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Abstract 
 

This thesis focuses on facilitating the development process of software programs that produce data 
representing simulated environments in simulation scenarios. Such a program is a component of a more 
complex simulation.  It provides controlled stimuli that have influences on the system of interest 
component in the more complex simulation.  Its functionalities depend on the overall simulation goals of 
the more complex simulations and the required input of the system of interest models in the simulations.  

Developing such a component often involves multiple roles. The simulated environments produced 
by this component should exhibit spatio-temporal heterogeneity that matches the simulation scenario, 
which should be determined by the component users, i.e., the system of interest modelers. The users view 
and describe the expected simulated environments in their scenarios from a human observer view based 
on common sense. Such descriptions have fewer details than implementable software models and mix 
information about different software artifacts.  The realization of this component requires the knowledge 
of spatial data structures and operations in software, while the users may not necessarily have them.  Thus, 
the component may need to be implemented by other experts. Besides, modelers who provide the 
computational models of environmental phenomena may not be experts in software engineering either. 
They often express phenomena in mathematic formations. The different perspectives of the various 
involved roles in development bring huge challenges to the development process.  Developing such a 
component requires much effort, and the solutions remain case-based. 

The solution proposed by this thesis to overcome the above-explained challenges is a language-driven 
framework. The components of this framework are anchored by a domain-specific executable description 
language named Simulated Environment Description Language (SEDL).  First, a metamodel is specified 
to allow the users of the components under development to specify the simulated environments they 
require in their simulation scenarios. This metamodel is grounded on common conceptualizations of the 
spatial information theory. It serves as the abstract syntax of SEDL, which provides intuitive vocabularies 
to describe the relevant characteristics of environmental phenomena, as well as what types of spatio-
temporal changes they may exhibit during simulations at the cognitive level. A description in this 
language corresponds to a human-oriented Computation Independent Model (CIM) of the simulated 
environment in a high-level functional simulation scenario.  

Then, the SEDL model is mapped to following three system-oriented metamodels:  the Configuration 
Schema Description Profile which expresses the parameters that the component users want to be able to 
modify to set some specific environmental conditions for an execution; the Simulated Environment 
Structure Profile which expresses the data structure model that carries information of phenomena to be 
computed; and the metamodel based on UML behavioral elements, which expresses computation flows 
that update the states of the instances of the data structure model based on a specific configuration. 
Mapping rules from the SEDL model to these metamodels serve as the operational semantics of SEDL, 
defining the output when executing an SEDL description. This output is a set of inter-related models 
described by these metamodels, which represents a component for simulated environment generation as 
Platform Independent Models (PIMs). A model set transformed from an SEDL description follows the 
structure of a light-weighted configuration language. Its implementation can consume a configuration 
instance to produce a simulated environment during a simulation run. 

Language metamodels in this thesis are defined by modeling standards of Model-Driven Architecture 
(MDA) to remain implementation-independent. Based on it, the proposed framework is designed, which 
includes the framework architecture that integrates the specified language metamodels and a guide of the 
development process with this framework.  A full implementation of this framework supports semi-
automatic transformation from an intuitive requirement description of simulated environment to software 
skeletons, with only application-specific functions to be filled in or invoked.  It enables rapid incremental 
prototyping development. An EMF-based implementation of the framework is provided to demonstrate 
the usage of the framework with use cases.  
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The proposed framework contributes to the development of simulated environment components from 
the following aspects. First, it enables the participation of component users in the development processes. 
They can write executable SEDL descriptions of their required environmental conditions in simulation 
scenarios at the cognitive level.  Second, it facilitates communication among different roles involved in 
development with formally expressed models. Third, it assists developers with automatic generations of 
software models from cognitive level requirement descriptions. Fourth, it preserves functional 
requirements in the development process and ensures intuitive user interfaces in products through well-
defined metamodels and transformation chains. 
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Zusammenfassung 
 

Diese Arbeit konzentriert sich auf die Erleichterung des Entwicklungsprozesses von 
Softwareprogrammen, die Daten produzieren, die simulierte Umgebungen in Simulationsszenarien 
darstellen. Ein solches Programm ist oft ein Bestandteil komplexerer Simulationen.  Es stellt kontrollierte 
Stimuli zur Verfügung, die Einfluss auf das System haben, das in den komplexeren Simulationen von 
Interesse ist. Seine Funktionalität hängt von den übergeordneten Simulationszielen der komplexeren 
Simulationen und dem erforderlichen Input des Zielsystems in den Simulationen ab. 

Die Entwicklung einer solchen Komponente umfasst oft mehrere Rollen. Die von dieser Komponente 
erzeugten simulierten Umgebungen sollten eine räumlich-zeitliche Heterogenität aufweisen, die dem 
Simulationsszenario entspricht, das von den Benutzern der Komponente, d.h. dem Modellierer des 
Zielsystems, bestimmt werden sollte. Die Benutzer betrachten und beschreiben die erwarteten simulierten 
Umgebungen in ihren Szenarien aus der Sicht eines menschlichen Beobachters auf Grundlage des 
gesunden Menschenverstands. Solche Beschreibungen haben weniger Details als implementierbare 
Softwaremodelle und vermischen Informationen über verschiedene Software-Artefakte.  Die 
Realisierung dieser Komponente erfordert die Wissen von Raumdatenstrukturen und -operationen in der 
Softwareentwicklung über die die Benutzer nicht immer verfügen.  Daher muss die Komponente von 
anderen Experten implementiert werden. Außerdem sind Modellierer, die Berechnungsmodelle für 
bestimmte Umweltphänomene bereitstellen, möglicherweise auch keine Experten im Software-
Engineering. Sie formulieren die Phänomene in mathematischen Formeln. Die unterschiedlichen 
Perspektiven der verschiedenen beteiligten Rollen in der Entwicklung bringen große Herausforderungen 
für den Entwicklungsprozess mit sich.  Die Entwicklung einer solchen Komponente erfordert viel 
Aufwand, und die Lösungen bleiben fallbezogen. 

Die in dieser Arbeit vorgeschlagene Lösung zur Bewältigung der oben beschriebenen 
Herausforderungen ist ein sprachgesteuertes Framework. Die Komponenten dieses Frameworks werden 
durch eine domänenspezifische ausführbare Beschreibungssprache namens Simulated Environment 
Description Language (SEDL) verankert.  Zunächst wird ein Metamodell spezifiziert, das es den 
Benutzern der zu entwickelnden Komponenten ermöglicht, die simulierten Umgebungen zu spezifizieren, 
die sie in ihren Simulationsszenarien erwarten. Dieses Metamodell basiert auf gemeinsamen räumlichen 
Konzeptualisierungen der Theorie der räumlichen Information. Es dient als abstrakte Syntax von SEDL, 
die das intuitive Vokabulare zur Beschreibung der relevanten Merkmale von Umweltphänomenen sowie 
der Arten von raum-zeitlichen Veränderungen, die diese während der Simulationen auf kognitiver Ebene 
aufweisen können, bereitstellt. Eine Beschreibung in dieser Sprache entspricht einem menschorientierten 
Computation Independent Model (CIM) der simulierten Umgebung in einem high-level funktionalen 
Simulationsszenario. 

Dann wird das SEDL-Modell in drei Aspekten auf systemorientierte Metamodelle abgebildet: erstens 
ein Beschreibungsprofil für das Konfigurationsschema, das die Parameter ausdrückt, die die 
Komponentenbenutzer ändern können wollen, um einige spezifische Umgebungsbedingungen für eine 
Ausführung festzulegen; zweitens ein Profil der simulierten Umgebungsstruktur, das die Datenstruktur 
ausdrückt, die Informationen über zu berechnende Phänomene enthält; und Metamodelle, die 
Berechnungsflüsse ausdrücken, die die Zustände der Datenstrukturmodellobjekte auf der Grundlage einer 
spezifischen Konfiguration aktualisieren. Abbildungsregeln vom SEDL-Sprachmodell auf diese 
Metamodelle dienen als operative Semantik von SEDL, die die Ausgabe bei der Ausführung einer SEDL-
Beschreibung definieren. Diese Ausgabe ist ein Satz von miteinander verbundenen Modellen, die durch 
diese Metamodelle beschrieben werden, die eine Komponente für die Generierung von simulierten 
Umgebungen als Platform Independent Models (PIMs) darstellen. Ein aus einer SEDL-Beschreibung 
transformierter Modellsatz folgt der Struktur einer einfachen Konfigurationssprache. Seine 
Implementierung kann eine Konfiguration zur Erzeugung einer simulierten Umgebung ausführen. 
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Die Sprachmetamodelle in dieser Arbeit werden durch Modellierungsstandards der Model-Driven 
Architecture (MDA) definiert, um eine Unabhängigkeit von der Implementierung zu gewährleisten. 
Darauf aufbauend wird das vorgeschlagene Framework entworfen, das die Framework-Architektur 
umfasst, welche die spezifizierten Sprachmetamodelle integriert, und einen Leitfaden für den 
Entwicklungsprozess enthält.  Eine vollständige Implementierung dieses Frameworks unterstützt die 
automatische Transformation von einer intuitiven Anforderungsbeschreibung der simulierten Umgebung 
in Software-Skelette, wobei nur anwendungsspezifische Berechnungsfunktionen ausgefüllt oder 
aufgerufen werden müssen.  Sie ermöglicht eine schnelle inkrementelle Prototypentwicklung. Eine EMF 
(Eclipse Modeling Framework)-basierte Implementierung des Frameworks wird bereitgestellt, um die 
Verwendung des Frameworks mit Anwendungsfällen zu demonstrieren. 

Das vorgestellte Framework trägt zur Entwicklung von simulierten Umweltkomponenten unter 
folgenden Aspekten bei. 1) Es ermöglicht die Beteiligung der Nutzer der Komponenten an den 
Entwicklungsprozessen. Sie können ausführbare SEDL-Beschreibungen ihrer erforderlichen 
Umgebungsbedingungen in Simulationsszenarien auf der kognitiven Ebene schreiben.  2) Es erleichtert 
die Kommunikation zwischen verschiedenen Rollen mit formal ausgedrückten Modellen. 3) Es 
unterstützt Entwickler mit der automatischen Generierung von Softwaremodellen aus 
Anforderungsbeschreibungen auf kognitiver Ebene. 4) Es bewahrt funktionale Anforderungen im 
Entwicklungsprozess und gewährleistet eine intuitive Benutzerschnittstelle in den Produkten durch 
wohldefinierte Metamodelle und Transformationsketten. 
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1 Introduction 
1.1 Motivation 

Computer-aided simulations are widely used to explore behaviors of real-world phenomena, to 
validate designs of new artificial systems, and to verify hypothetical processes. Research targets (i.e., 
systems of interest) in simulations are reduced to models representing their essential characteristics and 
functions based on mathematical abstractions. They may be natural phenomena, technical systems or 
social entities.  An execution process of a simulation imitates behaviors of the modeled real-world system 
along the timeline.[1], [2] 

The system of interest model in a computer simulation often does not work alone. While its real-world 
counterpart is influenced by other phenomena in its situated environments, behaviors of the real-world 
system in reaction to such influences should be captured by the system of interest model.  For computing 
the modeled reactive behaviors during simulation executions, the system of interest model needs digital 
input which are abstractions of the situated environment of the real-world system of interest, i.e., the 
simulated environment[3].  

Thus, a simulated environment component should generate necessary inputs for the system of interest 
model it serves.  This component itself is also a simulation application whose model should capture the 
real-world phenomena that constrain and alter the behaviors of the system of interest.  It produces data 
representing simulated environments that act as controlled stimuli for running the system of interest 
model[3].  Different from the system of interest model whose behaviors are to be explored, simulated 
environments should be generated in a desired way. The composition of these simulated environments 
depends on the captured environmental influences in the system of interest model.  The more kinds of 
environmental influences a system of interest model considers, the more complicated simulated 
environment it requires. Behaviors of the environmental phenomena should match the expected 
conditions of simulation scenarios and often should be alterable to some extent, so the behaviors of the 
system of interest under different environmental conditions can be computed, compared and analyzed. 
Even for simulations about the same system, simulated environments may be diverse due to different 
investigation purposes, and some of them could be very complex.  Sources and forms of models that 
produce these phenomena in simulations inherit this diversity and complexity. 

The simulations of maritime systems such as vessel simulations offer a good example of the diversity 
among simulated environments. Maritime systems are usually costly, and their activities are often safety-
critical. Simulations are an appropriate way of testing and analyzing these systems before real operations 
are performed[4]. The maritime environment is a physical world that holds complex phenomena varying 
over space and time. Crucial influences from the environments cannot be simply ignored by a vessel 
model in safety-critical simulations.  In many cases, the ship model should be tested with simulated 
environments that resemble real-world situations. 

Practical vessel models often need to consider the influence of the tidal, sea current and wind.[5]  For 
a simulation that identifies parameters of a mathematic model for ship dynamics, the simulation often 
starts with setting the vessel model in idealized environmental situations.  In this case, the vessel model 
is assumed to be set in open, still water. It is fed with some input based on simplified deterministic or 
statistic patterns, such as no tide, constant force from the sea current and random values representing 
turbulence of wind. The simulated environment component needs to enclose functions to compute this 
value and fed them to the ship model. 

Before the identified vessel model is used for further purposes, its quality should be evaluated.  A 
widely used strategy is to execute a set of simulation runs using this model with simulated environments 
from available historical records of environmental information. Outcomes of these executions are 
compared with the recorded vessel behaviors, e.g., the trajectories, to check if the model can successfully 
reproduce the behaviors of the real vessel.  In this case, the component that provides the simulated 
environments may need to have the functionalities to access the observation data source, acquire the 
necessary context and send the data to the ship model in a suitable form. 
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The evaluated model can be used for simulations that help analyze its modeled vessel.  For such 
simulations, the vessel model needs to be set in simulated environments that imitate desired real-world 
situations. For instance, to assess the suitability of a planned path in different seasons, typical spatio-
temporal patterns of tidal, sea current and wind in corresponding seasons within the area that the voyage 
should take place may need to be provided. To test the robustness of autonomous ship controllers, 
simulated environments should imitate evolution patterns of influential phenomena during various 
extreme conditions, e.g., the evolution patterns of wind force during a storm. To analyse vessel behaviors 
near a port, the simulated environment should also include infrastructures of the port and its dynamics, 
as well as other nearby moving systems. Simulated environment components in these cases need their 
own models of computation that are well-studied and controllable to produce desired patterns of 
environmental phenomena required by corresponding scenarios. 

With more complex environmental situations being considered, the complexity of components that 
produce simulated environments increase. Models for computing realistic patterns of spatio-temporal 
varied phenomena such as wind could require comprehensive knowledge to cope with and are different 
from each other. For a specific simulation goal, the system of interest model may need environmental 
phenomena being simulated at different levels of complexity. This leads to huge challenges in 
developing simulated environment components, especially when the simulations are spatial-aware. 
These challenges gained the author’s attention and motivated the research of this thesis. They are 
summarized in the next section based on which the research objectives of this thesis are identified. 
1.2 Challenges 

Various challenges emerge throughout the whole development process of a simulated environment 
component as identified in this section.  The research objectives of this thesis listed in the next section 
are derived with the aim of overcoming these challenges.  

Challenge 1: a huge amount of communication efforts is needed among the involved roles with 
different expertise during the development of a computer simulation with multiple components. 

This problem appears since the system analysis starts when functional simulation scenarios are 
determined. These scenarios reflect the high-level functional requirements of the simulation application 
under development, in which behaviors of environmental phenomena that are influential to the system of 
interest form an important part.  The component producing simulated environments for this simulation 
should have functionalities to simulate these phenomena. The produced context of this component is not 
freely decided by environmental modelers but depends on the needs of the system of interest component 
in this simulation. 

In a complex simulation involving multiple models of real-world phenomena, the system of interest 
modelers and the modelers of phenomena in the simulated environment are often different experts. The 
system of interest modelers have the knowledge about which environmental phenomena and which 
characteristics of these phenomena should be provided for running their models, as well as the 
evolvement patterns that these phenomena should undergo in the simulation to fulfill their simulation 
goals. However, they do not necessarily have the expertise to produce these contexts digitally. Thus, the 
simulated environments expected by the system of interest modelers have to be communicated through 
functional scenarios to the modelers of the simulated environment.  However, the involved roles hold 
different expertise and use different notations in communications that may lead to a difficult, lengthy and 
error-prone analysis phase. 

Challenge 2: a gap exists between the description of the required simulated environments in 
high-level functional scenarios and application models of a component that produced the digital 
representation of such environments.   

The component design based on the simulated environment in functional scenarios from the analysis 
phase involves a view switch. The required simulated environments in these scenarios are expressed from 
a human observer view in terms of their composition and desired variations over space and time at the 
cognitive level. The underlying concepts of these descriptions are about phenomena in the spatial world.  
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In contrast, the models of the simulated environment component focus on artifacts of the computer 
application such as data structures, operations and computation flows.  

Further, the functional scenarios have fewer details compared to an implementable component model 
that should be able to provide digital imitations of the described environments.  Figuring out missing 
details could be hard work. Moreover, a piece of the analysis-phase description of simulated 
environments mixes information that goes to different software artifacts.  No explicit, one-to-one 
mapping exists from concepts about environments to software artifacts.  Some of them may be mapped 
to data structures and some others are only reflected in execution processes.  For instance, an functional 
simulation scenario may state that a storm should appear in the simulated environment whose influence 
area moves related to the ground.  Data structures to hold the area of influence will be found in the 
structural model of the component under development (e.g., as classes in an object-oriented language).  
However, the “move” only exhibits during execution, which requires some operation in the component 
to manage the execution process.  

Challenge 3: computational models of environmental phenomena often do not align with 
application models simulated of environment components. 

The component producing simulated environments in a bigger simulation is a simulation application 
by itself.  It needs to enclose its own abstractions of real-world phenomena. These abstractions may range 
from connections and queries to recorded data to complex mathematic formulas from which digital values 
of presented phenomena can be computed. They play the role of computational models of this component. 
The purpose of executing such simulations is to reproduce environmental phenomena with desired 
patterns that match simulation scenarios.  

However, computational models needed by such components may be developed from other standalone 
research with a different scientific or industrial purpose than the bigger simulation they serve. Even 
though such a model may have modeled all relevant aspects of a phenomenon needed by the simulation 
scenarios, it is likely formalized and encoded differently than the form needed by the simulated 
environment component. e.g., in some mathematic formations or as a standalone program whose outputs 
are some statistic descriptors about its simulated phenomenon instances. 

To adapt such a computational model to a simulated environment component, it needs to be turned to 
a functional form that can make sample draws from this model. A sample draw should include aspects 
relevant to the simulation scenario, e.g., a time series of wind strength in the simulated area. A computed 
sample is fed to the system of interest component over the execution. This form should also provide 
component users with simple access to some of the model parameters so that they can adjust the 
characteristics of the drawn samples from various executions. 

A mature computational model of a real-world phenomenon type may cover much richer aspects than 
a simulated environment needs and have a huge set of parameters. Without expertise about this model, 
adapting it to a simulated environment component is very difficult, if not impossible. On the other side, 
experts of this model also do not necessarily master all knowledge about the system of interest component 
that uses this component.  It brings the risk that mismatch may appear when they integrate the 
computational models into a simulated environment component. The resulting component may not 
correctly preserve the requirements of simulation scenarios, e.g., output values may not be the expected 
input to the system of interest component, and the exposed parameters may not control the characteristic 
of the computed phenomenon as expected. 

Challenge 4: modelers of environmental phenomena may not be familiar with the platform that 
is used to implement the simulation under development, which causes difficulties in 
implementation. 

When the computational models of a simulated environment component are developed from 
standalone researches, they are often encoded, implemented and tested in a different platform than the 
one being used in the current development. Their modelers may not be familiar with the implementation 
platform on which the component should be developed and be integrated into the bigger simulation it 
serves. Implementing the adapted models of required environmental phenomena with the chosen platform 
may lead to a long learning curve for them to master the underlying technical architecture and tools. 
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A platform for implementing simulations with multiple components is often more complex than an 
experimental tool for a single model.  In addition to implementing the logic of the computation functions 
in such a complex platform, much extra work has to be spent on implementing architectural code and 
communication functions among model units and among components. The extra work distracts modelers 
from implementing the essential computation functions and further increases the difficulties in the 
implementation phase. 
1.3 Research Objectives 

Similar challenges also exist when developing computer applications in other context domains. 
Universal solutions can partially overcome these challenges, among which Model-Driven Development 
(MDD)[6] is a widely-used strategy. It provides modeling languages as communication tools and as 
metamodels that enable model transformations and code generations, which saves manual work. 
However, since context domains are potentially infinite, these universal solutions can hardly cover the 
domain context-related aspect.  

This thesis aims at providing a domain-specific solution dedicated to overcoming the identified 
challenges in the development of components that produce simulated environments in spatial-aware 
computer simulations, with higher efficiency than domain-independent solutions based on MDD while 
inheriting merits of them. The scientific focus lays on bridging high-level functional requirements of 
simulated environment and implementable computer application models, which involves the domain 
context and thus cannot be addressed at the domain-independent scale. The overall research goal is 
formed as follows: 

Build a domain-specific development framework, which integrates concepts, methods and tools 
to facilitate the development of simulation components that produce simulated environments for 
the system of interest component in spatial-aware simulations.  

This goal can be achieved by answering the following three research questions (RQs in the following 
text) dealing with different addressed challenges in Section 1.2. Several objectives are identified for each 
question to break the research topic into actionable units.   

RQ 1: what are the common concepts underlying simulated environments in analysis-phase 
functional scenarios of spatial-aware simulations, and what is the meta structure behind 
descriptions of these environments? 

The investigation of this question leads to a domain-specific description language model that can be 
used to capture required simulated environments in functional scenarios in a structured way. It provides 
a communication tool to document and exchange requirements about the expected simulated 
environments at the system analysis phase, which helps to overcome Challenge 1.  The following two 
objectives need to be achieved to build this language. 

Objective 1.1: capture a description structure of simulated environments at the cognitive level.   
A small number of concepts used when human roles view and express simulated environments at the 
analysis phase in natural languages should be identified and organized in this structure.  This structure 
should be close to the way that human observers organize their perceptions of different aspects of an 
environment and phenomena in this environment. Thus, it should be understandable and be easily used 
without particular expertise in modeling and development though little learning effort.  

Objective 1.2:  capture and formalize concepts to describe changes of environmental phenomena 
in space and time. A simulation is a dynamic process in which its simulated environment evolves in 
time, while phenomena in the environment may also be heterogeneous over space. Expected changes of 
phenomena in this simulated environment have to be described in the functional scenarios. The types of 
changes humans may perceive in the environment and which concepts of phenomena they are associated 
with, have to be captured in the description language model. 

RQ 2:  how the simulated environments in analysis-phase functional scenarios are captured by 
structures and operations of computer simulation applications? 
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The answer to this question contributes to overcoming Challenges 2 and 3.  It essentially enables 
transformations from the description of simulated environments in the human observer view to crucial 
artifacts in the simulation component in the system design view. The following two objectives should be 
achieved to answer this question. 

Objective 2.1: capture a computer application metamodel for simulation components that 
produces simulated environments for systems of interest. This metamodel should identify crucial units 
and artifacts that a component should have to be able to produce the possible environments described in 
the language from RQ1.  It should be specified in an implementation-independent manner at the detail 
level of implementable software design models.  This metamodel is also a communication tool that 
describes and exchanges application models of simulated environment components among different 
developers, which helps to overcome Challenge 1. 

Objective 2.2: establish the mapping between the description model of simulated environments 
and the application metamodel of simulated environment components. This mapping identifies what 
necessary artifacts of computer applications should be added and where to locate them within the 
application model, when an instance of a certain concept is presented in a description of the simulated 
environment. Thus, developers can be assisted by the established mappings when they design and 
implement component models based on functional scenarios expressed at the cognitive level. 

RQ 3: how to integrate the identified concepts and models into a development framework and 
use them to facilitate the development of a simulated environment component? 

A domain-specific development framework for the overall research goals is provided by answering 
this question.  It integrates all research outcomes from this thesis and utilizes the general MDD solutions 
when necessary.  

Objective 3.1: establish a development framework for simulated environment components. This 
framework should integrate all theoretical outcomes from previous RQs. It should identify necessary 
components of the framework, the theoretical outcomes realized by each component, as well as 
functionalities that each component provides in the development. Further, it should also clarify 
dependencies and interactions between these components so that they can be used together. This 
framework should be specified independently of implementation tools but be feasible to be implemented.  
A realization of this framework on a specific implementation platform contributes to overcoming 
Challenge 4 by automating the implementation of architectural code and communication functions that 
can be derived at the platform-specific level. 

Objective 3.2: specify a guide of the development process with the framework.  Together with the 
established framework architecture, a development guide should be provided to clarify the usage of this 
framework.  It should go through the software development process starting from the system analysis to 
the implementation of production. For each development phase, this guide denotes the involved roles and 
framework components, the way that the framework being used, as well as the input and the output of 
this phase.   
1.4 Overview of Chapters 

The main content of this thesis is organized into three parts as shown in Figure 1.1, starting from the 
next chapter and followed by a summary chapter. Each part includes two chapters with a specific focus 
as introduced below. 

In the first part, the related works of the thesis are introduced. Chapter 2 presents the fundamental 
research based on which this thesis is constructed. This includes the relevant knowledge of MDD, the 
fundamental concepts of computer languages in general, as well as the knowledge about DSL. Chapter 3 
is dedicated to reviewing the research that shall contribute to the research objectives of this thesis, to 
figure out their relevance to these objectives, how this thesis can benefit from them, and the remaining 
problems that need to be solved. The review covers the methodological aspect of transformations from 
Computation Independent Models (CIMs) to Platform Independent Models (PIMs), which bridges the 
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human view and the system view in the development.  It also covers the modeling work in the context 
domain that this thesis deals with, i.e., the spatial conceptualization and data representation, as well as 
the common ways to provide simulated environments in computer simulations.  

The specification of the proposed framework is presented in the second part, which provides the 
theoretic answers to the research questions of this thesis. Chapter 4 specifies the composition of the 
proposed framework and the development process using the framework, which answers RQ3.  The 
framework specification includes a set of domain-specific languages at both the CIM layer and the PIM 
layer, an architecture of components for a realization of the proposed framework, and a guide of 
development processes within the framework.  It is followed by Chapter 5 that provides the detailed 
specifications of the language models in the framework as they form the backbone of the framework. The 
specification covers the CIM-layer language Simulated Environment Description Language (SEDL) that 
is the research outcome to achieve the objectives of RQ2, and transformation rules from descriptions in 
SEDL to PIM-layer component models, which are the research outcome to achieve Objective 3.2.  Three 
PIM-layer metamodels used to describe the PIM-layer outputs are also specified in this chapter, which 
provide the solution to achieve Objective 3.1.  They are used to express user interfaces, data structure and 
behaviors of the simulation components producing simulated environments, respectively. 

The third part then presents a prototypical implementation to demonstrate the feasibility of realizing 
and using the proposed framework. Chapter 6 introduces the used tools and strategies to implement the 
prototype. In Chapter 7, this prototype is verified with use cases to demonstrate the framework 
functionalities against its specification. 

Finally, Chapter 8 summarizes the contribution of this thesis, discusses reasons that cause limitations 
of the framework, as well as lists out open issues with suggested conceptual ideas that shall solve these 
issues in future work. 

 
 
 
 
 
 
 
 

Figure 1.1: Chapter Overview. 



7 
 

2 Research Foundations 
This chapter introduces the research on which this thesis is built.  First, the solution provided by this 

thesis contributes to domain-specific system developments, which involve several domain-specific 
modeling languages.  These languages are defined by models and are used to express models.  Involved 
models in the solution are coordinated based on the Model-Driven Development (MDD) paradigm[6], 
[7]. To support readers’ understanding, Section 2.1 briefly introduces relevant knowledge of MDD.  
Second, this thesis frequently refers to components of executable computer languages when specifying 
language models and the framework architecture in its solution.  Fundamental concepts of computer 
languages that are necessary to understand this thesis are introduced in Section 2.2. 
2.1 Model-Driven Development (MDD) 

Model-Driven Development is a paradigm that develops systems based on a set of models.  This 
section introduces the knowledge of MDD that is relevant to this thesis. It gives an overview of the layers 
of Model-Driven Architecture (MDA)[8], the modeling standards from Object Management Group 
(OMG)1, as well as the concepts of the multilevel metamodeling. 
2.1.1 Model-Driven Architecture (MDA) 

MDA is a general-purpose architecture defined by OMG for model-driven development. A key 
strategy of MDA is the model transformation that produces models from other models through a 
transformation pattern. Transformations can generate models from one presentation to another, or from 
one abstraction layer to another. By automating the transformation paths from high-level models in the 
view of stakeholders to functional systems, time and cost for developing a system are reduced while the 
consistency of expectations among different involved roles in the development increase. MDA identifies 
several architectural layers to locate models with different levels of abstraction[8]: 

 Computation Independent Model (CIM):  a CIM is also referred to as a domain model. It is 
described with vocabularies that are familiar to experts of the subject which the system deals with.  This 
model describes “real things” in the world.  It is a functional description of what a system is expected to 
do or to resemble from the user perspective, without mentioning the technical aspects of a system.  In 
software development, CIMs are often modeled at the system analysis phase to gather the requirements 
of systems under development.  Platform Independent Model (PIM):  a PIM is also referred to as a logical system model. It is 
a design model that expresses the structures and behaviors of the system independently from 
implementation platforms.  In software development, a platform is a set of resources that are used to 
realize and execute the system application in specific programming languages or regulations. Thus, a 
PIM has a sufficient level of independence to be realized on multiple platforms.  Platform Specific Model (PSM): a PSM refines a PIM with technical details required to realize 
the system on a specific platform. Since a platform can exist at many layers, the PIM and PSM are relative. 
To a related PIM, a PSM is any model that is more technology-specific than it.  For instance, a software 
design model described by XML can be mapped to different implementation languages such as Java or 
C.  To models that are specific to these languages, this XML model is platform-independent. The key 
distinction from the CIM is that both PIMs and PSMs are system-oriented. Transformations between 
PIMs and PSMs do not add conceptual content but rather technical details.  

Final productions of executable systems are implemented based on PSMs. In software development, 
they are executable code programs. This thesis refers to such a system as a Platform Specific 
Implementation (PSI) for a consistent naming structure. 

 
1 https://www.omg.org/ 
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2.1.2 Standards for MDD 
MDA is an architectural approach built on a set of OMG standard specifications.  These specifications 

provide languages that support expressing models which are cross-domain or specific to a domain, as 
well as specifying transformations from models to other models. Modeling frameworks and toolkits have 
been developed based on these specifications. Relevant tools used in this thesis are introduced in the 
implementation chapter (Chapter 6). 

 Meta-Object Facility (MOF)[9] provides core principles in MDA. It specifies a platform-
independent metadata management framework. MOF is the foundation of metamodel definition in MDA. 
MOF reuses structural symbols from the Unified Modeling Language (UML) to describe metamodels.  
A MOF 2.x metamodel is a valid UML 2.x model since UML 2.4.1.  MOF is closely related to the concept 
of multilevel metamodeling which is important to this thesis and is introduced in the next subsection.  Unified Modeling Language (UML) [10] is a general-purpose modeling language adopted by 
OMG. The UML specification defines how UML models should be constructed including modeling 
concepts, rules to combine the modeling concepts as well as notations to represent them.  The data 
structure of UML models, i.e., the UML abstract syntax (see Subsection 2.2.1), is defined by the UML 
metamodel.  This metamodel uses a subset of UML constructs identified by MOF (see Subsection 2.1.3).  

With the release of the major revision UML 2.x, the language unit[11] is introduced to partition UML 
into a modular structure. A UML language unit is a set of tightly coupled modeling constructs focusing 
on a specific aspect of systems, which can describe models in a particular type of diagrams.  In UML 
version 2.5.1, these units are referred to as semantic areas as shown in Figure 2.1. They are divided into 
two categories, i.e., the structural semantics that define the meaning of structural elements and the 
behavioral semantics that define the meaning of behavioral elements. Specific structural constructs for 
modeling are based on a common base of fundamental concepts. The common behavioral semantics are 
then built on the structural constructs, which provide a framework to model behaviors. Actions are the 
fundamental units of behaviors. They can be used in higher-level behavior modeling formalisms such as 
Activities. Besides, UML also provides supplemental modeling constructs to describes use cases, 
deployments and information flows. 

Profiles are introduced in UML2.x as a lightweight standard mechanism to extend the UML.[11] They 
are defined through Stereotypes which are specialized modeling elements in UML confined by Tag 
definitions and Constraints.  It is not possible to remove existing Constraints from a Stereotype in a Profile 
which applies to the model element it extends.  Rather, Profiles are intended to adapt the existing UML 
model to a specific domain with additional Constraints.  Object Constraints Language (OCL)[12] is a declarative language which is used to describe 
rules applying to UML models.  It becomes a part of the UML specification in UML 2.x[11]. This 

Figure 2.1: Semantic Areas of UML. [10] 
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language is used to express additional constraints on UML models which cannot be expressed by the 
UML syntax. OCL is a pure specification language that is side-effect-free. Thus, evaluating OCL 
expressions cannot alter the state of a system. These expressions are usually invariant conditions that the 
modeled system must hold or queries on a UML model. Same as UML, OCL is independent of 
programming languages. It is of great importance to MDD since many model transformation languages 
are developed based on it.  XML Metadata Interchange (XMI)[13] is an OMG standard to support MOF. It is an 
interchange format for exchanging metadata information using Extensible Markup Language (XML)[14].  
XMI is often used to exchange UML models.  Although, this format can be applied to all metadata whose 
metamodels are described in MOF.  It defines representations of objects via XML elements and attributes, 
as well as the standard mechanisms to link objects. XMI documents uses XML Schema for validation.   QVT (Query/View/Transformation)[15] is an MOF Specification defining transformation 
languages.  It includes three related languages as shown in Figure 2.2 which is redrawn from the QVT 
specification. Among these languages, QVT-Relations and QVT-Core are declarative languages with the 
same semantics at different abstraction levels. The former is a user-friendly language that supports 
complex object pattern matching. Its semantics can be mapped to QVT-Core. The latter is a small 
language that can be directly implemented. It supports pattern matching over a set of variables and its 
trace model must be explicitly defined. These two languages enable black-box implementation via MOF 
operations.  The third language QVT-Operational extends OCL to provide means to define imperative 
mappings. It brings QVT the ability to express procedural transformations. 

2.1.3 Multilevel Metamodeling 
An angle to view the levels of model abstraction other than the MDA layers introduced in Subsection 

2.1.1 is to determine layers of models based on the linguistic “instance-of” relationship [16].  It 
emphasizes the strict metamodeling[17] paradigm: “if a model A is an instance-of another model B, then 
every element of A is an instance-of some element of B”[18].  In this case, the model B is a metamodel 
of the model A whereas the model A is said to conform to the model B.  The instantiation of a metamodel 
results in an instance model of it at one layer lower. The instance model may be further instantiated.  This 
leads to a multilevel modeling structure. A model in an intermediate layer is an instance model of some 
model at one layer higher, and the metamodel of some models at one layer lower. For instance, the class 
“Element” in the UML metamodel is a metaclass to describe UML models, but an instance of the MOF 
metamodel. Models that cannot be further instantiated are usually considered as a thing in the real 
world[6].  They can range from physical entities on the earth to runtime objects in software applications. 

MOF forms such a modeling structure which is referred to in various OMG specifications as having 
four modeling layers from M3 to M0.  The M3 meta-meta layer locates the metamodel of MOF used for 
defining metamodels.  It is a self-describing model that conforms to itself.  The metamodel of UML 
locates at its M2 meta layer. M2 metamodels describe models at the M1 layer which can be further 
instantiated as M0 real-world objects.  However, the current MOF specification has clarified the ability 
of MOF to handle any number of metamodel layers recursively following the “instance-of” relationships 
by using “Classifier” and “Instance” concepts in UML, which may introduce more than one meta layer 

Figure 2.2: Relationships between QVT metamodels. [15] 
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in practice.[9] For instance, defined UML Profiles in a domain-specific modeling solution shall be located 
as a separate meta layer, which pushes UML itself further to a higher meta layer.   

Layers in the multilevel modeling are based on linguistic “instance-of” relations. Within one layer, 
terms cannot be each other’s instance. Researchers [6], [16], [19]have stated that multilevel modeling 
could bring mismatches between ontological and linguistic modeling layers. For example, two classes 
representing real-world concepts are included in one software model since they need to be instantiated at 
runtime.  But one presented concept could be conceptually the instance of another, even these two classes 
are located in the same modeling layer. To clarify the confusion, this thesis focuses on engineering-
oriented solutions.  Models involved in this thesis serve as abstract syntax models of formal languages or 
language instances. They are located in a certain linguistic modeling layer according to how many times 
they need to be instantiated in the development and the use of the system. 

The MDA layers introduced in Subsection 2.1.1 and the metamodeling layers described in this 
subsection are orthogonal.  For example, both an M1 model and an M0 model can be platform-
independent.  Both the layered structures are used to coordinate models used in this thesis.  To avoid 
confusion, the remaining text in this thesis refers to an architectural layer of MDA as an MDA “layer” 
(e.g., the CIM layer) and a metamodeling layer as a modeling “level” (e.g., the M2 level).  Readers can 
see in Chapter 4 that a transformation path in this thesis crosses MDA layers but remains in the same 
metamodeling level. 
2.2 Computer Languages 

First, this section provides a short summary of fundamental concepts related to computer languages 
in general, based on classic lecture books [20]–[24].  To keep the focus, the introduction only covers 
relevant concepts that are essential to understand this thesis. Second, it also briefly introduces basic 
knowledge on Domain-Specific Languages (DSLs)[25], as this thesis develops DSLs as part of its 
solution. 
2.2.1 Elements of a Computer Language 

A computer language’s definition is usually determined by its syntax and semantics. The syntax is a 
set of rules specifying how the language looks like. The abstract syntax of a language specifies the data 
structure which holds the semantically relevant information of a program in this language. It is typically 
a tree structure that represents how this language looks like from the language processor view. On the 
other side, the concrete syntax of a computer language represents how this language looks like from the 
language user view.  It specifies the notations that are used by users to express programs in this language, 
e.g., keywords and symbols, as well as the rules of how these notations should be used to write a program. 

A computer language implementation requires both the abstract syntax and the concrete syntax.  It is 
not necessary at the specification level though.  Depending on the usage and characters of a language, its 
specification may contain only one of these two syntax components. In text-based programming 
languages, the concrete syntax is usually considered as an obligatory part of a language specification. 
The concrete syntax of such a language is usually defined by formal language-generation mechanisms 
such as a context-free grammar[26]. An implementation of this language then uses an abstract syntax 
holding the data structure of the implementation. The opposite cases are often observed from modeling 
and description languages. Specifications of these languages may only contain abstract syntax.  High-
level concepts and data models behind programs are the most important to users of these languages.  By 
leaving the concrete syntax to the implementation level, such a language shall be implemented with 
various notations adapted to different user groups.  Besides, abstract syntaxes of such languages are often 
specified in terms of other more general languages, whose notations are usually standardized.  This 
enables unambiguous definitions of their abstract syntaxes. 

The semantics of a computer language define the meaning of its programs, which consists of two 
aspects.  The static semantics specify constraints and/or rules of the type system that a program in this 
language must conform to. A program has to be validated against the static semantics before it is 
processed. The dynamic semantics (also called execution semantics or operational semantics) specify the 
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behaviors of a computer when processing/executing a program in this language. Dynamic semantics are 
implemented in language processors which will be introduced in the following paragraphs. 

An implementation of a computer language includes several programs that enable the use of this 
language.  This thesis refers to such programs as the language tooling. Common components of the 
language tooling are introduced below. They can be standalone applications. Though, they are often built 
into an Integrated Development Environment (IDE) of this language in practice. 

A source program editor (may be referred to as a language editor in this thesis) is a program for editing 
source programs in a concrete syntax of a computer language.  It usually also has a simple interface to 
pass the edited program to back-end components. Language editors may have different forms. A source 
code editor is a text editor specialized for editing programs written in some textual concrete syntax of a 
computer language. This type of editors is the fundamental tooling component for many general-purpose 
programming languages. Such an editor usually provides support functions for editing specific languages 
in addition to normal free text editors, e.g., syntax highlighting, autocompletion and so on. A structured 
editor (also called a projectional editor) allows to directly manipulate the structure of the program, i.e., 
the abstract syntax tree. This kind of editor is not popular in the tooling of general programming languages. 
It is often seen as the implementation strategy of a modeling language whose underlying data structure is 
of importance to language users. Such a modeling language can be defined by its abstract syntax in terms 
of a metamodel.  The editor renders a textual or graphic representation of the program based on projection 
rules. Users edit on the projected representation. Their editing actions modify the abstract syntax tree.  
Programs written in this language are stored as its abstract syntax trees, which is usually encoded in XMI. 

A reader is a program that relates a concrete syntax of a language to its abstract syntax.  For a parser-
based language implementation which often uses some textual concrete syntax, it usually consists of two 
parts. First, a scanner (also called a lexical analyzer) takes a piece of a program written in a concrete 
syntax and transforms it into a stream of tokens.  During this process, information that is not relevant to 
the meaning is removed, e.g., white spaces and control characters. Then, a parser (also called a structural 
analyzer) consumes these tokens to build up a representation that conforms to the corresponding abstract 
syntax. This representation is usually in the tree style which is called a syntax tree. It reflects the data 
structure of the program.  If the input breaks the rules of the concrete syntax, an error will be generated 
by the reader. A projectional language implementation does not need these components. This thesis will 
not distinguish detailed components of different implementation approaches while it is beyond the focus. 
A component set that takes the input program as the syntax tree to the back-end components is referred 
to as the reader as a whole. 

Not all computer languages are executable by specification, such as some configuration languages 
and markup languages.  However, programs written in computer languages are meant to be processed by 
computers in some way. A back-end program that performs such processing tasks is called a language 
processor or an execution engine.  Processor implementations of high-level languages often use two 
approaches. One of them is to implement a compiler that takes a program in this language and translates 
it into other artifacts. Execution semantics are described by relationships/mappings between inputs and 
outputs of the compiler. In the case of modeling languages, this approach is commonly referred to as 
transformation when the outputs are other syntax tree-based models.  Or, it is referred to as generation 
when the outputs are in the textual form which is often general-purpose programming language code that 
can run on some infrastructure.  A compiler that creates high-level programming code is commonly 
referred to as a code generator. Transformation and generation are conceptually the same process. Both 
of then create other artifacts from input programs. In contrast, a processor can also be an interpreter, 
which loads input programs and acts on it. In this case, execution semantics are described by explaining 
what semantic actions should be performed with respect to specific language elements. Such actions for 
a high-level modeling language shall be encoded by general-purpose programming language. 

The term “translator” is often used to refer to a processor of a programming language in the 
programming language theory, including both interpreter and compiler, as well as other types of 
processors.  It is also observed in modeling language literature that the term “translator” only refers to 
compilers. To avoid confusion, this thesis avoids using this term but sticks to the terms introduced above. 
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2.2.2 Domain-Specific Languages 
A Domain-Specific Language (DSL) is a computer language specialized for a given class of problems, 

which is called a domain[24].  A realization of a DSL normally has the same components as introduced 
in Subsection 2.2.1. However, the abstract syntax of such a language is based on abstractions that are 
aligned with concepts used by the domain for which this DSL is developed.  The concrete syntax should 
also be suitable for expressing these abstractions.  

According to Völter’s book dedicated to DSL [24], there are two approaches to define a domain. The 
author defines a program p as “a conceptual representation of some computation that runs on a universal 
computer (Turing machine)”[24]. Based on this definition, the inductive (or bottom-up) approach 
identifies a domain D as “a set of programs with common characteristics or similar purpose”[24]. 
Commonalities among the programs in this set can be described by a set of domain-specific patterns and 
idioms. Then, this set of programs from all conceivable programs P can be written in a domain-specific 
language l based on these patterns and idioms, denoted as Pl. The other approach, i.e., the deductive (or 
top-down) approach views a domain D as “a body of knowledge about the real world”[24] for which 
the software support needs to be provided. Developing a DSL for a domain in this definition is much 
harder than the inductive approach since the nature of D has to be understood precisely in order to identify 
the interesting programs in this domain from P.   

Nevertheless, a domain D can be ultimately specified by a set of programs PD in the realm of software. 
PD can be expressed in multiple languages, whereas a language may only be able to express some part of 
PD.  Based on this understanding, the author defines a DSL for a domain D, denoted as lD, as “a language 
that is specialized for encoding programs from PD”[24].  It means that this language is able to represent 
programs in PD more efficiently than other languages.   

The boundary of a domain is often fuzzy.  This is especially true in the deductive approach since if a 
program belongs to a domain is determined by human understanding and interpretation. The same 
program may also be considered as belonging to the intersection of two or more roughly orthogonal 
domains. Each domain covers one aspect of this program. For example, a program allowing users to fill 
online questionnaires belongs to the domain of web applications and the domain of questionnaire forms. 
It can be also considered as a member of a domain that is specialized for the online questionnaires. The 
coverage of a domain depends on the common purpose of its member programs. It consequently decides 
which abstractions should be included in a DSL expressing this domain.   

Using DSLs shall bring various benefits that have been outlined by researchers and engineers[24], 
[27], [28]. Among them, the following points are particularly of interest to this thesis.  They are the main 
reasons that the thesis chooses DSLs for its solution. These benefits are summarized in the following 
paragraphs in a general manner. The benefits that DSLs bring to the solution in this thesis are discussed 
at the end of this thesis in Chapter 8. 

First, the DSLs can serve as a thinking and communication tool during development processes. 
This function particularly matches the idea of MDD that uses models as communication vehicles among 
different roles.  Thus, defining and using DSLs is an important ingredient of MDD. These DSLs are used 
to express models or model-based programs. Their syntaxes play the role of metamodels. On one side, 
terms and structures used to build a DSL have higher abstraction levels than general-purpose computer 
languages and are aligned with the domain the DSL focuses on. This allows language users to separate 
essential logical structures in this domain from complicated low-level implementation details.  Domain-
specific programs can be described in a more declarative and concise way. These programs can be then 
read more clearly and be discussed more easily. On the other side, the expressiveness of a DSL beyond 
its focused domain is limited. This reduces the chances of language users to make mistakes.  

Second, using DSLs enables non-developer involvement. The domain experts can understand 
programs in DSLs that focus on domains they are familiar with, while expressions in these languages are 
aligned with how they express the corresponding domains. All irrelevant low-level implementation 
details are hidden from them. They can read or even write code in DSLs and be involved in validation 
and review of the products expressed in DSLs. 
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Further, DSLs bring productivity and efficiency in development. Users of DSLs are free from low-
level coding work.  The amount of DSL code that has to be manually written for a product is supposed 
to be much less than the code that has to be written in a general-purpose language on a certain target 
platform.  A processor of a DSL takes the responsibility to remove domain-specific abstractions and 
generate the code in a less abstract language. It may also run the programs on a target platform without 
having to compile a separate underlying general-purpose language program for the whole software every 
time.  In this way, the processor shall parse DSL programs and invoke corresponding pre-compiled 
libraries which are based on the common concepts in the DSL. Besides, an implementation of a stand-
alone DSL also comes with the language tooling (see Subsection 2.2.1) specialized for this language to 
support writing programs more productively.  

Moreover, the higher level of abstraction DSLs and its separation of concerns make DSLs can be 
defined at an implementation-independent level. This enhances the portability of the programs (thus, 
also the underlying models) they express, which is important in MDD. A DSL expresses the application 
logic at an abstraction level that is meaningful to the domain. Programs in well-defined DSLs can be 
executed on different technical platforms by replacing the implementation of its processor. Besides, 
underlying models of DSL programs can be easily transformed into other representations. 
2.2.3 Language Workbenches 

Modern language engineering has been greatly simplified by so-called language workbenches[29]. 
They are toolsets that provide various high-level mechanisms to efficiently define computer languages 
and to implement language tooling.[30] They are the basics that make the solution in this thesis 
technically feasible for various development teams since they make the development of DSLs required 
in this thesis to be an affordable amount of work. Thus, this subsection briefly introduces the origins and 
features of language workbenches, as well as existing implementations of language workbenches that are 
ready to use. The term “language workbench” was proposed by Martin Fowler when he used it to refer 
to the tools that support building software around a set of DSLs [29].  However, nowadays, the 
capabilities of mature language workbenches are beyond the limitation of only supporting the DSL 
development. They are also suitable to develop general-purpose languages. A mature language 
workbench mainly has capabilities as summarized below, which are the technical foundation that enables 
the realization of the proposed framework in this thesis. More comprehensive reviews on language 
workbenches can be found in [30]–[33]. 

Define and modify language syntactic models: nearly all language workbenches provide relatively 
simple user interfaces and editing supports for language developers to formalize syntactic models of 
computer languages. This feature is usually supported by small declarative meta languages.  It shall allow 
language developers to build an abstract syntax with modeling languages and automatically generate the 
default concrete syntax from the defined abstract syntax, or the other direction around.  In most cases, 
both the syntactic models can be modified and improved by designers. Relations between them are 
maintained by the workbench. Thus, language developers only need to focus on abstractions and notations 
they want to define in their languages.  This greatly simplified the development of language models.  

Create language tooling: one of the most powerful functions of language workbenches is to 
automatically generate infrastructures of language tooling from user-defined language models.  A default 
editor to edit programs in a concrete syntax can be generated. This editor could be either graphic/tree-
based such as supported by MPS[34] and default editor generation facility of Eclipse Modeling 
Framework (EMF)[35], or in free-text style such as supported by XText[36], EMFText[37] and 
Spoofax[38].  It usually embeds support functions such as syntax highlighting, error-detection, etc. The 
editor usually comes with reader components such as parsers for textural concrete syntaxes. In addition, 
workbenches may also generate skeletons for language processors with default behaviors. These 
generated infrastructures are often in the form of general-purpose programming languages and can be 
optimized by language developers. They are easy to be integrated with customized pieces of code or 
programs in other high-level languages such as transformation rules in ATL [39].  Thus, language 
developers save a great amount of work. They are free from the coding of infrastructures that are common 
to multiple computer languages and can focus on implementing the semantics of their own languages. 
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This separation also makes the modification of an implemented language more easily, which is important 
especially for small DSLs that are often incremental with new understandings of its domain. 

Build and test languages: language workbenches are essentially development frameworks for 
implementing computer languages as a set of computer programs. Thus, these workbenches integrate 
with continuous build tools that compile these programs. Besides, some of the workbenches also provide 
facilities to test developed DSLs. For example, EMF-based language workbenches often generate default 
Junit test code based on which language developers can add their unit-testing cases. Some workbenches 
such as MPS provide their own DSLs to write the test. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



15 
 

3 Related Works 
This chapter introduces the existing researches that are related to the solution of this thesis.  First, 

Section 3.1 reviews researches on CIM-PIM transformations that the thesis aims to establish for its 
proposed development framework.  Second, Section 3.2 pays attention to the context domains that are of 
interest to this thesis, i.e., the simulated environment in spatial simulations.  It reviews the existing spatial 
conceptualizations and representations, which has the potential to be used to model spatial entities in the 
simulated environments from both the human perspective and the system perspective, as well as the 
common forms of the component that provide simulated environments in the computer simulations.  The 
lessons learned from the existing researches and the missing points which have to be fulfilled by this 
thesis are summarized at each subsection. 
3.1 CIM-PIM Transformations 

One main goal of this thesis is to bridge the gap between expected simulated environments from the 
human view and models of simulated environment components in computer simulations from the system 
view. It is comparable to the perspective switch from domain-oriented CIMs to system-oriented PIMs in 
MDD.  Thus, this section reviews existing researches in CIM-PIM transformations to summarize the 
useful findings as well as the missing points that this thesis needs to fulfill. 

MDA recommends automating PIM-PSM transformations and mature tools have been developed for 
this purpose, e.g., the EMF[35] that generates Java-specific model code from XMI-encoded Ecore models.  
This type of transformations is free from the domain context of the transformed models.  It becomes a 
technical investigation once the target platform is fixed and can be solved at a domain-independent range. 
Compared to it, CIM-PIM transformations involve the perspective change. This makes this type of 
transformations more complex which requires much manual work.  Aiming at reducing the human effort 
in the development, the review especially pays attention to what the existing researches achieved by their 
automatable CIM-PIM transformations. 
3.1.1 CIM-PIM Transformations in Specific Domains 

Mazon et al.[40] developed an automatic CIM-PIM transformation method specialized for the data 
warehouse (DW) development. Their approach defines CIMs of DWs using a UML Profile for the i* 
modeling framework[41]. This profile is used to describe actors in a business process and business goals 
that need to be achieved through this process.  Information requirements are identified corresponding to 
the most concrete goals, i.e., information goals. Further, PIMs of DWs are described based on a UML 
Profile for multidimensional modeling. This profile organizes information into facts and dimensions. 
These PIMs are derived from the CIMs by a set of QVT rules. 

Koch et al. developed the UML-based Web Engineering (UWE)[42] approach as an MDD process 
which can automatically traverse models from high-level functional requirements way down to 
prototypical Web applications [43]. In [44], transformations from CIMs to PIMs in this approach are 
introduced.  The authors developed a metamodel as a UML Profile for the Web Requirements 
Engineering (WebRE)[45] and specified graphic icons for Stereotypes in this profile.  These Stereotypes 
extend both the structural metaclasses (e.g., Node as a specialized Classifier) and the behavioral 
metaclasses (e.g., Browser as a specialized Action) of UML.  The WebRE Profile is used to express the 
requirements of Web applications as CIMs.  At the design phase, PIMs of Web systems are created.  For 
this side, the authors developed the UWE Profiles to express the content of a Web system.   

Transformation rules between the two layers of models based on these metamodels are defined in 
QVT. First, instances of the Stereotype Content in a requirements model are turned to classes in a UWE 
content model.  Then, instances of Stereotypes that extend the Action metaclass are transformed into a 
navigation model as navigation classes or access structures. Another transformation derives a UWE 
process model from the UserTransaction together with a related Content in the requirements model.  
Finally, a presentation model specifying the layout of the application is derived from the navigation model 
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and the process model. Manual refinement of the intermediate models shall be made among the 
transformation steps. 

Later in [43], the requirements metamodel is included in the UWE Profiles and an implementationof 
the UWE based on Atlas Transformation Language (ATL)[39], [46] is presented. Relations among the 
requirement package and other packages remain the same. 

Fatolahi et al. presented in [47] a whole MDD process to generate web-based applications from use 
cases following the UWE principles.  In their approach, State Machines at the PIM layer are generated 
by a tool called UCEd [48] from Use Cases at the CIM layer.  These transformations are performed semi-
automatically with inference from developers. The resulting State Machines are then further transformed 
into other PIM-layer models. 
3.1.2 Analytic Approaches for CIM-PIM Transformations  

Kherraf et al. [49] proposed a disciplined approach for CIM-PIM transformations. Their approach 
builds a CIM consisting of a Business Process Model (BPM) and a Requirement Model.  The BPM is 
built by Elementary Business Processes (EBPs)[50] which represent well-delimited user tasks. The 
Requirement Model is derived from the BPM and expresses system requirements to optimally support 
the business. Both models are expressed with notations in UML2 Activity Diagrams (ADs).  Then, a PIM 
is obtained from the Requirement Model. It represents system components to support a business process 
and involved business entities. The concept “archetype” in this paper represents a specialized term for 
describing model elements in the component models at the PIM layer. It plays a similar role as a 
Stereotype in other introduced approaches. The authors did not yet provide an implementation for 
automating the transformations but stated the possibility. Other analytic transformation approaches 
include the work of Kardoš and Drozdová [51] who use Data Flow Diagrams (DFDs) and textural 
descriptions to express CIMs.  Use Cases, Activity Diagrams, Sequence Diagrams and Domain Class 
Diagrams in UML are used to express PIMs in their approach. 

Zhang et al. [52] presented an approach for CIM-PIM transformations in a feature-oriented and 
component-based view. At the CIM layer, a feature model is used to structure system requirements.  It 
contains a set of features and their relations. At the PIM layer, models are described by software 
architectures. This approach aims to bridge the gap between CIMs and PIMs in a disciplined manner.  
The authors introduced the concept of “responsibilities” to connect features and components. A feature 
model is operationalized into responsibilities, resource containers as well as relations among them. These 
elements are then clustered to construct the software architecture, based on responsibilities being assigned 
to components. No formal transformation pattern was defined, while this approach provides a basis to 
specify it. 
3.1.3 Automatable CIM-PIM Transformations 

Rodriguez et al. [53]–[57] extended the metamodel of UML2.0-AD and Business Process Diagram 
(PBD) of Business Process Modeling Notation (BPMN) for expressing security issues in business 
processes. Their work resulted in BPSec-Profile [57] which supports expressing security requirements as 
CIMs. Secure Business Processes (SBPs) described by BPSec-Profile are fed to a set of transformations 
to create analysis-level classes and use cases as PIMs. These transformations are defined by QVT 
rules[56].   First, a horizontal transformation within the CIM layer is performed to generate refined CIMs 
from a BPMN-BPD model.  The output consists of a normal UML2.0-AD model representing business 
processes and a model conforming to the BPSec-Profile which represents all security issues.  Then, the 
process model is fed to a vertical transformation as the input to generate the first version of a UML2.0- 
Class Diagram (CD) at the PIM layer without security issues being considered. This CD and the BPSec 
model are then transformed into a refined CD including security issues.  Further, the refined CIMs from 
the horizontal transformation step are transformed to generate UML2.0-Use Case models, followed by a 
manual refinement step. 

Gutierrez et al. [58] automated the generation of Activity Diagrams via model transformations from 
use cases, whose output can be refined by hand.  They defined a metamodel for describing input use cases.  
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These use cases are encoded in an XML-based concrete syntax and represent the functional requirements 
of the system under development.  The output Activity Diagrams are conformed to a selected subset of 
the metamodel of UML2.0 Activity Diagram. Transformations in this approach are defined by the QVT-
Relational language. A transformation generates an Activity for each requirement in the input use cases 
and an Action for each main step. Exceptional steps that indicate conditional choices are transformed into 
decision nodes. Elements are then chained through control flows. The authors did not explicitly locate 
their metamodels regarding the MDA layers. Nevertheless, their work is comparable to transformations 
from CIM to high-level PIMs. 

Hahn et al. [59] developed a semi-automatic approach called SHAPE (Semantically-enabled 
Heterogeneous Service Architecture and Platforms Engineering) to bridge the gap between business 
requirements at the strategic level and the execution models.  This approach links CIMs of business 
requirements expressed by a metamodel called CIMFlex to PIM-layer models.  CIMFlex combines 
BPMN and Architecture of Integrated Information Systems (ARIS) notations. It supports expressing 
issues to achieve business goals such as business rules, processes and contracts. The PIM layer in this 
approach has two sub-layers. The sub-layer linked to the CIMs uses the Service-Oriented Architecture 
Modeling Language (SoaML)[60] to describe models.  These models represent services in distributed 
environments. 

A set of transformation rules was defined to transform CIMFlex models into SoaML models. The 
initial version of CIMFlex supports transformations via ATL. Then, the service models are further 
transformed into more comprehensive multi-agent system models at the other PIM sub-layer. A PIM 
metamodel called PIM4Agents[61] was developed for expressing models in this sub-layer. 
Transformation rules were defined between SoaML and PIM4Agents. 

De Castro et al. [62] applied CIM-PIM transformations in developing information systems with the 
service-oriented development method(SOD-M). Their approach separates the business in which the 
system is involved from the functional requirements of the system. The focus lays on modeling the former 
one at the CIM layer.  CIMs used in this approach are modeled by the value model[63] and BPMN. The 
value model expresses business cases as value exchanges and value activities of business actors.  BPMN 
describes processes related to the environment in which the system is used. A PIM in this approach 
consists of following models: a use case model identifying business services in UML Use Case 
Diagram(UCD), an extended use case model identifying functional services to carry out the business 
services in UML UCD, a service process model expressing workflows of activities to perform business 
services in UML Activity Diagram, and a service composition model extending the service process model 
by identifying fundamental behavioral units of each activity.  These models are expressed in a set of 
DSLs based on well-defined metamodels. 

The authors then proposed a methodological process to define semi-automatic mapping rules for CIM-
PIM transformations based on the metamodels. The mappings range from natural language descriptions 
of mappings to formal or half-formal transformation rules. They proposed to use the weaving models [64] 
to integrate the mappings that cannot be fully formalized.  The transformations are implemented in ATL 
integrated with weave models. 

Bousetta et al.’s approach[65] models both the behavioral and the static aspects of a system at the 
CIM layer. These two aspects are captured by two models: a Use Case model that represents business 
actors of the system and functionalities to be realized; a BPM that represents the behaviors of use cases. 
The BPM includes three descriptive views, namely, the functional view presenting activity flows, the 
behavioral view presenting conditions under which activities are performed and the structural view 
presenting involved objects in a process. This approach starts with building the BPM.  The three views 
are expressed in one BPMN diagram. The resulting BPM has multiple levels.  In addition, models at the 
CIM layer contain template-based Business Rules. At the PIM layer, a Domain Class Diagram (DCD) is 
used to represent the static aspect of a modeled system. A PIM also includes sequence diagrams of the 
system’s external behavior (SDSEB) which represent high-level behaviors of systems.  An SDSEB is a 
UML sequence diagram that shows only interactions between actors and the whole system.  It is 
transformed later into a sequence diagram of the system’s internal behavior (SDSIB). An SDSIB 
represents interactions between objects within a system. 
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Transformations from CIMs to PIMs are realized through a series of transformations. First, high-level 
BPMs are transformed into Use Case models. Then, low-level BPMs that present sub-processes in more 
detail are transformed into SDSEBs.  Further, Input/output data objects in the low-level BPMs are 
mapped to classes in DCDs.  These classes are completed with terms and facts derived from the Business 
Rules.  Models in the approach are at least semi-formal. The authors also presented mapping rules for 
each step which enables a semi-automatic transformation from CIMs to PIMs. 

Kriouile et al. [66]–[68] proposed that a CIM should consist of BPMN models in BPD and Use Case 
models in UCDs.  The former part represents exchanges of information between actors, while the latter 
part identifies features and good functioning conditions of a system.  A BPD is modeled at first and a Use 
Case model is derived from the BPD by a horizontal transformation.  The transformation from the Use 
Case model to a BPD is also possible during the refinement of CIM-layer models. Then, a 
behavioral model at the PIM layer is obtained by System Sequence Diagrams (UML SSDs) via vertical 
transformations from UCDs. Similarly, PIM-layer static models expressed in Domain Class Models 
(UML DCMs) are vertically transformed from BPDs. These static models represent the structure of 
modeled systems.  

Transformation rules in this approach are based on the equivalence between the concepts in 
corresponding metamodels. These rules are specified in QVT and thus enable the possibility of 
automation. The two parts of CIM-PIM transformations for behavioral models and static models are 
described in detail in [67] and [66], respectively. 

Rhazali et al. have done a series of work regarding CIM-PIM transformations. In [69] and [70], 
business models are expressed in BPMN and UML2 Activity Diagram at the CIM layer. Class Diagrams 
and Package Diagrams are used for expressing the static view of PIMs, while State Machine Diagrams 
are used for expressing the dynamic view and the functional view.  Their approach was developed 
analytically at the beginning which obtained a set of qualitative guidelines to construct CIMs in a way 
that is easy to be transformed into PIMs, e.g., the average numbers of Activities that a CIM model 
represented in ADs should have.  A set of analytic mapping rules was used in their early work for CIM-
PIM transformations. Later in [71]–[73], these mapping rules are formalized in ATL to enable automatic 
transformations.  In their most recent work [74], [75], SoaML is used to express CIMs. The authors also 
introduced an additional model at the PIM layer to represent the web view. This additional model is 
expressed by the Interaction Flow Modeling Language (IFML)[76] and is transformed from the other 
PIM-layer models.  Through this strategy, transformations can be applied to generate the front end of 
web applications. 
3.1.4 Summary and Relation to This Thesis 

The introduced researches in this section are summarized in Table 3.1 based on evaluation approaches 
on CIM-PIM transformations introduced in 3.1.4.1, followed by a discussion on how the existing work 
is related to this thesis. 
3.1.4.1 Evaluation 

A short introduction to evaluation approaches on CIM-PIM transformations is given below to provide 
reference and to support readers’ understanding.   

Yue et al.[77] designed a conceptual framework to describe transformations from requirements to 
PIM-layer models2.  It includes taxonomies to express requirements, restriction rules that are used for 
regulating requirements, and a taxonomy to express PIM-layer models. In addition, they developed a 
taxonomy for describing transformations between CIMs and PIMs as well as a process model for 
describing transformation processes. This framework does not provide models and mappings for specific 
transformations but focuses on describing transformation approaches.  Requirements in this framework 
rather refer to the information gathered prior to the constructions of CIMs.  Nevertheless, it can serve as 

 
2 This paper refers to PIMs as “analysis models” and PSMs as “design models”, while this thesis refers to PIM 
models as “(system) design models”. 
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a basis to compare the transformation approaches from high-level requirements to PIMs by structuring 
them into a comparable structure.  The authors derived a list of evaluation criteria to give suggestions on 
constructing good CIM-PIM transformations.  

Later, Sharifi et al. [78] used a simplified and adapted version of this framework for reviewing CIM-
PIM transformations. This version only considers high-level components of rule-based transformations 
with CIMs as inputs.  This provides an overview of the possible components of CIM-PIM transformations.  
Figure 3.1 is a merged redrawn of Figure 6-9 in [78] to provide a concise presentation of their taxonomy. 
The term “Traceability”, according to IEEE Standard Glossary of Software Engineering, is defined as 
“the degree to which a relationship can be established between two or more products of the development 
process…for example, the requirements and design of a given software component match” [79]. Other 
concepts have been introduced in Chapter 2. 

Evaluation criteria for transformations are derived from the model. Kriouile et al.[80] conducted a 
criteria-based evaluation based on the taxonomy shown in Figure 3.1 and the guidelines of MDA. The 
authors evaluated input CIMs of a transformation approach regarding their coverage, i.e., if a CIM covers 
the static view with business objects, the behavioral view with business processes, and functional view 
that considers requirements. An output PIM is evaluated against its completeness to check if it includes 
both the structural aspect and the behavioral aspect of the system. Then, the transformation process is 
checked to see if the transformation is automatic, if the transformation rules are complete, as well as if 
the traceability is maintained.  

Table 3.1 summarizes the related work introduced in Subsection 3.1.1-3.1.3 based on the 
transformation components identified by the taxonomy shown in Figure 3.1 and the derived criteria in 
[80] as introduced above.  Since describing business processes can hardly be done without denoting 
involved objects, this table summarizes business model-related information in one column.  For each 
component in an approach, the table denotes the modeling languages used to describe models (i.e., the 
metamodel), if a specialized metamodel is defined in addition to the standard modeling notations, and if 
this part is transformed from other models at the same layer.  

Figure 3.1: Taxonomy of CIM-PIM Transformation Components. [80] 
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 Focused 
Domain 

CIM Presentation and Metamodel PIM Presentation and Metamodel Form of 
rules Business Process Requirement Structural Behavioral 

Mason et al.[40] data  
warehouses 

N/A UML Profile N/A UML Profile QVT 
Koch et al. 
[42]–[45] 

web  
application 

UML Profile based 
on Activity Diagram 

UML Profile based on Use 
Case 

UML Profile based on 
Class Diagram 

UML Profile based on 
Activity Diagram 

QVT, ATL 
Fatolahi et al. 
[47] 

web  
application 

Use Case Use Case Profiles used by chosen 
code generation tools, 
transformed from State 
Machine 

State Machine QVT 

Kherraf et al. 
[49] 

N/A Activity Diagram 
based on BPMN 

Activity Diagram, 
transformed from BPMN 

Archetypes Archetypes N/A 
Kardoš et al.[51] N/A Data Flow Diagram N/A Domain Class Diagram Sequence Diagram N/A 
Zhang et al.[52] N/A Feature Model N/A Software Architecture N/A N/A 
Rodriguez et al. 
[53]–[57] 

security 
business 

BPMN-BPD BP-Sec Profile based on 
Activity Diagram, 
transformed from BPD 

Class Diagram  Use Case QVT  

Gutierrez et al. 
[21] 

N/A N/A Metamodel to describe Use 
Case 

N/A Selected subset of UML 
Activity Diagram 

QVT 
Hahn et al. 
[59] 

N/A CIMFlex metamodel 
based on BPMN 

CIMFlex metamodel based on 
BPMN 

SoaML transformed from 
CIM, PIM4Agents 
transformed from SoaML 

PIM4Agent metamodel ATL 

Da Castro et al. 
[62] 

N/A Value Model and 
BPMN 

N/A Domain Specific 
Language 

Domain Specific 
Language 

ATL 
Bousetta et al. 
[65] 

N/A BPM, 
Template-based 
Business Rules 

Use Case,  
transformed from high level 
BPM 

Domain Class Diagram 
 

Sequence Diagram Rules 
defined 

Kriouile et al. 
[66]–[68] 

N/A BPD Use Case, 
transformed from BPD 

Domain Class Diagram, 
transformed from BPD 

System Sequence 
Diagrams, transformed 
from UCD 

QVT 

Rhazali et al. 
[69]–[75] 

N/A BPMN and Activity 
Diagram 
or SoaML 

 Class and Package 
Diagram, 
IFML from other PIMs 

State Machine ATL 

Table 3.1: Summary of CIM-PIM Transformation Researches.
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3.1.4.2 Lessons Learned and Missing Points 
Existing CIM-PIM transformation approaches provide inspirations and guidelines for the construction 

of the view bridging in this thesis.  Related observations from these researches are listed below.  
1. Intermediate models in the transformation chain of an approach do not have to be unified with 

other approaches. As Subsection 3.1.1 described, in approaches with horizontal transformations within 
the same layer, intermediate models such as Use Cases generated from models of business processes are 
observed being classified both as CIMs[65] and as PIMs[53]–[57]. 

2. Obtained system models from the transformation should contain structural and behavioral aspects 
of the system. This is recommended by the introduced evaluation approaches.  Most of the reviewed 
approaches consider both aspects at the PIM layer and present a path of transformations to achieve their 
planned outputs.  

3. The transformation automation relies on well-defined mapping rules among formal metamodels, 
expressed by QVT or ATL. In newer researches, ATL is more frequently used thanks to its good tooling 
support. This proves the feasibility to use ATL for implementing mapping rules between CIMs and PIMs. 

4. Most automatable approaches recommend a semi-formal transformation process as described in 
Subsection 3.1.1 and Subsection 3.1.3. Human roles may manually transform unstructured information, 
evaluate and optimize the generated results of automated transformation steps. Human interference shall 
improve the quality of production.  Thus, a practical approach should minimize the human effort, while 
also provide a guide on how the human roles interact with the automatic process.  

Despite that various CIM-PIM transformation approaches exist, none of them satisfies the needs of 
view bridging that this thesis is interested in. Some approaches focus on a restricted domain.  For instance, 
Mason et al.[40] worked on the data warehouse and thus paid more attention to the structure of 
information pieces. The work from Koch et al. [42]–[45] supports generating components and operations 
in the Web.  The domain of spatial-aware simulation is orthogonal to these two domains. Although a 
simulated environment component can be settled in a web environment or can involve data storage, the 
existing solutions do not cover models and transformations dealing with the generation of spatial-
temporal varied data. 

Approaches that do not state a focused domain fail to satisfy the needs due to a similar reason. Their 
CIMs pay attention mainly to enterprise and organizational aspects that the systems under development 
are involved in, which is one reason that BPMN is most frequently chosen to express their CIMs.  These 
approaches orient themselves to the business modeling domain. Functionalities in generated models are 
often user-triggered operations, such as submitting a form via clicking a button. While business goals and 
user operations are of importance to any system development, this thesis, however, is interested in 
expressing functional requirements at a more specialized level as well as has a different runtime 
environment. Functionalities of the interested systems are restricted to provide simulated environments 
during spatial-aware simulations.  CIMs in this thesis should focus more on expressing the expected 
behaviors of spatial phenomena in simulation processes than on organizational processes.  Metamodels 
that are more expressive for the dynamic spatial phenomena than BPMN or basic UML are needed to 
reach more specialized software structure at the PIM side via automatic transformation.  
3.2 Spatial Conceptualization and Data Representation 

Simulated environment components provide digital representations of environmental phenomena 
which are often spatial information. During an MDD process, such contexts need to be expressed by 
models at different layers from the human perspective and the system perspective. Thus, this section 
briefly reviews the existing researches on the expression and representation of the spatial information 
from these two perspectives, as described in Subsection 3.3.1 and 3.2.2, respectively. Their relations to 
this thesis are summarized in Subsection 3.2.3.  
3.2.1 Spatial Conceptualizations 

The underlying conceptualizations of spatial information have been thoroughly investigated since the 
early years of Geographic Information Systems (GIS).  It has been well-accepted that two fundamental 
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approaches exist when humans conceptualize spatial phenomena, i.e., object-based and field-based 
conceptualizations. The former ones view spatial phenomena as distinct individualities carrying various 
characteristics, while the latter ones view spatial phenomena as a set of locations that carry characteristics 
(i.e., as a function that maps locations to thematic values). [81]–[83] Each approach stands for an angle 
to view the real world, but neither of them represents the “truth” of the world.  Duality exists even when 
people conceptualize the same phenomenon.  For instance, a river can be viewed as an object bounded 
by its bed. It can also be viewed as a field, with each spatial location within its boundary have a certain 
water depth.  Frameworks that integrate both conceptualizations to manage the spatial data have been 
established [84], [85]. 

High-level conceptual models and description languages of spatial phenomena using the fundamental 
spatial concepts as constructs have been proposed. Günting et al.[86]–[88] have done a series of work to 
specify database modeling and query languages based on the concept of moving object. Carmara et al.[89] 
use the concept of field as a general datatype to represent and to operate on spatiotemporal data. Other 
researchers consider both conceptualizations. Kuhn and Ballatore[90] designed a language for spatial 
computation by specifying core spatial computation operators based on a set of basic spatial concepts.  

Specifications of these models and languages are essentially human-oriented.  Constructs of these 
languages are based on common-sense conceptualization rather than specialized knowledge in spatial 
data, even though they may be referred to as “datatypes”. They are defined at the cognitive level and are 
independent of how their represented information is logically organized. Thus, these works are 
comparable to the models at the CIM layer.  They mainly aim to provide richer semantic to spatial data, 
as well as to raise the usability of spatial database and information systems. Implementations of these 
works are often embedded in spatial DBMS and GIS software, or as code libraries that enable general 
spatial computing by people with limited programming experience. In this situation, implementations of 
these languages locate at the M1 model level from the model-driven engineering view, which encloses a 
fixed implementation. 
3.2.2 Representation of Spatial Data 

Logic-level data and service models that are implementation neutral have been developed to support 
building, managing and exchanging the spatial data and spatial information services.  These works are 
roughly comparable to the models at the PIM layer. Significant works in this area are standards from 
Technical Committee 211 of the International Organization for Standardization (ISO/TC 211)3 and the 
Open Geospatial Consortium (OGC)4.  Most data models in these standards have their groundings on 
academic research in relevant domains such as computer graphics, spatial-temporal databases, etc. Thus, 
they reflect well the theoretical work in this area.  

The ISO/TC 211 focuses on the standardizations related to geographic information. The ISO 191XX 
series are developed by ISO/TC 211 for information associated with a location relative to the earth[91]. 
These standards cover a variety of topics regarding the acquirement, management, processing and 
exchange of geographic information.  Among these standards, the family that is particularly of interest to 
this thesis are the data model standards. They provide conceptual schemas to represent different aspects 
of the geographic information as components of features. The term “feature” is defined by the domain 
reference model of ISO19101, which is an “abstraction of real-world phenomena”[91]. UML is used as 
the conceptual schema language within these standards[92].  

Among the data model standards, ISO19107 [93] specifies a schema with geometric and topological 
types to represent the spatial characteristics of features. To support low-cost implementations, 
ISO19137[94] also provides a small core profile of the spatial schema defined in ISO19107. 
ISO19108[95] provides a schema with geometric and topological datatypes to represent temporal 
characteristics of features. Further, ISO19141[96] extends ISO19107 to enable the expression of moving 
geometries. A spatial feature type can be composed of these datatypes together with thematic attributes. 
Alternatively, ISO19123[97] provides a schema to represent features as coverages. A direction position 

 
3 https://www.isotc211.org/  
4 http://www.opengeospatial.org/  
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within the geometric representation of a coverage feature has a single value for each thematic attribute of 
this feature. These standards schemas correspond to the M1 level models. The ISO19109[98] provides a 
metamodel called General Feature Model (GFM) to integrate various components described by these 
standard schemas as features. Based on this metamodel, this standard specifies rules to develop 
application schemas that describe feature types in particular application fields. These rules are 
descriptively documented in terms of UML requirement classes.  

The OGC is an international industry nonprofit organization that develops open, free standards to 
improve geospatial data sharing.  It has the main focus on promoting interoperability specifications for 
geospatial content and services. Standards from OGC are developer-oriented technical documents that 
specify interfaces of software and web services that can work together without further debugging[99]. 
Information models are often provided with these implementation specifications in the form of XML 
schemas in OGC’s schema repositories5. 

The OGC also developed an architecture called OGC Abstract Specification to provide conceptual 
models for developing OGC standards which are referred to as Implementation Standards.[100] This part 
is closely related to the model abstraction levels of this thesis as the OGC’s intention states. OGC 
Abstraction Specification consists of an essential model to describe the conceptual links between the 
software and an abstraction model to describe how software should work at an implementation-
independent level [99]. The ISO TC211 has a co-operative agreement with the OGC, through which ISO 
TC211 standards have been incorporated as part of the OGC Abstract Specifications while the OGC 
submits Implementation Specification to ISO for adapted as ISO International Standards.[101] The OGC 
Abstraction Specification is divided into topics.  The ISO 19107 is identical to OCG Abstract Topic 1 – 
Feature Geometry, and the ISO 19123 is identical to OCG Abstract Topic 6. Similar to various ISO 
standards, these documentations are not exactly at the same abstraction level.   For instance, Topic 1 and 
6 specify standard schemas of datatypes to represent the components of features as mentioned above. 
Topic 5-Features[102] expresses nine levels of abstractions, which implies the process of modeling the 
real world. Its abstraction model of features acts as a very general metamodel of feature types. 
3.2.3 Summary and Relation to This Thesis 

As summarized in the previous two subsections, models of spatial phenomena from the human view 
and from the system view both exist.  Language models in the framework proposed by this thesis make 
use of these concepts and datatypes resulting from these researches. However, existing works have 
purposes that are different from this thesis. Thus, their models cannot be directly used for this thesis. 
Observations of these differences and how these observations inspire this thesis are listed as follows:   

1. A conceptualization of spatial phenomena in existing researches reflects an angle to view real-
world entities and is associated with various possible functions. Metamodels at the CIM layer in this 
thesis describe requirements of expected context generated by various simulated environment 
components under development, which could be viewed from different angles. For instance, in a 
simulation, the system of interest component needs to be informed of the hazardous area of a storm.  In 
this simulation, the storm is viewed as an object moving in the space.  In another simulation, the same 
storm may need to be viewed as a wind field that the system of interest travels through. Thus, CIM 
metamodels should avoid presuming a fixed conceptualization that states “what it is” for a described 
phenomenon but focus on supporting expressing the expected characteristics and behaviors that have to 
be preserved in models in more specific layers. 

2. Standardization organizations like ISO and OGC focus on enabling data sharing and system 
interoperability. Their models include interfaces and public attributes that datatypes should expose to 
external components. These models aim to cover possible properties and operations that a datatype shall 
expose to external systems, but do not concern much with the development cost of a separate system. 
This thesis has a different focus that aims to facilitate application development processes. It prefers to 
provide easily usable models in small size and only considers simulation relevant aspects. PIM-layer 
metamodels specified in this thesis utilizes the common geometry types from existing models, e.g., point 
and polygons, to express spatial characteristics. Besides, it introduces stereotypes based on widely used 

 
5 http://schemas.opengis.net/ 
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geometric representations in spatial simulations, such as gridded sites in cellular automata[103].  
Developers shall further map PIMs to existing implemented code utilities based on these types.  

3. Most of the spatial data models are defined from a database view, i.e., information exists 
somewhere that can be checked or requested.  Spatial entities in this view may be modeled as hybrid 
spatio-temporal digital objects since historical states of these objects need to be stored.  In contrast, 
models describing a computation process of simulated phenomena include runtime objects that are being 
updated during executions. These objects need to be modeled as situating in space and changing over 
time, who do not necessarily hold the past states. 

4. Existing spatial data (meta-)models are defined at different abstraction levels without alignment 
with the process of development & the use of the software. This hinders the efficient choice and use of 
these models.  It is not useful if developers use a very general algebra to model a software which they 
need to implement.  Exposing too many details of data structure in the user interface makes the products 
quite complicated to users. Thus, the development framework in this thesis should locate the used models 
properly in the software development cycles according to their abstraction levels, so that involved roles 
shall gain maximum benefits from applied models.  

5. The traceable view switch is absent among existing models from various perspectives with 
different levels of abstractions, although its importance has been stated by OGC[102]. It leads to heavy 
manual work when applying MDD principles using these models. Transformations from high-level user 
understandable models to implementable software design models cannot be automated since the 
mappings among them are missing.  Also, since complicated logic-level data standards introduced in 
Subsection 3.2.2 are not easily readable to non-expert users, no control exists to preserve user 
expectations of the final products when developers design the application using these standards. These 
gaps have motivated this thesis, as pointed out in the introduction chapter. 
3.3 Simulated Environments in Software 

This section summarizes the common styles to provide simulated environments in simulation 
programs. From a technical perspective, a simulated environment is some digital data.  These data are fed 
to the component that simulates a system of interest during its execution, or to some intermediate digital 
system which further presents them to non-digital participants (e.g., human) in physical simulations. They 
could be either externally provided or simulated within the working community based on a computational 
model.   Forms of the environment components in these cases are summarized in Subsection 3.3.1, 
followed by Subsection 3.3.2 that denotes their relation to this thesis. 
3.3.1 Styles of Simulated Environment Components 

It is very common to use existing data for representing simulated environments. These data are 
normally collected by a trustworthy external provider, or from the fieldwork by the working community.  
The data source could also be synthesized by some external providers that are professional in modeling 
and simulating required environmental phenomena. Modern simulation toolkits with spatial extension, 
e.g., NetLogo[104], GeoMason[105], Simulink[106], support loading spatial data used as the simulated 
environment in simulations, which is sufficient for relatively simple simulation programs. In a more 
complicated simulation, simulated environments may be provided through a more loosely-coupled 
component which could be a connection to a spatial data store. 

The development of simulated environment components with integrated computational models are 
more complicated.  It needs to notice that the “simulated environment” is a concept relative to the “system 
of interest model”. A simulated environment includes abstraction of some real-world systems, which are 
conceptually viewed as phenomena in the situated world of the system of interest.  In this case, they are 
provided as a component that embodies computational models to produce necessary data representing the 
environmental phenomena. Within this component, the phenomena being computed become the system 
of interest model which may have their own simulated environment. 

This case could happen when the required data are not available or only partially available from 
external providers, or when the working community desires to control the environmental conditions more 
freely. Another possibility is the available data is about a phenomenon that does not influence the system 
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of interest directly but drives the behavior of another phenomenon that influences the system of interest.  
Further, a working community may have subgroups that develop computational models for simulating 
various real-world systems, some of which produce output that can be used for other models as simulated 
environments.   

In spatial-aware simulations, models providing simulated environments are executed to draw data 
samples of spatial patterns changing over time, which are then sent to other components.  Within the 
models, these spatial patterns may emerge and change through different mechanisms, depending on the 
underlying methods.  The conceptual schemes of various spatial simulation paradigms are summarized 
in the following list. Many practical models use a mixture of these schemes, with each of their building 
blocks following one scheme. 

1. The behaviors of a model are described based on the discretization computation of continuous 
functions (often in the form of differential equations) on a set of regular-spaced sample locations (i.e., 
based on finite-difference methods). The spatial patterns are determined by the top-down view equation-
based relationships between thematic values and spatio-temporal locations.  In the results of computation, 
A spatial pattern is the difference of computed sample values of some attribute from location to location. 
It is updated over discrete time steps through the update of the sample values. These top-down equation-
based methods are widely used to simulate phenomena. A famous example is the sea surface simulation 
based on a function called the wave variance spectrum[107]. The theme to be computed is the elevation 
of the sea surface related to the sea level.  Its patterns are described by the spectrum and the Fourier 
transformation from the spectrum to the elevation.  In the computation, state values of the elevation are 
calculated on a set of grid points at a two-dimensional space at a necessary pace.[108]  Other cases can 
be found in the simulations of temperature fields based on the heat equation[109], concentration 
distributions of chemical substances simulated based on advection-diffusion equations[110], etc. 

2. The behaviors of a model are described based on a set of unmovable units, each of which shall 
hold a set of thematic attributes. The macroscopic spatial patterns that are of interest emerge from the 
state differences of the thematic attributes from unit to unit. In many model descriptions of this kind, the 
states of exposed themes are implicitly referred to as the states of these units. Such a model focuses on 
expressing the rules to update the state of a unit about these themes with the current states of this unit and 
its neighborhood units. This view is often taken by cellular automata models where the units are often 
referred to as “cells” [111]. The updates happen iteratively, and the macroscopic spatial pattern is changed 
over time through the local updates.    

Different from the first case, this type of models is bottom-up. They describe local processes that 
consider the neighborhood of the location where a state value is computed. No central control exists in 
the core paradigm.  Nevertheless, the first two cases have similar schemes in the sense that the values 
reflecting spatial patterns of interest are carried by a set of fixed locations, despite that the finite-difference 
methods often work on a regular grid of points, while the “cells” of cellular automata could have irregular 
geometry [112]. A collection of the units is often referred to as “lattice” or “sites” in both cases, which is 
conceptualized as discretized spaces experiencing some states. Researchers have also reported that the 
models based on the finite-difference methods can also be transformed into the form of cellular 
automata[113]. 

3. The behaviors of a model are described based on a set of moving units, each of which shall hold 
a set of thematic attributes. The macroscopic spatial patterns that are of interest emerge from the 
distribution of these units over space. Such a model focuses on expressing the rules to update the location 
of a unit at each step. The existence of these units implies a theme. In a more complicated case, the 
macroscopic spatial patterns of interest may be exhibited from the state differences of thematic attributes 
from unit to unit. This view is often taken by the multi-agent models of mobile entities, while each unit 
is conceptualized as a mobile entity[103]. A simple model could consist of a set of random walkers, 
whose moving direction and speed (or distance) at a step are drawn from a probabilistic distribution.[114]  
In practical cases, the random walker rules often are more decorated, which may consider additional 
effects such as the correlation between consecutive steps[115]. Further, efforts of the movement goals of 
these units and the background information can be also specified in the rules to define purposeful agents, 
which yields the computation of search problems in the spatial context.[103] 

4. The behaviors of a model are described based on a set of moving units that actively change the 
thematic attributes of a set of unmovable units. The macroscopic spatial patterns of interest to external 
components emerge from the state differences of thematic attributes carried by the unmovable units. Such 
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a model focuses on expressing the rules of two aspects, i.e., the rules of updating the location of a moving 
unit and the rules of updating the thematic states of the unmovable units when a moving unit arrives at 
its location. This view is often taken by the variants of percolation models[116]–[119] and Eden growth 
models[120], [121], which are bottom-up view models to simulate the spread of substances such as forest 
fire, oil spill and so on[122]. 

This case is closely related in both 2 and 3. These unmovable units are normally conceptualized as the 
“underlying space” or “landscape” in such model descriptions (as the lattice or sites in 2).  Movements 
of the moving units (as some random walkers or rational agents in 3) shall be expressed in terms of 
discrete steps from unit to unit of the underlying space instead of continuous coordinates, which 
significantly simplifies the computation. 

When a model based on the above-described schemes is developed as an independent simulation 
program, it is used to produce multiple sample draws. The summarized characteristics (often in the form 
of describing functions and statistic indexes) of multiple samples are analyzed to provide answers and 
suggestions for real-world problems.  The purpose of usage changes when this model is used to compute 
simulated environments for other components. In this situation, it is supposed to be already “correctly” 
established.  A sample draw from this model is fed to other components during a simulation run. The 
summarized characteristics may be fixed in the implementation or be implemented as modifiable 
parameters. In this case, the development of simulated environment components involves two main tasks.  
First, the computational models of environmental phenomena should be developed and be implemented 
with the technologies that are compatible with the current simulation platform. Second, the models should 
be integrated into a target frame as the environment component of the target simulation. 
3.3.2 Summary and Relation to This Thesis 

Ways of providing simulated environments in simulation programs introduced in Subsection 3.3.1 can 
be categorized into three styles as shown in Figure 3.2. A system of interest component that consumes 
the provided environmental data is referred to as the “client system” of the simulated environment 
component in this subsection.   

The case (a) is to use externally provided data. Simulated environments produced by integrated 
computational models shall be provided to client systems in two ways. The computation shall run 
synchronously with client systems and send computed values to client systems at each step as the case 
(b) illustrates. The case (c) shall apply when the computation of environmental data requires long process 
time, in which computation results are exported to a data store at first and be used by client systems later 
for efficiency. In both cases, an environment component needs a frame to enclose computational models.  

Figure 3.2: Styles to Provide Simulated Environments. 



27 
 

A computational model shall be implemented as a continuous function that calculates thematic values 
of a phenomenon when given a spatial-temporal location. It does not contain the logic to compute a 
chosen set of discrete samples. Each calculation is performed independently that does not require results 
from previous calculations. Simulated environments provided in such a way are conceptually like analytic 
coverages as defined by ISO19123[97]. The computation is performed reactively upon the request of 
client systems. The frame enclosing such a model provides access to this model with a location as the 
parameter.  Running this model with client systems needs to determine a finite structure of the required 
output at a computation step. This situation also applies to the case (a), in which the analogy of the 
mathematic calculation is the connection and query functions to the data source.   

Computational models shall also ground on process modeling methods that calculate the next state of 
a phenomenon based on its current states, such as the spatial simulation models summarized in Subsection 
3.3.1. In this situation, a simulated environment component needs a data structure to hold the current state 
of its computed phenomena at runtime. Besides, since such a model computes discrete outputs, the 
component also needs a frame to enclose the logic for evaluating values at a location in the continuous 
space from computed values. This situation also applies to the case (a), when the logic is not provided 
with the data source. 

The identification of common schemes and the necessary composition of simulated environment 
components are the basis to specify the design-level metamodels that express these components in this 
thesis. Concepts of the structural metamodel are introduced based on the analysis in this subsection. These 
metamodels are presented in Section 5.2. 
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4 Language-Driven Development Framework of 
Simulated Environment Components 

As Chapter 1 has addressed, the overall goal of this thesis is to provide a domain-specific solution to 
facilitate developments of software components that provide simulated environments in simulations, 
respected to identified research objectives. This solution is provided in this thesis as a development 
framework built on top of the language-driven development[123]. The proposed framework reflects the 
language-driven paradigm in two aspects. First, it involves domain-specific meta languages that describe 
simulated environment components in views of different roles throughout a development process. Second, 
it constructs software that has the structure of a computer language.  This applies to the structure of the 
proposed framework itself, as well as for structures of simulated environment components to be built 
within the framework.  These two aspects are explained in the first two sections of this chapter, followed 
by a section that presents a development process using the framework. Benefits brought by this 
framework are clarified during describing this development process, with comparison to domain-
independent solutions. 

The framework specification consists of the following parts. Corresponding sections that present these 
parts in this thesis are also listed below. 

 A set of formal meta languages used within the framework: an overview of these languages 
at the architecture level is given in Section 4.1, including purposes to use them in the framework, 
perspectives from which they are specified, their target users, and relations among them. Chapter 5 is 
dedicated to explaining modeling principles and detailed specifications of these languages, including their 
syntactic models, structural semantics, and transformations among them.  A system architecture to guide the realization of the framework: the architecture specifies 
obligatory and optional components of this framework. It is presented in Subsection 4.2.1, including the 
functionalities and places of these components in the framework, as well as how they are connected to 
build up this framework. The specification of the system architecture is implementation neutral, same as 
the meta language models.  Implementation suggestions are given during the introduction and an 
exemplary implementation for use case validation is provided in Chapter 6.   A development process to guide the use of the framework: this process explains how to use 
the proposed framework to develop a software application to generate simulated environments. It is 
presented in Section 4.3.  This process specifies transitions of artifacts among different components, 
input/output artifacts of each component, as well as activities that need to be performed in each 
development phase. 

4.1 Executable Meta Languages 
Domain-specific meta languages are the backbone of the proposed framework. This framework 

specifies four language models for describing CIMs and PIMs of simulated environment components as 

Figure 4.1: DSL Models in the Proposed Framework. 
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shown in Figure 4.1. Each of these languages is specialized for one separate concern during the 
development process. They target different involved roles in developments and include the expressions 
in their syntaxes that the target roles are familiar with. Low-level implementation details that can be 
accomplished with general-purpose programming languages are left out. An instance model described by 
one of these languages represents a specific software component that generates simulated environments 
for a simulation application, from a view corresponding to the used language. The CIM-layer language 
Simulated Environment Description Language (SEDL) is used to describe what kinds of simulated 
environments should be produced by such a component in a structured manner.  The other three PIM-
layer language models are used to describe the configuration schema, the data models and the 
computation flow of such a component, respectively. They are mainly specified as UML Profiles. 

The main reasons to use these languages in the proposed framework are to bridge various views and 
to enable automation of transforming software descriptions at a higher abstraction level to more concrete 
ones. These language models have nested structures and serve as the SEDL Core Language Model 
component within the proposed framework, which are introduced in Subsection 4.2.1 in more detail. The 
metamodel of the SEDL is mapped to the PIM-layer language models via transformation rules.  These 
rules play the role of the operational semantics of SEDL.  Thus, executing a software description in SEDL 
should perform these transformation rules to produce three models, each of which is expressed by one of 
the PIM-layer languages. These three models are inter-related and represent the same component as 
described by the SEDL description, at an abstract level that is independent of the implementation 
programming language. 

A brief overview of these language models is given in the subsections of Section 4.1. The later sections 
in Chapter 4 introduce where these languages are placed in the framework architecture and how they 
work in the development process using the framework. 
4.1.1 Simulated Environment Description Language (SEDL) 

Purpose:  SEDL is a description language for expressing functionality requirements.  It supports 
expressing the context of simulated environments that should be provided by environment components 
in simulations under development and functional behaviors of these components in simulations.  An 
SEDL description serves as the input of transformations to generate a set of software models that can be 
further turned into implementation code or code skeletons. It is the anchor language based on which the 
proposed framework is built and serves as the start point to develop simulated environment components 
using this framework. Language users can scratch a description of required simulated environments in 
SEDL. 

Perspective: the syntax of SEDL is designed to be understandable by people without software 
development or data structure expertise. It provides an intuitive description structure for simulated 
environments in spatial-aware simulations from a human observer perspective. It supports describing 
expected compositions of simulated environments required by systems of interest in simulations, as well 
as changes that phenomena in these environments should exhibit during simulations.  A description in 
SEDL does not express a specific environment with a fixed evolving path.  It describes all possible 
behaviors of an environment that a component should be able to produce, denoting conditions that should 
be modifiable to users for different runs. More modeling principles of SEDL are introduced in Subsection 
5.1.1 within its specification. 

Humans conceptualize a spatial phenomenon based on its properties or behaviors which they are 
interested in.  A specific property or behavior type is associated with a specific conceptualization at a 
certain level of detail.  Thus, humans may switch conceptualizations implicitly when describing multiple 
aspects of an identical phenomenon.  Besides, aspects of a phenomenon type that are of interest to the 
simulation decide functionalities of software that produce or record phenomena of this type in the digital 
form.  These functionalities require certain kinds of data structure and operations in software.  While the 
aspects of interest are clear, fixing one conceptualization is meaningful.  For instance, databases using 
the “moving object” concept shall support recording and querying movements of spatial objects and their 
topological relationship[87]. In contrast, SEDL is intended to be used to develop different software 
programs that may require software artifacts based on different conceptualizations. The most suitable one 
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cannot be foreseen when specifying the language model. Due to the above-mentioned relations, SEDL 
does not fix a conceptualization to describe environmental phenomena. Instead, it supports classifying 
changes of phenomena required by simulation scenarios at the system analysis phase based on which 
software artifacts are derived in the following development phases. 

Relations to other DSLs:  the grammar model of SEDL locates at a higher abstraction level than the 
one at which the other three meta languages locate at within the framework as will be explained in 5.1.1.1. 
The language specification of SEDL is defined with operational semantics in terms of transformation 
rules.  These rules map the abstract syntax model of SEDL to the models of the other three meta languages. 
The other three languages are often referred to as output metamodels/meta languages in the following 
text.  The abstract syntax models of the output meta languages can be viewed as parts of its operational 
semantics specification.  Transformations of an instance model in SEDL results in a set of instance models 
described by the other languages. 

Target users:  SEDL is intended to be used in the system analysis phase. First, it is used to document 
and communicate the high-level functional requirements of software components. Component users can 
describe in SEDL their expected environment to be generated by a software component.  Developers can 
also write the description according to the discussion with users.  The resulting descriptions can be 
checked and confirmed easily by involved roles.  More importantly, an SEDL description is a half-formal 
model, which enables its automatic transformation to more concrete models.  In a realization of the 
proposed framework, executing an SEDL description will provide developers with software models or 
code skeletons of the component under development described by this SEDL description. 
4.1.2 Configuration Schema Description Profile 

Purpose: Configuration Schema Description Profile is a description language specified as a UML 
Profile. It is used to describe user-software interfaces. An instance model of this profile is a configuration 
schema for a software application, which contains groups of configurable parameters exposed to users.  
In the proposed framework, this profile serves as one of the output metamodels of the SEDL description 
execution or the input metamodel of transformations to platform-specific user interfaces. 

Perspective: this language is purely declarative. In the proposed framework, an instance model of this 
language describes a user interface to configure a simulated environment component from a data model 
perspective. Second, the structure of this instance model is aligned with the structure of simulated 
environments that is described by a corresponding SEDL description. 

The first point means the abstract syntax of this language is not a model denoting how an input field 
of a parameter should be visually presented to users.  It focuses on the content which can be set by users 
and be passed to the back end of the component under development.  A concept in the profile either 
presents a parameter or a group of parameters with a certain structural pattern. For example, a 
configuration model shall state a parameter about the wind speed called “initial”.  Then the configuration 
interface should allow users to set different values for “initial”.  However, the model does not state that 
these values must be set through a certain GUI entity, e.g., a textbox.  This prevents user interfaces from 
being restricted to a specific visual representation.  An additional mapping layer can be established to 
transform an instance model described by this profile to a graphical or textual configuration editor in 
some specific platform.  This point will be brought up later in Subsection 4.2.1. 

The second point means a configuration model described in this profile is organized in the same 
structure which corresponds to an SEDL description.  This configuration model is supposed to get its 
hierarchy when it is derived from that description. It also gets names of elements and characteristics in 
the SEDL description.  It keeps the same structure when users form the simulated environment in their 
minds to describe their requirements. Thus, the resulting user interface can be easily understandable. 

Relations to other DSLs:  a model described by this profile is supposed to be initially generated when 
executing an SEDL description. Links exist between this model and a model described by the metamodel 
of environment computation. The latter is generated from the same SEDL description. A component 
developed from that computation model consumes an instance configuration to initialize settings for a 
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simulation run. Modifications of the initial generation from either side of these two models should retain 
these links. 

Target Users: this language is of interest to front-end developers who should develop an interface 
that allows users to interact with the component under development. They should bind a configuration 
model (i.e., an instance model of this profile) to a user interface of the component.  They shall map this 
profile further to suitable visual representations to accelerate UI development.  Though a developed UI, 
users can add or remove a phenomenon for a simulation execution conforming to the cardinality 
restriction, assign values to parameters, etc.  Names of elements within the configuration model are 
exposed to users to denote which values they configure.   
4.1.3 Simulated Environment Structure Profile 

Purpose: Simulated Environment Structure Profile is a language model to describe abstract data 
structure[124].  It serves as one of the output metamodels of the SEDL description execution, as well as 
provides some PIM-layer constructs for developers to describe application-specific structural models. It 
may also serve as the input metamodel of transformations to the platform-specific models.  

Perspective: this profile is also used to describe structural models for components that produce 
simulated environments in simulations. Different from the configuration profile targeting user interfaces, 
this language focuses on the back-end data structure of the component programs. An instance model in 
this language reflects how characteristic values of environmental phenomena are organized and stored 
within programs. It contains classes to store values of environmental entities during computation and 
classes representing data objects that being sent to systems of interest from the environment components. 
Objects modeled by this model are created and updated during component runtime. 

An environmental phenomenon described by this profile is essentially a complex datatype with 
multiple aspects. These aspects are represented by geometry datatypes for its spatial representation and 
non-spatial primitive datatypes for other properties, respectively. The spatial representations covered by 
this language model are based on existing data models and simulation researches.  This enables seamless 
mapping from this language to encoding libraries which are based on these works. 

Relations to other DSLs: a model described by this profile is supposed to be initially generated when 
executing an SEDL description. A behavior model described by the metamodel of environment 
computation generated from the same SEDL description is associated with it. Links between these two 
models must be retained when modifying the initial generations. Computation classes implemented from 
the behavior model are in charge of creating, updating or destroying objects from corresponding datatypes 
in this model.  

Target users:  this profile and its instance models are hidden from component users.  It is mainly for 
developers who implement the component back ends. Developers should turn a generated model 
described by this profile to functional code. They can benefit from general code generation facilities to 
get model code skeletons from this model. They shall modify the generated model to optimize the 
software design before the code generation. Further, they shall develop or utilize default implementations 
for spatial representations of meta types in the language metamodel (i.e., stereotypes in this profile) and 
reuse it for all model elements of the same meta types. 
4.1.4 Metamodel of Environment Computation 

Purpose: the metamodel of environment computation describes behavioral models of simulated 
environment components. It serves as one of the output metamodels of the SEDL description execution, 
together with the other two introduced in the previous two subsections.  It also provides some PIM-layer 
model constructs for developers to express application-specific behaviors of the component under 
development. It could also serve as the input metamodel for computation flow code generation. 

Perspective: different from the previous two output metamodels which focus on structural aspects, 
constructs of behavioral models are process-oriented. An instance model presents computation processes 
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to compute states of a simulated environment at a simulation step and simulation routines in which the 
component under development participates in.   

Meta elements that express such models come from several sources, which include basic UML 
behavioral metal elements, behavioral elements owned by stereotypes in the structural metamodels, and 
action stereotypes defined in the behavioral metamodel specification. They are all viewed as part of the 
behavioral metamodel used in this thesis at the PIM layer. The detailed composition is summarized in the 
specification in 5.2.3.1.    

Relations to other DSLs: a model described by the computation metamodel is supposed to be initially 
generated by executing an SEDL description, together with two other output models in previously 
introduced languages.  These three models together present a software design model.  The computation 
model has associations with both the other two models. Modifications of the generated models should 
not break these associations. During the runtime of a developed component, the implemented 
computation model gets its initial setting from an instance of the configuration model and operates on 
objects that are the instances of the data structure model to produce outputs. 

Target users: this language and its instance models are also designed for back-end developers and 
thus are hidden from component users. Developers should turn an instance of the computation metamodel 
into a sequence of computation units in code. This shall be assisted by code generation facilities in an 
implementation of the proposed framework as explained in Section 4.3.  

The body of each computation unit can be individually implemented based on mathematical 
formulizations provided by modelers of environmental phenomena.  Thus, instances of the computation 
metamodel also serve as communication media between software product developers and environmental 
phenomena modelers, when these two roles are taken by different persons.  Modelers do not need to 
bother with the structures that are specific to programming languages, but only the computation logic 
within computation units.  Since the input parameters and output types of these units are fixed in a 
computation model, modelers shall identify the corresponding parameters and types in their formulas.  
Product developers then can turn the formula into the method code with correct input and output to chain 
the computation process correctly. 
4.2 Build Software Applications as Computer Languages 

The proposed framework emphasizes building software following the structure of an executable 
computer language.  This strategy brings two benefits.  First, developed meta languages in the framework 
can be more comprehensive used than merely serve as description syntaxes.  Language users do not only 
benefit from the high-level grammars of these meta languages, but also components of computer 
languages that implement their operational semantics. Second, the realization of software can use the 
basic language infrastructure generated by workbenches (see Subsection 3.2.3) from language models, 
which ease the implementation in practice. 

In the following text, Subsection 4.2.1 presents how the architecture of the proposed framework 
follows such a structure, followed by Subsection 4.2.2 explaining that how a simulated environment 
component developed within this framework is coordinated as a set of computer language components. 
4.2.1 Development Framework as IDE of SEDL 

At the architecture level, components of the proposed framework are organized in the way to build an 
IDE of the anchor language SEDL. Thus, a realization of this framework should provide an infrastructure 
to write and execute SEDL descriptions. The logical components of the framework are shown in Figure 
4.2 and explained below, among which the SEDL Core Language Model and the Basic SEDL Tooling 
are the mandatory components for a minimal realization. 
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4.2.1.1 SEDL Core Language Model 
        The SEDL Metamodel is the grammatic model for creating descriptions of analysis-level 
requirements of simulate environment components. It is defined in the core SEDL specification using 
UML terminology to keep implementation neutral. The Abstract Syntax of SEDL provides concepts 
and structures to describe simulated environments, whereas its Structural Constraints provide 
constraints that a validate description must conform to. The SEDL Metamodel is a domain model that 
does not represent software structure.  One class in SEDL should not be confused with one class in a 
software program.  Rather, it corresponds to a set of artifacts in software.  Classes in SEDL metamodel 
shall be used as software model classes only when implementing the SEDL tooling. 

SEDL Operational Semantics are essentially transformation rules from SEDL descriptions to software 
design models at the platform-independent layer. While the input side of the transformation conforms to 
SEDL Metamodel, outputs of the transformation are expressed by the Output Language Metamodels. 
It comprises models of the other three meta languages summarized in Section 4.1. These models can be 
viewed as being nested in SEDL and are also defined in the core SEDL specification, mainly in the form 
of UML Profiles. The design of language models in the proposed framework follows principles of the 
strict multi-level metamodeling as introduced in Subsection 2.1.3. Artifacts related to simulated 
environments can be derived from these models.  These language models, their instances and derived 
artifacts, relations among them, as well as their relations to general modeling languages are shown in 
Figure 4.3.  This figure also shows their position in metamodeling levels and MDA layers.  

Both the SEDL Metamodel and the Output Language Metamodels are designed at the M2 meta 
level. This pushes the general modeling language, i.e., UML in this case, further to the M3 meta-meta 
level. The SEDL syntax describes simulated environments. It results in high-level domain models of 
simulated environments in the human view, which are CIMs.  In contrast, output meta languages describe 
models of software systems at the logical level, which are PIMs.  Mapping rules between these two sides 

Figure 4.2: Logical Components of the Proposed Framework. 



34 
 

which constitute the SEDL Operational Semantics are established at the M2 level. An SEDL description 
is an instance of the SEDL Metamodel and locates at the M1 model level. 

This M1 model is essentially a conceptual description of a set of possible simulated environments that 
need to be created by a component under development and how they should be provided to the system of 
interest component during simulation executions.  These environments have structures and property types 
in common, while may differ in the qualities of their properties. Thus, an M0-level object at the 
description side corresponds to a simulated environment in a specific simulation run in human perception. 
It should be made clear that an SEDL description does not need to be further instantiated in an information 
system. Thus, the SEDL descriptions at the M1 level are the end instances at the CIM layer in the 
framework. 

At the M1 level, an SEDL description is transformed into a set of software models of an application 
that produces simulated environments.   These output models conform to the output metamodels. In other 
words, they are the instances of corresponding metamodels.  The transformation at this level follows the 
M2 level mapping rules.  The M0 level of the output side locates runtime objects of these M1 models.  

The SEDL specification is presented in Chapter 5. To keep the proposed framework independent of 
implementation, this specification provides neither a concrete syntax for SEDL descriptions nor a 
concrete syntax for the output meta languages.  However, concrete syntaxes of these languages are 
mandatory to realize any language tooling with which users are can create and modify instance programs 
of them.  The SEDL Concrete Syntax could be either in textual source code style or in graphic notation 
which is similar to the underlying UML-based grammar model, while the UML graphic notation and its 
exchange format XMI can be applied for encoding the output software design models at PIM layers. 
4.2.1.2 Basic SEDL Tooling 

The language tooling is implemented based on SEDL language models. The SEDL Description 
Editor is used to create and modify description programs that conform to the SEDL Concrete Syntax 
being used for the framework implementation. This editor is integrated with the underlying Syntax 
Analysis Component to provide editing support functions such as syntax highlighting and validation.  
The composition of this component depends on the type of implemented concrete syntax.  

Figure 4.3: Model Related Artifacts Correspondence to MDA and Metamodeling Levels. 
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The editor should also implement save functions to store created SEDL descriptions in files and reopen 
them for further modification or execution.  Since the Abstract Syntax of SEDL is defined in terms of 
UML, it is recommended to also implement the save function for storing a parsed version of these 
programs encoded in the UML interchange format XMI.  Thus, the written programs can be used in 
different implementations of the proposed framework, as well as other UML-based modeling tools.  

In addition, the editor should have an easy interface that allows users to pass an SEDL description to 
the SEDL Description Processor for execution. This processor implements the SEDL Operational 
Semantics.  An execution process for a minimal realization of the proposed framework is a model-to-
model transformation. It produces and saves XMI-encoded models conforming to the Output Language 
Metamodels. This transformation can be combined with an optional platform-specific mapping which is 
introduced in the following subsubsection. 
4.2.1.3 Platform-Specific Mapping Layer 

This layer a worth-to-have optional component that extends the basic tooling with a Platform-
Specific Translator.  It implements the Platform-Specific Transformation Rules. Models described 
by the output meta languages are independent of specific implementation technologies. This translator 
further maps these models to some specific implementation platform, e.g., the programming languages 
used in a development team.  For example, an output model from the basic tooling may have a class with 
a property “a”. When the implementation technology is set to be JavaBeans6, this class can be further 
mapped to a Java class with a private field “a” and public getter/setter methods to access this field.  

This layer usually involves code generation facilities. It can be implemented by model-to-code 
transformation languages as Code Generation Templates or make use of existing UML-based code 
generation tools.  In this case, the execution of an SEDL description in the combined toolchain of basic 
tooling of SEDL and the platform-specific mapping layer produces code skeletons as the PSMs at the M1 
level as shown in Figure 4.3. This is especially recommended for computation model transformations, 
while computation models enclose application-specific behaviors of a component that needs to be 
implemented by developers. PSM-layer outputs provide developers with architectural code which they 
can fill in these application-specific behaviors. To facilitate the PSM code generation, transformation 
details specified in Chapter 5 express the output models in a structural view in terms of operations owned 
by activity classes and model elements relevant to it. 
4.2.1.4 SEDL Extension Layer 

This thesis focuses on developing new components rather than reuse of developed components. Also, 
the SEDL core language is designed to be independent of specific scenarios or phenomenon types.  This 
strategy keeps the core language having a concise size and being easy to use.  Further, it ensures that the 
core language to be applicable in different applications. However, a collection of developed simulated 
environment components emerges and evolves during long-term developments. This results in an 
extension layer of the implemented framework as shown in Figure 4.2.  

For groups whose work is dedicated to specific application areas, frequently appeared environmental 
phenomenon types shall be identified within a certain application area, e.g., sea wave in a marine 
environment. It is worth to add concepts to describe these reoccurred phenomenon types as Application 
Modules of SEDL. Besides, the implemented code in the Custom Code Pool to produce specific 
environmental phenomena has the potential to be reused.  Different from other components of this 
framework, this layer is not a self-contained component but a collection of application artifacts. To reuse 
the implemented code of an application module, the corresponding Application-Specific 
Transformation and the Tooling Extension need to be realized. While this is beyond the focus of this 
thesis on the core SEDL-based specification, Section 8.4 in the discussion chapter briefly provides a 
conceptual design of the integration architecture that integrated these artifacts into the core framework 
infrastructure. 

 
6 https://www.oracle.com/technetwork/articles/javaee/spec-136004.html 
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4.2.2 Simulated Environment Specification by Configuration Language 
The proposed framework guides the development of simulated environment components to reach 

software products as syntax-directed applications[125].  A simulated environment component is 
organized following the structure of a light-weighted configuration language.  

This strategy is achieved by CIM-PIM transformations from SEDL descriptions.  Models that locate 
at the PIM layer and the PSM layer in the proposed framework take the view of software systems. The 
basic structure of a simulated environment component under development is first provided by the 
generated PIMs at the M1 level. Output PIMs transformed from an input SEDL description include three 
inter-related models, i.e., a user interface model, a data structure model and a computation process model. 
They represent together the preliminary design model of the component expressed by the input SEDL 
description.  This set of models is coordinated in the way to provide functionalities to read and process a 
light-weighted application configuration language as shown in Figure 4.4. Refinements and further 
transformations should maintain the fundamental structure. More details are explained below. 

Grammar:  the generated UI model is a configuration schema, which corresponds to the grammar 
model of a light-weight configuration language for simulated environments. The structure of this model 
is aligned with the input SEDL description and its terms are transformed from the chosen names of 
elements in this description.  Both are expressed by component users or with the involvement of 
component users which ensures its understandability.  In a realization of the SEDL, it is recommended to 
pass this model to a language workbench to create basic language infrastructure as reviewed in Subsection 
2.2.3, which provides a frame to integrate the three output models together. The infrastructure has various 
components that can process instances of the configuration schema. 

Reader: a reader parses information written in a certain grammar and performs post-processing on 
parsed objects to translate them into the inner data structure of the software.  Thus, this term roughly 
refers to the scanner, the parser and the post-processor of a computer language.  Here, the reader 
corresponds to the syntax analysis component in the language infrastructure created based on the 
configuration schema as mentioned above.  It wraps methods that parse an instance of the schema and 
support functions that initialize a computation process according to a configuration instance. The 
initialized computation process is an instance of the computation process model. 

Interpreter: the computation process model corresponds to an interpreter. It provides functionalities 
that consume a configuration instance, initialize necessary instances of the data structure model and 
compute simulated environments during simulations.  The generated computation process model includes 
computation classes and computation flows associated with it.  In a realization, this part of the models 

Figure 4.4: Developed Components as Syntax-Directed Applications. 
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can be wrapped by an interpreter skeleton in the language infrastructure generated from the configuration 
model as introduced above. 

An advantage of this strategy is that it enhances the usability of developed components. By applying 
a syntactic model whose terms and structures are derived from user requirements to a configuration 
interface, component users are assisted with the intuitive vocabulary support in the same way they used 
to describe the to-be produced environments. Further, treating the configuration schema as a grammar 
model can benefit from language development facilities to create frames that bind different parts of 
component models together. Manual development work can be reduced through this strategy. 
4.3 Development Process with the Proposed Framework 

This section provides recommendations for aligning the development process of a simulated 
environment component with the framework. It presents each development phase that the framework 
contributes to, starting from determining functional requirements way down to getting executable code 
ready in chosen programming languages.  These development phases chained together through transitions 
of intermediate artifacts among them to construct a whole development process with the framework. 
Figure 4.5 provides a non-normative simplified overview of this process with the emphasis of the 
transition flow among different components. The solid arrows show the flow that the information or 
artifacts being passed between two components. Actions other than simple passes are labeled near 
corresponding arrows. In practice, each step shall be iterated to adapted to real software development 
lifecycles, which will be summarized in Subsection 4.3.4. 

This development process is grounded on MDD. In the following sections, involved components and 
the main working goal of the corresponding phase are summarized at the beginning with respect to MDD. 
Then, situations of using domain-independent solutions are briefly described, followed by comparison to 
the proposed framework for explaining the specialty of this framework.  Finally, tasks that should be 
performed in this phase with the framework, as well as the types of artifacts produced for the following 
phase, are presented.   
4.3.1 System Analysis 

In the System Analysis phase, the SEDL Metamodel and the SEDL Description Editor are involved.  
The goal of using the framework at this phase is to determine the functionalities that a simulated 
environment component should have in the form of an SEDL description (located at the M1 level of the 
CIM layer as illustrated in Figure 4.3).   

In a conventional software development lifecycle, required functions are often recorded in informal 
documentations. When it comes to an MDD process with domain-independent modeling tools support, 

Figure 4.5: Development Process with Processed Framework. 
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System Analysis often produces high-level use cases and business activities diagrams as CIM models to 
document these requirements, as summarized in Table 2.1. General modeling languages do provide 
constructs for structuring informal messages to a certain extent to create half-formal models at this layer.  
However, model elements expressed by them shall have very different levels of detail since these 
constructs allow to express context in any application domain. For instance, actions in a high-level 
business activity flow may range from a customer making an order to the system popping up a warning 
message on a screen. Information that reflects the domain context may be expressed by any natural 
language terms and can hardly be systematically transformed. Such models require manual interpretation 
when being used in further development phases. Besides, communication difficulties caused by different 
domain terminologies used by roles from different backgrounds may remain. 

Within the proposed framework, SEDL descriptions play the role of functional requirement models at 
the CIM layer.  Different from the domain-independent languages, the SEDL Metamodel provides 
constructs with limited expressiveness.  Each of these constructs does not allow arbitrary context, but 
only allows expressing a specific type of context about simulated environments.  This metamodel plays 
two roles in the analysis phase. 

On one side, it regulates communicating terminologies and structures to express a CIM of simulated 
environment components.  During the analysis, involved human roles sketch and exchange opinions to 
determine functionalities of the component under development with the support of the SEDL syntax.  The 
SEDL metamodel is specified with terms based on common-sense perception to provide a common 
ground for various roles with different levels of technical skills to exchange the information. In principle, 
an SEDL description expresses the following aspects of simulated environments that should be produced 
by a component under development: 

1. Composition. What kind of phenomena should be included in the simulated environment?  
Which relevant characteristics of them should be included in the digital representation?  How should such 
a phenomenon occupy the virtual space at a time instant?  

2. Variations.  What kind of changes that the simulated environment may occur in space and time, 
e.g., movement in two-dimensional space, increase/decrease of a global property value, value difference 
over space?  Which phenomena and properties are involved?  

3. Execution Conditions. Which aspects of the included phenomena should be controllable by 
users to set different scenarios? In which condition information of environments should be computed by 
software during a simulation? How should the computed information of environments be provided to a 
system of interest component at a simulation step? 

On the other side, it serves as a communication vehicle that wraps functional requirements to be passed 
to the next development phase. By the end of the analysis phase, the required context of simulated 
environments is written in an SEDL description file via the SEDL Description Editor.  This description 
is passed to other components that perform tasks in further phases. By doing this, the model 
transformation process within this framework is triggered. 
4.3.2 Software Design 

The Software Design is the development phase in which the meta languages summarized in Section 
4.1 are most heavily involved.  At this phase, the goal of using the framework is to produce a set of 
software design models (located at the M1 level of the PIM layer as illustrated in Figure 4.3) described 
by output meta languages. The tool used to perform tasks in this phase is the SEDL Description 
Processor.  It is related to the SEDL Core Language Model, as well as available extensions of the model. 

Aligned to the MDD, CIMs will be turned to PIMs at this phase.  In a domain-independent solution, 
due to the heterogeneities of conceptual structures in a potentially infinite number of domains, it is hard 
to determine the correspondence to software structures for an arbitrary CIM.  In this case, CIMs resulting 
from system analysis often do not have sufficient information to be automatically turned to a software 
design model at the PIM layer.   

Different from a general MDD solution, the proposed framework contributes to the Software Design 
phase by enabling automatic domain-specific transformations from CIMs to PIMs. An SEDL description 
from the System Analysis phase serves as the input of the design phase. As have been indicated, it is a 
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functional CIM.  The first step of the design phase is to pass this description to the SEDL Description 
Processor for transformation.  The processor parses it to an abstract syntax tree following the SEDL 
abstract syntax definition and translates it to a set of software design models described by output meta 
languages. This automatic transformation is built on the following theoretic foundations.  First, the SEDL 
Metamodel has restricted the way to construct an SEDL description.  Second, Output Meta Languages 
provide profiles to describe the component design models with a finite number of constructs. Third, the 
previous two finite sets enable establishing well-defined mapping rules between them, which ensures 
unambiguous transformation outputs from items in an SEDL description. 

Outputs from the automatic transformation already have sufficient details to be passed to the next 
phase.  However, in practice, the automatic transformation is usually followed by one or more rounds of 
manual refinement.  During the refinement, initial generated models are optimized. For instance, artifacts 
for satisfying detected missing requirements and for managing non-functional concerns shall be added. 
More specific artifacts may replace general ones with the knowledge of computation logic at this step. 

As will be seen in the specification of meta languages in Chapter 5, PIM-layer metamodels also 
provide some domain-specific constructs to support developers to model more application-specific 
behaviors since the PIM layer. They are used for describing behaviors that are not formally derivable by 
automated transformations from CIMs. These constructs are specified as behavioral elements carried by 
other model elements derived from CIMs.  Developers can invoke these constructs through its belonged 
model elements to model behaviors.  In practice, it is recommended first to transform the PIMs into a 
PSM version and begin to use these constructs at the PSM layer for implementation.  Since at either layer, 
these behaviors are supposed to be brought in by the same roles, this strategy avoids unnecessary 
complications in PIM-PSM transformations. 

The proposed framework emphasizes the use of software prototyping[126], [127] during the design 
and implementation phases.  Instead of forming a simple sequence, iterations of these two phases exist in 
practice.  All intermediate versions of the design models during the optimization are described by the 
output meta languages.  Each of them or parts of them can be passed to the next phase, i.e., 
Implementation, for prototyping and refinements of prototypes. The initial generated design models are 
passed as the base for the semi-automatic generation of the first version of the prototypes. 
4.3.3 Implementation 

In the Implementation phase, the design model is turned to an executable program by chosen 
technologies (located at the M1 level of the PSI layer as illustrated in Figure 4.3).  At this phase, the 
component in action is the Platform-Specific Mapping Layer. Its main job is to transform design models 
at the PIM layer to PSMs. 

Automatic transformation in MDA usually starts from PIMs to PSMs.   Transformations from PIMs 
to PSMs, especially for structural models, are relatively straightforward compared to transformations at 
higher abstraction layers.  Context-wisely, models at the two sides of a PIM-PSM transformation have 
similar levels of detail.  Such a transformation refines PIMs with support artifacts for a specific 
technology, which does not require domain-specific knowledge.  Thus, transformation automation 
between the PIM layer and the PSM layer is feasible to realize at the domain-independent range.  It often 
becomes a key feature of a general modeling tool based on MDA standards.  

An example is the default code generation facilities of EMF. The same model shall be used at different 
MDA layers when serving for different purposes.  In an EMF-created application, underlying Ecore 
models often serve as a domain model that can be used for different technical platforms.[35]  However, 
at the stage of creating tooling for this application, the default model code generator provided by EMF 
uses Ecore models as software models at the platform-independent layer.  As Section 3.1 points out, a 
transformation from the CIM layer to the PIM layer turns a model from the conceptual business view to 
the logical information system view, which is seldom a one-to-one mapping process.  In contrast, the 
default code generation of EMF only adds Java-specific facilities to existing Ecore elements, e.g., access 
methods for private attributes and factory classes.  For instance, when an Ecore Class “Book” is 
transformed into a Java Class, the resulting Java class will have an “author” attribute if the “author” 
attribute is explicitly defined in the Ecore class. This process does not add new domain-specific 
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information into the Java classes.  Thus, it is more a transformation that refines models from the PIM 
layer to the PSM layer.  Modeling languages provide rules to structure a PIM here.   

Readers may notice that generated code in the above example is referred to as “model”. The reason is 
given as follows: although Figure 4.3 illustrates the platform-specific model and the implementation 
(PSM and PSI) separately for clearance, the boundary between these two is not rigorous in practice.  
Transformation facilities in domain-independent modeling tools often generate code of interfaces 
together with a default implementation, such as the EMF case. Nevertheless, this transformation cannot 
catch the application-specific functionalities needed for the final application.  The main goal for this code 
generation is still to provide platform-specific models, which are presented in the form of skeletons of 
generated code. 

Since sophisticated PIM-PSM transformation tools have been developed in domain-independent 
modeling platforms as explained above, the proposed framework is designed to be integrated with 
existing technologies, especially for its Platform-Specific Mapping Layer.  The metamodels of PIM-
layer languages are defined based on UML Profiles recommended by MDA.  Thus, instances models of 
these metamodels, i.e., the output models from the design phase, are UML-based. They are compatible 
as the input of model transformation and code generation facilities, which are also based on UML.      

Once the PIM-layer models have been derived from SEDL descriptions, they shall be fed to domain-
independent MDA-based modeling tools, to generate PSMs according to the tool implementation. These 
tools serve as the Platform-Specific Translator. This translator, however, can be enriched by adding 
missing functions of an existing tool, especially for the behavioral model transformation and 
transformation to structures implied by stereotypes, as specified in Chapter 5. 

It is recommended that the automatic generated PSMs are encoded in the form of program code 
skeletons. Under this condition, the Implementation phase comprises iterations of two steps.  First, a 
version of design models or some part of them from the Software Design phase is passed to the Platform-
Specific Translator for execution. PSMs are generated as code skeletons through the execution.  Then, 
developers fill the function body of these code skeletons to provide the executable program. During PIM-
PSM transformations, domain-specific constructs for modeling application-specific behaviors are 
transformed, e.g., in the form of operations owned by a class in an object-oriented language. Thus, in this 
step, developers can further use these constructs to implement application-specific behaviors. 
4.3.4 Development Activity Flow with Iterations 

This subsection provides a graphic summary of main activities during the development process as 
shown in Figure 4.6, which have been explained in previous subsections.  The activity flow is presented 
in Business Process Model and Notation (BPMN)[128] and explained below. BPMN is an OMG standard 
that provides graphic notations to describe high-level business procedures. 

This figure emphasizes the flow of tasks that a development team shall follow and the steps where 
user participation comes to play. To keep the focus, it only includes activities related to the proposed 
framework. It identifies developers and users of the component under development but does not 
distinguish more specific roles at each side for providing a clear overview. As have been addressed in 
Chapter 1, these two groups usually both belong to a bigger community that develops and uses 
simulations (as “Simulation R&D Community” in the figure).  Assigning individual tasks of developing 
a specific model function are decided within the developer teams since the expertise of developers is 
different from team to team.  The assignment can be supported by the generated models, which help to 
identify functional units of the component under development. 

Subsection 4.3.2 points out that one benefit that the proposed framework contributes is to support 
rapid prototyping. In practice, the development process of a simulated environment component with this 
framework is not a simple linear sequence, but includes iterations of the introduced activities, as shown 
in Figure 4.6.  
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The coding of the component shall start when the first automatic generation result from an SEDL 
description is ready.  CIM-PIM transformations and PIM-PSM transformations shall be combined as a 
chain to create component skeletons. Further, the Platform-Specific Translator shall create default ready-
to-run functional code from design models, e.g., using pre-assumed return values or an illustrative body 
for generated operations. An initial runnable prototype of the component can be provided to users at a 
fast speed to confirm the satisfaction of their needs and to identify missing functionalities.  Then, the 
prototype is refined during the necessary iterations of previously introduced development steps.  At the 
end of each iteration, an intermediate version of the component is presented to users to discuss if further 
refinement is needed and in which step the next iteration should start. This process continues until the 
component satisfies the requirements of the simulation. 

Figure 4.6: Main Activities in the Development Process. 
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5 Simulated Environment Description Language 
The framework proposed by this thesis specifies domain-specific languages to describe simulated 

environment components at the CIM layer and the PIM layer. They enable domain-specific 
transformations during the MDD process using the framework. This chapter presents the specification of 
the anchor language of this framework, namely Simulated Environment Description Language (SEDL).  
The models of other languages in the framework are embedded in this specification. Section 5.1 
introduces the language model of SEDL. Section 5.2 presents the models of the other three languages. 
They describe PIM models that are transformed from SEDL descriptions through the transformation 
chain in the proposed framework. The execution semantics of SEDL, which is a set of transformation 
rules, is presented in Section 5.3. 
5.1 SEDL Language Model 

This section presents the modeling principles of SEDL, as well as the specification of its abstract 
syntax and descriptive semantics. The specification does not fix a concrete syntax for SEDL, which leaves 
the freedom to different implementations. 
5.1.1 Conceptual Modeling Principles 

Before the SEDL model is presented, this subsection provides a brief introduction to the modeling 
principles of this model to help readers to understand the following subsections. 
5.1.1.1 Level of Modeling 

SEDL is a language used in the system analysis phase to describe simulated environment components 
of simulation applications under development.  In this phase, high-level functional simulation scenarios 
are identified.  These scenarios are further specialized to guide the design and implementation of final 
simulation programs. The major part of SEDL is specified to support expressing the context of simulated 
environments that forms a part of simulation scenarios.   

As Figure 5.1 illustrates, a program in SEDL is a high-level description created in the system analysis 
phase of the development.  It is an instance of the SEDL language model.  In the following phases, this 
program should be turned to digital structures that represent the described environment and program 
functions to compute environmental data. These representations are implemented as a component of the 
simulation application with alterable parameters. By fixing these parameters, each execution of this 
application produces a concrete simulated environment instance of the simulation as a set of data objects.  

Thus, an SEDL description locates in the same modeling level of simulation programs. A phenomenon 
expressed in this description corresponds to all possible simulated phenomenon instances that can be 
produced from the executions of a simulation program. SEDL descriptions express simulation 

Figure 5.1: Forms of Simulated Environments at Different Development Phases. 
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components and are transformed into models or code of these components instead of concrete sets of 
environmental data. 
5.1.1.2 Perspective of Modeling 

An SEDL description reflects the functional requirements of the simulated environment 
component in a simulation program from the system of interest modelers of this simulation.  SEDL 
is introduced for developing components in complex spatial-aware simulations, in which simulated 
environments could be produced through a different paradigm from the paradigm used to simulate the 
system of interest component. The environment component may be developed by other specialties than 
the system of interest modelers.  However, scenarios of a simulation depend on the goal for which its 
system of interest is modeled and should be decided by the system of interest modelers. The simulated 
environments in these scenarios should also match the expectation of the system of interest modelers. 
Thus, their expectation needs to be correctly identified, communicated and preserved in the development, 
for which SEDL comes to action.  

An SEDL description expresses the environment component of a simulation from the user 
perspective in a computation-independent manner. Users here refer to modelers that use this 
component to provide the simulated environment to their system of interest component. It describes the 
context they expect from this component while neglects how the context is produced.  This results in a 
domain model of described environments in the view of a human observer. It also describes high-level 
behaviors of this component which users are aware of, such execution routines, configurable options, etc. 

Terms used by the SEDL syntax are based on common-sense knowledge.  Creating SEDL 
descriptions does not require the expertise of environmental modeling, e.g., data structure or computation 
methods for the described phenomena. These descriptions are supposed to be communicated among roles 
with diverse expertise. The common understanding of used terms should exist or be easy to be established 
among these roles. This means that the SEDL model should ground on common sense and remain simple.  

Figure 5.2: SEDL Abstract Syntax. 
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5.1.2 Abstract Syntax 
The abstract syntax of SEDL is specified in UML to keep implementation neutral. It defines legitimate 

terms and the valid structure of SEDL descriptions. Figure 5.2 presents the abstract syntax that expresses 
the main structure of an SEDL description. Additional structural constraints are presented in OCL and 
will be explained in the next subsection. Other terms are omitted due to the limitation of space. They will 
be presented by figures in the next subsection.  

A UML class in this syntax model represents a term (may also be referred to as a type in this 
specification) in SEDL. SEDL specification only introduces terms when they are conceptually different. 
The class names in the abstract syntax model are more used as identifiers for back-end processing. 
Elements in the abstract syntax trees of SEDL descriptions are instances of these terms. Relationships 
among these terms specify their instances’ relations in a valid description.  The syntax model should not 
be confused with a digital data structure model.   

Several abstract terms are introduced into the SEDL language model for specification convenience. 
They are named based on common sense or conceptual approximation and thus should not be exposed to 
language users to avoid confusion. These terms are marked italic in the figures. 
5.1.3 Descriptive Semantics 

This subsection introduces the meanings of SEDL terms to guide the use of SEDL. 
5.1.3.1 DescriptionItem and Configurable 

All terms in SEDL are used to enclose pieces of analysis-level descriptions about computer 
applications. Not all aspects of applications can be formally captured at this level. An abstract term 
DescriptionItem is introduced to deal with this issue. All other terms in SEDL are subtypes of 
DescriptionItem and inherit its attributes. A DescriptionItem instance must have one attribute name of 
the String type to identify it in the SEDL description and transformed artifacts in the following 
development phases. Besides, it may, and is recommended to, have one attribute description. The value 
of this attribute is some text to express application-specific requirements that cannot be captured by the 
formal part of this instance. 

Another abstract term Configurable is specified to facilitate the specification. It may contain 0 or more 
ConfigurableParameter as specified in Subsubsection 5.1.3.2. 
5.1.3.2 ConfigurableParameter  

Environment instances generated by a component can vary among executions.  To adjust the output 
for various scenarios, users may want to have some control over the component to produce outputs that 
match some desired index values about the whole environment, some phenomenon, or some change 
patterns of a phenomenon. These indexes reflect the characteristics of the generated environment 
instances. They shall be some summarized descriptors, e.g., the lifespan of a phenomenon instance, the 
mean value of some property during a phenomenon’s lifetime, etc. They may also be some special state, 
e.g., the initial value of the phenomenon location.  Their values are used to initialize a simulation run. A 
ConfigurableParameter expresses such an index about a Configurable whose value should be set by users 
before an execution.  

SEDL made all terms that describe composition and changes of the simulated environment as subtypes 
of Configurable. Thus, ConfigurableParameter-s can be related to corresponding Configurable-s in SEDL 
descriptions. A ConfigurableParameter is mapped to a parameter of the resulting simulation program that 
users can set through some user interface or a configuration file. 

The name of a ConfigurableParameter inherited from DescriptionItem should be given by component 
users to identify the characteristic controlled by this parameter in the simulation program.  Besides, it 
must have one attribute type that describes the form in which the parameter value should be set. This type 
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can be chosen from an Enumeration named ParameterType.  Values in this Enumeration express 
parameter types in a way that is looser than datatypes in a programming language so that users do not 
need to precisely know the supported datatypes of the implementation platform precisely. The available 
options are listed in Table 5.1. 

Value Explanation 
FreeText The parameter is some text.  This type is rarely used in practice due to its 

difficulty of being processed. It should only be used if no more restricted type 
can be identified yet.  

DataSource The parameter points a location of some existing data that users want to feed to 
the component. 

Spatial The parameter represents some location in space. 
Time The parameter represents some point or interval in time.  
Options The parameter is a condition whose status can be in one of several alternative 

options for one execution.  Different options lead to different generation 
behaviors.  

Switch The parameter is a condition that can be set to be one of two statuses for one 
execution, such as true or false, on or off, yes or no, etc. 

Number The parameter is a numeric value. 
Table 5.1: Available Options of ParameterType. 

5.1.3.3 Composition of Environment 
Terms specified in Subsection 5.1.3.3 are used to describe which kinds of phenomena should present 

in a simulated environment generated by a component under development. They are subtypes of 
Configurable. 

SimulatedEnvironment is the entry term of an SEDL description that holds description items together 
as a standalone unit. A description within the scope of a SimulatedEnvironment expresses the user-
required constituents of simulated environments and their possible behaviors, which should be produced 
by a simulation component under development, as well as high-level operational behaviors of this 
component in simulation executions. 

By specification, a SimulatedEnvironment must have one attribute spaceDimNum that constrains the 
number of spatial dimensions in which the environment should be simulated.  This attribute decides the 
number of coordinates needed to represent a spatial point in the described component.  Its value can be 
the integer between 0 and 3 as explained in Table 5.2.  When a working community has fixed the number 
of dimensions it intends to work on, this attribute can be predetermined in an implementation of SEDL 
and hidden from language users. 

Value Explanation 
0 The spatial locations of the environmental phenomena are irrelevant to the simulation. The 

component simulates time series data without spatial locations. 
1 Only the location along one direction, e.g., along a road, is relevant to the simulation. The 

component simulates phenomena data with one-value coordinates. 
2 The space is abstracted as a projection from the three-dimensional physical world into a 

two-dimensional surface. The case is typical in spatial simulations at the geo scale that the 
altitude is negligible or treated as a thematic domain. 

3 The representation of a spatial location should be composed of three-value coordinates to 
simulate a three-dimensional space.  It is often the case in spatial-aware simulations about a 
small area that movements in all three dimensions are relevant. 

Table 5.2: Possible Number of Dimensions of a SimulatedEnvironment. 
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The simulated environment described by a SimulatedEnvironment can contain phenomena of an 
arbitrary number of types. Each type can be described by an EnvironmentalPhenomenon contained in 
this SimulatedEnviornment. Besides, a SimulatedEnvironment may have zero or more 
ExecutionRoutine-s, each of which regulates the functional routine of the described component in a 
bigger simulation (See Subsubsection 5.1.3.9). 

An EnvironmentalPhenomenon is a piece of description that describes a constituent element type of 
the simulated environment. When a type of phenomena should appear in an environment instance 
generated from the component described by a SimulatedEnvironment, an EnvironmentalPhenomenon 
should be added to this SimulatedEnvironment given a name to denote the phenomenon type.  An 
EnvironmentalPhenomenon contains more-detailed description pieces about this type as specified in the 
following text of this section. The EnvironemtnalPhenomenon is an abstract term.  

In practice, one of its subtypes, i.e., SpatialIndividuality or FieldOfIndividualities, should be used.A 
SpatialIndividuality encloses analysis-level descriptions about a phenomenon type that should appear in 
a simulated environment as an identifiable individuality or distinct substance in space, whose boundary 
may be recognizable or unrecognizable within the extent of the simulated environment.  A phenomenon 
of this type behaves on its own during simulations. 

By specification, a SpatialIndividuality must have one attribute dimNum which denotes the form of 
its described phenomenon’s geometry required by the simulation.   Its value can be one of the following 
integers:  -1(non-spatial), 0(point), 1(line), 2(region), 3(3D volume). This value must not be greater than 
the spaceDimNum of the SimulatedEnvironment it is contained in, either directly or indirectly. 

When only one or a few significant instances of a phenomenon type appear in a simulation execution 
and each of them is supposed to be configured and created independently, this type can be expressed by 
a SpatialIndividuality that is directly contained in a SimulatedEnvironment. For instance, the storm needs 
to be included in a simulation as the extreme environmental phenomenon that vehicles should avoid.   
Before an execution, users want to be able to configure one or two storm instances, each with a determined 
path and some constant moving speed.  In this case, user expectation about how the storm should be can 
be expressed by a SpatialIndividuality contained in a SimulatedEnvironment. 

A SpatialIndividuality can also be the member of a FieldOfIndividualities as specified in the following 
text. The containment relationship ensures that an instance of SpatialIndividuality is only in one of these 
two situations. 

A FieldOfIndividualities expresses a phenomenon type that appears in a simulation as a swarm or a 
group of individualities of an identical kind.  For each generated environment instance, individualities of 
this kind appear as an integrated whole with no significant single members when observing at the whole 
environment scale. Forms and behaviors of each individuality in this field follow the same set of 
regulations.  All members in this field together exhibit some spatial patterns at a time instant. A 
FieldOfIndividualities must have exactly one member which is a SpatialIndividuality to express the 
spatial form, characteristics and behavioral modes of member individualities in an instance field of the 
described type. SEDL regulates that a SpatialIndividuality is not allowed to have 
ThematicValueDistribution (See Subsubsection 5.1.3.6) if it is used to describe members of a 
FieldOfIndividualities. 

This term can also be used when users wish to systematically create and update a set of individualities 
of an identical kind during a simulation run. For instance, a set of moving ships need to be included in a 
simulation to create some traffic flow in the environment, whose initial locations are placed randomly. 
These ships together can be described as a FieldOfIndividualities, which consists of multiple non-
significant ship members.   

Which term to use depends on the spatial scale of the simulation and the way that users want to express 
and create individualities of a type.  It does not reflect the “true” form of real-world existence.  A forest 
may be expressed as a SpatialIndividuality occupying an area for one simulation with the changing 
density of trees, but as a FieldOfIndividualities consisting of multiple individual trees for another 
simulation. 
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Terms for expressing environmental phenomena are specified from a simulation perspective, in which 
an individual phenomenon is viewed as existence that is recognizable at each time instant and evolves in 
a temporal process. The time is treated as a locating frame of simulation processes, which is independent 
of the existence of phenomena. During its lifetime, an individual phenomenon exhibits various non-
locational characteristics that are perceivable at its current spatial location. The term ThematicProperty 
is used to express such characteristics. When a non-locational characteristic of a phenomenon type is 
relevant to simulation scenarios, a ThematicPropety that expresses this characteristic is added to a 
corresponding SpatialIndividuality as its theme. The presence of a ThematicProperty in an SEDL 
description means the component under development should provide the digital representation of its 
described characteristic.  For a FieldOfIndividualities, all members of the described field have the same 
non-locational characteristics as the theme-s of its member regulates. 

In SEDL descriptions, different EnvironmentalPhenomenon-s contained in a SimulatedEnvironment 
shall have ThematicProperty-s with the same name, while the composition relationship between these 
two terms excludes the ambiguity.  However, in practice, automatic transformations using SEDL 
descriptions as inputs need to be aware of this issue and avoid naming conflicts in transformation outputs. 

Properties for recording spatio-temporal locations of phenomena in described component do not have 
to be explicitly denoted in SEDL descriptions. They can be derived in later development phases based on 
conceptual forms and expected changes of the described phenomenon type. The term “thematic property” 
in SEDL applies to all non-locational characteristics of phenomena.  It is not restricted by which domain 
such a property is about or by which datatype it is recorded.  For instance, the length of time since a 
phenomenon comes to exist could be relevant to a simulation. The validation domain of its values is 
restricted by the locational characteristic of this phenomenon, while this characteristic itself is about time. 
It acts as a theme of this phenomenon and can be expressed as a ThematicProperty (e.g., as the “age”) in 
an SEDL description, even though it may be produced as some temporal datatype in an end application.    
5.1.3.4 Expression of Exhibited Changes 

Changes of phenomena in simulated environments should match corresponding simulation scenarios. 
A simulated environment component should be able to provide data representing these changes for 
adequately executing these scenarios. SEDL provides terms to describe requirements about changes that 
environmental phenomena should exhibit in simulation scenarios. These terms are identified based on the 
basic components of a change expression in natural language. Such an expression consists of the 
following three components underlying unstructured expressions. 

1. Variant: the domain space in which the change is observed, together with the reference based on 
which the amount of change is measured.   

A domain space consists of all possible states that a phenomenon’s characteristic can be in. Each state 
corresponds to a point location in this domain space. A phenomenon has the inherent structure with the 
characteristics in three types, i.e., spatial, temporal and thematic[129]. Thus, a domain space can be one 
of the three types. 

Fundamentally, the change about a characteristic of a phenomenon can be viewed as some difference 
in the phenomenon’s location in a domain space of this characteristic’s states.  The first component of a 
change expression denotes in which domain this difference is perceived, i.e., what the expressed change 
is about.  For the change of wind speed, it is the speed of wind.   

Locations in a domain space need to be expressed based on a reference location. If the phenomenon’s 
location relative to the reference does not alter, the difference amount is 0, i.e., no change is observed.  
This reference in computation is often specified as a part (e.g., the origin) of a reference system that 
regulates the meaning of coordinate values assigned to locations.  The amount of difference becomes the 
difference between the coordinates SEDL does not regulate the reference location down to the technical 
level. It simply distinguishes two types of reference locations people implicitly use when they 
conceptually view a phenomenon change in spatial and temporal domain spaces, namely, self and external.  
For instance, the change of a phenomenon’s spatial extent means that its spatial location relative to a 
point tied to itself (e.g., its geometric center) has some difference. In contrast, its movement in space 
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means that its spatial location relative to an external reference location (e.g., the geo-centroid of the earth) 
has some difference7.   

Types of the first component based on the above principles are listed in Table 5.3, each of which 
assigned to a name that is conventionally used in daily language for this specification. 

Table 5.3: Types of Variable and Variant. 
2. Variable: the domain space in which observations of the expressed change are made, together with 

the reference based on which the difference of observation locations is measured.  
Differences in a domain space do not exhibit along. It may only perceive when observing the states of 

a phenomenon at different locations in another domain space. For instance, the wind force difference may 
be observed at different time points or at different spatial locations.  This second component of a change 
expression denotes in which domain these observations are taken to perceive this change. Types of Table 
5.3 can also be applied to this component.  

3. Variant = R(Variable):  the mode of this change.  
The third component expresses how the state of the phenomenon in the Variant should change when 

altering its locations in the Variable. It deterministically or stochastically regulates a relationship R 
between the first two components.  In natural language expressions, it may be fuzzy or missing.  The 
speed change of wind over time could be “constantly increase over 3 hours”.  This component is case-
specific, which have an infinite number of possible pattern types. In computation, it is often abstracted as 
a mathematic model in terms of some functions.   
5.1.3.5 Conceptual Approximation in the Formulation of Change Expressions 

At the abstraction level of SEDL, the simplicity of terms is more important than the mathematic 
accuracy. Thus, several conceptual approximations are applied to specify the components of the change 
expression. They are clarified in this subsection to avoid confusion. 

First, the terms “Variant” and “Variable” used to denote the first two components of a change 
expression are only analogies of the same terms in math.  They emphasize the role that the corresponding 
domain space plays in the expressed change, which reflects the angle that humans view the change mode.  
At the analysis phase, the relationship between these two components is not perceived and described as 
accurate as a function in the sense of math. Some change mode may not be described as mathematic 
function at all when being modeled in the following development phases.  For instance, a thematic value 
change over time of some individual phenomenon may be determined based on the mean of a 
phenomenon’s neighbors. 

Second, the distinction between external-referenced differences and self-referenced differences is a 
conceptual approximation. For instance, when the spatial extent of a phenomenon becomes different 
(self-referenced), it is impossible that this phenomenon still occupies the exact same spatial location 
(external-referenced). Each case of the approximation emphasis one angle to view and express the state 
differences in a domain.   

Third, the change expression composition considers only two domain spaces, while the overall change 
of a phenomenon exhibited in the real world is normally the combined result of relationship patterns 

 
7 A technical analogs term is the body-fixed frame for spatial coordinates. 

Name of Component Type Type of Domain Space Type of Reference 
Geometry Spatial Self 
Location Spatial External 
Duration Temporal Self 
Time Temporal External 
Theme Thematic N.A. 
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among its states in multiple domain spaces.  This strategy supports decomposing these complicated 
patterns into simpler aspects.  Thus, language users can express the essential context of their expected 
changes from their angles of thinking, without the need of paying attention to how they should be 
computationally combined in a developed program. 
5.1.3.6 Chang Types of an Individuality 

This subsubsection introduces terms to support describing expected changes of individual 
environmental phenomena in simulation scenarios.  These terms are subtypes of Configurable. Each term 
represents a type of change about an individual phenomenon that can be perceived in the macro world.  

These types are identified based on three aspects, i.e., the types of the first two components in a change 
expression as introduced in the previous two subsubsections and the level of perception at which changes 
are observed. Two levels of perception, i.e., the individuality level and the non-locational characteristic 
level, are considered. Every possible combination of the three aspects’ types is evaluated. A specific 
individuality in the common-sense world only has one duration. Thus, combinations with duration 
involved are not applicable.  

Each rational combination identifies a term introduced in this subsubsection. Figure 5.3 shows the 
abstract syntax of the identified terms in SEDL. They are described in detail in the remaining of this 
subsubsection. These terms are related to SpatialIndividuality or ThematicProperty via composition 
Associations, since their instances are description pieces about a phenomenon type or its thematic 
property, which should be contained in the description of that phenomenon or property. 

When component users require a type of individual phenomena to exhibit a particular type of changes 
in simulation scenarios, they can add an instance of a suitable term specified in this subsubsection to the 
SpatialIndividuality instance that describes the phenomenon type or to a ThematicProperty of this 
SpatialIndividuality. Changes expressed by these terms are relevant to data structures that hold runtime 
values of simulated phenomena during execution, and functions that should exist to update these values 
in a resulting application. Common structures implied by the applied change types can be derived during 
follow-up development phases, leaving only the application-specific functions that compute the change 
mode, i.e., the third component of the change expression to be formalized.  This third part at the analysis-
level can be documented by some free text in the description attribute inherited from DescriptionItem. 

Individuality level: changes at this level involve geometry or location of phenomena whose 
difference necessarily changes the whole individuality at the human-recognizable scale (given that the 
timeline is viewed as an independent frame in simulations).  Values in spatial domains are viewed as 
properties of individualities in these cases. 

Five change types are introduced into SEDL to categorize changes at this level, resulting in 5 terms in 
SEDL as specified in Table 5.4.  To keep the SEDL model concise, mirror cases with the Variable type 
and the Variant type exchanged are denoted by the same term. The roles of involved domain spaces for 
a described change are denoted by attributes of these terms as introduced below.  

An abstract term IndividualityChange is included in the SEDL model to facilitate the specification. 
This term is related to the SpatialIndividuality via a 1: n composition Association. An 
IndividualityChange must be the hasChange attribute of a SpatialIndividuality. All terms in Table 5.4 are 
subtypes of IndividualityChange. Each of their instances must be linked to a SpatialIndividuality in an 
SEDL description.   

Since a SpatialIndividuality may locate in more than one thematic domain spaces as they have multiple 
ThematicProperty-s, a GeometryThemeDependency or a LocationThemeDependency needs to denote 
the involved thematic domain spaces of their described changes. Thus, both terms have a non-
containment Association to the ThematicProperty as involvedTheme. An instance link of these two 
Associations must satisfy the following restriction:  its involvedTheme must be a theme of its other 
member end.  Besides, both of the terms have an attribute roleOfTheme to denote if the involved theme 
is viewed as Variable or Variant. The roles of the two involved domain spaces have to be denoted in a 
GeometryLocationDependency as well.  In contrast, the simulation is a temporal process in which the 
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time is considered as the fully independent variable.  For the change types that the time is involved, the 
mirror cases in descriptions do not change the underlying role of time as the Variable. In other words, the 
mirror case of a description of the individuality change involving time is conceptually the same to itself. 

Term I.1 GeometryLocationDependency 
Description The exhibited pattern of difference in a phenomenon’s geometry, when the spatial 

location of this phenomenon varies in a controlled way. 
Mirror: the exhibited pattern of difference in the spatial location of a phenomenon, 
when its geometry varies in a controlled way. 

Example in 
natural language 

“Its spatial extent should become larger when it moves to higher latitude”. 
Mirror: “it should move to higher latitude when its spatial extent becomes larger”. 

 
Term I.2 Deformation 
Description 
 

The exhibited pattern of difference in a phenomenon’s geometry with the time goes 
on in a controlled way. 
Mirror: the exhibited pattern of difference in time, when the geometry of a 
phenomenon varies in a controlled way (i.e., speed of deformation). 

Example in 
natural language 

“The influential area of the storm should shrink linearly over time”. 
Mirror: “t hours passed for its radius of influential area shrink r”. 

 
Term I.3 GeometryThemeDependency 
Description The exhibited pattern of difference in a thematic characteristic A of a phenomenon, 

when the geometry of this phenomenon varies in a controlled way. 
Mirror: the exhibited pattern of difference in a phenomenon’s geometry, when its 
thematic characteristic A varies in a controlled way. 

Example in 
natural language 

“Its spatial radius should shrink when its speed decreases”. 
Mirror: “Its speed should decrease when its radius shrinks”. 

 
Term I.4 RigidBodyMovement 
Description 
 

The exhibited pattern of difference in a phenomenon’s spatial location with the 
time goes on. 
Mirror: the exhibited pattern of difference in time, when the spatial location of a 
phenomenon varies in a controlled way (i.e., speed of movement). 

Example in 
natural language 

“The hurricane moves uniformly over time along a recorded path”.  
Mirror: “1 hour passed for every 5 km of its walk”. 

 
Term I.5 LocationThemeDependency 
Description 
 

The exhibited pattern of difference in a phenomenon’s spatial location, when the 
value of its thematic A varies in a controlled way. 
Mirror: the exhibited pattern of difference in a thematic characteristic A of a 
phenomenon, when its spatial location varies in a controlled way. 

Example in 
natural language 

“It should move to higher latitude when its speed decrease”. 
Mirror: “Its speed should decrease when it moves to higher latitude”. 

Table 5.4: Individuality Level Change Types. 
Non-locational characteristic level: changes at this level involve a non-locational characteristic of 

an individuality (expressed by a ThematicProperty in SEDL).  A thematic domain space must be involved 
in a change at this level.  Further, geometry should not be involved since its difference influences a whole 
individuality. Three terms to categorize changes at this level are introduced into SEDL, as specified in 
Table 5.5. As the level suggests, changes at this level are normally viewed as the change about thematic 
values, i.e., the involved thematic domain is viewed as the Variant.  The spatial and temporal domains in 
these cases are often viewed as spaces for evaluating the change amount. 

ThematicValueDistribution and ThemeDynamics are both associated with ThematicProperty via a 1: 
n composition Association.  An instance of these two terms must be the hasChange attribute of a 
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ThematicProperty, which denotes the involved thematic domain space of the change expressed by this 
instance.  

If component users require a thematic property to exhibit some spatial heterogeneity, this requirement 
needs to be expressed by a ThematicValueDistribution of the corresponding ThematicProperty. Spatial 
heterogeneity of a phenomenon can also be perceived as heterogeneity among a set of spatially distributed 
individualities of some type.  In this view, such a set can be described as a FieldOfIndividualities, and 
heterogeneity within the extent of each individuality is often neglected. To avoid over-complexity, it is 
not allowed to add a ThematicVlueDistribution to a ThematicProperty of some SpatialIndividuality that 
is the member of a FieldOfIndividualities. 

The ThematicValueDistribution and the LocationThemeDependency describe relationships between 
a thematic domain space and a domain space of spatial locations about an individuality at the two levels 
of perception, respectively. The distinctions between these two types are that the "domain of spatial 
locations" and the conceptual form of the described phenomenon type in these two types are different. 
When humans describe a LocationThemeDependency, the phenomenon is conceptualized as an object 
that can move in a frame of space. In this case, the domain of spatial locations consists of all possible 
parts of space that can be occupied by this object in the frame at some instant. When human describes a 
ThematicValueDistribution,  the phenomenon is conceptualized more like a field[82] that holds a set of 
spatial locations.  In this case, the domain of spatial locations consists of all possible elementary spatial 
locations within the part of space that is occupied by this phenomenon. 

A ThemeDependency involves two thematic domain spaces. For a clear hierarchical description 
structure, this specification regulates that a ThemeDependency instance must be contained by a 
ThematicProperty that describes its Variant, as its dependOn attribute. Besides, this term has a non-
containment Association with the ThematicProperty as its variable, which denotes the Variable of the 
described ThemeDependency. An instance of ThemeDependency must satisfy the following restriction:  
both of its linked ThematicProperty-s must be theme-s of the same SpatialIndividuality. 

Table 5.5: No-locational Characteristic Level Change Types. 

Term T.1 ThematicValueDistribution 
Description 
 

The exhibited patterns of difference in values of a thematic characteristic of a 
phenomenon over different locations within the spatial extent of this 
phenomenon.  

Example in 
natural language 

“The wind speed decreases from the center of the storm”. 
 
Term T.2 ThemeDynamics 
Description The exhibited pattern of difference in a thematic characteristic of a phenomenon 

with the time goes on. 
Example in 
natural language 

“The air temperature increases during the day after sunrise”. 
 

 
Term T.3 ThemeDependency 
Description 
 

Patterns of difference in a thematic characteristic A of a phenomenon exhibited 
at different values of another thematic characteristic B of the same phenomenon.  
Mirror:  Difference in a thematic characteristic B of a phenomenon exhibited at 
different values of another thematic characteristic A of the same phenomenon. 

Example in 
natural language 

“Its temperature increases while its weight increase”. 
Mirror: “Its weight increases while its temperature increase”. 

Implication Implies both A and B have ThematicValueDistribution, or both A and B have 
ThemeDynamics. 
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«invariant»
{contex ThematicValueDistribution inv:
self.ThematicProperty.individuality.field
-> isEmpty() = true}

«invariant»
{contex LocationThemeDependency
inv: self.involvedTheme.individuality =
self.individuality}

Configurable
ThematicProperty

Configurable
Variation

IndividualityChange

GeometryLocationDependency
- roleOfGeometry: RoleInVariation

Deformation

LocationThemeDependency
- roleOfTheme: RoleInVariation

RigidBodyMovement

GeometryThemeDependency
- roleOfTheme: RoleInVariation

Configurable
Variation

ThematicValueDistribution

Configurable
Variation

ThemeDependency

«enumeration»
RoleInVariation

 Variable
 Variant

Variation
ThemeDynamics

«invariant»
{contex
GeometryThemeDependency
inv:
self.involvedTheme,individuality
= self.individuality}

EnvironmentalPhenomenon
SpatialIndividuality

- dimensionNum: Integer

«invariant»
{contex ThemeDependency inv:
self.variable.individuality =
self.variant.individuality}

+theme 0..*
+individuality 1

+involvedTheme 1
+variant

1

+variable
0..*

+hasChange0..*

+hasChange
0..*

+individuality
1

+hasChange
0..*

+involvedTheme
1

Figure 5.3: Abstract Syntax of Individuality Change Types. 
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5.1.3.7 Alternative Change Modes 
An EnvironmentalPhenomenon shall have more than one change of one type. The described 

phenomenon type exhibits a change pattern which reflects the overall effect of all its described changes. 
However, in some cases, a type of change of a phenomenon type may have several possible modes. An 
instance phenomenon only exhibits one of them.  For instance, in different seasons, the density of a 
resource may follow different distribution forms in space.  

An above-mentioned case shall be documented with a single instance of a Variation in SEDL with a 
ConfigurableParameter of an Options type to denote possible modes.   However, in this way, the 
alternative modes can only be documented within the ConfigurableParameter in free text.  
Transformations specified in Section 5.3 does not recognize them separately to generate corresponding 
computation units for them.  Also, while these modes reflect some application-specific structural options, 
each of them may still have a set of alterable conditions that are execution-specific. For instance, in the 
same season, the density of that resource may still vary from year to year due to different average 
temperatures, etc.  This means a component to produce such resources should be configured by different 
sets of parameters when choosing different modes. When these modes have been documented within a 
ConfigurableParameter, users have no means to express controllable conditions for each mode other than 
the free text. 

SEDL introduces the term AlternativeMode for describing these alternative change modes. It is a 
subtype of the Configurable. Figure 5.4 shows the abstract syntax of this term.  Terms from Subsubsection 
5.1.3.6 are subtypes of Variation in this figure. The term Variation is an abstract term that is purely for 
specification and implementation convenience. It denotes the exhibited changes as described in 
Subsubsection 5.1.3.4 in the specification but is not exposed to language users. 

An instance of Variation may have either no or at least two options which are instances of 
AlternativeMode. Each AlternativeMode instance is a piece of description that expresses a possible mode 
of the Variation instance.  An instance of the described phenomenon type only exhibits one of the modes 
which should be selectable for an execution. To avoid over-complication, this specification regulates that 
when a Variation has options, it cannot directly own ConfigurableParameter-s.  This constraint should be 
implemented in the validation function of an SEDL editor. The current specification brings a drawback: 
a parameter that is conceptually common to all options needs to be repeatedly described for each option. 
5.1.3.8 Characteristic Variation among Instances of an EnvironmentalPhenomenon 

The term CharacteristicVariation is used for describing user-expected variations of some characteristic 
values among the whole set of a phenomenon type’s instances.  Such a characteristic can be summarized 
by some index (see explanation in Subsubsection 5.1.3.2).  The value of an index is fixed to a 
phenomenon instance, no matter if the value is only revealed after the phenomenon’s lifetime completes 
(e.g., the lifespan of this phenomenon). A characteristic variation of some phenomenon type can be 
represented as the value distribution of some index. 

Configurable
DescriptionItem
Variation

Configurable
AlternativeMode

«invariant»
{context Variation inv: self ->
collect(option) -> size() >=2  ||
self -> collect(option) ->size() =0}

«invariant»
{context Variation inv: self -> collect(option) ->size()>0  implies
self -> collect(parameter) -> size() =0}

+option
1 2..*

Figure 5.4: Abstract Syntax of AlternativeMode. 
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Suppose the set S contains all digital instances of a phenomenon type that can be generated by the 
component under development.  If users require that all values of some index from instances in S to 
follow a distribution, they can add a CharacteristicVariation to the EnvironemtnalPhenomenon that 
describes the phenomenon type, denote the involved index and provide some information about the 
distribution.  The developed component should have the function to initialize instances of this type with 
index values drawn from the expected distribution.   

In the current SEDL version, each CharacteristicVariation is independently described. The variation 
about a set of correlated indices should be described in one CharacteristicVariation. It is essentially a 
distribution of phenomenon instances in a combined domain space of these indices’ domains. A 
CharacteristicVariation must have one or more indexName-s, each of which denotes the name of a 
described index. 

Component users may have requirements on the variation among generated instances at different 
detail levels and may require having control at these levels, e.g., for a single run, a set of runs or multiple 
sets of runs.  SEDL supports users in expressing requirements of controlling over the executions in a 
structured way through CharacteristicVariation and ConfigurableParameter specified in Subsubsection 
5.1.3.2. A guide about the usage of these two terms is provided in the following paragraphs, supplemented 
by Table 5.6 which summarizes these requirements at each detail level and the term to use for describing 
them. 

For a single run, users may expect an individuality to be in some certain condition.  In a program, this 
can be expressed with some desired value of an index about this individuality.  Thus, users would require 
the component to provide some interface through which they can give the desired value to the program. 
In this case, they can add a ConfigurableParameter to a SpatialIndividuality to give a name and a value 
type to this index. 

An additional level of characteristic variations exists for individualities that are members of a group 
expressed by a FieldOfIndividualities. A FieldOfIndividualities denotes that, behaviors of its members in 
a simulation execution should conform to the same set of rules which are supposed to be parameterized 
at the whole field level. During an execution, members of a FieldOfIndividualities instance are iteratively 
updated by the same set of computation functions. The diversity of state values among members 
originates from different index values8 assigned to these members. The values of such an index are not 
supposed to be manually configured one by one.  Instead, they should be systematically drawn from some 
distributions.  Users can express their expectations on how values of some index for individualities in the 
whole group (i.e., an instance of this FieldOfIndividualities) should distribute in a domain value space.  
In this case, they can add a CharacteristicVariation to the member SpatialIndividuality of a 
FieldOfIndividualities. 

A high-level functional scenario is often executed by a set of runs.  In these runs, users may expect 
that the values of some index from all digital instances of an EnvironmentalPhenomenon match a certain 
distribution. For instance, some type of summarized descriptors of these instances should match the 
observed distribution of real-world individualities. This requirement can be expressed by a 
CharacteristicVariation of this EnvironmentalPhenomenon. When the phenomenon is a 
FieldOfIndividualities, each run should compute an index value from the expressed characteristic 
variation f(e) about the whole field.  Table 5.6 and Figure 5.5 illustrate how this value is connected to 
more detailed level computations. 

 
8 very frequently, initial values of their properties 
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Further, a component may be used in multiple functional scenarios, each of which corresponds to a 
set of runs.  For instance, in an environment with blowing wind, the initial wind speed in one execution 
should be generated by a random function. This can be described by a CharacteristicVariation.  This 
environment can be used in various functional scenarios with calm, windy and stormy weather, each of 
which makes a set of n runs.  For each set, the randomly generated initial speed should have a different 
mean value, which reflects the character of the corresponding functional scenario.  At this level, users 
may require to be able to set their desired mean value.  They can add a ConfigurableParameter of a 
corresponding CharacteristicVariation to describe this requirement in this case. Similarly, the 
CharacteristicVariation of a FieldOfIndividualities f(e) may also have a ConfigurableParameter p to 
change the form of f(e) for different sets of runs. The connections between illustrative examples at 
different levels in Table 5.6 are shown in Figure 5.5. Essentially, a CharacteristicVariation corresponding 
to some level leads to some function to generate a characteristic value for the computation of the level 
below, which otherwise shall be exposed to users as a configurable parameter. Characteristic variations 
at some level may not be recognized by or interesting by users. They can still be embedded in computation 
functions by developers without being exposed by users. 

Figure 5.5: The Computation Chain of Characteristic Variations. 
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Table 5.6: Express Required Characteristic Variation and Alterable Conditions in SEDL.

 SpatialIndividuality FieldOfIndividualities 
One 
individuality 
in one run 
 

Req. Each SpatialIndividuality instance should be initialized with an 
index decided by users.  
 
E.g., avg speed = x, where x should be decided by users. 

The n-th member of a FieldOfIndividualilites instance should be 
initialized with an index value drawn from F(n). 
 
E.g., for n-th member, initial speed (n) = random (). 

In 
SEDL 

The index, i.e., “avg speed”, as a ConfigurableParameter of 
this SpatialIndividuality. 

The F(n), i.e., the “random ()”, as a CharacteristicVariation of the 
member SpatialIndividuality of this FieldOfIndividualities. 

One run Req. Each instance is configured separately. A parameter of the above F(n) should be configured with a value 
decided by users. 
 
E.g., for n-th member, initial speed (n) = random (mean), in which 
the value of mean should be decided by users. 

In 
SEDL 

Implied by the term “SpatialIndividuality”. The parameter, i.e., the “mean”, as a ConfigurableParameter of the 
CharacteristicVariation that expresses F(n).   

Multiple runs 
 

Req. 
 
 
 

The value of an index to initialize a SpatialIndividuality 
instance should be drawn from f(e). 
 
E.g., avg speed (e) = random (). 

The value of a parameter of the above F(n) should be drawn from f(e) 
for a run. 
 
E.g., the value of the “mean” in the random(mean) from the above 
example, should be drawn from f(e). 

In 
SEDL 

The f(e), i.e., random (), as a CharacteristicVariation of this 
SpatialIndividuality. 

The f(e) as a CharacteristicVariation of this FieldOfIndividualities. 
Multiple sets 
of runs 

Req. For each set, a parameter of the above f(e) should be configured 
with a value decided by users. 
 
E.g., avg speed (e)= random(mean), where the value of “mean” 
should be decided by users. 

For each set of runs, a parameter p of the above f(e) should be 
configured with a value decided by users. 
 

In 
SEDL 

The parameter, i.e., the “mean”, as a ConfigurableParameter 
of the CharacteristicVariation that expresses f(e), i.e., the 
random(mean). 

The parameter p as a ConfigurableParameter of the 
CharacteristicVariation that expresses f(e) 
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5.1.3.9 ExecutionRoutine 
One or more ExecutionRoutine-s can be contained in SimulatedEnvironment.  The term 

ExecutionRoutine provides some simple support to describe how the computed data from the component 
described by this SimulatedEnvironment should be provided to a system of interest component of a larger 
simulation. Such execution routines are not parts of functionalities of a simulated environment component 
itself but are the way that this component participates in a larger simulation. Thus, a 
SimulatedEnvironment can be a valid description without an ExecutionRoutine.  On the other hand, a 
developed component shall be used for more than one simulation with different systems of interest. Thus, 
a SimulatedEnvironment shall have multiple ExectionRoutine-s.   

An ExecutionRoutine has an attribute systemID.  It denotes to which component that the described 
routine sends data. Besides, it has an attribute mode that denotes how communication between this 
component and the system of interest component is triggered, i.e., at which time the state data of simulated 
environment should be sent to the system of interest component. Two execution modes are available in 
the current version, as defined in Table 5.7. They are defined within the Enumeration ExecutionMode as 
the type of the mode attribute.  These modes are independent of how the values are computed within the 
simulated environment component. 

Table 5.7: Available Options of ExecutionMode. 
An ExecutionRoutine also has an attribute outputRange which specifies the range of data that should 

be sent to the system of interest component at a communication time of the described routine from the 
environment component. The available values of this attribute are defined within the Enumeration 
OutputRange, as explained in Table 5.8. 

Table 5.8: Available Options of OutputRange. 

Value Explanation 
Autonomous The environment component runs autonomously as a concurrent process in the 

bigger simulation once an execution starts. The interval between two time points of 
communication from this component to the system of interest component is 
determined before the execution, which could be fixed by the component function, 
controlled by a moderate component, be fixed by user configuration, and so forth.  
At each communication time, state values of the simulated environment 
corresponding to this time should be sent to the system of interest component. For 
instance, this mode can be used to simulate the behaviors of a system, which is 
regularly informed by some weather service with the current weather information. 

Reactive The environment component should be kept available during the execution of the 
bigger simulation.  The communication happens in two directions.  The environment 
component should send data upon the request from the system of interest component 
during the execution.  For instance, this mode could be used to simulate the behaviors 
of a ship, which is influenced by the force of water.  During executions, the ship 
model is fed with environmental data upon its at-moment location. 

Value Explanation 
All All produced data from the simulated environment component at the time 

corresponding to the communication time should be sent. 
AtPoint All produced data about a point location from the component at the time corresponding 

to the communication time should be sent.  If the mode of the ExecutionRoutine is 
Reactive, this point location is determined upon the request of the system of interest 
component. 

AtRegion All produced context at a region from the component at the time corresponding to the 
communication time should be.  If the mode of the ExecutionRoutine is Reactive, this 
region is determined upon the request of the system of interest component. 
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In addition, an ExecutionRoutine has an attribute valueAggregation of the Boolean type. In spatial 
simulations, computation functions may simulate different values for a phenomenon property at different 
locations.  If the system of interest component in the described routine needs a single aggregated value 
for each property from the computed ones, the valueAggregation should be set to true.  The values of this 
attribute may influence the derivation of structure for the data being sent to the system of interest 
component. 
5.2 PIM Layer Metamodels 

Executions of SEDL descriptions perform transformations that generate PIM-layer software models 
of simulated environment components in simulations. The transformation rules are specified from the 
SEDL language model to the metamodels that are used to describe the output models.  To enable domain-
specific outputs with more specialized and more concise elements than models consisting of basic UML 
elements, three metamodels for describing the outputs are presented in this section.  Elements in these 
metamodels extend corresponding UML elements with additional descriptive semantics. From a 
computer language perspective, these metamodels define domain-specific languages specified by UML. 
As the UML metamodel, their execution semantics are not restricted by specifications.  Thus, these 
metamodels can be mapped to different technical platforms for various implementations. The version of 
UML used in this specification is UML2.5.1[10].  Modeling elements in UML2.5.1 being mentioned in 
this specification are written with the prefix “uml” for identification, e.g., uml:Class. 
5.2.1 Configuration Schema Description Profile 

The Configuration Schema Description Profile is a small UML Profile that specifies stereotypes to 
describe form-based configuration schemas of software programs. Stereotype-specific properties in this 
profile and other metamodels in this chapter are marked italic. 
5.2.1.1 Summary 

A configuration schema expressed by the Configuration Schema Description Profile (i.e., an instance 
model of this profile) is an M1 model within the framework in this thesis. This schema describes the 
complete set of parameters that is necessary to be set before running a software program. These 
parameters should be accessible to the users of this program, which allows them to communicate with 
the program.  An M0 instance of such a schema holds a set of values of these parameters provided by 
users. This instance must be passed to the back end of the program before executing this program. Figure 
5.6 presents this profile expressed in the UML graphic notation. 

ConfigComponentConfigItem

GroupConfigSimpleConfig AlternativeConfig

ConfigSchema

«metaclass»
Package«metaclass»

Property
«metaclass»
DataType

«metaclass»
Association

SubComponent

ConfigOption

1
«ownedAttribute»

0..*

«ConfigOption»

-option
2..*

-sub 1..*

«SubComponent»

Figure 5.6: Configuration Schema Description Profile. 
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The following paragraphs in this subsection present its descriptive semantics. Different from the other 
two metamodels specified in this section, stereotypes in this profile do not regulate implicit structures of 
model elements. Applying this profile to an M1-layer schema mainly help further transforming this 
schema to some platform-specific model, especially for visual front ends of components, e.g., graphic 
interfaces where users can edit configurations.  This specification does not restrict presentation or 
behavioral semantics of the defined stereotypes while they depend on the chosen platform.  
5.2.1.2 ConfigSchema 

A ConfigSchema extends a uml:Model, which is a specialized uml:Package that “describes a system 
from a certain viewpoint”[10]. An instance of the ConfigSchema9 is a model package that contains 
specifications of all modifiable parameters of a computer program, which are exposed to end users. 
Parameters in this package are grouped into one or more ConfigComponent-s (see Subsubsection 5.2.1.4). 
These parameters specify arguments that need to be passed to the program before execution. The model 
package presents the boundary of these specifications, i.e., a configuration schema of the program.  An 
instance of this schema is a specific configuration with fixed parameter values. It holds a piece of 
information that can be passed to and processed by the program. 

Within the thesis, a model package of this type is initially generated when an SEDL description is 
executed. In general, for each SimulatedEnvironment in an SEDL description, an instance model of this 
type is generated.  Further generated elements related to the configuration are added to this package. 
5.2.1.3 ConfigItem and Primitive Types 

A ConfigItem is a UML Property of a primitive type or an enumeration type. A ConfigItem must be 
owned by a ConfigComponent which is specified in Subsubsection 5.2.1.4. This item essentially 
describes a “name-value” pair (i.e., a parameter) in a software configuration schema. Changing the value 
of such a parameter alters the computation behaviors of the software. This stereotype adds the following 
two constraints to the metaclass uml:Property: 

1. an element that applies the ConfigItem stereotype must be the ownedAttribute of a model element 
that applies the ConfigComponent stereotype, 

2. the values of this element must be either one of the primitive types OR a uml:Enumeration type. 
Primitive types used in this profile include the types defined in the PrimitiveTypes package of UML[10], 
i.e., Integer, Boolean, String, Real and UnlimitedNatural, OR one of the primitive types defined in this 
subsubsection that is a uml: PrimitiveType. 

Three additional primitive types are defined to express special types of strings. A SourceString 
represents a string that should be interpreted as representing a location where a piece of data is stored. A 
GeometryString represents a string that should be interpreted as representing geometric objects. A 
TimeString represents a string that should be interpreted as representing a time instant or a period. No 
encoding formations are specified for these three string types in this specification since they may vary 
among platforms and among applications, e.g., some applications require configurations of UTC 
coordinates, while some others only need an integer value denoting the index of a time unit.  They provide 
vocabularies for more clearly expressing the context of values in design models that facilitate the 
communication and implementation choice. It depends on developers to determine a further encoding 
standard, either by implementing the modeled application, or by implementing a platform-specific model 
translator to turn the design models into models that restrict these string types to more specific forms. 
Same as the other UML primitive types, these types themselves, rather than their instantiation, will appear 
in M1 models that apply this profile. 

An M1 instance of the ConfigItem uses the notation of UML Property. Its type is denoted by the name 
of corresponding primitive types in this subsubsection.  At the M0 level, this item is a named slot that 
holds a specific value. 

 
9 Strictly speaking, it is an instance of the UML metaclass Model that applies the ConfigSchema stereotype. The 
following text uses the same shorter convention to refer to model elements with stereotypes. 
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5.2.1.4 ConfigComponent Types 
Two configurations with the same structure (i.e., conform to the same schema) are identified by their 

values. When all the values at the same location respected to the structure are equal, these two 
configurations can be treated as equal since they provide the same input for a program. The program can 
run multiple times with the same configuration. Even when its functions that generate output values are 
stochastic, the characteristic information (e.g., the standard deviation of all values) of each generation 
remains the same, which matches the situation of the given configuration. Thus, stereotypes specified in 
this subsubsection to express partial structures of configuration schemas extend uml: DataType, whose 
instances are identified only by their values. Each stereotype represents a possible type of substructures 
within the schema.  

A ConfigComponent is a part of a configuration schema that embodies a group of user-modifiable 
parameters. This group of parameters is considered as related to the same aspect that is denoted by its 
name. A ConfigComponent shall aggregate another ConfigComponent or shall represent one option of 
an AlternativeConfig (see this subsubsection below).  It shall also be aggregated by ConfigItem-s and/or 
other ConfigComponent-s. Three descendants of ConfigComponent are defined to express the 
components with different aggregated structures as follows. 

A SimpleConfig is a ConfigComponent that only owns only ConfigItems. The types that apply 
SimpleConfig are the leaf groups of parameters in configuration hierarchies. A model element applying 
this stereotype must satisfy the following constraint:  

1. it shall only be the substructure of another ConfigComponent, i.e., when it is linked by a 
SubComponent which specified in Subsubsection 5.2.1.5, it must be the sub end. 

A GroupConfig is a specialized ConfigComponent that contains and only contains one or more other 
ConfigComponent-s. It does not directly own any ConfigItem. A model element applying this stereotype 
must satisfy the following constraints: 

1. it must have at least one sub property which is a ConfigComponent, linked to it via a 
SubComponent association. 

2. it must NOT have any ownedAttribute which applies the ConfigItem stereotype. 
An AlternativeConfig represents a part of a configuration schema related to some aspect denoted by 

its name. This part can be configured by one of several possible parameter sets.  Each of the sets is an 
option of this AlternativeConfig. Such a set itself can be expressed by a ConfigComponent type, which 
may have its own substructure. In an M0 configuration instance, only one of the sets can be picked and 
configured. A model element of this type must satisfy the following constraints:  

1. it must have at least two option-s which are ConfigComponent, each linked to it via a 
ConfigOption which is specified in Subsubsection 5.2.1.5.  

2. It shall only be the substructure of another ConfigComponent. i.e., when it is linked by a 
SubComponent, it must be the sub end. 

3. it must NOT have any ownedAttribute which applies the ConfigItem stereotype. 
5.2.1.5 SubComponent and ConfigOption Associations 

Two stereotypes that extend the uml:Association are defined in this profile to describe the 
relationships between ConfigComponent types, as introduced in this subsubsection.  An Association that 
applies one of these stereotypes links two ConfigComponent-s in a configuration schema at the M1 level. 

A SubComponent represents the aggregation relationship between two ConfigComponent-s. The 
component being aggregated have the other component as its substructure. A ConfigComponent cannot 
be aggregated by itself either directly or indirectly. An Association applying this stereotype must satisfy 
the following constraints:  

1. it must be a binary association whose two memberEnd-s are properties of two different 
ConfigComponent types AND 

2. it has a memberEnd “sub” with the aggregation = AggregationKind:none AND 
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3. Associations stereotyped with SubComponent in a configuration schema cannot form a cycle. 
A ConfigOption links an AlternativeConfig type to one of its options. An instance of this stereotype 

in the M1 layer must satisfy the following constraints:  
1. its memberEnd with aggregation = AggregationKind:shared property must be a property of an 

AlternativeConfig type AND 
2. the other memberEnd “option” must be a property of a ConfigComponent type. 
Constraints of stereotypes in this specification can be used to validate a schema at the M1 (type) level. 

For instance, e.g., checking if an AlternativeConfig in a configuration schema is linked at least by two 
ConfigOption associations.  The multiplicity of a ConfigOption association can also constrain that only 
allowed number of instances (usually 1) of its linked option (which is a ConfigComponent) appears in an 
instance configuration. However, it cannot restrict that only one option of an AlternativeConfig is picked 
in a configuration instance, i.e., only one of the ConfigOption associations linked to an AlternativeConfig 
is instantiated. An object diagram with two alternative options picked is still a valid UML graph and thus 
cannot be detected by a general UML validation tool. The semantics of “alternative options” is 
descriptively defined in the specification. It must be implemented either by some programming language 
or strategies, as shown in Chapter 6. 
5.2.1.6 Usage Outside the Framework 

Within the framework proposed by this thesis, creations of configuration schemas are triggered by 
executions of SEDL programs. Therefore, the contexts of these schemas are always related to simulated 
environments. However, this profile does not define any stereotype that is specific to simulated 
environments. Thus, the specification does not rule out the possibility of using this metamodel for 
programs other than simulated environment components. In general, this profile describes hierarchical 
structures of software configurations.  It shall be used as a concise input metamodel for implementing 
automatic user interface generators or renderers from configuration schemas. The stereotypes can be 
mapped to a description in languages with representation semantics such as HTML&CSS10, or a structure 
of GUI widgets. The resulting generators/renderers are context-free, which are also applicable for 
schemas whose contexts are not related to simulated environments. Nevertheless, the usage outside the 
framework is not emphasized in this thesis.  
5.2.2 Simulated Environment Structure Profile 

The Simulated Environment Structure Profile is a PIM-layer UML Profile that is used to describe 
structural aspects of programs that provide simulated environments.   
5.2.2.1 Summary 

Graphically, models that apply the Simulated Environment Structure Profile can be presented in UML 
class diagrams. Elements in these models can also be instances of non-stereotyped UML constructs since 
this profile does not add additional restrictions on which core UML constructs can be used in a model.  
For a clear model hierarchy, models that apply this profile are referred to as an instance of it.  Such a 
model locates at the M1 level to express the M0 objects of this program, e.g., objects that hold values at 
runtime and data objects that being sent to other components. 

Stereotypes defined in this profile provide additional constructs for concisely expressing building 
blocks of simulated environment components in structural models. Each stereotype regulates the common 
structure to all classes that apply it as well as derivable structures for these classes based on their 
associations. Implementations of these classes should realize these structures on a chosen platform. In a 
design model expressed by this profile, such structures can be made implicit. These stereotypes are 
extensions of elements that are used in UML class diagrams, including specializations of uml:  Classifiers 

 
10 https://www.w3.org/standards/webdesign/htmlcss 
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(Datatype and Class) and uml: Associations. Their descriptive semantics are described in the following 
subsubsections.   

For a phenomenon type being computed, a geometric representation to hold its spatial location is 
needed.  This thesis mainly focuses on geo-scale simulations in which space is often abstracted as two 
dimensional, and the height shall be treated as a thematic property. To remain the focus, this profile 
defines stereotypes with geometric representations in a two-dimensional context. Consequently, 
transformations in Section 5.3 are specified for SEDL descriptions of simulated environments whose 
space dimension number is set to two.  Nevertheless, geometric representations in this profile are based 
on well-established researches, each of which has its 3D counterpart.  A realization of the framework that 
supports 3D contexts shall be implemented based on these counterparts. For a SimulatedEnvironment in 
SEDL whose spaceDimNum is set to 3, the transformations create the same type of elements as specified 
in Section 5.3, except that their geometries and geometry-related operations are replaced by a 3D version. 
5.2.2.2 Utility Datatypes 

The following datatypes are used in this profile to support the specification of attribute types that hold 
an elementary geometric location on the timeline and in the two-dimensional space.  They are not defined 
as stereotypes since these types are rather M1 level instances of the uml: Datatype. These types are very 
basic types in geometry or temporal data models and standard, as well as in their implementations.  Thus, 
this specification does not unnecessarily redefine the complete structure of these types. In a realization of 
the proposed framework, it depends on the choice of the working community to map them to a more 
concrete standard or a technical implementation. These types are listed as follows with reference to a 
comparable datatype in the ISO standard.  

TemporalPosition: an instance of this class is an undividable location on the timeline in the view of a 
simulation.  This position can be both an instant on the real timeline or a period whose length equals to 
the minimum recognizable unit by the simulation. This location can be represented by a coordinate in 
some coordinate reference system[130]. A comparable datatype can be the TM_Position[95] in ISO19108. 
It could also be mapped to a temporal datatype in some platform, e.g., the DateTime in Eclipse Platform 
Java API11. 

Point: an instance of this represents a 0-dimensional geometric object which can hold a single point’s 
location in the space.  In a two-dimensional abstraction, its location can be represented by a pair of 
coordinates in some coordinate reference system, one for each spatial dimension.  A comparable datatype 
is the GM_Point[93] in ISO19107. 

Polygon: an instance of this class is a 2-dimensional geometric object which can hold a location of a 
regional subset of the space.  In a two-dimensional abstraction, its location can be represented by the 
underlying plane bounded by a closed circle that is formed by a finite set of connected straight-line 
segments, while the location of each segment is determined by its two endpoints.  A comparable datatype 
can be the GM_Polygon[93] in ISO19107. 
5.2.2.3 Runtime Simulated Feature Types 

Subsubsection 5.2.2.3-5.2.2.6 introduce stereotypes in the structural profile to express the classes (at 
the M1 layer) representing runtime objects (at the M0 layer) during executions of simulated environment 
components. They are used to regulate common structures and spatial representations of classes that hold 
state values of environmental phenomena at runtime, which are used by the computation functions of the 
components. 

Classes applying these stereotypes should not be confused with the datatypes that are used to model 
data stores of spatio-temporal information.  These classes provide the necessary structure to hold state 
values of phenomenon instances that should be computed at a simulation step. A storage region in 
memory is allocated to an M0 object of these types at runtime upon its creation. Object values are 
initialized and updated during the execution process. Older values are discarded in an update that affects 

 
11 https://help.eclipse.org 
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these properties. Their instances exist at runtime and only hold state values of the represented objects at 
“present” that the simulated process is passing. In contrast, a spatio-temporal data store needs to deal with 
historical values that do not reflect the “now” of its represented world.  It may store a history of property 
values of a spatially identifiable object as in a moving object database[87], or store values in a matrix 
with a temporal dimension as in the implementation of some array-oriented data form such as 
NetCDF[131].  Although there is no technical restriction to implement a property of a runtime data object 
that holds historical values at all computation steps of another property in memory, normally it is not 
necessary. When the size of computed values at one step is large, keeping such a property in memory is 
also not an efficient strategy.   

An abstract term SimulatedFeatureType is specified to facilitate the specification.  It is the supertype 
of all stereotypes that express digital entities which are representations of participants in simulated 
processes. An instance of the subtypes of SimulatedFeatureType is a uml: Class that provides the data 
structure of state values about a type of environmental phenomenon being computed or queried during 
simulation executions. Time is not an integrated domain of these entities but as a separate reference 
dimension, which is unfolded with the program execution.  

The SimulatedFeatureType is introduced based on correspondence among entities and processes in 
different worlds related to a simulation. Conceptual links among these entities are shown in Figure 5.7. 
The “simulated world” in the figure distinguishes itself from its digital representations computed in 
software. The digital entities are the actual existence that imitates the real world, while the simulated 
world is what these entities are interpreted in perception. A simulated world and phenomena in it shall be 
conceptually continuous, while their digital representations are discrete.   

An execution process pe of a simulation program corresponds to a simulated process psim which 
imitates a real-world process in a simulated world. A computation step s of the pe corresponds to a 
temporal location on the timeline of psim.  An instance isf of a class applying the SimulatedFeatureType 
stereotype created by pe is a digital entity. It represents a simulated phenomenon that imitates a real-world 
phenomenon. Its state values are updated during pe.  The state values of isf at s reflect the conditions of its 
represented phenomenon at the “current moment” in psim, i.e., the temporal location that the step s 
corresponds to.   

A runtime instance isys representing a simulated system uses the output from pe.  The computation 
process that creates isys does not necessarily happen synchronically with pe, but it also corresponds to psim.  
At a computation step of this process, isys accesses the state values of isf corresponding to the same time 
in psim as this step does.  To the simulated system represented by isys, the simulated phenomenon 
represented by isf is a part of its simulated environment that influences its behaviors. This is an imitation 
of the real-world that an environmental phenomenon has influences on a system of interest. 

Figure 5.7: Conceptual Links of Entities Related to a Simulation. 
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Since the existence of isf is observable and identifiable at each step in its lifespan during pe, it represents 
a simulated phenomenon as a substance. This means the existence of its presented simulated phenomenon 
is not dependent on the time domain. It “lives in” the simulated world and “evolves” over time during 
psim. Conceptually, the state of isf provides a “snapshot” of its represented phenomenon at a corresponding 
time on psim. Thus, properties representing characteristics of simulated phenomena in the classifier of isf (i.e., a class applying the SimulatedFeatureType stereotype) normally only need to provide structure to 
hold values valid for an instant (more precisely, a minimum identifiable temporal unit).  In this class, 
properties representing characteristics with a temporal type should be viewed in the same way as the 
properties representing thematic characteristics12. It means that the classifier of isf shall have a property 
of a temporal type to represent a characteristic of simulated phenomena. Nevertheless, a state value of 
this property owned by isf  at s reflects the condition of represented characteristic valid at an instant in psim.  

A class applying the SimulatedFeatureType stereotype must have an attribute timestamp: 
TemporalPosition (See Subsubsection 5.2.2.2). At an execution step, this attribute of an instance holds a 
location in time, which represents the “current time” that the represented phenomenon is experiencing in 
the simulated process. This attribute is not considered as a characteristic of the simulated phenomenon 
but the coordination on the timeline of the simulated process. The existence of the timeline is independent 
of the existence of the phenomenon in a simulation.  In a computation step, the state value of this attribute 
owned by an instance denotes the valid time in the simulated process of other state values owned by the 
same instance.  

The SimulatedFeatureType stereotype does not add restriction to prohibit adding thematic properties 
to a class applying this stereotype to hold a series of historical values. However, it is not recommended 
as described at the beginning of this subsubsection. No transformation rules defined as the SEDL 
execution semantics (see Section 5.3) leads the creation of such properties in a SimulatedFeatureType 
class.  Functions of a specific application that must be satisfied with such properties cannot be determined 
at the domain level and thus are not captured by this profile. When they are needed by a specific 
application, they have to be added by developers at later phases.  

This profile specifies specialized subtypes of the SimulatedFeatureType to express a class in more 
detail. Each of the subtypes restricts one representation for the spatial extent of represented phenomenon 
types. These subtypes are specified based on the runtime schemes that are needed for different spatio-
temporal data synthesis methods and spatial simulation paradigms. A specialization of the 
SimulatedFeatureType specifies the following aspects of a SimulatedFeatureType class: 1) how the extent 
in space of a simulated phenomenon type is represented by this class; 2) how the property values 
representing its thematic characteristics are linked to its spatial extent.  The available stereotypes for 
runtime simulated feature types are shown in Figure 5.8 and are specified in detail in the following 
subsubsections.  
5.2.2.4 Single-Valued Feature Types 

A class that applies a stereotype introduced in this subsubsection should provide slots to hold a single 
value for each thematic characteristic of the represented type.  The “single” means, despite that this value 
shall be composed by several numbers or other primitive types or a SpatialFunction class as defined in 
Subsubsection 5.2.2.7, all its parts together represent the condition of this characteristic.  In practice, each 
thematic characteristic should be represented as an attribute owned by this class.   

A GlobalFeature is a SimulatedFeatureType whose represented phenomena type is computed as 
pervasive and homogenous in the simulated world. In the view of the computation functions that use this 
class, the boundary of its represented phenomenon type is not reachable in the simulated world.  Its real-
world counterpart may be non-physical by nature or has a spatial extent that is much larger than the world 
part being simulated. Spatial heterogeneity of its thematic characteristics is either not of interest to the 
target simulations or not recognizable at the resolution of simulations. Thus, thematic characteristics of a 

 
12 For simplification, a property representing a thematic characteristic is referred to as “thematic property” in the 
following text, and a value of a thematic property is referred to as a “thematic value”. 
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phenomenon of this type are viewed as homogenous at all spatial locations. The computation functions 
calculate one value to represent one of its thematic characteristics at each execution step. 

No spatial representation is needed in this class since its represented phenomenon type is conceptually 
everywhere to the computation functions. For an instance of this class, the state value of such an attribute 
is considered applicable to represent the condition of the represented characteristic by the attribute at any 
spatial location, and this condition is valid at the time represented by the state value of the timestamp 
attribute of this instance.  

A LocalFeature is a SimulatedFeatureType whose represented phenomena type is computed as 
occupying some identifiable part of the space.  For the computation functions that use this class, the 
spatial extent of its represented type is recognizable in the simulated world and may be calculated by the 
model at each computation step. One value is calculated to represent one of its characteristics at each 
execution step. Spatial heterogeneity of its thematic characteristics is either not of interest to the 
simulations, or not recognizable at the resolution of simulations this type serves.  

A class that applies the LocalFeature stereotype must have a geometry attribute that should be a 
geometry type from the utility datatypes in Subsubsection 5.2.2.2.  It is the only spatial representation of 
the represented phenomenon type. Other attributes with a geometry type should be interpreted in the same 
way as thematic properties. This class should represent a thematic characteristic as a single value, i.e., as 
an attribute owned by this class with the multiplicity of 1. 

Instances of a LocalFeature appear and evolve independently from each other in a simulation. This 
stereotype does not restrict the relation among instances of the same class or additive effect of multiple 
instances at a location since they are specific to an application.  They are described at the M1-level 
application models. The opposite case is covered by the CollectiveFeatureType stereotype introduced in 
the following two subsubsections. A class applying a subtype of CollectiveFeatureType expresses a set 
of phenomena whose behaviors can be modeled by some common regulations. Such a set of phenomena 
can be viewed as an integrated whole that exhibits some spatial pattern at a time instant.  
5.2.2.5 Collective Feature Types 

A CollectiveFeatureType is an abstract SimulatedFeatureType whose represented phenomenon type 
is computed as a set of units, each of which occupies a spatial location in the simulated world.  All these 
units have the same logical structure, which consists of a geometric representation and a set of attributes 
representing thematic characteristics. The CollectiveFeatureType stereotype regulates a structure that 
holds multiple state values about a set of thematic characteristics at runtime. A set of values of a thematic 
characteristic is calculated at each execution step.  Each value is held by an attribute representing this 
characteristic owned by a unit. This value is paired with a spatial location through this unit’s geometric 
representation. Since this attribute is owned by all units, values of this attribute from all units together 
reflect the represented characteristic. 

Computations that generate spatial patterns changing over time often require a runtime structure as 
regulated by CollectiveFeatureType. The structure is discrete to be handleable by computers so that 
computation functions using such a structure can perform on a finite set of individuals (corresponds to 
units).  Thus, the CollectiveFeatureType stereotype is specified based on the concerns of spatial 
simulation models. To distinguish these models with models that express software and data, simulation 
models in a mathematic context are mostly referred to as “computational models” in this thesis. 

A CollectiveFeatureType must have one and only one unit whose type is a class applying the 
CollectiveFeatureUnit stereotype. This CollectiveFeatureUnit class represents the structure of its units.  
A CollectiveFeatureUnit must have a geometry attribute whose type can be one of the geometry types 
from Subsubsection 5.2.2.2. A CollectiveFeatureType should also provide access operations to its units 
so that developers can design and implement application-specific computations on these units, as 
specified below and in the next subsubsection for the subtypes of CollectiveFeatureType.  These 
operations are stereotypes of uml: Operation. For different CollectiveFeatureType classes, their units 
have different attributes representing thematic properties and lead to different return types of such an 
operation. They cannot be simply represented as a fixed operation within the stereotype representation in 
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Figure 5.8. Complementary information about these operations’ stereotypes is given in Subsubsection 
5.2.3.1, where behavioral elements in the PIM-layer metamodels are summarized. These operations are 
specified at the PIM layer to emphasize the logical functionalities a stereotyped class should have. This 
specification does not regulate a fixed choice of implementation signature for these operations. 

A CollectiveFeatureType class links the view of computational models and the view of external 
components. Computed patterns of a collective feature are exhibited as thematic properties of the macro 
phenomenon type represented by the CollectiveFeatueType class.  Thus, a CollectiveFeatureType is 
viewed as has the same list of properties as its units.  For each of the properties P, an access method 
getP(Point p) should be provided by the class.  It returns the state value of the property P at the input 
point location. 

Locations of units during computation may be denoted by simple internal coordinates (e.g., integer 
index) that reflect units’ locations related to the spatial span of computation. External components cannot 
recognize these coordinates and thus cannot relate associated thematic values to their own world. Each 
CollectiveFeatureType should provide an operation getUnit(Point p) to return an object of its unit type.  
This operation returns the unit of its belonged feature, which the input point location intersects with, or 
null if there isn’t any. 

Computations of a collective feature are performed on a set of units. A CollectiveFeatureType should 
provide a method unitsIterator() which returns an iterator object of its units. Then, developers can use 
this iterator to traverse through units to perform update functions on a unit. The implementation form of 
this iterator depends on the chosen implementation platform. 
5.2.2.6 Subtypes of CollectiveFeatureType 

The spatial representation of units in a collective feature includes the geometry of computed units and 
spatial relationships among them. The choice of units’ geometry type influences computation results and 
exhibited spatial patterns of computed thematic characteristics[103]. Spatial relationships among units 
such as the distance and the connectivity are even more important, since behaviors of units are often 
computed based on distances and connectivity among units. 

To support the concise expression of units’ spatial representations, this profile introduces concrete 
subtypes of the CollectiveFeatureType as described in the following paragraphs.  Each subtype restricts 
the CollectiveFeatureType with a specific spatial representation that is often used by simulation modelers, 
which includes the geometry type of its units and the way that these units are distributed. Figure 5.9 shows 
an illustration of these representations with one unit highlighted to support understanding and choosing 
these stereotypes. The representation is chosen by modelers who develop the computational models of 
environmental phenomena and can only be included in the software design models with their involvement. 
Thus, these subtypes are specified with the notations that are close to the terminology in computational 
schemes of spatial simulations. 

A central issue to the computational models using a CollevctiveFeatureType is to specify the spatial 
closeness and the neighborhood of a unit[103]. They determine which other units are considered for 
updating state values of a unit and their weight of influence on this unit. Spatial closeness among units is 
described in terms of distances from the unit to other locations in the space, especially to the locations of 
other units. Two types of distances may be used by these models. The first is the geometric distance that 
can be calculated based on the geometric coordinates of units. The second is the graph distance (also 
called the network distance) that is described in terms of the minimum steps connecting two units, given 
that the distance between two directly connected units is one step. The graph distance can both be 
grounded on geometric adjacency or artificially created connectivity among units. The former can be 
derived from the spatial distributions of units, while the latter can only be additionally specified. More 
complex networks may also include variable costs for different steps, which vary from features to features.  
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Figure 5.8: Stereotypes of Runtime Simulated Feature Types. 
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Spatial distances between units that are determined from the geometry and topology of units can be 
computed without knowing the application-specific thematic properties carried by these units.  Thus, 
relevant methods on accessing the neighborhood of a unit based on such distances are specified for each 
subtype of CollectiveFeatureType.  They can be realized at the stereotype-level and be integrated into the 
implementation of stereotyped classes via transformations so that developers can utilize them to 
implement application-specific behaviors of units. 

A PointSetFeature is a CollectiveFeatureType whose geometry is computed as a set of freely 
movable points. The geometry of a unit is presented by a point in this set, which holds the unit’s location. 
No spatial relation among points is fixed by this stereotype. The location of each unit can be updated 
separately during computation. Thus, the neighbor units of a unit shall change with its location change. 
The neighborhood of a unit is determined via geometric closeness by computational models.  

A PointSetFeature class should provide an operation getNeighbors (Unit u, float distance, float -r, 
float r): Set <Unit>.  The type Unit is the unit type of this PointSetFeature, which is a class applying the 
CollectiveFeatureUnit stereotype.  In the following paragraphs, unit types are denoted as Unit. It needs 
to notice that these types are different from model to model.  This operation returns a set of neighbor 
units of u within the geometric distance of distance, which has the same measuring unit as the one used 
by geometric coordinates of this class.  The parameters -r and r are optional, which further restricts the 
range of returned neighbors based on the at-moment moving direction of u as shown in Figure 5.9.  Their 
values shall be ignored when u is not moving. 

This representation is chosen by bottom-up computational models simulating multiple autonomous 
moving entities, which have been briefly introduced in Section 3.3.1. 

A PointSitesFeature is a PointSetFeature whose units are represented as a set of points with fixed 
locations in the view of computational models.  The geometric distance and the relative direction between 
each pair of points in a PointSitesFeature are fixed during computations.  Each unit in such a set 
corresponds to a “site” in the spatial simulation terminology[103]. The geometry of this stereotype is 
comparable to the domain of CV_DiscretePointCoverage[97] in ISO19123. 

Figure 5.9: Geometry Illustration of CollectiveFeatureTypes. 
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This structure is chosen when simulating time series of one or more themes at a limited set of 
irregularly distributed locations. Models of this kind draw a temporal process at each site and take the 
spatial autocorrelation[132] among sites into account.  Spatial relations among units that have effects on 
computations of themes can be calculated or assigned upon instance initialization and are stored in 
memory during a computation. The effect on space is often stored in the form of a spatial weight matrix 
with numerical weights[132].  

Bottom-up simulations shall also use this structure. Thematic values of a unit are calculated based on 
only neighbor points. Two types of distances can be derived from the units’ spatial locations of a 
PointSitesFeature to specify the neighborhoods of its units, i.e., the geometric distance inherited from 
PointSetFeature and the graph distance of the TIN13 based on its member points. 

In addition to the inherited getNeighbors(), a PointSitesFeature class with the unit type Unit should 
have an operation getTINNeighbors(Unit u, int distance):Set<Unit> to return the neighbor units of u 
within the graph distance of distance on the implicit TIN by this PointSitesFeature. 

A GridOfPointsFeature is a PointSetFeature whose units are represented by a regular grid of even-
spaced points. The computed thematic values of a unit are related to the point location of this unit. During 
computation, the thematic values of units shall be stored in a value matrix and are accessed via indexes 
denoting the relative locations of the units within the grid. The geometry of this stereotype is comparable 
to the domain of the CV_DiscreteGridPointCoverage[97] in ISO19123, while the geometry of its unit is 
comparable to CV_GridPoint[97]. 

This representation is often chosen when the computational models are based on the finite difference 
scheme as introduced in Subsection 3.3.1.  Points in such a grid correspond to discretized sampling points 
of differential models. Computations calculating thematic values on a grid that are valid in grid cells 
should use a SquareGridsFeature class, which is introduced in later paragraphs.  

Bottom-up simulations may also use this type. Graph distances are used to compute neighborhoods of 
units in a GridOfPointsFeature. Two definitions of adjacency can apply to this type for computing the 
graph distance.  The first considers only the points that are orthogonal next to a point as its adjacent points 
(i.e., Von Neumann neighbors). The second additionally includes the points that are diagonal next to it 
(i.e., Moore neighbors).[111] The distance between two adjacent units are equal to 1 in this specification. 
A GridOfPointFeature should have two operations to return these two types of neighbors of a unit within 
a graph distance of distance, i.e., getVonNeumannNeighbors (Unit u, int distance): Set<Unit> and 
getMooreNeighbors(Unit u, int distance):Set<Unit>. 

Besides, a GridOfPointsFeature class should provide an operation getUnit(Unit u,  int x, int y)  to 
access a nearby unit of u based on their relative positions in the grid. As shown in Figure 5.8, for a unit u 
with the grid index (x, y), getUnit(u, -1, 1) of this feature returns its unit with grid index (x-1, y+1).  It 
returns null when no such units exist. 

A PolygonSetFeature is a CollectiveFeatureType whose geometry is computed as a set of freely 
movable polygons. The geometry of a unit is presented by a polygon in this set, which holds the unit’s 
location. The location of each unit can be updated separately during computation.  

A PolygonSetFeature class should provide an operation getNeighbors (Unit u, float distance): Set 
<Unit>. This operation returns a set of neighbor units of u within the geometric distance of distance, 
which has the same measuring unit as the one used by geometric coordinates of this class.  This 
specification regulates that this geometric distance should be computed between the boundaries of two 
units. 

Computations of a set of moving entities normally calculate locations of entities based on some 
reference points on the entities (e.g., centroids of entities). Entities in flops with higher spatial geometric 
dimensions in an application shall be built using computed points as centroids of entities. This stereotype 
is defined here for completeness reason, in case some deformation of units is documented in SEDL. When 
no change about the units’ shape needs to be computed, the PointSetFeature stereotype should be used. 

 
13 see the last paragraph of this subsubsection for the definition of TIN 
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A TersserlatedFeature is an abstract PolygonSetFeature whose geometry is represented by a set of 
polygons covering a spatial area without gaps or overlaps. The term “tessellation” implies the subdivision 
of space[103]. The geometry of each unit is represented by one of the regional divisions (i.e., the polygons) 
in this tessellation. Thematic values of the represented phenomenon type are paired with regional 
divisions. Each unit is treated as an individuality (i.e., a site or a cell in the spatial simulation 
terminology[103]) during computations.  

An instance of a TesserlatedFeature class can be viewed as an implicit graph, with each unit 
corresponds to a vertex, and each pair of adjacent units are connected by an edge. Distances among units 
during computations are represented in terms of graph distances. Two adjacent units have a distance of 
one step to each other. The neighborhood of a unit within a range of r includes all units in the tessellation, 
which have a graph distance that is not greater than r to this unit. 

This structure is chosen by cell-centered computational models such as bottom-up cellular automata 
and models about underlying space altered by active entities (See Subsection 3.3.1). The following 
subtypes support concise expressions of common styles of tessellations used by these models. These 
subtypes have different definitions of adjacency. 

A SquareGridsFeature is a TesserlatedFeature whose geometry is represented by a grid of square 
cells. This grid is created through regular tessellation by two perpendicular sets of even-spaced lines. 
The geometry of each unit (i.e., a site or a cell) is represented by one of the square divisions. This 
geometry is the most fundamental tessellation type used as lattices in spatial-explicit simulation 
algorithms. It is comparable to the underlying discrete geometry of the 
CV_ContinuousQuadrilateralGridCoverage[97] in ISO19123, while the geometry of its unit is 
comparable as CV_GridCell[97]. 

Similar to a GridOfPointsFeature, the thematic values of an instance of this class are stored in a value 
matrix during a computation. The values of a unit can thus be accessed via indexes in the matrix, which 
denotes the relative location of the unit within the grid.  The GridOfPointFeature and the 
SquareGridsFeature are made two stereotypes for clear distinction of the unit geometry which influence 
the evaluation of thematic values at a spatial location based on computed unit values. 

It is important for cell-based computational models that all thematic values are recorded at the same 
scale. As the units of a SquareGridsFeature are created purely based on the geometric subdivision, all 
units should have the same size to be at the same scale. More complex computations are decomposed 
into hierarchies, while thematic values at each hierarchy are still simulated in a lattice with the same 
unit size. This stereotype does not consider the grid structure with variable cell size as may appear in 
the data storage.  

The two types of adjacency that can be applied to GridOfPointsFeature can also be used for 
computing graph distances among units in a SquareGridsFeature instance. In the case of Von Neumann 
neighbors, a cell is adjacent to the four cells that are orthogonally connected to it. In the case of Moore 
neighbors, a cell is adjacent to the eight units that surround it. Similar to a GridOfPointsFeature, a 
SquareGridsFeature should have two operations to return these two types of neighbors of a unit within a 
graph distance distance, i.e., getVonNeumannNeighbors(Unit u, int distance):Set<Unit> and 
getMooreNeighbors(Unit u, int distance):Set<Unit>. 

Also, a SquareGridsFeature class should provide an operation getUnit(Unit u,  int x, int y) to access a 
nearby unit of u based on their relative position in the grid as shown in Figure 5.9. For a unit u with the 
grid index (x, y), getUnit(u, -1, 1) returns the unit of its belonged feature with grid index (x-1, y+1).  It 
returns null when no such unit exists. 

A HaxagonalGridsFeature is a TesserlatedFeature whose geometry is represented by a tessellation 
that is composed of regular hexagons (i.e., 6-sided polygons whose sides have the same length) with the 
same size. Hexagons are 6-sided polygons. The geometry of this stereotype is comparable to the 
underlying discrete geometry of the CV_HexagonalGridCoverage[97] in ISO19123. The typical 
orientations for hex grids are vertical columns (flat-topped) and horizontal rows (pointy-topped). The 
advantage of computing a phenomenon using the hexagonal grids compared to using the square grids is 
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that only one possible adjacency exists among units in the hexagonal grids.  Each pair of adjacent units 
share a common borderline.   

A VoronoiTesserlatedFeature is a TesserlatedFeature whose geometry is generated from a set of 
irregularly distributed points (referred to as “seeds”, “seed points” or “generating points”) as follows: 
the spatial space is divided into cells represented by polygons; each cell is associated to a seed; each cell 
covers the region containing all points in the space which are closer to its associated seed than to any 
other seed points. Such a geometry is often called a Voronoi tessellation or a Voronoi diagram which is 
comprehensively introduced in [133]. Another name of such divisions is the Thiessen polygons known 
in the spatial analysis domain.[134] The geometry of this stereotype is comparable to the underlying 
discrete geometry of the CV_ThiessenPolygonCoverage[97] in ISO19123. Thematic values of the 
phenomenon type represented by a VoronoiTesserlatedFeature are paired with the polygonal cells as 
units during computations. Two Voronoi units that share a common borderline are adjacent and have a 
graph distance of one step to each other. 

Classes applying above two stereotypes should have an operation getGraphNeighbors(Unit u, int 
distance):Set<Units>. It returns neighbor units of a unit within a graph distance of distance based on 
the adjacency definition of the applied stereotype. 

A dual diagram named Delaunay triangulation[134] can be created for each Voronoi diagram by 
connecting all pairs of seeds associated with two adjacent Voronoi units. It results in a collection of 
triangles. For any of the triangles in this collection, no other point in the seed set is inside its circum-
ball[133]. This triangulation is often named TIN (Triangular Irregular Networks) in spatial analysis.[134] 
The graph distance between two Voronoi units is equal to the graph distance among their associated 
seed points in its dual TIN. In a TIN, thematic values are paired with the seed points that are vertices 
of triangles but do not fall inside to any divisions. This structure is often used for interpolating values 
of points other than seed values. However, conceptual confusion appears when it is used as the lattice 
by cell-based models that compute the values of divisions. Thus, the Delaunay triangulation is not 
introduced for lattice in this profile, but only as a network type for computing graph distances between 
units in a PointSitesFeature. Discussions regarding network features can be found in Subsection 8.3.1. 

A PolygonalMapFeature is a TessellatedFeature whose geometry is represented by irregular 
polygons imported from existing polygonal map data. The geometry of this stereotype is roughly 
comparable to the domain of CV_DiscreteSurfaceCoverage[97] in ISO19123. Visually, it looks like the 
polygonal map. Such a tessellation type provides a more flexible alternative to regular geometric 
subdivisions, which is particularly useful for simulations based on artificially determined regions, such 
as simulations based on data of administrative divisions.  

Two units in a PoygonalMapFeature instance that touch each other are considered as adjacent, i.e., 
as direct neighbors with the graph distance of one to each other.  A problem may be introduced by 
imported polygonal map data when isolated polygons that do not touch any other polygon may exist. 
This situation violates the strict definition of the tessellation since empty spaces exist among divisions. 
Thus, this stereotype uses a relaxed definition: the geometry of one or more units in a 
PolygonalMapFeature may be an isolated polygon that does not touches any other unit. Such a unit has 
no geometric neighbors by default. 

A PolygonalMapFeature should have an operation getGraphNeighbors(Unit u, int distance, Boolean 
includeIsolatedUnit ):Set<Units>. It returns neighbor units of a unit within a graph distance of distance 
based on the adjacency definition of PolygonalMapFeature.  When the third parameter is set to true, this 
operation should treat the units that have the shortest geometric distance to u as its adjacent units. By 
this specification, this geometric distance should be computed between the boundaries of two units. 
5.2.2.7 SpatialFunction 

A SpatialFunction is a class that holds the computational function that represents the form of a 
spatially heterogeneous theme. It can be used in one of the following situations: 1) a thematic property 
of a phenomenon is represented by a continuous function from spatial locations to thematic values at a 
time instant.  No regulation about discrete spatial samplings is fixed yet. 2) information about this 
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property is acquired from a spatial data source by external providers, which differs from location to 
location. In this case, this class serves as a wrapper to hold spatial queries to the data source. 

Same as other stereotypes for runtime objects representing environmental phenomena in simulations, 
a SpatialFunction conceptually represents some existence in simulated space that evolves over the 
timeline. To external components, this class represents a thematic property whose values can be “asked” 
by given the location of a spatial point at each time instant.  Since points in a conceptually continuous 
space are infinite, these values are only computed (i.e., calculated or queried) when necessary upon 
request from client systems or moderation functions. A SpatialFunction at a time instant is comparable 
to an analytical coverage in ISO19123 that maps spatial locations to thematic values via a mathematic 
function[97]. 

Formally, a class applying the SpatialFunction stereotype must have an attribute timestamp: 
TemporalPosition.  Similar to the timestamp of a SimulatedFeatureType, it provides a slot to hold the 
“current time” during execution.  Besides, this class should have an operation eval(point).  This operation 
takes a spatial point as the input and returns the value of its represented property at this point. Developers 
should implement the spatial function f(s) representing a thematic property in this operation.   

A SpatialFunction class could be generated by the transformation from an SEDL description (See 
Section 5.3) as the type of some SimulatedFeatureType’s attribute, when some 
ThematicValueDistribution in the input exists. If its represented property is also expected to be dynamic, 
the transformation generates operation to update the state of this attribute at an execution step.  This 
operation updates necessary parameters of the embedded spatial function Ft(s) in the eval(point) of this 
SpatialFunction to alter its at-moment form. The parameters of the spatial function can be implemented 
as attributes of this SpatialFunction class. At an execution step, invoking the eval(point) via an instance 
of a SpatialFunction class with parameter s returns the represented property value of this instance, at the 
location of s and at the time that is the state value of its timestamp.   
5.2.2.8 Requested Snapshots 

A snapshot is the state of a system at a temporal location.  At a step of a simulation execution, the 
system of interest component consumes snapshot data of its simulated environment at the temporal 
location corresponding to that step. This subsubsection specifies additional stereotypes as shown in 
Figure 5.10, which are used to express the information structure requested by the system of interest 
component.  They are subtypes of the stereotype Snapshot that extends the uml: Datatype metaclass.   

A Snapshot represents the data structure about a simulated environment being sent to a system of 
interest component at a simulation step.  Different from the subtypes of SimulatedFeatureType which are 
also defined from a snapshot view, the Snapshot stereotypes describe static pieces of message data that 
are sent between components. These stereotypes shall be used in design models in the following situations. 

«metaclass»
DataType

PointSnapshot PolygonalAggregatedSnapshot

Snapshot
- timestamp: TemperalPosition

«metaclass»
Association

SnapshotOf EnvironmentSimulation

«metaclass»
Class

+snapshot
«SnapshotOf»

+simulation
1

Figure 5.10: Snapshot Types. 
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1. The system of interest component requires a subset from all computed values or some post-
processed values based on computed values.  Structures of required values expressed by snapshot types 
are used by communication functions between components, which is specific to a simulation process, 
while runtime data structures expressed by simulated feature types are needed for computations of 
phenomena, which is specific to a simulated environment component.  

This could happen when computed values are consumed by multiple functionalities. It may also 
happen when environmental phenomena are computed as CollectiveFeatureTypes. Thematic values at a 
location may not be independently updated but depending on nearby values, which requires a runtime 
data structure to hold values from multiple locations. Although, the requested snapshot data by a client 
component shall be only from one location.  

2. Some phenomenon property is implemented as a SpatialFuction (see Subsubsection 5.2.2.7).  
Since computable state values from this function are infinite at each execution step, Snapshot types are 
used in this situation to guides its execution loop in an application.  In this case, a Snapshot expresses 
which set of values is requested by another component and thus should be computed by the embedded 
spatial function at an execution step.  

A Snapshot must have an attribute timestamp: TemporalPosition that denotes the time when a 
snapshot is taken. In the design model, it must be exactly one memberEnd of an association that applying 
the SnashopOf stereotype which is introduced later in this subsubsection. 

To facilitate the object-oriented modeling, a stereotype EnvironmentSimulation extending uml:Class 
is introduced to provide a model construct that holds behavior elements for simulation execution control. 
Same as the Snapshot types, EnvironmentSimulation classes are more related to the simulation that the 
component under development participates in, but not the computation models of a phenomenon type. 
As a meta element that aims at expressing behaviors, it is specified in more detail in Subsubsection 5.3.3.6. 
Relevant information for this subsubsection is that an EnvironmentSimulation class maintains several 
sets, each of which maintains computation instances for a SimulatedFeatureType class. The structure of 
a Snapshot type depends on the SimulatedFeatueType computation that can be maintained by the 
EnvironmentSimulation class and thus are partially derivable from this class.   

To support concise expressions of this dependency, the profile defines a stereotype SnapshotOf that 
extends the UML metaclass Association.  A SnapshotOf is a binary association. It must have a 
memberEnd (simulation) which is an EnvironmentSimulation class and the other memberEnd (snapshot) 
which is a Snapshot class.  A Snapshot must be exactly linked by one SnapshotOf association. A 
SnapshotOf association indicates instances of its snapshot end includes snapshot information from the 
instances of its simulation end.  Thus, the derivable structure of its snapshot end can be implicit in a 
design model applying this profile.  It results in more concise model representation. During 
transformations from the design model to implementations or intermediate models in general modeling 
languages, derivable attributes of a Snapshot type should be made explicit in the outputs, as specified 
below for each subtype. 

A PointSnapshot is a Snapshot representing the snapshot data structure of a simulated environment 
from a simulation at a point location. It has an attribute location of the point type that represents the 
location at which a snapshot instance is taken. A PointSnapshot has the following implicit structures:  

1. For each feature type class (see Subsubsection 5.2.2.4) whose computation instances can be 
maintained by the simulation end linked to the PointSnapshot, a member datatype resembling this feature 
type should be included in this Snapshot type.  An instance of this snapshot type can contain one or more 
instances of the member datatype. 

2. When the feature type is single-valued, the member datatype implicitly has all attributes 
representing thematic properties of that feature type. If some attribute of the associated feature type is a 
SpatialFunction, the type of the corresponding attribute in this member datatype should be changed to the 
return type of the embedded function of the SpatialFunction. 

When the feature type is a CollectiveFeatureType, the member datatype implicitly has all thematic 
attributes representing thematic properties of the feature type’s unit. 

A PolygonalAggregatedSnapshot is a Snapshot representing the data structure of the aggregated 
snapshot of a simulated environment from a simulation within a region. It has an attribute location of the 
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polygon type which represents the region at which a snapshot instance is taken. For each single-valued 
feature type class whose geometry type is point, a member datatype is included to this Snapshot type with 
a location:Point attribute and all attributes representing thematic properties of that feature type. Other of 
its implicit structure is derived in the same way as the PointSnapshot.   An attribute value of such a 
snapshot instance is computed via some kind of aggregation (e.g., mean) from the same attribute of its 
snapshot feature within its location at its timestamp.  The specific way of aggregation is left to application 
implementation. 
5.2.3 Metamodel of Environment Computation 

Meta elements for describing PIM-layer behavioral models of the environment computation in this 
thesis have a more complex composition than the metamodels for describing structural models.  They are 
not defined simply within a profile but are from different sources as summarized in this subsection.   
5.2.3.1 Summary 

CIM-PIM transformations in the proposed framework map SEDL elements to computation units and 
chain these units together. They create computation flows for simulated feature types at an execution step.  
Given connected units that are formally expressed, the generation of architectural code and object flow 
code shall be automated to create computer program skeletons for enclosing application-specific 
implementations. Developers can focus on implementing computational logic and arithmetic functions. 
The generated units are application-specific elementary functions that do not necessarily contain domain-
level common structures.  Thus, instead of defining redundant stereotypes, the transformation rules map 
relevant SEDL language elements to the behavioral elements in the UML metamodel. Besides, since 
these functions operate on data objects about environmental phenomena, the transformed behavioral 
models may also contain elements from the structural models that are expressed in previously introduced 
metamodels. 

Elements from the above two sources could appear in the output behavioral models by CIM-PIM 
transformations from SEDL descriptions. Further, stereotype-specific behaviors for 
SimulatedFeatureType-s have been specified in the structural profile, in terms of stereotyped uml: 
Operation that must be owned by a class applying some subtype of SimulatedFeatureType. These 
operations are common in spatial simulations but could be used differently in different applications 
depending on computational methods in these applications. Thus, the specified CIM-PIM transformation 
in this thesis does not involve the generation of behaviors that invoke such operations. When objects of 
stereotyped classes have been created in a behavioral model by transformations at the PIM layer or a 
further-mapped PSM layer, developers can invoke these operations through the objects to construct 
application-specific behaviors within a generated unit. 

SimulatedFeatureType
CollectiveFeatureType

CollectiveFeatureUnit
- geometry: Geometry «metaclass»

Operation

getUnit
- ownedParameter: p:Point

«invariant»
{context getUni inv:
self.class.unit == self.returnType}

1
«hasUnit»

+unit 1
+returnType

«returnType»

+class
1 «getUnit» 1

Figure 5.11: Define the getUnit() Operation for the CollectiveFeatureUnit  Stereotype. 
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At the profile level, operations owned by stereotypes of uml:Class are viewed as stereotypes of 
uml:Operation. Figure 5.11 gives an illustration that defines getUnit() for the CollectiveFeatureType in 
Subsubsection 5.2.2.5 using the graphic notation, with additional constraints expressed in OCL. This 
figure shows, each class applying the CollectiveFeatureType stereotype (or one of its subtypes) should 
own a special uml:Operation named getUnit.  This operation has a parameter p of a Point type and returns 
an instance of a class that represents the units of this CollectiveFeatureType class. 

Besides, a stereotype EnvironmentSimulation is specified to express model artifacts that enclose 
behaviors of an environment component in a bigger simulation. Such behaviors include communication 
routines between the environment component and a system of interest component, create necessary data 
messages, and so on.  These behaviors are simulation-specific and shall be partially derived from a 
SimulatedEnvironement and one of its ExecutionRoutine. The derivation is explained in Subsubsection 
5.3.3.6. An EnvironmentSimulation class and its further transformed code skeletons are used by 
developers to implement the intended execution routine.  

At last, Subsubsection 5.2.3.3 recommends a set of stereotypes as meta elements for describing 
behaviors to modify the existence of a simulated phenomenon at the PIM layer. Same as the operations 
owned by SimulatedFeatureType stereotypes, the main audiences of these stereotypes are developers of 
the modeled components. They provide concise constructs for developers to model and implement 
simulation processes. Transformations from SEDL descriptions to PIMs do not involve the creation of 
instances of these stereotypes, since the way to use them is specific to different applications that cannot 
be captured formally by SEDL. 
5.2.3.2 Two Views of Behavioral Models 

Behavioral models can be presented in two views when using the UML graphic notation, and so do 
the behavioral meta elements. An element may be expressed by different UML metaclasses in these two 
views. Figure 5.12 illustrates how behavioral elements are presented in two views, in which elements 
with the same name represent the same model element. Behavioral meta elements in this chapter are 
specified in one of the views. They can be switched to their counterparts in the other view as explained 
below. 

Figure 5.12: Elements in Instance Models of Behavioral Metamodels. 
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First, a computation procedure of a simulated environment component can be modeled as an instance 
of the uml: Activity metaclass presented in a UML activity diagram. It is composed of instances of 
available UML elements in activity diagrams. Stereotypes expressing behaviors are extensions of 
available UML metaclasses in activity diagrams, especially the extension for uml:Action. Second, each 
Activity can also be presented as a uml:Class in a UML class diagram.  Each Action of this Activity can 
be then presented as an uml: Operation owned by the activity Class.  Thus, an instance of some 
uml:Action stereotype can be presented as a stereotyped uml:Operation in class diagrams, while a basic 
uml:Action instance can be presented as a non-stereotyped uml:Operation. The Activity class normally 
also owns a uml: Operation that contains the behavior of this Activity.    
5.2.3.3 Life Cycle Control of Simulated Features 

This subsubsection recommends a set of PIM-layer stereotypes to provide additional constructs to 
express behaviors that control the lifecycles of SimulatedFeatureType instances or their units. They are 
summarized in Table 5.9 as extensions of the uml: Action metaclass. It is recommended to realize these 
constructs at the PIM layer and more specific layers as modeling/programming utilities in the proposed 
framework. They are not involved in CIM-PIM transformations specified in the framework. 

CIM-PIM transformations in the framework proposed by this thesis create behavior models from 
SEDL descriptions in a logical structure that each instance of a computation class can be initialized with 
a configuration object of its computed phenomenon type14. A computation instance holds behaviors that 
compute a phenomenon instance. Its member object of a corresponding SimulatedFeatureType class hold 
state values of this phenomenon instance. Thus, all configured phenomena from a configuration are 
supposed to have been initialized at the beginning of an execution, even though they may be conceptually 
not alive for a while (state values of the feature data object remain zero or null). 

However, the existence of phenomena may change during simulations. Some computation instances 
may not exist anymore, while some others may be initialized to compute newly emerged phenomena.  In 
the current framework version, such behaviors can be added to the behavioral model since the PIM layer 
as actions expressed by stereotypes in this subsubsection. Instances of these actions, however, do not 
appear in the outputs of the CIM-PIM transformations from SEDL descriptions since no formal SEDL 
terms are defined for capturing such context. 

Stereotype Description 
FeatureEmerge An Action that makes a simulated feature come to life in the simulation.  It often 

technically means to create and initialize a new instance of a computation 
instance for a SimulatedFeatureType. 

FeatureTermination An Action that terminates the life of an existing simulated feature in the 
simulation.  This feature will not exist in the simulated world and will not 
participate in the simulation process anymore.  Depending on the 
implementation strategy, it could technically mean to release a computation 
instance in the memory or exclude this instance in further computation. This 
Action should be distinguished from an Action that changes the simulated 
feature to state “dead”, which still has influence in the simulation.  The latter 
Action should be viewed as an Action that computes thematic changes of a 
simulated feature. 

MergeFeatures An Action that merges multiple simulated features of the same kind into one. It 
takes two or more instances of the same SimulatedFeatureType as input and 
performs a FeatureEmerge Action to create a new instance of this type. The 
initial values of this new instance are computed based on the values of input 
instances. The input features are then terminated via a FeatureTermination. 

FeatureAbsorb An Action that one simulated feature absorbs one or more other features of the 
same kind. It takes two or more instances of the same SimulatedFeatureType as 

 
14 This PIM layer structure, however, does not have to strictly remain the same when mapped to a specific 
technical platform, as long as the mapped structure provides the same logical functionalities. 
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input and updates state values of one of the features according to the input 
features. Other input features are then terminated via a FeatureTermination. 

SplitFeature An Action that splits one simulated feature into multiple features of its kind. It 
takes one instance of a SimulatedFeatureType as input and performs a 
FeatureEmerge Action a needed number of times to create two or more instances 
of the same type. The initial values of the new instances are computed based on 
the values of the input instance. The input is then terminated via 
FeatureTermination. 

ReplicateFeature  An Action that a new simulated feature is created by an existing feature of the 
same kind.  It takes one instance of a SimulatedFeatureType as input and 
performs a FeatureEmerge Action to create another instance of the same 
SimulatedFeatureType. 

DuplicateFeature A specialized ReplicateFeature Action that duplicates an existing simulated 
feature. It takes one instance of a SimulatedFeatureType as input and performs 
a FeatureEmerge Action to create another instance of the same 
SimulatedFeatureType with exactly the same state values as the input instance. 
The input feature is not altered by this Action. 

Table 5.9: Stereotypes for the Simulated Feature Life Cycle Control. 
5.3 Transformations of SEDL Descriptions 

This section specifies transformation rules from SEDL descriptions to PIM-layer design models 
expressed by metamodels that are specified in Section 5.2.  These rules regulate what happens when an 
SEDL description is executed by an implemented SEDL Description Processor.  
5.3.1 CIM-PIM Transformation Process 

The transformation from an SEDL description to design-level software models is a multi-steps and 
semi-automatic process, as shown in Figure 5.13. An implemented SEDL Description Processor should 
be able to perform automatic steps (denoted as small round shapes in Figure 5.13) in this process. An 
implemented SEDL IDE should also have functionalities that facilitate manual operations in this process. 

First, two automatic transformations, i.e., Description2Config and Description2Structure are 
executed to derive two structural models from an input SEDL description. It generates a configuration 

Figure 5.13: CIM-PIM Transformation Process. 
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schema applying the profile specified in Subsection 5.2.1 and a data structure model applying the profile 
specified in Subsection 5.2.2. This step shall be followed by a manual refinement step (denoted as a 
dashed line as other optional elements in Figure 5.13), which is recommended in practice.  At this step, 
developers of environment computation can bring more details that do not implicitly exist in high-level 
functional requirements into design models. Then, the two generated structural models together with the 
input SEDL are fed to a third transformation, i.e., Description2Computation. This transformation 
generates a behavioral model expressed by modeling constructs specified in Subsection 5.2.3.  Data 
objects used by behavioral elements in this model are instances of the output model elements from the 
previous transformation steps.  

The CIM-PIM transformations specified in this section has been completed by the previous three 
transformations. Detailed transformation algorithms of these three steps recommended by this thesis can 
be found in Appendix A.   

The development process of a simulated environment component can be further automated from here 
through an optional transformation DSL2BasicUML. This transformation turns outputs of previous 
transformations to models expressed by basic UML constructs. This is archived by explicitly adding 
necessary structures to model elements applying stereotypes of profiles specified in Section 5.2. These 
structures are implied by the applied stereotypes as defined in their descriptive semantics.  This step can 
be made implicit to language users by chaining it with a step that uses domain-independent generation 
tools to create PSM model or code skeletons. In this case, this optional step creates input for these general 
tools that do not recognize DSLs defined in Section 5.2.   
5.3.2 Description2Config 

The output of the first transformation Description2Config is a configuration schema of the 
component under development. Relevant aspects in an input description are the description hierarchy, 
names of Configurable and ConfigurableParameter-s. In a nutshell, it generates a hierarchical structure 
aligned to the input description.  Each Configurable is transformed into a ConfigComponent with the 
name of this Configurable and is nested by the component transformed from its belonged Configurable. 
Each ConfigurableParameter is mapped to a ConfigItem of a corresponding ConfigComponent.  
Configurable-s with no parameter are excluded in this schema.  Based on the component structure, a 
subtype of ConfigComponent may apply to this component. The complete transformation can be found 
in Appendix A.1.  

This transformation is intentionally kept simple to create intuitive user interfaces for users who intend 
to use the developed component without modification, i.e., the “original” users who give the requirements 
as documented in the input descriptions. An output model of this transformation can be used to regulate 
the configuration structure of a developed component.   

Since stereotypes in the configuration profile do not imply additional structure to its extended 
metaclass, removing the applied profile from an output schema model results in a valid model expressed 
by basic UML. When only the configuration structure is of interest, implementation of this transformation 
can be simplified.  Instead of generating an element applying a stereotype, it generates an instance of the 
UML metaclass that the stereotype extends. The prototype implementation in Chapter 6 uses this strategy. 
5.3.3 Description2Structure 

The second transformation Description2Structure creates design-level structural models of 
environment components.  For each EnvironmentalPhenomenon in the input SEDL description, it creates 
a uml:Class stereotyped with a suitable subtype of SimulatedFeatureType from Subsection 5.2.2. The 
choice of applied stereotype regulates the spatial representation of the phenomenon in the simulation. It 
is mainly derived from the declared dimension in the input description and IndividualtiyChange-s of the 
EnvironmentalPhenomenon.  As explained in Subsubsection 5.2.2.1, this section focuses on specifying 
transformations for two-dimensional spatial simulations in which the highest dimension of a phenomenon 
is set to 2. Table 5.10 shows the primary step that applies a stereotype to the data structure Class SIData 
generated from a SpatialIndividuality SI. The applied stereotype needs to be refined with a more specific 
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subtype by developers for further transformation.   Further attributes of the Class, which is not implied 
by its applied stereotype, are derived from the theme-s and enclosed Variation-s of the input 
SpatialIndividuality. Appendix A.2 provides the detailed logic of this transformation. 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

If dimNum of SI equals to 2 Then 
       Apply the LocalFeature stereotype to SIData; 
       Set geometry of SIData to Polygon; 
Else if SI has change involving geometry Then 
                Apply the LocalFeature stereotype to SIData; 
                Set geometry of SIData to Polygon; 
       Else if dimNum of SI equals to 0 Then 
                        Apply the LocalFeature stereotype to SIData; 
                        Set geometry of SIData to Point; 
                Else if SI has RigidBodyMovement or LocationThemeDependency 
                               Apply the LocalFeature stereotype to SIData; 
                               Set geometry of SIData to Point; 
                         Else  
                                Apply the GlobalFeature stereotype to SIData; 
                         End if; 
                 End if; 
         End if; 
End if; 

Table 5.10: Apply a Stereotype to the Data Structure Class. 
Contradictions may exist among different pieces of an SEDL description that influence the derivation 

of the necessary number of spatial dimensions in computation. They cause conflicts among different 
transformation rules. The conflicts are eliminated by the following three mechanisms: 1) Some 
contradictions are forbidden by the structural restrictions that are introduced with the SEDL model in 
Section 5.1.  They can be eliminated by an SEDL editor with validation functions. 2) Change types 
involving space need a certain minimum number of dimensions. If the declared dimension of a 
phenomenon is lower than what its changes require, an SEDL editor should give warning.  The 
contradiction should be clarified and eliminated through discussion. There, SEDL plays its role as an 
analysis-phase communication tool. 3) if the contradiction is not solved by step 2, the transformation 
generates a geometric representation of this phenomenon with a minimum necessary number (or a pre-
determined higher one) of dimensions. 

Given a chosen implementation platform, classes in an output model from this transformation can be 
further mapped to a spatial data structure implementation according to the applied stereotypes and 
attributes derived from the input description. 
5.3.4 Description2Computation 

The third transformation Description2Computation has two main purposes:  1) generating 
computation units that update states of simulated phenomenon instances during simulation; 2) building 
activity flows of the component under development with these units.  

Design-level outputs from the third transformation can be presented in two views as explained in 
Subsection 5.2.3.2.  To facilitate the further transformation to object-oriented code structure, this 
subsection expresses this transformation in the structural view in terms of uml:Class and uml:Operation15. 
The details of this transformation are written with the programming terminology which is closed to Java-
like coding convention in Appendix A. For an Operation that represents a decomposable uml:Activity, 
each elementary uml:Action is expressed as a statement that invokes the action Operation within this 
activity Operation. Due to the abstraction level of platform-independent models, some artifacts are rather 
denoted descriptively in the appendix, so that it can be adapted to different technical platforms for creating 

 
15 The prefix „uml“ of these two metaclasses are omitted in the left text in this section for simplicity. 
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code skeletons for these artifacts. An implementation of the transformation to the platform-specific layer 
should replace the general forms of output elements in the appendix to comparable ones in the target 
platform. It should also adapt the elements’ names to the naming convention of the platform. The overall 
steps of Description2Computation for an EnvironmentalPhenomenon Ep are summarized in Table 5.11 
and explained in the following paragraphs. 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 

Create a Class ComputeEp; 
Create Attributes in ComputeEp for each Ep’s: 
        1) ConfigurableParameter, 
        2) indexName of each CharacteristicVariation; 
Create an Operation in ComputeEp for each of following description items within Ep: 
        1) CharacteristicVariation, 
        2) individual Variation, 
        3) AlternativeMode; 
Create other support structures; 
Generate a dependency graph G for computation of Ep’s properties; 
Traverse G starting with node t to get a topologic sequence of nodes; 
Add Object epData of Ep’s generated datatype;  
Create Operation computeEp() in ComputeEp;  
Create statements in computeEp() to invoke the previously generated Operations to initialize and 
update the properties of epData (or a unit in the epData if Ep is a FieldOfIndividualities), 
following the sequence of nodes from Line 11; 
Create necessary iterations when Ep is a FieldOfIndividualities; 

Table 5.11: Overall Steps of Description2Computation. 
First, this transformation generates a Class for each EnvironmentalPhenomenon to hold the 

computation behaviors. Each CharacteristicVariation or Variation within the scope of this 
EnvironmentalPhenomenon is transformed into an Operation (i.e., an uml:Action in the behavioral view) 
in the computation Class. ConfigurableParameter-s within the scope of the EnvironmentalPhenomenon 
and in some cases, also parameters of Operations that compute characteristic variations, are transformed 
into attributes in the computation Class.  This step also adds member instances of the configuration and 
data structure Classes from the previous two transformations to the computation Class to hold information 
for executions. This step is presented in detail in Appendix A.3.   

Next, a directed graph for each EnvironmentalPhenomenon is derived from its Variation-s.  Nodes in 
this graph represent the described properties of this phenomenon.  Edges in this graph correspond to the 
relations between their connected nodes that are expressed by a Variation.  The graph reflects the 
computation dependency among these properties, i.e., an edge a → b denotes that the state value of a is 
required for determining the state value of b.  It is an intermediate artifact to derive the computation order 
of the computation units generated by the previous step, which is used to form activity flows for updating 
states of this phenomenon. 

The previous step of the graph construction allows cycles in this graph. If representing relations in 
such a cycle with equations, this loop corresponds to an equation system that determines the values of the 
nodes in the loop.  However, the solving order of the computation units cannot be derived when loops 
exist.  Thus, the construction is followed by a step that detects the cycles in the graph and replaces each 
cycle with a compound node. The primary steps of the graph generation for a SpatialIndividuality are 
shown in Table 5.1, and the detailed logic of it can be found in Appendix A.4.  It applies to every 
SpatialIndividuality-s in the input SEDL description. Operations on graphs can be implemented using 
standard graph data structure and algorithms. 
1 
2 
3 
4 
5 

Create a directed graph G; 
Add nodes t, l, g to G; //represents time, location, geometry 
For each ThematicProperty p of SI 
        Add a node p to G; 
End for; 
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6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

For each Variation: a → b within the scope of SI 
        Add an edge a → b to G if it does not exist; 
        Store a reference to the generated Operation from this Variation with this edge; 
End for 
Search for cycles in G; 
For each found cycle cyc         Add a node cyc to G to replace the subgraph of the cycle; 
        Add Operation cyc() to ComputeSI; 
        Store a reference to the subgraph of the cycle with cyc; 
End for; 

Table 5.12: Generation of the Dependency Graph for a SpatialIndividuality. 
The dependency graph for an EnvironmentalPhenomenon implies the appropriate computation order 

of properties during a simulation step.  The next step generates an Operation to compute states of a 
simulated feature object at a step. This Operation invokes the generated Operations for computation units 
in sequence to update the phenomenon data object hold by the computation class.  The timestamp is 
updated at first as the time is the only fully independent variable in a simulation. Then, the properties that 
only depend on time are computed by the Operation referenced to the incoming edges of the node 
representing these properties. The computed values are then fed to the computation units represented by 
its outgoing edge. This process continues until all properties are updated. It applies to all 
SimulatedIndividuality-s in the input SEDL description. For a SpatialIndividuality that describes 
members of a FieldOfIndividualities, the state computation function updates a unit of the transformed 
CollectiveFeatureType instance. The transformation additionally generates iteration over units of this 
instance. Recommended details of this step are presented in Listing A.5.   

For a clear specification, the transformation process is separated into steps in different listings based 
on logically different tasks.  An implementation does not have to follow the sequence strictly.  For 
instance, the generation of computation units, corresponding nodes and edges in the dependency graph 
are often performed spontaneously when parsing through the input. The same applies to the pseudo-code 
of each step. Outputs from this transformation are limited by the SEDL expressiveness and the 
information that can be determined at the analysis phase. These limitations are discussed in Section 8.2. 
5.3.5 Map Description of Spatial Heterogeneity to Design Models 

SEDL provides two ways to indicate that the spatial heterogeneity of an environmental phenomenon 
needs to be computed, i.e., through the ThematicValueDistribution of a ThematicProperty or spatially 
distributed members of a FieldOfIndividualities. They indicate the spatial heterogeneity perceived from 
different angles. However, different angles of perception do not necessarily result in different modeling 
decisions at the design phase by component developers. This issue brings complexity and limitations to 
the transformation automation, which requires developers’ involvement. This subsection introduces the 
mapping principles to transform SEDL pieces relevant to the spatial heterogeneity to component design 
models and the necessary manual interference during this process.  Transformation details are presented 
in listings in Appendix A. 

The term FieldOfIndividualities implies a discrete view.  A FieldOfIndividualities is mapped to a 
CollectiveFeatureType in the design-level structural model by Description2Structure.  For the 
behavioral model generated by Description2Computation, change descriptions associated with its 
member individuality are transformed into behaviors that update states of a unit in the transformed 
CollectiveFeatureType’s instances.  The transformation also generates an activity that iteratively executes 
the update function to update all units. 

The term ThematicValueDistribution, however, does not imply any discretization. A 
ThematicValueDistribution reflects the spatial derivative of a ThematicProperty, which treats the relevant 
property as a spatially continuous entirety.  This term has duality in nature. On one side, it represents 
some function that determines a value at a given spatial location about this property.  On the other side, 
in a temporal process, the form of the distribution at a time instant plays the role of the state value of the 
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property. Other changes which involve this property influence the distribution form. Thus, without 
manual interference or pre-restricted logical structure, a ThematicValueDistribution in an SEDL 
description should be mapped to a SpatialFunction that holds the distribution function with the spatial 
point as the parameter. The attribute type transformed from its associated ThematicProperty is set to be 
this SpatialFunction. An instance of this SpatialFunction represents the value of an attribute of some 
simulated feature instance. It is updated by updating its attributes that control its embedded distribution 
function. Table 5.13 shows the logic to generate a SpatialFunction Class P_Dist from the 
ThematicValueDistribution-s of a ThematicProperty P. 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
13 
14 
15 
16 
17 
18 
19 
21 
22 
23 

Create Class P_Dist applying the SpatialFunction stereotype; 
For each ThematicValueDistribution Dist of P 
        Add Operation dist() to P_Dist; 
        For each of its ConfigurableParameter CP 
                Add Attribute cp with the declared type to P_Dist; 
        End for; 
        If Dist has options Then 
                Add Attribute dist_op to P_Dist; // to mark the active option 
                For each option Option of Dist 
                        Add Operation option() to P_Dist; 
                        For each ConfigurableParameter CP_O of Option 
                                Add Attribute cp_o with the declared type to P_Dist; 
                        End for; 
                End for; 
                Add a conditional brunch to dist() which:  
                        1) checks the value of dist_op,  
                        2) invokes the generated Operation from the corresponding option denoted by the 
value of dist_op as the behavior of dist(); 
        End if; 
        Add a Constructor to P_Dist that can initialize its instance with a configuration object; 
End for; 

Table 5.13: Generation of a SpatialFunction. 
5.3.6 Generate Execution Routine 

The behavioral model of a simulated environment component considers two aspects, i.e., the behaviors 
that produce the context of environmental phenomena, and the behaviors of the component in a bigger 
simulation. The focus of this thesis stays on the first consideration. Various supports are provided to 
express the expected context of simulated environments and to create models of computation behaviors.   

Nevertheless, SEDL also provides ExecutionRoutine to document expected behaviors of the second 
aspect for completion.  Application artifacts that are specific to a system of interest component and the 
environment component described by a SimulatedEnvironment shall be derived from an instance of 
ExecutionRoutine owned by this SimulatedEnvironment. This subsection recommends the derivable 
component structures from an instance of ExecutionRoutine and its belonged SimulatedEnvironment.  
Their forms could be quite different in different technical paradigms and thus are specified descriptively.  

For a SimulatedEnvironment instance, a Class applying EnvironmentSimulation (See Subsubsection 
5.2.3.2) is supposed to be created for each of its ExecutionRoutine with a name resembling the input 
SimulatedEnvironment. If no ExecutionRoutine is presented, one default EnvironmentSimulation is 
created for the SimulatedEnvironment. Then, the following structures for this Class are created. 

First, this Class maintains several collections of computation instances, each collection for one 
phenomenon type. These collections represent existing phenomena in the environment simulated by this 
EnvironmentSimulation.  Thus, developers can implement a simulation process with phenomenon 
instances being added or removed during the process. For each EnvironmentPhenomenon in the input 
SimulatedEnvironment, a list is added to this Class.  The type of the instances held by this collection is 
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set to the computation Class generated from the input EnvironmentPhenomenon by transformation steps 
in Appendix A.3.    

Then, a constructor Operation is added to this Class.  This constructor has a parameter of the 
ConfigSchema type generated from the input SimulatedEnvironment by SEDL2Config in Appendix A.1. 
This constructor should initialize instance of this class in the following way:   1)  for each configured 
phenomenon in the schema, it creates and initializes a suitable computation instance with the configured 
values;  2) after that, it adds this computation instance to the list that maintains the corresponding 
computation type. 

Following structures of this EnvironmentSimulation Class are further generated, when it is not a 
default one but is transformed from an ExecutionRoutine. 

Snapshot types may be generated and linked to this Class via a SnapshotOf association.  The 
recommended subtypes are: 1) a PointSnapshot type when outputRange is atPoint, or 2) a 
PolygonalAggregatedSnapshot when outputRange is atRegion and valueAggregation is true. This 
Snapshot type has the implicit structure as specified in Subsubsection 5.2.2.8.  More complicated 
snapshot structures are not defined at the stereotype level in the current framework. Consequently, this 
EnvironmentSimulation should also contain the behavior to make a snapshot of the current state of the 
computed simulated environment for feeding a system of interest component. One of the following 
Operations needs to be implemented in this Class. 

1. snapshot(): it fetches state values of all existing phenomena maintained by the 
EnvironmentSimulation instance, puts them in a message and returns it. 

2. snapshot(Point p): it retrievals current state values of all existing phenomena maintained by the 
EnvironmentSimulation instance at p,  puts them in an instance of the PointSnapshot datatype derived 
from the running simulation and returns this instance. 

3. snapshot (Polygon pol): it retrievals state values of all existing phenomena in the 
EnvironmentSimulation instance within the area of pol, puts them in a message and returns it. 

4. aggregatedSnapshot(Polygon pol): retrieves a subset of state values of all existing phenomenon 
maintained by the EnvironmentSimulation instance within the area of pol, replaces values of multi-valued 
properties or of SpatialFuntion properties to aggregated values, puts them in an instance of the 
PolygonalAggregatedSnapshot datatype derived from the running simulation and returns this instance. 

5. aggregatedSnapshot(): fetches current state values of all existing phenomena maintained by the 
EnvironmentSimulation instance, replaces values of multi-valued properties or SpatialFunction 
properties to aggregated values, puts them in a message and returns it. 

Besides, an Operation update(t) should be added to this Class to allow developers to implement the 
behaviors that update all computation instances of existing phenomenon computation instances 
maintained by this EnvironmentSimulation to the state at time t. 

After that, when the executionMode of the ExecutionRoutine is Autonomous, an Operation that 
contains a loop is added to implement continuous communication behaviors with the system of interest 
component.  The loop body executes update(t) to compute the state values of a simulated environment at 
t and a suitable snapshot Operation to make a snapshot, as well as sends the snapshot to the system of 
interest component in the way depending on the technical platform. Parameter sets shall be added to this 
Operation to control the incremental t by predetermining a combination when implementing this 
transformation.  Recommended parameter combinations are as follows: 1) start/end time and temporal 
length of a step, or, 2) start time, temporal length of a step, and the number of loops. 

Otherwise, when the executionMode is Reactive, a trigger handling Operation should be added. This 
Operation is triggered by receiving a message from the system of interest component, which includes:  1) 
a value of the TemporalPosition type; and 2) a value of the point type if outputRange of the 
ExecutionRoutine is AtPoint or a value of the polygon type if outputRange is AtRegion.  This operation 
should execute a suitable snapshot operation and send the snapshot data to the system of interest 
component when triggered.  In this mode, the implementation of the execution pace of update(t) during 
a simulation is left to developers. 
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Additional information about discretization may also be derived from an ExecutionRoutine. When 
outputRange of an ExecutionRoutine is region or all and valueAggregation is false, an additional Class 
for each generated SimulatedFeatureType with attributes of some SpatialFunction type are suggested to 
be added to the design model. This Class is stereotyped with a default subtype of CollectiveFeatureType. 
This step also generates a Class applying CollectiveFeatureUnit for this additional Class. For each 
attribute of the SimulatedFeatureType with a SpatialFunction type, it adds a corresponding attribute of a 
default type to the unit type.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



85 
 

6 Prototypical Implementation 
This chapter presents a Java-based prototypical realization of the proposed framework in this thesis 

as specified in Chapter 4~5.  It illustrates how the framework shall be implemented based on available 
tools.  The following sections are based on involved tools, ordered by the sequence when they are used 
during the implementation, with explanations of which framework components are implemented by them 
and how to do the implementation.  
6.1 Eclipse Modeling Framework 

In this prototype, the SEDL Abstract Syntax Model is realized as an Ecore model using Eclipse 
Modeling Framework (EMF)[35]. The PIM-layer structural profile is implemented using the EMF-based 
UML2 plugin16 since the Ecore itself does not support the profile notion. 

The EMF is a modeling framework based on Eclipse17. It supports encoding model specifications in 
XMI. The logical metamodel used by EMF to describe models is called Ecore.  It is a simplified and de-
facto reference implementation of the EMOF (Essential Meta-Object Facility)[9] by OMG, which is 
grounded on UML. The names of the elements in Ecore start with E, such as EClass that corresponds to 
Class in UML. Thus, the UML-based SEDL abstract syntax model can be easily adapted as an Ecore 
model.  Further, the encoded Ecore models can be used with rich EMF facilities for further 
implementations. EMF provides a tree-based editor that allows modelers to write models and store them 
in XML files.  Figure 6.1 shows the classes in the SEDL abstract syntax model encoded as EClasses using 
this editor.  

The class names in the abstract syntax model are rather used as identifiers for back-end processing. 
They do not necessarily be strictly identical to the keywords in a concrete syntax of SEDL that will be 

 
16 http://www.eclipse.org/modeling/mdt/uml2 
17 https://www.eclipse.org 

Figure 6.1: EClasses in the SEDL Ecore Model. 
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used to write an SEDL program in that syntax. The implementation of the textual concrete syntax in the 
prototype is introduced in the next section. 

The EMF-based UML2 plugin provides a visual editor that supports creating profiles, as well as 
adding stereotypes and other profile-related UML elements to profiles.  After a profile is created, an 
Ecore-conformed XMI encoding for this profile is generated by this plugin. Through this step, an Ecore 
model is created for this profile, in which an EClass is created for each stereotype.  Such an EClass has 
an EAnnocation denoting its corresponding stereotype and an ERference to its extended UML metaclass 
in an Ecore version of the UML metamodel. Figure 6.2 gives an illustration of the stereotype 
SpatialFunction definition and the created EClass. 
6.2 EMFText 

After the Ecore version of the SEDL Abstract Syntax Model has been written, it is used with 
EMFText18 to create the infrastructure of the Basic SEDL Tooling in the framework. 

EMFText is an EMF-based language workbench implemented as an Eclipse plugin.  EMFText 
provides an editor to help language developers write textural syntaxes for Ecore models.  Using this editor, 
a textual SEDL Concrete Syntax is specified in a file with the “cs” extension, which has references to the 
SEDL Ecore model.  For each term in the Ecore model, a syntactic rule is specified, which regulates a 
grammar in Extended Backus–Naur Form[135] with some keywords.  When a phase in an SEDL textual 
description matches this rule, it should be recognized as an instance of this term.  Rules and keywords in 
this prototype are specified closer to natural language expressions so that descriptions in this concrete 
syntax can serve as human-readable requirements documentation. The concrete syntax for a term can be 
modified and adapted in different implementations. 

EMFText also has functionalities that can generate a language infrastructure from a concrete syntax 
file referenced to an Ecore model.  The “cs” file of SEDL is fed to EMFText to create an infrastructure 
of the SEDL tooling.  This infrastructure is created in the form of Java programs.  It supports writing and 
processing SEDL descriptions in the specified concrete syntax, as explained below.  Model code from 
the Ecore SEDL model is also generated to be used by the SEDL tooling.  

First, EMFText generates an SEDL Description Editor for the specified concrete syntax.  It supports 
writing an SEDL description and store it with a file extension as specified in the concrete syntax. In the 
prototype, the extension of an SEDL textual description file is “sedl”. This editor can recognize files with 
this extension.  When such a file is open in this editor, keywords referenced to underlying Ecore abstract 
syntax are highlighted by the editor. It also denotes errors in an opened file when somewhere in the 
description does not conform to the specified concrete syntax. These functionalities are enabled by the 
underlying Syntax Analysis Component. Figure 6.3 illustrates the prototypical textural editor. The 
specified concrete syntax in the prototype focuses on describing two-dimensional spatial simulations at 
the geo scale. The keyword “Spatial Individuality” in the concrete syntax corresponds to the term 
SpatialIndividuality in the abstract syntax, and the “type” corresponds to its dimNum with the following 
supported values: -1(“Global”),  1 (“Point”),  2(“Regional”). 

EMFText also generates various facilities for syntax analysis.  On one side, they are connected to the 
SEDL editor and enable the above-mentioned supportive functions of the editor.  On the other side, it 

 
18 https://github.com/DevBoost/EMFText 

Figure 6.2: SpatialFunction(Left) and Created EClass (Right) in the UML Editor. 
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parses valid SEDL descriptions written in the specified concrete syntax to abstract syntax trees as 
instances of the SEDL Ecore model for further processing. 

In addition, EMFText generates a frame for the SEDL Description Processor. The implementation of 
the processor functions can be held by the frame as will be introduced in the following sections. The 
frame is integrated with the SEDL Description Editor so that the processor can be invoked through the 
editor to execute an SEDL description file through some user actions such as right-click on the description 
file and choose to run the file. 
6.3 OCLInEcore 

By default, syntax analysis facilities generated by EMFText can recognize errors in an SEDL 
description that breaks structural constraints encoded in the SEDL Ecore model, such as conflicts with 
the cardinality. Additional structural constraints of SEDL specified in Chapter 5 are beyond the 
expressiveness of UML, as well as the Ecore metamodel.  These constraints are formalized in OCL in the 
SEDL specification.   

The prototype uses the Eclipse implementation of OCL19 to integrate the specified OCL constraints 
into the SEDL Ecore model.  This implementation provides the OCLInEcore20 editor to open Ecore 
models in a textual form and to write constraints in OCL syntax into the Ecore model. After the OCL 
constraints are added to the SEDL Ecore model, the EMF code generation facilities generates a validator 
class when creating the model code for this Ecore model.  This class is placed in the “util” code package 
of this model.  For each OCL constraint in this model, a validate method is generated within the validator 
class.  It checks if some context in an SEDL model instance breaks and returns true or false.  Figure 6.4 
shows an example of the encoded OCL constraints. This example regulates that when a piece of change 
description (represented by the abstract term “Variation”) can either have parameters or options. And, 
when it has alternative mode options for a specific execution, it must have at least two.   

 
19 http://www.eclipse.org/modeling/mdt/ocl 
20 https://wiki.eclipse.org/OCL/OCLinEcore 

Figure 6.3: Textual Editor for SEDL Description. 

Figure 6.4: OCL Constraints for Change Description. 
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The generated Java method to validate the constraint about the number of options is shown in Figure 
6.5. It utilizes a basic validation method on Ecore model instances. Then, the default editor generated by 
EMFText is improved with the assists of the validator class. The functional code of the editor mainly 
locates in the “ui” package within the EMFText-created resource code of the SEDL tooling. The 
presented editor invokes the validate methods from its validation function and its hover text provider.  
The validation results guide the editor to display different customized hover text to SEDL users, warning 
them when some of their editing contexts break a specific OCL constraint.   

Figure 6.6 illustrates the warning message from the SEDL editor when the context does not satisfy the 
constraint shown in Figure 6.5. 

Another worth-to-mention implementation strategy for dealing with these constraints is to introduce 
additional support classes into the Ecore model to explicitly regulates alternative forms of a term, e.g., a 
class for change descriptions with no options but parameters, and a class for the ones with options. These 
support classes only benefit at the syntactic level but do not brings new concepts to SEDL conceptual 
model and are not specified as one part of SEDL specification.  Through this strategy, the constraints can 
be expressed by the Ecore model itself.  However, it complicates the implementation of model 
transformations from SEDL instances since the abstract syntax trees of these instances become more 
complicated due to the inclusion of additional terms.  
6.4 ATL 

The transformations Description2Config and Description2Structure are implemented as ATL 

Figure 6.6: Warning Message for OCL Constraint Violation. 

Figure 6.5: Validation Method Example. 
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programs using the ATL component of the MMT project21 based on Eclipse. Transformations from SEDL 
generate more detailed model elements in the outputs that cannot be formalized by simple matched rules. 
These elements are created with assists of imperative statements in the “do” section of ATL rules. 

The presented prototype does not focus on graphic interface mapping. As explained in Subsection 
5.3.2, Description2Config in the prototype is simplified. The stereotyped elements are replaced with 
instances of corresponding base metaclasses to create the data structure of configuration objects.  In the 
EMF-based implementation, the Ecore metamodel is used as the output metamodel. An EPackage is 
created as a ConfigSchema.  Each stereotyped class in the output is replaced with a normal EClass, while 
its ConfigItems are created as its EAttributes.  Each SubComponent association is generated as a 
containment EReference of the container configuration EClass, typed by its sub configuration EClass. 
For ConfigOption associations, an abstract EClass is created as an AlternativeConfig.  Then, each of its 
ConfigOption is created as a non-abstract subclass of this EClass.  An instance of the configure schema 
will have to pick one of these subclasses to set values. 

The Description2Structure implementation transforms an SEDL instance to a UML model that applies 
the implemented Simulated Environment Structure Profile as introduced in Section 6.1.  Outputs of this 
transformation are set to conform to the UML metamodel implementation within EMF. The profile 
implementation is marked as a metamodel of the input in the ATL program so that its stereotypes can be 
retrieved and applied to the output elements using the profile-related library provided by EMF.  Figure 
6.7 shows an ATL rule example that creates a SpatialFunction class to hold the distribution function for 
a spatially heterogeneous property. It is a lazy rule which is only executed when being called by other 
rules. This rule also calls another rule “Distribution2Operation”. 

As Section 5.3 specifies, some transformation may lead to a TesserlatedFeatureType in the output, 
which needs to be refined by developers since it is a choice to make at the design level. While the 
“TesserlatedFeatureType” is conceptually abstract by specification, it cannot be instantiated if being 
implemented as an abstract class. Thus, in the implemented UML Profile introduced Section 6.1, it is 
made concrete and marked with a denotation to remind developers that its instances in transformation 
output needs to be refined. 

After the transformation rules have been written in the ATL program, an Eclipse plugin can be created 
from it. Then ATL program can be invoked through the SEDL processor as introduced in Section 6.2. By 
starting the execution of an SEDL textual file, the processor feeds a parsed SEDL instance from this 
textual file to the transformation to create PIM models. 
6.5 Acceleo 

The transformation Description2Computation is implemented by the template-based code generation 
tool Acceleo22.  Acceleo is an EMF-based implementation of Model to Text Language (MTL)[136] 

 
21 https://www.eclipse.org/mmt 
22 https://www.eclipse.org/acceleo/ 

Figure 6.7: ATL Rule Example. 
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standard from OMG. It can transform EMF-based models to text according to generation templates, 
which usually is textual code in some computer language in practice.  

This implementation also includes the functionalities of a Platform-Specific Translator since it 
generates platform-specific code. The implemented Description2Computation takes SEDL descriptions 
as input and produces as Java files as outputs. PIM-layer outputs are made implicit. Acceleo is also used 
for implementing the Platform-Specific Translator from refined PIM-layer outputs of the 
Description2Structute to Java files.  

Outputs of these Acceleo transformations include architectural code and datatypes that are specific to 
the chosen target platforms.  For this proof-of-concept implementation, the Java-based multi-agent 
simulation library Mason23 and its extension for geospatial data GeoMason24 are chosen as parts of the 
target platform. 

Take an instance of FieldOfIndividualities whose PIM-layer data structure should be mapped to a 
PointSet class at the PIM layer as an example. Its unit type is generated as a JavaBean with all thematic 
properties as private attributes with setter and getter methods. The geometry of the unit type is generated 
as a MasonGeometry provided by Mason.  

The ComputeFoI class transformed from this FieldOfIndividualities, as documented in Appendix A, 
is adapted to the chosen target platform. The computation class of its unit is mapped as a class that 
implements the Steppable of Mason. This class holds an object of the unit datatype and private Java 
methods that are generated computation units about individuality changes. The methods are marked as 
“//TODO should be implemented”. The free-text description of each change in the input SEDL is 
transformed as Java comments and is placed above the body of the corresponding computation method 
to guide the implementation. The computeM() operation in Appendix A.3 is generated as the step() 
method of the Steppable class. It contains statements to update the unit object held by an instance of this 
class at a simulation step in the sequence derived based on Appendix A.4~5. 

This demonstrative implementation assumes the target platform decides that different simulated 
feature types are managed by a Java class that extends the SimState of Mason.  This SimState class 
corresponds to the EnvironmentSimulation class at the PIM layer as specified in Subsubsection 5.2.3.1 
and Subsection 5.3.6. The current implementation does not generate a separate data structure class for the 
whole PointSet, which could be better for a more loosely coupled implementation in practice.  A 
GeomVectorField object from GeoMason is generated and is placed in this SimState class to hold all unit 
geometries. The GeomVectorField from Mason provides neighborhood search utilities as the 
specification of a PointSet type requires.   

The SimState class also holds Java methods generated from CharacteristicVariation-s of the input 
FieldOfIndividualities and its units, as regulated by Appendix A in the ComputeFoI class.   A “for” loop 
skeleton is generated within the start() method of the SimState and marked as “//TODO should be 
completed”. This loop is used to initialize a set of instances of the unit’s Steppable class and add their 
geometries to the GeomVectorField object. Derivable actions that are relevant to the initialization of units 
are generated as statements in this loop. Iterations over units in this implementation are generated by 
adding the unit Steppable instances as repeating events to an instance of Schedule provided by Mason.   

Acceleo code generations are template-based. Each code template is enclosed within a pair of the 
“[template][/template]” markup. Figure 6.8 shows a snippet from the SEDL2Computation 
implementation for illustration. This piece of template creates Java code from Variation-s of a 
FieldOfIndividualities with some AlternativeMode-s. It generates an attribute for each Variation in the 
computation class, which is used as a flag to denote the current mode of the computed change 
corresponding to that Variation during execution. It also generates attributes to hold configurable 
conditions during execution from ConfigurableParameter-s of this FieldOfIndividualities, since this 
implementation has decided that these conditions are allowed to be changed during execution. The 

 
23 https://cs.gmu.edu/~eclab/projects/mason/  
24 https://cs.gmu.edu/~eclab/projects/mason/extensions/geomason/  
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createAtt() in the snippet is an implemented Acceleo Query. The “p.createAtt()” returns a string that is a 
Java private attribute generated from the ConfigurableParameter p.  

6.6 Other Involved Tools 
The imperative functions which deal with graph and other operations on the input SEDL for 

SEDL2Computation are implemented by Java. They are called by the generation templates as services 
that are wrapped in an Acceleo query. For the simplicity of the implementation structure, this 
demonstration builds strings for computeSI() and computeM() in Appendix A.5 within the Java service 
and passes them to the Acceleo templates after that. Yet, it is beyond the scope of this thesis to evaluate 
if this is the optimal way of implementation on the target platform. For a full implementation, the template 
of architectural code should be determined by the technician who is familiar with the chosen platform to 
ensure that the created code and datatypes provide expected structures and functions.   

It is also recommended to optimize the programming interface to access the to-be-implemented 
computation units. Thus, developers can focus on implementing the computational logic within the units. 
This issue depends on the implementation technologies and is beyond the scientific concern of this thesis. 

The configuration models from implemented Description2Config are simple, static data models in 
Ecore, which do not include behavioral elements. The platform-specific translator of the demonstrative 
prototype uses the EMF code generation facility to create model code for these models as JavaBeans, 
which are needed by the other generated model code as described in Section 6.5. Different from the OMG 
standard-based code generation implemented by this prototype, the EMF default code generation is based 
on JET (Java Emitter Templates)25.       
 
 
 
 
 
 
 
 
 
 

 
25 https://www.eclipse.org/modeling/m2t/?project=jet 

Figure 6.8: Acceleo Code Generation Example. 
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7 Use Cases 
In Chapter 4 and 5, a domain-specific, language-driven framework to assist the development of 

environment components in simulation applications have been specified.  This chapter presents use cases 
to demonstrate the usage of this framework based on the prototype implementation of the framework 
introduced in Chapter 6. 
7.1 Focus of the Use Cases 

The use cases aim at demonstrating the following functionalities of the proposed framework in the 
development process to build a component that provides the simulated environment for a simulation 
application: 

 Document and communicate the simulated environments required by the high-level functional 
simulation scenarios using the analysis-level language SEDL.  Generate design models of simulated environment components described by PIM-layer 
metamodels from an SEDL description via the implemented CIM-PIM transformations.  Generate PSM-layer models as code skeletons of the simulated environment component from 
PIM design models via the implemented platform-specific mapping. 

To remain the focus, the simulated environment in each case is restricted to a small number of 
phenomena. Requirements and computations of the environmental phenomena are simplified to reach 
presentable cases within the length of the thesis.  The aim is to cover different aspects that can be 
expressed by SEDL. Thus, the included phenomenon types, relationships and computational models may 
not be a complete and optimized practical solution. Nevertheless, since SEDL model is developed based 
on object-orientated notations and the generation leads to self-contained subcomponents for different 
phenomenon types, more types can be added in the same way.  Besides, the PSM-layer code snippets in 
this chapter are illustrated by the Eclipse IDE. Providing an optimized user interface specifically for 
programming with these PSM-layer models is useful in practice but beyond the scope of this thesis. 

The covered aspects in the simulated environment described by SEDL and produced artifacts by the 
framework for the use case are summarized at the end of each case.  
7.2 Use Case 1: Sea Environment for the Path Assessment 

The first use case is motivated by accidents that containers fell off from a cargo ship due to heavy 
weather. To better understanding these accidents and to avoid them in the future, researchers build a 
model of the cargo ship to observe and to analyze its behaviors through computer simulations. In the use 
case, this model is used to assess a newly-planned path of the ship between two harbors, which is 
theoretically more cost-effective than the current routine path. It passes an area which the current path 
does not intersect with, where no historical information is available and may be potentially risky for the 
cargo ship. Thus, before executing this plan in the real world, voyages using this path is simulated by 
computers with the ship model.  

The functional scenario of this use case is that a cargo ship executes a planned path passing the area 
of interest under various weather conditions.  The maneuvering and seakeeping behaviors of the ships are 
simulated with the data representing its situated environment fed to the ship model.  Ship states during 
the simulated voyages about its stability are computed to analyses the probability of the ship to encounter 
an accident of container fall.  The simulated environment component developed in this use case should 
simulate the necessary environmental data with user-desired conditions for this simulation. This includes 
the information informed by Vessel Traffic Service (VTS) or its own sensors (e.g., the current wind level), 
and influential forces from the surroundings (e.g., the force from the wave). 

The extent of the simulated environment is restricted by the area of interest.  The environmental data 
is provided at the geo scale that spatial locations are abstracted in two dimensions.  The requirements26 

 
26 simplified for demonstration 
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about phenomena in the simulated environment from the ship modelers are summarized in Table 7.1.  
Time-invariant information during the simulation should be taken from the survey data and included as 
the knowledge of the ship model. e.g., the bathymetry data.  They are not provided by the simulated 
environment component.  

Wind 1. The ship model should be fed with the speed and direction of the wind in the 
simulated area at each step. 

 
2. The wind direction should be modifiable by users among executions. It roughly 
stays the same with random turbulence over time. 
 
3. The wind speed should change over time with one of the following patterns chosen 
by users:  random turbulence with a modifiable mean value and a modifiable variance;  linear change with a modifiable initial value and a changing rate. 

Wave 
 

1. The height of waves should be fed to a visualization engine to display the sea 
surface. The height values should be different from location to location. 
 
2. The wave should be computed considering wind influence. 

Background 
Traffic 

1. A set of ships should be included in the area of interest to add some marine traffic 
influence. The number of ships should be modifiable by the user to observe the cargo 
ship’s behaviors with various traffic density. 

 
2. The cargo ship should be informed by the locations and moving direction of the 
ships at each step. The geometry of these ships can be neglected.  

 
3. The background vessels move randomly. Each of them has a constant speed, which 
depends on the type of the ship.   
 
4. The moving direction of a ship should turn a random angle within a range relative 
to the direction of the last step. The angle should be drawn from a normal distribution 
with modifiable mean and variance. 

Table 7.1: Initial Requirements of Environmental Phenomena in Use Case 1. 
7.2.1 SEDL Description 

At the system analysis phase, the simulated environment in the functional scenario is documented in 
an SEDL description using the textual editor of the prototypical implementation introduced in Chapter 6. 
The wind and wave are both documented as a SpatialIndividuality, while the BackgroundTraffic is 
documented as a FieldOfIndividualities whose members are described by “Ship”.  Each of their thematic 
properties whose information is required by the system of interest component should be explicitly added 
as a ThematicProperty, so that the transformations can be informed to generate the necessary component 
structure for these properties. The screenshot of the full description can be found in Appendix B.1.   

The current SEDL does not yet provide terms to explicitly classify changes involving derivatives, 
which is, the relationship between a characteristic C and a Variation: A → B. In computation, such a 
relationship constrains the computation order between C and B, since the value of C will be used as 
parameters of this Variation to compute B.  Due to the expressiveness limitation, the C → (A → B) is 
documented in an instance of a Variation subtype that can classify the change pattern C → B.   

In this use case, the moving direction of a vessel in the background traffic is required by the system 
of interest component and thus is described as a ThematicProperty.  It changes the way of ship movement 
and thus has to be updated before the vessel location. A LocationThemeDependency “ChangingDirection” 
of the field member “Ship” is added to inform the automatic transformation about this constraint. This 
description item is added by component developers and marked with “Derived by developers”. The effort 
of this item in later development phases is shown in the next subsection. 
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7.2.2 Transformed Artifacts   
When the SEDL description satisfies the involved roles in the system analysis phase, it is fed to the 

implemented transformations to generate program skeletons of the simulated environment component for 
this use case. First, the SEDL2Configuration ATL transformation creates a configuration model of the 
component in Ecore.  It is shown in Figure 7.1, which is open in the graphic view of EcoreTools27 for 
illustration. 

The PIM-layer output from SEDL2Structure is shown in Figure 7.2. It is a UML model encoded in 
XMI and is opened in the UML2 Plugin used in Chapter 6.         

The above two ATL transformations are chained with code generation. The configuration model code 
files generated by EMF are placed in the “seaCon” package and the subpackages of this package as shown 
in the following figures28. The configuration for one execution can be parsed to instances of these classes 
and used by computations.  

 
27 https://www.eclipse.org/ecoretools/ 
28 Classes in seaCon are not shown in the figure due to the limitation of space. They are the same as can be 
expected from the EMF default code generation using the input Ecore model. 

Figure 7.1: PIM-Layer Configuration Model in Use Case 1. 

Figure 7.2: PIM-Layer Data Model in Use Case 1. 
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JavaBeans are generated from the data structure model in Figure 7.2 by the Acceleo transformation 
implemented by the framework prototype. They are placed in the “seaData” package as shown in Figure 
7.3. As Chapter 6 introduced, the prototype maps the PointSetFeature to a GeomVectorField managed 
by a Mason SimState class (i.e., the ComputeSea class in Figure 7.5). Thus, no Java class 
“BackgroundTrafficData” is created in the package. 

For illustration, the right side of Figure 7.3 shows a class diagram of the “WaveData” Java class 
generated by the code visualization tool ObjectAid29. Instances of the class hold the state values of the 
wave during simulations and provide access methods to them. The characteristic “height” is spatially 
heterogeneous, whose states are represented by the “WaveHeight_Dist” class. Its value at a point location 
is supposed to be accessed via the “eval(Point)” method of this class, which needs to be implemented. Its 
pattern should be implemented in the private method “blowByWind()”. This method is similar to other 

 
29 https://www.objectaid.com 

Figure 7.3: PSM-Layer Java Classes of Data Model in Use Case 1. 

Figure 7.4: PSM-Layer Java Classes of Compute Model in Use Case 1. 
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private methods derived from Variation-s in the input description, as illustrated in the following 
paragraphs. 

The implemented SEDL2Computation transformation directly creates Java code. They are the PSM-
layer component skeleton. Outputs of this transformation are placed in the “seaCompute” package, as 
shown in the up-left part of Figure 7.4.  In addition to the computation classes for all SpatialIndividuality-
s, the “ComputeSea” (whose name is got from the input SimulatedEnvironment) class is generated to 
manage all simulated features and simulation routines. As the GeomVectorField generated from the 
BackgroundTraffic is held by the “ComputeSea” class, the computation code about the whole 
BackgroundTraffic (e.g., the iteration over all unit ships in it) are also placed in this class. This is an 
implementation decision made at the PSM layer. 

The other parts of Figure 7.4 show the visualized class diagram of the generated “ComputeShip” class 
and the “ShipData” class used by it. The “ComputeShip” is a Mason Steppable that is used to implement 
Mason agent behaviors. It includes Mason-specific structures and utilities such as the “GeometryFactory 
fact” used to create the geometry of the ship, etc. This part of the PSM-layer outputs could vary in 
different technical platforms. The transformation also generates objects to hold states of the computed 
ship, i.e., “ship” and “ship_now”, as well as attributes to hold indexes of the ship, i.e., “speed” and 
“initialLocation”. All the objects and attributes are made private with access methods following the 
JavaBeans specification. The access methods are left out in the figure due to the limitation of space. 

The following Java methods are generated in the “ComputeShip” class: the constructor 
“ComputerShip(ComputeSea, float, Coordinate)”;  the “step(SimState)” method of Steppable to update 
the states of the “ship” object, which corresponds to the “computeShip()” at the PIM layer in Appendix 
A.5;  private methods whose body should implement a computation unit, or implement the combined 
effort of relevant units to compute an attribute of the ship data object. 

The constructor is shown in Figure 7.5.  A “TODO” mark is generated to remind developers to 
complete the application-specific initialization. In SEDL, the meaning of an index in a 
CharacteristicVariation is captured by the free text. It may not be directly assigned as some initial state 
of a simulated feature. Thus, the automatic transformation does not generate code for such assignments. 

Different from the other two types of phenomena in the simulated environment, the background ships 
are the members of the background traffic.  As the transformation rules specified, iterations over these 

Figure 7.5: Constructor of the “ComputeShip” Java Class. 

Figure 7.6: Code for the Initialization of Ships in the Background Traffic. 
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ships for initialization and update are generated in component models and code. Such code snippets are 
placed in the “ComputeSea” class.  Figure 7.6 illustrates the generated code snippet which initializes a 
set of ships, adds them to the GeomVectorField of background traffic (i.e., the “ships” object in the code), 
as well as adds them to the simulation schedule which is Mason-specific. The indexes of these ships are 
created using the methods generated from corresponding CharacteristicVariation-s of these indexes, i.e., 
the“randomSpeed()” and “randomInitialLocation(float, float)”. 

The three generated private methods of computation units are application-specific and need to be 
implemented.  Some generated attributes are supposed to be used in the methods and remain unused in 
the outputs, which leads to the warning sign on the computation classes in Figure 7.4. Figure 7.7 shows 
the code skeletons of these methods. They are marked with the “TODO” mark. The free-text description 
of their corresponding Variation-s in the transformation input is generated as Java block comments to 
guide the implementation.  

The “computeLocation(float, float)” shown in Figure 7.8 needs to implement the function that 
combines the effects of all relevant computation units to compute a new state of the ship location. It is 
generated with the “TODO” comment and a default implementation. The default implementation simply 
executes the unit methods one by one, which results in an additive effect. 

Finally, Figure 7.9 shows the “step (SimState)” method in the “ComputeShip” class.  The computation 
sequence of this use case is relatively simple since only the “movingDirection” attribute and the 

Figure 7.7: Methods for Computation Units of a Ship in the Background Traffic. 

Figure 7.8: Method for Compute the Location of a Ship in the Background Traffic. 
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geometry30 of the ship need to be updated. The update of the timestamp is managed by the “ComputeSea” 
class.  As Appendix A.4~A.5 specify, it can be derived from the LocationThemeDependency 
“ChangingDirection” in the input SEDL description that the “movingDirection” attribute of the “ship” 
object should be updated at first. The prototype does not generate the “computeN()” method when only 
one computation unit is needed to update the property N but directly uses this unit as the update method. 
Thus, the “correlatedWalks(float31)” is invoked in the code snippet. 

7.2.3 Summary 
This use case involves following kinds of phenomena in simulated environments which can be 

described in an SEDL description:  the phenomenon that has a global effect (i.e., the wind) in the 
simulation area, the spatially heterogeneous phenomenon within its extent (i.e., the wave), and a set of 
spatial entities of the same kind with no significant members  (i.e., the background traffic). 

The system analysis phase is a communication process in which component developers also 
participate. They can add description items by identifying implicit requirements or information hidden in 
the free-text descriptions to reduce manual work in later phases, while automatic transformations derive 
models from the documented description items. It is recommended to mark these items with some 
denotations to avoid confusion. The use cases mark such items with “Derived by developers” in its free-

 
30 The coordinates of the geometry naturally hold its spatial location. 
31 The time in this prototype is represented by simple float numbers, which shall be replaced by more a 
sophisticated representation of time in practice. 

Figure 7.9: Code for Computing New States of a Ship in the Background Traffic. 

Figure 7.10: Transformations of Use Case 1. 
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text description, such as the “ChangingDirection”. More sophisticated supports shall be provided in 
practice, such as including keywords for the denotation in the SEDL implementation. 

Figure 7.10 summarizes the transformation chain in this use case, as well as the generated artifacts 
during this process. The green round shapes represent the automatic transformation steps. Manual work 
is not shown in the figure except the input SEDL that needs to be written by involved roles.  A step of 
the model/code generation costs the time at an order of magnitude between 1~1×101 seconds, which can 
be neglected compared to the total development time. 

As explained in Subsection 7.2.1, the “ChangingDirection” in the SEDL description describes a 
relationship between a characteristic and a Variation. It is added to the description to deal with the current 
expressiveness limitation of SEDL.  Even though this item only influences the update sequence derivation 
for the ship attributes, it brings side effects in the transformation output. As Figure 7.7 and Figure 7.8 
show, a computation unit is generated from it and is used for updating the ship location. This unit does 
not contribute any effect to directly alter the ship location. The implementation should remain as the 
default generation, which simply returns the current value of the ship location.   

In practice, trade-offs between explicitly describing such relationships or manually adjusting the 
update sequence need to be made.  The choice depends on the number of attributes of a phenomenon type 
to be computed in the simulation. The more attributes are involved, the more likely that the first one is 
the more convenient strategy. 
7.3 Use Case 2:  Storm Avoidance Strategy Evaluation 

In this use case, the goal of the simulation is to evaluate the robustness of a set of storm avoidance 
strategies of ships during voyages. A ship model is developed with the embedded logic of the strategies 
under evaluation. Voyages are simulated with the ship model set in the simulated environment with severe 
weather phenomena. The ship model uses the embedded logic to adjust its behaviors in reaction to the 
weather condition. 

The functional scenario starts when the ship departs from a port. During the voyage, some storm forms 
on the sea.  The ship is informed with the current status of the storm and adjusts its behaviors to avoid 
the influential area of the storm. The trajectories of the ship and other relevant data are simulated by 
multiple executions.  These data are then analyzed to provide information to domain experts, such as the 
average length of detours that the ship takes to return to its planned path or reach a nearby safe port, the 
probability that this ship fails to avoid the extreme weather using the current strategy, the potential 
consequence of failure and the factor that may cause the failures, etc. Domain experts can then use the 
information to evaluate the applicability of these strategies and improve them. 

This use case is simplified to focus on the extreme weather phenomenon, i.e., the storm.  The simulated 
environment component needs to simulate the storm data required by the ship model during the 
simulation execution. When developing this component using the framework prototype introduced in 
Chapter 6, a minimum possible number of Java files are generated at the PSM layer.  The small size 
output is easy to present and reflects the structure of the generated model code from the implemented 
transformation in the framework prototype. Subsection 7.3.2 presents these files for this use case and uses 
them to explain the PSM-layer generation structure by the prototype in more detail. The initial 
requirements about the storm generated from the simulated environment component are briefly 
summarized in Table 7.2.    

Storm 1. For each execution, ship modelers should be able to configure an initial location of 
a storm with an unnavigable area to the ship. 
 
2. The evolving pattern of the storm should match the normal behaviors of the storms 
in the Atlantic Ocean in a season which can be chosen by users for one execution. 
 
3. The maximum wind speed of the storm, the moving speed, and the direction of its 
center should be computed and provided to the ship model at each simulation step. 



100 
 

4. The unnavigable area to the ship caused by the storm is an area with the wind speed 
higher than a threshold. This area should be computed by the component under 
development at each simulation step based on its at-moment status. Users should be 
able to set a threshold for an execution.  

Table 7.2: Initial Requirements of Environmental Phenomena in Use Case 2. 
7.3.1 SEDL Description 

The simulated environment of this use case is documented in an SEDL file using the textual editor of 
the framework prototype. The full description is shown in Appendix B.2.   During the voyage, the ship 
should avoid entering the area under some unnavigable conditions to the ship.  In this simplified case, the 
risky condition caused by a storm is defined as the wind speed higher than a threshold wmax m/s. The ship 
modeler decides that the simulated environment component should in charge of informing the current 
area with the wind speed higher than wmax to the ship at each simulation step. The storm is conceptually 
abstracted as an individual object with spatial extent representing its unnavigable area to the ship. It is 
documented as a regional SpatialIndividuality named “Storm”. As summarized in Table 7.2, the ship 
model still needs to know the maximum wind speed, the moving direction and the moving speed of the 
storm’s center.  These characteristics are explicitly listed as the ThematicProperty-s of the “Storm”. 

Ship modelers expect that characteristics of a storm change over a simulation execution, which should 
follow normal behaviors of storms that appear in the Atlantic sea in a season chosen by users for this 
execution. These requirements are documented as instances ThemeDynamics belonging to these 
ThematicProperty-s.  The alterable condition “season” is recorded as a ConfigurableParameter of the 
“Storm”. During the analysis phase, developers of the simulated environment component shall explain to 
ship modelers the overall idea of how the required changes could be computed and make agreements on 
these ideas with them. Based on the agreements, some preliminary information about the computation 
idea can be added to the SEDL description, such as the refined name and free-text description of the 
ThemeDynamics instances in this use case.  The free-text description pieces are transformed as comments 
within computation units in follow-up transformation steps to guide the implementation. More discussion 
about the developer-refined information can be found in the summary of this use case in Subsection 7.3.3. 

The size and the location of a storm’s unnavigable area should also change during executions as the 
evolvement of the storm. The center of the storm should move in a way that matches normal behaviors 
of the Atlantic storms. Similar to the Use Case 1, two LocationThemeDependency-s are added to inform 
the transformation that the moving speed and direction of the storm are needed for computing its 
movement. Developers then derive that this area should be computed based on the current state of the 
maximum wind speed, which has been described as a ThematicProperty. Thus, the dependency between 
the unnavigable area and this property is documented by the GeometryThemeDependency 
“UnavigableArea” marked with “Derived by developers”. 
7.3.2 Transformed Artifacts 

This subsection presents the transformation outputs of this use case in a similar way as Subsection 
7.2.2 does, starting from the SEDL description in Appendix B.2.  The support tools used for illustration 
are the same as Use Case 1. 

The PIM-layer outputs from the input SEDL description generated by the two ATL transformation, 
i.e., SEDL2Configuration and SEDL2Structure, are illustrated in Figure 7.11. In the configuration Ecore 
model on the left side of the figure, an EEnumeration named “Season” is generated for adding options of 
the configuration item “season” that is an EAttribute in the Ecore model.  The “season” is generated from 
the ConfigurableParameter “Season” which is the Option type.  SEDL descriptions do not formally 
document options of such a parameter. The transformation generates an EEnumeration with a default 
EEnumeration Literal, which should be refined by developers.  The data structure model (on the right 
side of the figure) in this use case is simple, while only one phenomenon type needs to be computed 
according to the input SEDL description.  
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Four EEnumerarion Literal representing four seasons are added to the “Season” by developers.  Then, 
both outputs are fed to platform-specific code generation. As shown in the left part of Figure 7.12, the 
files of the configuration model code are placed in the “stormySeaCon” package. They are generated by 
the EMF code generation facilities and are not presented in detail. The Java class “StormData” generated 
from the RegionalFeature with the same name in Figure 7.11 is placed in the “stormySeaData” package. 
The right side of Figure 7.12 shows the visualized diagram of this class. An instance of this class holds 
state values of the relevant storm characteristics during the simulation execution. In this prototype, the 
geometry of the PIM-layer RegionalFeature is mapped to a MasonGeometry.  

The PIM-PSM Acceleo transformation of data structure models turns each single-valued feature type 
specified in Subsubsection 5.2.2.4 into a JavaBean and adds necessary stereotype-specific attributes to it 
in the Java form. It also generates a JavaBean for each SpatialFunction and each CollectiveFeatureUnit, 
as Use Case 1 has shown.  The geometry attributes of these classes are created as attributes that have the 
MasonGeometry type of Mason library.  Besides, statements in the computation model code skeleton are 
generated by the transformation. These statements initialize the wrapped geometry of such a 
MasonGeometry instance as a Point or a Polygon based on the applied stereotype of the input PIM class. 

Figure 7.11: PIM-Layer Configuration Model and Data Model in Use Case 2. 

Figure 7.12: PSM-Layer Java Classes of Configuration and Data Model in Use Case 2. 
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The output code of the SEDL2Computation Acceleo transformation is placed in the 
“stormySeaCompute” package as shown in Figure 7.12. In this simplified case, two classes are created 
as visualized in Figure 7.13 as explained below. 

First, the “ComputeStormySea” class manages the routine that simulates the whole simulated 
environment.  This class extends the Mason SimState which represents a simulation.  Its Constructor 
initializes an instance of this class with a configuration object. The configuration object is an instance of 
the “StormySea” class in the configuration model. The “start()” method of the “ComputeStormySea” 
initializes computation objects for configured phenomena in the configuration object and adds them to 
the schedule of this simulation. These computation objects are instances of classes that implement the 
Mason Steppable interface, e.g., the “ComputeStorm” class in this use case. 

The SEDL2Computation Acceleo transformation generates a Mason SimState class for each 
simulation and names it after a SimulatedEnvironment in an input SEDL description. In Use Case 1, this 
SimState is the “ComputeSea” class. 

Second, the “ComputeStorm” class holds the skeleton of the code that computes a storm during the 
simulation.  This class implements the Mason Steppable interface.  It holds following data objects and 
attributes which are generated based on the transformation rules specified in Appendix A.3~A.5: 1) 
instances of the “StormData” class in the data structure code to hold states of the storm being computed, 
i.e., “storm” and “storm_now”;  2) attributes to hold configured parameters of the storm being computed, 
i.e., “initialLocation”, “season” and “windSpeedThreshold”. 

This class also holds the following behavioral elements as Java methods, which are transformed based 
on the rules in Appendix A.3~A.5: 1) the constructor “ComputeStorm(ComputeStormySea, Storm)”, 
which initializes an instance of this class with a configuration object of the “Storm” type;  2) skeletons 
of private methods (marked with red squares in Figure 7.13) whose body should implement computation 

Figure 7.13: PIM-Layer Java Classes of Computation Model in Use Case 2. 
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units according to Appendix A.3, with the free-text description of the input SEDL pieces transformed 
as Java comments within the methods; 3) private methods whose body should implement the combined 
effort of necessary units to compute an attribute of the storm, i.e., the computeLocation()”; 2)  the 
“step(SimState)” method of Mason Steppable, which contains the computation flow to update the state 
of the storm at a simulation step, as specified in Appendix A.5.  

Third, platform-specific structures and utilities are also generated in this class, which are only 
necessary and/or useful in the chosen technical platform of the framework prototype.  These structures 
and utilities include: 1)  the public “get” and “set” methods to access the data objects and attributes held 
by this class, which follow the JavaBeans conventions, e.g., the “getIntialLocation()” and 
setIntialLocation()32; 2) the “sereialVersionUID” that is used for Java serialization control; 3) the Mason 
utilities “fact” and “affineTransformation”, which can be used to handle the creation and the update of 
the simulated storm’s geometry. 

The SEDL2Computation generates a Mason Steppable class with a similar structure as the 
“ComputationStorm” class for each SpatialIndividuality to hold the computation model, as also have been 
illustrated in Use Case 1.   

When a SpatialIndividuality describes the members of a FieldOfIndividualities, it is transformed into 
a CollectiveFeatureUnit in the PIM-layer data structure model.  The FieldOfIndividualities is transformed 
into a CollectiveFeatureType.  Developers should replace the applied stereotype of the 
CollectiveFeatureType to a more specific subtype when necessary. Then, the PIM-layer data structure 
model is also used as the input of the SEDL2Computation code generation, as shown in Figure 7.14. For 
such a CollectiveFeatureType, the transformation generates the following code in the above-explained 
SimState class: 1) a GeomVectorField object or a GeomGridField depending on the applied stereotype 
of this CollectiveFeatureType,  which represents the whole field; 2) a private method for each 
CharacteristicVariation of the SpatialIndividuality 3) loop code in the “start()” method to initialize a set 
of the Steppable class instances for computing members in the field and add them to the simulation 
schedule (Mason-specific).  Indexes of these instances are created using the methods of corresponding 
CharacteristicVariation. The “BackgroundTraffic” in Use Case 1 provides an illustration.   

This implementation let SimState classes manage the relationships and variations among units of 
collective features for simplification reason.  However, the SimState class is related to a particular 
simulation. This implementation decision brings the drawback that the computation model of a 
CollectiveFeatureType is completely decoupled from the simulation as the PIM-layer models do.  This 
hinders the reuse of such computation models in other simulations.  This part of PSM-layer output 
structure should be optimized in the future so that all computation logic of a CollectiveFeatureType can 
be maintained in a self-contained subcomponent. 
7.3.3 Summary 

This use case involves phenomenon type (i.e., the storm) that is conceptualized in the following way. 
The alterable conditions (e.g., its location when the simulation starts) of such a phenomenon for a 
simulation execution should be controlled individually. This phenomenon has a regional effect on the 
system of interest, which in this specific case is an area that the ship should not enter in.  Its influential 
area changes during the simulation with the evolvement of its other characteristics which are also of 
interest to the ship (e.g., the maximum wind speed). 

Similar to Use Case 1, developers also contribute to the SEDL description in this use case, as explained 
in Subsection 7.3.1.  These refined pieces of description have two primary purposes. First, it is used to 
document the overall implementation idea that has been agreed with the component users, i.e., the ship 
modelers. Second, it is used to add information that guides further developments.  The added information 
is preserved in relevant pieces of code skeletons by the transformation to guide the implementation. 

 
32 Other similar access methods are omitted from this figure due to the limitation of space. 
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An SEDL description is used to describe the phenomenon types whose information is required by, but 
not handled by the system of interest.  In this use case, the SEDL description includes the requirements 
about the simulated environment from the view of the ship modeler.   As a result, the sea surface and the 
circulation of the air over the ocean are not documented as environmental phenomena in this description, 
since this use case does not require their information to be sent to the ship model during the simulation. 
Instead, the developer-refined description items “AlteredBySeaTemperature” and 
“AlteredByAtmosphericCirculation” record the agreed idea to use the sea temperature data and 
atmospheric circulation data for computing the states of storms. 

It also needs to notice that the terms “system of interest model” and “simulated environment” are 
relative.  In the view of the storm modeler, the sea temperature and the atmospheric circulation should be 
part of the simulated environment for their system of interest model, i.e., the storm model. The storm 
simulation shall also have an external environment component when necessary.  Requirements of this 
component can be expressed in an SEDL from the view of the storm modeler. In this use case, information 
about these two phenomena is supposed to be provided by the static data that are manageable by the storm 
computation component. Thus, no additional component needs to be developed. In Use Case 1, the 
bathymetry is not included in the SEDL description for the same reason, as mentioned in Section 7.2.  

The transformation chain and the generated artifacts of this use case are summarized in Figure 7.14. 
The working flow and execution time of transformations are similar to Use Case 1. 
 

 
 
 
 
 
 
 

Figure 7.14: Transformations of Use Case 2. 
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8 Discussions 
This chapter provides a summary of this thesis and discusses related issues. Section 8.1 summarizes 

the contributions of this thesis and denotes that how the research objectives identified in Chapter 1 are 
fulfilled. Section 8.2 discusses the limitation of transformations in this thesis due to the nature of the 
model-driven development and strategies to deal with it.  Section 8.3 provides visions and preliminary 
conceptual design for possible extensions of the anchor language SEDL and its transformations. Section 
8.4 further discusses the emerging reuse issues with the evolvement of developed components by the 
framework and needed upgrade of the current framework to handle these issues. 
8.1 Contributions and Objective Fulfillment 

As introduced in Chapter 1, the development of simulated environments in multi-component spatial 
simulations encounters difficulties such as miscommunication among various roles, huge development 
efforts and possible failures of integration with systems of interest due to not correctly preserved 
requirements. To overcome these difficulties, this thesis develops a domain-specific, language-driven 
framework.  After investigations on existing works to build theoretic foundations and identify missing 
points as summarized in Chapter 2 and Chapter 3, the framework architecture is specified in Chapter 4. 
This is followed by Chapter 5 that specifies the domain-specific languages that form the backbone of this 
framework.  The developed framework assists in overcoming the identified difficulties during 
developments as summarized below. The framework is demonstrated by use cases in Chapter 7 on a 
prototype implementation as described in Chapter 6. 

First, domain-specific languages ease communication among involved roles in the development 
of simulated environment components.  

The analysis-phase language SEDL in Section 5.1 assists in documenting requirements about these 
components in a structured form.  It provides a communication tool to exchange and discuss produced 
context and behaviors of the component under development. An SEDL description categorizes the 
expected context of simulated environments into pieces, each of which enclosed in an instance of a 
formally defined term. These pieces are organized in a simple hierarchical structure as the language model 
specified, which fulfills Objective 1.1 that captures a cognitive-level description structure of simulated 
environments. Terms in SEDL are mainly specified based on conceptual forms of spatial phenomena and 
types of changes they may exhibit. These terms of change types are systematically derived from a 
common definition of the change expression to fulfill Objective 1.2.  The language model is derived from 
common-sense perceptions and has a small size so that it can be understood by various roles that have 
different expertise with small learning effort.  

At the software design phase, the domain-specific profiles specified in Section 5.2, especially the two 
describing back ends, assist in describing models of environment components concisely.  They cover 
both structural and behavioral aspects of these components to fulfill Objective 2.1 that captures a generic 
metamodel for computer simulation components producing simulated environments. Stereotypes in these 
profiles are specified based on well-established datatypes and actions in spatial computations and 
simulations.  Each stereotype regulates the common structure to model elements applying it, as well as 
derivable structure for an element through some associations, e.g., the structure of a Snapshot should be 
derived from its linked SimulatedFeatureTypes. These common structures can be made implicit in a 
model applying this profile. Thus, such a model has a higher-level of abstraction than a model of the same 
context in basic UML. They are more readable and easier to be discussed.  Besides, model elements 
represent meaningful software units and are loosely coupled, each of which can be treated as a self-
contained task assigned to suitable developers. 

Second, the framework enables automated software engineering that reduces development 
efforts of simulated environment components through various mechanisms. 

This thesis categories possible conceptual context of simulated environments and analyses necessary 
artifacts in software in order to produce them. In Chapter 5, These two perspectives are modeled in the 
SEDL language model and design-level profiles, respectively, mapped to each other by formally specified 
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transformation rules that can be automated.  These rules fulfill Objective 2.2.  By realizing the language 
tooling based on these models and rules as specified in Subsection 4.2.1, preliminary software models 
can be created by the automated transformations to save manual work when the expected simulated 
environments are documented in SEDL. These software models can be further transformed to generate 
architectural code skeletons to reduce coding work.  This specification regulates how the proposed 
framework should be built, which fulfills Objective 3.1. An implementation of the proposed framework 
is presented in Chapter 6.  The guide of the development process with the framework to fulfill Objective 
3.2 is presented in Section 4.4 and is demonstrated with use cases in Chapter 7. 

Further, stereotypes in the two back-end profiles in Subsection 5.2.2 and Subsection 5.2.3 regulate 
stereotype-specific structures and operations. These stereotype-specific artifacts only need to be 
implemented once at the platform-specific layer on a chosen platform and be embedded in the framework 
implementation.  For a component under development, these implementations are invoked by generated 
code in addition to the architectural code created by automated transformations to the PSM layer. This 
strategy further reduces the coding work. The same advantage applies to the configuration profile, while 
each component or item type in this profile can be implemented once at a platform-specific representation 
layer as visual interface elements. Besides, since stereotypes in these profiles are determined based on 
existing works, they guide developers to utilize existing implementation libraries. 

Third, transformations from human-perspective descriptions to software models preserve 
functional requirements of environments component under development.  

Domain-independent, formally specified transformations often start from the PIM layer.  They can 
preserve existing model units but do not have mechanisms to help to ensure that the analysis-phase 
identified requirements have been modeled.  With SEDL being introduced to provide a way to express 
structured human-perspective models of simulated environments, transformations specified in Section 
5.3 already starts from the CIM layer.  For each piece of SEDL description, these transformations create 
corresponding model elements associated with free-text descriptions about them.  Through this way, 
documented requirements in SEDL are preserved in formal design models whose structure can be 
preserved (although refined to be platform-specific) through further formally specified transformations, 
together with the free-text descriptions that shall guide implementations. 

Besides, the specified transformations create configuration schemas aligned to SEDL description with 
parameters denoted by user-specified names. This ensures user-understandable configuration interfaces.  
They also create behaviors to pass each configuration item derived from some part of an SEDL 
description to back-end functions derived from the same part. It helps to make sure that user-configured 
values being used at intended places. 

Assisted by the automated transformations in the realized framework as explained in Chapter 4 and 
illustrated in Chapter 6, prototypes of environment components can be fast created and be presented to 
users.  Based on this, the recommended development process in Section 4.3 that follows the rapid-
prototyping paradigm[126], [127] can be executed.  Component users are kept informed and give their 
feedback during the development while the prototypes are recursively improved, so that functions 
deviating from their requirements can be identified and implemented. 
8.2 Limitation of Model Transformations in Development 

A model-driven development process for a computer system consists of a chain of transformation 
steps, each turning more abstract models of the system to more concrete models.  More details and 
restrictions are included in the output models at each step until a complete system is developed.  This 
nature limits the transformation automation in development, since the information that determines some 
part of a concrete model does not exist (both explicitly and implicitly) in the corresponding abstract 
models.  This part is not derivable from the more abstract models but needs to be brought in by developers.   

Model transformations in this thesis are not exceptions. Transformations specified in Chapter 5 only 
recognizes the formal part of an SEDL description. This part is mapped to elements that form a 
component skeleton, or further to architectural code in chosen computation paradigms and/or 
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implementation platforms. Application-specific behaviors33 enclosed in these elements are supposed to 
be formalized manually in later phases, e.g., as code in function bodies in the final implementation.  

To overcome this limitation, this thesis recommends a manual refinement step in the CIM-PIM 
transformation chain, since the PIM-layer profiles proposed by this thesis contain stereotypes implying 
information that cannot be formally captured by an SEDL description. For instance, while a 
FieldOfIndividualities may be mapped to a CollectiveFeatureType, the geometry of its units may not be 
totally captured by the formal part of this FieldOfIndividualities. The general CollectiveFeatureType may 
be replaced with a subtype of it by developers at the PIM layer, which could then enable transformation 
automation in further steps.  Besides, Subsections 5.2.2~5.2.3 also introduce various PIM-layer 
stereotypes that extend Actions/Operations.  They provide more concise constructs to support developers 
modeling application-specific behaviors that are not formally captured by SEDL and transforming them 
into more specific layers. 

Adding component structures that are not derivable from the more abstract models via automated 
transformation requires embedding such knowledge into the automated function. Two strategies are 
recommended for this mission as introduced below. 

Over-generation:  in this way, the transformation generates both derivable artifacts and some artifacts 
that are only possible to be used.  The recommended CIM-PIM transformation details at the specification 
level in Appendix A uses this strategy. For instance, Listing A.5 suggests adding an additional object of 
a phenomenon’s datatype to the class that holds the computation model of the phenomenon type.  At the 
beginning of an execution step, this object is assigned with the current values of the object that holds the 
state values of the being-computed phenomenon. It is used for “update” style computations which need 
to calculate the difference between the current value and the value from the previous step of some 
phenomenon’s property, for updating another property. However, it may be redundant for some other 
computation methods and may not be used in the final implementation. 

Pre-determination:  a type of elements in a more abstract model may be modeled in various ways in 
a more concrete model.  Following this strategy, the automated transformation assumes that this type is 
always transformed into elements modeled in one of these ways.  The choice is determined when the 
automated transformation is implemented.   

For instance, ExecutionRoutine in SEDL expresses that some data are communicated between 
simulated environment components and system of interest components. The communication process is 
not application-specific but still can be modeled in multiple paradigms, e.g., through messages between 
two components, or a component dealing with global communication among other components.  An 
automated transformation may be developed to generate model artifacts following one of the paradigms, 
often depending on the platform for final implementation. Also, instead of manually choosing a subtype 
of TesserlatedFeatureType at the design phase, when the implementation platform uses a fixed type of 
tessellation, an automated transformation can generate elements applying the stereotype from Subsection 
5.2.2 corresponding to that tessellation type.  

Since the choice of mapping options often depends on the applied paradigms of the implementation 
platform, this thesis suggests that automated transformations using the pre-determination strategy to 
embed the mapping from PIMs to the platform-specific application model/code skeletons.    

For transformation realizations, the trade-off between the manual work needed and the freedom given 
to application developers has to be made. The model structure generated by an automated transformation 
may not be optimized for a particular component, which needs developer interference for optimization. 
Besides, SEDL does not contain vocabularies that can formalize application-specific behaviors, e.g., the 
mode of a movement is usually denoted by the name and the free-text comment of an instance of 
Movement but not an interpretable formal representation. Thus, it is not recommended to directly 
interpreting a description expressed by the core SEDL constructs, since the possible result is limited due 
to the restricted expressiveness.  

 
33 Some of them may be derived from the free-text part of an element in SEDL. 
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Another reason that causes incomplete application model comes from the not-identified requirements 
that are not documented in an input SEDL description.  This issue does not influence transformation 
execution itself. It cannot be resolved at the technical level but should be resolved via communications 
among various roles. 
8.3 Visions of SEDL Extension 

When this thesis provides a core set of terms and a syntactic structure of the analysis-level language 
SEDL, several useful extensions shall be made for this language.  This section discusses potential useful 
terms that can be formalized in SEDL in future work, as well as a short proposal on how to formalize 
them and consequent PIM-layer mapping. 
8.3.1 Environmental Phenomenon as Network 

A straightforward extension that can be made is to add terms for describing a set of individualities that 
forms a visually recognizable network, such as networks of roads or waterways.  The geometry of an 
individuality in such a network is often abstracted as a polygon or a polyline.  

In current SEDL, individuality groups can be described by a FieldOfIndividualities.  Their structure 
at the design phase may be represented by a class applying a subtype of CollectiveFeatureType. As 
Subsubsection 5.2.2.2 specifies, relation networks among individualities can be derived from geometries 
of existing CollectiveFeatureType stereotypes and be used in the computation. The key difference 
between the network features and instances of these existing types is that a member individuality in a 
CollectiveFeatureType is treated as a vertex in its implied network. When not specified otherwise at the 
application level, edges and their weights in such a network are derived based on either adjacency and/or 
geometric distances among individualities.  These edges often do not have geometries.  In contrast, an 
individuality in a network feature is conceptually perceived as an edge. It should also be digitalized in 
this way when being modeled in computer applications.  

Networks are common phenomenon types in some domains, such as traffic simulations.  An example 
is to simulate voyage behaviors of ships along dynamic waterways in a small area, in which the ship 
model is allowed to move beyond the area of the waterways as the trigger of some adjustment behaviors 
in simulations.  State values of edges (i.e., waterways) need to be updated rather than the vertices (i.e., 
intersections of waterways). Besides, the geometry of waterways cannot be ignored to reduce the 
simulated environment representation to a non-spatial graph. 

The current SEDL does not have terms to denote that an individuality in a described group is perceived 
as a network edge. Subtypes or attributes of FieldOfIndividualities shall be included to enable this 
distinction so that more specific transformations can be performed from SEDL.  As discussed above, 
CollectiveFeatureType stereotypes also have not covered the network features. With SEDL being 
extended, subtypes of CollectiveFeatureType representing network feature types shall be added to the 
structural profile. Then, CIM-PIM transformations can be established to map the extended terms to these 
subtypes and further to stereotype-specific implementations through the transformation process as the 
current framework specifies. 

Two stereotypes for representing network feature types are suggested to be included in the future in 
the structural profile, i.e., a type whose units are abstracted to lines, and a type whose units are abstracted 
as polygons while the shape of network edges matters to the simulation. 
8.3.2 Influence Between Phenomenon Types 

A term to express requirements about influences between EnvironmentalPhenomenon can be added 
to SEDL in the future.  In the current version of SEDL, the requirements of each phenomenon type are 
described separately within the scope of an EnvironmentalPhenomenon. The computation of each type is 
developed as a self-contained subcomponent. However, the phenomenon of some type in a simulated 
environment may be influenced by other types. This situation leads to dependency between 
subcomponents of the resulting application, in which some type’s instances must be computed at first and 
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are fed to the subcomponent that computes another type’s instances.  To identify and to implement these 
connections are often the task of environmental modelers.  Nevertheless, at the analysis phase, 
introducing the suggested term could be useful in the following cases.  

First, users of the simulated environment component may express such a requirement:  when behaviors 
and states of EnvironmentalPhenomenon A are computed, states of some other 
EnvironmentalPhenomenon B should be taken into consideration.   Data transition between 
subcomponents can be derived from such descriptions in design models.  However, this influence may 
turn out to be negligible in the simulation or not exists, decided by environment modelers via 
communication or in later phases.  Thus, the transformation for such a piece of description follows over-
generation strategy as introduced in Subsection 8.2.1. 

Second, component developers may also identify missing requirements when reviews an SEDL 
description.  They can add an influential type that is not required by the system of interest.  In this case, 
automated transformation shall save their later work.  

The suggested term in a UML-based specification shall be modeled as an Association class 
referencing two involved phenomenon types.  Attributes can be added to it to denote the relevant 
properties of the influential phenomenon type.  An instance of this term is conceptually an influencedBy 
link between two EnvironmentalPhenomenon instances as shown in Figure 8.1.  The link in the figure 
implies that in the component under development, the computation functions of the phenomenon “wave” 
requires the state of phenomenon “wind”.  Transformation generating computation sequences via these 
links shall be specified following a similar logic as in Listing A.5 of Appendix A to generate a property 
update sequence for a phenomenon. 

8.3.3 Using Spatial Predicates at the System Analysis Phase 
Conceptual-level spatial predicates evaluate if a topological relation between two spatial entities 

satisfies or not.  Sets of spatial predicates have been comprehensively investigated and modeled in 
researches such as [137], [138]. They are applied in spatial databases to form powerful query languages 
that use topological relations as filters[139].  These predicates may as well benefit the development of 
simulated environment components when being introduced to SEDL.  

In spatial-aware simulations, locations of phenomena are often changing, and so do their topological 
relations.  Some of their behaviors exist when they are in a certain relation, while some other behaviors 
are triggered when their relation switches to another. A set of terms, each based on a spatial predicate, 
can be introduced to extend SEDL. An instance of these suggested terms in an SEDL description holds 
the description of expected behaviors of involved EnviromentalPhenomenon-s, when its represented 
relationship satisfies (for relations that may last such as “overlap”) or occurs (for instantaneous relations 
such as “meet”).[87] This subsection suggests considering the following aspects when formalizing a term 
in this set as SEDL terms. 

First, this term denotes a topological relation that guides the described behavior, which can be taken 
from existing models such as [87]. 

Second, slots need to be provided to reference involved types, which may be one 
EnvironmentalPhenomenon denoting the described behavior should happen when the predicate is true 
between two instances of this type, or to two EnvironmentalPhenomenon which means that the behavior 
should happen when the predicate is true between two instances, one for each type. 

Third, some behavior types can be identified to formally describe expected behaviors when the 
predicates are evaluated as true. These behaviors could include: behaviors that change the existence of 
phenomena, e.g., appear, disappear, merged and split; behaviors that alter geometries like a conditional 

Figure 8.1: An influencedBy Link in an SEDL Description. 
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Deformation; behaviors that alter thematic property like a conditional ValueDynamics.  These behaviors 
can be recognized by transformations to create necessary subactions within computation units 
transformed from SEDL Variation-s, which have to be added by developers in the current framework.  

At the logical design or more specific layers, spatial predicates are often performed on geometries, 
which can be implemented independently from the application-specific feature types. Thus, with these 
terms being added to SEDL, transformations can be established to transform instances of these terms to 
conditional actions (or further operation code skeletons) based on the evaluation of corresponding 
predicates on the suitable simulated feature instances. 
8.4 Reuse of Implemented Environmental Phenomena 

This thesis focuses on the development of environment components in simulations, whose models 
have not been implemented within the framework proposed by this thesis. With the evolvement of 
developments, various phenomenon types would be implemented within a chosen platform. It brings new 
issues of managing and reusing implementations. This section discusses the functionalities needed by the 
proposed framework to handle these issues. 

In transformations specified in Section 5.3, computation models of phenomena types and execution 
routines for a specific simulation are generated into different classes. It means that developed 
phenomenon types could be re-grouped into another simulated environment component. To-enable user-
oriented reuse of these types, the following upgrade of the current framework could be needed. A 
conceptual illustration of the potential upgrade is shown in Figure 8.2. 

First, transformations need to create fully de-coupled subcomponents per EnvironmentalPhenomenon 
and organize them in a repository.  This improvement needs to be made on the current transformation 
SEDL2Config, whose outputs have not been fully de-coupled. In the upgraded version, code for routines 
and configuration schemas that are specific for simulation applications should be separated from the 
model code for an EnvironmentalPhenomenon and its user-configurable parameters. 

Figure 8.2: Conceptual Architecture for Implementation Reuse. 
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Then, application vocabulary packages need to be integrated into the syntactic model of SEDL.  Each 
term in these packages represents an implemented EnvironmentalPhenomenon. It enables analysis-phase 
descriptions that some implemented types should be used for a described component. A key problem to 
be solved here is to deal with terms that cross modeling-levels since these terms are instances of the 
EnvironmentalPhenomenon.  It could be solved by extending SEDL with a special subtype of 
EnvironmentalPhenomenon (denoted by the “Subtype” placeholder in Figure 8.2), whose values can be 
picked from an extensible list. 

Further, mechanisms need to be provided to link terms in application packages to corresponding 
implementations, e.g., via annotations. Transformations from such a piece of description should not 
generate any new computation skeletons or data structures, but only invocation code in an execution 
routine and a ConfigSchema transformed from its belonged SimulatedEnvironment. For those 
descriptions which only require using implemented phenomenon types, a platform-specific 
transformation should generate ready-to-run applications. 

Besides, the specification of FieldOfIndividualities shall be extended to enable an instance of 
FieldOfIndividualities to have its member pointed to an implemented SpatialIndividuality, as well to 
allow adding a CharacteristicVariation that maps to a function for systematically generating parameters 
of this SpatialIndividuality.  It does not break the structure of implemented SpatialIndividuality-s but 
saves users’ work to configure their instances one by one in the new simulation. 

Finer-grained reuse, e.g., reuse of implemented actions, is only recommended to be exposed to 
component developers.   It requires further de-coupling of the action units by transformations and 
organizing the implemented actions into a code library. In addition, model editing supports at the design 
phase could be provided, allowing developers to pick an implemented action of a specific stereotype at a 
legible location in the design model, which can be further transformed to invocation code in the new 
application. 
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Appendix A: CIM-PIM Transformations 
        This appendix documents details of transformations from SEDL descriptions to PIM-layer models, 
which are introduced in Section 5.3.  Elements in the listings of this appendix are denoted by their names. 
Since the output model elements may get the name from the input SEDL elements, output model elements 
are written in italic to avoid confusion.  For a clear representation, some steps are presented in separate 
listings as support functions and are invoked in other listings. This appendix does not fix an exact way of 
transforming the free-text description of a DescriptionItem (i.e., its “description” attribute) but leaves it 
as an implementation choice.  In general, it is recommended to transform this piece of text as the comment 
that is referenced to and/or placed with the generated artifacts from the DescriptionItem. 
 
A.1 Description2Config 
        Listing A.1-a presents the overall transformation logic from an SEDL description to a configuration 
schema expressed by Configuration Schema Description Profile specified in Subsection 5.2.1.  
 Require: a valid SEDL description s with entry SimulatedEnvironment Envi 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 

Create ConfigSchema Envi; 
 
For each SpatialIndividuality SI of Envi 
        Boolean configSI ← false; 
        Perform CreateConfigSI(SI, configSI); 
        If configSI = true Then 
                Add the generated component SI to Envi; 
        End if; 
End for; 
 
For each FieldOfIndividualities FoI of Envi with member M 
        Boolean configFoI ← false; 
        Boolean configM ← false; 
        Perform CreateConfigSI(M, configM); 
        If configM = true Then 
                Perform CreateConfigComponent(FoI, configFoI); 
                Add a SubComponent link between the generated component M (as the sub end) and 
the generated component FoI;          
        End if; 
        For each CharacteristicVariation CV of FoI 
                If CV has any parameter Then 
                        Perform CreateSimpleConfig(CV); 
                        Perform CreateConfigComponent(FoI, configFoI); 
                        Add a SubComponent link between the generated component CV (as the sub end) 
and the generated component FoI;          
                End if; 
        End for; 
        If configFoI = false Then 
                If FoI has any parameter, Then 
                        Perform CreateSimpleConfig(FoI); 
                        configFoI ← true; 
                End if; 
        End if; 
        If configFoI =  true Then 
                Add the generated component FoI to Envi; 
        End if; 
End for; 

Listing A.1-a: Description2Config. 
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        The function CreateConfigSI (SpatialIndividuality SI, Boolean configSI) used in Listing A.1-a is 
presented in Listing A.1-b. This function transforms a SpatialIndividuality to necessary structures in a 
configuration schema. 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
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13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

For each ThematicProperty P of SI 
        Boolean configP ← false; 
        For each Variation IV_P of P 
                If IV_P has options Then 
                        Perform CreateAlternativeConfig(IV_P); 
                        Perform CreateConfigComponent (P, configP); 
                        Add a SubComponent link between the generated component IV_P (as the sub end) 
and the generated component P;          
                        Perform CreateConfigComponent(SI, configSI); 
                        Add a SubComponent link between the generated component P (as the sub end) 
and the generated component SI;          
                End if; 
                If IV_P has any parameter Then 
                        Perform CreateSimpleConfig(IV_P); 
                        Perform CreateConfigComponent (P, configP); 
                        Add a SubComponent link between the generated component IV_P (as the sub end) 
and the generated component P;          
                        Perform CreateConfigComponent(SI, configSI); 
                        Add a SubComponent link between the generated component P (as the sub end) 
and the generated component SI;          
                End if; 
        End for; 
End for; 
For each individuality Variation IV_SI of SI 
        If IV_SI has options Then 
                Perform CreateAlternativeConfig(IV_SI); 
                Perform CreateConfigComponent(SI, configSI); 
                Add a SubComponent link between the generated component IV_SI (as the sub end) and 
the generated component SI;          
        End if; 
        If IV_SI has any parameter Then 
                 Perform CreateSimpleConfig(IV_SI); 
                 Perform CreateConfigConponent(SI, configSI); 
                 Add a SubComponent link between the generated component IV_SI (as the sub end) 
and the generated component SI;          
         End if; 
End for; 
For each CharacteristicVariation CV_SI of SI 
        If CV_SI has any parameter Then 
                Perform CreateSimpleConfig(CV_SI); 
                Perform CreateConfigConponent(SI, configSI); 
                Add a SubComponent link between the generated component CV_SI (as the sub end) 
and the generated component SI;          
         End if; 
End for; 
If configSI = false Then 
        If SI has any parameter Then 
                Perform CreateSimpleConfig(SI); 
                configSI ← true; 
        End if; 
End if; 

Listing A.1-b: CreateConfigSI (SpatialIndividuality SI, Boolean configSI). 
 



120 
 

       The function CreateSimpleConfig(Configurable Con) used in previous listings are presented in 
Listing A.1-c. It transforms a Configurable to a SimpleConfig.  
1 
2 

Create SimpleConfig Con; 
Perform AddConfigItems(Con, Con); 

Listing A.1-c: CreateSimpleConfig(Configurable Con). 
 
       Listing A.1-d presents the function CreateAlternativeConfig(Configurable Con). It transforms a 
Configurable with options to an AlternativeConfig. 
1 
2 
3 
4 
5 
6 

Create AlternativeConfig Con; 
For each option Option of Con 
        Perform CreateSimpleConfig(Option); 
        Add a ConfigOption link between the generated component Option (as the option end) and 
the generated component Con; 
End for; 

Listing A.1-d: CreateAlternativeConfig(Configurable Con). 
 
        The function CreateConfigComponent(Configurable Con, Boolean configCon) is presented in 
Listing A.1-e. It transforms a Configurable to a ConfigComponent with nested ConfigComponent-s, if 
the current transformation process has not done it. 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

If configCon = false Then 
        If Con has any parameter Then 
                Create ConfigComponent Con; 
                Perform AddConfigItems(Con, Con); 
                configCon ← true; 
         Else  
                Create GroupComponent Con; 
                configP ← true; 
         End if; 
End if; 

Listing A.1-e: CreateConfigComponent(Configurable Con, Boolean configCon). 
 
        The function AddConfigItems(Configurable Con,  ConfigComponent Con) presented in Listing A.1-
f transforms ConfigurableParameter-s to ConfigItem-s in a configuration schema.  For a 
ConfigurableParameter whose type is Options, the transformation adds an Enumeration to the generated 
schema as the type of the generated ConfigItem. This Enumeration should contain all possible options of 
this ConfigItem, Since the current SEDL does not provide formal terms to catch configuration options 
separately, they should be added by component developers. 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
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For each ConfigurableParameter P of Con 
        Add ConfigItem p to the generated ConfigComponent Con from P 
        paratype ← type of P 
        Switch(paratype) 
                Case FreeText: set p to the String type; 
                Case DataSource: set p to the SourceString type; 
                Case Spatial: set p to the SpatialString type; 
                Case Time: set p to the TimeString type; 
                Case Options: add an Enumeration P to the generated schema, set the p’s to it; 
                Case Switch: set p to the Boolean type; 
                Case Number: set p to the Real type; 
End if; 

Listing A.1-f: AddConfigItems(Configurable Con,  ConfigComponent Con). 
 
A.2 Descrption2Structure 
        Listing A.2-a provides the details to transform an SEDL description to a data structure model 
applying Simulated Environment Structure Profile specified in Subsection 5.2.2 in a two-dimensional 
context. 
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 Require: a valid SEDL description s with entry SimulatedEnvironment Envi 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
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23 
24 
25 
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27 
28 
29 
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31 
32 
33 
34 
35 
36 
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50 
51 
52 
53 
54 
55 

For each SpatialIndividuality SI of Envi 
        Create Class SIData;  
        If dimNum of SI equals to 2 Then 
                Apply the LocalFeature stereotype to SIData; 
                Set geometry of SIData to Polygon; 
        Else if SI has change involving geometry Then 
                        Apply the LocalFeature stereotype to SIData; 
                        Set geometry of SIData to Polygon; 
                Else if dimNum of SI equals to 0 Then 
                                Apply the LocalFeature stereotype to SIData; 
                                Set geometry of SIData to Point; 
                        Else if SI has RigidBodyMovement or LocationThemeDependency 
                                        Apply the LocalFeature stereotype to SIData; 
                                        Set geometry of SIData to Point; 
                                Else  
                                        Apply the GlobalFeature stereotype to SIData; 
                                End if; 
                         End if; 
                 End if; 
         End if; 
         For each ThematicProperty P of SI 
                 Add Attribute p to SIData;  
                         If P has ThematicValueDistribution Then 
                                 Perform CreateSpatialFunction(P); 
                                 Set type of p to SIP_Dist which is generated from the previous line; 
                         Else  
                                 Set p to a default value type; 
                         End if; 
          End for; 
End for; 
 
For each FieldOfIndividualities FoI of Envi with member M 
        Create Class FoIData; 
        Create Class MData applying the CollevtiveFeatureUnit stereotype as its unit; 
        If M has change involving geometry Then 
                Apply the PolygonSetFeature stereotype to FoIData; 
                Set geometry of MData to Polygon; 
        Else if dimNum of M equals to 2 Then 
                        Set geometry of MData to Polygon; 
                        If M has change involving location Then 
                               Apply the PolygonSetFeature stereotype to FoIData; 
                        Else 
                                Apply the TesserlatedFeatureType stereotype to FoIData; 
                        End if; 
                Else 
                       Set geometry of MData to Point; 
                       If M has change involving location Then 
                                Apply the PointSetFeature stereotype to FoIDara; 
                       Else 
                                Apply the PointSitesFeature stereotype to FoIData; 
                       End if; 
                End if; 
        End if 
        For each CharacteristicVariation CV_M of M 
                For each of its indexName “idx_m” 
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                        Add Attribute idx_m to MData; 
                End for; 
        End for; 
        For each ThematicProperty P of M 
                Add Attribute p to MData;  
        End for; 
End for; 

Listing A.2-a: Descrption2Structure. 
 
        The function CreateSpatialFunction(ThematicProperty SIP) used in Listing A.2-a is presented in 
Listing A.2-b.  It transforms a ThematicProperty with some ThematicValueDistribution-s to a class 
applying the SpatialFunction stereotype, which holds the distribution functions representing the spatially 
heterogeneous property. The generated SpatialFunction class is set as the type of the generated attribute 
from SIP.  After initializing an instance of this class, the values of its attributes that control the distribution 
functions could be altered during executions. This essentially updates the distribution forms of its 
represented property. 
        In the following listing, SIP is the configuration component generated from SIP by the 
transformation documented in Appendix A.1. If no such a component is generated from SIP, this 
parameter remains empty. The same applies to other generated operations in the following steps. 
1 
2 
3 
4 
5 
6 
7 
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Create a Class SIP_Dist applying the SpatialFunction stereotype; 
For each ThematicValueDistribution Dist of SIP 
        Add Operation dist() to SIP_Dist; 
        For each of its ConfigurableParameter CP 
                Add Attribute cp with the declared type to SIP_Dist; 
        End for; 
        If Dist has options Then 
                Add Attribute dist_op to SIP_Dist; // to mark the active option 
                For each option Option of Dist 
                        Add Operation option() to SIP_Dist; 
                        For each ConfigurableParameter CP_O of Option 
                                Add Attribute cp_o with the declared type to SIP_Dist; 
                        End for; 
                End for; 
                Add a conditional brunch34 to dist() which: 1) checks the value of dist_op, 2) invokes 
the generated Operation from the corresponding option denoted by the value of dist_op as the 
behavior of dist(); 
        End if; 
        Add Constructor SIP_Dist (SIP sip) to SIP_Dist and statements in it to initialize all attributes 
generated from ConfigurableParameter-s using sip; 
End for; 

Listing A.2-b: CreateSpatialFunction(ThematicProperty SIP). 
 
A.3 Mapping from SEDL Items to Computation Units and Supporting Structures 
        In Listing A.3, SIData and SI are the outputs from SpatialIndividuality SI by the transformations 
documented in Appendix A.1 and Appendix A.2, respectively. Similarly, FoI and FoIData with MData 
as its unit type are the outputs from FieldOfIndividualities FoI, respectively. If no SI or FoI is generated 
from A.1, generation pieces in this listing corresponding to them remain empty. 
 Require: a valid SEDL description s with entry SimulatedEnvironment Envi 

Require: output of s from Description2Config in A.1 
Require: output of s from Description2Structure in A.2 

1 
2 

For each SpatialIndividuality SI      
        Create Class ComputeSI;  

 
34 The Java-based implementation in Chapter 6 maps it to a switch statement at the PSM layer. 
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        Add Object si of the SI type to ComputeSI; 
        Add Constructor ComputeSI(SI si_con) to ComputeSI; 
        Add statements in the Constructor to initialize si with si_con35; 
        For each ConfigurableParameter CP within the scope of SI 
                Add Attribute cp of the declared type to ComputeSI; 
                If CP does not belong to an AlternativeMode 
                        Add statements to the Constructor to initialize cp with the value in si_con; 
                End if; 
        End for; 
        For each CharacteristicVariation CV of SI 
                Add Operation cV() to ComputeSI; 
                For each of its indexName “idx” 
                        Add Attribute named “idx” to ComputeSI; 
                End for; 
                For each of its ConfigurableParameter CP_CV 
                        Add a Parameter cp_cv of the declared type to cV(); 
                End for; 
                Add statements to the Constructor to use cV() to initialize the generated Attributes 
from CV’s indexes, using corresponding Attributes generated from CP_CV-s as actual 
parameters; 
       End for; 
       For each individual Variation IV of SI or of its ThematicProperty  
               If IV is not a ThematicValueDistribution 
                       Add Operation iV() to ComputeSI; 
                       Add Parameter var to iV(); 
                       Set the type of var to the mapped attribute type in SIData from the Variable of 
IV, and iV()’ return type to the type from the Variant of IV; 
                        If IV has options Then 
                                Add Attribute iV_op to ComputeSI; // to mark the active option 
                                For each option Option of IV 
                                        Add Operation option() to ComputeSI; 
                                        Add Parameter var_o to option(); 
                                        Set the type of var_o to the mapped attribute type in SIData from the 
Variable of IV, and option()’s return type to the type from the Variant of IV; 
                                End for; 
                                Add a conditional brunch to the Constructor which: 1) checks which option 
of iV() is configured in si_con, 2) initializes iV_op based on the configured option and Attributes 
in ComputeSI relevant to this option using values in si_con. 
                                Add a conditional brunch to iV() which: 1) checks the value of iV_op to 
determine the active option, 2) invokes the generated Operation corresponding to active option 
as the behavior of iV(); 
                       End if; 
               End if; 
        End for; 
End for; 
 
For each FieldOfIndividualities FoI with member M 
        Create Class ComputeFoI;  
        Add Object foiData of the FoIData type to ComputeFoI;          Add Object foi of the FoI type to ComputeFoI; 
        Add Constructor ComputeFoI (FoI foi_con) to ComputeFoI; 
        Add statements in the Constructor to initialize foi with foi_con; 
        For each ConfigurableParameter CP within the scope of FoI 
                Add Attribute cp of the declared type to ComputeFoI; 

 
35 e.g.,“this.si = si_con” in the Java-like form 
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                If CP does not belong to an AlternativeMode 
                        Add statements to Constructor to initialize cp with the value in foi_con; 
                End if; 
        End for; 
        For each CharacteristicVariation CV of FoI 
                Add Operation cV() to ComputeFoI; 
                For each of its indexName “idx” 
                        Add Attribute named “idx” to ComputeFoI; 
                End for; 
                For each of its ConfigurableParameter CP_CV 
                        Add Parameter cp_cv of the declared type to cV(); 
                End for; 
                Add statements in Constructor to use cV() to initialize the generated Attributes from 
CV’s indexes, using the corresponding Attributes generated from CP_CV-s as actual 
parameters; 
        End for;   
        For each CharacteristicVariation CV_M of M 
                Add Operation cV_M() to ComputeFoI; 
                For each of its ConfigurableParameter CP_CVM 
                        Add Parameter cp_cvm of the declared type to cV_M(); 
                End for; 
                Add statements in the Constructor which: 1) get the units iterator of foiData, 2) loop 
over this iterator to execute cV_M() whose body part should implement the function that 
initializes the generated Attributes from CV_M’ indexes for each unit, using the corresponding 
Attributes generated from CP_CVM-s as actual parameters; 
         End for; 
         For each individual Variation IV_M of M or of its ThematicProperty 
                Add Operation iV_M() to ComputeFoI; 
                Add Parameter var to iV_M(); 
                Set the type of var to the mapped attribute type in MData from the Variable of IV_M, 
and iV_M()’s return type to the type from the Variant of IV_M; 
                 If IV_M has options Then 
                         Add Attribute iV_M_op to ComputeFoI; // to mark the active option 
                         For each option Option of IV_M 
                                 Add Operation option() to ComputeFoI; 
                                 Add Parameter var to option(); 
                                 Set the type of var to the mapped attribute type in MData from the Variable 
of IV_M, and iV()’s return type to the type from the Variant of IV_M; 
                         End for; 
                         Add a conditional brunch to the Constructor which: 1) checks which option of 
iV() is configured in foi_con, 2) initializes iV_M_op based on the configured option and 
Attributes in ComputeSI relevant to this option using values in foi_con. 
                        Add a conditional brunch to the iV_M() which: 1) checks iV_M_op to determine 
the active option, 2) invokes the generated Operation from the active option as the behavior of 
iV_M(); 
                 End if; 
        End for; 
End for;             

Listing A.3: Generate Computation Units and Support Structures. 
 
A.4 Generate the Dependency Graph for EnvironemtnalPhenomenon Computation 
        Listing A.4 generates a directed graph for an EnvironmentalPhenomenon Ep based on its Variation-
s. This graph is used to derive the execution order of the generated computation units from Ep by the 
transformation documented in Appendix A.3 at a simulation step, as introduced in Subsection 5.3.4. 
 Require: a valid EnvironmentalPhenomenon Ep 

Require: Class ComputeEp generated from Ep by the transformation in A.3 
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//Initial construction of the graph 
If Ep is a FieldOfIndividualities 
        Use its member SpatialIndividuality as Ep in the following steps; 
End if; 
Create a directed graph G with 
        Each edge has an attribute that stores references to Operations of computation units 
generated from Variation-s of Ep by the transformation documented in A.3; 
        Node’s attribute that stores a reference to a subgraph; 
Add nodes t, l, g to G; //represents time, location, geometry 
For each ThematicProperty p of Ep 
        Add a node p to G; 
End for; 
If RigidBodyMovement m of Ep exists Then 
        Add an edge t → l to G;  
        Store references to Operations generated from every m with this edge; 
End if; 
If Deformation d of Ep exists Then 
        Add an edge t → g to G; 
        Store references to Operation generated from every d with this edge; 
End if; 
If GeometryLocationDependency gl_d of Ep exists Then 
        Add an edge between g and l, pointed to the Variant of gl_d; 
        Store references to the Operations generated from every gl_d with this edge; 
End if; 
For each GeometryThemeDependency gc_d of Ep 
        If no following edge exists Then 
                Add an edge between g and the involved p node, pointed to the Variant of gc_d; 
        End if; 
        Store a reference to the Operation generated from gt_d with this edge; 
End for; 
For each LocationThemeDependency lt_d of Ep 
        If no following edge exists Then 
                Add an edge between l and the involved property node, pointed to the Variant of lt_d; 
        End if; 
        Store a reference to the Operation generated from lt_d with this edge; 
End for; 
For each ThemeDependency tt_d within the scope of Ep 
        If no following edge exists Then 
                Add an edge between the two involved property nodes, pointed to the Variant of tt_d; 
        End if; 
        Store a reference to the Operation generated from tt_depend with this edge; 
End for; 
For each ThematicProperty p         If ThemeDynamics dyn_p of p exists Then 
               Add an edge t → p to G;  
               Store references to Operation generated from every dyn_p with this edge;         
        End if; 
End for; 
 //Loops elimination 
Search for cycles in G; 
For each found cycle          Add a node cyc to G; 
        Add Operation cyc() to ComputeEp; 
        For each incoming edge e of a node in this cycle from a node n outside this cycle 
                If n → cyc does not exist in G Then 
                        Add an edge n → cyc to G; 
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                End if; 
                Add the referenced Operations of e to the reference list of n → cyc;                 Remove e; 
        End for; 
        For each outgoing edge e’ of a node in this cycle to a node n’ outside this cycle 
                If cyc → n’ does not exist in G 
                        Add an edge cyc → n’ to G; 
                End if; 
                        Add the referenced Operations of e’ to the reference list of cyc → n’;                         Remove e’; 
        End for; 
        Store a reference to the subgraph of the cycle with cyc; 
        Exclude the nodes in the subgraph from the computation order derivation; 
End for; 

Listing A.4 Generate Dependency Graph for Computation. 
 
A.5 Generate the Computation Activity for an EnvironemtnalPhenomenon 
        Listing A.5-a presents the transformation from a SpatialIndividuality to the computation activity to 
simulate it.  Listing A.5-b presents the transformation to create the same kind of activity from a 
FieldOfIndividualities.  Listing A.5-c presents the similar steps in these two listings as a support function.  
        For a concise representation, the following elements are denoted using the same reference, e.g., n, if 
not being explicitly denoted otherwise:  a node n in the dependency graph, its represented property n of 
the EnvironmentalPhenomenon, and the transformed attributes n in the SimulatedFeatureType class (or 
in the class instances) from this property. 
 Require: a valid SpatialIndividuality SI 

Require: Class ComputeSI generated from SI by the transformation in A.3 
Require: dependency graph G of SI generated by A.4 

1 
2 
3 
4 
5 
6 

Add Object siData of the SIData type to ComputeSI;  Add Operation computeSI(Time t) to ComputeSI; 
Add Object siData’ of the SIData type to ComputeSI36; 
Append statements to computeSI(Time t) to assign values of siData to siData’; 
Append statements to computeSI(Time t) to update timestamp of siData; 
Perform CreateComputationActivity (G, ComputeSI, siData, computeSI(Time t));  

Listing A.5-a Generate Computation Activity for a SpatialIndividuality. 
 
        In Listing A.5-b, the feature data object in ComputeFoI generated by the transformation documented 
in Appendix A.3 is denoted as FoIData  foiData. The type of its units is denoted as MData. 
 Require: a valid FieldOfIndividualities FoI 

Require: Class ComputeFoI generated from FoI by the transformation in A.3 
Require: dependency graph G of FoI generated by A.4 

1 
2 
3 
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Add Operation computeFoI(Time t) to ComputeFoI; 
Add Object foiData’ of the FoIData type to ComputeFoI37; 
Append statements to computeFoI(Time t) to assign values of foiData to foiData’; 
Append statements to computeFoI(Time t) to update timestamp of foiData; 
Add Operation computeM(Time t, MData mData) to ComputeFoI; 
Perform CreateComputeActivity (G, ComputFoI, mData, computeM(Time t, MData mdata)); 
Append statemens to computeFoI(Time t) which: 1) get the units iterator of foiData, 2) loop over 
this iterator to update states of all units of foiData,  by executing computeM(Time t, MData 
mData) with each unit as the value of the mData; 

Listing A.5-b Generate Computation Activity for a FieldOfIndividualities. 
 

 
36 This step and the next step create an object to hold the current state of the data object before updating it at a 
computation step. It may become unnecessary when being mapped to more specific layers. 
37 similar to the siData’ in Listing A.5-a. 
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        The parameters of the support function in Listing A.5-c should be the transformation outputs from 
the same Environmental Phenomenon. The G should be the graph generated from Ep by the function 
documented in Appendix A.4. 
         When Ep is a SpatialIndividuality SI, the Class ComputeEp should be the computation class 
ComputeSI generated from SI by the transformation documented in A.3. The epData should the feature 
data object siData held by the class. The Operation computeEp() should be computeSI(Time t) of 
ComputeSI as shown in Listing A.5-a. 
        When Ep is a FieldOfIndividualities FoI, the Class ComputeEp should be the computation class 
ComputeFoI generated from FoI by the transformation documented in A.3. The Operation computeEp() 
should be the computeM(Time t, MData mData) in ComputeFoI and the epData should its parameter 
mData, as shown in Listing A.5-b. 
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Traverse G starting with node t to get a topologic sequence of nodes; 
For each node n after t in the sequence 
        Add Operation computeN() to ComputeEp; 
        If n represents a ThematicProperty Then 
                Set the return type of computeN() to corresponding n’s type in epData; 
                Add local Object n_obj to computeN(), which is of its return type; 
                Add statements to computeN() which: 1) execute the referenced Operations of its  
incoming edges, 2) use the value of an Attribute a in epData as the corresponding Parameter a’s 
value of the executed Operation, 3) use n_obj to hold intermediate values; 
                Add a return statement at the end of computeN() which returns n_obj; 
                Append statements to computeEp() which update the corresponding n of epData by 
executing computeN(); 
        Else if n represents geometry or location Then 
                Set the return type of computeN() to the geometry type in epData; 
                Add local Object geo_obj to computeN(),which is of its return type; 
                Add statements to computeN() which: 1) execute referenced Operations of its incoming 
edges, 2) use the value of Attribute a in epData as the corresponding Parameter a’s value of the 
executed Operation, 3) use geo_obj to hold intermediate values; 
                Add a return statement at the end of computeN() which returns geo_obj; 
                Append statements to computeEp() which update the geometry value of epData by 
executing computeN(); 
                Else if n represents a cyclic subgraph cyc Then 
                        Add a member Datatype Cyc to ComputeEp38;  
                        For each node n_cyc within cyc 
                                Add an Attribute of corresponding n_cyc’ s type in epData to Cyc; 
                        End for; 
                        Set the return type of computeN() to Cyc; 
                        Add local Object cyc_obj of the Cyc type to computeN(); 
                        Add a return statement to the end of computeN() which returns cyc_obj; 
                        Append statements to computeEp() which execute computeN() and assign 
involved attribute values of epData with values of computed cyc_obj; 
                        End if; 
                End if; 
        End if 
End for; 

 Listing A.5-c CreateComputeActivity 
(Graph G, Class ComputeEp, Object epData, Operation computeEp()). 

 
 
 
 

 
38 Create a compound datatype to return multiple values. The specific form of the multiple return values in an 
implementation combined with PIM-PSM transformations should be adapted to the chosen platform. The 
compound datatype is only one strategy. 
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Appendix B: SEDL Descriptions for Use Cases 
        This appendix provides the SEDL descriptions for use cases in Chapter 7, written in the 
demonstrative implementation of SEDL with textual concrete syntax as introduced Chapter 6. 
 
B.1 SEDL Description for the Alternative Path Assessment Use Case 
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