊆”: Let G ∈ INIT, G⇒∗

R H, and G′ ≤ G s.t. G′ contains no good (). It
holds G′ ∈ post∗GoodLost(INIT) and H ≥ G′. Thus, H ∈↑post∗GoodLost(INIT).
Hence, post∗(INIT) ⊆↑post∗GoodLost(INIT).
Since INIT is finite, the set post∗GoodLost(INIT) is finite. By Fact 2.6, we can
compute a basis of ↑post∗GoodLost(INIT). Thus, the finite-marked GTSbp is
post∗-effective.

In a more realistic scenario, there may occur “errors” in the logistic
system, e.g., a good or information may be lost. The Error-rules depict
the loss of (i) a good (GoodLost), the information about the (ii) location
or (iii) destination of a good. Moreover, it can occur that (iv) a route
is inaccessible, (v) an interim storage is unusable, or (vi) a destination is
not detectable. The Error-rules also delete these defects from the system.
Formally, the Error-rules are defined as in Figure 5.10.

For the logistic system R2 = SetOrder ∪ Ship ∪ Error, we obtain the
following properties.

Proposition 5.3 (properties of R2).

(1) The rule set R2 together with the ∩-based graph class S and any
INIT ⊆ S forms a marked GTSbp.

(2) Every finite-marked GTSbp with rule set R2 and graph class S is lossy.

83

Chapter 5 Verifying Resilience of Graph Transformation Systems

〈
⇀ ∅

〉
〈

C/S/D

1
2

loc ⇀ C/S/D

1
2

〉
〈

D

1
2

dest ⇀ D

1
2

〉
〈

C

1

S

2

rou ⇀ C

1

S

2

〉
〈

S

1

D

2

rou ⇀ S

1

D

2

〉
〈

S/D ⇀ ∅

〉

Figure 5.10: The Error-rules.

Proof. Statement (1) follows by definition.
(2) Using the Error-rules, we can delete any item except C (the logistic
center) which is the only basis graph. Thus, the marked GTSbp is lossy for
every set INIT.

We slightly adapt the model by representing a good as an -labeled
edge pointing from its location to its destination. Thus the information
about a good is compressed. We leave out the Error-rules except the last
ones for deleting an S-labeled (D-labeled) node which we call Inaccess. The
rules essentially stay the same. However, a Ship-rule has to be modified s.t.
the destination D is present in the rule. Let R3 = SetOrder’ ∪ Ship’ ∪
Inaccess’ be the modified rule set.

Provided that the number of customers, i.e., destinations is “small”, we
can assume that number of D-labeled (and S-labeled) nodes is bounded. (This
is the case if the logistic company has a small number of major customers.)
In a realistic model, this does not apply to the number of goods which may
be “very large” over the whole process.

In order to restrict the number of created nodes, we split the SetOrder’-
rules into SetOrder1-rules which do not create nodes and SetOrder2-rules
which create nodes.17 For n ≥ 0, let An be the rule-labeled automaton with

17It is possible to consider only SetOrder1-rules. However, this would yield a “static”
structure.

84

Verifying Resilience of Graph Transformation Systems Chapter 5

states q0, . . . , qn, transitions from qi to qi+1 labeled with SetOrder2, and
loops at qi lableled with R3 \ SetOrder2. In Figure 5.11, the automaton An

is exemplarily shown for n = 2.

q0 q1 q2
SetOrder2 SetOrder2

R3 \ SetOrder2 R3 \ SetOrder2 R3 \ SetOrder2

Figure 5.11: The rule-labeled automaton An for n = 2.

Let Rn
3 denote the synchronization of R3 with An (see Construction 3.1).

We have to consider graphs each of which contains exactly one qi-labeled
node for a number 1 ≤ i ≤ n. Thus, a basis of this graph class is given
by Bn = { C qi : 1 ≤ i ≤ n}. Let Sn be the intersection of ↑Bn with the

downward-closure of all graphs reachable from the graph C q0 . Intuitively,
the induced transition system stays essentially the same as before with
the restriction that the node-creating SetOrder-rules can be applied only
boundedly often.

For the logistic system Rn
3 , we obtain the following properties.

Proposition 5.4 (properties of Rn
3).

(1) For every n ≥ 0, the rule set Rn
3 together with the ∩-based graph class

Sn and any INIT ⊆ Sn forms a marked GTSbp.

(2) For every n ≥ 0, the number of nodes in any graph in Sn is bounded.

(3) Every marked GTSbp with rule setRn
3 and graph class Sn is ⊥-bounded.

Proof. Statement (1) follows by definition.
(2) Each SetOrder2-rule creates ≤ 2 nodes. Thus, the number of nodes is
bounded by 2n+ 2.
(3) The Inaccess-rules ensure that any “smaller” basis graph C qi is reach-
able in ≤ 2n transformation steps. Thus, the marked GTSbp is ⊥-bounded
(for every set INIT ⊆ Sn).

We summarize which resilience problems are, by Theorem 5.2 and 5.3,
decidable for the logistic system.

Fact 5.4.

(1) For every finite-marked GTSbp with rule set R1 and graph class S, both
resilience problems are decidable in the case where Bad is negative and
Safe is positive.

85

Chapter 5 Verifying Resilience of Graph Transformation Systems

(2) For every finite-marked GTSbp with rule set R2 and graph class S, both
resilience problems are decidable in the cases where Safe is positive.

(3) For every finite-marked GTSbp with rule set Rn
3 and graph class Sn, the

bounded resilience problem is decidable in the cases where Bad is
negative and the explicit resilience problem is decidable in the case
where Bad is negative and Safe is positive.

5.5 Rule-specific Criteria

In this section, we investigate sufficient criteria of GTSs for the decidability
results in Chapter 5 which are: (1) post∗-effectiveness, (2) lossiness, and
(3) ⊥-boundedness. For each requirement, we aim for easily checkable,
rule-specific conditions.

Post∗-effectiveness

For the requirement of post∗-effectiveness, we consider properties of the rules.

Definition 5.5 (preserving & node-bijective). A rule is

(1) preserving if it is total and injective,

(2) node-bijective if it is bijective on the nodes.

These rule properties yield sufficient criteria for post∗-effectiveness.

Theorem 5.4 (criteria for post∗-effectiveness). A finite-marked
GTSbp is post∗-effective if all rules are preserving or all rules are node-
bijective.

Proof. Let ⟨S,R, INIT⟩ be a finite-marked GTSbp. If every rule in R is
preserving, the statement follows by Fact 2.6 since ↑post∗(INIT) =↑ INIT.
If every rule in R is node-bijective, the statement follows by the reduction in
the proof of [BDK+12, Prop. 10]. For any graph G, a Petri net with initial
marking is constructed s.t. reachability and the order of markings correspond
to reachability via ⇒∗

R from G and the subgraph order, respectively. In
our case18, the places are given by VG × VG × ΛE . The number of tokens
in a place ⟨v, v′, λ⟩ is given by

|{e ∈ E : labE(e) = λ, src(e) = v, tgt(e) = v′}|.

Each rule may give rise to a multiple number of transitions since a rule
may have multiple matches. On the balance sheet, a transition takes tokens
out of a place ⟨v, v′, λ⟩ if the corresponding rule r deletes λ-labeled edges

18In [BDK+12], hypergraphs are considered.

86

Verifying Resilience of Graph Transformation Systems Chapter 5

between v (source) and v′ (target), and adds tokens in a place if r creates
λ-labeled edges between v and v′. See [BDK+12] for further details.
Petri nets are post∗-effective, see Example 4.2. Thus, the basis of ↑post∗(G)
can be computed by computing the corresponding basis in the constructed
Petri net.

Using that joint GTSs are GTSs, we obtain sufficient criteria for post∗-
effectiveness of marked joint GTS.

Proposition 5.5. A finite-marked annotated joint GTSbp of S and E is
post∗-effective if all rules in S ∪ E are preserving or all rules in S ∪ E are
node-bijective.

Proof sketch. The statement for preserving rules follows by Lemma 2.3.
The statement for node-bijective rules follows by Theorem 5.4. We use the
fact that joint GTSs are GTSs. For the full proof, see Appendix B.

These conditions are favorable in the sense of decidability.

Fact 5.5 (decidable conditions). Given a GTS, it is decidable whether
all rules are preserving or all rules are node-bijective.

Lossiness

To obtain a sufficient criterion for lossiness, we consider special rules. In
order to construct such rules, we require information about the strucutre of
the graph class. We construct “lossy rules” suited to ∩-based graph classes.

Lossiness in the context of ∩-based graph classes means the following:
if a graph G is reachable from INIT, all subgraphs of G, each of which is
“larger” than a basis graph, are also reachable from INIT. In Figure 5.12,
the notion of lossiness is illustrated. For every graph G′ which is “smaller”
than a graph G reachable from a graph G1 ∈ INIT and “larger” than a basis
element B ∈ B, there exists a graph G2 ∈ INIT from which G′ is reachable.

B ∈ B

G′

G

G1 G2∈ INIT ∋
∗

∗

≤
≤

Figure 5.12: Illustration of lossiness.

As shown in Figure 5.13, we assume that we continue the sequence of
transformations from G to reach its subgraphs, i.e., every graph G′, which

87

Chapter 5 Verifying Resilience of Graph Transformation Systems

is “smaller” than a graph G reachable from a graph G1 ∈ INIT and “larger”
than a basis element B ∈ B, is reachable from G via “lossy rules”.

B ∈ B

G′

G

G1 ∈ INIT
∗

lossy rule

≤
≤

Figure 5.13: Basic idea of lossy rules.

Therefore we have to be able to delete every item in G which is not in (the
image of) any basis graph. This can be done by “lossy rules” deleting such
items, i.e., every node and every edge outside of a basis graph.19

We aim to reach “smaller” graphs but not “smaller” than basis graphs.

Construction 5.1 (lossy rules). Let ⟨S,R, INIT⟩ be a marked GTS
where S is a graph class over Λ and B the basis of S. The set of lossy
rules Rloss(INIT) w.r.t. a set INIT ⊆ S is constructed as follows.

(1) The set of deletion rules RΛ consists of all rules for deleting a node,
an edge, and a loop, i.e.,

⟨ x ⇀ ∅⟩,
〈

x

1

y

2

a
⇀ x

1

y

2

〉
,

〈
x

1

a

⇀ x

1

〉

where x, y ∈ ΛV , a ∈ ΛE .

(2) Given a deletion rule ⟨L ⇀ R⟩, a basis graph B ∈ B, a graph A with
A ↪→ L (no isomorphism) and A ↪→ B, construct the rules ⟨LB ⇀ RB⟩
where the pushout objects LB, RB, and the morphism LB ⇀ RB are
obtained by the following pushouts:

A L R

B LB RB

(PO)(PO)

̸∼=

⟨LB ⇀ RB⟩ is a lossy rule w.r.t. INIT if LB ∈↓post∗(INIT).
19In [KS17], “lossy rules” w.r.t. the minor order, i.e., edge contraction rules, are considered

in order to obtain well-structuredness for GTSs.

88

Verifying Resilience of Graph Transformation Systems Chapter 5

Rloss(S) is constructed analogously replacing INIT by S.

Example 5.10. The lossy rules of the circular process protocol in Section 5.3
are shown in Figure 5.14.

Rloss(S)

〈
1 2

Pi

Pj

cn

⇀
1 2

Pi

Pj

〉

〈
1

2
3

Pk Pi

Pj

cn

⇀
1

2
3

Pk Pi

Pj

〉

Figure 5.14: The lossy rules of the circular process protocol.

Intuitively speaking, lossy rules delete items outside of a basis graph.
The difference between deletion rules and lossy rules is depicted below.

G G

B B

∅ ∅

deletion rules
∗

≤ lossy rules
∗

≤

deletion rules
∗

≤ for B ̸= {∅}

Via deletion rules from any graph the empty graph is reachable. Via lossy
rules from any graph any “smaller” basis graph is reachable. However, via
lossy rules we cannot reach a graph “smaller” than a basis graph.

Proposition 5.6.

(a) Rloss(INIT) is effectively constructible from a finite-marked GTSbp with
∩-based graph class.

(b) Rloss(S) is effectively constructible from a ∩-based graph class S.

Proof. (a) First we construct the deletion rules which are finitely many.
Second we construct all the pushouts in (2). We construct only finitely
many pushouts since the number of basis graphs B, deletion rules ⟨L ⇀ R⟩,
and subgraphs (up to isomorphism) of L and B is finite. For a constructed
rule ⟨LB ⇀ RB⟩, we check whether LB ∈↓ post∗(INIT) in the following
way. By Lemma 5.4 and Lemma 5.2, every finite-marked GTSbp with
∩-based graph class induces a finite-marked SWSTS. We can decide whether

89

Chapter 5 Verifying Resilience of Graph Transformation Systems

LB ∈↓ post∗(INIT) by checking G ∈ pre∗(↑ {LB}) for every G ∈ INIT (by
Lemma 2.3).
(b) For the lossy rules Rloss(S), the same construction is feasible. Since
post∗(S) = S, we check LB ∈ S for a constructed rule ⟨LB ⇀ RB⟩.

For lossiness, it is sufficient that the lossy rules are contained in the rule set.
More generally, we regard an “appropriate simulation” of lossy rules.

Definition 5.6 (track morphism & simulation). For a transformation
G⇒ H, the track morphism is the obtained morphism G ⇀ H. For a trans-
formation sequence G⇒∗ H, the track morphism is the composition of the
single track morphisms. A rule set R is simulated by a rule set R′, written
as R ⊑ R′, if for every rule ⟨p : L ⇀ R⟩ ∈ R, there exists a transformation
sequence L⇒∗

R′ R s.t. its track morphism p̃ : L ⇀ R is equal to p.

Example 5.11. The lossy rules of the circular process protocol in Figure 5.14
are simulated by the Loose-rules (Section 5.3) in one step.

Lemma 5.5 (simulation). If R ⊑ R′, then ⇒R⊆⇒∗
R′ .

Proof. Let G ⇒r H via r = ⟨p : L ⇀ R⟩ ∈ R according to the match
m : L ↪→ G. By definition of a simulation, there exists a transformation
sequence L ⇒∗

R′ R s.t. its track morphism p̃ : L ⇀ R is equal to p. By
Lemma A.2, the composition of pushouts is a pushout. Hence, the transfor-
mation sequence L ⇒∗

R′ R via rules r′1 = ⟨L1 ⇀ R1⟩, . . ., r′ℓ = ⟨Lℓ ⇀ Rℓ⟩
with track morphism p̃ = p̃ℓ ◦ . . . ◦ p̃1 induces a transformation sequence
G⇒∗

R′ H̃, as illustrated below for ℓ = 2.

L1 R1

(PO)

L2 R2

L

(PO)

RR′

G H ′

(PO) (PO)

H̃

p̃1

m

p̃2

By the composition of the lower pushouts, we obtain the following pushout:

L R

G H̃

(PO)

p = p̃

m

Since pushout objects are unique up to isomorphism (Lemma A.1), H̃ ∼= H.
Thus, we obtain G⇒∗

R′ H.

90

Verifying Resilience of Graph Transformation Systems Chapter 5

Theorem 5.5 (criterion for lossiness). A marked GTSbp ⟨S,R, INIT⟩
with ∩-based graph class is lossy if Rloss(INIT) ⊑ R or Rloss(S) ⊑ R.

Proof. First we show that containedness of lossy rules implies lossiness.
Let G ∈ post∗(INIT), H ≤ G and B ≤ H for a basis graph B. There
exists a transformation sequence G⇒∗ H via deletion rules. Consider the
first transformation G ⇒ H1 in the latter sequence. For the deletion rule
⟨L ⇀ R⟩, we obtain the following pushout.

L R

G H1

(PO)

B

m m′

The morphism G ⇀ H1 is injective and surjective since L ⇀ R is injective
and surjective (Lemma A.3). By inverting, we obtain a total, injective
morphism H1 ↪→ G and hence, i : B ↪→ G. For A = m(L) ∩ i(B) and
LB = m(L) ∪ i(B), the diagram

A L

B LB

(PO)

î

m−1|A

i−1|A m̂

is a pushout where î : B ↪→ i(B) ↪→ LB and m̂ : L ↪→ m(L) ↪→ LB . We split
the first pushout as follows.

L R

LB RB

(1)

(2)

G H1

m̂

m′

RB is the pushout object of (1). The outer rectangle is a pushout and thus,
commutes. By definition of a pushout, there exists a morphism RB ⇀ H1 s.t.
the morphisms on the right side and (2) commute. Since (1) and (1)+(2) are
pushouts, also (2) is a pushout (Lemma A.2). Since LB ↪→ G (the identity)
is total and injective, also RB ↪→ H1 (Lemma A.3). Assume that A ↪→ L is
an isomorphism, i.e., surjective. Then, LB

∼= B. We obtain the following
diagram.

91

Chapter 5 Verifying Resilience of Graph Transformation Systems

L R

LB RB

G H1

A

B

∼=

∼=

p

m̂
p̃

a
m̃ m̃′

Since p : L ⇀ R is injective and surjective, also p̃ : LB ⇀ RB is injective and
surjective (Lemma A.3). Thus, the domain of p̃ is isomorphic to RB. Hence,
also the domain of m̃′ ◦ p̃ is isomorphic to RB . The domain of a◦ m̃ is isomor-
phic to B and equal to the domain of m̃′ ◦ p̃. Thus, B ∼= LB

∼= RB. However,
the upper right square depicts the transformation LB ⇒ RB via the deletion
rule ⟨L ⇀ R⟩. Thus, LB cannot be isomorphic to RB (either the number of
nodes or edges of RB is strictly smaller than the number of nodes or edges of
LB). Since LB ≤ G, LB ∈↓post∗(INIT). Hence, ⟨LB ⇀ RB⟩ ∈ Rloss(INIT).
We showed G⇒Rloss(INIT) H1. It follows that G⇒∗

Rloss(INIT) H.

We generalize this argument to the case Rloss(INIT) ⊑ R. Consider a trans-
formation sequence G⇒∗

Rloss(INIT) H. By Lemma 5.5, G⇒∗
R H. Thus, the

marked GTSbp is lossy. By construction, Rloss(INIT) ⊆ Rloss(S). Hence,
Rloss(S) ⊑ R implies Rloss(INIT) ⊑ R.

⊥-Boundedness

Similar to lossy rules, we consider special rules to obtain a sufficient criterion
for ⊥-boundedness. In order to construct such rules, we require information
about the strucutre of the graph class. We construct “bottom rules” suited
to ∩-based graph classes.

The notion of ⊥-boundedness means that for every graph G ∈ S, we
can reach every “smaller” basis graph B ≤ G in a bounded number of
transformation steps, as depicted below.

B ∈ B

∈ SG
≤ ℓ transformations ≤

First we consider a necessary condition for ⊥-boundedness. A graph class is
node-bounded if the number of nodes in any graph of the class is bounded. To
achieve ⊥-boundedness, it is necessary that the graph class is node-bounded.

Proposition 5.7 (node-bounded). For ⊥-bounded marked GTSbps, the
graph class is node-bounded.

92

Verifying Resilience of Graph Transformation Systems Chapter 5

Proof. By assumption, the marked GTSbp is ⊥-bounded. Let ℓ be the
bound for reaching any basis graph. Since the set of rules is finite and every
rule may delete only boundedly many nodes, the number of nodes deleted
in a transformation of length ≤ ℓ is bounded. Let n be the latter bound. For
every graph G ∈ S, there exists a basis graph B ≤ G. Thus, by definition of
⊥-boundedness, we can reach B in ≤ ℓ transformation steps. The number of
nodes in any graph of the basis is bounded since, by Fact 2.6, every basis is
finite. We obtain that

|VG| = |VB|+ |VG| − |VB|︸ ︷︷ ︸
≤n

≤ |VB|+ n ≤ max
B∈B
|VB|+ n

where B is the basis of S.

The idea is to delete the nodes outside of basis graphs. In any case, these
nodes have to be deleted by “outer” bottom rules. Thus, the remaining graph
only consists of a basis graph with additional edges. For these “inner” edges,
edge deletion rules may be useful. However, there may be unboundedly
many additional edges. To delete these edges in a bounded number of
transformation steps, we need to be able to delete and recreate each node of
unbounded “inner” node degree in a basis graph.

B 1

.

.

.

B 1

.

.

.

2

...

B
(1)

≤ #nodes steps

(2)

≤ #nodes steps

G B with extra edges basis graph

Figure 5.15: From a graph G to a basis graph B via bottom rules.

In Figure 5.15, it is exemplarily illustrated how to reach a basis graph B via
bottom rules. First the two nodes ouside the basis graph B are deleted.
Then one node of the basis graph is deleted and recreated.

Definition 5.7 (inner node degree). A node v of a graph B in a graph
class S is of bounded inner node degree if for any morphism i : B ↪→ G ∈ S,
the number of edges e ∈ EG, which are incident to i(v) and a node in i(VB),
is bounded. We denote this bound by d(v) and the set of nodes of unbounded
inner node degree by UB.

For the other nodes of a basis graph, we can choose whether we delete
the remaining edges by edge deletion rules or by deleting and recreating the
respective node.

93

Chapter 5 Verifying Resilience of Graph Transformation Systems

A rule ⟨L ⇀ R⟩ can be written in a more explicit form as ⟨L ↪→K → R⟩
where K is the domain of the partial morphism L ⇀ R. We use this form in
the construction of the bottom rules.

Construction 5.2 (bottom rules). Let S be a graph class over Λ and B the
basis of S. The bottom rules w.r.t. S are constructed as follows. For a basis
graph B ∈ B,

(1) ⟨B + x ↪→B ↪→ B⟩ is called an outer bottom rule if B + x ∈ S,

(2) ⟨B ↪→B \{v} ↪→ B⟩ is called an inner bottom rule of type 1 for v ∈ UB,

(3) for v ∈ VB \ UB, we include (either)

(a) the inner bottom rule of type 1 as constructed in (2) or

(b) all inner bottom rules of type 2 : ⟨B+ ↪→B ↪→ B⟩ where B+ ∈ S
is obtained from B by adding one edge incident to v and a node
v′ ∈ VB \ UB (including v′ = v).

For every basis graph B ∈ B, the choice for the type of the inner bottom
rules is represented by a function fB : VB \ UB → {1, 2}, i.e., fB(v) = i
means that we choose the inner bottom rule of type i for the node v of B.
The set of all functions fB is denoted by f . If we choose only inner bottom
rules of type 1, we write f ≡ 1. We denote the bottom rules w.r.t. the graph
class S and the set f of functions by R⊥(S, f).

The outer bottom rules allow to delete nodes outside (the image of) a basis
graph. The inner bottom rules of type 1 allow to delete incident edges of
inner nodes (of bounded or unbounded inner node degree). The inner bottom
rules of type 2 allow to delete incident edges of inner nodes of bounded inner
node degree.

Example 5.12. The bottom rules of the logistic system Rn
3 with a bounded

number of nodes consist only of the rules for deleting a node S/D . These
are the outer bottom rules. Since no node of a basis graph C qi has an
unbounded inner node degree, we can choose the inner bottom rules of
type 2 for C and for qi . However, since there are no edges or loops attached
to any of both nodes in any graph of the graph class, there exist no inner
bottom rules of type 2.

Proposition 5.8. If f ≡ 1, the bottom rules R⊥(S, f) are effectively con-
structible from a ∩-based graph class S.

Proof. First we construct all outer bottom rules which are finitely many.
There is no node v of a basis graph B with fB(v) = 2. Thus, for every node
of a basis graph, we construct the inner bottom rule of type 1.

94

Verifying Resilience of Graph Transformation Systems Chapter 5

For ⊥-boundedness, it is sufficient that the bottom rules are contained in
the rule set. More generally, we regard a “weak simulation” of bottom rules.

Definition 5.8 (weak simulation). A rule set R is weakly simulated
by a rule set R′, written as R ⊑· R′, if for every rule ⟨p : L ⇀ R⟩ ∈ R, there
exists a transformation L⇒∗

R′ R s.t. its track morphism p̃ : L ⇀ R is equal
to p on the domain of p̃ (this implies that the domain of p̃ is a subset of the
domain of p).

A weak simulation generalizes a simulation, i.e., nodes can be deleted
and recreated. E.g., an inner bottom rule ⟨B ↪→B \{v} ↪→ B⟩ can be weakly
simulated by the rule ⟨B ↪→∅ ↪→ B⟩.

Example 5.13. The bottom rules of the logistic system in Example 5.12
are (weakly) simulated by the Inaccess-rules (Section 5.4) in one step.

Lemma 5.6 (weak simulation). For R ⊑· R′, there exists a bound ℓ ≥ 0
s.t. for all graphs G,H: G ⇒R H implies that there exists H̃ ≤ H with
G⇒≤ℓ

R′ H̃.20

Proof. Let G ⇒r H according to the match m : L ↪→ G and r =
⟨p : L ⇀ R⟩ ∈ R. By definition of a weak simulation, there exists a trans-
formation L⇒ℓ

R′ R s.t. its track morphism p̃ : L ⇀ R is equal to p on the
domain of p̃. Similar to the proof of Lemma 5.5, we obtain a transformation
sequence G⇒ℓ

R′ H̃. Consider the pushouts

L R

G H

(PO)

p

m

L R

G H̃

(PO)

p̃

m

whereby we assume that H and H̃ are given as in the canonical construction
(Construction A.2). The equivalence classes of items in H and H̃ are denoted
by [·]p and [·]p̃, respectively. We define

h : H̃ → H,
[x]p̃ 7→ [x]p

and check the well-definedness, morphism property, and injectivity.
Well-definedness. (i) For a valid equivalence class [x]p̃, also [x]p is valid:
Assume that [x]p is not valid, i.e., there exists m(x̂) ∈ [x]p s.t. p(x̂) is
undefined. It follows that [m(x̂)]p = [x]p = {x} is a singleton. Thus,
x = m(x̂) and m(x̂) ∈ [x]p̃. For every item x̂ of L, p̃(x̂) is undefined if p(x̂) is
undefined. Thus, [x]p̃ is not valid, a contradiction. Hence, [v]p̃ ∈ VH̃ implies

20The notion of a weak simulation is justified: One can derive from the proof of Lemma 5.6
that there exists a total, injective, and node-bijective morphism from H̃ to H.

95

Chapter 5 Verifying Resilience of Graph Transformation Systems

[v]p ∈ VH . It follows directly that [e]p̃ ∈ E
H̃

implies [e]p ∈ EH . (ii) Let
[x]p̃ = [y]p̃. If [x]p̃ = {x} is a singleton, then x = y, and thus, [x]p = [y]p.
Consider the remaining case [x]p̃ = {p̃(x̂),m(x̂)}. Since p̃(x̂) = p(x̂), also
[x]p̃ = [x]p. Analogously, [y]p̃ = [y]p. Thus, [x]p = [x]p̃ = [y]p̃ = [y]p.
Morphism. We show that h preserves the source function. For every
equivalence class [e]p̃ ∈ E

H̃
of edges, h(src

H̃
([e]p̃)) = h([srcG+R(e)]p̃) =

[srcG+R(e)]p = srcH([e]p) = srcH(h([e]p̃)). The statement for the target
function follows analogously. We show that labels are preserved. For every
equivalence class [x]p̃, labH(h([x]p̃)) = labH([x]p) = labG+R(x) = lab

H̃
([x]p̃).

Injectivity. Let h([x]p̃) = h([y]p̃), i.e., [x]p = [y]p where [x]p̃, [y]p̃ ∈ VH̃ ∪EH̃
.

If [x]p = {x} is singleton, then x = y, and thus, [x]p̃ = [y]p̃. Consider the
remaining case [x]p = {p(x̂),m(x̂)} = [y]p. W.l.o.g., assume x = p(x̂) and
y = m(x̂). Assume that p̃(x̂) is undefined. Then, m(x̂) ∈ [m(x̂)]p̃ = [y]p̃.
Hence, [y]p̃ is not valid, i.e., not in V

H̃
∪ E

H̃
, a contradiction. Thus, p̃(x̂) is

defined and p(x̂) = p̃(x̂). It follows that [x]p̃ = [y]p̃. Since pushout objects

are unique up to isomorphism (Lemma A.1), it follows that H̃ ≤ H for
general pushout objects H and H̃.
We have shown that for every rule r, there exists a bound ℓ ≥ 0 s.t. ∀G,H :
G⇒r H implies ∃H̃ ≤ H : G⇒≤ℓ

R′ H̃. Since the rule set R is by definition
finite, there exists also a bound on the whole GTS.

Theorem 5.6 (criterion for ⊥-boundedness). A marked GTSbp with
∩-based graph class S is ⊥-bounded if S is node-bounded and R⊥(S, f) ⊑· R
where f is an arbitrary choice function.

Proof. First we show that node-boundedness and containedness of bottom
rules implies ⊥-boundedness. Let G ∈ S be graph and B ≤ G a basis graph.
We apply the outer bottom rules to get rid of the nodes outside of (the image
of) the basis graph B. The remaining graph consists of the graph B with
additional edges. The additional edges of a node v ∈ VB can be deleted by
inner bottom rules of type 1 or type 2: For v ∈ UB, we use the inner bottom
rule of type 1. For v ∈ VB \ UB and fB(v) = 1, we use the inner bottom
rule of type 1. Each of these rules deletes and recreates v. Hence, in the
(image of the) obtained graph, v has no additional edges. For v ∈ VB \ UB

and fB(v) = 2, we use all inner bottom rules of type 2. Each of these rules
deletes a single additional edge. We show that this is feasible in a bounded
number of transformation steps. Let n the maximal number of nodes and d be
the maximal inner node degree, i.e., d = maxv∈VB\UB ,B∈B d(v) where B is
the basis of S. We obtain that the number of transformation steps is

≤
outer ⊥ rules︷ ︸︸ ︷

(|VG| − |VB|)︸ ︷︷ ︸
≤n

+

type 1︷︸︸︷
|UB|︸︷︷︸
≤n

+

type 1︷ ︸︸ ︷
|f−1

B ({1})|︸ ︷︷ ︸
≤|VB\UB |

+

type 2︷ ︸︸ ︷
|f−1

B ({2})|︸ ︷︷ ︸
≤|VB\UB |

·d

≤ 2n+ |VB \ UB|+ |VB \ UB| · d ≤ 3n+ nd =: n′.

96

Verifying Resilience of Graph Transformation Systems Chapter 5

We generalize this argument to the case R⊥(S, f) ⊑· R. Consider a transfor-

mation sequence G⇒≤n′

R⊥
B where R⊥ := R⊥(S, f). By Lemma 5.6, there

exists a bound ℓ ≥ 0 s.t. G ⇒≤n′ℓ
R H for a graph H ≤ B. By closedness

of S under rule application, H ∈ S. There exists a basis graph B′ ≤ H.
Hence, B′ ≤ B which implies that B′ ∼= H ∼= B. We obtain that we can
reach any “smaller” basis graph in ≤ n′ℓ = n(3 + d)ℓ steps. This bound only
depends on the graph class S and the rule set R.

Concluding: This section provided sufficient, rule-specific criteria for the
requirements post∗-effective, lossy, and ⊥-bounded.

Complexity

As stated in Chapter 4, the complexity of the alogrithms highly depends on
the concrete graph transformation system and the input. Proper forward
procedures might be of considerable complexity. We encounter proper forward
procedures when using the post∗-effectiveness of finite-marked GTSbp with
only node-bijective rules.

Approximation

The post∗-effectiveness of finite-marked GTSbp with only node-bijective rules
relies on the post∗-effectiveness of finite-marked Petri nets. Similar to finite-
marked Petri nets, we obtain approximation results for finite-marked GTSbps
with only node-bijective rules in the case where Bad is negative and Safe is
positive. Weak invertibility for node-bijective rules is achieved by inverting
the rules.

Proposition 5.9. Finite-marked GTSbps with only node-bijective rules are
weakly invertible.

Proof. Let ⟨S,R, INIT⟩ be a finite-marked GTSbps with only node-bijective
rules. For every rule r = ⟨L ⇀ R⟩ ∈ R, we consider the inverse rule
r−1 = ⟨R ⇀ L⟩. Let R−1 be the set of inverse rules of R, post∗−1(INIT)
the set of graphs reachable via R−1 from INIT, and pre∗−1(INIT) the set
of all predecessors of INIT via R−1. We can embed post∗−1(INIT) in a
node-bounded graph class S′ (i.e., of bounded path length). It holds
post∗(INIT) = pre∗−1(INIT) and hence, ↑ post∗(INIT) = pre∗−1(INIT). By
Lemma 5.1 and 2.3, we can compute the basis of pre∗−1(INIT) for the inverted
rule set.

Example 5.14. The rules of the circular process protocol (Figure 5.5) except
the Clear- and the Leave-rules are node-bijective.

As a consequence, we can perform under- and over-approximations (cp.
Proposition 4.4). kov and kℓun are defined analogously to Definition 4.6.

97

Chapter 5 Verifying Resilience of Graph Transformation Systems

Corollary 5.3 (approximation for node-bijective rules). For finite-
marked GTSbps with only node-bijective rules, kov and kℓun are computable
for every ℓ ≥ 0.

Example 5.15. For the simplified circular process protocol (the example
in Section 5.3 without the Clear- and Leave-rules), Bad=¬AllEnabled and
Safe=AllEnabled, the over-approximation yields kov = 8. This implies
that kmin ≤ 8. In particular, kmin < ∞ which means that there exists
such a k. Thus, we solved the bounded resilience problem for the simplified
circular process protocol. The under-approximations yield k0un = 0, k1un = 5,
and k2un = 8. This implies that kmin ≥ 8. We conclude that kmin = 8, i.e.,
the over-(under-)approximation is exact (after 2 steps). Thus, we solved the
explicit resilience problem for the simplified circular process protocol.

5.6 Related Concepts

We give an overview of results for graph transformation systems related to
and used in our approach. First we summarize related results of Bertrand
et al. Afterwards, we compare the approach of König and Stückrath to our
results.

Bertrand et al. [BDK+12] study the (un)decidability of reachability
and ideal reachability for graph transformation systems. This single paper
has a number of decidability results for reachability problems in graph
transformation. Some results are based on previous work. The underlying
formalism is the SPO approach for labeled hypergraphs. They use, in parts,
well-structuredness w.r.t. the subgraph and the minor order. A variety of
rule-specific restrictions is investigated, e.g., context-freeness, only preserving
rules, and containedness of contraction/deletion rules.

The reachability problem asks for a given rule set R and graphs G,H,
whether G ⇒∗

R H. Bertrand et al. consider the coverability problem (in
our context: ideal reachability problem) w.r.t. the subgraph order or the
minor order, i.e., given a rule set R and graphs G,H, they ask whether there
exists a graph H ′ ⪰ H with G⇒∗

R H ′. Here the symbol “⪯” denotes one of
both, the subgraph order or the minor order. We summarize selected results
from [BDK+12] in the following table. For the ideal reachability problem,
we only refer to their results concerning the subgraph order.

type of GTS reachability ideal reachability reference [BDK+12]

context-free + + Prop. 8 & 9
node-bijective + + Prop. 10
preserving + – Prop. 12 & 13
bounded path length – + Prop. 11 & 16
edge-contracting – + Prop. 14 & 17
minor rules + + Prop. 14 & 17

+ = decidable, – = undecidable

98

Verifying Resilience of Graph Transformation Systems Chapter 5

For context-free and for node-bijective rules, both problems are decidable.
Interestingly, for preserving rules, the reachability problem is decidable
and the ideal reachability problem is undecidable. The opposite holds for
graph transformation systems of bounded path length and for rule sets
containing all edge-contraction rules. For rule sets containing all minor rules,
i.e., all edge-contraction, node-, and edge-deletion rules, both problems are
decidable. The investigated reachability problems are more or less related to
the resilience problems which we investigate.

Reachability

Ideal Reachability

k-step Resilience G0 G H

G H ′

G H
∃ ∗

R

∃ ∗
R

∀ ∗
R

∃ ≤ k

R

≥

H

|=|=∈

SafeBadINIT

Figure 5.16: Reachability, ideal reachability, and resilience.

In Figure 5.16, the different notions are illustrated: In the resilience
problems, we consider the reachability of a graph H which satisfies the
proper constraint Safe in a bounded number of steps. All graphs G which are
reachable from G0 ∈ INIT and satisfy the proper constraint Bad have to be
taken into account. For a graph H, let ∃!H be the non-nested21 constraint
expressing that “H is a subgraph but no larger graph is”. Let false be the
negative constraint ¬∃∅. We can express (ideal) reachability as resilience in
the following ways.

Fact 5.6. Let ⟨S,R, INIT⟩ be a finite-marked GTS where S is the class of
all graphs and INIT consists only of G0.

(1) For every k ≥ 0, the marked GTS is k-step resilient w.r.t. Bad = ∃H!
and Safe = false iff H is not reachable from G0.

(2) For every k ≥ 0, the marked GTS is k-step resilient w.r.t. Bad = ∃H
and Safe = false iff ↑{H} is not reachable from G0 (ideal reachability).

21∃!H is a “mixed” constraint, i.e., not proper.

99

Chapter 5 Verifying Resilience of Graph Transformation Systems

(3) ∃k ≥ 0 s.t. the marked GTS is k-step resilient w.r.t. Bad = ∃!G0 and
Safe = ∃!H iff H is reachable from G0.

(4) ∃k ≥ 0 s.t. the marked GTS is k-step resilient w.r.t. Bad = ∃!G0 and
Safe = ∃H iff ↑{H} is reachable from G0 (ideal reachability).

Proof. (1) & (2). For Safe = false, i.e., JSafeK = ∅, k-step resilience is
equivalent to the non-reachability of JBadK:

post∗(G0) ∩ JBadK ⊆ pre≤k(JSafeK)
⇐⇒ post∗(G0) ∩ JBadK = ∅

It holds J∃!HK = {H} and J∃HK =↑{H}.
(3) & (4). For Bad = ∃!G0, i.e., JBadK = {G0}, bounded resilience is
equivalent to the reachability of JSafeK:

∃k ≥ 0 : post∗(G0) ∩ JBadK ⊆ pre≤k(JSafeK)

⇐⇒ ∃k ≥ 0 : G0 ∈ pre≤k(JSafeK)
⇐⇒ G0 ∈ pre∗(JSafeK)

However, Safe = false is an unusual case.
The types of GTSs investigated in [BDK+12] show similarities to our

rule-specific criteria. We use one of their results to show that bijectivity
on the nodes is a sufficient criterion for post∗-effectiveness. We use the
decidability of ideal reachability at the level of WSTSs as an integrant of our
proofs in Chapter 4, see Figure 5.17. However, we do not use the decidability
of ideal reachability for GTSs directly. In contrast to [BDK+12], we stay in
the framework of well-structured graph transformation systems.

In [BDK+12], a number of undecidability results are presented. E.g.,
ideal reachability is undecidable for preserving GTSs. As a consequence,
the bounded resilience problem for finite-marked preserving22 GTSs with
∩-based graph class is undecidable in the cases where Safe is positive.

Proposition 5.10 (undecidability). The bounded resilience problem is
undecidable for preserving finite-marked GTS with ∩-based graph class in
the cases where Safe is positive.

Proof. See Appendix B.

Remark. The explicit resilience problem is decidable for preserving finite-
marked GTS if Bad is negative and Safe is positive: We compute a finite
representation of post∗(INIT) ∩ JBadKS and iteratively check inclusion in
pre≤k(JSafeKS).

22A GTS is preserving if each of its rules is injective on the domain.

100

Verifying Resilience of Graph Transformation Systems Chapter 5

finite representation︷ ︸︸ ︷
post∗(INIT) ∩ BAD ⊆

decidable ideal︷ ︸︸ ︷
pre≤k/∗(SAFE)

decidable

post∗-eff WSTS
BAD ∈ J

lossy WSTS
BAD ∈ I

Lemma 4.2

=
⇒

ideal

reachability

SWSTS
SAFE ∈ I

⊥-bounded SWSTSB

SAFE ∈ J
ideal

reachability
Prop. 4.3 ⇐=

ideal
reachability

Figure 5.17: Decidability for finite-marked SWSTSs.

Joshi & König [JK08] introduced well-structuredness to the area of
graph transformation. They considered graph transformation systems con-
taining all minor rules. Following up on this, König & Stückrath [KS17]
extensively studied the well-structuredness of graph transformation systems.
They regard three types of well-quasi-orders (minor, subgraph, induced sub-
graph) based on results of Ding [Din92] andRobertson & Seymour [RS04].
All graph transformation systems are strongly well-structured on graphs of
bounded path length w.r.t. the subgraph order. This result enables us to
apply our abstract results to graph transformation systems. They regard
J-restricted23 well-structured transition systems whose state sets have not to
be a well-quasi-order but rather a subset J of the states S is a well-quasi-order.
The subset J is a decidable anti-ideal. König & Stückrath develop a back-
wards algorithm based on [FS01] for J-restricted well-structured transition
systems and graph transformation systems. However, decidability is achieved
only for S = J . More detailed considerations can be found in Stückrath’s
thesis [Stü16].

The main contribution of König & Stückrath is the identification of
criteria for well-structuredness of graph transformation systems w.r.t. several
well-quasi-orders. By contrast, we provided decidability results for strongly
well-structured transition systems and applied them to graph transformation
systems of bounded path length. For the application to graph transforma-
tion systems, we used the result of König & Stückrath for the subgraph

23In [KS17], they speak of Q-restricted well-structured transition systems.

101

Chapter 5 Verifying Resilience of Graph Transformation Systems

order. While the backwards algorithm of König & Stückrath extends the
decidability result for ideal reachability of Abdulla et al., we used the latter
to obtain a decidability result for resilience.

Another difference is the considered graph class. For the backwards al-
gorithm of König & Stückrath, the graph class is not relevant. For our
result, we require properties which often depend on the graph class. In
Figure 5.18, a comparison with our approach is given.

∩-based GTS
S = I ∩ J of b.p.l.
basis of S: BI ∩ J

con-effective GTS
S of b.p.l.

pre-effective GTS
S of b.p.l.

(S = J)-restricted GTS
S = J ∈ J of b.p.l.
basis of S: {∅}

J-restricted GTS
all graphs = S ⊇ J ∈ J of b.p.l.

basis of S: {∅}

ideal reachability

basis for pos constraints

Lemma 5.4

Lemma 5.4

König & Stückrath [KS17] this thesis

b.p.l. = bounded path length, pos = positive, BI : basis of I

Figure 5.18: Comparison of the approaches in [KS17] and in this thesis.

Except for pre-effective GTSs, the basis of JcKS is computable for every given
positive constraint c. For J-restricted graph transformation systems, the
graph class contains all graphs. However, decidability of ideal reachability is
achieved only for S = J , i.e., the graph class is a decidable anti-ideal and of
bounded path length. In [BDK+12], Bertrand et al. show the undecidability
of ideal reachability for preserving24 graph transformation systems. We
consider only graph classes of bounded path length in order to conserve the
decidability of ideal reachability. We prove our results for more arbitrary
graph classes assumming additional effectiveness requirements. More specif-
ically, we consider graph classes each of which is an intersection of ideal
with a given basis and a decidable anti-ideal. This has the advantage that

24In [BDK+12], preserving rules are called non-deleting.

102

Verifying Resilience of Graph Transformation Systems Chapter 5

the effective procedures can be derived from the proof. In both cases, we can
consider more arbitrary bases. This is crucial when one considers lossiness or
⊥-boundedness. In the setting of [KS17], the marked GTSbp in the circular
process protocol (Section 5.3) is not lossy: We cannot reach the empty graph.
By contrast, we showed that the marked GTSbp is lossy if we choose the
basis appropriately.

5.7 Summary

We translated our decidability results from Chapter 4 into the graph-
transformational setting. The used well-quasi-order is the subgraph order
which comes with the restriction of bounded path lengths. Instead of ideal-
based sets, we input proper graph constraints. In every case, the graph class
is of bounded path length and the marked GTSbp is post∗-effective, lossy,
or ⊥-bounded, respectively. We considered ∩-based graph classes to ensure
well-structuredness. More generally, the results hold for arbitrary graph
classes of bounded path length (case: post∗-effectiveness), con-effective graph
classes of bounded path length (case: lossy), pre-effective marked GTSbps
(case: ⊥-bounded). Furthermore, we identified sufficient, rule-specific criteria
for the requirements of post∗-effectiveness, lossiness, and ⊥-boundedness. In
summary, we obtained the following results for marked GTSbp.

type of GTS rule-specific criterion graph class Bad Safe bnd expl

post∗-effective preserving or node-bijective bounded path length neg pos + +
lossy sim lossy rules c-eff & bnd path length pos pos + +
lossy & ⊥-bnd sim lossy rules & w sim ⊥ rules c-eff & node-bnd pos neg + ◦
pre-eff & ⊥-bnd w sim bottom rules basis given & node-bnd neg neg + ◦

eff = effective, expl = explicit, bnd = bounded, neg = negative, pos = positive, (w) sim = (weak) simulation of,

+ = decidable, ◦ = unknown

The requirements (and rule-specific criteria) cover a larger class of GTSs,
as depicted in the diagrammatic representation below. Intuitively speaking,
GTSs are classified according to their “degree of deleting”. Preserving rules
do not delete any items. On the other side of the “spectrum”, lossiness and
⊥-boundedness are located. These kinds of GTSs exhibit rules which delete
items.25

25We consider here only lossiness in the sense of (simulation of) lossy rules.

103

Chapter 5 Verifying Resilience of Graph Transformation Systems

post∗-effective

preserving

node-bijective

lossy ⊥-boundedmore deletion

no deletion

The diagram below illustrates these subclasses in more detail.

preserving node-bjiective

post∗-effective

lossy ⊥-bounded

simulation of
lossy rules

weak simulation of
bottom rules

& node-bounded

If all rules are preserving or all rules are node-bijective, post∗-effectiveness
is satisfied. If all lossy rules can be simulated by the original rules, lossiness
is satisfied. If all bottom rules can be weakly simulated by the original rules
and the number of nodes is bounded, ⊥-boundedness is satisfied.
Preserving rules, e.g., as in Example 5.2 (starry sky), are often used for
generating objects. Node-bijective rules, e.g., as in Example 3.1 (traffic
network), are common in models with a rather “static” structure. In Sec-
tion 5.3, we consider a circular process protocol as an example which satisfies
lossiness, ⊥-boundedness, and hence post∗-effectiveness. In Section 5.4, we
give examples of logistic systems each of which satisfies one requirement, i.e.,
post∗-effectiveness, lossiness, or ⊥-boundedness, respectively.

104

Verifying Resilience of Graph Transformation Systems Chapter 5

Takeaway (Chapter 5).

� The bounded resilience problem for GTSs asks: Given a GTS, a set
INIT of graphs, graph constraints Bad, Safe, and is there a bound k s.t.
starting from any INITial graph, whenever we reach a Bad graph,
we can reach a Safe graph in ≤ k steps? This problem is decidable
for GTSs of bounded path length satisfying additional requirements:
post∗-effective, lossy, ⊥-bounded; INIT finite; Bad,Safe proper.

� The explicit resilience problem for GTSs is formulated as the bounded
resilience problem, except that a bound k ≥ 0 is given. It is decidable
for finite-marked GTSs of bounded path length in the cases where INIT
is finite and Safe is positive.

� Sufficient criteria for the requirements:

preserving or node-bijective implies post∗-effective
simulation of lossy rules implies lossy
weak simulation of bottom rules &
node-bounded implies ⊥-bounded

105

Chapter 5 Verifying Resilience of Graph Transformation Systems

106

Chapter 6

Conclusion

We recapitulate related concepts, summarize the results of this thesis, and
give an outlook for further topics.

6.1 Related Concepts

We summarize related work, starting with concepts generally related to
adverse conditions and resilience.

Correctness and verification of programs are addressed by Apt et al.
[AOdB09]. In Pennemann [Pen09] and Poskitt & Plump [PP13], cor-
rectness of graph programs is considered. System correctness under adverse
conditions is a topic of recent research, see Olderog et al. [OFTK21]. This
concept addresses systems which interact with an environment. To the best
of our knowledge, there is little research on adverse conditions in the context
of graph transformation, see, e.g., Flick [Fli16] and Peuser [Peu18].

The concept of resilience is broadly used in different areas with varying
definitions, see, e.g., Trivedi et al. [TKG09] and Jackson & Ferris [JF13].
Our notion of resilience captures recovery of a safety constraint in a limited
number of steps (in a specified window). To the best of our knowledge, there
is only little research on similar resilience problems, e.g., for timed automata,
see Akshay et al. [AGH+21] where the bad states describe delayed states
and the safe states describe that the behavior is “back to normal”. Sim-
ilar to our notions of k-step∃ and k-step∀ resilience, Akshay et al. regard
k-∃- and k-∀-resilience. The notion of k-∃-/k-step∃ resilience means that
after reaching a bad state, we reach a safe state in every following sequence
in ≤ k steps. By contrast, k-∀-/k-step∀ resilience means that after reach-
ing a bad state, we reach a safe state in at least one following sequence in
≤ k steps. We defined k-step∀ resilience but investigated decidability only
for k-step∃ resilience. The notions of self-stabilization by Dijkstra [Dij74]
and k-self-stabilization by Dolev [Dol00] demand a closure of safe states

107

Chapter 6 Conclusion

(when a safe state is reached, all following states are safe) and convergence to-
wards safe states (safe states are eventually reached). While self-stabilization
does not demand a bound on the number of steps, the probabilistic notion of
k-self-stabilization demands that the expected value of the number of steps
to reach a safe state is ≤ k. Dijkstra and Dolev consider all non-safe states
as bad. A summarizing comparison is given in the tabular below. In the
last row, it is depicted whether all sequences (∀) or at least one sequence
(∃) must satisfy the (bounded) recovery condition after reaching a bad state.
The entry ∀prob means that all sequences are taken into account for the
determination of the expected value.

Dijkstra 1974 Dolev 2000 Akshay et al. 2021 this work

Bad, Safe Bad=¬Safe Bad=¬Safe delayed, back to normal pos/neg

closure of Safe + + – –

bounded reach- – exp value≤ k ≤ k ≤ k
ability of Safe

sequence after ∀ ∀prob ∀ (k-∀-res) ∀ (k-step∀ res)
reaching Bad ∃ (k-∃-res) ∃ (k-step∃ res)

exp = expected, + = required by definition, – = not required by definition, res = resilience

The following concepts and results are the basis upon which we built our
decidability theory.

Abdulla et al. [AČJT96] show the decidability of ideal reachability,
eventuality properties and simulation in (labeled) strongly well-structured
transition systems. We use the presented algorithm as an integrant of
our decidability proof for well-structured transition systems. Finkel &
Schnoebelen [FS01] show that the concept of well-structuredness is ubiqui-
tous in computer science by providing a large class of example models (e.g.,
Petri nets and their extensions, communicating finite state machines, lossy
systems, basic process algebras). Moreover, they give several decidability
results for well-structured systems with varying notions of compatibility.
They also generalize the algorithm of [AČJT96] to (not necessarily strongly)
well-structured transition systems to show decidability of ideal reachability.

For modeling systems, we use single-pushout graph transformation as in
Löwe [Löw91] (see also Ehrig et al. [EHK+97]).

Bertrand et al. [BDK+12] study the decidability of reachability and
ideal reachability for graph transformation systems. This single paper
has a number of decidability results for reachability problems in graph
transformation. The underlying formalism is the SPO approach for labeled
hypergraphs. They use, in parts, well-structuredness w.r.t. the subgraph
and the minor order. A variety of rule-specific restrictions is investigated,
e.g., preserving GTSs and containedness of contraction/deletion rules. We
use one of their results to show that bijectivity on the nodes is a sufficient
criterion for post∗-effectiveness.

108

Conclusion Chapter 6

König & Stückrath [KS17] extensively study the well-structuredness of
graph transformation systems. More detailed considerations can be found in
Stückrath’s thesis [Stü16]. They identify three types of well-quasi-orders (mi-
nor, subgraph, induced subgraph) on graphs based on results of Ding [Din92]
and Robertson & Seymour [RS04]. The fact that the subgraph order
is a well-quasi-order on graphs of bounded path length while the minor order
allows all graphs comes with a trade-off: For obtaining well-structuredness
w.r.t. the minor order, the graph transformation system must contain all
edge contraction rules, i.e., it must be “minor-lossy”. (Note that we consider
lossiness of graph transformation systems in the context of the subgraph
order.) On the other hand, all graph transformation systems are strongly
well-structured on graphs of bounded path length w.r.t. the subgraph order.
This result enables us to apply our results for well-structured transition
systems to graph transformation systems. They also generalize the notion of
well-structured transition systems by regarding J-restricted well-structured
transition systems whose state sets need not to be a well-quasi-order but
rather a subset J of the states is a well-quasi-order. König & Stückrath de-
velop a backwards algorithm based on [FS01] for J-restricted well-structured
transition systems obtaining a method to check coverability under additional
assumptions. For strongly well-structured transition systems, this approach
coincides with the ideal reachability algorithm [AČJT96].

Resilience for SWSTSs
Chapter 4

Ideal Reachability for (S)WSTSs
Abdulla et al. ’96, Thm. 4.1

Finkel & Schnoebelen ’01, Thm. 3.6

Resilience for GTSs
Chapter 5

Ideal Reachability for GTSs
König & Stückrath ’17, Prop. 4

Method: pre-effective

Rule-specific Criteria
Chapter 5

Node-bijective GTSs
Bertrand et al. ’12, Prop. 10

Figure 6.1: Our decidability results in the context of known results.

In Figure 6.1, the main decidability results (bold boxes) are placed in
the context of known results. The arrows mean “used for” or “based on”.
We use the decidability of ideal reachability for well-structured transition
systems [AČJT96, FS01] as an integrant for the decidability of resilience
for well-structured transition systems. The method for pre-effectiveness of
graph transformation systems w.r.t. the subgraph order [KS17] is used in
our decidability results for graph transformation systems. We use result of
[BDK+12] to show that bijectivity on the nodes is a sufficient criterion for
post∗-effectiveness.

109

Chapter 6 Conclusion

6.2 Summary

First we considered resilience in the context of adverse conditions. We pro-
vided (1) a construction of joint graph transformation systems for modeling
adverse conditions, (2) meaningful notions of resilience for this kind of graph
transformation systems, and (3) showed how resilience can be expressed
in temporal logics. A natural notion of resilience is k-step resilience which
captures recovery of the safety constraint in ≤ k steps.

We considered k-step resilience in more detail and investigated decidabil-
ity for graph transformation systems. We provided (1) decidability results
for subclasses of well-structured transition systems and ideal-based sub-
sets BAD and SAFE. By applying this ideal-based approach, we obtained
(2) decidability results for subclasses of graph transformation systems of
bounded path length and proper graph constraints Bad and Safe. The
requirements corresponding to these subclasses are effectiveness conditions
or a kind of unreliability. We identified (3) sufficient, rule-specific criteria for
decidability. Ultimately, we applied our results to joint graph transformation
systems, i.e., to the setting of adverse conditions.

Our decidability results for graph transformation systems as well as for
well-structured transition systems are – to the best of our knowledge – new.
These results may pave the way for automatic verification of resilience, a topic
of high relevance. Up to now, there is only little research on the decidability
of related resilience problems.

The main concepts used in this thesis are the established theories of graph
transformation systems, well-structured transition systems, and to a smaller
extent also temporal logics.

Verification of
Resilience for GTSs

[ÖW21, Özk22]
decidability
for subclasses

Verification of
Resilience for WSTSs

[ÖW21, Özk22]
decidability
for subclasses

Modeling Adverse Conditions

[Özk20]
resilience notions for joint GTSs
reduction to model checking

transition system
well-quasi-order

ideals & anti-ideals

ideal reachability [AČJT96, FS01]

single-pushout [Löw93]
well-structured GTSs [KS17]

subgraph order [KS17]
graph constraints [Ren04, HP09]

transition systems
LTL & CTL [BK08]

WSTSsGTSs
Temporal Logics

In more detail, this work comprises three main aspects: the modeling of
adverse conditions, the verification of resilience for well-structured transition
systems, and the verification of resilience for graph transformation systems.
The modeling of adverse conditions is based on graph transformation systems,
graph constraints, and temporal logics. The verification of resilience for well-
structured transition systems is based on the theory of well-structuredness

110

Conclusion Chapter 6

which uses the concept of ideals in well-quasi-orders. The verification of
resilience for graph transformation systems is based on our results for well-
structured transition systems and the theory of graph transformation systems.
Our results for graph transformation systems can be used for the verification
in the context of adverse conditions.

The main theorems for bounded resilience are derived from our decid-
ability theorem for finite-marked SWSTSs (Theorem 4.1).

Thm. 4.1
for finite-marked SWSTSs

Lemma 5.1

for finite-marked GTSbps
pre-effective

Bad, Safe positive+ or negative

Thm. 5.2

for finite-marked GTSbps
(con-effective, pre-effective, ∩-based)

Bad, Safe positive or negative

replacement

By replacing “marked SWSTSs” with “pre-effective GTSs of bounded path
length”, we derive a decidability result for pre-effective finite-marked GTSs
of bounded path length. However, if Bad (Safe) is positive, we require a given
basis of the set of graphs satisfying Bad (Safe). This result is improved by
the decidability theorem which requires not always pre-effectiveness but also
con-effectiveness (∩-basedness) and proper constraints Bad and Safe. The
relation between the effectiveness requirements on the graph class and the
GTS is as follows: ∩-based implies con-effective implies pre-effective.

marked GTS with ∩-based graph class

marked GTS with con-effective graph class

pre-effective marked GTS

By these theorems, we also obtain decidability results for example classes:
Reset Petri nets can be seen as an example for SWSTSs (and GTSs), and
joint GTSs are GTSs. Moreover, we identify sufficient, rule-specific criteria
for the requirements post∗-effective, lossy, and ⊥-bounded.

6.3 Further Topics

As further topics one may consider generalizations & extensions of this
ideal-based approach, alternative methods, complexity & approximations,
an implementation, and undecidability.

Generalizations & Extensions, i.e.,

� more general graph constraints, e.g., nested graph constraints,

111

Chapter 6 Conclusion

� more general graph transformation systems, e.g., rules with negative
application conditions [HHT96],

� other well-quasi-orders on graphs, e.g., the induced subgraph order
considered by König & Stückrath [KS17], and

� more general resilience notions.

A result on “mixed” constraints Bad and Safe expressing the existence and
absence of specified subgraphs is desirable. To solve resilience problems for
nested graph constraints, alternative methods might be useful. In [HST18],
an automata-based approach for integration of graph constraints into graph
grammars is presented. This could be exploited for automata-based methods.
Furthermore, methods for handling graph classes of unbounded path length
are desirable.
Using the induced subgraph order would allow us to use a restricted type of
nested graph constraints and restricted negative application conditions. How-
ever, the graph class for the induced subgraph order is more restrictive.“Minor-
lossy” graph transformation systems [KS17] are well-structured w.r.t. to
minor order which is a well-quasi-order on the class of all graphs. However,
our main objective is to solve the bounded resilience problem. For this, one
requires at least “bounded” compatibility (we use strong compatibility, i.e.,
the bound is equal to 1).

Further Resilience Notions. As pointed out by Stierand26, the re-
garded resilience notions only capture the recovery of a safety constraint.
However, stability is not guaranteed. Recovery in ≤ k steps may be possible
but immediately (one step) after recovery, the safety constraint may be
violated. Further notions may include a second parameter ℓ for the least
number of steps for which the safety constraint is preserved after recovery.

INIT |=Bad |=Safe

∗

∗

∀

∃
≤ k steps

∃
≤ k steps

≥ ℓ steps

≥ ℓ steps

One may define k,ℓ-step resilience as illustrated above: starting from any
graph in INIT, whenever we reach a Bad graph, we can reach a Safe graph

26Ingo Stierand: private communication, June 2023.

112

Conclusion Chapter 6

in ≤ k steps and preserve Safe for ≥ ℓ steps. Since we regard the two
parameters k and ℓ, three “bounded” resilience problems ∃k . . .?, ∃ℓ . . .?,
∃⟨k, ℓ⟩ . . .? and one explicit resilience problem arise. It is to investigate
whether our ideal-based approach can be modified for verification of k,ℓ-step
resilience.

Complexity & Approximations. An investigation on the complexity
of the algorithms in Section 4.3 may achieve more clarity regarding the
exact complexity bounds for subclasses of graph transformations systems,
e.g., for node-bijective rules. In cases where the complexity is considerable,
approximations are helpful for handling costly computations. Approximations
of graph transformations by Petri nets, e.g., Baldan et al. [BCK08], may be
taken into account.

Implementation. The algorithms presented in Section 4.3 can be
used for an implementation based on UNCOVER (Stückrath [Stü15]) which
provides an implementation of the ideal reachability algorithm w.r.t. subgraph
order. An obstacle may be that the post∗-effectiveness of Petri nets relies
on the reachability algorithm for Petri nets. This might be resolved using
approximations. In Figure 6.2, it is illustrated how an implementation may
look like. First a test for the bounded path length condition is performed,
e.g., by testing node-boundedness. Afterwards, the rule-specific criteria
are tested. For testing lossiness (⊥-boundedness), the lossy (bottom) rules
are constructed. In the next step, a finite representation is computed or
approximated. For node-bijective rules, Petri net tools are useful. Finally,
the inclusion is decided. The tool UNCOVER can be used to compute the
finite respresentation and to decide the inclusion.

test b.p.l.
node-bnd

test criteria
preserving

node-bijective

sim lossy rules

w sim ⊥ rules

compute/approx
finite represent

PN tools

UNCOVER

decide
inclusion

UNCOVER

marked GTS

Bad, Safe

marked GTS

Bad, Safe

(no answer)

marked GTS

Bad Safe

fin repr/

approx

yes (k/approx k)

no

b.p.l. = bounded path length, (w) sim = (weak) simulation

Figure 6.2: Implementation sketch.

113

Chapter 6 Conclusion

Undecidability. To point out the limits of this approach, undecidability
results are favorable. The objective is to narrow down the decidability gap.
Based on the results of Bertrand et al. [BDK+12], one may show that, in
some cases, the lack of a requirement or the presence of unbounded paths
yields the undecidability of the bounded (or explicit) resilience problem for
graph transformation systems. Also undecidability results for reset Petri nets
(reachability, boundedness, deadlock-freeness, see, Dufourd et al. [DFS98]
and Akshay et al. [ACD+17]) seem to be good sources of undecidability for
graph transformation systems.

114

Appendix A

Related Formalisms

We give an overview of related formalisms. Formal notions of pushouts,
graph constraints, and temporal logics are included.

Pushouts

The notion of a pushout is usually used in the context of category theory,
see, e.g., Ehrig et al. [EPS73, EHK+97, EEPT06] or Löwe [Löw91]. We
give a definition and a construction of pushouts on the levels of graphs and
morphisms. Moreover, we state used properties of pushouts.

The definitions in this section follow Ehrig et al. [EHK+97] and the
constructions follow Stückrath [Stü16]. For the proofs, see the corresponding
reference.

Definition A.1 (pushout). A pushout (PO) of morphisms (partial func-
tions) b : A ⇀ B and c : A ⇀ C is a diagram as (1) below with c′ ◦ b = b′ ◦ c
s.t. the universal property holds: for all morphisms (partial functions)
b′′ : C ⇀ D′ and c′′ : B ⇀ D′ with c′′ ◦ b = b′′ ◦ c, there exists a unique
morphism (partial function) d : D ⇀ D′ s.t. d ◦ c′ = c′′ and d ◦ b′ = b′′. The
graph (set) D is called pushout object.

A B

C D

(1)

b′

b

c c′

D′
b′′

c′′

d

Using the definition of a pushout, one can show that pushouts are unique.

115

Appendix A Related Formalisms

Lemma A.1 (uniqueness of pushouts [EEPT06, Fact 2.20]).
Pushout objects are unique up to isomorphism.

Pushouts can be composed and decomposed.

Lemma A.2 (composition of pushouts [EEPT06, Fact 2.20]).

(i) If (1) and (2) are pushouts, then (1)+(2) is a pushout.

(ii) If (1) and (1)+(2) are pushouts, then (2) is a pushout.

A B

C D

(1) (2)

E

F

The following properties of pushouts are often used in proofs.

Lemma A.3 (properties of pushouts [EHK+97, Lemma 8]).
Let the diagram below be a pushout where c : A→ C is total.

(i) If b is injective, then b′ is injective.

(ii) If b is surjective, then b′ is surjective.

(iii) If c is injective, then c′ is total and injective.

A B

C D

(PO)

b′

b

c c′

We depict a set-theoretic construction of pushouts.

Construction A.1 (pushout of sets [Stü16, Prop. 3.24]). For sets
A,B,C and (partial) functions b : A ⇀ B, c : A ↪→ C, the pushout is
constructed as follows: Let (B + C)/ ∼ be a quotient of the disjoint union27

B +C where ∼ is the smallest equivalence relation on B +C s.t. b(x) ∼ c(x)
for every x ∈ A. For x ∈ B + C, let [x] = {y ∈ B + C : x ∼ y} be the
equivalence class of x. We say that an equivalence class is valid if it contains
no element c(x) for which b(x) is undefined. The set D is consisting of all
valid equivalence classes of (A + B)/ ∼. Let b′ : C ⇀ D be the partial
function given by b′(x) = [x] if [x] is valid, otherwise b′(x) is undefined. Let
c′ : B ↪→ D be the function given by c′(x) = [x]. The pushout object is the
set D.

27W.l.o.g., we assume that B and C are disjoint, meaning that B + C = B ∪ C.

116

Related Formalisms Appendix A

Intuitively, the pushout object of b : A ⇀ B and c : A ↪→ C is the disjoint
union of B and C where we leave out elements for which b is undefined and
identify elements with the same preimage.

This construction can be carried over to graphs “componentwise”.

Construction A.2 (pushout of graphs [Stü16, Prop. 3.24]). For graphs
L,R,G and morphisms p : L ⇀ R, m : L ↪→ G, the pushout is constructed
componentwise on nodes and edges: Let H be the graph given by

VH ⊆ (VG + VR)/ ∼
EH ⊆ (EG + ER)/ ∼

srcH([e]) =

{
[srcG(e)] if e ∈ EG

[srcR(e)] if e ∈ ER

tgtH([e]) =

{
[tgtG(e)] if e ∈ EG

[tgtR(e)] if e ∈ ER

labVH([v]) =

{
labVG(v) if v ∈ VG
labVR(v) if v ∈ VR

labEH([e]) =

{
labEG(e) if e ∈ EG

labER(e) if e ∈ ER

where VH consists of all valid equivalence classes of nodes and EH consists of
all valid equivalence classes of edges with incident nodes v, v′ s.t. [v], [v′] ∈ VH .
Let p′ : G ⇀ H be the morphism given by p′(x) = [x] if [x] ∈ VH ∪ EH ,
otherwise p′(x) is undefined, for every item x of G. Let m′ : R ↪→ H be the
morphism given by m′(x) = [x] for every item x of R. The pushout object is
the graph H.

L R

G H

(PO)

p′

p

m m′

By Lemma A.1, pushout objects are unique up to isomorphism. Therefore,
the latter construction is “canonical”. Moreover, it shows that pushout of
graphs are effectively constructible.

117

Appendix A Related Formalisms

Graph Constraints

Graph conditions are nested constructs, which can be represented as trees
of morphisms equipped with quantifiers and Boolean connectives. Graph
conditions and first-order graph formulas are expressively equivalent [HP09].
Graph constraints are special graph conditions.

Definition A.2 (graph conditions). The class of (nested) (graph) condi-
tions over a graph P is defined inductively:
(i) true is a condition over P , (ii) ∃(a, c) is a condition over P where a : P ↪→ C
is an injective morphism and c is a condition over C, (iii) for conditions c, c′

over P , ¬c and c ∧ c′ are conditions over P .
Conditions over the empty graph ∅ are called (nested) (graph) constraints.
The semantics of graph conditions are defined inductively: (i) Any injective
morphism p : P ↪→ G satisfies true.
(ii) An injective morphism p satisfies ∃(a, c) with a : P ↪→ C if there exists
an injective morphism q : C ↪→ G such that q ◦ a = p and q satisfies c.

P

G

C,
a

p q
=

c

|=
)∃(

(iii) An injective morphism p satisfies ¬c if p does not satisfy c, and p satisfies
c ∧ c′ if p satisfies both c and c′.
We write p |= c if p satisfies the condition c (over P). A graph G satis-
fies a constraint c, G |= c, if the morphism p : ∅ ↪→ G satisfies c.

Graph conditions may be written in a more compact form: ∃a abbreviates
∃(a, true), false abbreviates ¬true. The expressions c ∨ c′ and c ⇒ c′ are
defined as usual. For an injective morphism a : P ↪→ C in a condition, we
just depict the codomain C if the domain P can be unambiguously inferred.
E.g., the constraint ∀(, ∃()) expresses that every node has a loop.

Temporal Logics

Temporal formulas such as LTL and CTL formulas are well-known in logic,
see, e.g., [CE82, Eme90, BK08]. We adapt the notions and consider so-called
LTL and CTL graph constraints [Peu18], i.e., temporal formulas whose atoms
equate to graph constraints.

First we define LTL graph constraints and their semantics. The temporal-
ity is interpreted as the changes along a transformation sequence. Every direct
transformation correlates to a time step. Besides the common propositional
operators there are temporal operators, e.g., the operator X (NeXt) describes
the validity of a formula in the next step while G (Globally) describes the va-
lidity of a formula in every following step. The operator U (Until) describes
the validity of a first formula until a second formula is valid.

118

Related Formalisms Appendix A

Definition A.3 (LTL graph constraints). The class LTL of linear tem-
poral logic (graph) constraints is the smallest class of expressions, which
(i) contains all graph constraints, (ii) is closed under the propositional opera-
tors ¬,∧,∨,⇒, i.e., for all ϕ, ψ ∈ LTL, ¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ, ϕ⇒ ψ ∈ LTL, and
(iii) is closed under the temporal operators X,G,U, i.e., for all ϕ, ψ ∈ LTL,
Xϕ,Gϕ, ϕUψ ∈ LTL.
The semantics of LTL constraints is defined for infinite paths, i.e., infinite
transformation sequences: Let P be an infinite path G0 ⇒ The satisfac-
tion of LTL constraints in P , denoted by |=, is defined inductively:
(i) For a graph constraint c, Gi |= c if Gi satisfies c as graph constraint.
(ii) The semantics for the propositional operators are as usual, e.g., for
ϕ ∈ LTL, Gi |= ¬ϕ if Gi ̸|= ϕ.
(iii) For all ϕ, ψ ∈ LTL,

(a) Gi |= Xϕ if Gi+1 |= ϕ,
(b) Gi |= Gϕ if Gj |= ϕ for all j ≥ i,
(c) Gi |= ϕUψ if there is k ≥ i s.t. Gk |= ψ and Gj |= ϕ for all i ≤ j < k.

For a LTL constraint ϕ, P satisfies ϕ, in symbols P |= ϕ, if G0 |= ϕ.
A marked GTS ⟨S,R, INIT⟩ satisfies ϕ, in symbols ⟨S,R, INIT⟩ |= ϕ, if
P |= ϕ for all infinite paths P = ⟨G0 ⇒R . . .⟩ with G0 ∈ INIT.

CTL graph constraints are, like LTL graph constraints, temporal formulas
where the atoms equate to the graph constraints. By contrast, the temporality
is here branching. Besides the common propositional operators, there are
path-quantified temporal operators which are pairs of operators: the first one
is either A (for All following paths) or E (there Exists a following path),
the second one is a temporal operator. The operator AG means the valdity
of a formula in all following sequences, and EF means that a graph can be
reached where the formula is valid.

Definition A.4 (CTL graph constraints). The class CTL of compu-
tation tree logic (graph) constraints is the smallest class of expressions,
which (i) contains all graph constraints, (ii) is closed under the proposi-
tional operators ¬,∧,∨,⇒, i.e., for all ϕ, ψ ∈ CTL, ¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ, ϕ ⇒
ψ ∈ CTL, and (iii) is closed under the path-quantified temporal operators
AX,EX,AG,EG,AU,EU, i.e., for all ϕ, ψ ∈ CTL, AXϕ,EXϕ,AGϕ,
EGϕ, ϕAUψ, ϕEUψ ∈ CTL.
The satisfaction of CTL constraints in a marked GTS ⟨S,R, INIT⟩ is defined
inductively:
(i) For a graph constraint c and G ∈ S, G |= c if G satisfies c as graph
constraint.
(ii) The semantics for the propositional operators are as usual, e.g., for
ϕ ∈ CTL and G ∈ S, G |= ¬ϕ if G ̸|= ϕ.
(iii) For ϕ, ψ ∈ CTL, G ∈ S and O ∈ {X,G,U},

(a) G |= AOϕ (|= ϕAOψ) if for all infinite paths P via ⇒R, which start
in G, P satisfies ϕ (ϕOψ) in the LTL-sense, e.g., G |= AGϕ means: for every

119

Appendix A Related Formalisms

infinite path G = G0 ⇒R G1 ⇒R . . ., for every i ≥ 0, Gi |= ϕ.
(b) G |= EOϕ (|= ϕEOψ) if there is an infinite path via ⇒R, which

starts in G and satisfies ϕ (ϕOψ) in the LTL-sense, e.g., G |= EGϕ means:
there is an infinite path G = G0 ⇒R G1 ⇒R . . . s.t. for every i ≥ 0, Gi |= ϕ.
A marked GTS ⟨S,R, INIT⟩ satisfies ϕ, in symbols ⟨S,R, INIT⟩ |= ϕ if
G0 |= ϕ for all G0 ∈ INIT.

Reset Petri Nets

Petri nets, considered, e.g., by Reisig [Rei85], are a common model for
discrete, distributed systems in computer science, often applied, e.g., in
logistics or supply chains.

Definition A.5 (Petri net). A Petri net (also called place/transition
net) is a tuple ⟨P, T, F ⟩ with two disjoint finite sets of places P and tran-
sitions T , and a flow function F : (P ×T) ∪ (T ×P) → N. A marking
is a function M : P → N which indicates the number of tokens on each place.
F (x, y) = n > 0 means that there is an arc of weight n from x to y describing
the flow of tokens in the net. A transition t ∈ T is enabled in a marking M if
∀p ∈ P : F (p, t) ≤M(p). If t is enabled, then t can fire inM , leading to a new
marking M ′ calculated by ∀p ∈ P :M ′(p) =M(p)− F (p, t) + F (t, p). This
is denoted by M [t⟩M ′. Usually, a Petri net is equipped with a set of ini-
tial markings INIT (in the literature often a single marking). The tuple
⟨P, T, F, INIT⟩ is then called a finite-marked Petri net (in the literature often
called a “marked Petri net”).

A Petri net can be visually represented by a bipartite graph where places
and transitions are the nodes, and the flow is indicated by edges labeled with
F (x, y) (if F (x, y) = 0, we do not draw an edge between x and y). Markings
are represented by adding tokens as black dots in the corresponding places.

Example A.1. Consider a Petri net consisting of the two places product
and warehouse and the three transitions produce, transport, and buy. The
flow function is given by

F (produce, product) = F (product, transport)
= F (transport,warehouse) = F (warehouse, buy) = 1

and is equal to 0 on all other place/transition pairs. This Petri net (together
with a marking) can be represented as below.

produce

product

transport

warehouse

buy

The marking M in the latter representation is given by M(product) = 0 and
M(warehouse) = 1.

120

Related Formalisms Appendix A

Every Petri net ⟨P, T, F ⟩ induces a transition system with the states S given
by M, the set of all markings of M : P → N, and the transitions given
by M → M ′ ⇐⇒ ∃t ∈ T : M [t⟩M ′. As well-quasi-order we consider the
order ≤PN given by ∀M,M ′ ∈M :M ≤PN M

′ :⇐⇒ ∀p ∈ P :M(p) ≤M ′(p).
This constitutes a SWSTS, see, e.g., Finkel & Schnoebelen [FS01, Thm. 6.1].

Fact A.1. Petri nets constitute post∗-effective SWSTSs.

Proof. Reachability for Petri nets is decidable [May84] and recursively
equivalent to submarking reachability [Hac85]. This corresponds to the
anti-ideal reachability problem for Petri nets. Thus, by Proposition 4.1,
finite-marked Petri nets are post∗-effective.

For Petri nets, reachability and equivalent problems are decidable, see,
e.g., Esparza & Nielsen [EN94].

Reset Petri nets, considered, e.g., by Dufourd et al. [DFS98], are a gen-
eralization of Petri nets. A set of reset arcs R ⊆ P × T from places to
transitions is added. When the corresponding transition fires, the number of
tokens in the originating place is set to zero.

Definition A.6 (reset Petri net). A reset Petri net is a tuple ⟨P, T,R, F ⟩
where ⟨P, T, F ⟩ is a Petri net and is a R ⊆ P × T is a set of reset arcs. The
firing in a reset Petri net is defined slightly different than in a Petri net: If
t ∈ T is enabled in a marking M , then the new marking M ′ is calculated
by ∀p ∈ P : ⟨p, t⟩ ∈ R : M ′(p) = F (t, p) and ∀p ∈ P : ⟨p, t⟩ ̸∈ R : M ′(p) =
M(p)− F (p, t) + F (t, p).

Example A.2. Consider a reset Petri net consisting of the two places product
and warehouse and the three transitions produce, transport, and buy. The
flow function is given by

F (produce, product) = F (product, transport)
= F (transport,warehouse) = 1,

F (warehouse, buy) = 5, and is equal to 0 on all other place/transition pairs.
The only reset arc is the place/transition pair ⟨warehouse, buy⟩. This reset
Petri net (together with a marking) can be represented as below.

produce

product

transport

warehouse

buy5

The transition buy is enabled iff there are at least 5 tokens at the place
warehouse. If it fires, the number of tokens at the place warehouse is set to
zero.

The well-structuredness of Petri nets can be transferred to reset Petri
nets, see, e.g., Dufourd et al. [DFS98, p. 108].

121

Appendix A Related Formalisms

Fact A.2. Reset Petri nets constitute SWSTSs which are, in general, not
post∗-effective.

Proof. See proof of Proposition B.1.

122

Appendix B

Proofs

We provide the proofs omitted in the chapters. These include a normal
form lemma for positive constraints, reductions to temporal logics, unde-
cidability results, a criterion for post∗-effectiveness of marked joint graph
transformation systems, and decidability results for I-marked SWSTSs.

Normal Form

We used that for every positive constraint, we can effectively construct an
equivalent, reduced ∨-normal form.

Lemma 2.1 (∨-normal form). For every positive constraint, we can
effectively construct an equivalent positive constraint of the form

∨
1≤i≤n ∃Ci.

Proof (by structural induction over positive constraints).
Let c be a positive constraint.
Hypothesis. An equivalent positive constraint c′ of the form

∨
1≤i≤n ∃Ci is

constructible.
Base case. For c = ∃C, the statement holds.
Induction step. (i) Let c = c1∨c2 and assume that the induction hypothesis
holds for c1 and c2. Then, c is equivalent to c

′
1∨c′2 where c′1 and c′2 are positive

constraints of the form
∨

1≤i≤n ∃Ci, which are equivalent to c1 and c2, res-
pectively. Thus, the statement holds for c.
(ii) Let c = c1∧c2 and assume that the induction hypothesis holds for c1 and c2.
Then, c1 and c2 are equivalent to positive constraints

∨
C1∈B1

∃C1 and∨
C2∈B2

∃C2, respectively. Thus, c is equivalent to ∨
C1∈B1

∃C1

 ∧
 ∨

C2∈B2

∃C2

 .

We transform the latter positive constraint into an equivalent positive con-

123

Appendix B Proofs

straint in disjunctive normal form28, i.e.,∨
C1∈B1,C2∈B2

(∃C1 ∧ ∃C2).

The next step is the elimination of ∧. Let Merge(C1, C2) be the set of all
graphs C ′ s.t. there exist total, injective morphisms C1 ↪→ C ′, C1 ↪→ C ′ which
are jointly surjective, i.e., every item of C ′ has a preimage in C1 or C2. We
show that for every graph H,

H |= ∃C1 ∧ ∃C2 ⇐⇒ H |=
∨

C′∈Merge(C1,C2)

∃C ′.

“⇒”: Let g1 : C1 ↪→ H, g2 : C2 ↪→ H be total, injective morphisms. Let C ′ be
the graph g1(C1) ∪ g2(C2). By definition, the morphisms g1 : C1 ↪→ C ′,
g2 : C2 ↪→ C ′ are total, injective, and together jointly surjective. Moreover,
there exists a total, injective morphism C ′ ↪→ H.
“⇐”: Let h : C ′ ↪→ H be a total, injective morphism and g1 : C1 ↪→ C ′,
g2 : C2 ↪→ C ′ jointly surjective. The morphisms h ◦ g1 : C1 ↪→ H and
h ◦ g2 : C2 ↪→ H are total and injective.
Thus, we can transform c into an equivalent positive constraint

c′ =
∨

C1∈B1,C2∈B2

∨
C′∈Merge(C1,C2)

∃C ′.

We show that for all graphs C1, C2, the set Merge(C1, C2) of graphs is finite
and computable. By joint surjectivity, the number of nodes (edges) of any
graph in Merge(C1, C2) is ≤ |VC1 | + |VC2 | (edges: ≤ |EC1 | + |EC2 |). We
can test all such graphs for joint surjectivity in the following way: for two
graphs C1 ∈ B1, C2 ∈ B2, and a graph C ′ to be tested, we compute all total,
injective morphisms C1 ↪→ C ′ and C2 ↪→ C ′. We check whether every item
of C ′ has a preimage in C1 or C2. The sets B1 and B2 are finite. Hence, we
can effectively construct the latter positive constraint c′.

Every positive constraint of the form
∨

1≤i≤n ∃Ci can be reduced by
taking out all redundant graphs Cj for which exists Ci with Ci ↪→ Cj .

Reduction to Temporal Logics

Theorem 3.1 (reduction to LTL). For every graph constraint Safe and
every natural number k ≥ 0, there exist LTL constraints ϕ(Safe) and ϕk(Safe)
s.t. for every marked joint GTS without deadlocks:

(1) the marked joint GTS is k-step∀ resilient w.r.t. Safe iff
the marked annotated joint GTS satisfies ϕk(Safe),

28See an introduction to logic, e.g., Mendelsohn [Men97, p. 30].

124

Proofs Appendix B

(2) the marked joint GTS is E-step resilient w.r.t. Safe iff
the marked annotated joint GTS satisfies ϕ(Safe).

For better readability, we write⇒S′ instead of⇒S′
A
and⇒E ′ instead of⇒E ′

A
.

Proof of Theorem 3.1 (1). “⇒”: Let G0 ⇒ G1 ⇒ . . . be an infinite trans-
formation sequence via (SE)′. Let M = Gi with i ≥ 0 and M |= Env,
i.e., M was obtained by the application of an environment rule. Consider
the subsequence G0 ⇒∗

(SE)′ H ⇒E ′ M ⇒k
(SE)′ N . By definition of k-step∀

resilience, there exists a subsequence M ⇒≤k
(SE)′ N

′ with N ′ |= Safe. That

is, there exists 0 ≤ j ≤ k s.t. M |= XjSafe, i.e., M |= ∨k
j=0X

jSafe. Thus,

G0 |= G(Env⇒ ∨k
j=0X

jSafe).

“⇐”: Let G0 ⇒∗
(SE)′ H ⇒E M ⇒k

(SE)′ N be a transformation sequence

via (SE)′ obtained from the corresponding transformation sequence via SE .
By deadlock-freeness, the latter sequence can be completed to an infinite
transformation sequence G0 ⇒ By assumption, G0 ⇒ . . . |= G(Env⇒∨k

j=0X
jSafe). We obtain M |= ∨k

j=0X
jSafe. Thus, there exists a subse-

quence M ⇒≤k
(SE)′ N

′ with N ′ |= Safe (and a corresponding subsequence via

SE).

Proof of Theorem 3.1 (2). “⇒”: Let G0 ⇒ G1 ⇒ . . . be an infinite trans-
formation sequence via (SE)′. Let M = Gi with i ≥ 0 and M |= Env∧XSys,
i.e., M was obtained by the application of an environment rule and a sys-
tem rule is applied next, yielding a graph N . By definition of E-step re-
silience, there exists a subsequence M ⇒∗

S′ N ′ with N ′ |= Safe. That
is, M |= Safe or N |= SysUSafe, i.e., M |= Safe ∨ X(SysUSafe). Thus,
G0 |= G((Env ∧XSys)⇒ (Safe ∨X(SysUSafe))).
“⇐”: Let G0 ⇒∗

(SE)′ H ⇒E ′ M ⇒S′ N ⇒ . . . be an infinite transfor-

mation sequence via (SE)′ obtained from the corresponding transforma-
tion sequence via SE . By assumption, G0 ⇒ . . . |= G((Env ∧ XSys) ⇒
(Safe ∨X(SysUSafe))). We obtain M |= Safe ∨X(SysUSafe). Thus, there
exists a subsequence M ⇒∗

S′ N ′ with N ′ |= Safe (and a corresponding
subsequence via SA).

Theorem 3.2 (reduction to CTL). For every graph constraint Safe and
every natural number k ≥ 0, there exists a CTL constraints φk(Safe) s.t. for
every marked joint GTS without deadlocks:

the marked joint GTS is k-step∃ resilient w.r.t. Safe iff
the marked annotated joint GTS satisfies φk(Safe).

Proof. “⇒”: Let G0 ∈ INIT and G0 ⇒(SE)′ M a transformation sequence
via (SE)′ with M |= Env, i.e., M was obtained by the application of an envi-
ronment rule. Consider the transformation sequence G0 ⇒∗

(SE)′ H ⇒E ′ M .

125

Appendix B Proofs

By definition of k-step∃ resilience, there exists a transformation sequence
M ⇒≤k

(SE)′ N
′ with N ′ |= Safe. That is, there exists 0 ≤ j ≤ k s.t.

M |= EXjSafe, i.e., M |= ∨k
j=0EXjSafe. Thus, G0 |= AG(Env ⇒∨k

j=0EXjSafe).
“⇐”: Let G0 ⇒∗

(SE)′ H ⇒E ′ M be a transformation sequence via (SE)′ ob-
tained from the corresponding transformation sequence via SE . By assump-
tion, G0 |= AG(Env ⇒ ∨k

j=0EXjSafe). We obtain M |= ∨k
j=0EXjSafe.

Thus, there exists a transformation sequence M ⇒≤k
(SE)′ N

′ with N ′ |= Safe

(and a corresponding transformation sequence via SE).

Undecidability

We discuss two undecidability results hinting at the limits of our approach.

In Bertrand et al. [BDK+12], a number of undecidability results are
presented. E.g., ideal reachability is undecidable for preserving GTSs. As a
consequence, undecidability of the bounded resilience problem for preserving
GTSs can be derived.

Proposition 5.10 (undecidability). The bounded resilience problem is
undecidable for preserving finite-marked GTS with ∩-based graph class in
the cases where Safe is positive.

Proof. We consider the bounded resilience problem for preserving finite-
marked GTSs, INIT = {G}, BAD = ∃∅, Safe = ∃H, and S as the class
of all graphs (which is ∩-based). We express ideal reachability as bounded
resilience:

∃k ≥ 0 : post∗(INIT) ∩ JBadKS ⊆ pre≤k(JSafeKS)

⇐⇒ ∃k ≥ 0 : post∗(INIT) ⊆ pre≤k(JSafeKS) (JBadKS = S)

⇐⇒ ∃k ≥ 0 : ↑post∗(INIT) ⊆ pre≤k(JSafeKS) (pre≤k ideal)

⇐⇒ ∃k ≥ 0 : ↑ INIT ⊆ pre≤k(JSafeKS) (preserving)

⇐⇒ ∃k ≥ 0 : INIT ⊆ pre≤k(JSafeKS) (pre≤k ideal)

⇐⇒ INIT ⊆ pre∗(JSafeKS) (INIT finite)

⇐⇒ INIT ⊆ pre∗(J∃HKS) (Safe = ∃H)

⇐⇒ G ∈ pre∗(J∃HKS) (INIT = {G})
⇐⇒ G ∈ pre∗(↑{H}) (S = all graphs)

Thus, ideal reachability in this case is reducible to bounded resilience. By
[BDK+12, Prop. 13], ideal reachability is undecidable for preserving GTSs.

126

Proofs Appendix B

We consider a class of SWSTSs which is not post∗-effective – at least not
by a generic procedure. We use an undecidability result for reset Petri nets
by Dufourd et al. [DFS98].

Proposition B.1. Finite-marked reset Petri are, in general, not post∗-
effective.

Proof. Assume that finite-marked reset Petri nets are post∗-effective
(by a generic procedure). By Proposition 4.1, the anti-ideal reachability
problem for reset Petri nets is decidable. We consider the anti-ideal J of
all markings where no transition can fire (all deadlocks). The basis of the
complement of J is given by the set of the “smallest” markings where at
least one transition can fire. The anti-ideal is J is not reachable from INIT
iff the finite-marked reset Petri net is deadlock-free. Thus, we could decide
the deadlock-freeness problem. However, the deadlock-freeness problem is
undecidable for finite-marked reset Petri nets, see Akshay et al. [ACD+17,
Table 1], reduction from Dufourd et al. [DFS98].

Rule-specific Criteria for Joint GTSs

A rule of an annotated joint GTS is neither preserving nor node-bijective.
For an annotated joint GTS of S and E , we consider the properties of the
rules of S and E .

Proposition 5.5. A finite-marked annotated joint GTSbp of S and E is
post∗-effective if all rules in S ∪ E are preserving or all rules in S ∪ E are
node-bijective.

Proof. Let ⟨S, (SE)′, INIT⟩ be a finite-marked annotated joint GTSbp. If
every rule in S∪E is preserving, we can compute the basis of ↑post∗(INIT) by
computing the bases of ↑post≤k(INIT) until every reachable ideal J∃(q ς)KS
is reached where q is a state of the control automaton and ς is an annotation
symbol. By Lemma 2.3, it is decidable whether an ideal J∃(q ς)KS is
reachable from INIT (choosing the ∩-based graph class ↓post∗(INIT)).
Let every rule in S ∪ E be node-bijective. The annotated joint GTS can also
be modeled by node-bijective rules encoding the current state of the control
automaton and the current annotation symbol as labels of loops at extra nodes.
By Theorem 5.4, the finite-marked annotated joint GTSbp ⟨S,SE , INIT⟩ is
post∗-effective.

127

Appendix B Proofs

Infinite Set of Initial States

We provide the proof of the following decidability result for I-marked SWSTSs.

Theorem 4.3 (bounded resilience for I-marked SWSTSs).
The bounded resilience problem is decidable for

(1) weakly invertible I-marked SWSTSs if BAD ∈ J , SAFE ∈ I,

(2) lossy, weakly ∩-effective I-marked SWSTSs if BAD,SAFE ∈ I,

(3) lossy, weakly ∩-effectve, ⊥-bounded I-marked SWSTSBs if BAD ∈ I,
SAFE ∈ J ,

(4) weakly invertible, ⊥-bounded I-marked SWSTSBs if BAD, SAFE ∈ J .

The proof of Theorem 4.3 is given at the end of this section. The difference
to the proof of Theorem 4.1 is the computation of a finite representation of
post∗(INIT)∩BAD. It makes use of Lemma B.1 for I-marked WSTSs, a mod-
ified version of Lemma 4.2 (for finite-marked WSTSs). The former states
that the inclusion of the intersection post∗(INIT) ∩ BAD in an decidable
ideal is decidable if we consider weakly invertible in the case BAD ∈ J or
lossy, weakly ∩-effective I-marked WSTSs in the case BAD ∈ I.

Lemma B.1 (checking inclusion for I-marked WSTSs).
Let ⟨S,≤,→, INIT⟩ be a I-marked WSTS, BAD ⊆ S, and I ⊆ S be a decid-
able ideal. It is decidable whether post∗(INIT) ∩ BAD ⊆ I provided that
the I-marked WSTS is

(a) weakly invertible and BAD ∈ J ,

(b) lossy, weakly ∩-effective, and BAD ∈ I.

Proof. The idea is to compute a finite representation of the intersections
post∗(INIT) ∩ BAD for checking inclusion in the decidable ideal I. To this
aim, we use Lemma 4.1:

(a) We consider weakly invertible I-marked WSTSs and BAD ∈ J . It
holds

post∗(INIT) ∩ BAD ⊆ I
⇐⇒ ↑post∗(INIT) ∩ BAD ⊆ I (Lemma 4.1)

⇐⇒ Bpost(INIT) ∩ BAD ⊆ I (Lemma 4.1)

where the set Bpost(INIT) is a basis of ↑post∗(INIT), i.e., ↑Bpost(INIT) =
↑post∗(INIT). By weak invertibility, Bpost(INIT) is computable. By Fact 2.6,
Bpost(INIT) is finite. The last inclusion is algorithmically checkable. We
take out all elements of Bpost(INIT) which are not in the decidable anti-ideal

128

Proofs Appendix B

BAD and then check inclusion of the remaining elements in the decidable
ideal I.

(b) We consider lossy, weakly ∩-effective I-marked WSTSs and BAD ∈ I.
We use the same idea as in the previous case, but we change the roles of
post∗(INIT) and BAD. It holds

post∗(INIT) ∩ BAD ⊆ I
⇐⇒ ↓post∗(INIT) ∩ BAD ⊆ I (Def. lossy)

⇐⇒ ↓post∗(INIT) ∩ BBAD ⊆ I (Lemma 4.1)

where BBAD is a basis of BAD, i.e., ↑ BBAD = BAD. We show that
↓ post∗(INIT) is a decidable anti-ideal. It holds s ∈↓ post∗(INIT) iff
INIT ∩ pre∗(↑{s}) ̸= ∅ for any s ∈ S. The latter is decidable by Lemma 2.3
and the definition of weak ∩-effectiveness. Hence, the last inclusion is decid-
able. We take out all elements of BBAD which are not in ↓post∗(INIT) and
then check inclusion of the remaining elements in the decidable ideal I.

Proof of Theorem 4.3. Cases (1) & (2). By Fact 2.9, pre≤k(SAFE)
is an ideal for every k ≥ 0 since SAFE ∈ I and, by Definition 2.12, it is
decidable. By Lemma B.1, we can decide whether post∗(INIT) ∩ BAD ⊆
pre≤k(SAFE) for (1) weakly invertible I-marked SWSTSs and (2) lossy,
weakly ∩-effective I-marked SWSTSs, respectively. By Lemma 2.2, the
sequence SAFE ⊆ pre≤1(SAFE) ⊆ pre≤2(SAFE) ⊆ . . . becomes station-
ary, i.e., there is a minimal k0 ≥ 0 s.t. pre≤k0(SAFE) = pre∗(SAFE). By
Lemma 2.3, we can also determine this k0. Thus, we can determine the
minimal number k = kmin s.t. post∗(INIT) ∩ BAD ⊆ pre≤k(SAFE) (if it
exists) and also whether it exists. Hence, we can decide the bounded re-
silience problem. To sum up, the bounded resilience problem is decidable
for (1) weakly invertible I-marked SWSTSs and (2) lossy, weakly ∩-effective
I-marked SWSTSs, respectively.
Cases (3) & (4). By Lemma 4.3, for ⊥-bounded SWSTSs, there is a k ≥ 0
s.t. pre∗(SAFE) = pre≤k(SAFE). Hence, checking bounded resilience is
equivalent to testing inclusion in pre∗(SAFE). By Proposition 4.3, for
⊥-bounded SWSTSBs, pre

∗(SAFE) is a decidable ideal since SAFE ∈ J . By
Lemma B.1, we obtain that checking post∗(INIT)∩BAD ⊆ pre∗(SAFE) is de-
cidable for (3) lossy, weakly ∩-effective, ⊥-bounded I-marked SWSTSBs and
(4) weakly invertible, ⊥-bounded finite-marked SWSTSBs, respectively. Hence,
we can decide the bounded resilience problem for (3) lossy, weakly ∩-effective,
⊥-bounded SWSTSBs and (4) weakly invertible, ⊥-bounded SWSTSBs, res-
pectively.

Although not used for the proof, the next proposition shows how the
requirements for INIT ∈ I are related.

Proposition B.2. Lossy (⊥-bounded) and weakly ∩-effective I-marked
WSTSBs are weakly invertible.

129

Appendix B Proofs

Proof. Let ⟨S,≤,→, INIT⟩ be a lossy (⊥-bounded) and weakly ∩-effective
I-marked WSTSB. To compute a basis of ↑post∗(INIT) for an ideal INIT
with a given basis, we look at the reachable elements of a basis of the set S of
all states. Such a basis element is reachable iff its upward-closure is reachable:

Let B be a basis of S and INIT ∈ I. In both cases, a basis of ↑post∗(INIT)
is given by the set Bpost(INIT) = {b ∈ B :↑{b} is reachable from INIT}. We
show that ↑Bpost = ↑post∗(INIT):
“⊇”: Let s be any element reachable from INIT. By definition of a basis, there
exists a basis element b ≤ s. It follows that ↑{b} is reachable from INIT. We
showed post∗(INIT) ⊆↑Bpost(INIT) and thus, ↑post∗(INIT) ⊆↑Bpost(INIT).
“⊆”: By definition of lossiness and ⊥-boundedness, if ↑{b} is reachable from
INIT, also b is reachable from INIT. We showed Bpost(INIT) ⊆ post∗(INIT)
and hence, ↑Bpost(INIT) ⊆↑post∗(INIT).
The set Bpost(INIT) can be computed as follows: By Lemma 2.3, a basis
of pre∗(↑{b}) is computable. By definition of weak ∩-effectiveness, we can
decide whether INIT ∩ pre∗(↑{b}) is non-empty. The latter is equivalent to
the statement that ↑{b} is reachable from INIT.

130

Appendix C

Computations

We give more detailed computations for the studied examples. All computa-
tions were implemented in basic Java code and run on a standard device.
Additionally, the examples were verified by hand.

We used the procedure for GTSs with a ∩-based graph class S = I ′ ∩ J
to obtain the basis of preS(I) for I ∈ I:

1. Compute the basis of pre(I) in the class of all graphs, according to
König & Stückrath [KS17, Procedure 1 & Proposition 8]: We apply the
rules backwards on the upward-closure of the given basis graphs of I. To
achieve this, we “prepare” the rules, i.e., for every rule ⟨L ⇀ R⟩ and
every graph R′ ≤ R, we include the rule ⟨L ⇀ R′⟩ where the morphism
is the composition of L ⇀ R and R ⇀ R′. We construct the minimal
pushout complements (POCs) w.r.t. the prepared rules and the basis
graphs, i.e., if we find a morphism R′ ↪→ BI for a prepared rule
⟨L ⇀ R′⟩ and a basis graph BI , we compute all29 POCs as in the
diagram below.

⟨L ⇀ R′⟩

POC ⇀ BI︸︷︷︸
basis graph

↪→↪→

2. Compute the basis of pre(I) ∩ I ′, cp. Lemma 2.1 (∨-normal form).
Take only the basis graphs in J .

In most cases, the basis of pre(I) is included in S and, hence, is also the
basis of preS(I). To obtain the basis of pre≤k+1

S (I), we use the equation

pre≤k+1
S (I) = preS(pre

≤k
S (I))∪ I, i.e., we add the basis of I to the computed

basis of preS(pre
≤k
S (I)) and minimize the obtained set of graphs.

29For some cases, a POC may not exist. Then, the computed set is empty.

131

Appendix C Computations

Example C.1 (computation of the predecessor basis). Consider the
∩-based graph class S = I ′ ∩ J of all graphs consisting of one node with
incident loops of which at least one is labeled with a. The ideal I ′ =
J∃(a)K expresses that there exists a node with an a-labeled loop and
the ant-ideal J = J¬∃()K negates the existence of two nodes. Consider the
single rule deleting a b-labeled loops and adding two a-labeled loops at the
same node. The ideal I is the upward-closure of the single graph consisting
of a node with one incident a-labeled loop.

Given:
graph class: S = J∃(a)K ∩ J¬∃()K

rule:
〈

1

b

⇀
1

a

a 〉
basis of I: a

We derive four prepared rules by taking into account the four subgraphs of
the right-hand side. Regarding three of them, we can construct the pushout
complements. The single minimal pushout complement is the basis of pre(I)
(in the class of all graphs). By using the method in the proof of Lemma 2.1,
we obtain the single basis graph of pre(I)∩ J∃(a)K which consists of one
node with one a-labeled and one b-labeled loop. Since this graph does not
contain two nodes, it is an element of J . Thus, the latter graph forms the
basis of preS(I).

Computation:

prepared rules:
〈

1

b

⇀
1

a

a ∣∣∣
1

a
∣∣∣
1

∣∣∣∅〉

basis of pre(I):

b

basis of pre(I) ∩ J∃(a)K: a

b

basis of preS(I): a

b

basis of pre≤1
S (I): a

To obtain the basis of pre≤1
S (I), we add the basis graph of I. Since the basis

graph of I is smaller than the basis graph of preS(I), the basis of pre≤1
S (I)

consists of the basis graph of I.

132

Computations Appendix C

Circular Process Protocol

We consider the circular process protocol. The graph class S is depicted in
Section 5.3. We write

Bpost for the basis of ↑post∗(INIT),
Fpost,Bad for the finite representation of post∗(INIT) ∩ JBadKS ,
BSafe for the basis of JSafeKS , and
B≤k
Safe for the basis of pre≤k(JSafeKS)

where k ≥ 1.

Instance 1:
GTS: rules in Figure 5.5, graph class depicted on page 80

INIT:

P0 P1

P2

c2c0

c1

Bad: ¬AllEnabled=¬∃
(

P0 P1

P2

c2c0

c1)
∧∧i=1,2 ¬∃

(
P0

Pi

c0 ci)

Safe: AllEnabled=∃
(

P0 P1

P2

c2c0

c1)
∨∨i=1,2 ∃

(
P0

Pi

c0 ci)

In the first step, we compute the basis Bpost which consists of all basis
graphs of S. These graphs are contained in JBadKS . Hence, the finite
representation Fpost,Bad consists of all basis graphs of S. We iteratively

check whether Fpost,Bad ⊆↑ B≤k
Safe. If this is the case, we terminate (the

current k is kmin). Otherwise, we check whether the next basis B≤k+1
Safe is

equal to B≤k
Safe (up to isomorphism). If this is the case, we terminate (there

is no such k), otherwise, we continue.

133

Appendix C Computations

Computation:

Bpost:
P0 P1

P2

,
P0

P1

,
P0

P2

Fpost,Bad :

P0 P1

P2

,
P0

P1

,
P0

P2

BSafe:
P0 P1

P2

c2c0

c1

,
P0

P1

c0 c1

,
P0

P2

c0 c2

B≤1
Safe:

P0 P1

P2

c1

c2
,

P0 P1

P2

c0

c1

,

P0 P1

P2
c0

c0 c2
,

P0 P1

P2
c1

c0 c2
,

P0

P1

c1

c0
,

P0

P1
c0

c0
,

P0

P1
c1

c0
,

P0

P1

c0 c1

,
P0

P2

c2

c0
,

P0

P2
c0

c0
,

P0

P2
c2

c0
,

P0

P2

c0 c2

B≤2
Safe:

P0 P1

P2

c1

c2
,

P0 P1

P2

c0

c2
,

P0 P1

P2

c0

c1

,

P0 P1

P2

c1 c2
,

P0 P1

P2

c0 c2
,

P0 P1

P2

c1c2

,

P0 P1

P2

c1c1

,

P0 P1

P2

c0c1

,

P0 P1

P2
c0

c1
,

P0 P1

P2
c0

c0
,

P0 P1

P2

c1

c2
,

P0

P1

c1

,
P0

P1

c1 c0

,
P0

P1

c0 c0

,
P0

P1
c0

c1
,

134

Computations Appendix C

P0

P1
c0

c0
,

P0

P2
c0

c2
,

P0

P2
c0

c0
,

P0

P2

c2

,

P0

P2

c2 c0

,
P0

P2

c0 c0

B≤3
Safe:

P0 P1

P2

c0

c2
,

P0 P1

P2

c1

,

P0 P1

P2

c2

c1
,

P0 P1

P2

c1

c2
,

P0 P1

P2

c1

c2
,

P0 P1

P2

c1

c2

,

P0 P1

P2

c2

c2
,

P0 P1

P2

c2

c0
,

P0 P1

P2

c0
,

P0 P1

P2

c1

c0

,

P0 P1

P2

c1 c0
,

P0 P1

P2

c1 c2
,

P0

P1

c1

,
P0

P1

c0

,
P0

P1

c1

,

P0

P1

c0

c0
,

P0

P2

c2

,
P0

P2

c0

,
P0

P2

c0

c0
,

P0

P2

c2

B≤4
Safe:

P0

P1

c0

,
P0

P1

c1

,

P0 P1

P2

c2
,

P0 P1

P2

c0c2

,

P0 P1

P2

c0c2

,

P0 P1

P2

c2 c1
,

P0 P1

P2

c2

c1
,

P0 P1

P2

c0
,

P0

P2

c0

,
P0

P2

c2

,

P0 P1

P2

c0
,

P0 P1

P2

c1
,

P0 P1

P2

c0

c1
,

P0

P1

c1

,
P0

P1

c0

,
P0

P2

c2

,
P0

P2

c0

,

135

Appendix C Computations

P0 P1

P2

c1

B≤5
Safe:

P0 P1

P2

c0
,

P0 P1

P2

c1
,

P0 P1

P2

c2
,

P0 P1

P2

c0

,

P0 P1

P2

c1

,

P0 P1

P2

c2

,

P0 P1

P2

c0
,

P0 P1

P2

c1
,

P0

P1

,
P0

P2

B≤6
Safe:

P0 P1

P2

,
P0

P1

,
P0

P2

⇒ Fpost,Bad ⊆↑B≤6
Safe

We find that Fpost,Bad ⊆↑B≤6
Safe. Thus, kmin = 6.

Conclusion:
post∗(INIT)∩JBadKS ⊆ pre≤6(JSafeKS) minimal
kmin: 6

Instance 2:
GTS: rules in Figure 5.5, graph class depicted on page 80

INIT:

P0 P1

P2

c2c0

c1

Bad: Command(c2) = ∃
(

c2
)

Safe: Collection(c0, c1) = ∃
(

c0
c1

)

In the first step, we compute the basis BBad. The finite representa-
tion Fpost,Bad consists of all graphs B in BBad s.t. B ∈↓ post∗(INIT). We

iteratively check whether Fpost,Bad ⊆↑B≤k
Safe. If this is the case, we terminate

(the current k is kmin). Otherwise, we check whether the next basis B≤k+1
Safe is

equal to B≤k
Safe (up to isomorphism). If this is the case, we terminate (there

is no such k), otherwise, we continue.

136

Computations Appendix C

Computation:

BBad:

P0 P1

P2

c2
,

P0 P1

P2

c2

,

P0 P1

P2

c2
,

P0

P1

c2

,

P0

P1

c2

,
P0

P2

c2

,
P0

P2

c2

Fpost,Bad:

P0 P1

P2

c2
,

P0 P1

P2

c2

,
P0

P1

c2

,
P0

P1

c2

,
P0

P2

c2

BSafe:
P0 P1

P2

c0

c2
,

P0 P1

P2

c0c2

,

P0 P1

P2
c0

c2
,

P0

P1

c0

c2
,

P0

P1
c0

c2
,

P0

P2

c0

c2
,

P0

P2
c0

c2

B≤1
Safe:

P0 P1

P2

c1

,

P0 P1

P2

c0

c1
,

P0 P1

P2

c0

c1
,

P0 P1

P2

c2

c1
,

P0 P1

P2

c0 c1
,

P0 P1

P2

c0 c2
,

P0 P1

P2

c0

c0

,

P0 P1

P2
c0

c1
,

P0 P1

P2

c1 c0
,

P0 P1

P2

c1 c2
,

P0 P1

P2

c1

c0

,
P0

P1

c0

,
P0

P1

c0 c0

,
P0

P1
c0

c1
,

P0

P1

c1

,
P0

P1

c1 c0

,
P0

P2

c1

,
P0

P2

c0 c0

,

P0

P2
c0

c1
,

P0

P2

c0 c2

,
P0

P2

c1 c2

137

Appendix C Computations

B≤2
Safe:

P0 P1

P2

c0

c2
,

P0 P1

P2

c2

c2
,

P0 P1

P2

c1

,

P0 P1

P2

c0

c0
,

P0 P1

P2

c0

c2
,

P0 P1

P2

c1
,

P0 P1

P2

c0
,

P0 P1

P2

c1
,

P0

P1

c1

,
P0

P1

c0

c0
,

P0

P1

c0

,
P0

P1

c1

,
P0

P2

c1

,

P0

P2

c0

c0
,

P0

P2

c0

c2
,

P0

P2

c2

c2
,

P0

P2

c0

,

P0

P2

c1

B≤3
Safe:

P0 P1

P2

c0
,

P0 P1

P2

c1
,

P0 P1

P2

c2
,

P0 P1

P2

c1

,

P0 P1

P2

c0c0

,

P0 P1

P2

c0c2

,

P0 P1

P2

c0
,

P0 P1

P2

c1
,

P0

P1

c0

,
P0

P1

c1

,
P0

P2

c1

,
P0

P2

c2

,
P0

P2

c0

,

P0

P1

c0

,
P0

P1

c1

,
P0

P2

c0

,
P0

P2

c1

B≤4
Safe:

P0 P1

P2

c0
,

P0 P1

P2

c1
,

P0 P1

P2

c2
,

P0 P1

P2

c0

,

P0 P1

P2

c1

,

P0 P1

P2

c2

,

P0 P1

P2

c1
,

P0

P1

,
P0

P2

⇒ Fpost,Bad ⊆↑B≤4
Safe

We find that Fpost,Bad ⊆↑B≤4
Safe. Thus, kmin = 4.

138

Computations Appendix C

Conclusion:
post∗(INIT)∩JBadKS ⊆ pre≤4(JSafeKS) minimal
kmin: 4

We consider the third instance to illustrate the decidability algorithm for
the case that Bad is positive and Safe is negative. The finite representation
Fpost,Bad is computed in the same way as for the second instance. This case
differs from the previous two cases in the second step. The inclusion test
is not based on the ideal reachability algorithm but uses post∗-effectiveness
(by ⊥-boundedness) instead.

Instance 3:
GTS: rules in Figure 5.5, graph class depicted on page 80

INIT:

P0 P1

P2

c2c0

c1

Bad: AllEnabled=∃
(

P0 P1

P2

c2c0

c1)
∨∨i=1,2 ∃

(
P0

Pi

c0 ci)

Safe: ¬AllEnabled=¬∃
(

P0 P1

P2

c2c0

c1)
∧∧i=1,2 ¬∃

(
P0

Pi

c0 ci)

In the first step, we compute the basis BBad which consists of the three graphs
occurring in the positive constraint Bad.. The finite representation Fpost,Bad

consists of all graphs B in BBad s.t. B ∈↓post∗(INIT), i.e., all graphs B in
BBad whose upward-closure ↑ {B} is reachable from INIT. For a graph G,
let Bpost(G) be the basis of ↑post∗(G). For every G ∈ Fpost,Bad, we check
whether Bpost(G) ∩ JSafeKS ̸= ∅. If this is the case for every G ∈ Fpost,Bad,
there exists a bound k, otherwise it does not exist.

139

Appendix C Computations

Computation:

BBad:

P0 P1

P2

c2c0

c1

,
P0

P1

c0 c1

,
P0

P2

c0 c2

Fpost,Bad:

P0 P1

P2

c2c0

c1

︸ ︷︷ ︸
G1

,
P0

P1

c0 c1

︸ ︷︷ ︸
G2

,
P0

P2

c0 c2

︸ ︷︷ ︸
G3

Bpost(G1):

P0 P1

P2

,
P0

P1

,
P0

P2

⇒ Bpost(G1) ∩ JSafeKS ̸= ∅

Bpost(G2):
P0

P1

⇒ Bpost(G2) ∩ JSafeKS ̸= ∅

Bpost(G3):
P0

P2

⇒ Bpost(G3) ∩ JSafeKS ̸= ∅

We conclude that there exists a bound k.

Conclusion:
∃k ≥ 0 : post∗(INIT) ∩ JBadKS ⊆ pre≤k(JSafeKS)

Since Safe is a negative constraint, our conclusion states only the existence
of a bound k. Note that we can infer that kmin = 1 by hand: By applying
any Clear-rule to any graph in which all processes are enabled, we can
reach a graph in which at least one process is not enabled in one step. Thus,
kmin ≤ 1. Since ¬AllEnabled is the negation of AllEnabled, kmin ̸= 0.

For the fourth instance, we use that the negative constraint ¬3Processes
is equivalent to the positive constraint 2Processes.

140

Computations Appendix C

Instance 4:
GTS: rules in Figure 5.5, graph class depicted on page 80

INIT:

P0 P1

P2

c2c0

c1

Bad: NoCommand =
∧

i=0,1,2 ¬∃
(

ci
)

Safe: 2Processes = ∃
(

P0

P1

)
∨ ∃
(

P0

P2

)

In the first step, we compute the basis Bpost which consists of all basis
graphs of S. These graphs are contained in JBadKS . Hence, the finite
representation Fpost,Bad consists of all basis graphs of S. We iteratively

check whether Fpost,Bad ⊆↑ B≤k
Safe. If this is the case, we terminate (the

current k is kmin). Otherwise, we check whether the next basis B≤k+1
Safe is

equal to B≤k
Safe (up to isomorphism). If this is the case, we terminate (there

is no such k), otherwise, we continue.

Computation:

Bpost:
P0 P1

P2

,
P0

P1

,
P0

P2

Fpost,Bad :

P0 P1

P2

,
P0

P1

,
P0

P2

BSafe:
P0

P1

,
P0

P2

B≤1
Safe:

P0 P1

P2

c2
,

P0 P1

P2

c1

,
P0

P1

,
P0

P2

B≤2
Safe:

P0 P1

P2

c0
,

P0 P1

P2

c1

,

P0 P1

P2

c2

,

P0 P1

P2

c0
,

P0 P1

P2

c1
,

P0

P1

,
P0

P2

141

Appendix C Computations

B≤3
Safe:

P0 P1

P2

c0
,

P0 P1

P2

c1
,

P0 P1

P2

c2
,

P0 P1

P2

c1

,

P0 P1

P2

c2

,

P0 P1

P2

c0
,

P0 P1

P2

c1
,

P0 P1

P2

c2
,

P0

P1

,
P0

P2

B≤4
Safe:

P0 P1

P2

c0
,

P0 P1

P2

c1
,

P0 P1

P2

c2
,

P0 P1

P2

c0

,

P0 P1

P2

c1

,

P0 P1

P2

c2

,

P0 P1

P2

c0
,

P0 P1

P2

c1
,

P0 P1

P2

c2
,

P0

P1

,
P0

P2

B≤5
Safe:

P0 P1

P2

,
P0

P1

,
P0

P2

⇒ Fpost,Bad ⊆↑B≤5
Safe

We find that Fpost,Bad ⊆↑B≤5
Safe. Thus, kmin = 5.

Conclusion:
post∗(INIT)∩JBadKS ⊆ pre≤5(JSafeKS) minimal
kmin: 5

Instance 5:
GTS: rules in Figure 5.5, graph class depicted on page 80

INIT:

P0 P1

P2

c2c0

c1

Bad: ¬3Processes = ¬∃
(

P0 P1

P2

)

Safe: 3Processes = ∃
(

P0 P1

P2

)

142

Computations Appendix C

In the first step, we compute the basis Bpost which consists of all basis graphs
of S. The finite representation Fpost,Bad consists of the two basis graphs with

two processes. We iteratively check whether Fpost,Bad ⊆↑B≤k
Safe. If this is the

case, we terminate (the current k is kmin). Otherwise, we check whether the
next basis B≤k+1

Safe is equal to B≤k
Safe (up to isomorphism). If this is the case,

we terminate (there is no such k), otherwise, we continue.

Computation:

Bpost:
P0 P1

P2

,
P0

P1

,
P0

P2

Fpost,Bad :
P0

P1

,
P0

P2

BSafe:
P0 P1

P2

B≤1
Safe:

P0 P1

P2

⇒ B≤1
Safe = BSafe

We conclude that there does not exist a bound k.

Conclusion:
̸ ∃k ≥ 0 : post∗(INIT) ∩ JBadKS ⊆ pre≤k(JSafeKS)

143

Appendix C Computations

Supply Chain

We consider the supply chain as Petri net in Example 4.3. The markings
are represented by tuples. We write Bpost for the basis of ↑ post∗(INIT)
and Fpost,BAD for the finite representation of post∗(INIT)∩BAD. Moreover,

we write BSAFE for the basis of SAFE and B≤k
SAFE for the basis of pre≤k(SAFE)

where k ≥ 1.

Given:
WSTS: Petri net in Figure 4.4
INIT: ⟨0, 1, 1, 1⟩
BAD: M marking :M(warehouse) = 0 or M(storei) = 0 for some i
SAFE: M marking :M(warehouse),M(store1),M(store2) ≥ 1

In the first step, we compute the basis Bpost which consists only of the
zero-marking. Hence, the finite respresentation Fpost,BAD consists also of the

zero-marking. We iteratively check whether Fpost,BAD ⊆↑B≤k
SAFE. If this is

the case, we terminate (the current k is kmin). Otherwise, we check whether
the next basis B≤k+1

SAFE is equal to B≤k
SAFE. If this is the case, we terminate

(there is no such k), otherwise, we continue.

Computation:
Bpost: ⟨0, 0, 0, 0⟩
Fpost,BAD: ⟨0, 0, 0, 0⟩
BSAFE: ⟨0, 1, 1, 1⟩
B≤1
SAFE: ⟨0, 1, 1, 1⟩, ⟨0, 2, 0, 1⟩, ⟨0, 2, 1, 0⟩, ⟨1, 0, 1, 1⟩
B≤2
SAFE: ⟨0, 0, 1, 1⟩, ⟨0, 2, 0, 1⟩, ⟨0, 2, 1, 0⟩, ⟨0, 3, 0, 0⟩
B≤3
SAFE: ⟨0, 0, 1, 1⟩, ⟨0, 2, 0, 1⟩, ⟨0, 2, 1, 0⟩, ⟨0, 3, 0, 0⟩, ⟨1, 1, 0, 1⟩, ⟨1, 1, 1, 0⟩,

⟨1, 2, 0, 0⟩
B≤4
SAFE: ⟨0, 0, 1, 1⟩, ⟨0, 1, 0, 1⟩, ⟨0, 1, 1, 0⟩, ⟨0, 2, 0, 0⟩, ⟨2, 0, 0, 1⟩, ⟨2, 0, 1, 0⟩,

⟨2, 1, 0, 0⟩
B≤5
SAFE: ⟨0, 0, 1, 1⟩, ⟨0, 1, 0, 1⟩, ⟨0, 1, 1, 0⟩, ⟨0, 2, 0, 0⟩, ⟨1, 0, 0, 1⟩, ⟨1, 0, 1, 0⟩,

⟨1, 1, 0, 0⟩, ⟨3, 0, 0, 0⟩
B≤6
SAFE: ⟨0, 0, 0, 1⟩, ⟨0, 0, 1, 0⟩, ⟨0, 1, 0, 0⟩, ⟨2, 0, 0, 0⟩
B≤7
SAFE: ⟨0, 0, 0, 1⟩, ⟨0, 0, 1, 0⟩, ⟨0, 1, 0, 0⟩, ⟨1, 0, 0, 0⟩
B≤8
SAFE: ⟨0, 0, 0, 0⟩

We find that Fpost,Bad ⊆↑B≤8
Safe. Thus, kmin = 8.

Conclusion:
post∗(INIT)∩BAD ⊆ pre≤8(SAFE) minimal
kmin: 8

144

Computations Appendix C

Supply Chain II

We consider the supply chain II as joint GTS in Example 5.5. However,
for the graphs, we use the representations as markings with an additional
state of the control automaton. The control states are numbered along
the paths in the automaton in Figure 5.4 (upper path: q1, q2, q3, lower
path: q5, q6, q7). Since the initial graph satisfies Safe, we assume that an
environment was applied iff the current state of the control automaton
is q0. We write Bpost for the basis of ↑ post∗(INIT), BAD for JBadKS ,
and Fpost,BAD for the finite representation of post∗(INIT)∩BAD. Moreover,

we write BSAFE for the basis of SAFE = JSafeKS and B≤k
SAFE for the basis of

pre≤k(SAFE) where k ≥ 1.

Given:
GTS: joint GTS constructed from Figure 5.4
INIT: ⟨0, 1, 1, 1, q0⟩
BAD: ⟨M, q0⟩ :M marking
SAFE: ⟨M, q⟩ :M marking,M(warehouse),M(store1),M(store2) ≥ 1

In this case, we directly compute the finite representation Fpost,BAD using
that this example constitutes a Petri net.30 We iteratively check whether
Fpost,BAD ⊆↑B≤k

SAFE. If this is the case, we terminate (the current k is kmin).

Otherwise, we check whether the next basis B≤k+1
SAFE is equal to B≤k

SAFE. If this
is the case, we terminate (there is no such k), otherwise, we continue.

Computation:
Fpost,BAD: ⟨0, 1, 1, 1, q0⟩, ⟨0, 5, 0, 0, q0⟩, ⟨0, 0, 3, 0, q0⟩, ⟨0, 0, 0, 3, q0⟩,

⟨0, 1, 2, 0, q0⟩, ⟨0, 1, 0, 2, q0⟩, ⟨0, 0, 2, 1, q0⟩, ⟨0, 0, 1, 2, q0⟩,
⟨0, 3, 1, 0, q0⟩, ⟨0, 3, 0, 1, q0⟩

BSAFE: ⟨0, 1, 1, 1, qi⟩ for 0 ≤ i ≤ 7

B≤1
SAFE : ⟨0, 1, 1, 1, q0⟩, ⟨0, 2, 0, 1, q0⟩, ⟨0, 2, 1, 0, q0⟩, ⟨0, 1, 1, 1, q1⟩,

⟨1, 0, 1, 1, q1⟩, ⟨0, 1, 1, 1, q2⟩, ⟨0, 2, 0, 1, q2⟩, ⟨0, 2, 1, 0, q2⟩,
⟨0, 1, 1, 1, q3⟩, ⟨1, 0, 1, 1, q3⟩, ⟨0, 1, 1, 1, q4⟩, ⟨0, 1, 1, 1, q5⟩,
⟨0, 2, 0, 1, q5⟩, ⟨0, 2, 1, 0, q5⟩, ⟨0, 1, 1, 1, q6⟩, ⟨1, 0, 1, 1, q6⟩,
⟨0, 1, 1, 1, q7⟩

B≤2
SAFE : ⟨0, 0, 1, 1, q0⟩, ⟨0, 2, 0, 1, q0⟩, ⟨0, 2, 1, 0, q0⟩, ⟨0, 3, 0, 0, q0⟩,

⟨0, 1, 1, 1, q1⟩, ⟨1, 0, 1, 1, q1⟩, ⟨1, 0, 1, 1, q1⟩, ⟨1, 1, 0, 1, q1⟩,
⟨1, 1, 1, 0, q1⟩, ⟨0, 0, 1, 1, q2⟩, ⟨0, 2, 1, 0, q2⟩, ⟨0, 2, 0, 1, q2⟩,
⟨0, 1, 1, 1, q3⟩, ⟨1, 0, 1, 1, q3⟩, ⟨0, 1, 1, 1, q4⟩, ⟨0, 2, 0, 2, q4⟩,
⟨0, 2, 2, 0, q4⟩, ⟨0, 3, 0, 1, q4⟩, ⟨0, 3, 1, 0, q4⟩, ⟨0, 1, 1, 1, q5⟩,
⟨0, 2, 0, 1, q5⟩, ⟨0, 2, 1, 0, q5⟩, ⟨0, 1, 1, 1, q6⟩, ⟨1, 0, 1, 1, q6⟩,
⟨0, 1, 1, 1, q7⟩, ⟨0, 2, 0, 2, q7⟩, ⟨0, 2, 2, 0, q7⟩

30We computed the basis of ↑post≤27(INIT) and proved that it contains all basis elements
of ↑post∗(INIT) with the control state q0.

145

Appendix C Computations

B≤3
SAFE : ⟨0, 0, 1, 1, q0⟩, ⟨0, 1, 0, 1, q0⟩, ⟨0, 1, 1, 0, q0⟩, ⟨0, 3, 0, 0, q0⟩,

⟨1, 0, 1, 1, q1⟩, ⟨1, 1, 0, 1, q1⟩, ⟨0, 1, 1, 1, q1⟩, ⟨1, 1, 1, 0, q1⟩,
⟨0, 0, 1, 1, q2⟩, ⟨0, 2, 0, 1, q2⟩, ⟨0, 2, 1, 0, q2⟩, ⟨1, 2, 0, 1, q3⟩,
⟨1, 2, 1, 0, q3⟩, ⟨1, 1, 2, 0, q3⟩, ⟨1, 1, 0, 2, q3⟩, ⟨1, 0, 1, 1, q3⟩,
⟨0, 1, 1, 1, q3⟩, ⟨0, 1, 1, 1, q4⟩, ⟨0, 3, 0, 1, q4⟩, ⟨0, 4, 0, 0, q4⟩,
⟨0, 3, 1, 0, q4⟩, ⟨0, 0, 2, 1, q4⟩, ⟨0, 2, 2, 0, q4⟩, ⟨0, 0, 1, 2, q4⟩,
⟨0, 2, 0, 2, q4⟩, ⟨0, 0, 1, 1, q5⟩, ⟨0, 2, 0, 1, q5⟩, ⟨0, 2, 1, 0, q5⟩,
⟨1, 1, 2, 0, q6⟩, ⟨1, 1, 0, 2, q6⟩, ⟨1, 0, 1, 1, q6⟩, ⟨0, 1, 1, 1, q6⟩,
⟨0, 0, 2, 1, q7⟩, ⟨0, 3, 1, 0, q7⟩, ⟨0, 2, 2, 0, q7⟩, ⟨0, 3, 0, 1, q7⟩,
⟨0, 0, 1, 2, q7⟩, ⟨0, 2, 0, 2, q7⟩, ⟨0, 1, 1, 1, q7⟩

B≤4
SAFE : ⟨0, 1, 0, 1, q0⟩, ⟨0, 1, 1, 0, q0⟩, ⟨0, 0, 1, 1, q0⟩, ⟨0, 3, 0, 0, q0⟩,

⟨1, 1, 1, 0, q1⟩, ⟨1, 0, 1, 1, q1⟩, ⟨1, 1, 0, 1, q1⟩, ⟨0, 1, 1, 1, q1⟩,
⟨0, 2, 0, 1, q2⟩, ⟨0, 4, 0, 0, q2⟩, ⟨0, 2, 1, 0, q2⟩, ⟨0, 1, 2, 0, q2⟩,
⟨0, 1, 0, 2, q2⟩, ⟨0, 0, 1, 1, q2⟩, ⟨1, 0, 1, 1, q3⟩, ⟨1, 2, 0, 1, q3⟩,
⟨1, 3, 0, 0, q3⟩, ⟨1, 2, 1, 0, q3⟩, ⟨1, 1, 2, 0, q3⟩, ⟨1, 1, 0, 2, q3⟩,
⟨0, 1, 1, 1, q3⟩, ⟨0, 1, 1, 1, q4⟩, ⟨0, 2, 0, 1, q4⟩, ⟨0, 2, 1, 0, q4⟩,
⟨0, 4, 0, 0, q4⟩, ⟨0, 0, 2, 1, q4⟩, ⟨0, 1, 2, 0, q4⟩, ⟨0, 0, 1, 2, q4⟩,
⟨0, 1, 0, 2, q4⟩, ⟨0, 2, 1, 0, q5⟩, ⟨0, 4, 0, 0, q5⟩, ⟨0, 2, 0, 1, q5⟩,
⟨0, 1, 2, 0, q5⟩, ⟨0, 1, 0, 2, q5⟩, ⟨0, 0, 1, 1, q5⟩, ⟨1, 2, 1, 0, q6⟩,
⟨1, 1, 2, 0, q6⟩, ⟨1, 1, 0, 2, q6⟩, ⟨1, 2, 0, 1, q6⟩, ⟨1, 0, 1, 1, q6⟩,
⟨0, 1, 1, 1, q6⟩, ⟨0, 0, 2, 1, q7⟩, ⟨0, 1, 1, 1, q7⟩, ⟨0, 1, 2, 0, q7⟩,
⟨0, 3, 1, 0, q7⟩, ⟨0, 3, 0, 1, q7⟩, ⟨0, 0, 1, 2, q7⟩, ⟨0, 1, 0, 2, q7⟩

B≤5
SAFE : ⟨0, 1, 0, 1, q0⟩, ⟨0, 1, 1, 0, q0⟩, ⟨0, 0, 1, 1, q0⟩, ⟨0, 3, 0, 0, q0⟩,

⟨1, 1, 0, 1, q1⟩, ⟨1, 1, 1, 0, q1⟩, ⟨1, 0, 2, 0, q1⟩, ⟨1, 0, 0, 2, q1⟩,
⟨0, 1, 1, 1, q1⟩, ⟨1, 3, 0, 0, q1⟩, ⟨1, 0, 1, 1, q1⟩, ⟨0, 0, 1, 1, q2⟩,
⟨0, 2, 0, 1, q2⟩, ⟨0, 3, 0, 0, q2⟩, ⟨0, 2, 1, 0, q2⟩, ⟨0, 1, 2, 0, q2⟩,
⟨0, 1, 0, 2, q2⟩, ⟨1, 0, 1, 1, q3⟩, ⟨1, 1, 0, 1, q3⟩, ⟨1, 1, 1, 0, q3⟩,
⟨1, 3, 0, 0, q3⟩, ⟨1, 0, 2, 0, q3⟩, ⟨1, 0, 0, 2, q3⟩, ⟨0, 1, 1, 1, q3⟩,
⟨0, 2, 0, 1, q4⟩, ⟨0, 2, 1, 0, q4⟩, ⟨0, 1, 1, 1, q4⟩, ⟨0, 4, 0, 0, q4⟩,
⟨0, 1, 2, 0, q4⟩, ⟨0, 0, 2, 1, q4⟩, ⟨0, 1, 0, 2, q4⟩, ⟨0, 0, 1, 2, q4⟩,
⟨0, 4, 0, 0, q5⟩, ⟨0, 2, 1, 0, q5⟩, ⟨0, 1, 2, 0, q5⟩, ⟨0, 1, 0, 2, q5⟩,
⟨0, 2, 0, 1, q5⟩, ⟨0, 0, 1, 1, q5⟩, ⟨1, 0, 1, 1, q6⟩, ⟨1, 0, 2, 0, q6⟩,
⟨1, 2, 1, 0, q6⟩, ⟨1, 0, 0, 2, q6⟩, ⟨1, 2, 0, 1, q6⟩, ⟨0, 1, 1, 1, q6⟩,
⟨0, 0, 2, 1, q7⟩, ⟨0, 3, 1, 0, q7⟩, ⟨0, 1, 1, 1, q7⟩, ⟨0, 1, 2, 0, q7⟩,
⟨0, 1, 0, 2, q7⟩, ⟨0, 0, 1, 2, q7⟩, ⟨0, 3, 0, 1, q7⟩

B≤6
SAFE: ⟨0, 1, 0, 1, q0⟩, ⟨0, 1, 1, 0, q0⟩, ⟨0, 0, 2, 0, q0⟩, ⟨0, 0, 0, 2, q0⟩,

⟨0, 3, 0, 0, q0⟩, ⟨0, 0, 1, 1, q0⟩, ⟨1, 1, 0, 1, q1⟩, ⟨1, 2, 0, 0, q1⟩,
⟨1, 1, 1, 0, q1⟩, ⟨1, 0, 2, 0, q1⟩, ⟨1, 0, 0, 2, q1⟩, ⟨1, 0, 1, 1, q1⟩,
⟨0, 1, 1, 1, q1⟩, ⟨0, 0, 1, 1, q2⟩, ⟨0, 1, 0, 1, q2⟩, ⟨0, 1, 1, 0, q2⟩,
⟨0, 3, 0, 0, q2⟩, ⟨0, 0, 2, 0, q2⟩, ⟨0, 0, 0, 2, q2⟩, ⟨1, 1, 0, 1, q3⟩,
⟨1, 1, 1, 0, q3⟩, ⟨1, 0, 1, 1, q3⟩, ⟨1, 3, 0, 0, q3⟩, ⟨1, 0, 2, 0, q3⟩,
⟨1, 0, 0, 2, q3⟩, ⟨0, 1, 1, 1, q3⟩, ⟨0, 2, 0, 1, q4⟩, ⟨0, 2, 1, 0, q4⟩,
⟨0, 1, 1, 1, q4⟩, ⟨0, 4, 0, 0, q4⟩, ⟨0, 1, 2, 0, q4⟩, ⟨0, 0, 2, 1, q4⟩,

146

Computations Appendix C

⟨0, 1, 0, 2, q4⟩, ⟨0, 0, 1, 2, q4⟩, ⟨0, 0, 1, 1, q5⟩, ⟨0, 0, 2, 0, q5⟩,
⟨0, 2, 1, 0, q5⟩, ⟨0, 0, 0, 2, q5⟩, ⟨0, 2, 0, 1, q5⟩, ⟨0, 4, 0, 0, q5⟩,
⟨1, 0, 1, 1, q6⟩, ⟨1, 0, 2, 0, q6⟩, ⟨1, 2, 1, 0, q6⟩, ⟨1, 0, 0, 2, q6⟩,
⟨1, 2, 0, 1, q6⟩, ⟨0, 1, 1, 1, q6⟩⟨0, 1, 0, 2, q7⟩, ⟨0, 1, 1, 1, q7⟩,
⟨0, 1, 2, 0, q7⟩, ⟨0, 0, 2, 1, q7⟩, ⟨0, 3, 1, 0, q7⟩, ⟨0, 0, 1, 2, q7⟩,
⟨0, 3, 0, 1, q7⟩

⇒ Fpost,BAD ⊆↑B≤6
SAFE.

We find that Fpost,Bad ⊆↑B≤13
SAFE. Thus, kmin = 6.

Conclusion:
post∗(INIT)∩BAD ⊆ pre≤6(SAFE) minimal
kmin: 6

147

Appendix C Computations

Path Game

We consider the path game as joint GTS. The graph class S is depicted
in Example 5.4. We use the same notation as in the computations for the
circular process protocol. We assume that Bad is equivalent to the existence
of a q0-labeled node. (The following computation of the basis Bpost implies
that including the initial graph has no impact on the result.)

Given:
GTS: joint GTS constructed from Example 5.4

INIT: L L q0

Bad: ∃(q0)
Safe: ∃(L L) ∨ ∃(L L)

In the first step, we compute the basis Bpost using the fact that we can reach
a graph without edges when the system is only applying Rev-rules. The finite
representation consists of the latter graph with the control state q0. We
iteratively check whether Fpost,Bad ⊆↑B≤k

Safe. If this is the case, we terminate

(the current k is kmin). Otherwise, we check whether the next basis B≤k+1
Safe is

equal to B≤k
Safe (up to isomorphism). If this is the case, we terminate (there

is no such k), otherwise, we continue.

Computation:

Bpost: L L q0 , L L q1

Fpost,Bad: L L q0

B≤1
Safe: L L q0 , L L q0 , L L q0 ,

L L q0 , L L q0 , L L q1 ,

L L q1

B≤2
Safe: L L q0 , L L q0 , L L q0 ,

L L q0 , L L q0 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

148

Computations Appendix C

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1

B≤3
Safe: L L q0 , L L q0 , L L q0 ,

L L q0 , L L q0 , L L q0 ,

L L q0 , L L q0 , L L q0 ,

L L q0 , L L q0 , L L q0 ,

L L q0 , L L q0 , L L q0 ,

L L q0 , L L q0 , L L q0 ,

L L q0 , L L q1 , L L q1 ,

149

Appendix C Computations

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1

B≤4
Safe: L L q0 , L L q0 , L L q0 ,

L L q0 , L L q0 , L L q0 ,

L L q0 , L L q0 , L L q0 ,

L L q0 , L L q0 , L L q0 ,

L L q0 , L L q0 , L L q0 ,

150

Computations Appendix C

L L q0 , L L q0 , L L q0 ,

L L q0 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

151

Appendix C Computations

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1

152

Computations Appendix C

B≤5
Safe: L L q0 , L L q0 , L L q0 ,

L L q0 , L L q0 , L L q0 ,

L L q0 , L L q0 , L L q0 ,

L L q0 , L L q0 , L L q0 ,

L L q0 , L L q0 , L L q0 ,

L L q0 , L L q0 , L L q0 ,

L L q0 , L L q0 , L L q0 ,

L L q0 , L L q0 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

153

Appendix C Computations

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

154

Computations Appendix C

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1

B≤6
Safe: L L q0 , L L q0 , L L q0 ,

L L q0 , L L q0 , L L q0 ,

L L q0 , L L q0 , L L q0 ,

L L q0 , L L q0 , L L q0 ,

L L q0 , L L q0 , L L q0 ,

L L q0 , L L q0 , L L q0 ,

L L q0 , L L q0 , L L q0 ,

L L q0 , L L q0 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

155

Appendix C Computations

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

156

Computations Appendix C

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1

B≤7
Safe: L L q0 , L L q0 , L L q0 ,

L L q0 , L L q0 , L L q0 ,

L L q0 , L L q0 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

157

Appendix C Computations

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1

B≤8
Safe: L L q0 , L L q0 , L L q0 ,

L L q0 , L L q0 , L L q0 ,

L L q0 , L L q0 , L L q1 ,

158

Computations Appendix C

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1

B≤9
Safe: L L q0 , L L q0 , L L q0 ,

L L q0 , L L q0 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

159

Appendix C Computations

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1

B≤10
Safe: L L q0 , L L q0 , L L q0 ,

L L q0 , L L q0 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1

B≤11
Safe: L L q0 , L L q0 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1

160

Computations Appendix C

B≤12
Safe: L L q0 , L L q0 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1

B≤13
Safe: L L q0 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1 , L L q1 , L L q1 ,

L L q1

⇒ Fpost,Bad ⊆↑B≤13
Safe

We find that Fpost,Bad ⊆↑B≤13
Safe. Thus, kmin = 13.

Conclusion:
post∗(INIT)∩JBadKS ⊆ pre≤13(JSafeKS) minimal
kmin: 13

161

Chapter C Computations

162

Bibliography

[ABJ+10] Thorsten Arendt, Enrico Biermann, Stefan Jurack, Christian
Krause, and Gabriele Taentzer. Henshin: Advanced concepts
and tools for in-place EMF model transformations. In Proc. 13th
Int. Conference on Model Driven Engineering Languages and
Systems, volume 6394 of Lecture Notes in Computer Science,
pages 121–135, 2010.

[ACD+17] S. Akshay, Supratik Chakraborty, Ankush Das, Vishal Jagannath,
and Sai Sandeep. On Petri nets with hierarchical special arcs. In
Proc. 28th Int. Conference on Concurrency Theory, volume 85
of LIPIcs, pages 40:1–40:17. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2017.

[AČJT96] Parosh Aziz Abdulla, Kārlis Čerāns, Bengt Jonsson, and Yih-
Kuen Tsay. General decidability theorems for infinite-state sys-
tems. In Proc. 11th Annual Symposium on Logic in Computer
Science, pages 313–321. IEEE, 1996.

[AGH+21] S. Akshay, Blaise Genest, Löıc Hélouët, Shankara Narayanan
Krishna, and Sparsa Roychowdhury. Resilience of timed systems.
In Proc. 41st IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science, volume
213 of LIPIcs, pages 33:1–33:22. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2021.

[AOdB09] Krzysztof R. Apt, Ernst-Rüdiger Olderog, and Frank S. de Boer.
Verification of Sequential and Concurrent Programs. Texts in
Computer Science. Springer, 2009.

[BCGM10] Paolo Baldan, Andrea Corradini, Fabio Gadducci, and Ugo
Montanari. From Petri nets to graph transformation systems.
Electron. Commun. EASST, 26, 2010.

[BCK08] Paolo Baldan, Andrea Corradini, and Barbara König. A frame-
work for the verification of infinite-state graph transformation
systems. Inf. Comput., 206(7):869–907, 2008.

163

[BCM05] Paolo Baldan, Andrea Corradini, and Ugo Montanari. Relating
SPO and DPO graph rewriting with Petri nets having read,
inhibitor and reset arcs. Electron. Notes Theor. Comput. Sci.,
127(2):5–28, 2005.

[BDK+12] Nathalie Bertrand, Giorgio Delzanno, Barbara König, Arnaud
Sangnier, and Jan Stückrath. On the decidability status of reach-
ability and coverability in graph transformation systems. In Proc.
23rd Int. Conference on Rewriting Techniques and Applications,
volume 15 of LIPIcs, pages 101–116. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2012.

[BFG20] Michael Blondin, Alain Finkel, and Jean Goubault-Larrecq. For-
ward analysis for wsts, part III: Karp-Miller trees. Log. Methods
Comput. Sci., 16(2), 2020.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of model
checking. MIT Press, 2008.

[BM99] Ahmed Bouajjani and Richard Mayr. Model checking lossy
vector addition systems. In Proc. 16th Annual Symposium on
Theoretical Aspects of Computer Science, volume 1563 of Lecture
Notes in Computer Science, pages 323–333, 1999.

[CE82] Edmund M. Clarke and E. Allen Emerson. Design and synthesis
of synchronization skeletons using branching time temporal logic.
In Proc. Logics of Programs, volume 131 of Lecture Notes in
Computer Science, pages 52–71, 1982.

[CLL+21] Wojciech Czerwiński, Slawomir Lasota, Ranko Lazić, Jérôme
Leroux, and Filip Mazowiecki. The reachability problem for Petri
nets is not elementary. J. ACM, 68(1):7:1–7:28, 2021.

[Cou90] Bruno Courcelle. Graph rewriting: An algebraic and logic ap-
proach. In Formal Models and Semantics, Handbook of Theoret-
ical Computer Science, pages 193–242. Elsevier, 1990.

[Cou97] Bruno Courcelle. The expression of graph properties and graph
transformations in monadic second-order logic. In Handbook
of Graph Grammars and Computing by Graph Transformation,
pages 313–400. World Scientific, 1997.

[DFS98] Catherine Dufourd, Alain Finkel, and Philippe Schnoebelen.
Reset nets between decidability and undecidability. In Proc.
25th Int. Colloquium on Automata, Languages and Programming,
volume 1443 of Lecture Notes in Computer Science, pages 103–
115, 1998.

[Dij74] Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed
control. Commun. ACM, 17(11):643–644, 1974.

[Din92] Guoli Ding. Subgraphs and well-quasi-ordering. J. Graph Theory,
16(5):489–502, 1992.

[Dol00] Shlomi Dolev. Self-Stabilization. MIT Press, 2000.

[EEPT06] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele
Taentzer. Fundamentals of Algebraic Graph Transformation.
EATCS Monographs in Theoretical Computer Science. Springer,
2006.

[EHK+97] Hartmut Ehrig, Reiko Heckel, Martin Korff, Michael Löwe, Leila
Ribeiro, Annika Wagner, and Andrea Corradini. Algebraic ap-
proaches to graph transformation - part II: single pushout ap-
proach and comparison with double pushout approach. In Hand-
book of Graph Grammars and Computing by Graph Transforma-
tions, Volume 1: Foundations, pages 247–312. World Scientific,
1997.

[Eme90] E. Allen Emerson. Temporal and modal logic. In Handbook
of Theoretical Computer Science, volume B, pages 995–1072.
Elsevier, 1990.

[EN94] Javier Esparza and Mogens Nielsen. Decidability issues for Petri
nets. BRICS Report Series, 1(8), 1994.

[EPS73] Hartmut Ehrig, Michael Pfender, and Hans Jürgen Schneider.
Graph-grammars: An algebraic approach. In Proc. 14th Annual
Symposium on Switching and Automata Theory, pages 167–180.
IEEE Computer Society, 1973.

[Fli16] Nils Erik Flick. Proving correctness of graph programs rela-
tive to recursively nested conditions. PhD thesis, University of
Oldenburg, 2016.

[FS01] Alain Finkel and Philippe Schnoebelen. Well-structured transi-
tion systems everywhere! Theor. Comput. Sci., 256(1-2):63–92,
2001.

[GMSS19] Holger Giese, Maria Maximova, Lucas Sakizloglou, and Sven
Schneider. Metric temporal graph logic over typed attributed
graphs. In Proc. 22nd Int. Conference on Fundamental Ap-
proaches to Software Engineering, volume 11424 of Lecture Notes
in Computer Science, pages 282–298, 2019.

[Hab92] Annegret Habel. Hyperedge Replacement: Grammars and Lan-
guages, volume 643 of Lecture Notes in Computer Science.
Springer, 1992.

[Hac85] Michel Hack. Decidability questions for Petri nets. PhD thesis,
M.I.T., 1985.

[HHT96] Annegret Habel, Reiko Heckel, and Gabriele Taentzer. Graph
grammars with negative application conditions. Fundam. Infor-
maticae, 26(3/4):287–313, 1996.

[HKK09] Karsten Hölscher, Hans-Jörg Kreowski, and Sabine Kuske. Au-
tonomous units to model interacting sequential and parallel
processes. Fundam. Informaticae, 92(3):233–257, 2009.

[HP09] Annegret Habel and Karl-Heinz Pennemann. Correctness of
high-level transformation systems relative to nested conditions.
Math. Struct. Comput. Sci., 19(2):245–296, 2009.

[HST18] Annegret Habel, Christian Sandmann, and Tilman Teusch. In-
tegration of graph constraints into graph grammars. In Graph
Transformation, Specifications, and Nets - In Memory of Hart-
mut Ehrig, volume 10800 of Lecture Notes in Computer Science,
pages 19–36, 2018.

[JF13] Scott Jackson and Timothy L. J. Ferris. Resilience principles for
engineered systems. Syst. Eng., 16:152–164, 2013.

[JK08] Salil Joshi and Barbara König. Applying the graph minor the-
orem to the verification of graph transformation systems. In
Proc. 20th Int. Conference on Computer Aided Verification, vol-
ume 5123 of Lecture Notes in Computer Science, pages 214–226.
Springer, 2008.

[KK08] Barbara König and Vitali Kozioura. AUGUR 2 - A new version of
a tool for the analysis of graph transformation systems. Electron.
Notes Theor. Comput. Sci., 211:201–210, 2008.

[KM69] Richard M. Karp and Raymond E. Miller. Parallel program
schemata. J. Comput. Syst. Sci., 3(2):147–195, 1969.

[KR06] Harmen Kastenberg and Arend Rensink. Model checking dynamic
states in GROOVE. In Proc. 13th Int. Conference on Model
Checking Software, volume 3925 of Lecture Notes in Computer
Science, pages 299–305, 2006.

[Kre80] Hans-Jörg Kreowski. A comparison between petri-nets and graph
grammars. In Proc. Int. Workshop on Graph-theoretic Concepts

in Computer Science, volume 100 of Lecture Notes in Computer
Science, pages 306–317. Springer, 1980.

[KS17] Barbara König and Jan Stückrath. Well-structured graph trans-
formation systems. Inf. Comput., 252:71–94, 2017.

[Löw91] Michael Löwe. Extended algebraic graph transformation. PhD
thesis, Technical University of Berlin, Germany, 1991.

[Löw93] Michael Löwe. Algebraic approach to single-pushout graph trans-
formation. Theor.Comput. Sci., 109:181–224, 1993.

[May84] Ernst W. Mayr. An algorithm for the general Petri net reacha-
bility problem. SIAM J. Comput., 13, 1984.

[Men97] E. Mendelsohn. Introduction to mathematical logic. Chapman &
Hall, 1997.

[Mil85] E. C. Milner. Basic WQO- and BQO-Theory. Springer Nether-
lands, 1985.

[MTF13] Nils Müllner, Oliver E. Theel, and Martin Fränzle. Combining
decomposition and reduction for state space analysis of a self-
stabilizing system. J. Comput. Syst. Sci., 79(7):1113–1125, 2013.

[OFTK21] Ernst-Rüdiger Olderog, Martin Fränzle, Oliver E. Theel, and
Paul Kröger. System correctness under adverse conditions. it
Inf. Technol., 63(5-6):249–251, 2021.

[ÖW21] Okan Özkan and Nick Würdemann. Resilience of well-structured
graph transformation systems. In Proc. 12th Int. Workshop on
Graph Computational Models, volume 350 of Electronic Proceed-
ings in Theoretical Computer Science, pages 69–88, 2021.

[Özk20] Okan Özkan. Modeling adverse conditions in the framework of
graph transformation systems. In Proc. 11th Int. Workshop on
Graph Computational Models, volume 330 of Electronic Proceed-
ings in Theoretical Computer Science, pages 35–54, 2020.

[Özk21] Okan Özkan. Infinite-state graph transformation systems under
adverse conditions. it Inf. Technol., 63(5-6):311–320, 2021.

[Özk22] Okan Özkan. Decidability of resilience for well-structured graph
transformation systems. In Proc. 15th Int. Conference on Graph
Transformation, volume 13349 of Lecture Notes in Computer
Science, pages 38–57, 2022.

[Par92] Francesco Parisi-Presicce. Single vs. double pushout derivations
of graphs. In Proc. 18th Int. Workshop on Graph-Theoretic
Concepts in Computer Science, volume 657 of Lecture Notes in
Computer Science, pages 248–262, 1992.

[Pen09] Karl-Heinz Pennemann. Development of Correct Graph Trans-
formation Systems. PhD thesis, University of Oldenburg, 2009.

[Peu18] Christoph Peuser. From hyperedge replacement grammars to
decidable hyperedge replacement games. In Proc. 9th Int. Work-
shop on Graph Computational Models at Software Technologies:
Applications and Foundations, volume 11176 of Lecture Notes in
Computer Science, pages 463–478, 2018.

[PP13] Christopher M. Poskitt and Detlef Plump. Verifying total cor-
rectness of graph programs. Electron. Commun. EASST, 61,
2013.

[Rei85] Wolfgang Reisig. Petri Nets: An Introduction, volume 4 of
EATCS Monographs on Theoretical Computer Science. Springer,
1985.

[Ren04] Arend Rensink. Representing first-order logic using graphs. In
Proc. Int. Conference on Graph Transformation, volume 3256 of
Lecture Notes in Computer Science, pages 319–335, 2004.

[RS04] Neil Robertson and Paul D. Seymour. Graph minors. XX. Wag-
ner’s conjecture. J. Comb. Theory, Ser. B, 92(2):325–357, 2004.

[San22] Christian Sandmann. A Theory on Graph Generation and Graph
Repair with Application to Meta-Modeling. PhD thesis, University
of Oldenburg, 2022.

[Sch18] Maike Schwammberger. An abstract model for proving safety
of autonomous urban traffic. Theor. Comput. Sci., 744:143–169,
2018.

[SS13] Sylvain Schmitz and Philippe Schnoebelen. The power of well-
structured systems. In Proc. 24th Int. Conference on Concur-
rency Theory, pages 5–24, 2013.

[Ste15] Dominik Steenken. Verification of infinite-state graph trans-
formation systems via abstraction. PhD thesis, University of
Paderborn, 2015.

[Stü15] Jan Stückrath. UNCOVER: Using coverability analysis for
verifying graph transformation systems. In Proc. 8th Int. Con-
ference on Graph Transformation, volume 9151 of Lecture Notes
in Computer Science, pages 266–274, 2015.

[Stü16] Jan Stückrath. Verification of Well-Structured Graph Trans-
formation Systems. PhD thesis, University of Duisburg-Essen,
2016.

[Tho90] Wolfgang Thomas. Automata on infinite objects. In Handbook
of Theoretical Computer Science, Volume B: Formal Models and
Semantics, pages 133–191. Elsevier and MIT Press, 1990.

[TKG09] Kishor S. Trivedi, Dong Seong Kim, and Rahul Ghosh. Resilience
in computer systems and networks. In Proc. Int. Conference on
Computer-Aided Design, pages 74–77. IEEE/ACM, 2009.

[WKK19] Nils Worzyk, Hendrik Kahlen, and Oliver Kramer. Physical
adversarial attacks by projecting perturbations. In Proc. 28th Int.
Conference on Artificial Neural Networks and Machine Learning,
volume 11729 of Lecture Notes in Computer Science, pages 649–
659, 2019.

List of Symbols

Graphs & States
G,H,C graph, 7
s state, 14
S graph/state set, 13/14
B basis graph
b basis element
B basis, 16
q state (automaton), 23
Q state set (automaton), 23
Morphisms
⇀ partial morphism, 8
→ total morphism, 8
↪→ total, injective morphism, 8
Quasi-orders & Closures
≤ subgraph order or a (well-)quasi-order, 16
↑A upward-closure of a set A, 16
↓A downward-closure of a set A, 16
I set of ideals with a given basis, 43
J set of decidable anti-ideals, 43
Rules
r = ⟨p : L ⇀ R⟩ rule (given by the morphism p : L ⇀ R), 12
R finite set of rules
Rloss(S) / R⊥(S) lossy/bottom rules, 88/94
S system rule set, 24
E environment rule set, 24
SE joint rule set, 24
Constraints
c graph constraint, 9, 118
JcK all graphs satisfying c, 9
JcKS all graphs in S satisfying c, 17
Transformations & Transitions
⇒ direct transformation, 12
⇒R direct transformation via a rule r ∈ R, 12
→ direct transition, 14
⇒∗, ⇒∗

R, →∗ transformation/transition of length ≥ 0, 12/14
⇒k, ⇒k

R, →k transformation/transition of length k, 12/14

⇒≤k, ⇒≤k
R , →≤k transformation/transition of length ≤ k, 12/14

Pre- & Postsets
pre(A), preS(A) all direct predecessors of A (in S), 14 (67)
pre∗(A), pre≤k(A) all predecessors (of ≤ k steps) of A, 14
post(A) all from A directly reachable elements, 14
post∗(A), post≤k(A) all from A (in ≤ k steps) reachable elements, 14
Simulations
⊑ simulation, 90
⊑· weak simulation, 95

Abbreviations

⊥ bottom
∩ intersection
CTL computation tree logic
DPO double-pushout approach
GTS graph transformation system
LTL linear temporal logic
SPO single-pushout approach
PO pushout
SWSTS strongly well-structured transition system
WSTS well-structured transition system
wqo well-quasi-order

Index

⊥-bounded, 40
∩-based, 69
k-step resilient, 28, 38, 64

anti-ideal, 16
anti-ideal reachability, 41
approximation, 58, 97

basis, 16

circular process protocol, 65, 78
closure, 16
compatibility, 18
complexity, 58
con-effective, 69
control automaton, 23
correctness, 27

deadlock, 29
double-pushout approach, 19

finite-branching, 14

graph, 7
graph constraint, 118

proper, 9
negative, 9
positive, 9

graph transformation system, 13
joint, 24
annotated, 26

ideal, 16
ideal reachability, 20
ideal-based, 43
inner node degree, 93

logistic system, 81

lossy, 40

marked
I-marked, 51
finite-marked, 38, 64
GTS, 26, 64
WSTS, 38

morphism, 8, 12
injective, 8
isomorphism, 8
surjective, 8
total, 8

node-bounded, 92

path game, 74
path length

bounded, 16
Petri net, 39, 120

reset, 48, 120
post∗-effective, 40
pre-effective, 19, 68
preset, postset, 14
presymbols, 25
pushout, 12, 115

resilience problem, 38
bounded, 38, 64
explicit, 48, 73

rule, 12
bottom, 94
lossy, 88
node-bijective, 86
preserving, 86

simulation, 90
weak, 95

172

single-pushout approach, 11, 19
stop condition, 20, 41
subgraph order, 16
supply chain, 39, 49, 75

temporal logics, 30
CTL, 118
LTL, 118

termination, 19
traffic network system, 22
transformation, 12

sequence, 12
transition system, 14

well-structured, 18
strongly, 18

undecidability, 100, 126

weakly ∩-effective, 51
weakly invertible, 51, 59
well-quasi-order, 16
well-structured, 18

Curriculum Vitae

2018–2023 doctoral student in Computer Science,
University of Oldenburg

2018–2022 DFG-funded position (graduate school SCARE) as
research associate, working group Formale Sprachen
of Prof. Annegret Habel, University of Oldenburg

2017 M.Sc. Mathematics, University of Münster
2015 B.Sc. Mathematics, University of Oldenburg
2012 Abitur, Neues Gymnasium Oldenburg
1993 born in Oldenburg

Eidesstattliche Erklärung

Hiermit erkläre ich an Eides statt, dass
(1) mir die Leitlinien guter wissenschaftlicher Praxis der Carl von Ossietzky
Universität Oldenburg bekannt sind und von mir befolgt wurden,
(2) ich die Arbeit selbstständig verfasst und nur die angegebenen Hilfsmittel
benutzt habe,
(3) im Zusammenhang mit dem Promotionsvorhaben keine kommerziellen
Vermittlungs- oder Beratungsdienste (Promotionsberatung) in Anspruch
genommen worden sind, und dass
(4) diese Version meiner Dissertation mit der zur Eröffnung des Promo-
tionsverfahrens eingereichten Version inhaltlich identisch ist, d.h., dass keine
inhaltlichen Veränderungen vorgenommen wurden.

Oldenburg, den 7. August 2023

Okan Özkan

	Introduction
	Preliminaries
	Graph Transformation Systems
	Well-structured Transition Systems

	Modeling Adverse Conditions
	Joint Graph Transformation Systems
	Resilience Notions
	Reduction to Temporal Logics
	Related Concepts
	Summary

	Verifying Resilience in a Well-structured Framework
	Resilience Problem
	Decidability
	Algorithms and Approximations
	Related Concepts
	Summary

	Verifying Resilience of Graph Transformation Systems
	Resilience Problem
	Decidability
	Example: Circular Process Protocol
	Example: Logistic System
	Rule-specific Criteria
	Related Concepts
	Summary

	Conclusion
	Related Concepts
	Summary
	Further Topics

	Related Formalisms
	Proofs
	Computations
	Bibliography
	List of Symbols
	Index

