

FAKULTÄT II – INFORMATIK, WIRTSCHAFTS- UND RECHTSWISSENSCHAFTEN

DEPARTMENT FÜR INFORMATIK

 A Language-Driven Development Framework

for Simulation Components to Generate
Simulated Environments

A dissertation accepted by the School of Computing Science, Business Administration,
Economics and Law of the Carl von Ossietzky University Oldenburg (Germany)

to obtain the degree and title
 Doctor of Engineering (Dr.-Ing.)

 by Ms. Liqun Wu, M.Sc.

born on 12.06.1987, in Anhui, China

 Reviewers:

Prof. Dr.-Ing. Axel Hahn
Prof. Dr. rer. nat. Thomas Brinkhoff

Date of disputation:

15.05.2020

Acknowledgements

Many people supported me through my time at Oldenburg to accomplish this dissertation. First of all,

I would like to acknowledge my supervisor Prof. Dr. Axel Hahn for his constant encouragement,
inspiration and guidance through my doctoral study. I also would like to thank Prof. Dr. Thomas
Brinkhoff for his various suggestions for my research during this period. Many thanks go to the other of
my thesis committee members Prof. Dr. Jürgen Sauer and Dr. Marco Grawunder as well, for the great
discussion and insightful feedback.

Besides, I want to express my gratitude to my group members in the System Analysis and
Optimization Group, for inspiring discussions, useful scientific and technical input of my research,
helpful suggestions of my life in Oldenburg, as well as all the fun we had together in the last years. I had
a great pleasure to work with you。

My special thanks go to all my friends for life, who saved me from a difficult situation caused by
various unfortunate events that happened to my family at the beginning of my doctoral study. It is
impossible to continue my study without your help.

Last but not least, I want to thank my husband and dearest friend He Huang, my mother, my parents-
in-law and other family members. This dissertation would not have been possible without your
accompaniment and unconditional support by all means.

i

Abstract

This thesis focuses on facilitating the development process of software programs that produce data
representing simulated environments in simulation scenarios. Such a program is a component of a more
complex simulation. It provides controlled stimuli that have influences on the system of interest
component in the more complex simulation. Its functionalities depend on the overall simulation goals of
the more complex simulations and the required input of the system of interest models in the simulations.

Developing such a component often involves multiple roles. The simulated environments produced
by this component should exhibit spatio-temporal heterogeneity that matches the simulation scenario,
which should be determined by the component users, i.e., the system of interest modelers. The users view
and describe the expected simulated environments in their scenarios from a human observer view based
on common sense. Such descriptions have fewer details than implementable software models and mix
information about different software artifacts. The realization of this component requires the knowledge
of spatial data structures and operations in software, while the users may not necessarily have them. Thus,
the component may need to be implemented by other experts. Besides, modelers who provide the
computational models of environmental phenomena may not be experts in software engineering either.
They often express phenomena in mathematic formations. The different perspectives of the various
involved roles in development bring huge challenges to the development process. Developing such a
component requires much effort, and the solutions remain case-based.

The solution proposed by this thesis to overcome the above-explained challenges is a language-driven
framework. The components of this framework are anchored by a domain-specific executable description
language named Simulated Environment Description Language (SEDL). First, a metamodel is specified
to allow the users of the components under development to specify the simulated environments they
require in their simulation scenarios. This metamodel is grounded on common conceptualizations of the
spatial information theory. It serves as the abstract syntax of SEDL, which provides intuitive vocabularies
to describe the relevant characteristics of environmental phenomena, as well as what types of spatio-
temporal changes they may exhibit during simulations at the cognitive level. A description in this
language corresponds to a human-oriented Computation Independent Model (CIM) of the simulated
environment in a high-level functional simulation scenario.

Then, the SEDL model is mapped to following three system-oriented metamodels: the Configuration
Schema Description Profile which expresses the parameters that the component users want to be able to
modify to set some specific environmental conditions for an execution; the Simulated Environment
Structure Profile which expresses the data structure model that carries information of phenomena to be
computed; and the metamodel based on UML behavioral elements, which expresses computation flows
that update the states of the instances of the data structure model based on a specific configuration.
Mapping rules from the SEDL model to these metamodels serve as the operational semantics of SEDL,
defining the output when executing an SEDL description. This output is a set of inter-related models
described by these metamodels, which represents a component for simulated environment generation as
Platform Independent Models (PIMs). A model set transformed from an SEDL description follows the
structure of a light-weighted configuration language. Its implementation can consume a configuration
instance to produce a simulated environment during a simulation run.

Language metamodels in this thesis are defined by modeling standards of Model-Driven Architecture
(MDA) to remain implementation-independent. Based on it, the proposed framework is designed, which
includes the framework architecture that integrates the specified language metamodels and a guide of the
development process with this framework. A full implementation of this framework supports semi-
automatic transformation from an intuitive requirement description of simulated environment to software
skeletons, with only application-specific functions to be filled in or invoked. It enables rapid incremental
prototyping development. An EMF-based implementation of the framework is provided to demonstrate
the usage of the framework with use cases.

ii

The proposed framework contributes to the development of simulated environment components from
the following aspects. First, it enables the participation of component users in the development processes.
They can write executable SEDL descriptions of their required environmental conditions in simulation
scenarios at the cognitive level. Second, it facilitates communication among different roles involved in
development with formally expressed models. Third, it assists developers with automatic generations of
software models from cognitive level requirement descriptions. Fourth, it preserves functional
requirements in the development process and ensures intuitive user interfaces in products through well-
defined metamodels and transformation chains.

iii

Zusammenfassung

Diese Arbeit konzentriert sich auf die Erleichterung des Entwicklungsprozesses von
Softwareprogrammen, die Daten produzieren, die simulierte Umgebungen in Simulationsszenarien
darstellen. Ein solches Programm ist oft ein Bestandteil komplexerer Simulationen. Es stellt kontrollierte
Stimuli zur Verfügung, die Einfluss auf das System haben, das in den komplexeren Simulationen von
Interesse ist. Seine Funktionalität hängt von den übergeordneten Simulationszielen der komplexeren
Simulationen und dem erforderlichen Input des Zielsystems in den Simulationen ab.

Die Entwicklung einer solchen Komponente umfasst oft mehrere Rollen. Die von dieser Komponente
erzeugten simulierten Umgebungen sollten eine räumlich-zeitliche Heterogenität aufweisen, die dem
Simulationsszenario entspricht, das von den Benutzern der Komponente, d.h. dem Modellierer des
Zielsystems, bestimmt werden sollte. Die Benutzer betrachten und beschreiben die erwarteten simulierten
Umgebungen in ihren Szenarien aus der Sicht eines menschlichen Beobachters auf Grundlage des
gesunden Menschenverstands. Solche Beschreibungen haben weniger Details als implementierbare
Softwaremodelle und vermischen Informationen über verschiedene Software-Artefakte. Die
Realisierung dieser Komponente erfordert die Wissen von Raumdatenstrukturen und -operationen in der
Softwareentwicklung über die die Benutzer nicht immer verfügen. Daher muss die Komponente von
anderen Experten implementiert werden. Außerdem sind Modellierer, die Berechnungsmodelle für
bestimmte Umweltphänomene bereitstellen, möglicherweise auch keine Experten im Software-
Engineering. Sie formulieren die Phänomene in mathematischen Formeln. Die unterschiedlichen
Perspektiven der verschiedenen beteiligten Rollen in der Entwicklung bringen große Herausforderungen
für den Entwicklungsprozess mit sich. Die Entwicklung einer solchen Komponente erfordert viel
Aufwand, und die Lösungen bleiben fallbezogen.

Die in dieser Arbeit vorgeschlagene Lösung zur Bewältigung der oben beschriebenen
Herausforderungen ist ein sprachgesteuertes Framework. Die Komponenten dieses Frameworks werden
durch eine domänenspezifische ausführbare Beschreibungssprache namens Simulated Environment
Description Language (SEDL) verankert. Zunächst wird ein Metamodell spezifiziert, das es den
Benutzern der zu entwickelnden Komponenten ermöglicht, die simulierten Umgebungen zu spezifizieren,
die sie in ihren Simulationsszenarien erwarten. Dieses Metamodell basiert auf gemeinsamen räumlichen
Konzeptualisierungen der Theorie der räumlichen Information. Es dient als abstrakte Syntax von SEDL,
die das intuitive Vokabulare zur Beschreibung der relevanten Merkmale von Umweltphänomenen sowie
der Arten von raum-zeitlichen Veränderungen, die diese während der Simulationen auf kognitiver Ebene
aufweisen können, bereitstellt. Eine Beschreibung in dieser Sprache entspricht einem menschorientierten
Computation Independent Model (CIM) der simulierten Umgebung in einem high-level funktionalen
Simulationsszenario.

Dann wird das SEDL-Modell in drei Aspekten auf systemorientierte Metamodelle abgebildet: erstens
ein Beschreibungsprofil für das Konfigurationsschema, das die Parameter ausdrückt, die die
Komponentenbenutzer ändern können wollen, um einige spezifische Umgebungsbedingungen für eine
Ausführung festzulegen; zweitens ein Profil der simulierten Umgebungsstruktur, das die Datenstruktur
ausdrückt, die Informationen über zu berechnende Phänomene enthält; und Metamodelle, die
Berechnungsflüsse ausdrücken, die die Zustände der Datenstrukturmodellobjekte auf der Grundlage einer
spezifischen Konfiguration aktualisieren. Abbildungsregeln vom SEDL-Sprachmodell auf diese
Metamodelle dienen als operative Semantik von SEDL, die die Ausgabe bei der Ausführung einer SEDL-
Beschreibung definieren. Diese Ausgabe ist ein Satz von miteinander verbundenen Modellen, die durch
diese Metamodelle beschrieben werden, die eine Komponente für die Generierung von simulierten
Umgebungen als Platform Independent Models (PIMs) darstellen. Ein aus einer SEDL-Beschreibung
transformierter Modellsatz folgt der Struktur einer einfachen Konfigurationssprache. Seine
Implementierung kann eine Konfiguration zur Erzeugung einer simulierten Umgebung ausführen.

iv

Die Sprachmetamodelle in dieser Arbeit werden durch Modellierungsstandards der Model-Driven
Architecture (MDA) definiert, um eine Unabhängigkeit von der Implementierung zu gewährleisten.
Darauf aufbauend wird das vorgeschlagene Framework entworfen, das die Framework-Architektur
umfasst, welche die spezifizierten Sprachmetamodelle integriert, und einen Leitfaden für den
Entwicklungsprozess enthält. Eine vollständige Implementierung dieses Frameworks unterstützt die
automatische Transformation von einer intuitiven Anforderungsbeschreibung der simulierten Umgebung
in Software-Skelette, wobei nur anwendungsspezifische Berechnungsfunktionen ausgefüllt oder
aufgerufen werden müssen. Sie ermöglicht eine schnelle inkrementelle Prototypentwicklung. Eine EMF
(Eclipse Modeling Framework)-basierte Implementierung des Frameworks wird bereitgestellt, um die
Verwendung des Frameworks mit Anwendungsfällen zu demonstrieren.

Das vorgestellte Framework trägt zur Entwicklung von simulierten Umweltkomponenten unter
folgenden Aspekten bei. 1) Es ermöglicht die Beteiligung der Nutzer der Komponenten an den
Entwicklungsprozessen. Sie können ausführbare SEDL-Beschreibungen ihrer erforderlichen
Umgebungsbedingungen in Simulationsszenarien auf der kognitiven Ebene schreiben. 2) Es erleichtert
die Kommunikation zwischen verschiedenen Rollen mit formal ausgedrückten Modellen. 3) Es
unterstützt Entwickler mit der automatischen Generierung von Softwaremodellen aus
Anforderungsbeschreibungen auf kognitiver Ebene. 4) Es bewahrt funktionale Anforderungen im
Entwicklungsprozess und gewährleistet eine intuitive Benutzerschnittstelle in den Produkten durch
wohldefinierte Metamodelle und Transformationsketten.

v

Table of Contents

Abstract... i
Zusammenfassung .. iii
Table of Contents ... v
Abbreviations.. viii
List of Figures ... ix
List of Tables ... x
1 Introduction .. 1

1.1 Motivation ... 1
1.2 Challenges ... 2
1.3 Research Objectives ... 4
1.4 Overview of Chapters .. 5

2 Research Foundations ... 7
2.1 Model-Driven Development (MDD) ... 7

2.1.1 Model-Driven Architecture (MDA) ... 7
2.1.2 Standards for MDD .. 8
2.1.3 Multilevel Metamodeling... 9

2.2 Computer Languages ... 10
2.2.1 Elements of a Computer Language .. 10
2.2.2 Domain-Specific Languages .. 12
2.2.3 Language Workbenches ... 13

3 Related Works .. 15
3.1 CIM-PIM Transformations .. 15

3.1.1 CIM-PIM Transformations in Specific Domains ... 15
3.1.2 Analytic Approaches for CIM-PIM Transformations .. 16
3.1.3 Automatable CIM-PIM Transformations ... 16
3.1.4 Summary and Relation to This Thesis ... 18

3.1.4.1 Evaluation .. 18
3.1.4.2 Lessons Learned and Missing Points ... 21

3.2 Spatial Conceptualization and Data Representation ... 21
3.2.1 Spatial Conceptualizations ... 21
3.2.2 Representation of Spatial Data ... 22
3.2.3 Summary and Relation to This Thesis ... 23

3.3 Simulated Environments in Software... 24
3.3.1 Styles of Simulated Environment Components.. 24
3.3.2 Summary and Relation to This Thesis ... 26

4 Language-Driven Development Framework of Simulated Environment Components................... 28
4.1 Executable Meta Languages .. 28

4.1.1 Simulated Environment Description Language (SEDL) .. 29
4.1.2 Configuration Schema Description Profile .. 30
4.1.3 Simulated Environment Structure Profile .. 31
4.1.4 Metamodel of Environment Computation.. 31

4.2 Build Software Applications as Computer Languages ... 32
4.2.1 Development Framework as IDE of SEDL .. 32

4.2.1.1 SEDL Core Language Model ... 33
4.2.1.2 Basic SEDL Tooling .. 34
4.2.1.3 Platform-Specific Mapping Layer ... 35
4.2.1.4 SEDL Extension Layer .. 35

4.2.2 Simulated Environment Specification by Configuration Language 36
4.3 Development Process with the Proposed Framework .. 37

4.3.1 System Analysis ... 37
4.3.2 Software Design ... 38
4.3.3 Implementation .. 39

vi

4.3.4 Development Activity Flow with Iterations ... 40
5 Simulated Environment Description Language .. 42

5.1 SEDL Language Model ... 42
5.1.1 Conceptual Modeling Principles .. 42

5.1.1.1 Level of Modeling ... 42
5.1.1.2 Perspective of Modeling .. 43

5.1.2 Abstract Syntax .. 44
5.1.3 Descriptive Semantics .. 44

5.1.3.1 DescriptionItem and Configurable ... 44
5.1.3.2 ConfigurableParameter .. 44
5.1.3.3 Composition of Environment ... 45
5.1.3.4 Expression of Exhibited Changes .. 47
5.1.3.5 Conceptual Approximation in the Formulation of Change Expressions 48
5.1.3.6 Chang Types of an Individuality .. 49
5.1.3.7 Alternative Change Modes .. 53
5.1.3.8 Characteristic Variation among Instances of an EnvironmentalPhenomenon 53
5.1.3.9 ExecutionRoutine .. 57

5.2 PIM Layer Metamodels ... 58
5.2.1 Configuration Schema Description Profile .. 58

5.2.1.1 Summary .. 58
5.2.1.2 ConfigSchema ... 59
5.2.1.3 ConfigItem and Primitive Types .. 59
5.2.1.4 ConfigComponent Types ... 60
5.2.1.5 SubComponent and ConfigOption Associations .. 60
5.2.1.6 Usage Outside the Framework ... 61

5.2.2 Simulated Environment Structure Profile .. 61
5.2.2.1 Summary .. 61
5.2.2.2 Utility Datatypes .. 62
5.2.2.3 Runtime Simulated Feature Types ... 62
5.2.2.4 Single-Valued Feature Types ... 64
5.2.2.5 Collective Feature Types ... 65
5.2.2.6 Subtypes of CollectiveFeatureType ... 66
5.2.2.7 SpatialFunction .. 71
5.2.2.8 Requested Snapshots.. 72

5.2.3 Metamodel of Environment Computation.. 74
5.2.3.1 Summary .. 74
5.2.3.2 Two Views of Behavioral Models ... 75
5.2.3.3 Life Cycle Control of Simulated Features .. 76

5.3 Transformations of SEDL Descriptions ... 77
5.3.1 CIM-PIM Transformation Process ... 77
5.3.2 Description2Config .. 78
5.3.3 Description2Structure .. 78
5.3.4 Description2Computation .. 79
5.3.5 Map Description of Spatial Heterogeneity to Design Models .. 81
5.3.6 Generate Execution Routine .. 82

6 Prototypical Implementation .. 85
6.1 Eclipse Modeling Framework .. 85
6.2 EMFText.. 86
6.3 OCLInEcore... 87
6.4 ATL ... 88
6.5 Acceleo .. 89
6.6 Other Involved Tools ... 91

7 Use Cases ... 92
7.1 Focus of the Use Cases .. 92
7.2 Use Case 1: Sea Environment for the Path Assessment ... 92

7.2.1 SEDL Description .. 93

vii

7.2.2 Transformed Artifacts .. 94
7.2.3 Summary .. 98

7.3 Use Case 2: Storm Avoidance Strategy Evaluation .. 99
7.3.1 SEDL Description .. 100
7.3.2 Transformed Artifacts .. 100
7.3.3 Summary .. 103

8 Discussions ... 105
8.1 Contributions and Objective Fulfillment.. 105
8.2 Limitation of Model Transformations in Development ... 106
8.3 Visions of SEDL Extension ... 108

8.3.1 Environmental Phenomenon as Network ... 108
8.3.2 Influence Between Phenomenon Types ... 108
8.3.3 Using Spatial Predicates at the System Analysis Phase ... 109

8.4 Reuse of Implemented Environmental Phenomena ... 110
References ... 112
Appendix A: CIM-PIM Transformations... 118
Appendix B: SEDL Descriptions for Use Cases .. 128

viii

Abbreviations

AD Activity Diagram
ARIS Architecture of Integrated Information Systems
ATL Atlas Transformation Language
BPD Business Process Diagram
BPM Business Process Model
BPMN Business Process Modeling Notation
CD Class Diagram
CIM Computation Independent Model
CSS Cascading Style Sheets
DCD Domain Class Diagram
DCM Domain Class Model
DFD Data Flow Diagram
DSL Domain Specific Language
DW Data Warehouse
EBNF Extended Backus–Naur form
EMF Eclipse Modeling Framework
EMOF Essential Meta-Object Facility
EPB Elementary Business Process
GUI Graphic User Interface
HTML Hypertext Markup Language
IDE Integrated Development Environment
IEEE Institute of Electrical and Electronics Engineers
IFML Interaction Flow Modeling Language
ISO International Organization for Standardization
MDA Model-Driven Architecture
MDD Model-Driven Development
MMT Model to Model Transformation
MOF Meta-Object Facility
MPS Meta Programming System
MTL Model to Text Language
NetCDF Network Common Data Form
OCL Object Constraint Language
OMG Object Management Group
OGC Open Geospatial Consortium
PIM Platform Independent Model
PSM Platform Specific Model
PSI Platform Specific Implementation
QVT Query/View/Transformation
SDSED System’s External Behavior
SDSIB System’s Internal Behavior
SEDL Simulated Environment Description Language
SoaML Sercive-Oriented Architecture Modeling Language
SOD-M Service-Oriented Development Method
SSD System Sequence Diagram
TIN Triangular Irregular Networks)
UC Use Case
UCD Use Case Diagram
UML Unified Modeling Language
UWE UML-based Web Engineering
WebRE Web Requirements Engineering
XMI XML Metadata Interchange
XML eXtensible Markup Language

ix

List of Figures

Figure 1.1: Chapter Overview. ... 6
Figure 2.1: Semantic Areas of UML. ... 8
Figure 2.2: Relationships between QVT metamodels. ... 9
Figure 3.1: Taxonomy of CIM-PIM Transformation Components. ... 19
Figure 3.2: Styles to Provide Simulated Environments. ... 26
Figure 4.1: DSL Models in the Proposed Framework. ... 28
Figure 4.2: Logical Components of the Proposed Framework. .. 33
Figure 4.3: Model Related Artifacts Correspondence to MDA and Metamodeling Levels. 34
Figure 4.4: Developed Components as Syntax-Directed Applications. ... 36
Figure 4.5: Development Process with Processed Framework. ... 37
Figure 4.6: Main Activities in the Development Process. .. 41
Figure 5.1: Forms of Simulated Environments at Different Development Phases. 42
Figure 5.2: SEDL Abstract Syntax. ... 43
Figure 5.3: Abstract Syntax of Individuality Change Types. ... 52
Figure 5.4: Abstract Syntax of AlternativeMode. .. 53
Figure 5.5: The Computation Chain of Characteristic Variations. ... 55
Figure 5.6: Configuration Schema Description Profile. ... 58
Figure 5.7: Conceptual Links of Entities Related to a Simulation. .. 63
Figure 5.8: Stereotypes of Runtime Simulated Feature Types. .. 67
Figure 5.9: Geometry Illustration of CollectiveFeatureTypes. ... 68
Figure 5.10: Snapshot Types.. 72
Figure 5.11: Define the getUnit() Operation for the CollectiveFeatureUnit Stereotype. 74
Figure 5.12: Elements in Instance Models of Behavioral Metamodels. ... 75
Figure 5.13: CIM-PIM Transformation Process. ... 77
Figure 6.1: EClasses in the SEDL Ecore Model. ... 85
Figure 6.2: SpatialFunction(Left) and Created EClass (Right) in the UML Editor. 86
Figure 6.3: Textual Editor for SEDL Description. ... 87
Figure 6.4: OCL Constraints for Change Description. ... 87
Figure 6.5: Validation Method Example. ... 88
Figure 6.6: Warning Message for OCL Constraint Violation. ... 88
Figure 6.7: ATL Rule Example. .. 89
Figure 6.8: Acceleo Code Generation Example. .. 91
Figure 7.1: PIM-Layer Configuration Model in Use Case 1. ... 94
Figure 7.2: PIM-Layer Data Model in Use Case 1. .. 94
Figure 7.3: PSM-Layer Java Classes of Data Model in Use Case 1. .. 95
Figure 7.4: PSM-Layer Java Classes of Compute Model in Use Case 1. ... 95
Figure 7.5: Constructor of the “ComputeShip” Java Class. ... 96
Figure 7.6: Code for the Initialization of Ships in the Background Traffic. ... 96
Figure 7.7: Methods for Computation Units of a Ship in the Background Traffic. 97
Figure 7.8: Method for Compute the Location of a Ship in the Background Traffic. 97
Figure 7.9: Code for Computing New States of a Ship in the Background Traffic. 98
Figure 7.10: Transformations of Use Case 1. ... 98
Figure 7.11: PIM-Layer Configuration Model and Data Model in Use Case 2.................................... 101
Figure 7.12: PSM-Layer Java Classes of Configuration and Data Model in Use Case 2. 101
Figure 7.13: PIM-Layer Java Classes of Computation Model in Use Case 2. 102
Figure 7.14: Transformations of Use Case 2. ... 104
Figure 8.1: An influencedBy Link in an SEDL Description. ... 109
Figure 8.2: Conceptual Architecture for Implementation Reuse. ... 110

x

 List of Tables

Table 3.1: Summary of CIM-PIM Transformation Researches. .. 20
Table 5.1: Available Options of ParameterType. ... 45
Table 5.2: Possible Number of Dimensions of a SimulatedEnvironment. ... 45
Table 5.3: Types of Variable and Variant. ... 48
Table 5.4: Individuality Level Change Types. ... 50
Table 5.5: No-locational Characteristic Level Change Types. ... 51
Table 5.6: Express Required Characteristic Variation and Alterable Conditions in SEDL. 56
Table 5.7: Available Options of ExecutionMode. .. 57
Table 5.8: Available Options of OutputRange. .. 57
Table 5.9: Stereotypes for the Simulated Feature Life Cycle Control. ... 77
Table 5.10: Apply a Stereotype to the Data Structure Class. ... 79
Table 5.11: Overall Steps of Description2Computation. ... 80
Table 5.12: Generation of the Dependency Graph for a SpatialIndividuality. 81
Table 5.13: Generation of a SpatialFunction. .. 82
Table 7.1: Initial Requirements of Environmental Phenomena in Use Case 1. 93
Table 7.2: Initial Requirements of Environmental Phenomena in Use Case 2. 100

1

1 Introduction
1.1 Motivation

Computer-aided simulations are widely used to explore behaviors of real-world phenomena, to
validate designs of new artificial systems, and to verify hypothetical processes. Research targets (i.e.,
systems of interest) in simulations are reduced to models representing their essential characteristics and
functions based on mathematical abstractions. They may be natural phenomena, technical systems or
social entities. An execution process of a simulation imitates behaviors of the modeled real-world system
along the timeline.[1], [2]

The system of interest model in a computer simulation often does not work alone. While its real-world
counterpart is influenced by other phenomena in its situated environments, behaviors of the real-world
system in reaction to such influences should be captured by the system of interest model. For computing
the modeled reactive behaviors during simulation executions, the system of interest model needs digital
input which are abstractions of the situated environment of the real-world system of interest, i.e., the
simulated environment[3].

Thus, a simulated environment component should generate necessary inputs for the system of interest
model it serves. This component itself is also a simulation application whose model should capture the
real-world phenomena that constrain and alter the behaviors of the system of interest. It produces data
representing simulated environments that act as controlled stimuli for running the system of interest
model[3]. Different from the system of interest model whose behaviors are to be explored, simulated
environments should be generated in a desired way. The composition of these simulated environments
depends on the captured environmental influences in the system of interest model. The more kinds of
environmental influences a system of interest model considers, the more complicated simulated
environment it requires. Behaviors of the environmental phenomena should match the expected
conditions of simulation scenarios and often should be alterable to some extent, so the behaviors of the
system of interest under different environmental conditions can be computed, compared and analyzed.
Even for simulations about the same system, simulated environments may be diverse due to different
investigation purposes, and some of them could be very complex. Sources and forms of models that
produce these phenomena in simulations inherit this diversity and complexity.

The simulations of maritime systems such as vessel simulations offer a good example of the diversity
among simulated environments. Maritime systems are usually costly, and their activities are often safety-
critical. Simulations are an appropriate way of testing and analyzing these systems before real operations
are performed[4]. The maritime environment is a physical world that holds complex phenomena varying
over space and time. Crucial influences from the environments cannot be simply ignored by a vessel
model in safety-critical simulations. In many cases, the ship model should be tested with simulated
environments that resemble real-world situations.

Practical vessel models often need to consider the influence of the tidal, sea current and wind.[5] For
a simulation that identifies parameters of a mathematic model for ship dynamics, the simulation often
starts with setting the vessel model in idealized environmental situations. In this case, the vessel model
is assumed to be set in open, still water. It is fed with some input based on simplified deterministic or
statistic patterns, such as no tide, constant force from the sea current and random values representing
turbulence of wind. The simulated environment component needs to enclose functions to compute this
value and fed them to the ship model.

Before the identified vessel model is used for further purposes, its quality should be evaluated. A
widely used strategy is to execute a set of simulation runs using this model with simulated environments
from available historical records of environmental information. Outcomes of these executions are
compared with the recorded vessel behaviors, e.g., the trajectories, to check if the model can successfully
reproduce the behaviors of the real vessel. In this case, the component that provides the simulated
environments may need to have the functionalities to access the observation data source, acquire the
necessary context and send the data to the ship model in a suitable form.

2

The evaluated model can be used for simulations that help analyze its modeled vessel. For such
simulations, the vessel model needs to be set in simulated environments that imitate desired real-world
situations. For instance, to assess the suitability of a planned path in different seasons, typical spatio-
temporal patterns of tidal, sea current and wind in corresponding seasons within the area that the voyage
should take place may need to be provided. To test the robustness of autonomous ship controllers,
simulated environments should imitate evolution patterns of influential phenomena during various
extreme conditions, e.g., the evolution patterns of wind force during a storm. To analyse vessel behaviors
near a port, the simulated environment should also include infrastructures of the port and its dynamics,
as well as other nearby moving systems. Simulated environment components in these cases need their
own models of computation that are well-studied and controllable to produce desired patterns of
environmental phenomena required by corresponding scenarios.

With more complex environmental situations being considered, the complexity of components that
produce simulated environments increase. Models for computing realistic patterns of spatio-temporal
varied phenomena such as wind could require comprehensive knowledge to cope with and are different
from each other. For a specific simulation goal, the system of interest model may need environmental
phenomena being simulated at different levels of complexity. This leads to huge challenges in
developing simulated environment components, especially when the simulations are spatial-aware.
These challenges gained the author’s attention and motivated the research of this thesis. They are
summarized in the next section based on which the research objectives of this thesis are identified.
1.2 Challenges

Various challenges emerge throughout the whole development process of a simulated environment
component as identified in this section. The research objectives of this thesis listed in the next section
are derived with the aim of overcoming these challenges.

Challenge 1: a huge amount of communication efforts is needed among the involved roles with
different expertise during the development of a computer simulation with multiple components.

This problem appears since the system analysis starts when functional simulation scenarios are
determined. These scenarios reflect the high-level functional requirements of the simulation application
under development, in which behaviors of environmental phenomena that are influential to the system of
interest form an important part. The component producing simulated environments for this simulation
should have functionalities to simulate these phenomena. The produced context of this component is not
freely decided by environmental modelers but depends on the needs of the system of interest component
in this simulation.

In a complex simulation involving multiple models of real-world phenomena, the system of interest
modelers and the modelers of phenomena in the simulated environment are often different experts. The
system of interest modelers have the knowledge about which environmental phenomena and which
characteristics of these phenomena should be provided for running their models, as well as the
evolvement patterns that these phenomena should undergo in the simulation to fulfill their simulation
goals. However, they do not necessarily have the expertise to produce these contexts digitally. Thus, the
simulated environments expected by the system of interest modelers have to be communicated through
functional scenarios to the modelers of the simulated environment. However, the involved roles hold
different expertise and use different notations in communications that may lead to a difficult, lengthy and
error-prone analysis phase.

Challenge 2: a gap exists between the description of the required simulated environments in
high-level functional scenarios and application models of a component that produced the digital
representation of such environments.

The component design based on the simulated environment in functional scenarios from the analysis
phase involves a view switch. The required simulated environments in these scenarios are expressed from
a human observer view in terms of their composition and desired variations over space and time at the
cognitive level. The underlying concepts of these descriptions are about phenomena in the spatial world.

3

In contrast, the models of the simulated environment component focus on artifacts of the computer
application such as data structures, operations and computation flows.

Further, the functional scenarios have fewer details compared to an implementable component model
that should be able to provide digital imitations of the described environments. Figuring out missing
details could be hard work. Moreover, a piece of the analysis-phase description of simulated
environments mixes information that goes to different software artifacts. No explicit, one-to-one
mapping exists from concepts about environments to software artifacts. Some of them may be mapped
to data structures and some others are only reflected in execution processes. For instance, an functional
simulation scenario may state that a storm should appear in the simulated environment whose influence
area moves related to the ground. Data structures to hold the area of influence will be found in the
structural model of the component under development (e.g., as classes in an object-oriented language).
However, the “move” only exhibits during execution, which requires some operation in the component
to manage the execution process.

Challenge 3: computational models of environmental phenomena often do not align with
application models simulated of environment components.

The component producing simulated environments in a bigger simulation is a simulation application
by itself. It needs to enclose its own abstractions of real-world phenomena. These abstractions may range
from connections and queries to recorded data to complex mathematic formulas from which digital values
of presented phenomena can be computed. They play the role of computational models of this component.
The purpose of executing such simulations is to reproduce environmental phenomena with desired
patterns that match simulation scenarios.

However, computational models needed by such components may be developed from other standalone
research with a different scientific or industrial purpose than the bigger simulation they serve. Even
though such a model may have modeled all relevant aspects of a phenomenon needed by the simulation
scenarios, it is likely formalized and encoded differently than the form needed by the simulated
environment component. e.g., in some mathematic formations or as a standalone program whose outputs
are some statistic descriptors about its simulated phenomenon instances.

To adapt such a computational model to a simulated environment component, it needs to be turned to
a functional form that can make sample draws from this model. A sample draw should include aspects
relevant to the simulation scenario, e.g., a time series of wind strength in the simulated area. A computed
sample is fed to the system of interest component over the execution. This form should also provide
component users with simple access to some of the model parameters so that they can adjust the
characteristics of the drawn samples from various executions.

A mature computational model of a real-world phenomenon type may cover much richer aspects than
a simulated environment needs and have a huge set of parameters. Without expertise about this model,
adapting it to a simulated environment component is very difficult, if not impossible. On the other side,
experts of this model also do not necessarily master all knowledge about the system of interest component
that uses this component. It brings the risk that mismatch may appear when they integrate the
computational models into a simulated environment component. The resulting component may not
correctly preserve the requirements of simulation scenarios, e.g., output values may not be the expected
input to the system of interest component, and the exposed parameters may not control the characteristic
of the computed phenomenon as expected.

Challenge 4: modelers of environmental phenomena may not be familiar with the platform that
is used to implement the simulation under development, which causes difficulties in
implementation.

When the computational models of a simulated environment component are developed from
standalone researches, they are often encoded, implemented and tested in a different platform than the
one being used in the current development. Their modelers may not be familiar with the implementation
platform on which the component should be developed and be integrated into the bigger simulation it
serves. Implementing the adapted models of required environmental phenomena with the chosen platform
may lead to a long learning curve for them to master the underlying technical architecture and tools.

4

A platform for implementing simulations with multiple components is often more complex than an
experimental tool for a single model. In addition to implementing the logic of the computation functions
in such a complex platform, much extra work has to be spent on implementing architectural code and
communication functions among model units and among components. The extra work distracts modelers
from implementing the essential computation functions and further increases the difficulties in the
implementation phase.
1.3 Research Objectives

Similar challenges also exist when developing computer applications in other context domains.
Universal solutions can partially overcome these challenges, among which Model-Driven Development
(MDD)[6] is a widely-used strategy. It provides modeling languages as communication tools and as
metamodels that enable model transformations and code generations, which saves manual work.
However, since context domains are potentially infinite, these universal solutions can hardly cover the
domain context-related aspect.

This thesis aims at providing a domain-specific solution dedicated to overcoming the identified
challenges in the development of components that produce simulated environments in spatial-aware
computer simulations, with higher efficiency than domain-independent solutions based on MDD while
inheriting merits of them. The scientific focus lays on bridging high-level functional requirements of
simulated environment and implementable computer application models, which involves the domain
context and thus cannot be addressed at the domain-independent scale. The overall research goal is
formed as follows:

Build a domain-specific development framework, which integrates concepts, methods and tools
to facilitate the development of simulation components that produce simulated environments for
the system of interest component in spatial-aware simulations.

This goal can be achieved by answering the following three research questions (RQs in the following
text) dealing with different addressed challenges in Section 1.2. Several objectives are identified for each
question to break the research topic into actionable units.

RQ 1: what are the common concepts underlying simulated environments in analysis-phase
functional scenarios of spatial-aware simulations, and what is the meta structure behind
descriptions of these environments?

The investigation of this question leads to a domain-specific description language model that can be
used to capture required simulated environments in functional scenarios in a structured way. It provides
a communication tool to document and exchange requirements about the expected simulated
environments at the system analysis phase, which helps to overcome Challenge 1. The following two
objectives need to be achieved to build this language.

Objective 1.1: capture a description structure of simulated environments at the cognitive level.
A small number of concepts used when human roles view and express simulated environments at the
analysis phase in natural languages should be identified and organized in this structure. This structure
should be close to the way that human observers organize their perceptions of different aspects of an
environment and phenomena in this environment. Thus, it should be understandable and be easily used
without particular expertise in modeling and development though little learning effort.

Objective 1.2: capture and formalize concepts to describe changes of environmental phenomena
in space and time. A simulation is a dynamic process in which its simulated environment evolves in
time, while phenomena in the environment may also be heterogeneous over space. Expected changes of
phenomena in this simulated environment have to be described in the functional scenarios. The types of
changes humans may perceive in the environment and which concepts of phenomena they are associated
with, have to be captured in the description language model.

RQ 2: how the simulated environments in analysis-phase functional scenarios are captured by
structures and operations of computer simulation applications?

5

The answer to this question contributes to overcoming Challenges 2 and 3. It essentially enables
transformations from the description of simulated environments in the human observer view to crucial
artifacts in the simulation component in the system design view. The following two objectives should be
achieved to answer this question.

Objective 2.1: capture a computer application metamodel for simulation components that
produces simulated environments for systems of interest. This metamodel should identify crucial units
and artifacts that a component should have to be able to produce the possible environments described in
the language from RQ1. It should be specified in an implementation-independent manner at the detail
level of implementable software design models. This metamodel is also a communication tool that
describes and exchanges application models of simulated environment components among different
developers, which helps to overcome Challenge 1.

Objective 2.2: establish the mapping between the description model of simulated environments
and the application metamodel of simulated environment components. This mapping identifies what
necessary artifacts of computer applications should be added and where to locate them within the
application model, when an instance of a certain concept is presented in a description of the simulated
environment. Thus, developers can be assisted by the established mappings when they design and
implement component models based on functional scenarios expressed at the cognitive level.

RQ 3: how to integrate the identified concepts and models into a development framework and
use them to facilitate the development of a simulated environment component?

A domain-specific development framework for the overall research goals is provided by answering
this question. It integrates all research outcomes from this thesis and utilizes the general MDD solutions
when necessary.

Objective 3.1: establish a development framework for simulated environment components. This
framework should integrate all theoretical outcomes from previous RQs. It should identify necessary
components of the framework, the theoretical outcomes realized by each component, as well as
functionalities that each component provides in the development. Further, it should also clarify
dependencies and interactions between these components so that they can be used together. This
framework should be specified independently of implementation tools but be feasible to be implemented.
A realization of this framework on a specific implementation platform contributes to overcoming
Challenge 4 by automating the implementation of architectural code and communication functions that
can be derived at the platform-specific level.

Objective 3.2: specify a guide of the development process with the framework. Together with the
established framework architecture, a development guide should be provided to clarify the usage of this
framework. It should go through the software development process starting from the system analysis to
the implementation of production. For each development phase, this guide denotes the involved roles and
framework components, the way that the framework being used, as well as the input and the output of
this phase.
1.4 Overview of Chapters

The main content of this thesis is organized into three parts as shown in Figure 1.1, starting from the
next chapter and followed by a summary chapter. Each part includes two chapters with a specific focus
as introduced below.

In the first part, the related works of the thesis are introduced. Chapter 2 presents the fundamental
research based on which this thesis is constructed. This includes the relevant knowledge of MDD, the
fundamental concepts of computer languages in general, as well as the knowledge about DSL. Chapter 3
is dedicated to reviewing the research that shall contribute to the research objectives of this thesis, to
figure out their relevance to these objectives, how this thesis can benefit from them, and the remaining
problems that need to be solved. The review covers the methodological aspect of transformations from
Computation Independent Models (CIMs) to Platform Independent Models (PIMs), which bridges the

6

human view and the system view in the development. It also covers the modeling work in the context
domain that this thesis deals with, i.e., the spatial conceptualization and data representation, as well as
the common ways to provide simulated environments in computer simulations.

The specification of the proposed framework is presented in the second part, which provides the
theoretic answers to the research questions of this thesis. Chapter 4 specifies the composition of the
proposed framework and the development process using the framework, which answers RQ3. The
framework specification includes a set of domain-specific languages at both the CIM layer and the PIM
layer, an architecture of components for a realization of the proposed framework, and a guide of
development processes within the framework. It is followed by Chapter 5 that provides the detailed
specifications of the language models in the framework as they form the backbone of the framework. The
specification covers the CIM-layer language Simulated Environment Description Language (SEDL) that
is the research outcome to achieve the objectives of RQ2, and transformation rules from descriptions in
SEDL to PIM-layer component models, which are the research outcome to achieve Objective 3.2. Three
PIM-layer metamodels used to describe the PIM-layer outputs are also specified in this chapter, which
provide the solution to achieve Objective 3.1. They are used to express user interfaces, data structure and
behaviors of the simulation components producing simulated environments, respectively.

The third part then presents a prototypical implementation to demonstrate the feasibility of realizing
and using the proposed framework. Chapter 6 introduces the used tools and strategies to implement the
prototype. In Chapter 7, this prototype is verified with use cases to demonstrate the framework
functionalities against its specification.

Finally, Chapter 8 summarizes the contribution of this thesis, discusses reasons that cause limitations
of the framework, as well as lists out open issues with suggested conceptual ideas that shall solve these
issues in future work.

Figure 1.1: Chapter Overview.

7

2 Research Foundations
This chapter introduces the research on which this thesis is built. First, the solution provided by this

thesis contributes to domain-specific system developments, which involve several domain-specific
modeling languages. These languages are defined by models and are used to express models. Involved
models in the solution are coordinated based on the Model-Driven Development (MDD) paradigm[6],
[7]. To support readers’ understanding, Section 2.1 briefly introduces relevant knowledge of MDD.
Second, this thesis frequently refers to components of executable computer languages when specifying
language models and the framework architecture in its solution. Fundamental concepts of computer
languages that are necessary to understand this thesis are introduced in Section 2.2.
2.1 Model-Driven Development (MDD)

Model-Driven Development is a paradigm that develops systems based on a set of models. This
section introduces the knowledge of MDD that is relevant to this thesis. It gives an overview of the layers
of Model-Driven Architecture (MDA)[8], the modeling standards from Object Management Group
(OMG)1, as well as the concepts of the multilevel metamodeling.
2.1.1 Model-Driven Architecture (MDA)

MDA is a general-purpose architecture defined by OMG for model-driven development. A key
strategy of MDA is the model transformation that produces models from other models through a
transformation pattern. Transformations can generate models from one presentation to another, or from
one abstraction layer to another. By automating the transformation paths from high-level models in the
view of stakeholders to functional systems, time and cost for developing a system are reduced while the
consistency of expectations among different involved roles in the development increase. MDA identifies
several architectural layers to locate models with different levels of abstraction[8]:

 Computation Independent Model (CIM): a CIM is also referred to as a domain model. It is
described with vocabularies that are familiar to experts of the subject which the system deals with. This
model describes “real things” in the world. It is a functional description of what a system is expected to
do or to resemble from the user perspective, without mentioning the technical aspects of a system. In
software development, CIMs are often modeled at the system analysis phase to gather the requirements
of systems under development. Platform Independent Model (PIM): a PIM is also referred to as a logical system model. It is
a design model that expresses the structures and behaviors of the system independently from
implementation platforms. In software development, a platform is a set of resources that are used to
realize and execute the system application in specific programming languages or regulations. Thus, a
PIM has a sufficient level of independence to be realized on multiple platforms. Platform Specific Model (PSM): a PSM refines a PIM with technical details required to realize
the system on a specific platform. Since a platform can exist at many layers, the PIM and PSM are relative.
To a related PIM, a PSM is any model that is more technology-specific than it. For instance, a software
design model described by XML can be mapped to different implementation languages such as Java or
C. To models that are specific to these languages, this XML model is platform-independent. The key
distinction from the CIM is that both PIMs and PSMs are system-oriented. Transformations between
PIMs and PSMs do not add conceptual content but rather technical details.

Final productions of executable systems are implemented based on PSMs. In software development,
they are executable code programs. This thesis refers to such a system as a Platform Specific
Implementation (PSI) for a consistent naming structure.

1 https://www.omg.org/

8

2.1.2 Standards for MDD
MDA is an architectural approach built on a set of OMG standard specifications. These specifications

provide languages that support expressing models which are cross-domain or specific to a domain, as
well as specifying transformations from models to other models. Modeling frameworks and toolkits have
been developed based on these specifications. Relevant tools used in this thesis are introduced in the
implementation chapter (Chapter 6).

 Meta-Object Facility (MOF)[9] provides core principles in MDA. It specifies a platform-
independent metadata management framework. MOF is the foundation of metamodel definition in MDA.
MOF reuses structural symbols from the Unified Modeling Language (UML) to describe metamodels.
A MOF 2.x metamodel is a valid UML 2.x model since UML 2.4.1. MOF is closely related to the concept
of multilevel metamodeling which is important to this thesis and is introduced in the next subsection. Unified Modeling Language (UML) [10] is a general-purpose modeling language adopted by
OMG. The UML specification defines how UML models should be constructed including modeling
concepts, rules to combine the modeling concepts as well as notations to represent them. The data
structure of UML models, i.e., the UML abstract syntax (see Subsection 2.2.1), is defined by the UML
metamodel. This metamodel uses a subset of UML constructs identified by MOF (see Subsection 2.1.3).

With the release of the major revision UML 2.x, the language unit[11] is introduced to partition UML
into a modular structure. A UML language unit is a set of tightly coupled modeling constructs focusing
on a specific aspect of systems, which can describe models in a particular type of diagrams. In UML
version 2.5.1, these units are referred to as semantic areas as shown in Figure 2.1. They are divided into
two categories, i.e., the structural semantics that define the meaning of structural elements and the
behavioral semantics that define the meaning of behavioral elements. Specific structural constructs for
modeling are based on a common base of fundamental concepts. The common behavioral semantics are
then built on the structural constructs, which provide a framework to model behaviors. Actions are the
fundamental units of behaviors. They can be used in higher-level behavior modeling formalisms such as
Activities. Besides, UML also provides supplemental modeling constructs to describes use cases,
deployments and information flows.

Profiles are introduced in UML2.x as a lightweight standard mechanism to extend the UML.[11] They
are defined through Stereotypes which are specialized modeling elements in UML confined by Tag
definitions and Constraints. It is not possible to remove existing Constraints from a Stereotype in a Profile
which applies to the model element it extends. Rather, Profiles are intended to adapt the existing UML
model to a specific domain with additional Constraints. Object Constraints Language (OCL)[12] is a declarative language which is used to describe
rules applying to UML models. It becomes a part of the UML specification in UML 2.x[11]. This

Figure 2.1: Semantic Areas of UML. [10]

9

language is used to express additional constraints on UML models which cannot be expressed by the
UML syntax. OCL is a pure specification language that is side-effect-free. Thus, evaluating OCL
expressions cannot alter the state of a system. These expressions are usually invariant conditions that the
modeled system must hold or queries on a UML model. Same as UML, OCL is independent of
programming languages. It is of great importance to MDD since many model transformation languages
are developed based on it. XML Metadata Interchange (XMI)[13] is an OMG standard to support MOF. It is an
interchange format for exchanging metadata information using Extensible Markup Language (XML)[14].
XMI is often used to exchange UML models. Although, this format can be applied to all metadata whose
metamodels are described in MOF. It defines representations of objects via XML elements and attributes,
as well as the standard mechanisms to link objects. XMI documents uses XML Schema for validation. QVT (Query/View/Transformation)[15] is an MOF Specification defining transformation
languages. It includes three related languages as shown in Figure 2.2 which is redrawn from the QVT
specification. Among these languages, QVT-Relations and QVT-Core are declarative languages with the
same semantics at different abstraction levels. The former is a user-friendly language that supports
complex object pattern matching. Its semantics can be mapped to QVT-Core. The latter is a small
language that can be directly implemented. It supports pattern matching over a set of variables and its
trace model must be explicitly defined. These two languages enable black-box implementation via MOF
operations. The third language QVT-Operational extends OCL to provide means to define imperative
mappings. It brings QVT the ability to express procedural transformations.

2.1.3 Multilevel Metamodeling
An angle to view the levels of model abstraction other than the MDA layers introduced in Subsection

2.1.1 is to determine layers of models based on the linguistic “instance-of” relationship [16]. It
emphasizes the strict metamodeling[17] paradigm: “if a model A is an instance-of another model B, then
every element of A is an instance-of some element of B”[18]. In this case, the model B is a metamodel
of the model A whereas the model A is said to conform to the model B. The instantiation of a metamodel
results in an instance model of it at one layer lower. The instance model may be further instantiated. This
leads to a multilevel modeling structure. A model in an intermediate layer is an instance model of some
model at one layer higher, and the metamodel of some models at one layer lower. For instance, the class
“Element” in the UML metamodel is a metaclass to describe UML models, but an instance of the MOF
metamodel. Models that cannot be further instantiated are usually considered as a thing in the real
world[6]. They can range from physical entities on the earth to runtime objects in software applications.

MOF forms such a modeling structure which is referred to in various OMG specifications as having
four modeling layers from M3 to M0. The M3 meta-meta layer locates the metamodel of MOF used for
defining metamodels. It is a self-describing model that conforms to itself. The metamodel of UML
locates at its M2 meta layer. M2 metamodels describe models at the M1 layer which can be further
instantiated as M0 real-world objects. However, the current MOF specification has clarified the ability
of MOF to handle any number of metamodel layers recursively following the “instance-of” relationships
by using “Classifier” and “Instance” concepts in UML, which may introduce more than one meta layer

Figure 2.2: Relationships between QVT metamodels. [15]

10

in practice.[9] For instance, defined UML Profiles in a domain-specific modeling solution shall be located
as a separate meta layer, which pushes UML itself further to a higher meta layer.

Layers in the multilevel modeling are based on linguistic “instance-of” relations. Within one layer,
terms cannot be each other’s instance. Researchers [6], [16], [19]have stated that multilevel modeling
could bring mismatches between ontological and linguistic modeling layers. For example, two classes
representing real-world concepts are included in one software model since they need to be instantiated at
runtime. But one presented concept could be conceptually the instance of another, even these two classes
are located in the same modeling layer. To clarify the confusion, this thesis focuses on engineering-
oriented solutions. Models involved in this thesis serve as abstract syntax models of formal languages or
language instances. They are located in a certain linguistic modeling layer according to how many times
they need to be instantiated in the development and the use of the system.

The MDA layers introduced in Subsection 2.1.1 and the metamodeling layers described in this
subsection are orthogonal. For example, both an M1 model and an M0 model can be platform-
independent. Both the layered structures are used to coordinate models used in this thesis. To avoid
confusion, the remaining text in this thesis refers to an architectural layer of MDA as an MDA “layer”
(e.g., the CIM layer) and a metamodeling layer as a modeling “level” (e.g., the M2 level). Readers can
see in Chapter 4 that a transformation path in this thesis crosses MDA layers but remains in the same
metamodeling level.
2.2 Computer Languages

First, this section provides a short summary of fundamental concepts related to computer languages
in general, based on classic lecture books [20]–[24]. To keep the focus, the introduction only covers
relevant concepts that are essential to understand this thesis. Second, it also briefly introduces basic
knowledge on Domain-Specific Languages (DSLs)[25], as this thesis develops DSLs as part of its
solution.
2.2.1 Elements of a Computer Language

A computer language’s definition is usually determined by its syntax and semantics. The syntax is a
set of rules specifying how the language looks like. The abstract syntax of a language specifies the data
structure which holds the semantically relevant information of a program in this language. It is typically
a tree structure that represents how this language looks like from the language processor view. On the
other side, the concrete syntax of a computer language represents how this language looks like from the
language user view. It specifies the notations that are used by users to express programs in this language,
e.g., keywords and symbols, as well as the rules of how these notations should be used to write a program.

A computer language implementation requires both the abstract syntax and the concrete syntax. It is
not necessary at the specification level though. Depending on the usage and characters of a language, its
specification may contain only one of these two syntax components. In text-based programming
languages, the concrete syntax is usually considered as an obligatory part of a language specification.
The concrete syntax of such a language is usually defined by formal language-generation mechanisms
such as a context-free grammar[26]. An implementation of this language then uses an abstract syntax
holding the data structure of the implementation. The opposite cases are often observed from modeling
and description languages. Specifications of these languages may only contain abstract syntax. High-
level concepts and data models behind programs are the most important to users of these languages. By
leaving the concrete syntax to the implementation level, such a language shall be implemented with
various notations adapted to different user groups. Besides, abstract syntaxes of such languages are often
specified in terms of other more general languages, whose notations are usually standardized. This
enables unambiguous definitions of their abstract syntaxes.

The semantics of a computer language define the meaning of its programs, which consists of two
aspects. The static semantics specify constraints and/or rules of the type system that a program in this
language must conform to. A program has to be validated against the static semantics before it is
processed. The dynamic semantics (also called execution semantics or operational semantics) specify the

11

behaviors of a computer when processing/executing a program in this language. Dynamic semantics are
implemented in language processors which will be introduced in the following paragraphs.

An implementation of a computer language includes several programs that enable the use of this
language. This thesis refers to such programs as the language tooling. Common components of the
language tooling are introduced below. They can be standalone applications. Though, they are often built
into an Integrated Development Environment (IDE) of this language in practice.

A source program editor (may be referred to as a language editor in this thesis) is a program for editing
source programs in a concrete syntax of a computer language. It usually also has a simple interface to
pass the edited program to back-end components. Language editors may have different forms. A source
code editor is a text editor specialized for editing programs written in some textual concrete syntax of a
computer language. This type of editors is the fundamental tooling component for many general-purpose
programming languages. Such an editor usually provides support functions for editing specific languages
in addition to normal free text editors, e.g., syntax highlighting, autocompletion and so on. A structured
editor (also called a projectional editor) allows to directly manipulate the structure of the program, i.e.,
the abstract syntax tree. This kind of editor is not popular in the tooling of general programming languages.
It is often seen as the implementation strategy of a modeling language whose underlying data structure is
of importance to language users. Such a modeling language can be defined by its abstract syntax in terms
of a metamodel. The editor renders a textual or graphic representation of the program based on projection
rules. Users edit on the projected representation. Their editing actions modify the abstract syntax tree.
Programs written in this language are stored as its abstract syntax trees, which is usually encoded in XMI.

A reader is a program that relates a concrete syntax of a language to its abstract syntax. For a parser-
based language implementation which often uses some textual concrete syntax, it usually consists of two
parts. First, a scanner (also called a lexical analyzer) takes a piece of a program written in a concrete
syntax and transforms it into a stream of tokens. During this process, information that is not relevant to
the meaning is removed, e.g., white spaces and control characters. Then, a parser (also called a structural
analyzer) consumes these tokens to build up a representation that conforms to the corresponding abstract
syntax. This representation is usually in the tree style which is called a syntax tree. It reflects the data
structure of the program. If the input breaks the rules of the concrete syntax, an error will be generated
by the reader. A projectional language implementation does not need these components. This thesis will
not distinguish detailed components of different implementation approaches while it is beyond the focus.
A component set that takes the input program as the syntax tree to the back-end components is referred
to as the reader as a whole.

Not all computer languages are executable by specification, such as some configuration languages
and markup languages. However, programs written in computer languages are meant to be processed by
computers in some way. A back-end program that performs such processing tasks is called a language
processor or an execution engine. Processor implementations of high-level languages often use two
approaches. One of them is to implement a compiler that takes a program in this language and translates
it into other artifacts. Execution semantics are described by relationships/mappings between inputs and
outputs of the compiler. In the case of modeling languages, this approach is commonly referred to as
transformation when the outputs are other syntax tree-based models. Or, it is referred to as generation
when the outputs are in the textual form which is often general-purpose programming language code that
can run on some infrastructure. A compiler that creates high-level programming code is commonly
referred to as a code generator. Transformation and generation are conceptually the same process. Both
of then create other artifacts from input programs. In contrast, a processor can also be an interpreter,
which loads input programs and acts on it. In this case, execution semantics are described by explaining
what semantic actions should be performed with respect to specific language elements. Such actions for
a high-level modeling language shall be encoded by general-purpose programming language.

The term “translator” is often used to refer to a processor of a programming language in the
programming language theory, including both interpreter and compiler, as well as other types of
processors. It is also observed in modeling language literature that the term “translator” only refers to
compilers. To avoid confusion, this thesis avoids using this term but sticks to the terms introduced above.

12

2.2.2 Domain-Specific Languages
A Domain-Specific Language (DSL) is a computer language specialized for a given class of problems,

which is called a domain[24]. A realization of a DSL normally has the same components as introduced
in Subsection 2.2.1. However, the abstract syntax of such a language is based on abstractions that are
aligned with concepts used by the domain for which this DSL is developed. The concrete syntax should
also be suitable for expressing these abstractions.

According to Völter’s book dedicated to DSL [24], there are two approaches to define a domain. The
author defines a program p as “a conceptual representation of some computation that runs on a universal
computer (Turing machine)”[24]. Based on this definition, the inductive (or bottom-up) approach
identifies a domain D as “a set of programs with common characteristics or similar purpose”[24].
Commonalities among the programs in this set can be described by a set of domain-specific patterns and
idioms. Then, this set of programs from all conceivable programs P can be written in a domain-specific
language l based on these patterns and idioms, denoted as Pl. The other approach, i.e., the deductive (or
top-down) approach views a domain D as “a body of knowledge about the real world”[24] for which
the software support needs to be provided. Developing a DSL for a domain in this definition is much
harder than the inductive approach since the nature of D has to be understood precisely in order to identify
the interesting programs in this domain from P.

Nevertheless, a domain D can be ultimately specified by a set of programs PD in the realm of software.
PD can be expressed in multiple languages, whereas a language may only be able to express some part of
PD. Based on this understanding, the author defines a DSL for a domain D, denoted as lD, as “a language
that is specialized for encoding programs from PD”[24]. It means that this language is able to represent
programs in PD more efficiently than other languages.

The boundary of a domain is often fuzzy. This is especially true in the deductive approach since if a
program belongs to a domain is determined by human understanding and interpretation. The same
program may also be considered as belonging to the intersection of two or more roughly orthogonal
domains. Each domain covers one aspect of this program. For example, a program allowing users to fill
online questionnaires belongs to the domain of web applications and the domain of questionnaire forms.
It can be also considered as a member of a domain that is specialized for the online questionnaires. The
coverage of a domain depends on the common purpose of its member programs. It consequently decides
which abstractions should be included in a DSL expressing this domain.

Using DSLs shall bring various benefits that have been outlined by researchers and engineers[24],
[27], [28]. Among them, the following points are particularly of interest to this thesis. They are the main
reasons that the thesis chooses DSLs for its solution. These benefits are summarized in the following
paragraphs in a general manner. The benefits that DSLs bring to the solution in this thesis are discussed
at the end of this thesis in Chapter 8.

First, the DSLs can serve as a thinking and communication tool during development processes.
This function particularly matches the idea of MDD that uses models as communication vehicles among
different roles. Thus, defining and using DSLs is an important ingredient of MDD. These DSLs are used
to express models or model-based programs. Their syntaxes play the role of metamodels. On one side,
terms and structures used to build a DSL have higher abstraction levels than general-purpose computer
languages and are aligned with the domain the DSL focuses on. This allows language users to separate
essential logical structures in this domain from complicated low-level implementation details. Domain-
specific programs can be described in a more declarative and concise way. These programs can be then
read more clearly and be discussed more easily. On the other side, the expressiveness of a DSL beyond
its focused domain is limited. This reduces the chances of language users to make mistakes.

Second, using DSLs enables non-developer involvement. The domain experts can understand
programs in DSLs that focus on domains they are familiar with, while expressions in these languages are
aligned with how they express the corresponding domains. All irrelevant low-level implementation
details are hidden from them. They can read or even write code in DSLs and be involved in validation
and review of the products expressed in DSLs.

13

Further, DSLs bring productivity and efficiency in development. Users of DSLs are free from low-
level coding work. The amount of DSL code that has to be manually written for a product is supposed
to be much less than the code that has to be written in a general-purpose language on a certain target
platform. A processor of a DSL takes the responsibility to remove domain-specific abstractions and
generate the code in a less abstract language. It may also run the programs on a target platform without
having to compile a separate underlying general-purpose language program for the whole software every
time. In this way, the processor shall parse DSL programs and invoke corresponding pre-compiled
libraries which are based on the common concepts in the DSL. Besides, an implementation of a stand-
alone DSL also comes with the language tooling (see Subsection 2.2.1) specialized for this language to
support writing programs more productively.

Moreover, the higher level of abstraction DSLs and its separation of concerns make DSLs can be
defined at an implementation-independent level. This enhances the portability of the programs (thus,
also the underlying models) they express, which is important in MDD. A DSL expresses the application
logic at an abstraction level that is meaningful to the domain. Programs in well-defined DSLs can be
executed on different technical platforms by replacing the implementation of its processor. Besides,
underlying models of DSL programs can be easily transformed into other representations.
2.2.3 Language Workbenches

Modern language engineering has been greatly simplified by so-called language workbenches[29].
They are toolsets that provide various high-level mechanisms to efficiently define computer languages
and to implement language tooling.[30] They are the basics that make the solution in this thesis
technically feasible for various development teams since they make the development of DSLs required
in this thesis to be an affordable amount of work. Thus, this subsection briefly introduces the origins and
features of language workbenches, as well as existing implementations of language workbenches that are
ready to use. The term “language workbench” was proposed by Martin Fowler when he used it to refer
to the tools that support building software around a set of DSLs [29]. However, nowadays, the
capabilities of mature language workbenches are beyond the limitation of only supporting the DSL
development. They are also suitable to develop general-purpose languages. A mature language
workbench mainly has capabilities as summarized below, which are the technical foundation that enables
the realization of the proposed framework in this thesis. More comprehensive reviews on language
workbenches can be found in [30]–[33].

Define and modify language syntactic models: nearly all language workbenches provide relatively
simple user interfaces and editing supports for language developers to formalize syntactic models of
computer languages. This feature is usually supported by small declarative meta languages. It shall allow
language developers to build an abstract syntax with modeling languages and automatically generate the
default concrete syntax from the defined abstract syntax, or the other direction around. In most cases,
both the syntactic models can be modified and improved by designers. Relations between them are
maintained by the workbench. Thus, language developers only need to focus on abstractions and notations
they want to define in their languages. This greatly simplified the development of language models.

Create language tooling: one of the most powerful functions of language workbenches is to
automatically generate infrastructures of language tooling from user-defined language models. A default
editor to edit programs in a concrete syntax can be generated. This editor could be either graphic/tree-
based such as supported by MPS[34] and default editor generation facility of Eclipse Modeling
Framework (EMF)[35], or in free-text style such as supported by XText[36], EMFText[37] and
Spoofax[38]. It usually embeds support functions such as syntax highlighting, error-detection, etc. The
editor usually comes with reader components such as parsers for textural concrete syntaxes. In addition,
workbenches may also generate skeletons for language processors with default behaviors. These
generated infrastructures are often in the form of general-purpose programming languages and can be
optimized by language developers. They are easy to be integrated with customized pieces of code or
programs in other high-level languages such as transformation rules in ATL [39]. Thus, language
developers save a great amount of work. They are free from the coding of infrastructures that are common
to multiple computer languages and can focus on implementing the semantics of their own languages.

14

This separation also makes the modification of an implemented language more easily, which is important
especially for small DSLs that are often incremental with new understandings of its domain.

Build and test languages: language workbenches are essentially development frameworks for
implementing computer languages as a set of computer programs. Thus, these workbenches integrate
with continuous build tools that compile these programs. Besides, some of the workbenches also provide
facilities to test developed DSLs. For example, EMF-based language workbenches often generate default
Junit test code based on which language developers can add their unit-testing cases. Some workbenches
such as MPS provide their own DSLs to write the test.

15

3 Related Works
This chapter introduces the existing researches that are related to the solution of this thesis. First,

Section 3.1 reviews researches on CIM-PIM transformations that the thesis aims to establish for its
proposed development framework. Second, Section 3.2 pays attention to the context domains that are of
interest to this thesis, i.e., the simulated environment in spatial simulations. It reviews the existing spatial
conceptualizations and representations, which has the potential to be used to model spatial entities in the
simulated environments from both the human perspective and the system perspective, as well as the
common forms of the component that provide simulated environments in the computer simulations. The
lessons learned from the existing researches and the missing points which have to be fulfilled by this
thesis are summarized at each subsection.
3.1 CIM-PIM Transformations

One main goal of this thesis is to bridge the gap between expected simulated environments from the
human view and models of simulated environment components in computer simulations from the system
view. It is comparable to the perspective switch from domain-oriented CIMs to system-oriented PIMs in
MDD. Thus, this section reviews existing researches in CIM-PIM transformations to summarize the
useful findings as well as the missing points that this thesis needs to fulfill.

MDA recommends automating PIM-PSM transformations and mature tools have been developed for
this purpose, e.g., the EMF[35] that generates Java-specific model code from XMI-encoded Ecore models.
This type of transformations is free from the domain context of the transformed models. It becomes a
technical investigation once the target platform is fixed and can be solved at a domain-independent range.
Compared to it, CIM-PIM transformations involve the perspective change. This makes this type of
transformations more complex which requires much manual work. Aiming at reducing the human effort
in the development, the review especially pays attention to what the existing researches achieved by their
automatable CIM-PIM transformations.
3.1.1 CIM-PIM Transformations in Specific Domains

Mazon et al.[40] developed an automatic CIM-PIM transformation method specialized for the data
warehouse (DW) development. Their approach defines CIMs of DWs using a UML Profile for the i*
modeling framework[41]. This profile is used to describe actors in a business process and business goals
that need to be achieved through this process. Information requirements are identified corresponding to
the most concrete goals, i.e., information goals. Further, PIMs of DWs are described based on a UML
Profile for multidimensional modeling. This profile organizes information into facts and dimensions.
These PIMs are derived from the CIMs by a set of QVT rules.

Koch et al. developed the UML-based Web Engineering (UWE)[42] approach as an MDD process
which can automatically traverse models from high-level functional requirements way down to
prototypical Web applications [43]. In [44], transformations from CIMs to PIMs in this approach are
introduced. The authors developed a metamodel as a UML Profile for the Web Requirements
Engineering (WebRE)[45] and specified graphic icons for Stereotypes in this profile. These Stereotypes
extend both the structural metaclasses (e.g., Node as a specialized Classifier) and the behavioral
metaclasses (e.g., Browser as a specialized Action) of UML. The WebRE Profile is used to express the
requirements of Web applications as CIMs. At the design phase, PIMs of Web systems are created. For
this side, the authors developed the UWE Profiles to express the content of a Web system.

Transformation rules between the two layers of models based on these metamodels are defined in
QVT. First, instances of the Stereotype Content in a requirements model are turned to classes in a UWE
content model. Then, instances of Stereotypes that extend the Action metaclass are transformed into a
navigation model as navigation classes or access structures. Another transformation derives a UWE
process model from the UserTransaction together with a related Content in the requirements model.
Finally, a presentation model specifying the layout of the application is derived from the navigation model

16

and the process model. Manual refinement of the intermediate models shall be made among the
transformation steps.

Later in [43], the requirements metamodel is included in the UWE Profiles and an implementationof
the UWE based on Atlas Transformation Language (ATL)[39], [46] is presented. Relations among the
requirement package and other packages remain the same.

Fatolahi et al. presented in [47] a whole MDD process to generate web-based applications from use
cases following the UWE principles. In their approach, State Machines at the PIM layer are generated
by a tool called UCEd [48] from Use Cases at the CIM layer. These transformations are performed semi-
automatically with inference from developers. The resulting State Machines are then further transformed
into other PIM-layer models.
3.1.2 Analytic Approaches for CIM-PIM Transformations

Kherraf et al. [49] proposed a disciplined approach for CIM-PIM transformations. Their approach
builds a CIM consisting of a Business Process Model (BPM) and a Requirement Model. The BPM is
built by Elementary Business Processes (EBPs)[50] which represent well-delimited user tasks. The
Requirement Model is derived from the BPM and expresses system requirements to optimally support
the business. Both models are expressed with notations in UML2 Activity Diagrams (ADs). Then, a PIM
is obtained from the Requirement Model. It represents system components to support a business process
and involved business entities. The concept “archetype” in this paper represents a specialized term for
describing model elements in the component models at the PIM layer. It plays a similar role as a
Stereotype in other introduced approaches. The authors did not yet provide an implementation for
automating the transformations but stated the possibility. Other analytic transformation approaches
include the work of Kardoš and Drozdová [51] who use Data Flow Diagrams (DFDs) and textural
descriptions to express CIMs. Use Cases, Activity Diagrams, Sequence Diagrams and Domain Class
Diagrams in UML are used to express PIMs in their approach.

Zhang et al. [52] presented an approach for CIM-PIM transformations in a feature-oriented and
component-based view. At the CIM layer, a feature model is used to structure system requirements. It
contains a set of features and their relations. At the PIM layer, models are described by software
architectures. This approach aims to bridge the gap between CIMs and PIMs in a disciplined manner.
The authors introduced the concept of “responsibilities” to connect features and components. A feature
model is operationalized into responsibilities, resource containers as well as relations among them. These
elements are then clustered to construct the software architecture, based on responsibilities being assigned
to components. No formal transformation pattern was defined, while this approach provides a basis to
specify it.
3.1.3 Automatable CIM-PIM Transformations

Rodriguez et al. [53]–[57] extended the metamodel of UML2.0-AD and Business Process Diagram
(PBD) of Business Process Modeling Notation (BPMN) for expressing security issues in business
processes. Their work resulted in BPSec-Profile [57] which supports expressing security requirements as
CIMs. Secure Business Processes (SBPs) described by BPSec-Profile are fed to a set of transformations
to create analysis-level classes and use cases as PIMs. These transformations are defined by QVT
rules[56]. First, a horizontal transformation within the CIM layer is performed to generate refined CIMs
from a BPMN-BPD model. The output consists of a normal UML2.0-AD model representing business
processes and a model conforming to the BPSec-Profile which represents all security issues. Then, the
process model is fed to a vertical transformation as the input to generate the first version of a UML2.0-
Class Diagram (CD) at the PIM layer without security issues being considered. This CD and the BPSec
model are then transformed into a refined CD including security issues. Further, the refined CIMs from
the horizontal transformation step are transformed to generate UML2.0-Use Case models, followed by a
manual refinement step.

Gutierrez et al. [58] automated the generation of Activity Diagrams via model transformations from
use cases, whose output can be refined by hand. They defined a metamodel for describing input use cases.

17

These use cases are encoded in an XML-based concrete syntax and represent the functional requirements
of the system under development. The output Activity Diagrams are conformed to a selected subset of
the metamodel of UML2.0 Activity Diagram. Transformations in this approach are defined by the QVT-
Relational language. A transformation generates an Activity for each requirement in the input use cases
and an Action for each main step. Exceptional steps that indicate conditional choices are transformed into
decision nodes. Elements are then chained through control flows. The authors did not explicitly locate
their metamodels regarding the MDA layers. Nevertheless, their work is comparable to transformations
from CIM to high-level PIMs.

Hahn et al. [59] developed a semi-automatic approach called SHAPE (Semantically-enabled
Heterogeneous Service Architecture and Platforms Engineering) to bridge the gap between business
requirements at the strategic level and the execution models. This approach links CIMs of business
requirements expressed by a metamodel called CIMFlex to PIM-layer models. CIMFlex combines
BPMN and Architecture of Integrated Information Systems (ARIS) notations. It supports expressing
issues to achieve business goals such as business rules, processes and contracts. The PIM layer in this
approach has two sub-layers. The sub-layer linked to the CIMs uses the Service-Oriented Architecture
Modeling Language (SoaML)[60] to describe models. These models represent services in distributed
environments.

A set of transformation rules was defined to transform CIMFlex models into SoaML models. The
initial version of CIMFlex supports transformations via ATL. Then, the service models are further
transformed into more comprehensive multi-agent system models at the other PIM sub-layer. A PIM
metamodel called PIM4Agents[61] was developed for expressing models in this sub-layer.
Transformation rules were defined between SoaML and PIM4Agents.

De Castro et al. [62] applied CIM-PIM transformations in developing information systems with the
service-oriented development method(SOD-M). Their approach separates the business in which the
system is involved from the functional requirements of the system. The focus lays on modeling the former
one at the CIM layer. CIMs used in this approach are modeled by the value model[63] and BPMN. The
value model expresses business cases as value exchanges and value activities of business actors. BPMN
describes processes related to the environment in which the system is used. A PIM in this approach
consists of following models: a use case model identifying business services in UML Use Case
Diagram(UCD), an extended use case model identifying functional services to carry out the business
services in UML UCD, a service process model expressing workflows of activities to perform business
services in UML Activity Diagram, and a service composition model extending the service process model
by identifying fundamental behavioral units of each activity. These models are expressed in a set of
DSLs based on well-defined metamodels.

The authors then proposed a methodological process to define semi-automatic mapping rules for CIM-
PIM transformations based on the metamodels. The mappings range from natural language descriptions
of mappings to formal or half-formal transformation rules. They proposed to use the weaving models [64]
to integrate the mappings that cannot be fully formalized. The transformations are implemented in ATL
integrated with weave models.

Bousetta et al.’s approach[65] models both the behavioral and the static aspects of a system at the
CIM layer. These two aspects are captured by two models: a Use Case model that represents business
actors of the system and functionalities to be realized; a BPM that represents the behaviors of use cases.
The BPM includes three descriptive views, namely, the functional view presenting activity flows, the
behavioral view presenting conditions under which activities are performed and the structural view
presenting involved objects in a process. This approach starts with building the BPM. The three views
are expressed in one BPMN diagram. The resulting BPM has multiple levels. In addition, models at the
CIM layer contain template-based Business Rules. At the PIM layer, a Domain Class Diagram (DCD) is
used to represent the static aspect of a modeled system. A PIM also includes sequence diagrams of the
system’s external behavior (SDSEB) which represent high-level behaviors of systems. An SDSEB is a
UML sequence diagram that shows only interactions between actors and the whole system. It is
transformed later into a sequence diagram of the system’s internal behavior (SDSIB). An SDSIB
represents interactions between objects within a system.

18

Transformations from CIMs to PIMs are realized through a series of transformations. First, high-level
BPMs are transformed into Use Case models. Then, low-level BPMs that present sub-processes in more
detail are transformed into SDSEBs. Further, Input/output data objects in the low-level BPMs are
mapped to classes in DCDs. These classes are completed with terms and facts derived from the Business
Rules. Models in the approach are at least semi-formal. The authors also presented mapping rules for
each step which enables a semi-automatic transformation from CIMs to PIMs.

Kriouile et al. [66]–[68] proposed that a CIM should consist of BPMN models in BPD and Use Case
models in UCDs. The former part represents exchanges of information between actors, while the latter
part identifies features and good functioning conditions of a system. A BPD is modeled at first and a Use
Case model is derived from the BPD by a horizontal transformation. The transformation from the Use
Case model to a BPD is also possible during the refinement of CIM-layer models. Then, a
behavioral model at the PIM layer is obtained by System Sequence Diagrams (UML SSDs) via vertical
transformations from UCDs. Similarly, PIM-layer static models expressed in Domain Class Models
(UML DCMs) are vertically transformed from BPDs. These static models represent the structure of
modeled systems.

Transformation rules in this approach are based on the equivalence between the concepts in
corresponding metamodels. These rules are specified in QVT and thus enable the possibility of
automation. The two parts of CIM-PIM transformations for behavioral models and static models are
described in detail in [67] and [66], respectively.

Rhazali et al. have done a series of work regarding CIM-PIM transformations. In [69] and [70],
business models are expressed in BPMN and UML2 Activity Diagram at the CIM layer. Class Diagrams
and Package Diagrams are used for expressing the static view of PIMs, while State Machine Diagrams
are used for expressing the dynamic view and the functional view. Their approach was developed
analytically at the beginning which obtained a set of qualitative guidelines to construct CIMs in a way
that is easy to be transformed into PIMs, e.g., the average numbers of Activities that a CIM model
represented in ADs should have. A set of analytic mapping rules was used in their early work for CIM-
PIM transformations. Later in [71]–[73], these mapping rules are formalized in ATL to enable automatic
transformations. In their most recent work [74], [75], SoaML is used to express CIMs. The authors also
introduced an additional model at the PIM layer to represent the web view. This additional model is
expressed by the Interaction Flow Modeling Language (IFML)[76] and is transformed from the other
PIM-layer models. Through this strategy, transformations can be applied to generate the front end of
web applications.
3.1.4 Summary and Relation to This Thesis

The introduced researches in this section are summarized in Table 3.1 based on evaluation approaches
on CIM-PIM transformations introduced in 3.1.4.1, followed by a discussion on how the existing work
is related to this thesis.
3.1.4.1 Evaluation

A short introduction to evaluation approaches on CIM-PIM transformations is given below to provide
reference and to support readers’ understanding.

Yue et al.[77] designed a conceptual framework to describe transformations from requirements to
PIM-layer models2. It includes taxonomies to express requirements, restriction rules that are used for
regulating requirements, and a taxonomy to express PIM-layer models. In addition, they developed a
taxonomy for describing transformations between CIMs and PIMs as well as a process model for
describing transformation processes. This framework does not provide models and mappings for specific
transformations but focuses on describing transformation approaches. Requirements in this framework
rather refer to the information gathered prior to the constructions of CIMs. Nevertheless, it can serve as

2 This paper refers to PIMs as “analysis models” and PSMs as “design models”, while this thesis refers to PIM
models as “(system) design models”.

19

a basis to compare the transformation approaches from high-level requirements to PIMs by structuring
them into a comparable structure. The authors derived a list of evaluation criteria to give suggestions on
constructing good CIM-PIM transformations.

Later, Sharifi et al. [78] used a simplified and adapted version of this framework for reviewing CIM-
PIM transformations. This version only considers high-level components of rule-based transformations
with CIMs as inputs. This provides an overview of the possible components of CIM-PIM transformations.
Figure 3.1 is a merged redrawn of Figure 6-9 in [78] to provide a concise presentation of their taxonomy.
The term “Traceability”, according to IEEE Standard Glossary of Software Engineering, is defined as
“the degree to which a relationship can be established between two or more products of the development
process…for example, the requirements and design of a given software component match” [79]. Other
concepts have been introduced in Chapter 2.

Evaluation criteria for transformations are derived from the model. Kriouile et al.[80] conducted a
criteria-based evaluation based on the taxonomy shown in Figure 3.1 and the guidelines of MDA. The
authors evaluated input CIMs of a transformation approach regarding their coverage, i.e., if a CIM covers
the static view with business objects, the behavioral view with business processes, and functional view
that considers requirements. An output PIM is evaluated against its completeness to check if it includes
both the structural aspect and the behavioral aspect of the system. Then, the transformation process is
checked to see if the transformation is automatic, if the transformation rules are complete, as well as if
the traceability is maintained.

Table 3.1 summarizes the related work introduced in Subsection 3.1.1-3.1.3 based on the
transformation components identified by the taxonomy shown in Figure 3.1 and the derived criteria in
[80] as introduced above. Since describing business processes can hardly be done without denoting
involved objects, this table summarizes business model-related information in one column. For each
component in an approach, the table denotes the modeling languages used to describe models (i.e., the
metamodel), if a specialized metamodel is defined in addition to the standard modeling notations, and if
this part is transformed from other models at the same layer.

Figure 3.1: Taxonomy of CIM-PIM Transformation Components. [80]

20

 Focused
Domain

CIM Presentation and Metamodel PIM Presentation and Metamodel Form of
rules Business Process Requirement Structural Behavioral

Mason et al.[40] data
warehouses

N/A UML Profile N/A UML Profile QVT
Koch et al.
[42]–[45]

web
application

UML Profile based
on Activity Diagram

UML Profile based on Use
Case

UML Profile based on
Class Diagram

UML Profile based on
Activity Diagram

QVT, ATL
Fatolahi et al.
[47]

web
application

Use Case Use Case Profiles used by chosen
code generation tools,
transformed from State
Machine

State Machine QVT

Kherraf et al.
[49]

N/A Activity Diagram
based on BPMN

Activity Diagram,
transformed from BPMN

Archetypes Archetypes N/A
Kardoš et al.[51] N/A Data Flow Diagram N/A Domain Class Diagram Sequence Diagram N/A
Zhang et al.[52] N/A Feature Model N/A Software Architecture N/A N/A
Rodriguez et al.
[53]–[57]

security
business

BPMN-BPD BP-Sec Profile based on
Activity Diagram,
transformed from BPD

Class Diagram Use Case QVT

Gutierrez et al.
[21]

N/A N/A Metamodel to describe Use
Case

N/A Selected subset of UML
Activity Diagram

QVT
Hahn et al.
[59]

N/A CIMFlex metamodel
based on BPMN

CIMFlex metamodel based on
BPMN

SoaML transformed from
CIM, PIM4Agents
transformed from SoaML

PIM4Agent metamodel ATL

Da Castro et al.
[62]

N/A Value Model and
BPMN

N/A Domain Specific
Language

Domain Specific
Language

ATL
Bousetta et al.
[65]

N/A BPM,
Template-based
Business Rules

Use Case,
transformed from high level
BPM

Domain Class Diagram

Sequence Diagram Rules
defined

Kriouile et al.
[66]–[68]

N/A BPD Use Case,
transformed from BPD

Domain Class Diagram,
transformed from BPD

System Sequence
Diagrams, transformed
from UCD

QVT

Rhazali et al.
[69]–[75]

N/A BPMN and Activity
Diagram
or SoaML

 Class and Package
Diagram,
IFML from other PIMs

State Machine ATL

Table 3.1: Summary of CIM-PIM Transformation Researches.

21

3.1.4.2 Lessons Learned and Missing Points
Existing CIM-PIM transformation approaches provide inspirations and guidelines for the construction

of the view bridging in this thesis. Related observations from these researches are listed below.
1. Intermediate models in the transformation chain of an approach do not have to be unified with

other approaches. As Subsection 3.1.1 described, in approaches with horizontal transformations within
the same layer, intermediate models such as Use Cases generated from models of business processes are
observed being classified both as CIMs[65] and as PIMs[53]–[57].

2. Obtained system models from the transformation should contain structural and behavioral aspects
of the system. This is recommended by the introduced evaluation approaches. Most of the reviewed
approaches consider both aspects at the PIM layer and present a path of transformations to achieve their
planned outputs.

3. The transformation automation relies on well-defined mapping rules among formal metamodels,
expressed by QVT or ATL. In newer researches, ATL is more frequently used thanks to its good tooling
support. This proves the feasibility to use ATL for implementing mapping rules between CIMs and PIMs.

4. Most automatable approaches recommend a semi-formal transformation process as described in
Subsection 3.1.1 and Subsection 3.1.3. Human roles may manually transform unstructured information,
evaluate and optimize the generated results of automated transformation steps. Human interference shall
improve the quality of production. Thus, a practical approach should minimize the human effort, while
also provide a guide on how the human roles interact with the automatic process.

Despite that various CIM-PIM transformation approaches exist, none of them satisfies the needs of
view bridging that this thesis is interested in. Some approaches focus on a restricted domain. For instance,
Mason et al.[40] worked on the data warehouse and thus paid more attention to the structure of
information pieces. The work from Koch et al. [42]–[45] supports generating components and operations
in the Web. The domain of spatial-aware simulation is orthogonal to these two domains. Although a
simulated environment component can be settled in a web environment or can involve data storage, the
existing solutions do not cover models and transformations dealing with the generation of spatial-
temporal varied data.

Approaches that do not state a focused domain fail to satisfy the needs due to a similar reason. Their
CIMs pay attention mainly to enterprise and organizational aspects that the systems under development
are involved in, which is one reason that BPMN is most frequently chosen to express their CIMs. These
approaches orient themselves to the business modeling domain. Functionalities in generated models are
often user-triggered operations, such as submitting a form via clicking a button. While business goals and
user operations are of importance to any system development, this thesis, however, is interested in
expressing functional requirements at a more specialized level as well as has a different runtime
environment. Functionalities of the interested systems are restricted to provide simulated environments
during spatial-aware simulations. CIMs in this thesis should focus more on expressing the expected
behaviors of spatial phenomena in simulation processes than on organizational processes. Metamodels
that are more expressive for the dynamic spatial phenomena than BPMN or basic UML are needed to
reach more specialized software structure at the PIM side via automatic transformation.
3.2 Spatial Conceptualization and Data Representation

Simulated environment components provide digital representations of environmental phenomena
which are often spatial information. During an MDD process, such contexts need to be expressed by
models at different layers from the human perspective and the system perspective. Thus, this section
briefly reviews the existing researches on the expression and representation of the spatial information
from these two perspectives, as described in Subsection 3.3.1 and 3.2.2, respectively. Their relations to
this thesis are summarized in Subsection 3.2.3.
3.2.1 Spatial Conceptualizations

The underlying conceptualizations of spatial information have been thoroughly investigated since the
early years of Geographic Information Systems (GIS). It has been well-accepted that two fundamental

22

approaches exist when humans conceptualize spatial phenomena, i.e., object-based and field-based
conceptualizations. The former ones view spatial phenomena as distinct individualities carrying various
characteristics, while the latter ones view spatial phenomena as a set of locations that carry characteristics
(i.e., as a function that maps locations to thematic values). [81]–[83] Each approach stands for an angle
to view the real world, but neither of them represents the “truth” of the world. Duality exists even when
people conceptualize the same phenomenon. For instance, a river can be viewed as an object bounded
by its bed. It can also be viewed as a field, with each spatial location within its boundary have a certain
water depth. Frameworks that integrate both conceptualizations to manage the spatial data have been
established [84], [85].

High-level conceptual models and description languages of spatial phenomena using the fundamental
spatial concepts as constructs have been proposed. Günting et al.[86]–[88] have done a series of work to
specify database modeling and query languages based on the concept of moving object. Carmara et al.[89]
use the concept of field as a general datatype to represent and to operate on spatiotemporal data. Other
researchers consider both conceptualizations. Kuhn and Ballatore[90] designed a language for spatial
computation by specifying core spatial computation operators based on a set of basic spatial concepts.

Specifications of these models and languages are essentially human-oriented. Constructs of these
languages are based on common-sense conceptualization rather than specialized knowledge in spatial
data, even though they may be referred to as “datatypes”. They are defined at the cognitive level and are
independent of how their represented information is logically organized. Thus, these works are
comparable to the models at the CIM layer. They mainly aim to provide richer semantic to spatial data,
as well as to raise the usability of spatial database and information systems. Implementations of these
works are often embedded in spatial DBMS and GIS software, or as code libraries that enable general
spatial computing by people with limited programming experience. In this situation, implementations of
these languages locate at the M1 model level from the model-driven engineering view, which encloses a
fixed implementation.
3.2.2 Representation of Spatial Data

Logic-level data and service models that are implementation neutral have been developed to support
building, managing and exchanging the spatial data and spatial information services. These works are
roughly comparable to the models at the PIM layer. Significant works in this area are standards from
Technical Committee 211 of the International Organization for Standardization (ISO/TC 211)3 and the
Open Geospatial Consortium (OGC)4. Most data models in these standards have their groundings on
academic research in relevant domains such as computer graphics, spatial-temporal databases, etc. Thus,
they reflect well the theoretical work in this area.

The ISO/TC 211 focuses on the standardizations related to geographic information. The ISO 191XX
series are developed by ISO/TC 211 for information associated with a location relative to the earth[91].
These standards cover a variety of topics regarding the acquirement, management, processing and
exchange of geographic information. Among these standards, the family that is particularly of interest to
this thesis are the data model standards. They provide conceptual schemas to represent different aspects
of the geographic information as components of features. The term “feature” is defined by the domain
reference model of ISO19101, which is an “abstraction of real-world phenomena”[91]. UML is used as
the conceptual schema language within these standards[92].

Among the data model standards, ISO19107 [93] specifies a schema with geometric and topological
types to represent the spatial characteristics of features. To support low-cost implementations,
ISO19137[94] also provides a small core profile of the spatial schema defined in ISO19107.
ISO19108[95] provides a schema with geometric and topological datatypes to represent temporal
characteristics of features. Further, ISO19141[96] extends ISO19107 to enable the expression of moving
geometries. A spatial feature type can be composed of these datatypes together with thematic attributes.
Alternatively, ISO19123[97] provides a schema to represent features as coverages. A direction position

3 https://www.isotc211.org/
4 http://www.opengeospatial.org/

23

within the geometric representation of a coverage feature has a single value for each thematic attribute of
this feature. These standards schemas correspond to the M1 level models. The ISO19109[98] provides a
metamodel called General Feature Model (GFM) to integrate various components described by these
standard schemas as features. Based on this metamodel, this standard specifies rules to develop
application schemas that describe feature types in particular application fields. These rules are
descriptively documented in terms of UML requirement classes.

The OGC is an international industry nonprofit organization that develops open, free standards to
improve geospatial data sharing. It has the main focus on promoting interoperability specifications for
geospatial content and services. Standards from OGC are developer-oriented technical documents that
specify interfaces of software and web services that can work together without further debugging[99].
Information models are often provided with these implementation specifications in the form of XML
schemas in OGC’s schema repositories5.

The OGC also developed an architecture called OGC Abstract Specification to provide conceptual
models for developing OGC standards which are referred to as Implementation Standards.[100] This part
is closely related to the model abstraction levels of this thesis as the OGC’s intention states. OGC
Abstraction Specification consists of an essential model to describe the conceptual links between the
software and an abstraction model to describe how software should work at an implementation-
independent level [99]. The ISO TC211 has a co-operative agreement with the OGC, through which ISO
TC211 standards have been incorporated as part of the OGC Abstract Specifications while the OGC
submits Implementation Specification to ISO for adapted as ISO International Standards.[101] The OGC
Abstraction Specification is divided into topics. The ISO 19107 is identical to OCG Abstract Topic 1 –
Feature Geometry, and the ISO 19123 is identical to OCG Abstract Topic 6. Similar to various ISO
standards, these documentations are not exactly at the same abstraction level. For instance, Topic 1 and
6 specify standard schemas of datatypes to represent the components of features as mentioned above.
Topic 5-Features[102] expresses nine levels of abstractions, which implies the process of modeling the
real world. Its abstraction model of features acts as a very general metamodel of feature types.
3.2.3 Summary and Relation to This Thesis

As summarized in the previous two subsections, models of spatial phenomena from the human view
and from the system view both exist. Language models in the framework proposed by this thesis make
use of these concepts and datatypes resulting from these researches. However, existing works have
purposes that are different from this thesis. Thus, their models cannot be directly used for this thesis.
Observations of these differences and how these observations inspire this thesis are listed as follows:

1. A conceptualization of spatial phenomena in existing researches reflects an angle to view real-
world entities and is associated with various possible functions. Metamodels at the CIM layer in this
thesis describe requirements of expected context generated by various simulated environment
components under development, which could be viewed from different angles. For instance, in a
simulation, the system of interest component needs to be informed of the hazardous area of a storm. In
this simulation, the storm is viewed as an object moving in the space. In another simulation, the same
storm may need to be viewed as a wind field that the system of interest travels through. Thus, CIM
metamodels should avoid presuming a fixed conceptualization that states “what it is” for a described
phenomenon but focus on supporting expressing the expected characteristics and behaviors that have to
be preserved in models in more specific layers.

2. Standardization organizations like ISO and OGC focus on enabling data sharing and system
interoperability. Their models include interfaces and public attributes that datatypes should expose to
external components. These models aim to cover possible properties and operations that a datatype shall
expose to external systems, but do not concern much with the development cost of a separate system.
This thesis has a different focus that aims to facilitate application development processes. It prefers to
provide easily usable models in small size and only considers simulation relevant aspects. PIM-layer
metamodels specified in this thesis utilizes the common geometry types from existing models, e.g., point
and polygons, to express spatial characteristics. Besides, it introduces stereotypes based on widely used

5 http://schemas.opengis.net/

24

geometric representations in spatial simulations, such as gridded sites in cellular automata[103].
Developers shall further map PIMs to existing implemented code utilities based on these types.

3. Most of the spatial data models are defined from a database view, i.e., information exists
somewhere that can be checked or requested. Spatial entities in this view may be modeled as hybrid
spatio-temporal digital objects since historical states of these objects need to be stored. In contrast,
models describing a computation process of simulated phenomena include runtime objects that are being
updated during executions. These objects need to be modeled as situating in space and changing over
time, who do not necessarily hold the past states.

4. Existing spatial data (meta-)models are defined at different abstraction levels without alignment
with the process of development & the use of the software. This hinders the efficient choice and use of
these models. It is not useful if developers use a very general algebra to model a software which they
need to implement. Exposing too many details of data structure in the user interface makes the products
quite complicated to users. Thus, the development framework in this thesis should locate the used models
properly in the software development cycles according to their abstraction levels, so that involved roles
shall gain maximum benefits from applied models.

5. The traceable view switch is absent among existing models from various perspectives with
different levels of abstractions, although its importance has been stated by OGC[102]. It leads to heavy
manual work when applying MDD principles using these models. Transformations from high-level user
understandable models to implementable software design models cannot be automated since the
mappings among them are missing. Also, since complicated logic-level data standards introduced in
Subsection 3.2.2 are not easily readable to non-expert users, no control exists to preserve user
expectations of the final products when developers design the application using these standards. These
gaps have motivated this thesis, as pointed out in the introduction chapter.
3.3 Simulated Environments in Software

This section summarizes the common styles to provide simulated environments in simulation
programs. From a technical perspective, a simulated environment is some digital data. These data are fed
to the component that simulates a system of interest during its execution, or to some intermediate digital
system which further presents them to non-digital participants (e.g., human) in physical simulations. They
could be either externally provided or simulated within the working community based on a computational
model. Forms of the environment components in these cases are summarized in Subsection 3.3.1,
followed by Subsection 3.3.2 that denotes their relation to this thesis.
3.3.1 Styles of Simulated Environment Components

It is very common to use existing data for representing simulated environments. These data are
normally collected by a trustworthy external provider, or from the fieldwork by the working community.
The data source could also be synthesized by some external providers that are professional in modeling
and simulating required environmental phenomena. Modern simulation toolkits with spatial extension,
e.g., NetLogo[104], GeoMason[105], Simulink[106], support loading spatial data used as the simulated
environment in simulations, which is sufficient for relatively simple simulation programs. In a more
complicated simulation, simulated environments may be provided through a more loosely-coupled
component which could be a connection to a spatial data store.

The development of simulated environment components with integrated computational models are
more complicated. It needs to notice that the “simulated environment” is a concept relative to the “system
of interest model”. A simulated environment includes abstraction of some real-world systems, which are
conceptually viewed as phenomena in the situated world of the system of interest. In this case, they are
provided as a component that embodies computational models to produce necessary data representing the
environmental phenomena. Within this component, the phenomena being computed become the system
of interest model which may have their own simulated environment.

This case could happen when the required data are not available or only partially available from
external providers, or when the working community desires to control the environmental conditions more
freely. Another possibility is the available data is about a phenomenon that does not influence the system

25

of interest directly but drives the behavior of another phenomenon that influences the system of interest.
Further, a working community may have subgroups that develop computational models for simulating
various real-world systems, some of which produce output that can be used for other models as simulated
environments.

In spatial-aware simulations, models providing simulated environments are executed to draw data
samples of spatial patterns changing over time, which are then sent to other components. Within the
models, these spatial patterns may emerge and change through different mechanisms, depending on the
underlying methods. The conceptual schemes of various spatial simulation paradigms are summarized
in the following list. Many practical models use a mixture of these schemes, with each of their building
blocks following one scheme.

1. The behaviors of a model are described based on the discretization computation of continuous
functions (often in the form of differential equations) on a set of regular-spaced sample locations (i.e.,
based on finite-difference methods). The spatial patterns are determined by the top-down view equation-
based relationships between thematic values and spatio-temporal locations. In the results of computation,
A spatial pattern is the difference of computed sample values of some attribute from location to location.
It is updated over discrete time steps through the update of the sample values. These top-down equation-
based methods are widely used to simulate phenomena. A famous example is the sea surface simulation
based on a function called the wave variance spectrum[107]. The theme to be computed is the elevation
of the sea surface related to the sea level. Its patterns are described by the spectrum and the Fourier
transformation from the spectrum to the elevation. In the computation, state values of the elevation are
calculated on a set of grid points at a two-dimensional space at a necessary pace.[108] Other cases can
be found in the simulations of temperature fields based on the heat equation[109], concentration
distributions of chemical substances simulated based on advection-diffusion equations[110], etc.

2. The behaviors of a model are described based on a set of unmovable units, each of which shall
hold a set of thematic attributes. The macroscopic spatial patterns that are of interest emerge from the
state differences of the thematic attributes from unit to unit. In many model descriptions of this kind, the
states of exposed themes are implicitly referred to as the states of these units. Such a model focuses on
expressing the rules to update the state of a unit about these themes with the current states of this unit and
its neighborhood units. This view is often taken by cellular automata models where the units are often
referred to as “cells” [111]. The updates happen iteratively, and the macroscopic spatial pattern is changed
over time through the local updates.

Different from the first case, this type of models is bottom-up. They describe local processes that
consider the neighborhood of the location where a state value is computed. No central control exists in
the core paradigm. Nevertheless, the first two cases have similar schemes in the sense that the values
reflecting spatial patterns of interest are carried by a set of fixed locations, despite that the finite-difference
methods often work on a regular grid of points, while the “cells” of cellular automata could have irregular
geometry [112]. A collection of the units is often referred to as “lattice” or “sites” in both cases, which is
conceptualized as discretized spaces experiencing some states. Researchers have also reported that the
models based on the finite-difference methods can also be transformed into the form of cellular
automata[113].

3. The behaviors of a model are described based on a set of moving units, each of which shall hold
a set of thematic attributes. The macroscopic spatial patterns that are of interest emerge from the
distribution of these units over space. Such a model focuses on expressing the rules to update the location
of a unit at each step. The existence of these units implies a theme. In a more complicated case, the
macroscopic spatial patterns of interest may be exhibited from the state differences of thematic attributes
from unit to unit. This view is often taken by the multi-agent models of mobile entities, while each unit
is conceptualized as a mobile entity[103]. A simple model could consist of a set of random walkers,
whose moving direction and speed (or distance) at a step are drawn from a probabilistic distribution.[114]
In practical cases, the random walker rules often are more decorated, which may consider additional
effects such as the correlation between consecutive steps[115]. Further, efforts of the movement goals of
these units and the background information can be also specified in the rules to define purposeful agents,
which yields the computation of search problems in the spatial context.[103]

4. The behaviors of a model are described based on a set of moving units that actively change the
thematic attributes of a set of unmovable units. The macroscopic spatial patterns of interest to external
components emerge from the state differences of thematic attributes carried by the unmovable units. Such

26

a model focuses on expressing the rules of two aspects, i.e., the rules of updating the location of a moving
unit and the rules of updating the thematic states of the unmovable units when a moving unit arrives at
its location. This view is often taken by the variants of percolation models[116]–[119] and Eden growth
models[120], [121], which are bottom-up view models to simulate the spread of substances such as forest
fire, oil spill and so on[122].

This case is closely related in both 2 and 3. These unmovable units are normally conceptualized as the
“underlying space” or “landscape” in such model descriptions (as the lattice or sites in 2). Movements
of the moving units (as some random walkers or rational agents in 3) shall be expressed in terms of
discrete steps from unit to unit of the underlying space instead of continuous coordinates, which
significantly simplifies the computation.

When a model based on the above-described schemes is developed as an independent simulation
program, it is used to produce multiple sample draws. The summarized characteristics (often in the form
of describing functions and statistic indexes) of multiple samples are analyzed to provide answers and
suggestions for real-world problems. The purpose of usage changes when this model is used to compute
simulated environments for other components. In this situation, it is supposed to be already “correctly”
established. A sample draw from this model is fed to other components during a simulation run. The
summarized characteristics may be fixed in the implementation or be implemented as modifiable
parameters. In this case, the development of simulated environment components involves two main tasks.
First, the computational models of environmental phenomena should be developed and be implemented
with the technologies that are compatible with the current simulation platform. Second, the models should
be integrated into a target frame as the environment component of the target simulation.
3.3.2 Summary and Relation to This Thesis

Ways of providing simulated environments in simulation programs introduced in Subsection 3.3.1 can
be categorized into three styles as shown in Figure 3.2. A system of interest component that consumes
the provided environmental data is referred to as the “client system” of the simulated environment
component in this subsection.

The case (a) is to use externally provided data. Simulated environments produced by integrated
computational models shall be provided to client systems in two ways. The computation shall run
synchronously with client systems and send computed values to client systems at each step as the case
(b) illustrates. The case (c) shall apply when the computation of environmental data requires long process
time, in which computation results are exported to a data store at first and be used by client systems later
for efficiency. In both cases, an environment component needs a frame to enclose computational models.

Figure 3.2: Styles to Provide Simulated Environments.

27

A computational model shall be implemented as a continuous function that calculates thematic values
of a phenomenon when given a spatial-temporal location. It does not contain the logic to compute a
chosen set of discrete samples. Each calculation is performed independently that does not require results
from previous calculations. Simulated environments provided in such a way are conceptually like analytic
coverages as defined by ISO19123[97]. The computation is performed reactively upon the request of
client systems. The frame enclosing such a model provides access to this model with a location as the
parameter. Running this model with client systems needs to determine a finite structure of the required
output at a computation step. This situation also applies to the case (a), in which the analogy of the
mathematic calculation is the connection and query functions to the data source.

Computational models shall also ground on process modeling methods that calculate the next state of
a phenomenon based on its current states, such as the spatial simulation models summarized in Subsection
3.3.1. In this situation, a simulated environment component needs a data structure to hold the current state
of its computed phenomena at runtime. Besides, since such a model computes discrete outputs, the
component also needs a frame to enclose the logic for evaluating values at a location in the continuous
space from computed values. This situation also applies to the case (a), when the logic is not provided
with the data source.

The identification of common schemes and the necessary composition of simulated environment
components are the basis to specify the design-level metamodels that express these components in this
thesis. Concepts of the structural metamodel are introduced based on the analysis in this subsection. These
metamodels are presented in Section 5.2.

28

4 Language-Driven Development Framework of
Simulated Environment Components

As Chapter 1 has addressed, the overall goal of this thesis is to provide a domain-specific solution to
facilitate developments of software components that provide simulated environments in simulations,
respected to identified research objectives. This solution is provided in this thesis as a development
framework built on top of the language-driven development[123]. The proposed framework reflects the
language-driven paradigm in two aspects. First, it involves domain-specific meta languages that describe
simulated environment components in views of different roles throughout a development process. Second,
it constructs software that has the structure of a computer language. This applies to the structure of the
proposed framework itself, as well as for structures of simulated environment components to be built
within the framework. These two aspects are explained in the first two sections of this chapter, followed
by a section that presents a development process using the framework. Benefits brought by this
framework are clarified during describing this development process, with comparison to domain-
independent solutions.

The framework specification consists of the following parts. Corresponding sections that present these
parts in this thesis are also listed below.

 A set of formal meta languages used within the framework: an overview of these languages
at the architecture level is given in Section 4.1, including purposes to use them in the framework,
perspectives from which they are specified, their target users, and relations among them. Chapter 5 is
dedicated to explaining modeling principles and detailed specifications of these languages, including their
syntactic models, structural semantics, and transformations among them. A system architecture to guide the realization of the framework: the architecture specifies
obligatory and optional components of this framework. It is presented in Subsection 4.2.1, including the
functionalities and places of these components in the framework, as well as how they are connected to
build up this framework. The specification of the system architecture is implementation neutral, same as
the meta language models. Implementation suggestions are given during the introduction and an
exemplary implementation for use case validation is provided in Chapter 6. A development process to guide the use of the framework: this process explains how to use
the proposed framework to develop a software application to generate simulated environments. It is
presented in Section 4.3. This process specifies transitions of artifacts among different components,
input/output artifacts of each component, as well as activities that need to be performed in each
development phase.

4.1 Executable Meta Languages
Domain-specific meta languages are the backbone of the proposed framework. This framework

specifies four language models for describing CIMs and PIMs of simulated environment components as

Figure 4.1: DSL Models in the Proposed Framework.

29

shown in Figure 4.1. Each of these languages is specialized for one separate concern during the
development process. They target different involved roles in developments and include the expressions
in their syntaxes that the target roles are familiar with. Low-level implementation details that can be
accomplished with general-purpose programming languages are left out. An instance model described by
one of these languages represents a specific software component that generates simulated environments
for a simulation application, from a view corresponding to the used language. The CIM-layer language
Simulated Environment Description Language (SEDL) is used to describe what kinds of simulated
environments should be produced by such a component in a structured manner. The other three PIM-
layer language models are used to describe the configuration schema, the data models and the
computation flow of such a component, respectively. They are mainly specified as UML Profiles.

The main reasons to use these languages in the proposed framework are to bridge various views and
to enable automation of transforming software descriptions at a higher abstraction level to more concrete
ones. These language models have nested structures and serve as the SEDL Core Language Model
component within the proposed framework, which are introduced in Subsection 4.2.1 in more detail. The
metamodel of the SEDL is mapped to the PIM-layer language models via transformation rules. These
rules play the role of the operational semantics of SEDL. Thus, executing a software description in SEDL
should perform these transformation rules to produce three models, each of which is expressed by one of
the PIM-layer languages. These three models are inter-related and represent the same component as
described by the SEDL description, at an abstract level that is independent of the implementation
programming language.

A brief overview of these language models is given in the subsections of Section 4.1. The later sections
in Chapter 4 introduce where these languages are placed in the framework architecture and how they
work in the development process using the framework.
4.1.1 Simulated Environment Description Language (SEDL)

Purpose: SEDL is a description language for expressing functionality requirements. It supports
expressing the context of simulated environments that should be provided by environment components
in simulations under development and functional behaviors of these components in simulations. An
SEDL description serves as the input of transformations to generate a set of software models that can be
further turned into implementation code or code skeletons. It is the anchor language based on which the
proposed framework is built and serves as the start point to develop simulated environment components
using this framework. Language users can scratch a description of required simulated environments in
SEDL.

Perspective: the syntax of SEDL is designed to be understandable by people without software
development or data structure expertise. It provides an intuitive description structure for simulated
environments in spatial-aware simulations from a human observer perspective. It supports describing
expected compositions of simulated environments required by systems of interest in simulations, as well
as changes that phenomena in these environments should exhibit during simulations. A description in
SEDL does not express a specific environment with a fixed evolving path. It describes all possible
behaviors of an environment that a component should be able to produce, denoting conditions that should
be modifiable to users for different runs. More modeling principles of SEDL are introduced in Subsection
5.1.1 within its specification.

Humans conceptualize a spatial phenomenon based on its properties or behaviors which they are
interested in. A specific property or behavior type is associated with a specific conceptualization at a
certain level of detail. Thus, humans may switch conceptualizations implicitly when describing multiple
aspects of an identical phenomenon. Besides, aspects of a phenomenon type that are of interest to the
simulation decide functionalities of software that produce or record phenomena of this type in the digital
form. These functionalities require certain kinds of data structure and operations in software. While the
aspects of interest are clear, fixing one conceptualization is meaningful. For instance, databases using
the “moving object” concept shall support recording and querying movements of spatial objects and their
topological relationship[87]. In contrast, SEDL is intended to be used to develop different software
programs that may require software artifacts based on different conceptualizations. The most suitable one

30

cannot be foreseen when specifying the language model. Due to the above-mentioned relations, SEDL
does not fix a conceptualization to describe environmental phenomena. Instead, it supports classifying
changes of phenomena required by simulation scenarios at the system analysis phase based on which
software artifacts are derived in the following development phases.

Relations to other DSLs: the grammar model of SEDL locates at a higher abstraction level than the
one at which the other three meta languages locate at within the framework as will be explained in 5.1.1.1.
The language specification of SEDL is defined with operational semantics in terms of transformation
rules. These rules map the abstract syntax model of SEDL to the models of the other three meta languages.
The other three languages are often referred to as output metamodels/meta languages in the following
text. The abstract syntax models of the output meta languages can be viewed as parts of its operational
semantics specification. Transformations of an instance model in SEDL results in a set of instance models
described by the other languages.

Target users: SEDL is intended to be used in the system analysis phase. First, it is used to document
and communicate the high-level functional requirements of software components. Component users can
describe in SEDL their expected environment to be generated by a software component. Developers can
also write the description according to the discussion with users. The resulting descriptions can be
checked and confirmed easily by involved roles. More importantly, an SEDL description is a half-formal
model, which enables its automatic transformation to more concrete models. In a realization of the
proposed framework, executing an SEDL description will provide developers with software models or
code skeletons of the component under development described by this SEDL description.
4.1.2 Configuration Schema Description Profile

Purpose: Configuration Schema Description Profile is a description language specified as a UML
Profile. It is used to describe user-software interfaces. An instance model of this profile is a configuration
schema for a software application, which contains groups of configurable parameters exposed to users.
In the proposed framework, this profile serves as one of the output metamodels of the SEDL description
execution or the input metamodel of transformations to platform-specific user interfaces.

Perspective: this language is purely declarative. In the proposed framework, an instance model of this
language describes a user interface to configure a simulated environment component from a data model
perspective. Second, the structure of this instance model is aligned with the structure of simulated
environments that is described by a corresponding SEDL description.

The first point means the abstract syntax of this language is not a model denoting how an input field
of a parameter should be visually presented to users. It focuses on the content which can be set by users
and be passed to the back end of the component under development. A concept in the profile either
presents a parameter or a group of parameters with a certain structural pattern. For example, a
configuration model shall state a parameter about the wind speed called “initial”. Then the configuration
interface should allow users to set different values for “initial”. However, the model does not state that
these values must be set through a certain GUI entity, e.g., a textbox. This prevents user interfaces from
being restricted to a specific visual representation. An additional mapping layer can be established to
transform an instance model described by this profile to a graphical or textual configuration editor in
some specific platform. This point will be brought up later in Subsection 4.2.1.

The second point means a configuration model described in this profile is organized in the same
structure which corresponds to an SEDL description. This configuration model is supposed to get its
hierarchy when it is derived from that description. It also gets names of elements and characteristics in
the SEDL description. It keeps the same structure when users form the simulated environment in their
minds to describe their requirements. Thus, the resulting user interface can be easily understandable.

Relations to other DSLs: a model described by this profile is supposed to be initially generated when
executing an SEDL description. Links exist between this model and a model described by the metamodel
of environment computation. The latter is generated from the same SEDL description. A component
developed from that computation model consumes an instance configuration to initialize settings for a

31

simulation run. Modifications of the initial generation from either side of these two models should retain
these links.

Target Users: this language is of interest to front-end developers who should develop an interface
that allows users to interact with the component under development. They should bind a configuration
model (i.e., an instance model of this profile) to a user interface of the component. They shall map this
profile further to suitable visual representations to accelerate UI development. Though a developed UI,
users can add or remove a phenomenon for a simulation execution conforming to the cardinality
restriction, assign values to parameters, etc. Names of elements within the configuration model are
exposed to users to denote which values they configure.
4.1.3 Simulated Environment Structure Profile

Purpose: Simulated Environment Structure Profile is a language model to describe abstract data
structure[124]. It serves as one of the output metamodels of the SEDL description execution, as well as
provides some PIM-layer constructs for developers to describe application-specific structural models. It
may also serve as the input metamodel of transformations to the platform-specific models.

Perspective: this profile is also used to describe structural models for components that produce
simulated environments in simulations. Different from the configuration profile targeting user interfaces,
this language focuses on the back-end data structure of the component programs. An instance model in
this language reflects how characteristic values of environmental phenomena are organized and stored
within programs. It contains classes to store values of environmental entities during computation and
classes representing data objects that being sent to systems of interest from the environment components.
Objects modeled by this model are created and updated during component runtime.

An environmental phenomenon described by this profile is essentially a complex datatype with
multiple aspects. These aspects are represented by geometry datatypes for its spatial representation and
non-spatial primitive datatypes for other properties, respectively. The spatial representations covered by
this language model are based on existing data models and simulation researches. This enables seamless
mapping from this language to encoding libraries which are based on these works.

Relations to other DSLs: a model described by this profile is supposed to be initially generated when
executing an SEDL description. A behavior model described by the metamodel of environment
computation generated from the same SEDL description is associated with it. Links between these two
models must be retained when modifying the initial generations. Computation classes implemented from
the behavior model are in charge of creating, updating or destroying objects from corresponding datatypes
in this model.

Target users: this profile and its instance models are hidden from component users. It is mainly for
developers who implement the component back ends. Developers should turn a generated model
described by this profile to functional code. They can benefit from general code generation facilities to
get model code skeletons from this model. They shall modify the generated model to optimize the
software design before the code generation. Further, they shall develop or utilize default implementations
for spatial representations of meta types in the language metamodel (i.e., stereotypes in this profile) and
reuse it for all model elements of the same meta types.
4.1.4 Metamodel of Environment Computation

Purpose: the metamodel of environment computation describes behavioral models of simulated
environment components. It serves as one of the output metamodels of the SEDL description execution,
together with the other two introduced in the previous two subsections. It also provides some PIM-layer
model constructs for developers to express application-specific behaviors of the component under
development. It could also serve as the input metamodel for computation flow code generation.

Perspective: different from the previous two output metamodels which focus on structural aspects,
constructs of behavioral models are process-oriented. An instance model presents computation processes

32

to compute states of a simulated environment at a simulation step and simulation routines in which the
component under development participates in.

Meta elements that express such models come from several sources, which include basic UML
behavioral metal elements, behavioral elements owned by stereotypes in the structural metamodels, and
action stereotypes defined in the behavioral metamodel specification. They are all viewed as part of the
behavioral metamodel used in this thesis at the PIM layer. The detailed composition is summarized in the
specification in 5.2.3.1.

Relations to other DSLs: a model described by the computation metamodel is supposed to be initially
generated by executing an SEDL description, together with two other output models in previously
introduced languages. These three models together present a software design model. The computation
model has associations with both the other two models. Modifications of the generated models should
not break these associations. During the runtime of a developed component, the implemented
computation model gets its initial setting from an instance of the configuration model and operates on
objects that are the instances of the data structure model to produce outputs.

Target users: this language and its instance models are also designed for back-end developers and
thus are hidden from component users. Developers should turn an instance of the computation metamodel
into a sequence of computation units in code. This shall be assisted by code generation facilities in an
implementation of the proposed framework as explained in Section 4.3.

The body of each computation unit can be individually implemented based on mathematical
formulizations provided by modelers of environmental phenomena. Thus, instances of the computation
metamodel also serve as communication media between software product developers and environmental
phenomena modelers, when these two roles are taken by different persons. Modelers do not need to
bother with the structures that are specific to programming languages, but only the computation logic
within computation units. Since the input parameters and output types of these units are fixed in a
computation model, modelers shall identify the corresponding parameters and types in their formulas.
Product developers then can turn the formula into the method code with correct input and output to chain
the computation process correctly.
4.2 Build Software Applications as Computer Languages

The proposed framework emphasizes building software following the structure of an executable
computer language. This strategy brings two benefits. First, developed meta languages in the framework
can be more comprehensive used than merely serve as description syntaxes. Language users do not only
benefit from the high-level grammars of these meta languages, but also components of computer
languages that implement their operational semantics. Second, the realization of software can use the
basic language infrastructure generated by workbenches (see Subsection 3.2.3) from language models,
which ease the implementation in practice.

In the following text, Subsection 4.2.1 presents how the architecture of the proposed framework
follows such a structure, followed by Subsection 4.2.2 explaining that how a simulated environment
component developed within this framework is coordinated as a set of computer language components.
4.2.1 Development Framework as IDE of SEDL

At the architecture level, components of the proposed framework are organized in the way to build an
IDE of the anchor language SEDL. Thus, a realization of this framework should provide an infrastructure
to write and execute SEDL descriptions. The logical components of the framework are shown in Figure
4.2 and explained below, among which the SEDL Core Language Model and the Basic SEDL Tooling
are the mandatory components for a minimal realization.

33

4.2.1.1 SEDL Core Language Model
 The SEDL Metamodel is the grammatic model for creating descriptions of analysis-level
requirements of simulate environment components. It is defined in the core SEDL specification using
UML terminology to keep implementation neutral. The Abstract Syntax of SEDL provides concepts
and structures to describe simulated environments, whereas its Structural Constraints provide
constraints that a validate description must conform to. The SEDL Metamodel is a domain model that
does not represent software structure. One class in SEDL should not be confused with one class in a
software program. Rather, it corresponds to a set of artifacts in software. Classes in SEDL metamodel
shall be used as software model classes only when implementing the SEDL tooling.

SEDL Operational Semantics are essentially transformation rules from SEDL descriptions to software
design models at the platform-independent layer. While the input side of the transformation conforms to
SEDL Metamodel, outputs of the transformation are expressed by the Output Language Metamodels.
It comprises models of the other three meta languages summarized in Section 4.1. These models can be
viewed as being nested in SEDL and are also defined in the core SEDL specification, mainly in the form
of UML Profiles. The design of language models in the proposed framework follows principles of the
strict multi-level metamodeling as introduced in Subsection 2.1.3. Artifacts related to simulated
environments can be derived from these models. These language models, their instances and derived
artifacts, relations among them, as well as their relations to general modeling languages are shown in
Figure 4.3. This figure also shows their position in metamodeling levels and MDA layers.

Both the SEDL Metamodel and the Output Language Metamodels are designed at the M2 meta
level. This pushes the general modeling language, i.e., UML in this case, further to the M3 meta-meta
level. The SEDL syntax describes simulated environments. It results in high-level domain models of
simulated environments in the human view, which are CIMs. In contrast, output meta languages describe
models of software systems at the logical level, which are PIMs. Mapping rules between these two sides

Figure 4.2: Logical Components of the Proposed Framework.

34

which constitute the SEDL Operational Semantics are established at the M2 level. An SEDL description
is an instance of the SEDL Metamodel and locates at the M1 model level.

This M1 model is essentially a conceptual description of a set of possible simulated environments that
need to be created by a component under development and how they should be provided to the system of
interest component during simulation executions. These environments have structures and property types
in common, while may differ in the qualities of their properties. Thus, an M0-level object at the
description side corresponds to a simulated environment in a specific simulation run in human perception.
It should be made clear that an SEDL description does not need to be further instantiated in an information
system. Thus, the SEDL descriptions at the M1 level are the end instances at the CIM layer in the
framework.

At the M1 level, an SEDL description is transformed into a set of software models of an application
that produces simulated environments. These output models conform to the output metamodels. In other
words, they are the instances of corresponding metamodels. The transformation at this level follows the
M2 level mapping rules. The M0 level of the output side locates runtime objects of these M1 models.

The SEDL specification is presented in Chapter 5. To keep the proposed framework independent of
implementation, this specification provides neither a concrete syntax for SEDL descriptions nor a
concrete syntax for the output meta languages. However, concrete syntaxes of these languages are
mandatory to realize any language tooling with which users are can create and modify instance programs
of them. The SEDL Concrete Syntax could be either in textual source code style or in graphic notation
which is similar to the underlying UML-based grammar model, while the UML graphic notation and its
exchange format XMI can be applied for encoding the output software design models at PIM layers.
4.2.1.2 Basic SEDL Tooling

The language tooling is implemented based on SEDL language models. The SEDL Description
Editor is used to create and modify description programs that conform to the SEDL Concrete Syntax
being used for the framework implementation. This editor is integrated with the underlying Syntax
Analysis Component to provide editing support functions such as syntax highlighting and validation.
The composition of this component depends on the type of implemented concrete syntax.

Figure 4.3: Model Related Artifacts Correspondence to MDA and Metamodeling Levels.

35

The editor should also implement save functions to store created SEDL descriptions in files and reopen
them for further modification or execution. Since the Abstract Syntax of SEDL is defined in terms of
UML, it is recommended to also implement the save function for storing a parsed version of these
programs encoded in the UML interchange format XMI. Thus, the written programs can be used in
different implementations of the proposed framework, as well as other UML-based modeling tools.

In addition, the editor should have an easy interface that allows users to pass an SEDL description to
the SEDL Description Processor for execution. This processor implements the SEDL Operational
Semantics. An execution process for a minimal realization of the proposed framework is a model-to-
model transformation. It produces and saves XMI-encoded models conforming to the Output Language
Metamodels. This transformation can be combined with an optional platform-specific mapping which is
introduced in the following subsubsection.
4.2.1.3 Platform-Specific Mapping Layer

This layer a worth-to-have optional component that extends the basic tooling with a Platform-
Specific Translator. It implements the Platform-Specific Transformation Rules. Models described
by the output meta languages are independent of specific implementation technologies. This translator
further maps these models to some specific implementation platform, e.g., the programming languages
used in a development team. For example, an output model from the basic tooling may have a class with
a property “a”. When the implementation technology is set to be JavaBeans6, this class can be further
mapped to a Java class with a private field “a” and public getter/setter methods to access this field.

This layer usually involves code generation facilities. It can be implemented by model-to-code
transformation languages as Code Generation Templates or make use of existing UML-based code
generation tools. In this case, the execution of an SEDL description in the combined toolchain of basic
tooling of SEDL and the platform-specific mapping layer produces code skeletons as the PSMs at the M1
level as shown in Figure 4.3. This is especially recommended for computation model transformations,
while computation models enclose application-specific behaviors of a component that needs to be
implemented by developers. PSM-layer outputs provide developers with architectural code which they
can fill in these application-specific behaviors. To facilitate the PSM code generation, transformation
details specified in Chapter 5 express the output models in a structural view in terms of operations owned
by activity classes and model elements relevant to it.
4.2.1.4 SEDL Extension Layer

This thesis focuses on developing new components rather than reuse of developed components. Also,
the SEDL core language is designed to be independent of specific scenarios or phenomenon types. This
strategy keeps the core language having a concise size and being easy to use. Further, it ensures that the
core language to be applicable in different applications. However, a collection of developed simulated
environment components emerges and evolves during long-term developments. This results in an
extension layer of the implemented framework as shown in Figure 4.2.

For groups whose work is dedicated to specific application areas, frequently appeared environmental
phenomenon types shall be identified within a certain application area, e.g., sea wave in a marine
environment. It is worth to add concepts to describe these reoccurred phenomenon types as Application
Modules of SEDL. Besides, the implemented code in the Custom Code Pool to produce specific
environmental phenomena has the potential to be reused. Different from other components of this
framework, this layer is not a self-contained component but a collection of application artifacts. To reuse
the implemented code of an application module, the corresponding Application-Specific
Transformation and the Tooling Extension need to be realized. While this is beyond the focus of this
thesis on the core SEDL-based specification, Section 8.4 in the discussion chapter briefly provides a
conceptual design of the integration architecture that integrated these artifacts into the core framework
infrastructure.

6 https://www.oracle.com/technetwork/articles/javaee/spec-136004.html

36

4.2.2 Simulated Environment Specification by Configuration Language
The proposed framework guides the development of simulated environment components to reach

software products as syntax-directed applications[125]. A simulated environment component is
organized following the structure of a light-weighted configuration language.

This strategy is achieved by CIM-PIM transformations from SEDL descriptions. Models that locate
at the PIM layer and the PSM layer in the proposed framework take the view of software systems. The
basic structure of a simulated environment component under development is first provided by the
generated PIMs at the M1 level. Output PIMs transformed from an input SEDL description include three
inter-related models, i.e., a user interface model, a data structure model and a computation process model.
They represent together the preliminary design model of the component expressed by the input SEDL
description. This set of models is coordinated in the way to provide functionalities to read and process a
light-weighted application configuration language as shown in Figure 4.4. Refinements and further
transformations should maintain the fundamental structure. More details are explained below.

Grammar: the generated UI model is a configuration schema, which corresponds to the grammar
model of a light-weight configuration language for simulated environments. The structure of this model
is aligned with the input SEDL description and its terms are transformed from the chosen names of
elements in this description. Both are expressed by component users or with the involvement of
component users which ensures its understandability. In a realization of the SEDL, it is recommended to
pass this model to a language workbench to create basic language infrastructure as reviewed in Subsection
2.2.3, which provides a frame to integrate the three output models together. The infrastructure has various
components that can process instances of the configuration schema.

Reader: a reader parses information written in a certain grammar and performs post-processing on
parsed objects to translate them into the inner data structure of the software. Thus, this term roughly
refers to the scanner, the parser and the post-processor of a computer language. Here, the reader
corresponds to the syntax analysis component in the language infrastructure created based on the
configuration schema as mentioned above. It wraps methods that parse an instance of the schema and
support functions that initialize a computation process according to a configuration instance. The
initialized computation process is an instance of the computation process model.

Interpreter: the computation process model corresponds to an interpreter. It provides functionalities
that consume a configuration instance, initialize necessary instances of the data structure model and
compute simulated environments during simulations. The generated computation process model includes
computation classes and computation flows associated with it. In a realization, this part of the models

Figure 4.4: Developed Components as Syntax-Directed Applications.

37

can be wrapped by an interpreter skeleton in the language infrastructure generated from the configuration
model as introduced above.

An advantage of this strategy is that it enhances the usability of developed components. By applying
a syntactic model whose terms and structures are derived from user requirements to a configuration
interface, component users are assisted with the intuitive vocabulary support in the same way they used
to describe the to-be produced environments. Further, treating the configuration schema as a grammar
model can benefit from language development facilities to create frames that bind different parts of
component models together. Manual development work can be reduced through this strategy.
4.3 Development Process with the Proposed Framework

This section provides recommendations for aligning the development process of a simulated
environment component with the framework. It presents each development phase that the framework
contributes to, starting from determining functional requirements way down to getting executable code
ready in chosen programming languages. These development phases chained together through transitions
of intermediate artifacts among them to construct a whole development process with the framework.
Figure 4.5 provides a non-normative simplified overview of this process with the emphasis of the
transition flow among different components. The solid arrows show the flow that the information or
artifacts being passed between two components. Actions other than simple passes are labeled near
corresponding arrows. In practice, each step shall be iterated to adapted to real software development
lifecycles, which will be summarized in Subsection 4.3.4.

This development process is grounded on MDD. In the following sections, involved components and
the main working goal of the corresponding phase are summarized at the beginning with respect to MDD.
Then, situations of using domain-independent solutions are briefly described, followed by comparison to
the proposed framework for explaining the specialty of this framework. Finally, tasks that should be
performed in this phase with the framework, as well as the types of artifacts produced for the following
phase, are presented.
4.3.1 System Analysis

In the System Analysis phase, the SEDL Metamodel and the SEDL Description Editor are involved.
The goal of using the framework at this phase is to determine the functionalities that a simulated
environment component should have in the form of an SEDL description (located at the M1 level of the
CIM layer as illustrated in Figure 4.3).

In a conventional software development lifecycle, required functions are often recorded in informal
documentations. When it comes to an MDD process with domain-independent modeling tools support,

Figure 4.5: Development Process with Processed Framework.

38

System Analysis often produces high-level use cases and business activities diagrams as CIM models to
document these requirements, as summarized in Table 2.1. General modeling languages do provide
constructs for structuring informal messages to a certain extent to create half-formal models at this layer.
However, model elements expressed by them shall have very different levels of detail since these
constructs allow to express context in any application domain. For instance, actions in a high-level
business activity flow may range from a customer making an order to the system popping up a warning
message on a screen. Information that reflects the domain context may be expressed by any natural
language terms and can hardly be systematically transformed. Such models require manual interpretation
when being used in further development phases. Besides, communication difficulties caused by different
domain terminologies used by roles from different backgrounds may remain.

Within the proposed framework, SEDL descriptions play the role of functional requirement models at
the CIM layer. Different from the domain-independent languages, the SEDL Metamodel provides
constructs with limited expressiveness. Each of these constructs does not allow arbitrary context, but
only allows expressing a specific type of context about simulated environments. This metamodel plays
two roles in the analysis phase.

On one side, it regulates communicating terminologies and structures to express a CIM of simulated
environment components. During the analysis, involved human roles sketch and exchange opinions to
determine functionalities of the component under development with the support of the SEDL syntax. The
SEDL metamodel is specified with terms based on common-sense perception to provide a common
ground for various roles with different levels of technical skills to exchange the information. In principle,
an SEDL description expresses the following aspects of simulated environments that should be produced
by a component under development:

1. Composition. What kind of phenomena should be included in the simulated environment?
Which relevant characteristics of them should be included in the digital representation? How should such
a phenomenon occupy the virtual space at a time instant?

2. Variations. What kind of changes that the simulated environment may occur in space and time,
e.g., movement in two-dimensional space, increase/decrease of a global property value, value difference
over space? Which phenomena and properties are involved?

3. Execution Conditions. Which aspects of the included phenomena should be controllable by
users to set different scenarios? In which condition information of environments should be computed by
software during a simulation? How should the computed information of environments be provided to a
system of interest component at a simulation step?

On the other side, it serves as a communication vehicle that wraps functional requirements to be passed
to the next development phase. By the end of the analysis phase, the required context of simulated
environments is written in an SEDL description file via the SEDL Description Editor. This description
is passed to other components that perform tasks in further phases. By doing this, the model
transformation process within this framework is triggered.
4.3.2 Software Design

The Software Design is the development phase in which the meta languages summarized in Section
4.1 are most heavily involved. At this phase, the goal of using the framework is to produce a set of
software design models (located at the M1 level of the PIM layer as illustrated in Figure 4.3) described
by output meta languages. The tool used to perform tasks in this phase is the SEDL Description
Processor. It is related to the SEDL Core Language Model, as well as available extensions of the model.

Aligned to the MDD, CIMs will be turned to PIMs at this phase. In a domain-independent solution,
due to the heterogeneities of conceptual structures in a potentially infinite number of domains, it is hard
to determine the correspondence to software structures for an arbitrary CIM. In this case, CIMs resulting
from system analysis often do not have sufficient information to be automatically turned to a software
design model at the PIM layer.

Different from a general MDD solution, the proposed framework contributes to the Software Design
phase by enabling automatic domain-specific transformations from CIMs to PIMs. An SEDL description
from the System Analysis phase serves as the input of the design phase. As have been indicated, it is a

39

functional CIM. The first step of the design phase is to pass this description to the SEDL Description
Processor for transformation. The processor parses it to an abstract syntax tree following the SEDL
abstract syntax definition and translates it to a set of software design models described by output meta
languages. This automatic transformation is built on the following theoretic foundations. First, the SEDL
Metamodel has restricted the way to construct an SEDL description. Second, Output Meta Languages
provide profiles to describe the component design models with a finite number of constructs. Third, the
previous two finite sets enable establishing well-defined mapping rules between them, which ensures
unambiguous transformation outputs from items in an SEDL description.

Outputs from the automatic transformation already have sufficient details to be passed to the next
phase. However, in practice, the automatic transformation is usually followed by one or more rounds of
manual refinement. During the refinement, initial generated models are optimized. For instance, artifacts
for satisfying detected missing requirements and for managing non-functional concerns shall be added.
More specific artifacts may replace general ones with the knowledge of computation logic at this step.

As will be seen in the specification of meta languages in Chapter 5, PIM-layer metamodels also
provide some domain-specific constructs to support developers to model more application-specific
behaviors since the PIM layer. They are used for describing behaviors that are not formally derivable by
automated transformations from CIMs. These constructs are specified as behavioral elements carried by
other model elements derived from CIMs. Developers can invoke these constructs through its belonged
model elements to model behaviors. In practice, it is recommended first to transform the PIMs into a
PSM version and begin to use these constructs at the PSM layer for implementation. Since at either layer,
these behaviors are supposed to be brought in by the same roles, this strategy avoids unnecessary
complications in PIM-PSM transformations.

The proposed framework emphasizes the use of software prototyping[126], [127] during the design
and implementation phases. Instead of forming a simple sequence, iterations of these two phases exist in
practice. All intermediate versions of the design models during the optimization are described by the
output meta languages. Each of them or parts of them can be passed to the next phase, i.e.,
Implementation, for prototyping and refinements of prototypes. The initial generated design models are
passed as the base for the semi-automatic generation of the first version of the prototypes.
4.3.3 Implementation

In the Implementation phase, the design model is turned to an executable program by chosen
technologies (located at the M1 level of the PSI layer as illustrated in Figure 4.3). At this phase, the
component in action is the Platform-Specific Mapping Layer. Its main job is to transform design models
at the PIM layer to PSMs.

Automatic transformation in MDA usually starts from PIMs to PSMs. Transformations from PIMs
to PSMs, especially for structural models, are relatively straightforward compared to transformations at
higher abstraction layers. Context-wisely, models at the two sides of a PIM-PSM transformation have
similar levels of detail. Such a transformation refines PIMs with support artifacts for a specific
technology, which does not require domain-specific knowledge. Thus, transformation automation
between the PIM layer and the PSM layer is feasible to realize at the domain-independent range. It often
becomes a key feature of a general modeling tool based on MDA standards.

An example is the default code generation facilities of EMF. The same model shall be used at different
MDA layers when serving for different purposes. In an EMF-created application, underlying Ecore
models often serve as a domain model that can be used for different technical platforms.[35] However,
at the stage of creating tooling for this application, the default model code generator provided by EMF
uses Ecore models as software models at the platform-independent layer. As Section 3.1 points out, a
transformation from the CIM layer to the PIM layer turns a model from the conceptual business view to
the logical information system view, which is seldom a one-to-one mapping process. In contrast, the
default code generation of EMF only adds Java-specific facilities to existing Ecore elements, e.g., access
methods for private attributes and factory classes. For instance, when an Ecore Class “Book” is
transformed into a Java Class, the resulting Java class will have an “author” attribute if the “author”
attribute is explicitly defined in the Ecore class. This process does not add new domain-specific

40

information into the Java classes. Thus, it is more a transformation that refines models from the PIM
layer to the PSM layer. Modeling languages provide rules to structure a PIM here.

Readers may notice that generated code in the above example is referred to as “model”. The reason is
given as follows: although Figure 4.3 illustrates the platform-specific model and the implementation
(PSM and PSI) separately for clearance, the boundary between these two is not rigorous in practice.
Transformation facilities in domain-independent modeling tools often generate code of interfaces
together with a default implementation, such as the EMF case. Nevertheless, this transformation cannot
catch the application-specific functionalities needed for the final application. The main goal for this code
generation is still to provide platform-specific models, which are presented in the form of skeletons of
generated code.

Since sophisticated PIM-PSM transformation tools have been developed in domain-independent
modeling platforms as explained above, the proposed framework is designed to be integrated with
existing technologies, especially for its Platform-Specific Mapping Layer. The metamodels of PIM-
layer languages are defined based on UML Profiles recommended by MDA. Thus, instances models of
these metamodels, i.e., the output models from the design phase, are UML-based. They are compatible
as the input of model transformation and code generation facilities, which are also based on UML.

Once the PIM-layer models have been derived from SEDL descriptions, they shall be fed to domain-
independent MDA-based modeling tools, to generate PSMs according to the tool implementation. These
tools serve as the Platform-Specific Translator. This translator, however, can be enriched by adding
missing functions of an existing tool, especially for the behavioral model transformation and
transformation to structures implied by stereotypes, as specified in Chapter 5.

It is recommended that the automatic generated PSMs are encoded in the form of program code
skeletons. Under this condition, the Implementation phase comprises iterations of two steps. First, a
version of design models or some part of them from the Software Design phase is passed to the Platform-
Specific Translator for execution. PSMs are generated as code skeletons through the execution. Then,
developers fill the function body of these code skeletons to provide the executable program. During PIM-
PSM transformations, domain-specific constructs for modeling application-specific behaviors are
transformed, e.g., in the form of operations owned by a class in an object-oriented language. Thus, in this
step, developers can further use these constructs to implement application-specific behaviors.
4.3.4 Development Activity Flow with Iterations

This subsection provides a graphic summary of main activities during the development process as
shown in Figure 4.6, which have been explained in previous subsections. The activity flow is presented
in Business Process Model and Notation (BPMN)[128] and explained below. BPMN is an OMG standard
that provides graphic notations to describe high-level business procedures.

This figure emphasizes the flow of tasks that a development team shall follow and the steps where
user participation comes to play. To keep the focus, it only includes activities related to the proposed
framework. It identifies developers and users of the component under development but does not
distinguish more specific roles at each side for providing a clear overview. As have been addressed in
Chapter 1, these two groups usually both belong to a bigger community that develops and uses
simulations (as “Simulation R&D Community” in the figure). Assigning individual tasks of developing
a specific model function are decided within the developer teams since the expertise of developers is
different from team to team. The assignment can be supported by the generated models, which help to
identify functional units of the component under development.

Subsection 4.3.2 points out that one benefit that the proposed framework contributes is to support
rapid prototyping. In practice, the development process of a simulated environment component with this
framework is not a simple linear sequence, but includes iterations of the introduced activities, as shown
in Figure 4.6.

41

The coding of the component shall start when the first automatic generation result from an SEDL
description is ready. CIM-PIM transformations and PIM-PSM transformations shall be combined as a
chain to create component skeletons. Further, the Platform-Specific Translator shall create default ready-
to-run functional code from design models, e.g., using pre-assumed return values or an illustrative body
for generated operations. An initial runnable prototype of the component can be provided to users at a
fast speed to confirm the satisfaction of their needs and to identify missing functionalities. Then, the
prototype is refined during the necessary iterations of previously introduced development steps. At the
end of each iteration, an intermediate version of the component is presented to users to discuss if further
refinement is needed and in which step the next iteration should start. This process continues until the
component satisfies the requirements of the simulation.

Figure 4.6: Main Activities in the Development Process.

42

5 Simulated Environment Description Language
The framework proposed by this thesis specifies domain-specific languages to describe simulated

environment components at the CIM layer and the PIM layer. They enable domain-specific
transformations during the MDD process using the framework. This chapter presents the specification of
the anchor language of this framework, namely Simulated Environment Description Language (SEDL).
The models of other languages in the framework are embedded in this specification. Section 5.1
introduces the language model of SEDL. Section 5.2 presents the models of the other three languages.
They describe PIM models that are transformed from SEDL descriptions through the transformation
chain in the proposed framework. The execution semantics of SEDL, which is a set of transformation
rules, is presented in Section 5.3.
5.1 SEDL Language Model

This section presents the modeling principles of SEDL, as well as the specification of its abstract
syntax and descriptive semantics. The specification does not fix a concrete syntax for SEDL, which leaves
the freedom to different implementations.
5.1.1 Conceptual Modeling Principles

Before the SEDL model is presented, this subsection provides a brief introduction to the modeling
principles of this model to help readers to understand the following subsections.
5.1.1.1 Level of Modeling

SEDL is a language used in the system analysis phase to describe simulated environment components
of simulation applications under development. In this phase, high-level functional simulation scenarios
are identified. These scenarios are further specialized to guide the design and implementation of final
simulation programs. The major part of SEDL is specified to support expressing the context of simulated
environments that forms a part of simulation scenarios.

As Figure 5.1 illustrates, a program in SEDL is a high-level description created in the system analysis
phase of the development. It is an instance of the SEDL language model. In the following phases, this
program should be turned to digital structures that represent the described environment and program
functions to compute environmental data. These representations are implemented as a component of the
simulation application with alterable parameters. By fixing these parameters, each execution of this
application produces a concrete simulated environment instance of the simulation as a set of data objects.

Thus, an SEDL description locates in the same modeling level of simulation programs. A phenomenon
expressed in this description corresponds to all possible simulated phenomenon instances that can be
produced from the executions of a simulation program. SEDL descriptions express simulation

Figure 5.1: Forms of Simulated Environments at Different Development Phases.

43

components and are transformed into models or code of these components instead of concrete sets of
environmental data.
5.1.1.2 Perspective of Modeling

An SEDL description reflects the functional requirements of the simulated environment
component in a simulation program from the system of interest modelers of this simulation. SEDL
is introduced for developing components in complex spatial-aware simulations, in which simulated
environments could be produced through a different paradigm from the paradigm used to simulate the
system of interest component. The environment component may be developed by other specialties than
the system of interest modelers. However, scenarios of a simulation depend on the goal for which its
system of interest is modeled and should be decided by the system of interest modelers. The simulated
environments in these scenarios should also match the expectation of the system of interest modelers.
Thus, their expectation needs to be correctly identified, communicated and preserved in the development,
for which SEDL comes to action.

An SEDL description expresses the environment component of a simulation from the user
perspective in a computation-independent manner. Users here refer to modelers that use this
component to provide the simulated environment to their system of interest component. It describes the
context they expect from this component while neglects how the context is produced. This results in a
domain model of described environments in the view of a human observer. It also describes high-level
behaviors of this component which users are aware of, such execution routines, configurable options, etc.

Terms used by the SEDL syntax are based on common-sense knowledge. Creating SEDL
descriptions does not require the expertise of environmental modeling, e.g., data structure or computation
methods for the described phenomena. These descriptions are supposed to be communicated among roles
with diverse expertise. The common understanding of used terms should exist or be easy to be established
among these roles. This means that the SEDL model should ground on common sense and remain simple.

Figure 5.2: SEDL Abstract Syntax.

SimulatedEnvironment
- spaceDimNum: Integer

SpatialIndividuality
- dimNum: Integer

FieldOfIndividualities

«enumeration»
OutMode

 Reactive
 Autonomous«enumeration»

ParameterType
 FreeText
 DataSource
 Spatial
 Time
 Options
 Switch
 Number

ThematicProperty

DescriptionItem
ExecutionRoutine

- systemID: Integer
- mode: ExecutionMode
- outputRange: OutputRange
- aggregated: Boolean

«invariant»
{contex SimulatedEnvironment
inv: 0<= self.spaceDimNum <=3}

«invariant»
{context SpatialIndividuality inv:
self.dimNum <=
self.situatedIn.spaceDimNum ||
self.dimNum <=
self.field.situatedIn.spaceDimNum}

EnvironmentalPhenomenon

CharacteristicVariation
- indexName: String [1.."]

DescriptionItem
ConfigurableParameter

- type: ParameterType

DescriptionItem
ConfigurableDescriptionItem

Variation

«enumeration»
OutputRange

 All
 AtPoint
 AtRegion

+theme0..*

+individuali ty 1

+memeber
1 +field 1

0..*
1

0..*
1 0..*1

44

5.1.2 Abstract Syntax
The abstract syntax of SEDL is specified in UML to keep implementation neutral. It defines legitimate

terms and the valid structure of SEDL descriptions. Figure 5.2 presents the abstract syntax that expresses
the main structure of an SEDL description. Additional structural constraints are presented in OCL and
will be explained in the next subsection. Other terms are omitted due to the limitation of space. They will
be presented by figures in the next subsection.

A UML class in this syntax model represents a term (may also be referred to as a type in this
specification) in SEDL. SEDL specification only introduces terms when they are conceptually different.
The class names in the abstract syntax model are more used as identifiers for back-end processing.
Elements in the abstract syntax trees of SEDL descriptions are instances of these terms. Relationships
among these terms specify their instances’ relations in a valid description. The syntax model should not
be confused with a digital data structure model.

Several abstract terms are introduced into the SEDL language model for specification convenience.
They are named based on common sense or conceptual approximation and thus should not be exposed to
language users to avoid confusion. These terms are marked italic in the figures.
5.1.3 Descriptive Semantics

This subsection introduces the meanings of SEDL terms to guide the use of SEDL.
5.1.3.1 DescriptionItem and Configurable

All terms in SEDL are used to enclose pieces of analysis-level descriptions about computer
applications. Not all aspects of applications can be formally captured at this level. An abstract term
DescriptionItem is introduced to deal with this issue. All other terms in SEDL are subtypes of
DescriptionItem and inherit its attributes. A DescriptionItem instance must have one attribute name of
the String type to identify it in the SEDL description and transformed artifacts in the following
development phases. Besides, it may, and is recommended to, have one attribute description. The value
of this attribute is some text to express application-specific requirements that cannot be captured by the
formal part of this instance.

Another abstract term Configurable is specified to facilitate the specification. It may contain 0 or more
ConfigurableParameter as specified in Subsubsection 5.1.3.2.
5.1.3.2 ConfigurableParameter

Environment instances generated by a component can vary among executions. To adjust the output
for various scenarios, users may want to have some control over the component to produce outputs that
match some desired index values about the whole environment, some phenomenon, or some change
patterns of a phenomenon. These indexes reflect the characteristics of the generated environment
instances. They shall be some summarized descriptors, e.g., the lifespan of a phenomenon instance, the
mean value of some property during a phenomenon’s lifetime, etc. They may also be some special state,
e.g., the initial value of the phenomenon location. Their values are used to initialize a simulation run. A
ConfigurableParameter expresses such an index about a Configurable whose value should be set by users
before an execution.

SEDL made all terms that describe composition and changes of the simulated environment as subtypes
of Configurable. Thus, ConfigurableParameter-s can be related to corresponding Configurable-s in SEDL
descriptions. A ConfigurableParameter is mapped to a parameter of the resulting simulation program that
users can set through some user interface or a configuration file.

The name of a ConfigurableParameter inherited from DescriptionItem should be given by component
users to identify the characteristic controlled by this parameter in the simulation program. Besides, it
must have one attribute type that describes the form in which the parameter value should be set. This type

45

can be chosen from an Enumeration named ParameterType. Values in this Enumeration express
parameter types in a way that is looser than datatypes in a programming language so that users do not
need to precisely know the supported datatypes of the implementation platform precisely. The available
options are listed in Table 5.1.

Value Explanation
FreeText The parameter is some text. This type is rarely used in practice due to its

difficulty of being processed. It should only be used if no more restricted type
can be identified yet.

DataSource The parameter points a location of some existing data that users want to feed to
the component.

Spatial The parameter represents some location in space.
Time The parameter represents some point or interval in time.
Options The parameter is a condition whose status can be in one of several alternative

options for one execution. Different options lead to different generation
behaviors.

Switch The parameter is a condition that can be set to be one of two statuses for one
execution, such as true or false, on or off, yes or no, etc.

Number The parameter is a numeric value.
Table 5.1: Available Options of ParameterType.

5.1.3.3 Composition of Environment
Terms specified in Subsection 5.1.3.3 are used to describe which kinds of phenomena should present

in a simulated environment generated by a component under development. They are subtypes of
Configurable.

SimulatedEnvironment is the entry term of an SEDL description that holds description items together
as a standalone unit. A description within the scope of a SimulatedEnvironment expresses the user-
required constituents of simulated environments and their possible behaviors, which should be produced
by a simulation component under development, as well as high-level operational behaviors of this
component in simulation executions.

By specification, a SimulatedEnvironment must have one attribute spaceDimNum that constrains the
number of spatial dimensions in which the environment should be simulated. This attribute decides the
number of coordinates needed to represent a spatial point in the described component. Its value can be
the integer between 0 and 3 as explained in Table 5.2. When a working community has fixed the number
of dimensions it intends to work on, this attribute can be predetermined in an implementation of SEDL
and hidden from language users.

Value Explanation
0 The spatial locations of the environmental phenomena are irrelevant to the simulation. The

component simulates time series data without spatial locations.
1 Only the location along one direction, e.g., along a road, is relevant to the simulation. The

component simulates phenomena data with one-value coordinates.
2 The space is abstracted as a projection from the three-dimensional physical world into a

two-dimensional surface. The case is typical in spatial simulations at the geo scale that the
altitude is negligible or treated as a thematic domain.

3 The representation of a spatial location should be composed of three-value coordinates to
simulate a three-dimensional space. It is often the case in spatial-aware simulations about a
small area that movements in all three dimensions are relevant.

Table 5.2: Possible Number of Dimensions of a SimulatedEnvironment.

46

The simulated environment described by a SimulatedEnvironment can contain phenomena of an
arbitrary number of types. Each type can be described by an EnvironmentalPhenomenon contained in
this SimulatedEnviornment. Besides, a SimulatedEnvironment may have zero or more
ExecutionRoutine-s, each of which regulates the functional routine of the described component in a
bigger simulation (See Subsubsection 5.1.3.9).

An EnvironmentalPhenomenon is a piece of description that describes a constituent element type of
the simulated environment. When a type of phenomena should appear in an environment instance
generated from the component described by a SimulatedEnvironment, an EnvironmentalPhenomenon
should be added to this SimulatedEnvironment given a name to denote the phenomenon type. An
EnvironmentalPhenomenon contains more-detailed description pieces about this type as specified in the
following text of this section. The EnvironemtnalPhenomenon is an abstract term.

In practice, one of its subtypes, i.e., SpatialIndividuality or FieldOfIndividualities, should be used.A
SpatialIndividuality encloses analysis-level descriptions about a phenomenon type that should appear in
a simulated environment as an identifiable individuality or distinct substance in space, whose boundary
may be recognizable or unrecognizable within the extent of the simulated environment. A phenomenon
of this type behaves on its own during simulations.

By specification, a SpatialIndividuality must have one attribute dimNum which denotes the form of
its described phenomenon’s geometry required by the simulation. Its value can be one of the following
integers: -1(non-spatial), 0(point), 1(line), 2(region), 3(3D volume). This value must not be greater than
the spaceDimNum of the SimulatedEnvironment it is contained in, either directly or indirectly.

When only one or a few significant instances of a phenomenon type appear in a simulation execution
and each of them is supposed to be configured and created independently, this type can be expressed by
a SpatialIndividuality that is directly contained in a SimulatedEnvironment. For instance, the storm needs
to be included in a simulation as the extreme environmental phenomenon that vehicles should avoid.
Before an execution, users want to be able to configure one or two storm instances, each with a determined
path and some constant moving speed. In this case, user expectation about how the storm should be can
be expressed by a SpatialIndividuality contained in a SimulatedEnvironment.

A SpatialIndividuality can also be the member of a FieldOfIndividualities as specified in the following
text. The containment relationship ensures that an instance of SpatialIndividuality is only in one of these
two situations.

A FieldOfIndividualities expresses a phenomenon type that appears in a simulation as a swarm or a
group of individualities of an identical kind. For each generated environment instance, individualities of
this kind appear as an integrated whole with no significant single members when observing at the whole
environment scale. Forms and behaviors of each individuality in this field follow the same set of
regulations. All members in this field together exhibit some spatial patterns at a time instant. A
FieldOfIndividualities must have exactly one member which is a SpatialIndividuality to express the
spatial form, characteristics and behavioral modes of member individualities in an instance field of the
described type. SEDL regulates that a SpatialIndividuality is not allowed to have
ThematicValueDistribution (See Subsubsection 5.1.3.6) if it is used to describe members of a
FieldOfIndividualities.

This term can also be used when users wish to systematically create and update a set of individualities
of an identical kind during a simulation run. For instance, a set of moving ships need to be included in a
simulation to create some traffic flow in the environment, whose initial locations are placed randomly.
These ships together can be described as a FieldOfIndividualities, which consists of multiple non-
significant ship members.

Which term to use depends on the spatial scale of the simulation and the way that users want to express
and create individualities of a type. It does not reflect the “true” form of real-world existence. A forest
may be expressed as a SpatialIndividuality occupying an area for one simulation with the changing
density of trees, but as a FieldOfIndividualities consisting of multiple individual trees for another
simulation.

47

Terms for expressing environmental phenomena are specified from a simulation perspective, in which
an individual phenomenon is viewed as existence that is recognizable at each time instant and evolves in
a temporal process. The time is treated as a locating frame of simulation processes, which is independent
of the existence of phenomena. During its lifetime, an individual phenomenon exhibits various non-
locational characteristics that are perceivable at its current spatial location. The term ThematicProperty
is used to express such characteristics. When a non-locational characteristic of a phenomenon type is
relevant to simulation scenarios, a ThematicPropety that expresses this characteristic is added to a
corresponding SpatialIndividuality as its theme. The presence of a ThematicProperty in an SEDL
description means the component under development should provide the digital representation of its
described characteristic. For a FieldOfIndividualities, all members of the described field have the same
non-locational characteristics as the theme-s of its member regulates.

In SEDL descriptions, different EnvironmentalPhenomenon-s contained in a SimulatedEnvironment
shall have ThematicProperty-s with the same name, while the composition relationship between these
two terms excludes the ambiguity. However, in practice, automatic transformations using SEDL
descriptions as inputs need to be aware of this issue and avoid naming conflicts in transformation outputs.

Properties for recording spatio-temporal locations of phenomena in described component do not have
to be explicitly denoted in SEDL descriptions. They can be derived in later development phases based on
conceptual forms and expected changes of the described phenomenon type. The term “thematic property”
in SEDL applies to all non-locational characteristics of phenomena. It is not restricted by which domain
such a property is about or by which datatype it is recorded. For instance, the length of time since a
phenomenon comes to exist could be relevant to a simulation. The validation domain of its values is
restricted by the locational characteristic of this phenomenon, while this characteristic itself is about time.
It acts as a theme of this phenomenon and can be expressed as a ThematicProperty (e.g., as the “age”) in
an SEDL description, even though it may be produced as some temporal datatype in an end application.
5.1.3.4 Expression of Exhibited Changes

Changes of phenomena in simulated environments should match corresponding simulation scenarios.
A simulated environment component should be able to provide data representing these changes for
adequately executing these scenarios. SEDL provides terms to describe requirements about changes that
environmental phenomena should exhibit in simulation scenarios. These terms are identified based on the
basic components of a change expression in natural language. Such an expression consists of the
following three components underlying unstructured expressions.

1. Variant: the domain space in which the change is observed, together with the reference based on
which the amount of change is measured.

A domain space consists of all possible states that a phenomenon’s characteristic can be in. Each state
corresponds to a point location in this domain space. A phenomenon has the inherent structure with the
characteristics in three types, i.e., spatial, temporal and thematic[129]. Thus, a domain space can be one
of the three types.

Fundamentally, the change about a characteristic of a phenomenon can be viewed as some difference
in the phenomenon’s location in a domain space of this characteristic’s states. The first component of a
change expression denotes in which domain this difference is perceived, i.e., what the expressed change
is about. For the change of wind speed, it is the speed of wind.

Locations in a domain space need to be expressed based on a reference location. If the phenomenon’s
location relative to the reference does not alter, the difference amount is 0, i.e., no change is observed.
This reference in computation is often specified as a part (e.g., the origin) of a reference system that
regulates the meaning of coordinate values assigned to locations. The amount of difference becomes the
difference between the coordinates SEDL does not regulate the reference location down to the technical
level. It simply distinguishes two types of reference locations people implicitly use when they
conceptually view a phenomenon change in spatial and temporal domain spaces, namely, self and external.
For instance, the change of a phenomenon’s spatial extent means that its spatial location relative to a
point tied to itself (e.g., its geometric center) has some difference. In contrast, its movement in space

48

means that its spatial location relative to an external reference location (e.g., the geo-centroid of the earth)
has some difference7.

Types of the first component based on the above principles are listed in Table 5.3, each of which
assigned to a name that is conventionally used in daily language for this specification.

Table 5.3: Types of Variable and Variant.
2. Variable: the domain space in which observations of the expressed change are made, together with

the reference based on which the difference of observation locations is measured.
Differences in a domain space do not exhibit along. It may only perceive when observing the states of

a phenomenon at different locations in another domain space. For instance, the wind force difference may
be observed at different time points or at different spatial locations. This second component of a change
expression denotes in which domain these observations are taken to perceive this change. Types of Table
5.3 can also be applied to this component.

3. Variant = R(Variable): the mode of this change.
The third component expresses how the state of the phenomenon in the Variant should change when

altering its locations in the Variable. It deterministically or stochastically regulates a relationship R
between the first two components. In natural language expressions, it may be fuzzy or missing. The
speed change of wind over time could be “constantly increase over 3 hours”. This component is case-
specific, which have an infinite number of possible pattern types. In computation, it is often abstracted as
a mathematic model in terms of some functions.
5.1.3.5 Conceptual Approximation in the Formulation of Change Expressions

At the abstraction level of SEDL, the simplicity of terms is more important than the mathematic
accuracy. Thus, several conceptual approximations are applied to specify the components of the change
expression. They are clarified in this subsection to avoid confusion.

First, the terms “Variant” and “Variable” used to denote the first two components of a change
expression are only analogies of the same terms in math. They emphasize the role that the corresponding
domain space plays in the expressed change, which reflects the angle that humans view the change mode.
At the analysis phase, the relationship between these two components is not perceived and described as
accurate as a function in the sense of math. Some change mode may not be described as mathematic
function at all when being modeled in the following development phases. For instance, a thematic value
change over time of some individual phenomenon may be determined based on the mean of a
phenomenon’s neighbors.

Second, the distinction between external-referenced differences and self-referenced differences is a
conceptual approximation. For instance, when the spatial extent of a phenomenon becomes different
(self-referenced), it is impossible that this phenomenon still occupies the exact same spatial location
(external-referenced). Each case of the approximation emphasis one angle to view and express the state
differences in a domain.

Third, the change expression composition considers only two domain spaces, while the overall change
of a phenomenon exhibited in the real world is normally the combined result of relationship patterns

7 A technical analogs term is the body-fixed frame for spatial coordinates.

Name of Component Type Type of Domain Space Type of Reference
Geometry Spatial Self
Location Spatial External
Duration Temporal Self
Time Temporal External
Theme Thematic N.A.

49

among its states in multiple domain spaces. This strategy supports decomposing these complicated
patterns into simpler aspects. Thus, language users can express the essential context of their expected
changes from their angles of thinking, without the need of paying attention to how they should be
computationally combined in a developed program.
5.1.3.6 Chang Types of an Individuality

This subsubsection introduces terms to support describing expected changes of individual
environmental phenomena in simulation scenarios. These terms are subtypes of Configurable. Each term
represents a type of change about an individual phenomenon that can be perceived in the macro world.

These types are identified based on three aspects, i.e., the types of the first two components in a change
expression as introduced in the previous two subsubsections and the level of perception at which changes
are observed. Two levels of perception, i.e., the individuality level and the non-locational characteristic
level, are considered. Every possible combination of the three aspects’ types is evaluated. A specific
individuality in the common-sense world only has one duration. Thus, combinations with duration
involved are not applicable.

Each rational combination identifies a term introduced in this subsubsection. Figure 5.3 shows the
abstract syntax of the identified terms in SEDL. They are described in detail in the remaining of this
subsubsection. These terms are related to SpatialIndividuality or ThematicProperty via composition
Associations, since their instances are description pieces about a phenomenon type or its thematic
property, which should be contained in the description of that phenomenon or property.

When component users require a type of individual phenomena to exhibit a particular type of changes
in simulation scenarios, they can add an instance of a suitable term specified in this subsubsection to the
SpatialIndividuality instance that describes the phenomenon type or to a ThematicProperty of this
SpatialIndividuality. Changes expressed by these terms are relevant to data structures that hold runtime
values of simulated phenomena during execution, and functions that should exist to update these values
in a resulting application. Common structures implied by the applied change types can be derived during
follow-up development phases, leaving only the application-specific functions that compute the change
mode, i.e., the third component of the change expression to be formalized. This third part at the analysis-
level can be documented by some free text in the description attribute inherited from DescriptionItem.

Individuality level: changes at this level involve geometry or location of phenomena whose
difference necessarily changes the whole individuality at the human-recognizable scale (given that the
timeline is viewed as an independent frame in simulations). Values in spatial domains are viewed as
properties of individualities in these cases.

Five change types are introduced into SEDL to categorize changes at this level, resulting in 5 terms in
SEDL as specified in Table 5.4. To keep the SEDL model concise, mirror cases with the Variable type
and the Variant type exchanged are denoted by the same term. The roles of involved domain spaces for
a described change are denoted by attributes of these terms as introduced below.

An abstract term IndividualityChange is included in the SEDL model to facilitate the specification.
This term is related to the SpatialIndividuality via a 1: n composition Association. An
IndividualityChange must be the hasChange attribute of a SpatialIndividuality. All terms in Table 5.4 are
subtypes of IndividualityChange. Each of their instances must be linked to a SpatialIndividuality in an
SEDL description.

Since a SpatialIndividuality may locate in more than one thematic domain spaces as they have multiple
ThematicProperty-s, a GeometryThemeDependency or a LocationThemeDependency needs to denote
the involved thematic domain spaces of their described changes. Thus, both terms have a non-
containment Association to the ThematicProperty as involvedTheme. An instance link of these two
Associations must satisfy the following restriction: its involvedTheme must be a theme of its other
member end. Besides, both of the terms have an attribute roleOfTheme to denote if the involved theme
is viewed as Variable or Variant. The roles of the two involved domain spaces have to be denoted in a
GeometryLocationDependency as well. In contrast, the simulation is a temporal process in which the

50

time is considered as the fully independent variable. For the change types that the time is involved, the
mirror cases in descriptions do not change the underlying role of time as the Variable. In other words, the
mirror case of a description of the individuality change involving time is conceptually the same to itself.

Term I.1 GeometryLocationDependency
Description The exhibited pattern of difference in a phenomenon’s geometry, when the spatial

location of this phenomenon varies in a controlled way.
Mirror: the exhibited pattern of difference in the spatial location of a phenomenon,
when its geometry varies in a controlled way.

Example in
natural language

“Its spatial extent should become larger when it moves to higher latitude”.
Mirror: “it should move to higher latitude when its spatial extent becomes larger”.

Term I.2 Deformation
Description

The exhibited pattern of difference in a phenomenon’s geometry with the time goes
on in a controlled way.
Mirror: the exhibited pattern of difference in time, when the geometry of a
phenomenon varies in a controlled way (i.e., speed of deformation).

Example in
natural language

“The influential area of the storm should shrink linearly over time”.
Mirror: “t hours passed for its radius of influential area shrink r”.

Term I.3 GeometryThemeDependency
Description The exhibited pattern of difference in a thematic characteristic A of a phenomenon,

when the geometry of this phenomenon varies in a controlled way.
Mirror: the exhibited pattern of difference in a phenomenon’s geometry, when its
thematic characteristic A varies in a controlled way.

Example in
natural language

“Its spatial radius should shrink when its speed decreases”.
Mirror: “Its speed should decrease when its radius shrinks”.

Term I.4 RigidBodyMovement
Description

The exhibited pattern of difference in a phenomenon’s spatial location with the
time goes on.
Mirror: the exhibited pattern of difference in time, when the spatial location of a
phenomenon varies in a controlled way (i.e., speed of movement).

Example in
natural language

“The hurricane moves uniformly over time along a recorded path”.
Mirror: “1 hour passed for every 5 km of its walk”.

Term I.5 LocationThemeDependency
Description

The exhibited pattern of difference in a phenomenon’s spatial location, when the
value of its thematic A varies in a controlled way.
Mirror: the exhibited pattern of difference in a thematic characteristic A of a
phenomenon, when its spatial location varies in a controlled way.

Example in
natural language

“It should move to higher latitude when its speed decrease”.
Mirror: “Its speed should decrease when it moves to higher latitude”.

Table 5.4: Individuality Level Change Types.
Non-locational characteristic level: changes at this level involve a non-locational characteristic of

an individuality (expressed by a ThematicProperty in SEDL). A thematic domain space must be involved
in a change at this level. Further, geometry should not be involved since its difference influences a whole
individuality. Three terms to categorize changes at this level are introduced into SEDL, as specified in
Table 5.5. As the level suggests, changes at this level are normally viewed as the change about thematic
values, i.e., the involved thematic domain is viewed as the Variant. The spatial and temporal domains in
these cases are often viewed as spaces for evaluating the change amount.

ThematicValueDistribution and ThemeDynamics are both associated with ThematicProperty via a 1:
n composition Association. An instance of these two terms must be the hasChange attribute of a

51

ThematicProperty, which denotes the involved thematic domain space of the change expressed by this
instance.

If component users require a thematic property to exhibit some spatial heterogeneity, this requirement
needs to be expressed by a ThematicValueDistribution of the corresponding ThematicProperty. Spatial
heterogeneity of a phenomenon can also be perceived as heterogeneity among a set of spatially distributed
individualities of some type. In this view, such a set can be described as a FieldOfIndividualities, and
heterogeneity within the extent of each individuality is often neglected. To avoid over-complexity, it is
not allowed to add a ThematicVlueDistribution to a ThematicProperty of some SpatialIndividuality that
is the member of a FieldOfIndividualities.

The ThematicValueDistribution and the LocationThemeDependency describe relationships between
a thematic domain space and a domain space of spatial locations about an individuality at the two levels
of perception, respectively. The distinctions between these two types are that the "domain of spatial
locations" and the conceptual form of the described phenomenon type in these two types are different.
When humans describe a LocationThemeDependency, the phenomenon is conceptualized as an object
that can move in a frame of space. In this case, the domain of spatial locations consists of all possible
parts of space that can be occupied by this object in the frame at some instant. When human describes a
ThematicValueDistribution, the phenomenon is conceptualized more like a field[82] that holds a set of
spatial locations. In this case, the domain of spatial locations consists of all possible elementary spatial
locations within the part of space that is occupied by this phenomenon.

A ThemeDependency involves two thematic domain spaces. For a clear hierarchical description
structure, this specification regulates that a ThemeDependency instance must be contained by a
ThematicProperty that describes its Variant, as its dependOn attribute. Besides, this term has a non-
containment Association with the ThematicProperty as its variable, which denotes the Variable of the
described ThemeDependency. An instance of ThemeDependency must satisfy the following restriction:
both of its linked ThematicProperty-s must be theme-s of the same SpatialIndividuality.

Table 5.5: No-locational Characteristic Level Change Types.

Term T.1 ThematicValueDistribution
Description

The exhibited patterns of difference in values of a thematic characteristic of a
phenomenon over different locations within the spatial extent of this
phenomenon.

Example in
natural language

“The wind speed decreases from the center of the storm”.

Term T.2 ThemeDynamics
Description The exhibited pattern of difference in a thematic characteristic of a phenomenon

with the time goes on.
Example in
natural language

“The air temperature increases during the day after sunrise”.

Term T.3 ThemeDependency
Description

Patterns of difference in a thematic characteristic A of a phenomenon exhibited
at different values of another thematic characteristic B of the same phenomenon.
Mirror: Difference in a thematic characteristic B of a phenomenon exhibited at
different values of another thematic characteristic A of the same phenomenon.

Example in
natural language

“Its temperature increases while its weight increase”.
Mirror: “Its weight increases while its temperature increase”.

Implication Implies both A and B have ThematicValueDistribution, or both A and B have
ThemeDynamics.

52

«invariant»
{contex ThematicValueDistribution inv:
self.ThematicProperty.individuality.field
-> isEmpty() = true}

«invariant»
{contex LocationThemeDependency
inv: self.involvedTheme.individuality =
self.individuality}

Configurable
ThematicProperty

Configurable
Variation

IndividualityChange

GeometryLocationDependency
- roleOfGeometry: RoleInVariation

Deformation

LocationThemeDependency
- roleOfTheme: RoleInVariation

RigidBodyMovement

GeometryThemeDependency
- roleOfTheme: RoleInVariation

Configurable
Variation

ThematicValueDistribution

Configurable
Variation

ThemeDependency

«enumeration»
RoleInVariation

 Variable
 Variant

Variation
ThemeDynamics

«invariant»
{contex
GeometryThemeDependency
inv:
self.involvedTheme,individuality
= self.individuality}

EnvironmentalPhenomenon
SpatialIndividuality

- dimensionNum: Integer

«invariant»
{contex ThemeDependency inv:
self.variable.individuality =
self.variant.individuality}

+theme 0..*
+individuality 1

+involvedTheme 1
+variant

1

+variable
0..*

+hasChange0..*

+hasChange
0..*

+individuality
1

+hasChange
0..*

+involvedTheme
1

Figure 5.3: Abstract Syntax of Individuality Change Types.

53

5.1.3.7 Alternative Change Modes
An EnvironmentalPhenomenon shall have more than one change of one type. The described

phenomenon type exhibits a change pattern which reflects the overall effect of all its described changes.
However, in some cases, a type of change of a phenomenon type may have several possible modes. An
instance phenomenon only exhibits one of them. For instance, in different seasons, the density of a
resource may follow different distribution forms in space.

An above-mentioned case shall be documented with a single instance of a Variation in SEDL with a
ConfigurableParameter of an Options type to denote possible modes. However, in this way, the
alternative modes can only be documented within the ConfigurableParameter in free text.
Transformations specified in Section 5.3 does not recognize them separately to generate corresponding
computation units for them. Also, while these modes reflect some application-specific structural options,
each of them may still have a set of alterable conditions that are execution-specific. For instance, in the
same season, the density of that resource may still vary from year to year due to different average
temperatures, etc. This means a component to produce such resources should be configured by different
sets of parameters when choosing different modes. When these modes have been documented within a
ConfigurableParameter, users have no means to express controllable conditions for each mode other than
the free text.

SEDL introduces the term AlternativeMode for describing these alternative change modes. It is a
subtype of the Configurable. Figure 5.4 shows the abstract syntax of this term. Terms from Subsubsection
5.1.3.6 are subtypes of Variation in this figure. The term Variation is an abstract term that is purely for
specification and implementation convenience. It denotes the exhibited changes as described in
Subsubsection 5.1.3.4 in the specification but is not exposed to language users.

An instance of Variation may have either no or at least two options which are instances of
AlternativeMode. Each AlternativeMode instance is a piece of description that expresses a possible mode
of the Variation instance. An instance of the described phenomenon type only exhibits one of the modes
which should be selectable for an execution. To avoid over-complication, this specification regulates that
when a Variation has options, it cannot directly own ConfigurableParameter-s. This constraint should be
implemented in the validation function of an SEDL editor. The current specification brings a drawback:
a parameter that is conceptually common to all options needs to be repeatedly described for each option.
5.1.3.8 Characteristic Variation among Instances of an EnvironmentalPhenomenon

The term CharacteristicVariation is used for describing user-expected variations of some characteristic
values among the whole set of a phenomenon type’s instances. Such a characteristic can be summarized
by some index (see explanation in Subsubsection 5.1.3.2). The value of an index is fixed to a
phenomenon instance, no matter if the value is only revealed after the phenomenon’s lifetime completes
(e.g., the lifespan of this phenomenon). A characteristic variation of some phenomenon type can be
represented as the value distribution of some index.

Configurable
DescriptionItem
Variation

Configurable
AlternativeMode

«invariant»
{context Variation inv: self ->
collect(option) -> size() >=2 ||
self -> collect(option) ->size() =0}

«invariant»
{context Variation inv: self -> collect(option) ->size()>0 implies
self -> collect(parameter) -> size() =0}

+option
1 2..*

Figure 5.4: Abstract Syntax of AlternativeMode.

54

Suppose the set S contains all digital instances of a phenomenon type that can be generated by the
component under development. If users require that all values of some index from instances in S to
follow a distribution, they can add a CharacteristicVariation to the EnvironemtnalPhenomenon that
describes the phenomenon type, denote the involved index and provide some information about the
distribution. The developed component should have the function to initialize instances of this type with
index values drawn from the expected distribution.

In the current SEDL version, each CharacteristicVariation is independently described. The variation
about a set of correlated indices should be described in one CharacteristicVariation. It is essentially a
distribution of phenomenon instances in a combined domain space of these indices’ domains. A
CharacteristicVariation must have one or more indexName-s, each of which denotes the name of a
described index.

Component users may have requirements on the variation among generated instances at different
detail levels and may require having control at these levels, e.g., for a single run, a set of runs or multiple
sets of runs. SEDL supports users in expressing requirements of controlling over the executions in a
structured way through CharacteristicVariation and ConfigurableParameter specified in Subsubsection
5.1.3.2. A guide about the usage of these two terms is provided in the following paragraphs, supplemented
by Table 5.6 which summarizes these requirements at each detail level and the term to use for describing
them.

For a single run, users may expect an individuality to be in some certain condition. In a program, this
can be expressed with some desired value of an index about this individuality. Thus, users would require
the component to provide some interface through which they can give the desired value to the program.
In this case, they can add a ConfigurableParameter to a SpatialIndividuality to give a name and a value
type to this index.

An additional level of characteristic variations exists for individualities that are members of a group
expressed by a FieldOfIndividualities. A FieldOfIndividualities denotes that, behaviors of its members in
a simulation execution should conform to the same set of rules which are supposed to be parameterized
at the whole field level. During an execution, members of a FieldOfIndividualities instance are iteratively
updated by the same set of computation functions. The diversity of state values among members
originates from different index values8 assigned to these members. The values of such an index are not
supposed to be manually configured one by one. Instead, they should be systematically drawn from some
distributions. Users can express their expectations on how values of some index for individualities in the
whole group (i.e., an instance of this FieldOfIndividualities) should distribute in a domain value space.
In this case, they can add a CharacteristicVariation to the member SpatialIndividuality of a
FieldOfIndividualities.

A high-level functional scenario is often executed by a set of runs. In these runs, users may expect
that the values of some index from all digital instances of an EnvironmentalPhenomenon match a certain
distribution. For instance, some type of summarized descriptors of these instances should match the
observed distribution of real-world individualities. This requirement can be expressed by a
CharacteristicVariation of this EnvironmentalPhenomenon. When the phenomenon is a
FieldOfIndividualities, each run should compute an index value from the expressed characteristic
variation f(e) about the whole field. Table 5.6 and Figure 5.5 illustrate how this value is connected to
more detailed level computations.

8 very frequently, initial values of their properties

55

Further, a component may be used in multiple functional scenarios, each of which corresponds to a
set of runs. For instance, in an environment with blowing wind, the initial wind speed in one execution
should be generated by a random function. This can be described by a CharacteristicVariation. This
environment can be used in various functional scenarios with calm, windy and stormy weather, each of
which makes a set of n runs. For each set, the randomly generated initial speed should have a different
mean value, which reflects the character of the corresponding functional scenario. At this level, users
may require to be able to set their desired mean value. They can add a ConfigurableParameter of a
corresponding CharacteristicVariation to describe this requirement in this case. Similarly, the
CharacteristicVariation of a FieldOfIndividualities f(e) may also have a ConfigurableParameter p to
change the form of f(e) for different sets of runs. The connections between illustrative examples at
different levels in Table 5.6 are shown in Figure 5.5. Essentially, a CharacteristicVariation corresponding
to some level leads to some function to generate a characteristic value for the computation of the level
below, which otherwise shall be exposed to users as a configurable parameter. Characteristic variations
at some level may not be recognized by or interesting by users. They can still be embedded in computation
functions by developers without being exposed by users.

Figure 5.5: The Computation Chain of Characteristic Variations.

56

Table 5.6: Express Required Characteristic Variation and Alterable Conditions in SEDL.

 SpatialIndividuality FieldOfIndividualities
One
individuality
in one run

Req. Each SpatialIndividuality instance should be initialized with an
index decided by users.

E.g., avg speed = x, where x should be decided by users.

The n-th member of a FieldOfIndividualilites instance should be
initialized with an index value drawn from F(n).

E.g., for n-th member, initial speed (n) = random ().

In
SEDL

The index, i.e., “avg speed”, as a ConfigurableParameter of
this SpatialIndividuality.

The F(n), i.e., the “random ()”, as a CharacteristicVariation of the
member SpatialIndividuality of this FieldOfIndividualities.

One run Req. Each instance is configured separately. A parameter of the above F(n) should be configured with a value
decided by users.

E.g., for n-th member, initial speed (n) = random (mean), in which
the value of mean should be decided by users.

In
SEDL

Implied by the term “SpatialIndividuality”. The parameter, i.e., the “mean”, as a ConfigurableParameter of the
CharacteristicVariation that expresses F(n).

Multiple runs

Req.

The value of an index to initialize a SpatialIndividuality
instance should be drawn from f(e).

E.g., avg speed (e) = random ().

The value of a parameter of the above F(n) should be drawn from f(e)
for a run.

E.g., the value of the “mean” in the random(mean) from the above
example, should be drawn from f(e).

In
SEDL

The f(e), i.e., random (), as a CharacteristicVariation of this
SpatialIndividuality.

The f(e) as a CharacteristicVariation of this FieldOfIndividualities.
Multiple sets
of runs

Req. For each set, a parameter of the above f(e) should be configured
with a value decided by users.

E.g., avg speed (e)= random(mean), where the value of “mean”
should be decided by users.

For each set of runs, a parameter p of the above f(e) should be
configured with a value decided by users.

In
SEDL

The parameter, i.e., the “mean”, as a ConfigurableParameter
of the CharacteristicVariation that expresses f(e), i.e., the
random(mean).

The parameter p as a ConfigurableParameter of the
CharacteristicVariation that expresses f(e)

57

5.1.3.9 ExecutionRoutine
One or more ExecutionRoutine-s can be contained in SimulatedEnvironment. The term

ExecutionRoutine provides some simple support to describe how the computed data from the component
described by this SimulatedEnvironment should be provided to a system of interest component of a larger
simulation. Such execution routines are not parts of functionalities of a simulated environment component
itself but are the way that this component participates in a larger simulation. Thus, a
SimulatedEnvironment can be a valid description without an ExecutionRoutine. On the other hand, a
developed component shall be used for more than one simulation with different systems of interest. Thus,
a SimulatedEnvironment shall have multiple ExectionRoutine-s.

An ExecutionRoutine has an attribute systemID. It denotes to which component that the described
routine sends data. Besides, it has an attribute mode that denotes how communication between this
component and the system of interest component is triggered, i.e., at which time the state data of simulated
environment should be sent to the system of interest component. Two execution modes are available in
the current version, as defined in Table 5.7. They are defined within the Enumeration ExecutionMode as
the type of the mode attribute. These modes are independent of how the values are computed within the
simulated environment component.

Table 5.7: Available Options of ExecutionMode.
An ExecutionRoutine also has an attribute outputRange which specifies the range of data that should

be sent to the system of interest component at a communication time of the described routine from the
environment component. The available values of this attribute are defined within the Enumeration
OutputRange, as explained in Table 5.8.

Table 5.8: Available Options of OutputRange.

Value Explanation
Autonomous The environment component runs autonomously as a concurrent process in the

bigger simulation once an execution starts. The interval between two time points of
communication from this component to the system of interest component is
determined before the execution, which could be fixed by the component function,
controlled by a moderate component, be fixed by user configuration, and so forth.
At each communication time, state values of the simulated environment
corresponding to this time should be sent to the system of interest component. For
instance, this mode can be used to simulate the behaviors of a system, which is
regularly informed by some weather service with the current weather information.

Reactive The environment component should be kept available during the execution of the
bigger simulation. The communication happens in two directions. The environment
component should send data upon the request from the system of interest component
during the execution. For instance, this mode could be used to simulate the behaviors
of a ship, which is influenced by the force of water. During executions, the ship
model is fed with environmental data upon its at-moment location.

Value Explanation
All All produced data from the simulated environment component at the time

corresponding to the communication time should be sent.
AtPoint All produced data about a point location from the component at the time corresponding

to the communication time should be sent. If the mode of the ExecutionRoutine is
Reactive, this point location is determined upon the request of the system of interest
component.

AtRegion All produced context at a region from the component at the time corresponding to the
communication time should be. If the mode of the ExecutionRoutine is Reactive, this
region is determined upon the request of the system of interest component.

58

In addition, an ExecutionRoutine has an attribute valueAggregation of the Boolean type. In spatial
simulations, computation functions may simulate different values for a phenomenon property at different
locations. If the system of interest component in the described routine needs a single aggregated value
for each property from the computed ones, the valueAggregation should be set to true. The values of this
attribute may influence the derivation of structure for the data being sent to the system of interest
component.
5.2 PIM Layer Metamodels

Executions of SEDL descriptions perform transformations that generate PIM-layer software models
of simulated environment components in simulations. The transformation rules are specified from the
SEDL language model to the metamodels that are used to describe the output models. To enable domain-
specific outputs with more specialized and more concise elements than models consisting of basic UML
elements, three metamodels for describing the outputs are presented in this section. Elements in these
metamodels extend corresponding UML elements with additional descriptive semantics. From a
computer language perspective, these metamodels define domain-specific languages specified by UML.
As the UML metamodel, their execution semantics are not restricted by specifications. Thus, these
metamodels can be mapped to different technical platforms for various implementations. The version of
UML used in this specification is UML2.5.1[10]. Modeling elements in UML2.5.1 being mentioned in
this specification are written with the prefix “uml” for identification, e.g., uml:Class.
5.2.1 Configuration Schema Description Profile

The Configuration Schema Description Profile is a small UML Profile that specifies stereotypes to
describe form-based configuration schemas of software programs. Stereotype-specific properties in this
profile and other metamodels in this chapter are marked italic.
5.2.1.1 Summary

A configuration schema expressed by the Configuration Schema Description Profile (i.e., an instance
model of this profile) is an M1 model within the framework in this thesis. This schema describes the
complete set of parameters that is necessary to be set before running a software program. These
parameters should be accessible to the users of this program, which allows them to communicate with
the program. An M0 instance of such a schema holds a set of values of these parameters provided by
users. This instance must be passed to the back end of the program before executing this program. Figure
5.6 presents this profile expressed in the UML graphic notation.

ConfigComponentConfigItem

GroupConfigSimpleConfig AlternativeConfig

ConfigSchema

«metaclass»
Package«metaclass»

Property
«metaclass»
DataType

«metaclass»
Association

SubComponent

ConfigOption

1
«ownedAttribute»

0..*

«ConfigOption»

-option
2..*

-sub 1..*

«SubComponent»

Figure 5.6: Configuration Schema Description Profile.

59

The following paragraphs in this subsection present its descriptive semantics. Different from the other
two metamodels specified in this section, stereotypes in this profile do not regulate implicit structures of
model elements. Applying this profile to an M1-layer schema mainly help further transforming this
schema to some platform-specific model, especially for visual front ends of components, e.g., graphic
interfaces where users can edit configurations. This specification does not restrict presentation or
behavioral semantics of the defined stereotypes while they depend on the chosen platform.
5.2.1.2 ConfigSchema

A ConfigSchema extends a uml:Model, which is a specialized uml:Package that “describes a system
from a certain viewpoint”[10]. An instance of the ConfigSchema9 is a model package that contains
specifications of all modifiable parameters of a computer program, which are exposed to end users.
Parameters in this package are grouped into one or more ConfigComponent-s (see Subsubsection 5.2.1.4).
These parameters specify arguments that need to be passed to the program before execution. The model
package presents the boundary of these specifications, i.e., a configuration schema of the program. An
instance of this schema is a specific configuration with fixed parameter values. It holds a piece of
information that can be passed to and processed by the program.

Within the thesis, a model package of this type is initially generated when an SEDL description is
executed. In general, for each SimulatedEnvironment in an SEDL description, an instance model of this
type is generated. Further generated elements related to the configuration are added to this package.
5.2.1.3 ConfigItem and Primitive Types

A ConfigItem is a UML Property of a primitive type or an enumeration type. A ConfigItem must be
owned by a ConfigComponent which is specified in Subsubsection 5.2.1.4. This item essentially
describes a “name-value” pair (i.e., a parameter) in a software configuration schema. Changing the value
of such a parameter alters the computation behaviors of the software. This stereotype adds the following
two constraints to the metaclass uml:Property:

1. an element that applies the ConfigItem stereotype must be the ownedAttribute of a model element
that applies the ConfigComponent stereotype,

2. the values of this element must be either one of the primitive types OR a uml:Enumeration type.
Primitive types used in this profile include the types defined in the PrimitiveTypes package of UML[10],
i.e., Integer, Boolean, String, Real and UnlimitedNatural, OR one of the primitive types defined in this
subsubsection that is a uml: PrimitiveType.

Three additional primitive types are defined to express special types of strings. A SourceString
represents a string that should be interpreted as representing a location where a piece of data is stored. A
GeometryString represents a string that should be interpreted as representing geometric objects. A
TimeString represents a string that should be interpreted as representing a time instant or a period. No
encoding formations are specified for these three string types in this specification since they may vary
among platforms and among applications, e.g., some applications require configurations of UTC
coordinates, while some others only need an integer value denoting the index of a time unit. They provide
vocabularies for more clearly expressing the context of values in design models that facilitate the
communication and implementation choice. It depends on developers to determine a further encoding
standard, either by implementing the modeled application, or by implementing a platform-specific model
translator to turn the design models into models that restrict these string types to more specific forms.
Same as the other UML primitive types, these types themselves, rather than their instantiation, will appear
in M1 models that apply this profile.

An M1 instance of the ConfigItem uses the notation of UML Property. Its type is denoted by the name
of corresponding primitive types in this subsubsection. At the M0 level, this item is a named slot that
holds a specific value.

9 Strictly speaking, it is an instance of the UML metaclass Model that applies the ConfigSchema stereotype. The
following text uses the same shorter convention to refer to model elements with stereotypes.

60

5.2.1.4 ConfigComponent Types
Two configurations with the same structure (i.e., conform to the same schema) are identified by their

values. When all the values at the same location respected to the structure are equal, these two
configurations can be treated as equal since they provide the same input for a program. The program can
run multiple times with the same configuration. Even when its functions that generate output values are
stochastic, the characteristic information (e.g., the standard deviation of all values) of each generation
remains the same, which matches the situation of the given configuration. Thus, stereotypes specified in
this subsubsection to express partial structures of configuration schemas extend uml: DataType, whose
instances are identified only by their values. Each stereotype represents a possible type of substructures
within the schema.

A ConfigComponent is a part of a configuration schema that embodies a group of user-modifiable
parameters. This group of parameters is considered as related to the same aspect that is denoted by its
name. A ConfigComponent shall aggregate another ConfigComponent or shall represent one option of
an AlternativeConfig (see this subsubsection below). It shall also be aggregated by ConfigItem-s and/or
other ConfigComponent-s. Three descendants of ConfigComponent are defined to express the
components with different aggregated structures as follows.

A SimpleConfig is a ConfigComponent that only owns only ConfigItems. The types that apply
SimpleConfig are the leaf groups of parameters in configuration hierarchies. A model element applying
this stereotype must satisfy the following constraint:

1. it shall only be the substructure of another ConfigComponent, i.e., when it is linked by a
SubComponent which specified in Subsubsection 5.2.1.5, it must be the sub end.

A GroupConfig is a specialized ConfigComponent that contains and only contains one or more other
ConfigComponent-s. It does not directly own any ConfigItem. A model element applying this stereotype
must satisfy the following constraints:

1. it must have at least one sub property which is a ConfigComponent, linked to it via a
SubComponent association.

2. it must NOT have any ownedAttribute which applies the ConfigItem stereotype.
An AlternativeConfig represents a part of a configuration schema related to some aspect denoted by

its name. This part can be configured by one of several possible parameter sets. Each of the sets is an
option of this AlternativeConfig. Such a set itself can be expressed by a ConfigComponent type, which
may have its own substructure. In an M0 configuration instance, only one of the sets can be picked and
configured. A model element of this type must satisfy the following constraints:

1. it must have at least two option-s which are ConfigComponent, each linked to it via a
ConfigOption which is specified in Subsubsection 5.2.1.5.

2. It shall only be the substructure of another ConfigComponent. i.e., when it is linked by a
SubComponent, it must be the sub end.

3. it must NOT have any ownedAttribute which applies the ConfigItem stereotype.
5.2.1.5 SubComponent and ConfigOption Associations

Two stereotypes that extend the uml:Association are defined in this profile to describe the
relationships between ConfigComponent types, as introduced in this subsubsection. An Association that
applies one of these stereotypes links two ConfigComponent-s in a configuration schema at the M1 level.

A SubComponent represents the aggregation relationship between two ConfigComponent-s. The
component being aggregated have the other component as its substructure. A ConfigComponent cannot
be aggregated by itself either directly or indirectly. An Association applying this stereotype must satisfy
the following constraints:

1. it must be a binary association whose two memberEnd-s are properties of two different
ConfigComponent types AND

2. it has a memberEnd “sub” with the aggregation = AggregationKind:none AND

61

3. Associations stereotyped with SubComponent in a configuration schema cannot form a cycle.
A ConfigOption links an AlternativeConfig type to one of its options. An instance of this stereotype

in the M1 layer must satisfy the following constraints:
1. its memberEnd with aggregation = AggregationKind:shared property must be a property of an

AlternativeConfig type AND
2. the other memberEnd “option” must be a property of a ConfigComponent type.
Constraints of stereotypes in this specification can be used to validate a schema at the M1 (type) level.

For instance, e.g., checking if an AlternativeConfig in a configuration schema is linked at least by two
ConfigOption associations. The multiplicity of a ConfigOption association can also constrain that only
allowed number of instances (usually 1) of its linked option (which is a ConfigComponent) appears in an
instance configuration. However, it cannot restrict that only one option of an AlternativeConfig is picked
in a configuration instance, i.e., only one of the ConfigOption associations linked to an AlternativeConfig
is instantiated. An object diagram with two alternative options picked is still a valid UML graph and thus
cannot be detected by a general UML validation tool. The semantics of “alternative options” is
descriptively defined in the specification. It must be implemented either by some programming language
or strategies, as shown in Chapter 6.
5.2.1.6 Usage Outside the Framework

Within the framework proposed by this thesis, creations of configuration schemas are triggered by
executions of SEDL programs. Therefore, the contexts of these schemas are always related to simulated
environments. However, this profile does not define any stereotype that is specific to simulated
environments. Thus, the specification does not rule out the possibility of using this metamodel for
programs other than simulated environment components. In general, this profile describes hierarchical
structures of software configurations. It shall be used as a concise input metamodel for implementing
automatic user interface generators or renderers from configuration schemas. The stereotypes can be
mapped to a description in languages with representation semantics such as HTML&CSS10, or a structure
of GUI widgets. The resulting generators/renderers are context-free, which are also applicable for
schemas whose contexts are not related to simulated environments. Nevertheless, the usage outside the
framework is not emphasized in this thesis.
5.2.2 Simulated Environment Structure Profile

The Simulated Environment Structure Profile is a PIM-layer UML Profile that is used to describe
structural aspects of programs that provide simulated environments.
5.2.2.1 Summary

Graphically, models that apply the Simulated Environment Structure Profile can be presented in UML
class diagrams. Elements in these models can also be instances of non-stereotyped UML constructs since
this profile does not add additional restrictions on which core UML constructs can be used in a model.
For a clear model hierarchy, models that apply this profile are referred to as an instance of it. Such a
model locates at the M1 level to express the M0 objects of this program, e.g., objects that hold values at
runtime and data objects that being sent to other components.

Stereotypes defined in this profile provide additional constructs for concisely expressing building
blocks of simulated environment components in structural models. Each stereotype regulates the common
structure to all classes that apply it as well as derivable structures for these classes based on their
associations. Implementations of these classes should realize these structures on a chosen platform. In a
design model expressed by this profile, such structures can be made implicit. These stereotypes are
extensions of elements that are used in UML class diagrams, including specializations of uml: Classifiers

10 https://www.w3.org/standards/webdesign/htmlcss

62

(Datatype and Class) and uml: Associations. Their descriptive semantics are described in the following
subsubsections.

For a phenomenon type being computed, a geometric representation to hold its spatial location is
needed. This thesis mainly focuses on geo-scale simulations in which space is often abstracted as two
dimensional, and the height shall be treated as a thematic property. To remain the focus, this profile
defines stereotypes with geometric representations in a two-dimensional context. Consequently,
transformations in Section 5.3 are specified for SEDL descriptions of simulated environments whose
space dimension number is set to two. Nevertheless, geometric representations in this profile are based
on well-established researches, each of which has its 3D counterpart. A realization of the framework that
supports 3D contexts shall be implemented based on these counterparts. For a SimulatedEnvironment in
SEDL whose spaceDimNum is set to 3, the transformations create the same type of elements as specified
in Section 5.3, except that their geometries and geometry-related operations are replaced by a 3D version.
5.2.2.2 Utility Datatypes

The following datatypes are used in this profile to support the specification of attribute types that hold
an elementary geometric location on the timeline and in the two-dimensional space. They are not defined
as stereotypes since these types are rather M1 level instances of the uml: Datatype. These types are very
basic types in geometry or temporal data models and standard, as well as in their implementations. Thus,
this specification does not unnecessarily redefine the complete structure of these types. In a realization of
the proposed framework, it depends on the choice of the working community to map them to a more
concrete standard or a technical implementation. These types are listed as follows with reference to a
comparable datatype in the ISO standard.

TemporalPosition: an instance of this class is an undividable location on the timeline in the view of a
simulation. This position can be both an instant on the real timeline or a period whose length equals to
the minimum recognizable unit by the simulation. This location can be represented by a coordinate in
some coordinate reference system[130]. A comparable datatype can be the TM_Position[95] in ISO19108.
It could also be mapped to a temporal datatype in some platform, e.g., the DateTime in Eclipse Platform
Java API11.

Point: an instance of this represents a 0-dimensional geometric object which can hold a single point’s
location in the space. In a two-dimensional abstraction, its location can be represented by a pair of
coordinates in some coordinate reference system, one for each spatial dimension. A comparable datatype
is the GM_Point[93] in ISO19107.

Polygon: an instance of this class is a 2-dimensional geometric object which can hold a location of a
regional subset of the space. In a two-dimensional abstraction, its location can be represented by the
underlying plane bounded by a closed circle that is formed by a finite set of connected straight-line
segments, while the location of each segment is determined by its two endpoints. A comparable datatype
can be the GM_Polygon[93] in ISO19107.
5.2.2.3 Runtime Simulated Feature Types

Subsubsection 5.2.2.3-5.2.2.6 introduce stereotypes in the structural profile to express the classes (at
the M1 layer) representing runtime objects (at the M0 layer) during executions of simulated environment
components. They are used to regulate common structures and spatial representations of classes that hold
state values of environmental phenomena at runtime, which are used by the computation functions of the
components.

Classes applying these stereotypes should not be confused with the datatypes that are used to model
data stores of spatio-temporal information. These classes provide the necessary structure to hold state
values of phenomenon instances that should be computed at a simulation step. A storage region in
memory is allocated to an M0 object of these types at runtime upon its creation. Object values are
initialized and updated during the execution process. Older values are discarded in an update that affects

11 https://help.eclipse.org

63

these properties. Their instances exist at runtime and only hold state values of the represented objects at
“present” that the simulated process is passing. In contrast, a spatio-temporal data store needs to deal with
historical values that do not reflect the “now” of its represented world. It may store a history of property
values of a spatially identifiable object as in a moving object database[87], or store values in a matrix
with a temporal dimension as in the implementation of some array-oriented data form such as
NetCDF[131]. Although there is no technical restriction to implement a property of a runtime data object
that holds historical values at all computation steps of another property in memory, normally it is not
necessary. When the size of computed values at one step is large, keeping such a property in memory is
also not an efficient strategy.

An abstract term SimulatedFeatureType is specified to facilitate the specification. It is the supertype
of all stereotypes that express digital entities which are representations of participants in simulated
processes. An instance of the subtypes of SimulatedFeatureType is a uml: Class that provides the data
structure of state values about a type of environmental phenomenon being computed or queried during
simulation executions. Time is not an integrated domain of these entities but as a separate reference
dimension, which is unfolded with the program execution.

The SimulatedFeatureType is introduced based on correspondence among entities and processes in
different worlds related to a simulation. Conceptual links among these entities are shown in Figure 5.7.
The “simulated world” in the figure distinguishes itself from its digital representations computed in
software. The digital entities are the actual existence that imitates the real world, while the simulated
world is what these entities are interpreted in perception. A simulated world and phenomena in it shall be
conceptually continuous, while their digital representations are discrete.

An execution process pe of a simulation program corresponds to a simulated process psim which
imitates a real-world process in a simulated world. A computation step s of the pe corresponds to a
temporal location on the timeline of psim. An instance isf of a class applying the SimulatedFeatureType
stereotype created by pe is a digital entity. It represents a simulated phenomenon that imitates a real-world
phenomenon. Its state values are updated during pe. The state values of isf at s reflect the conditions of its
represented phenomenon at the “current moment” in psim, i.e., the temporal location that the step s
corresponds to.

A runtime instance isys representing a simulated system uses the output from pe. The computation
process that creates isys does not necessarily happen synchronically with pe, but it also corresponds to psim.
At a computation step of this process, isys accesses the state values of isf corresponding to the same time
in psim as this step does. To the simulated system represented by isys, the simulated phenomenon
represented by isf is a part of its simulated environment that influences its behaviors. This is an imitation
of the real-world that an environmental phenomenon has influences on a system of interest.

Figure 5.7: Conceptual Links of Entities Related to a Simulation.

64

Since the existence of isf is observable and identifiable at each step in its lifespan during pe, it represents
a simulated phenomenon as a substance. This means the existence of its presented simulated phenomenon
is not dependent on the time domain. It “lives in” the simulated world and “evolves” over time during
psim. Conceptually, the state of isf provides a “snapshot” of its represented phenomenon at a corresponding
time on psim. Thus, properties representing characteristics of simulated phenomena in the classifier of isf (i.e., a class applying the SimulatedFeatureType stereotype) normally only need to provide structure to
hold values valid for an instant (more precisely, a minimum identifiable temporal unit). In this class,
properties representing characteristics with a temporal type should be viewed in the same way as the
properties representing thematic characteristics12. It means that the classifier of isf shall have a property
of a temporal type to represent a characteristic of simulated phenomena. Nevertheless, a state value of
this property owned by isf at s reflects the condition of represented characteristic valid at an instant in psim.

A class applying the SimulatedFeatureType stereotype must have an attribute timestamp:
TemporalPosition (See Subsubsection 5.2.2.2). At an execution step, this attribute of an instance holds a
location in time, which represents the “current time” that the represented phenomenon is experiencing in
the simulated process. This attribute is not considered as a characteristic of the simulated phenomenon
but the coordination on the timeline of the simulated process. The existence of the timeline is independent
of the existence of the phenomenon in a simulation. In a computation step, the state value of this attribute
owned by an instance denotes the valid time in the simulated process of other state values owned by the
same instance.

The SimulatedFeatureType stereotype does not add restriction to prohibit adding thematic properties
to a class applying this stereotype to hold a series of historical values. However, it is not recommended
as described at the beginning of this subsubsection. No transformation rules defined as the SEDL
execution semantics (see Section 5.3) leads the creation of such properties in a SimulatedFeatureType
class. Functions of a specific application that must be satisfied with such properties cannot be determined
at the domain level and thus are not captured by this profile. When they are needed by a specific
application, they have to be added by developers at later phases.

This profile specifies specialized subtypes of the SimulatedFeatureType to express a class in more
detail. Each of the subtypes restricts one representation for the spatial extent of represented phenomenon
types. These subtypes are specified based on the runtime schemes that are needed for different spatio-
temporal data synthesis methods and spatial simulation paradigms. A specialization of the
SimulatedFeatureType specifies the following aspects of a SimulatedFeatureType class: 1) how the extent
in space of a simulated phenomenon type is represented by this class; 2) how the property values
representing its thematic characteristics are linked to its spatial extent. The available stereotypes for
runtime simulated feature types are shown in Figure 5.8 and are specified in detail in the following
subsubsections.
5.2.2.4 Single-Valued Feature Types

A class that applies a stereotype introduced in this subsubsection should provide slots to hold a single
value for each thematic characteristic of the represented type. The “single” means, despite that this value
shall be composed by several numbers or other primitive types or a SpatialFunction class as defined in
Subsubsection 5.2.2.7, all its parts together represent the condition of this characteristic. In practice, each
thematic characteristic should be represented as an attribute owned by this class.

A GlobalFeature is a SimulatedFeatureType whose represented phenomena type is computed as
pervasive and homogenous in the simulated world. In the view of the computation functions that use this
class, the boundary of its represented phenomenon type is not reachable in the simulated world. Its real-
world counterpart may be non-physical by nature or has a spatial extent that is much larger than the world
part being simulated. Spatial heterogeneity of its thematic characteristics is either not of interest to the
target simulations or not recognizable at the resolution of simulations. Thus, thematic characteristics of a

12 For simplification, a property representing a thematic characteristic is referred to as “thematic property” in the
following text, and a value of a thematic property is referred to as a “thematic value”.

65

phenomenon of this type are viewed as homogenous at all spatial locations. The computation functions
calculate one value to represent one of its thematic characteristics at each execution step.

No spatial representation is needed in this class since its represented phenomenon type is conceptually
everywhere to the computation functions. For an instance of this class, the state value of such an attribute
is considered applicable to represent the condition of the represented characteristic by the attribute at any
spatial location, and this condition is valid at the time represented by the state value of the timestamp
attribute of this instance.

A LocalFeature is a SimulatedFeatureType whose represented phenomena type is computed as
occupying some identifiable part of the space. For the computation functions that use this class, the
spatial extent of its represented type is recognizable in the simulated world and may be calculated by the
model at each computation step. One value is calculated to represent one of its characteristics at each
execution step. Spatial heterogeneity of its thematic characteristics is either not of interest to the
simulations, or not recognizable at the resolution of simulations this type serves.

A class that applies the LocalFeature stereotype must have a geometry attribute that should be a
geometry type from the utility datatypes in Subsubsection 5.2.2.2. It is the only spatial representation of
the represented phenomenon type. Other attributes with a geometry type should be interpreted in the same
way as thematic properties. This class should represent a thematic characteristic as a single value, i.e., as
an attribute owned by this class with the multiplicity of 1.

Instances of a LocalFeature appear and evolve independently from each other in a simulation. This
stereotype does not restrict the relation among instances of the same class or additive effect of multiple
instances at a location since they are specific to an application. They are described at the M1-level
application models. The opposite case is covered by the CollectiveFeatureType stereotype introduced in
the following two subsubsections. A class applying a subtype of CollectiveFeatureType expresses a set
of phenomena whose behaviors can be modeled by some common regulations. Such a set of phenomena
can be viewed as an integrated whole that exhibits some spatial pattern at a time instant.
5.2.2.5 Collective Feature Types

A CollectiveFeatureType is an abstract SimulatedFeatureType whose represented phenomenon type
is computed as a set of units, each of which occupies a spatial location in the simulated world. All these
units have the same logical structure, which consists of a geometric representation and a set of attributes
representing thematic characteristics. The CollectiveFeatureType stereotype regulates a structure that
holds multiple state values about a set of thematic characteristics at runtime. A set of values of a thematic
characteristic is calculated at each execution step. Each value is held by an attribute representing this
characteristic owned by a unit. This value is paired with a spatial location through this unit’s geometric
representation. Since this attribute is owned by all units, values of this attribute from all units together
reflect the represented characteristic.

Computations that generate spatial patterns changing over time often require a runtime structure as
regulated by CollectiveFeatureType. The structure is discrete to be handleable by computers so that
computation functions using such a structure can perform on a finite set of individuals (corresponds to
units). Thus, the CollectiveFeatureType stereotype is specified based on the concerns of spatial
simulation models. To distinguish these models with models that express software and data, simulation
models in a mathematic context are mostly referred to as “computational models” in this thesis.

A CollectiveFeatureType must have one and only one unit whose type is a class applying the
CollectiveFeatureUnit stereotype. This CollectiveFeatureUnit class represents the structure of its units.
A CollectiveFeatureUnit must have a geometry attribute whose type can be one of the geometry types
from Subsubsection 5.2.2.2. A CollectiveFeatureType should also provide access operations to its units
so that developers can design and implement application-specific computations on these units, as
specified below and in the next subsubsection for the subtypes of CollectiveFeatureType. These
operations are stereotypes of uml: Operation. For different CollectiveFeatureType classes, their units
have different attributes representing thematic properties and lead to different return types of such an
operation. They cannot be simply represented as a fixed operation within the stereotype representation in

66

Figure 5.8. Complementary information about these operations’ stereotypes is given in Subsubsection
5.2.3.1, where behavioral elements in the PIM-layer metamodels are summarized. These operations are
specified at the PIM layer to emphasize the logical functionalities a stereotyped class should have. This
specification does not regulate a fixed choice of implementation signature for these operations.

A CollectiveFeatureType class links the view of computational models and the view of external
components. Computed patterns of a collective feature are exhibited as thematic properties of the macro
phenomenon type represented by the CollectiveFeatueType class. Thus, a CollectiveFeatureType is
viewed as has the same list of properties as its units. For each of the properties P, an access method
getP(Point p) should be provided by the class. It returns the state value of the property P at the input
point location.

Locations of units during computation may be denoted by simple internal coordinates (e.g., integer
index) that reflect units’ locations related to the spatial span of computation. External components cannot
recognize these coordinates and thus cannot relate associated thematic values to their own world. Each
CollectiveFeatureType should provide an operation getUnit(Point p) to return an object of its unit type.
This operation returns the unit of its belonged feature, which the input point location intersects with, or
null if there isn’t any.

Computations of a collective feature are performed on a set of units. A CollectiveFeatureType should
provide a method unitsIterator() which returns an iterator object of its units. Then, developers can use
this iterator to traverse through units to perform update functions on a unit. The implementation form of
this iterator depends on the chosen implementation platform.
5.2.2.6 Subtypes of CollectiveFeatureType

The spatial representation of units in a collective feature includes the geometry of computed units and
spatial relationships among them. The choice of units’ geometry type influences computation results and
exhibited spatial patterns of computed thematic characteristics[103]. Spatial relationships among units
such as the distance and the connectivity are even more important, since behaviors of units are often
computed based on distances and connectivity among units.

To support the concise expression of units’ spatial representations, this profile introduces concrete
subtypes of the CollectiveFeatureType as described in the following paragraphs. Each subtype restricts
the CollectiveFeatureType with a specific spatial representation that is often used by simulation modelers,
which includes the geometry type of its units and the way that these units are distributed. Figure 5.9 shows
an illustration of these representations with one unit highlighted to support understanding and choosing
these stereotypes. The representation is chosen by modelers who develop the computational models of
environmental phenomena and can only be included in the software design models with their involvement.
Thus, these subtypes are specified with the notations that are close to the terminology in computational
schemes of spatial simulations.

A central issue to the computational models using a CollevctiveFeatureType is to specify the spatial
closeness and the neighborhood of a unit[103]. They determine which other units are considered for
updating state values of a unit and their weight of influence on this unit. Spatial closeness among units is
described in terms of distances from the unit to other locations in the space, especially to the locations of
other units. Two types of distances may be used by these models. The first is the geometric distance that
can be calculated based on the geometric coordinates of units. The second is the graph distance (also
called the network distance) that is described in terms of the minimum steps connecting two units, given
that the distance between two directly connected units is one step. The graph distance can both be
grounded on geometric adjacency or artificially created connectivity among units. The former can be
derived from the spatial distributions of units, while the latter can only be additionally specified. More
complex networks may also include variable costs for different steps, which vary from features to features.

67

SimulatedFeatureType
- timestamp: TemporalPosition

CollectiveFeatureTypePointSetFeaturePointSitesFeature

GridOfPointsFeature TesserlatedFeature

SquareGridsFeature HaxagonalGridsFeature PolygonalMapFeatureVoronoiTesserlatedFeature

«metaclass»
ClassGlobeFeature

LocalFeature
- geometry: Geometry

CollectiveFeatureUnit
- geometry: Geometry

PolygonSetFeature

SpatialFunction
- timestamp: TemperalPosition

1 «hasUnit»
+unit

1

Figure 5.8: Stereotypes of Runtime Simulated Feature Types.

68

Spatial distances between units that are determined from the geometry and topology of units can be
computed without knowing the application-specific thematic properties carried by these units. Thus,
relevant methods on accessing the neighborhood of a unit based on such distances are specified for each
subtype of CollectiveFeatureType. They can be realized at the stereotype-level and be integrated into the
implementation of stereotyped classes via transformations so that developers can utilize them to
implement application-specific behaviors of units.

A PointSetFeature is a CollectiveFeatureType whose geometry is computed as a set of freely
movable points. The geometry of a unit is presented by a point in this set, which holds the unit’s location.
No spatial relation among points is fixed by this stereotype. The location of each unit can be updated
separately during computation. Thus, the neighbor units of a unit shall change with its location change.
The neighborhood of a unit is determined via geometric closeness by computational models.

A PointSetFeature class should provide an operation getNeighbors (Unit u, float distance, float -r,
float r): Set <Unit>. The type Unit is the unit type of this PointSetFeature, which is a class applying the
CollectiveFeatureUnit stereotype. In the following paragraphs, unit types are denoted as Unit. It needs
to notice that these types are different from model to model. This operation returns a set of neighbor
units of u within the geometric distance of distance, which has the same measuring unit as the one used
by geometric coordinates of this class. The parameters -r and r are optional, which further restricts the
range of returned neighbors based on the at-moment moving direction of u as shown in Figure 5.9. Their
values shall be ignored when u is not moving.

This representation is chosen by bottom-up computational models simulating multiple autonomous
moving entities, which have been briefly introduced in Section 3.3.1.

A PointSitesFeature is a PointSetFeature whose units are represented as a set of points with fixed
locations in the view of computational models. The geometric distance and the relative direction between
each pair of points in a PointSitesFeature are fixed during computations. Each unit in such a set
corresponds to a “site” in the spatial simulation terminology[103]. The geometry of this stereotype is
comparable to the domain of CV_DiscretePointCoverage[97] in ISO19123.

Figure 5.9: Geometry Illustration of CollectiveFeatureTypes.

69

This structure is chosen when simulating time series of one or more themes at a limited set of
irregularly distributed locations. Models of this kind draw a temporal process at each site and take the
spatial autocorrelation[132] among sites into account. Spatial relations among units that have effects on
computations of themes can be calculated or assigned upon instance initialization and are stored in
memory during a computation. The effect on space is often stored in the form of a spatial weight matrix
with numerical weights[132].

Bottom-up simulations shall also use this structure. Thematic values of a unit are calculated based on
only neighbor points. Two types of distances can be derived from the units’ spatial locations of a
PointSitesFeature to specify the neighborhoods of its units, i.e., the geometric distance inherited from
PointSetFeature and the graph distance of the TIN13 based on its member points.

In addition to the inherited getNeighbors(), a PointSitesFeature class with the unit type Unit should
have an operation getTINNeighbors(Unit u, int distance):Set<Unit> to return the neighbor units of u
within the graph distance of distance on the implicit TIN by this PointSitesFeature.

A GridOfPointsFeature is a PointSetFeature whose units are represented by a regular grid of even-
spaced points. The computed thematic values of a unit are related to the point location of this unit. During
computation, the thematic values of units shall be stored in a value matrix and are accessed via indexes
denoting the relative locations of the units within the grid. The geometry of this stereotype is comparable
to the domain of the CV_DiscreteGridPointCoverage[97] in ISO19123, while the geometry of its unit is
comparable to CV_GridPoint[97].

This representation is often chosen when the computational models are based on the finite difference
scheme as introduced in Subsection 3.3.1. Points in such a grid correspond to discretized sampling points
of differential models. Computations calculating thematic values on a grid that are valid in grid cells
should use a SquareGridsFeature class, which is introduced in later paragraphs.

Bottom-up simulations may also use this type. Graph distances are used to compute neighborhoods of
units in a GridOfPointsFeature. Two definitions of adjacency can apply to this type for computing the
graph distance. The first considers only the points that are orthogonal next to a point as its adjacent points
(i.e., Von Neumann neighbors). The second additionally includes the points that are diagonal next to it
(i.e., Moore neighbors).[111] The distance between two adjacent units are equal to 1 in this specification.
A GridOfPointFeature should have two operations to return these two types of neighbors of a unit within
a graph distance of distance, i.e., getVonNeumannNeighbors (Unit u, int distance): Set<Unit> and
getMooreNeighbors(Unit u, int distance):Set<Unit>.

Besides, a GridOfPointsFeature class should provide an operation getUnit(Unit u, int x, int y) to
access a nearby unit of u based on their relative positions in the grid. As shown in Figure 5.8, for a unit u
with the grid index (x, y), getUnit(u, -1, 1) of this feature returns its unit with grid index (x-1, y+1). It
returns null when no such units exist.

A PolygonSetFeature is a CollectiveFeatureType whose geometry is computed as a set of freely
movable polygons. The geometry of a unit is presented by a polygon in this set, which holds the unit’s
location. The location of each unit can be updated separately during computation.

A PolygonSetFeature class should provide an operation getNeighbors (Unit u, float distance): Set
<Unit>. This operation returns a set of neighbor units of u within the geometric distance of distance,
which has the same measuring unit as the one used by geometric coordinates of this class. This
specification regulates that this geometric distance should be computed between the boundaries of two
units.

Computations of a set of moving entities normally calculate locations of entities based on some
reference points on the entities (e.g., centroids of entities). Entities in flops with higher spatial geometric
dimensions in an application shall be built using computed points as centroids of entities. This stereotype
is defined here for completeness reason, in case some deformation of units is documented in SEDL. When
no change about the units’ shape needs to be computed, the PointSetFeature stereotype should be used.

13 see the last paragraph of this subsubsection for the definition of TIN

70

A TersserlatedFeature is an abstract PolygonSetFeature whose geometry is represented by a set of
polygons covering a spatial area without gaps or overlaps. The term “tessellation” implies the subdivision
of space[103]. The geometry of each unit is represented by one of the regional divisions (i.e., the polygons)
in this tessellation. Thematic values of the represented phenomenon type are paired with regional
divisions. Each unit is treated as an individuality (i.e., a site or a cell in the spatial simulation
terminology[103]) during computations.

An instance of a TesserlatedFeature class can be viewed as an implicit graph, with each unit
corresponds to a vertex, and each pair of adjacent units are connected by an edge. Distances among units
during computations are represented in terms of graph distances. Two adjacent units have a distance of
one step to each other. The neighborhood of a unit within a range of r includes all units in the tessellation,
which have a graph distance that is not greater than r to this unit.

This structure is chosen by cell-centered computational models such as bottom-up cellular automata
and models about underlying space altered by active entities (See Subsection 3.3.1). The following
subtypes support concise expressions of common styles of tessellations used by these models. These
subtypes have different definitions of adjacency.

A SquareGridsFeature is a TesserlatedFeature whose geometry is represented by a grid of square
cells. This grid is created through regular tessellation by two perpendicular sets of even-spaced lines.
The geometry of each unit (i.e., a site or a cell) is represented by one of the square divisions. This
geometry is the most fundamental tessellation type used as lattices in spatial-explicit simulation
algorithms. It is comparable to the underlying discrete geometry of the
CV_ContinuousQuadrilateralGridCoverage[97] in ISO19123, while the geometry of its unit is
comparable as CV_GridCell[97].

Similar to a GridOfPointsFeature, the thematic values of an instance of this class are stored in a value
matrix during a computation. The values of a unit can thus be accessed via indexes in the matrix, which
denotes the relative location of the unit within the grid. The GridOfPointFeature and the
SquareGridsFeature are made two stereotypes for clear distinction of the unit geometry which influence
the evaluation of thematic values at a spatial location based on computed unit values.

It is important for cell-based computational models that all thematic values are recorded at the same
scale. As the units of a SquareGridsFeature are created purely based on the geometric subdivision, all
units should have the same size to be at the same scale. More complex computations are decomposed
into hierarchies, while thematic values at each hierarchy are still simulated in a lattice with the same
unit size. This stereotype does not consider the grid structure with variable cell size as may appear in
the data storage.

The two types of adjacency that can be applied to GridOfPointsFeature can also be used for
computing graph distances among units in a SquareGridsFeature instance. In the case of Von Neumann
neighbors, a cell is adjacent to the four cells that are orthogonally connected to it. In the case of Moore
neighbors, a cell is adjacent to the eight units that surround it. Similar to a GridOfPointsFeature, a
SquareGridsFeature should have two operations to return these two types of neighbors of a unit within a
graph distance distance, i.e., getVonNeumannNeighbors(Unit u, int distance):Set<Unit> and
getMooreNeighbors(Unit u, int distance):Set<Unit>.

Also, a SquareGridsFeature class should provide an operation getUnit(Unit u, int x, int y) to access a
nearby unit of u based on their relative position in the grid as shown in Figure 5.9. For a unit u with the
grid index (x, y), getUnit(u, -1, 1) returns the unit of its belonged feature with grid index (x-1, y+1). It
returns null when no such unit exists.

A HaxagonalGridsFeature is a TesserlatedFeature whose geometry is represented by a tessellation
that is composed of regular hexagons (i.e., 6-sided polygons whose sides have the same length) with the
same size. Hexagons are 6-sided polygons. The geometry of this stereotype is comparable to the
underlying discrete geometry of the CV_HexagonalGridCoverage[97] in ISO19123. The typical
orientations for hex grids are vertical columns (flat-topped) and horizontal rows (pointy-topped). The
advantage of computing a phenomenon using the hexagonal grids compared to using the square grids is

71

that only one possible adjacency exists among units in the hexagonal grids. Each pair of adjacent units
share a common borderline.

A VoronoiTesserlatedFeature is a TesserlatedFeature whose geometry is generated from a set of
irregularly distributed points (referred to as “seeds”, “seed points” or “generating points”) as follows:
the spatial space is divided into cells represented by polygons; each cell is associated to a seed; each cell
covers the region containing all points in the space which are closer to its associated seed than to any
other seed points. Such a geometry is often called a Voronoi tessellation or a Voronoi diagram which is
comprehensively introduced in [133]. Another name of such divisions is the Thiessen polygons known
in the spatial analysis domain.[134] The geometry of this stereotype is comparable to the underlying
discrete geometry of the CV_ThiessenPolygonCoverage[97] in ISO19123. Thematic values of the
phenomenon type represented by a VoronoiTesserlatedFeature are paired with the polygonal cells as
units during computations. Two Voronoi units that share a common borderline are adjacent and have a
graph distance of one step to each other.

Classes applying above two stereotypes should have an operation getGraphNeighbors(Unit u, int
distance):Set<Units>. It returns neighbor units of a unit within a graph distance of distance based on
the adjacency definition of the applied stereotype.

A dual diagram named Delaunay triangulation[134] can be created for each Voronoi diagram by
connecting all pairs of seeds associated with two adjacent Voronoi units. It results in a collection of
triangles. For any of the triangles in this collection, no other point in the seed set is inside its circum-
ball[133]. This triangulation is often named TIN (Triangular Irregular Networks) in spatial analysis.[134]
The graph distance between two Voronoi units is equal to the graph distance among their associated
seed points in its dual TIN. In a TIN, thematic values are paired with the seed points that are vertices
of triangles but do not fall inside to any divisions. This structure is often used for interpolating values
of points other than seed values. However, conceptual confusion appears when it is used as the lattice
by cell-based models that compute the values of divisions. Thus, the Delaunay triangulation is not
introduced for lattice in this profile, but only as a network type for computing graph distances between
units in a PointSitesFeature. Discussions regarding network features can be found in Subsection 8.3.1.

A PolygonalMapFeature is a TessellatedFeature whose geometry is represented by irregular
polygons imported from existing polygonal map data. The geometry of this stereotype is roughly
comparable to the domain of CV_DiscreteSurfaceCoverage[97] in ISO19123. Visually, it looks like the
polygonal map. Such a tessellation type provides a more flexible alternative to regular geometric
subdivisions, which is particularly useful for simulations based on artificially determined regions, such
as simulations based on data of administrative divisions.

Two units in a PoygonalMapFeature instance that touch each other are considered as adjacent, i.e.,
as direct neighbors with the graph distance of one to each other. A problem may be introduced by
imported polygonal map data when isolated polygons that do not touch any other polygon may exist.
This situation violates the strict definition of the tessellation since empty spaces exist among divisions.
Thus, this stereotype uses a relaxed definition: the geometry of one or more units in a
PolygonalMapFeature may be an isolated polygon that does not touches any other unit. Such a unit has
no geometric neighbors by default.

A PolygonalMapFeature should have an operation getGraphNeighbors(Unit u, int distance, Boolean
includeIsolatedUnit):Set<Units>. It returns neighbor units of a unit within a graph distance of distance
based on the adjacency definition of PolygonalMapFeature. When the third parameter is set to true, this
operation should treat the units that have the shortest geometric distance to u as its adjacent units. By
this specification, this geometric distance should be computed between the boundaries of two units.
5.2.2.7 SpatialFunction

A SpatialFunction is a class that holds the computational function that represents the form of a
spatially heterogeneous theme. It can be used in one of the following situations: 1) a thematic property
of a phenomenon is represented by a continuous function from spatial locations to thematic values at a
time instant. No regulation about discrete spatial samplings is fixed yet. 2) information about this

72

property is acquired from a spatial data source by external providers, which differs from location to
location. In this case, this class serves as a wrapper to hold spatial queries to the data source.

Same as other stereotypes for runtime objects representing environmental phenomena in simulations,
a SpatialFunction conceptually represents some existence in simulated space that evolves over the
timeline. To external components, this class represents a thematic property whose values can be “asked”
by given the location of a spatial point at each time instant. Since points in a conceptually continuous
space are infinite, these values are only computed (i.e., calculated or queried) when necessary upon
request from client systems or moderation functions. A SpatialFunction at a time instant is comparable
to an analytical coverage in ISO19123 that maps spatial locations to thematic values via a mathematic
function[97].

Formally, a class applying the SpatialFunction stereotype must have an attribute timestamp:
TemporalPosition. Similar to the timestamp of a SimulatedFeatureType, it provides a slot to hold the
“current time” during execution. Besides, this class should have an operation eval(point). This operation
takes a spatial point as the input and returns the value of its represented property at this point. Developers
should implement the spatial function f(s) representing a thematic property in this operation.

A SpatialFunction class could be generated by the transformation from an SEDL description (See
Section 5.3) as the type of some SimulatedFeatureType’s attribute, when some
ThematicValueDistribution in the input exists. If its represented property is also expected to be dynamic,
the transformation generates operation to update the state of this attribute at an execution step. This
operation updates necessary parameters of the embedded spatial function Ft(s) in the eval(point) of this
SpatialFunction to alter its at-moment form. The parameters of the spatial function can be implemented
as attributes of this SpatialFunction class. At an execution step, invoking the eval(point) via an instance
of a SpatialFunction class with parameter s returns the represented property value of this instance, at the
location of s and at the time that is the state value of its timestamp.
5.2.2.8 Requested Snapshots

A snapshot is the state of a system at a temporal location. At a step of a simulation execution, the
system of interest component consumes snapshot data of its simulated environment at the temporal
location corresponding to that step. This subsubsection specifies additional stereotypes as shown in
Figure 5.10, which are used to express the information structure requested by the system of interest
component. They are subtypes of the stereotype Snapshot that extends the uml: Datatype metaclass.

A Snapshot represents the data structure about a simulated environment being sent to a system of
interest component at a simulation step. Different from the subtypes of SimulatedFeatureType which are
also defined from a snapshot view, the Snapshot stereotypes describe static pieces of message data that
are sent between components. These stereotypes shall be used in design models in the following situations.

«metaclass»
DataType

PointSnapshot PolygonalAggregatedSnapshot

Snapshot
- timestamp: TemperalPosition

«metaclass»
Association

SnapshotOf EnvironmentSimulation

«metaclass»
Class

+snapshot
«SnapshotOf»

+simulation
1

Figure 5.10: Snapshot Types.

73

1. The system of interest component requires a subset from all computed values or some post-
processed values based on computed values. Structures of required values expressed by snapshot types
are used by communication functions between components, which is specific to a simulation process,
while runtime data structures expressed by simulated feature types are needed for computations of
phenomena, which is specific to a simulated environment component.

This could happen when computed values are consumed by multiple functionalities. It may also
happen when environmental phenomena are computed as CollectiveFeatureTypes. Thematic values at a
location may not be independently updated but depending on nearby values, which requires a runtime
data structure to hold values from multiple locations. Although, the requested snapshot data by a client
component shall be only from one location.

2. Some phenomenon property is implemented as a SpatialFuction (see Subsubsection 5.2.2.7).
Since computable state values from this function are infinite at each execution step, Snapshot types are
used in this situation to guides its execution loop in an application. In this case, a Snapshot expresses
which set of values is requested by another component and thus should be computed by the embedded
spatial function at an execution step.

A Snapshot must have an attribute timestamp: TemporalPosition that denotes the time when a
snapshot is taken. In the design model, it must be exactly one memberEnd of an association that applying
the SnashopOf stereotype which is introduced later in this subsubsection.

To facilitate the object-oriented modeling, a stereotype EnvironmentSimulation extending uml:Class
is introduced to provide a model construct that holds behavior elements for simulation execution control.
Same as the Snapshot types, EnvironmentSimulation classes are more related to the simulation that the
component under development participates in, but not the computation models of a phenomenon type.
As a meta element that aims at expressing behaviors, it is specified in more detail in Subsubsection 5.3.3.6.
Relevant information for this subsubsection is that an EnvironmentSimulation class maintains several
sets, each of which maintains computation instances for a SimulatedFeatureType class. The structure of
a Snapshot type depends on the SimulatedFeatueType computation that can be maintained by the
EnvironmentSimulation class and thus are partially derivable from this class.

To support concise expressions of this dependency, the profile defines a stereotype SnapshotOf that
extends the UML metaclass Association. A SnapshotOf is a binary association. It must have a
memberEnd (simulation) which is an EnvironmentSimulation class and the other memberEnd (snapshot)
which is a Snapshot class. A Snapshot must be exactly linked by one SnapshotOf association. A
SnapshotOf association indicates instances of its snapshot end includes snapshot information from the
instances of its simulation end. Thus, the derivable structure of its snapshot end can be implicit in a
design model applying this profile. It results in more concise model representation. During
transformations from the design model to implementations or intermediate models in general modeling
languages, derivable attributes of a Snapshot type should be made explicit in the outputs, as specified
below for each subtype.

A PointSnapshot is a Snapshot representing the snapshot data structure of a simulated environment
from a simulation at a point location. It has an attribute location of the point type that represents the
location at which a snapshot instance is taken. A PointSnapshot has the following implicit structures:

1. For each feature type class (see Subsubsection 5.2.2.4) whose computation instances can be
maintained by the simulation end linked to the PointSnapshot, a member datatype resembling this feature
type should be included in this Snapshot type. An instance of this snapshot type can contain one or more
instances of the member datatype.

2. When the feature type is single-valued, the member datatype implicitly has all attributes
representing thematic properties of that feature type. If some attribute of the associated feature type is a
SpatialFunction, the type of the corresponding attribute in this member datatype should be changed to the
return type of the embedded function of the SpatialFunction.

When the feature type is a CollectiveFeatureType, the member datatype implicitly has all thematic
attributes representing thematic properties of the feature type’s unit.

A PolygonalAggregatedSnapshot is a Snapshot representing the data structure of the aggregated
snapshot of a simulated environment from a simulation within a region. It has an attribute location of the

74

polygon type which represents the region at which a snapshot instance is taken. For each single-valued
feature type class whose geometry type is point, a member datatype is included to this Snapshot type with
a location:Point attribute and all attributes representing thematic properties of that feature type. Other of
its implicit structure is derived in the same way as the PointSnapshot. An attribute value of such a
snapshot instance is computed via some kind of aggregation (e.g., mean) from the same attribute of its
snapshot feature within its location at its timestamp. The specific way of aggregation is left to application
implementation.
5.2.3 Metamodel of Environment Computation

Meta elements for describing PIM-layer behavioral models of the environment computation in this
thesis have a more complex composition than the metamodels for describing structural models. They are
not defined simply within a profile but are from different sources as summarized in this subsection.
5.2.3.1 Summary

CIM-PIM transformations in the proposed framework map SEDL elements to computation units and
chain these units together. They create computation flows for simulated feature types at an execution step.
Given connected units that are formally expressed, the generation of architectural code and object flow
code shall be automated to create computer program skeletons for enclosing application-specific
implementations. Developers can focus on implementing computational logic and arithmetic functions.
The generated units are application-specific elementary functions that do not necessarily contain domain-
level common structures. Thus, instead of defining redundant stereotypes, the transformation rules map
relevant SEDL language elements to the behavioral elements in the UML metamodel. Besides, since
these functions operate on data objects about environmental phenomena, the transformed behavioral
models may also contain elements from the structural models that are expressed in previously introduced
metamodels.

Elements from the above two sources could appear in the output behavioral models by CIM-PIM
transformations from SEDL descriptions. Further, stereotype-specific behaviors for
SimulatedFeatureType-s have been specified in the structural profile, in terms of stereotyped uml:
Operation that must be owned by a class applying some subtype of SimulatedFeatureType. These
operations are common in spatial simulations but could be used differently in different applications
depending on computational methods in these applications. Thus, the specified CIM-PIM transformation
in this thesis does not involve the generation of behaviors that invoke such operations. When objects of
stereotyped classes have been created in a behavioral model by transformations at the PIM layer or a
further-mapped PSM layer, developers can invoke these operations through the objects to construct
application-specific behaviors within a generated unit.

SimulatedFeatureType
CollectiveFeatureType

CollectiveFeatureUnit
- geometry: Geometry «metaclass»

Operation

getUnit
- ownedParameter: p:Point

«invariant»
{context getUni inv:
self.class.unit == self.returnType}

1
«hasUnit»

+unit 1
+returnType

«returnType»

+class
1 «getUnit» 1

Figure 5.11: Define the getUnit() Operation for the CollectiveFeatureUnit Stereotype.

75

At the profile level, operations owned by stereotypes of uml:Class are viewed as stereotypes of
uml:Operation. Figure 5.11 gives an illustration that defines getUnit() for the CollectiveFeatureType in
Subsubsection 5.2.2.5 using the graphic notation, with additional constraints expressed in OCL. This
figure shows, each class applying the CollectiveFeatureType stereotype (or one of its subtypes) should
own a special uml:Operation named getUnit. This operation has a parameter p of a Point type and returns
an instance of a class that represents the units of this CollectiveFeatureType class.

Besides, a stereotype EnvironmentSimulation is specified to express model artifacts that enclose
behaviors of an environment component in a bigger simulation. Such behaviors include communication
routines between the environment component and a system of interest component, create necessary data
messages, and so on. These behaviors are simulation-specific and shall be partially derived from a
SimulatedEnvironement and one of its ExecutionRoutine. The derivation is explained in Subsubsection
5.3.3.6. An EnvironmentSimulation class and its further transformed code skeletons are used by
developers to implement the intended execution routine.

At last, Subsubsection 5.2.3.3 recommends a set of stereotypes as meta elements for describing
behaviors to modify the existence of a simulated phenomenon at the PIM layer. Same as the operations
owned by SimulatedFeatureType stereotypes, the main audiences of these stereotypes are developers of
the modeled components. They provide concise constructs for developers to model and implement
simulation processes. Transformations from SEDL descriptions to PIMs do not involve the creation of
instances of these stereotypes, since the way to use them is specific to different applications that cannot
be captured formally by SEDL.
5.2.3.2 Two Views of Behavioral Models

Behavioral models can be presented in two views when using the UML graphic notation, and so do
the behavioral meta elements. An element may be expressed by different UML metaclasses in these two
views. Figure 5.12 illustrates how behavioral elements are presented in two views, in which elements
with the same name represent the same model element. Behavioral meta elements in this chapter are
specified in one of the views. They can be switched to their counterparts in the other view as explained
below.

Figure 5.12: Elements in Instance Models of Behavioral Metamodels.

76

First, a computation procedure of a simulated environment component can be modeled as an instance
of the uml: Activity metaclass presented in a UML activity diagram. It is composed of instances of
available UML elements in activity diagrams. Stereotypes expressing behaviors are extensions of
available UML metaclasses in activity diagrams, especially the extension for uml:Action. Second, each
Activity can also be presented as a uml:Class in a UML class diagram. Each Action of this Activity can
be then presented as an uml: Operation owned by the activity Class. Thus, an instance of some
uml:Action stereotype can be presented as a stereotyped uml:Operation in class diagrams, while a basic
uml:Action instance can be presented as a non-stereotyped uml:Operation. The Activity class normally
also owns a uml: Operation that contains the behavior of this Activity.
5.2.3.3 Life Cycle Control of Simulated Features

This subsubsection recommends a set of PIM-layer stereotypes to provide additional constructs to
express behaviors that control the lifecycles of SimulatedFeatureType instances or their units. They are
summarized in Table 5.9 as extensions of the uml: Action metaclass. It is recommended to realize these
constructs at the PIM layer and more specific layers as modeling/programming utilities in the proposed
framework. They are not involved in CIM-PIM transformations specified in the framework.

CIM-PIM transformations in the framework proposed by this thesis create behavior models from
SEDL descriptions in a logical structure that each instance of a computation class can be initialized with
a configuration object of its computed phenomenon type14. A computation instance holds behaviors that
compute a phenomenon instance. Its member object of a corresponding SimulatedFeatureType class hold
state values of this phenomenon instance. Thus, all configured phenomena from a configuration are
supposed to have been initialized at the beginning of an execution, even though they may be conceptually
not alive for a while (state values of the feature data object remain zero or null).

However, the existence of phenomena may change during simulations. Some computation instances
may not exist anymore, while some others may be initialized to compute newly emerged phenomena. In
the current framework version, such behaviors can be added to the behavioral model since the PIM layer
as actions expressed by stereotypes in this subsubsection. Instances of these actions, however, do not
appear in the outputs of the CIM-PIM transformations from SEDL descriptions since no formal SEDL
terms are defined for capturing such context.

Stereotype Description
FeatureEmerge An Action that makes a simulated feature come to life in the simulation. It often

technically means to create and initialize a new instance of a computation
instance for a SimulatedFeatureType.

FeatureTermination An Action that terminates the life of an existing simulated feature in the
simulation. This feature will not exist in the simulated world and will not
participate in the simulation process anymore. Depending on the
implementation strategy, it could technically mean to release a computation
instance in the memory or exclude this instance in further computation. This
Action should be distinguished from an Action that changes the simulated
feature to state “dead”, which still has influence in the simulation. The latter
Action should be viewed as an Action that computes thematic changes of a
simulated feature.

MergeFeatures An Action that merges multiple simulated features of the same kind into one. It
takes two or more instances of the same SimulatedFeatureType as input and
performs a FeatureEmerge Action to create a new instance of this type. The
initial values of this new instance are computed based on the values of input
instances. The input features are then terminated via a FeatureTermination.

FeatureAbsorb An Action that one simulated feature absorbs one or more other features of the
same kind. It takes two or more instances of the same SimulatedFeatureType as

14 This PIM layer structure, however, does not have to strictly remain the same when mapped to a specific
technical platform, as long as the mapped structure provides the same logical functionalities.

77

input and updates state values of one of the features according to the input
features. Other input features are then terminated via a FeatureTermination.

SplitFeature An Action that splits one simulated feature into multiple features of its kind. It
takes one instance of a SimulatedFeatureType as input and performs a
FeatureEmerge Action a needed number of times to create two or more instances
of the same type. The initial values of the new instances are computed based on
the values of the input instance. The input is then terminated via
FeatureTermination.

ReplicateFeature An Action that a new simulated feature is created by an existing feature of the
same kind. It takes one instance of a SimulatedFeatureType as input and
performs a FeatureEmerge Action to create another instance of the same
SimulatedFeatureType.

DuplicateFeature A specialized ReplicateFeature Action that duplicates an existing simulated
feature. It takes one instance of a SimulatedFeatureType as input and performs
a FeatureEmerge Action to create another instance of the same
SimulatedFeatureType with exactly the same state values as the input instance.
The input feature is not altered by this Action.

Table 5.9: Stereotypes for the Simulated Feature Life Cycle Control.
5.3 Transformations of SEDL Descriptions

This section specifies transformation rules from SEDL descriptions to PIM-layer design models
expressed by metamodels that are specified in Section 5.2. These rules regulate what happens when an
SEDL description is executed by an implemented SEDL Description Processor.
5.3.1 CIM-PIM Transformation Process

The transformation from an SEDL description to design-level software models is a multi-steps and
semi-automatic process, as shown in Figure 5.13. An implemented SEDL Description Processor should
be able to perform automatic steps (denoted as small round shapes in Figure 5.13) in this process. An
implemented SEDL IDE should also have functionalities that facilitate manual operations in this process.

First, two automatic transformations, i.e., Description2Config and Description2Structure are
executed to derive two structural models from an input SEDL description. It generates a configuration

Figure 5.13: CIM-PIM Transformation Process.

78

schema applying the profile specified in Subsection 5.2.1 and a data structure model applying the profile
specified in Subsection 5.2.2. This step shall be followed by a manual refinement step (denoted as a
dashed line as other optional elements in Figure 5.13), which is recommended in practice. At this step,
developers of environment computation can bring more details that do not implicitly exist in high-level
functional requirements into design models. Then, the two generated structural models together with the
input SEDL are fed to a third transformation, i.e., Description2Computation. This transformation
generates a behavioral model expressed by modeling constructs specified in Subsection 5.2.3. Data
objects used by behavioral elements in this model are instances of the output model elements from the
previous transformation steps.

The CIM-PIM transformations specified in this section has been completed by the previous three
transformations. Detailed transformation algorithms of these three steps recommended by this thesis can
be found in Appendix A.

The development process of a simulated environment component can be further automated from here
through an optional transformation DSL2BasicUML. This transformation turns outputs of previous
transformations to models expressed by basic UML constructs. This is archived by explicitly adding
necessary structures to model elements applying stereotypes of profiles specified in Section 5.2. These
structures are implied by the applied stereotypes as defined in their descriptive semantics. This step can
be made implicit to language users by chaining it with a step that uses domain-independent generation
tools to create PSM model or code skeletons. In this case, this optional step creates input for these general
tools that do not recognize DSLs defined in Section 5.2.
5.3.2 Description2Config

The output of the first transformation Description2Config is a configuration schema of the
component under development. Relevant aspects in an input description are the description hierarchy,
names of Configurable and ConfigurableParameter-s. In a nutshell, it generates a hierarchical structure
aligned to the input description. Each Configurable is transformed into a ConfigComponent with the
name of this Configurable and is nested by the component transformed from its belonged Configurable.
Each ConfigurableParameter is mapped to a ConfigItem of a corresponding ConfigComponent.
Configurable-s with no parameter are excluded in this schema. Based on the component structure, a
subtype of ConfigComponent may apply to this component. The complete transformation can be found
in Appendix A.1.

This transformation is intentionally kept simple to create intuitive user interfaces for users who intend
to use the developed component without modification, i.e., the “original” users who give the requirements
as documented in the input descriptions. An output model of this transformation can be used to regulate
the configuration structure of a developed component.

Since stereotypes in the configuration profile do not imply additional structure to its extended
metaclass, removing the applied profile from an output schema model results in a valid model expressed
by basic UML. When only the configuration structure is of interest, implementation of this transformation
can be simplified. Instead of generating an element applying a stereotype, it generates an instance of the
UML metaclass that the stereotype extends. The prototype implementation in Chapter 6 uses this strategy.
5.3.3 Description2Structure

The second transformation Description2Structure creates design-level structural models of
environment components. For each EnvironmentalPhenomenon in the input SEDL description, it creates
a uml:Class stereotyped with a suitable subtype of SimulatedFeatureType from Subsection 5.2.2. The
choice of applied stereotype regulates the spatial representation of the phenomenon in the simulation. It
is mainly derived from the declared dimension in the input description and IndividualtiyChange-s of the
EnvironmentalPhenomenon. As explained in Subsubsection 5.2.2.1, this section focuses on specifying
transformations for two-dimensional spatial simulations in which the highest dimension of a phenomenon
is set to 2. Table 5.10 shows the primary step that applies a stereotype to the data structure Class SIData
generated from a SpatialIndividuality SI. The applied stereotype needs to be refined with a more specific

79

subtype by developers for further transformation. Further attributes of the Class, which is not implied
by its applied stereotype, are derived from the theme-s and enclosed Variation-s of the input
SpatialIndividuality. Appendix A.2 provides the detailed logic of this transformation.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

If dimNum of SI equals to 2 Then
 Apply the LocalFeature stereotype to SIData;
 Set geometry of SIData to Polygon;
Else if SI has change involving geometry Then
 Apply the LocalFeature stereotype to SIData;
 Set geometry of SIData to Polygon;
 Else if dimNum of SI equals to 0 Then
 Apply the LocalFeature stereotype to SIData;
 Set geometry of SIData to Point;
 Else if SI has RigidBodyMovement or LocationThemeDependency
 Apply the LocalFeature stereotype to SIData;
 Set geometry of SIData to Point;
 Else
 Apply the GlobalFeature stereotype to SIData;
 End if;
 End if;
 End if;
End if;

Table 5.10: Apply a Stereotype to the Data Structure Class.
Contradictions may exist among different pieces of an SEDL description that influence the derivation

of the necessary number of spatial dimensions in computation. They cause conflicts among different
transformation rules. The conflicts are eliminated by the following three mechanisms: 1) Some
contradictions are forbidden by the structural restrictions that are introduced with the SEDL model in
Section 5.1. They can be eliminated by an SEDL editor with validation functions. 2) Change types
involving space need a certain minimum number of dimensions. If the declared dimension of a
phenomenon is lower than what its changes require, an SEDL editor should give warning. The
contradiction should be clarified and eliminated through discussion. There, SEDL plays its role as an
analysis-phase communication tool. 3) if the contradiction is not solved by step 2, the transformation
generates a geometric representation of this phenomenon with a minimum necessary number (or a pre-
determined higher one) of dimensions.

Given a chosen implementation platform, classes in an output model from this transformation can be
further mapped to a spatial data structure implementation according to the applied stereotypes and
attributes derived from the input description.
5.3.4 Description2Computation

The third transformation Description2Computation has two main purposes: 1) generating
computation units that update states of simulated phenomenon instances during simulation; 2) building
activity flows of the component under development with these units.

Design-level outputs from the third transformation can be presented in two views as explained in
Subsection 5.2.3.2. To facilitate the further transformation to object-oriented code structure, this
subsection expresses this transformation in the structural view in terms of uml:Class and uml:Operation15.
The details of this transformation are written with the programming terminology which is closed to Java-
like coding convention in Appendix A. For an Operation that represents a decomposable uml:Activity,
each elementary uml:Action is expressed as a statement that invokes the action Operation within this
activity Operation. Due to the abstraction level of platform-independent models, some artifacts are rather
denoted descriptively in the appendix, so that it can be adapted to different technical platforms for creating

15 The prefix „uml“ of these two metaclasses are omitted in the left text in this section for simplicity.

80

code skeletons for these artifacts. An implementation of the transformation to the platform-specific layer
should replace the general forms of output elements in the appendix to comparable ones in the target
platform. It should also adapt the elements’ names to the naming convention of the platform. The overall
steps of Description2Computation for an EnvironmentalPhenomenon Ep are summarized in Table 5.11
and explained in the following paragraphs.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

Create a Class ComputeEp;
Create Attributes in ComputeEp for each Ep’s:
 1) ConfigurableParameter,
 2) indexName of each CharacteristicVariation;
Create an Operation in ComputeEp for each of following description items within Ep:
 1) CharacteristicVariation,
 2) individual Variation,
 3) AlternativeMode;
Create other support structures;
Generate a dependency graph G for computation of Ep’s properties;
Traverse G starting with node t to get a topologic sequence of nodes;
Add Object epData of Ep’s generated datatype;
Create Operation computeEp() in ComputeEp;
Create statements in computeEp() to invoke the previously generated Operations to initialize and
update the properties of epData (or a unit in the epData if Ep is a FieldOfIndividualities),
following the sequence of nodes from Line 11;
Create necessary iterations when Ep is a FieldOfIndividualities;

Table 5.11: Overall Steps of Description2Computation.
First, this transformation generates a Class for each EnvironmentalPhenomenon to hold the

computation behaviors. Each CharacteristicVariation or Variation within the scope of this
EnvironmentalPhenomenon is transformed into an Operation (i.e., an uml:Action in the behavioral view)
in the computation Class. ConfigurableParameter-s within the scope of the EnvironmentalPhenomenon
and in some cases, also parameters of Operations that compute characteristic variations, are transformed
into attributes in the computation Class. This step also adds member instances of the configuration and
data structure Classes from the previous two transformations to the computation Class to hold information
for executions. This step is presented in detail in Appendix A.3.

Next, a directed graph for each EnvironmentalPhenomenon is derived from its Variation-s. Nodes in
this graph represent the described properties of this phenomenon. Edges in this graph correspond to the
relations between their connected nodes that are expressed by a Variation. The graph reflects the
computation dependency among these properties, i.e., an edge a → b denotes that the state value of a is
required for determining the state value of b. It is an intermediate artifact to derive the computation order
of the computation units generated by the previous step, which is used to form activity flows for updating
states of this phenomenon.

The previous step of the graph construction allows cycles in this graph. If representing relations in
such a cycle with equations, this loop corresponds to an equation system that determines the values of the
nodes in the loop. However, the solving order of the computation units cannot be derived when loops
exist. Thus, the construction is followed by a step that detects the cycles in the graph and replaces each
cycle with a compound node. The primary steps of the graph generation for a SpatialIndividuality are
shown in Table 5.1, and the detailed logic of it can be found in Appendix A.4. It applies to every
SpatialIndividuality-s in the input SEDL description. Operations on graphs can be implemented using
standard graph data structure and algorithms.
1
2
3
4
5

Create a directed graph G;
Add nodes t, l, g to G; //represents time, location, geometry
For each ThematicProperty p of SI
 Add a node p to G;
End for;

81

6
7
8
9
10
11
12
13
14
15

For each Variation: a → b within the scope of SI
 Add an edge a → b to G if it does not exist;
 Store a reference to the generated Operation from this Variation with this edge;
End for
Search for cycles in G;
For each found cycle cyc Add a node cyc to G to replace the subgraph of the cycle;
 Add Operation cyc() to ComputeSI;
 Store a reference to the subgraph of the cycle with cyc;
End for;

Table 5.12: Generation of the Dependency Graph for a SpatialIndividuality.
The dependency graph for an EnvironmentalPhenomenon implies the appropriate computation order

of properties during a simulation step. The next step generates an Operation to compute states of a
simulated feature object at a step. This Operation invokes the generated Operations for computation units
in sequence to update the phenomenon data object hold by the computation class. The timestamp is
updated at first as the time is the only fully independent variable in a simulation. Then, the properties that
only depend on time are computed by the Operation referenced to the incoming edges of the node
representing these properties. The computed values are then fed to the computation units represented by
its outgoing edge. This process continues until all properties are updated. It applies to all
SimulatedIndividuality-s in the input SEDL description. For a SpatialIndividuality that describes
members of a FieldOfIndividualities, the state computation function updates a unit of the transformed
CollectiveFeatureType instance. The transformation additionally generates iteration over units of this
instance. Recommended details of this step are presented in Listing A.5.

For a clear specification, the transformation process is separated into steps in different listings based
on logically different tasks. An implementation does not have to follow the sequence strictly. For
instance, the generation of computation units, corresponding nodes and edges in the dependency graph
are often performed spontaneously when parsing through the input. The same applies to the pseudo-code
of each step. Outputs from this transformation are limited by the SEDL expressiveness and the
information that can be determined at the analysis phase. These limitations are discussed in Section 8.2.
5.3.5 Map Description of Spatial Heterogeneity to Design Models

SEDL provides two ways to indicate that the spatial heterogeneity of an environmental phenomenon
needs to be computed, i.e., through the ThematicValueDistribution of a ThematicProperty or spatially
distributed members of a FieldOfIndividualities. They indicate the spatial heterogeneity perceived from
different angles. However, different angles of perception do not necessarily result in different modeling
decisions at the design phase by component developers. This issue brings complexity and limitations to
the transformation automation, which requires developers’ involvement. This subsection introduces the
mapping principles to transform SEDL pieces relevant to the spatial heterogeneity to component design
models and the necessary manual interference during this process. Transformation details are presented
in listings in Appendix A.

The term FieldOfIndividualities implies a discrete view. A FieldOfIndividualities is mapped to a
CollectiveFeatureType in the design-level structural model by Description2Structure. For the
behavioral model generated by Description2Computation, change descriptions associated with its
member individuality are transformed into behaviors that update states of a unit in the transformed
CollectiveFeatureType’s instances. The transformation also generates an activity that iteratively executes
the update function to update all units.

The term ThematicValueDistribution, however, does not imply any discretization. A
ThematicValueDistribution reflects the spatial derivative of a ThematicProperty, which treats the relevant
property as a spatially continuous entirety. This term has duality in nature. On one side, it represents
some function that determines a value at a given spatial location about this property. On the other side,
in a temporal process, the form of the distribution at a time instant plays the role of the state value of the

82

property. Other changes which involve this property influence the distribution form. Thus, without
manual interference or pre-restricted logical structure, a ThematicValueDistribution in an SEDL
description should be mapped to a SpatialFunction that holds the distribution function with the spatial
point as the parameter. The attribute type transformed from its associated ThematicProperty is set to be
this SpatialFunction. An instance of this SpatialFunction represents the value of an attribute of some
simulated feature instance. It is updated by updating its attributes that control its embedded distribution
function. Table 5.13 shows the logic to generate a SpatialFunction Class P_Dist from the
ThematicValueDistribution-s of a ThematicProperty P.
1
2
3
4
5
6
7
8
9
10
11
13
14
15
16
17
18
19
21
22
23

Create Class P_Dist applying the SpatialFunction stereotype;
For each ThematicValueDistribution Dist of P
 Add Operation dist() to P_Dist;
 For each of its ConfigurableParameter CP
 Add Attribute cp with the declared type to P_Dist;
 End for;
 If Dist has options Then
 Add Attribute dist_op to P_Dist; // to mark the active option
 For each option Option of Dist
 Add Operation option() to P_Dist;
 For each ConfigurableParameter CP_O of Option
 Add Attribute cp_o with the declared type to P_Dist;
 End for;
 End for;
 Add a conditional brunch to dist() which:
 1) checks the value of dist_op,
 2) invokes the generated Operation from the corresponding option denoted by the
value of dist_op as the behavior of dist();
 End if;
 Add a Constructor to P_Dist that can initialize its instance with a configuration object;
End for;

Table 5.13: Generation of a SpatialFunction.
5.3.6 Generate Execution Routine

The behavioral model of a simulated environment component considers two aspects, i.e., the behaviors
that produce the context of environmental phenomena, and the behaviors of the component in a bigger
simulation. The focus of this thesis stays on the first consideration. Various supports are provided to
express the expected context of simulated environments and to create models of computation behaviors.

Nevertheless, SEDL also provides ExecutionRoutine to document expected behaviors of the second
aspect for completion. Application artifacts that are specific to a system of interest component and the
environment component described by a SimulatedEnvironment shall be derived from an instance of
ExecutionRoutine owned by this SimulatedEnvironment. This subsection recommends the derivable
component structures from an instance of ExecutionRoutine and its belonged SimulatedEnvironment.
Their forms could be quite different in different technical paradigms and thus are specified descriptively.

For a SimulatedEnvironment instance, a Class applying EnvironmentSimulation (See Subsubsection
5.2.3.2) is supposed to be created for each of its ExecutionRoutine with a name resembling the input
SimulatedEnvironment. If no ExecutionRoutine is presented, one default EnvironmentSimulation is
created for the SimulatedEnvironment. Then, the following structures for this Class are created.

First, this Class maintains several collections of computation instances, each collection for one
phenomenon type. These collections represent existing phenomena in the environment simulated by this
EnvironmentSimulation. Thus, developers can implement a simulation process with phenomenon
instances being added or removed during the process. For each EnvironmentPhenomenon in the input
SimulatedEnvironment, a list is added to this Class. The type of the instances held by this collection is

83

set to the computation Class generated from the input EnvironmentPhenomenon by transformation steps
in Appendix A.3.

Then, a constructor Operation is added to this Class. This constructor has a parameter of the
ConfigSchema type generated from the input SimulatedEnvironment by SEDL2Config in Appendix A.1.
This constructor should initialize instance of this class in the following way: 1) for each configured
phenomenon in the schema, it creates and initializes a suitable computation instance with the configured
values; 2) after that, it adds this computation instance to the list that maintains the corresponding
computation type.

Following structures of this EnvironmentSimulation Class are further generated, when it is not a
default one but is transformed from an ExecutionRoutine.

Snapshot types may be generated and linked to this Class via a SnapshotOf association. The
recommended subtypes are: 1) a PointSnapshot type when outputRange is atPoint, or 2) a
PolygonalAggregatedSnapshot when outputRange is atRegion and valueAggregation is true. This
Snapshot type has the implicit structure as specified in Subsubsection 5.2.2.8. More complicated
snapshot structures are not defined at the stereotype level in the current framework. Consequently, this
EnvironmentSimulation should also contain the behavior to make a snapshot of the current state of the
computed simulated environment for feeding a system of interest component. One of the following
Operations needs to be implemented in this Class.

1. snapshot(): it fetches state values of all existing phenomena maintained by the
EnvironmentSimulation instance, puts them in a message and returns it.

2. snapshot(Point p): it retrievals current state values of all existing phenomena maintained by the
EnvironmentSimulation instance at p, puts them in an instance of the PointSnapshot datatype derived
from the running simulation and returns this instance.

3. snapshot (Polygon pol): it retrievals state values of all existing phenomena in the
EnvironmentSimulation instance within the area of pol, puts them in a message and returns it.

4. aggregatedSnapshot(Polygon pol): retrieves a subset of state values of all existing phenomenon
maintained by the EnvironmentSimulation instance within the area of pol, replaces values of multi-valued
properties or of SpatialFuntion properties to aggregated values, puts them in an instance of the
PolygonalAggregatedSnapshot datatype derived from the running simulation and returns this instance.

5. aggregatedSnapshot(): fetches current state values of all existing phenomena maintained by the
EnvironmentSimulation instance, replaces values of multi-valued properties or SpatialFunction
properties to aggregated values, puts them in a message and returns it.

Besides, an Operation update(t) should be added to this Class to allow developers to implement the
behaviors that update all computation instances of existing phenomenon computation instances
maintained by this EnvironmentSimulation to the state at time t.

After that, when the executionMode of the ExecutionRoutine is Autonomous, an Operation that
contains a loop is added to implement continuous communication behaviors with the system of interest
component. The loop body executes update(t) to compute the state values of a simulated environment at
t and a suitable snapshot Operation to make a snapshot, as well as sends the snapshot to the system of
interest component in the way depending on the technical platform. Parameter sets shall be added to this
Operation to control the incremental t by predetermining a combination when implementing this
transformation. Recommended parameter combinations are as follows: 1) start/end time and temporal
length of a step, or, 2) start time, temporal length of a step, and the number of loops.

Otherwise, when the executionMode is Reactive, a trigger handling Operation should be added. This
Operation is triggered by receiving a message from the system of interest component, which includes: 1)
a value of the TemporalPosition type; and 2) a value of the point type if outputRange of the
ExecutionRoutine is AtPoint or a value of the polygon type if outputRange is AtRegion. This operation
should execute a suitable snapshot operation and send the snapshot data to the system of interest
component when triggered. In this mode, the implementation of the execution pace of update(t) during
a simulation is left to developers.

84

Additional information about discretization may also be derived from an ExecutionRoutine. When
outputRange of an ExecutionRoutine is region or all and valueAggregation is false, an additional Class
for each generated SimulatedFeatureType with attributes of some SpatialFunction type are suggested to
be added to the design model. This Class is stereotyped with a default subtype of CollectiveFeatureType.
This step also generates a Class applying CollectiveFeatureUnit for this additional Class. For each
attribute of the SimulatedFeatureType with a SpatialFunction type, it adds a corresponding attribute of a
default type to the unit type.

85

6 Prototypical Implementation
This chapter presents a Java-based prototypical realization of the proposed framework in this thesis

as specified in Chapter 4~5. It illustrates how the framework shall be implemented based on available
tools. The following sections are based on involved tools, ordered by the sequence when they are used
during the implementation, with explanations of which framework components are implemented by them
and how to do the implementation.
6.1 Eclipse Modeling Framework

In this prototype, the SEDL Abstract Syntax Model is realized as an Ecore model using Eclipse
Modeling Framework (EMF)[35]. The PIM-layer structural profile is implemented using the EMF-based
UML2 plugin16 since the Ecore itself does not support the profile notion.

The EMF is a modeling framework based on Eclipse17. It supports encoding model specifications in
XMI. The logical metamodel used by EMF to describe models is called Ecore. It is a simplified and de-
facto reference implementation of the EMOF (Essential Meta-Object Facility)[9] by OMG, which is
grounded on UML. The names of the elements in Ecore start with E, such as EClass that corresponds to
Class in UML. Thus, the UML-based SEDL abstract syntax model can be easily adapted as an Ecore
model. Further, the encoded Ecore models can be used with rich EMF facilities for further
implementations. EMF provides a tree-based editor that allows modelers to write models and store them
in XML files. Figure 6.1 shows the classes in the SEDL abstract syntax model encoded as EClasses using
this editor.

The class names in the abstract syntax model are rather used as identifiers for back-end processing.
They do not necessarily be strictly identical to the keywords in a concrete syntax of SEDL that will be

16 http://www.eclipse.org/modeling/mdt/uml2
17 https://www.eclipse.org

Figure 6.1: EClasses in the SEDL Ecore Model.

86

used to write an SEDL program in that syntax. The implementation of the textual concrete syntax in the
prototype is introduced in the next section.

The EMF-based UML2 plugin provides a visual editor that supports creating profiles, as well as
adding stereotypes and other profile-related UML elements to profiles. After a profile is created, an
Ecore-conformed XMI encoding for this profile is generated by this plugin. Through this step, an Ecore
model is created for this profile, in which an EClass is created for each stereotype. Such an EClass has
an EAnnocation denoting its corresponding stereotype and an ERference to its extended UML metaclass
in an Ecore version of the UML metamodel. Figure 6.2 gives an illustration of the stereotype
SpatialFunction definition and the created EClass.
6.2 EMFText

After the Ecore version of the SEDL Abstract Syntax Model has been written, it is used with
EMFText18 to create the infrastructure of the Basic SEDL Tooling in the framework.

EMFText is an EMF-based language workbench implemented as an Eclipse plugin. EMFText
provides an editor to help language developers write textural syntaxes for Ecore models. Using this editor,
a textual SEDL Concrete Syntax is specified in a file with the “cs” extension, which has references to the
SEDL Ecore model. For each term in the Ecore model, a syntactic rule is specified, which regulates a
grammar in Extended Backus–Naur Form[135] with some keywords. When a phase in an SEDL textual
description matches this rule, it should be recognized as an instance of this term. Rules and keywords in
this prototype are specified closer to natural language expressions so that descriptions in this concrete
syntax can serve as human-readable requirements documentation. The concrete syntax for a term can be
modified and adapted in different implementations.

EMFText also has functionalities that can generate a language infrastructure from a concrete syntax
file referenced to an Ecore model. The “cs” file of SEDL is fed to EMFText to create an infrastructure
of the SEDL tooling. This infrastructure is created in the form of Java programs. It supports writing and
processing SEDL descriptions in the specified concrete syntax, as explained below. Model code from
the Ecore SEDL model is also generated to be used by the SEDL tooling.

First, EMFText generates an SEDL Description Editor for the specified concrete syntax. It supports
writing an SEDL description and store it with a file extension as specified in the concrete syntax. In the
prototype, the extension of an SEDL textual description file is “sedl”. This editor can recognize files with
this extension. When such a file is open in this editor, keywords referenced to underlying Ecore abstract
syntax are highlighted by the editor. It also denotes errors in an opened file when somewhere in the
description does not conform to the specified concrete syntax. These functionalities are enabled by the
underlying Syntax Analysis Component. Figure 6.3 illustrates the prototypical textural editor. The
specified concrete syntax in the prototype focuses on describing two-dimensional spatial simulations at
the geo scale. The keyword “Spatial Individuality” in the concrete syntax corresponds to the term
SpatialIndividuality in the abstract syntax, and the “type” corresponds to its dimNum with the following
supported values: -1(“Global”), 1 (“Point”), 2(“Regional”).

EMFText also generates various facilities for syntax analysis. On one side, they are connected to the
SEDL editor and enable the above-mentioned supportive functions of the editor. On the other side, it

18 https://github.com/DevBoost/EMFText

Figure 6.2: SpatialFunction(Left) and Created EClass (Right) in the UML Editor.

87

parses valid SEDL descriptions written in the specified concrete syntax to abstract syntax trees as
instances of the SEDL Ecore model for further processing.

In addition, EMFText generates a frame for the SEDL Description Processor. The implementation of
the processor functions can be held by the frame as will be introduced in the following sections. The
frame is integrated with the SEDL Description Editor so that the processor can be invoked through the
editor to execute an SEDL description file through some user actions such as right-click on the description
file and choose to run the file.
6.3 OCLInEcore

By default, syntax analysis facilities generated by EMFText can recognize errors in an SEDL
description that breaks structural constraints encoded in the SEDL Ecore model, such as conflicts with
the cardinality. Additional structural constraints of SEDL specified in Chapter 5 are beyond the
expressiveness of UML, as well as the Ecore metamodel. These constraints are formalized in OCL in the
SEDL specification.

The prototype uses the Eclipse implementation of OCL19 to integrate the specified OCL constraints
into the SEDL Ecore model. This implementation provides the OCLInEcore20 editor to open Ecore
models in a textual form and to write constraints in OCL syntax into the Ecore model. After the OCL
constraints are added to the SEDL Ecore model, the EMF code generation facilities generates a validator
class when creating the model code for this Ecore model. This class is placed in the “util” code package
of this model. For each OCL constraint in this model, a validate method is generated within the validator
class. It checks if some context in an SEDL model instance breaks and returns true or false. Figure 6.4
shows an example of the encoded OCL constraints. This example regulates that when a piece of change
description (represented by the abstract term “Variation”) can either have parameters or options. And,
when it has alternative mode options for a specific execution, it must have at least two.

19 http://www.eclipse.org/modeling/mdt/ocl
20 https://wiki.eclipse.org/OCL/OCLinEcore

Figure 6.3: Textual Editor for SEDL Description.

Figure 6.4: OCL Constraints for Change Description.

88

The generated Java method to validate the constraint about the number of options is shown in Figure
6.5. It utilizes a basic validation method on Ecore model instances. Then, the default editor generated by
EMFText is improved with the assists of the validator class. The functional code of the editor mainly
locates in the “ui” package within the EMFText-created resource code of the SEDL tooling. The
presented editor invokes the validate methods from its validation function and its hover text provider.
The validation results guide the editor to display different customized hover text to SEDL users, warning
them when some of their editing contexts break a specific OCL constraint.

Figure 6.6 illustrates the warning message from the SEDL editor when the context does not satisfy the
constraint shown in Figure 6.5.

Another worth-to-mention implementation strategy for dealing with these constraints is to introduce
additional support classes into the Ecore model to explicitly regulates alternative forms of a term, e.g., a
class for change descriptions with no options but parameters, and a class for the ones with options. These
support classes only benefit at the syntactic level but do not brings new concepts to SEDL conceptual
model and are not specified as one part of SEDL specification. Through this strategy, the constraints can
be expressed by the Ecore model itself. However, it complicates the implementation of model
transformations from SEDL instances since the abstract syntax trees of these instances become more
complicated due to the inclusion of additional terms.
6.4 ATL

The transformations Description2Config and Description2Structure are implemented as ATL

Figure 6.6: Warning Message for OCL Constraint Violation.

Figure 6.5: Validation Method Example.

89

programs using the ATL component of the MMT project21 based on Eclipse. Transformations from SEDL
generate more detailed model elements in the outputs that cannot be formalized by simple matched rules.
These elements are created with assists of imperative statements in the “do” section of ATL rules.

The presented prototype does not focus on graphic interface mapping. As explained in Subsection
5.3.2, Description2Config in the prototype is simplified. The stereotyped elements are replaced with
instances of corresponding base metaclasses to create the data structure of configuration objects. In the
EMF-based implementation, the Ecore metamodel is used as the output metamodel. An EPackage is
created as a ConfigSchema. Each stereotyped class in the output is replaced with a normal EClass, while
its ConfigItems are created as its EAttributes. Each SubComponent association is generated as a
containment EReference of the container configuration EClass, typed by its sub configuration EClass.
For ConfigOption associations, an abstract EClass is created as an AlternativeConfig. Then, each of its
ConfigOption is created as a non-abstract subclass of this EClass. An instance of the configure schema
will have to pick one of these subclasses to set values.

The Description2Structure implementation transforms an SEDL instance to a UML model that applies
the implemented Simulated Environment Structure Profile as introduced in Section 6.1. Outputs of this
transformation are set to conform to the UML metamodel implementation within EMF. The profile
implementation is marked as a metamodel of the input in the ATL program so that its stereotypes can be
retrieved and applied to the output elements using the profile-related library provided by EMF. Figure
6.7 shows an ATL rule example that creates a SpatialFunction class to hold the distribution function for
a spatially heterogeneous property. It is a lazy rule which is only executed when being called by other
rules. This rule also calls another rule “Distribution2Operation”.

As Section 5.3 specifies, some transformation may lead to a TesserlatedFeatureType in the output,
which needs to be refined by developers since it is a choice to make at the design level. While the
“TesserlatedFeatureType” is conceptually abstract by specification, it cannot be instantiated if being
implemented as an abstract class. Thus, in the implemented UML Profile introduced Section 6.1, it is
made concrete and marked with a denotation to remind developers that its instances in transformation
output needs to be refined.

After the transformation rules have been written in the ATL program, an Eclipse plugin can be created
from it. Then ATL program can be invoked through the SEDL processor as introduced in Section 6.2. By
starting the execution of an SEDL textual file, the processor feeds a parsed SEDL instance from this
textual file to the transformation to create PIM models.
6.5 Acceleo

The transformation Description2Computation is implemented by the template-based code generation
tool Acceleo22. Acceleo is an EMF-based implementation of Model to Text Language (MTL)[136]

21 https://www.eclipse.org/mmt
22 https://www.eclipse.org/acceleo/

Figure 6.7: ATL Rule Example.

90

standard from OMG. It can transform EMF-based models to text according to generation templates,
which usually is textual code in some computer language in practice.

This implementation also includes the functionalities of a Platform-Specific Translator since it
generates platform-specific code. The implemented Description2Computation takes SEDL descriptions
as input and produces as Java files as outputs. PIM-layer outputs are made implicit. Acceleo is also used
for implementing the Platform-Specific Translator from refined PIM-layer outputs of the
Description2Structute to Java files.

Outputs of these Acceleo transformations include architectural code and datatypes that are specific to
the chosen target platforms. For this proof-of-concept implementation, the Java-based multi-agent
simulation library Mason23 and its extension for geospatial data GeoMason24 are chosen as parts of the
target platform.

Take an instance of FieldOfIndividualities whose PIM-layer data structure should be mapped to a
PointSet class at the PIM layer as an example. Its unit type is generated as a JavaBean with all thematic
properties as private attributes with setter and getter methods. The geometry of the unit type is generated
as a MasonGeometry provided by Mason.

The ComputeFoI class transformed from this FieldOfIndividualities, as documented in Appendix A,
is adapted to the chosen target platform. The computation class of its unit is mapped as a class that
implements the Steppable of Mason. This class holds an object of the unit datatype and private Java
methods that are generated computation units about individuality changes. The methods are marked as
“//TODO should be implemented”. The free-text description of each change in the input SEDL is
transformed as Java comments and is placed above the body of the corresponding computation method
to guide the implementation. The computeM() operation in Appendix A.3 is generated as the step()
method of the Steppable class. It contains statements to update the unit object held by an instance of this
class at a simulation step in the sequence derived based on Appendix A.4~5.

This demonstrative implementation assumes the target platform decides that different simulated
feature types are managed by a Java class that extends the SimState of Mason. This SimState class
corresponds to the EnvironmentSimulation class at the PIM layer as specified in Subsubsection 5.2.3.1
and Subsection 5.3.6. The current implementation does not generate a separate data structure class for the
whole PointSet, which could be better for a more loosely coupled implementation in practice. A
GeomVectorField object from GeoMason is generated and is placed in this SimState class to hold all unit
geometries. The GeomVectorField from Mason provides neighborhood search utilities as the
specification of a PointSet type requires.

The SimState class also holds Java methods generated from CharacteristicVariation-s of the input
FieldOfIndividualities and its units, as regulated by Appendix A in the ComputeFoI class. A “for” loop
skeleton is generated within the start() method of the SimState and marked as “//TODO should be
completed”. This loop is used to initialize a set of instances of the unit’s Steppable class and add their
geometries to the GeomVectorField object. Derivable actions that are relevant to the initialization of units
are generated as statements in this loop. Iterations over units in this implementation are generated by
adding the unit Steppable instances as repeating events to an instance of Schedule provided by Mason.

Acceleo code generations are template-based. Each code template is enclosed within a pair of the
“[template][/template]” markup. Figure 6.8 shows a snippet from the SEDL2Computation
implementation for illustration. This piece of template creates Java code from Variation-s of a
FieldOfIndividualities with some AlternativeMode-s. It generates an attribute for each Variation in the
computation class, which is used as a flag to denote the current mode of the computed change
corresponding to that Variation during execution. It also generates attributes to hold configurable
conditions during execution from ConfigurableParameter-s of this FieldOfIndividualities, since this
implementation has decided that these conditions are allowed to be changed during execution. The

23 https://cs.gmu.edu/~eclab/projects/mason/
24 https://cs.gmu.edu/~eclab/projects/mason/extensions/geomason/

91

createAtt() in the snippet is an implemented Acceleo Query. The “p.createAtt()” returns a string that is a
Java private attribute generated from the ConfigurableParameter p.

6.6 Other Involved Tools
The imperative functions which deal with graph and other operations on the input SEDL for

SEDL2Computation are implemented by Java. They are called by the generation templates as services
that are wrapped in an Acceleo query. For the simplicity of the implementation structure, this
demonstration builds strings for computeSI() and computeM() in Appendix A.5 within the Java service
and passes them to the Acceleo templates after that. Yet, it is beyond the scope of this thesis to evaluate
if this is the optimal way of implementation on the target platform. For a full implementation, the template
of architectural code should be determined by the technician who is familiar with the chosen platform to
ensure that the created code and datatypes provide expected structures and functions.

It is also recommended to optimize the programming interface to access the to-be-implemented
computation units. Thus, developers can focus on implementing the computational logic within the units.
This issue depends on the implementation technologies and is beyond the scientific concern of this thesis.

The configuration models from implemented Description2Config are simple, static data models in
Ecore, which do not include behavioral elements. The platform-specific translator of the demonstrative
prototype uses the EMF code generation facility to create model code for these models as JavaBeans,
which are needed by the other generated model code as described in Section 6.5. Different from the OMG
standard-based code generation implemented by this prototype, the EMF default code generation is based
on JET (Java Emitter Templates)25.

25 https://www.eclipse.org/modeling/m2t/?project=jet

Figure 6.8: Acceleo Code Generation Example.

92

7 Use Cases
In Chapter 4 and 5, a domain-specific, language-driven framework to assist the development of

environment components in simulation applications have been specified. This chapter presents use cases
to demonstrate the usage of this framework based on the prototype implementation of the framework
introduced in Chapter 6.
7.1 Focus of the Use Cases

The use cases aim at demonstrating the following functionalities of the proposed framework in the
development process to build a component that provides the simulated environment for a simulation
application:

 Document and communicate the simulated environments required by the high-level functional
simulation scenarios using the analysis-level language SEDL. Generate design models of simulated environment components described by PIM-layer
metamodels from an SEDL description via the implemented CIM-PIM transformations. Generate PSM-layer models as code skeletons of the simulated environment component from
PIM design models via the implemented platform-specific mapping.

To remain the focus, the simulated environment in each case is restricted to a small number of
phenomena. Requirements and computations of the environmental phenomena are simplified to reach
presentable cases within the length of the thesis. The aim is to cover different aspects that can be
expressed by SEDL. Thus, the included phenomenon types, relationships and computational models may
not be a complete and optimized practical solution. Nevertheless, since SEDL model is developed based
on object-orientated notations and the generation leads to self-contained subcomponents for different
phenomenon types, more types can be added in the same way. Besides, the PSM-layer code snippets in
this chapter are illustrated by the Eclipse IDE. Providing an optimized user interface specifically for
programming with these PSM-layer models is useful in practice but beyond the scope of this thesis.

The covered aspects in the simulated environment described by SEDL and produced artifacts by the
framework for the use case are summarized at the end of each case.
7.2 Use Case 1: Sea Environment for the Path Assessment

The first use case is motivated by accidents that containers fell off from a cargo ship due to heavy
weather. To better understanding these accidents and to avoid them in the future, researchers build a
model of the cargo ship to observe and to analyze its behaviors through computer simulations. In the use
case, this model is used to assess a newly-planned path of the ship between two harbors, which is
theoretically more cost-effective than the current routine path. It passes an area which the current path
does not intersect with, where no historical information is available and may be potentially risky for the
cargo ship. Thus, before executing this plan in the real world, voyages using this path is simulated by
computers with the ship model.

The functional scenario of this use case is that a cargo ship executes a planned path passing the area
of interest under various weather conditions. The maneuvering and seakeeping behaviors of the ships are
simulated with the data representing its situated environment fed to the ship model. Ship states during
the simulated voyages about its stability are computed to analyses the probability of the ship to encounter
an accident of container fall. The simulated environment component developed in this use case should
simulate the necessary environmental data with user-desired conditions for this simulation. This includes
the information informed by Vessel Traffic Service (VTS) or its own sensors (e.g., the current wind level),
and influential forces from the surroundings (e.g., the force from the wave).

The extent of the simulated environment is restricted by the area of interest. The environmental data
is provided at the geo scale that spatial locations are abstracted in two dimensions. The requirements26

26 simplified for demonstration

93

about phenomena in the simulated environment from the ship modelers are summarized in Table 7.1.
Time-invariant information during the simulation should be taken from the survey data and included as
the knowledge of the ship model. e.g., the bathymetry data. They are not provided by the simulated
environment component.

Wind 1. The ship model should be fed with the speed and direction of the wind in the
simulated area at each step.

2. The wind direction should be modifiable by users among executions. It roughly
stays the same with random turbulence over time.

3. The wind speed should change over time with one of the following patterns chosen
by users: random turbulence with a modifiable mean value and a modifiable variance; linear change with a modifiable initial value and a changing rate.

Wave

1. The height of waves should be fed to a visualization engine to display the sea
surface. The height values should be different from location to location.

2. The wave should be computed considering wind influence.

Background
Traffic

1. A set of ships should be included in the area of interest to add some marine traffic
influence. The number of ships should be modifiable by the user to observe the cargo
ship’s behaviors with various traffic density.

2. The cargo ship should be informed by the locations and moving direction of the
ships at each step. The geometry of these ships can be neglected.

3. The background vessels move randomly. Each of them has a constant speed, which
depends on the type of the ship.

4. The moving direction of a ship should turn a random angle within a range relative
to the direction of the last step. The angle should be drawn from a normal distribution
with modifiable mean and variance.

Table 7.1: Initial Requirements of Environmental Phenomena in Use Case 1.
7.2.1 SEDL Description

At the system analysis phase, the simulated environment in the functional scenario is documented in
an SEDL description using the textual editor of the prototypical implementation introduced in Chapter 6.
The wind and wave are both documented as a SpatialIndividuality, while the BackgroundTraffic is
documented as a FieldOfIndividualities whose members are described by “Ship”. Each of their thematic
properties whose information is required by the system of interest component should be explicitly added
as a ThematicProperty, so that the transformations can be informed to generate the necessary component
structure for these properties. The screenshot of the full description can be found in Appendix B.1.

The current SEDL does not yet provide terms to explicitly classify changes involving derivatives,
which is, the relationship between a characteristic C and a Variation: A → B. In computation, such a
relationship constrains the computation order between C and B, since the value of C will be used as
parameters of this Variation to compute B. Due to the expressiveness limitation, the C → (A → B) is
documented in an instance of a Variation subtype that can classify the change pattern C → B.

In this use case, the moving direction of a vessel in the background traffic is required by the system
of interest component and thus is described as a ThematicProperty. It changes the way of ship movement
and thus has to be updated before the vessel location. A LocationThemeDependency “ChangingDirection”
of the field member “Ship” is added to inform the automatic transformation about this constraint. This
description item is added by component developers and marked with “Derived by developers”. The effort
of this item in later development phases is shown in the next subsection.

94

7.2.2 Transformed Artifacts
When the SEDL description satisfies the involved roles in the system analysis phase, it is fed to the

implemented transformations to generate program skeletons of the simulated environment component for
this use case. First, the SEDL2Configuration ATL transformation creates a configuration model of the
component in Ecore. It is shown in Figure 7.1, which is open in the graphic view of EcoreTools27 for
illustration.

The PIM-layer output from SEDL2Structure is shown in Figure 7.2. It is a UML model encoded in
XMI and is opened in the UML2 Plugin used in Chapter 6.

The above two ATL transformations are chained with code generation. The configuration model code
files generated by EMF are placed in the “seaCon” package and the subpackages of this package as shown
in the following figures28. The configuration for one execution can be parsed to instances of these classes
and used by computations.

27 https://www.eclipse.org/ecoretools/
28 Classes in seaCon are not shown in the figure due to the limitation of space. They are the same as can be
expected from the EMF default code generation using the input Ecore model.

Figure 7.1: PIM-Layer Configuration Model in Use Case 1.

Figure 7.2: PIM-Layer Data Model in Use Case 1.

95

JavaBeans are generated from the data structure model in Figure 7.2 by the Acceleo transformation
implemented by the framework prototype. They are placed in the “seaData” package as shown in Figure
7.3. As Chapter 6 introduced, the prototype maps the PointSetFeature to a GeomVectorField managed
by a Mason SimState class (i.e., the ComputeSea class in Figure 7.5). Thus, no Java class
“BackgroundTrafficData” is created in the package.

For illustration, the right side of Figure 7.3 shows a class diagram of the “WaveData” Java class
generated by the code visualization tool ObjectAid29. Instances of the class hold the state values of the
wave during simulations and provide access methods to them. The characteristic “height” is spatially
heterogeneous, whose states are represented by the “WaveHeight_Dist” class. Its value at a point location
is supposed to be accessed via the “eval(Point)” method of this class, which needs to be implemented. Its
pattern should be implemented in the private method “blowByWind()”. This method is similar to other

29 https://www.objectaid.com

Figure 7.3: PSM-Layer Java Classes of Data Model in Use Case 1.

Figure 7.4: PSM-Layer Java Classes of Compute Model in Use Case 1.

96

private methods derived from Variation-s in the input description, as illustrated in the following
paragraphs.

The implemented SEDL2Computation transformation directly creates Java code. They are the PSM-
layer component skeleton. Outputs of this transformation are placed in the “seaCompute” package, as
shown in the up-left part of Figure 7.4. In addition to the computation classes for all SpatialIndividuality-
s, the “ComputeSea” (whose name is got from the input SimulatedEnvironment) class is generated to
manage all simulated features and simulation routines. As the GeomVectorField generated from the
BackgroundTraffic is held by the “ComputeSea” class, the computation code about the whole
BackgroundTraffic (e.g., the iteration over all unit ships in it) are also placed in this class. This is an
implementation decision made at the PSM layer.

The other parts of Figure 7.4 show the visualized class diagram of the generated “ComputeShip” class
and the “ShipData” class used by it. The “ComputeShip” is a Mason Steppable that is used to implement
Mason agent behaviors. It includes Mason-specific structures and utilities such as the “GeometryFactory
fact” used to create the geometry of the ship, etc. This part of the PSM-layer outputs could vary in
different technical platforms. The transformation also generates objects to hold states of the computed
ship, i.e., “ship” and “ship_now”, as well as attributes to hold indexes of the ship, i.e., “speed” and
“initialLocation”. All the objects and attributes are made private with access methods following the
JavaBeans specification. The access methods are left out in the figure due to the limitation of space.

The following Java methods are generated in the “ComputeShip” class: the constructor
“ComputerShip(ComputeSea, float, Coordinate)”; the “step(SimState)” method of Steppable to update
the states of the “ship” object, which corresponds to the “computeShip()” at the PIM layer in Appendix
A.5; private methods whose body should implement a computation unit, or implement the combined
effort of relevant units to compute an attribute of the ship data object.

The constructor is shown in Figure 7.5. A “TODO” mark is generated to remind developers to
complete the application-specific initialization. In SEDL, the meaning of an index in a
CharacteristicVariation is captured by the free text. It may not be directly assigned as some initial state
of a simulated feature. Thus, the automatic transformation does not generate code for such assignments.

Different from the other two types of phenomena in the simulated environment, the background ships
are the members of the background traffic. As the transformation rules specified, iterations over these

Figure 7.5: Constructor of the “ComputeShip” Java Class.

Figure 7.6: Code for the Initialization of Ships in the Background Traffic.

97

ships for initialization and update are generated in component models and code. Such code snippets are
placed in the “ComputeSea” class. Figure 7.6 illustrates the generated code snippet which initializes a
set of ships, adds them to the GeomVectorField of background traffic (i.e., the “ships” object in the code),
as well as adds them to the simulation schedule which is Mason-specific. The indexes of these ships are
created using the methods generated from corresponding CharacteristicVariation-s of these indexes, i.e.,
the“randomSpeed()” and “randomInitialLocation(float, float)”.

The three generated private methods of computation units are application-specific and need to be
implemented. Some generated attributes are supposed to be used in the methods and remain unused in
the outputs, which leads to the warning sign on the computation classes in Figure 7.4. Figure 7.7 shows
the code skeletons of these methods. They are marked with the “TODO” mark. The free-text description
of their corresponding Variation-s in the transformation input is generated as Java block comments to
guide the implementation.

The “computeLocation(float, float)” shown in Figure 7.8 needs to implement the function that
combines the effects of all relevant computation units to compute a new state of the ship location. It is
generated with the “TODO” comment and a default implementation. The default implementation simply
executes the unit methods one by one, which results in an additive effect.

Finally, Figure 7.9 shows the “step (SimState)” method in the “ComputeShip” class. The computation
sequence of this use case is relatively simple since only the “movingDirection” attribute and the

Figure 7.7: Methods for Computation Units of a Ship in the Background Traffic.

Figure 7.8: Method for Compute the Location of a Ship in the Background Traffic.

98

geometry30 of the ship need to be updated. The update of the timestamp is managed by the “ComputeSea”
class. As Appendix A.4~A.5 specify, it can be derived from the LocationThemeDependency
“ChangingDirection” in the input SEDL description that the “movingDirection” attribute of the “ship”
object should be updated at first. The prototype does not generate the “computeN()” method when only
one computation unit is needed to update the property N but directly uses this unit as the update method.
Thus, the “correlatedWalks(float31)” is invoked in the code snippet.

7.2.3 Summary
This use case involves following kinds of phenomena in simulated environments which can be

described in an SEDL description: the phenomenon that has a global effect (i.e., the wind) in the
simulation area, the spatially heterogeneous phenomenon within its extent (i.e., the wave), and a set of
spatial entities of the same kind with no significant members (i.e., the background traffic).

The system analysis phase is a communication process in which component developers also
participate. They can add description items by identifying implicit requirements or information hidden in
the free-text descriptions to reduce manual work in later phases, while automatic transformations derive
models from the documented description items. It is recommended to mark these items with some
denotations to avoid confusion. The use cases mark such items with “Derived by developers” in its free-

30 The coordinates of the geometry naturally hold its spatial location.
31 The time in this prototype is represented by simple float numbers, which shall be replaced by more a
sophisticated representation of time in practice.

Figure 7.9: Code for Computing New States of a Ship in the Background Traffic.

Figure 7.10: Transformations of Use Case 1.

99

text description, such as the “ChangingDirection”. More sophisticated supports shall be provided in
practice, such as including keywords for the denotation in the SEDL implementation.

Figure 7.10 summarizes the transformation chain in this use case, as well as the generated artifacts
during this process. The green round shapes represent the automatic transformation steps. Manual work
is not shown in the figure except the input SEDL that needs to be written by involved roles. A step of
the model/code generation costs the time at an order of magnitude between 1~1×101 seconds, which can
be neglected compared to the total development time.

As explained in Subsection 7.2.1, the “ChangingDirection” in the SEDL description describes a
relationship between a characteristic and a Variation. It is added to the description to deal with the current
expressiveness limitation of SEDL. Even though this item only influences the update sequence derivation
for the ship attributes, it brings side effects in the transformation output. As Figure 7.7 and Figure 7.8
show, a computation unit is generated from it and is used for updating the ship location. This unit does
not contribute any effect to directly alter the ship location. The implementation should remain as the
default generation, which simply returns the current value of the ship location.

In practice, trade-offs between explicitly describing such relationships or manually adjusting the
update sequence need to be made. The choice depends on the number of attributes of a phenomenon type
to be computed in the simulation. The more attributes are involved, the more likely that the first one is
the more convenient strategy.
7.3 Use Case 2: Storm Avoidance Strategy Evaluation

In this use case, the goal of the simulation is to evaluate the robustness of a set of storm avoidance
strategies of ships during voyages. A ship model is developed with the embedded logic of the strategies
under evaluation. Voyages are simulated with the ship model set in the simulated environment with severe
weather phenomena. The ship model uses the embedded logic to adjust its behaviors in reaction to the
weather condition.

The functional scenario starts when the ship departs from a port. During the voyage, some storm forms
on the sea. The ship is informed with the current status of the storm and adjusts its behaviors to avoid
the influential area of the storm. The trajectories of the ship and other relevant data are simulated by
multiple executions. These data are then analyzed to provide information to domain experts, such as the
average length of detours that the ship takes to return to its planned path or reach a nearby safe port, the
probability that this ship fails to avoid the extreme weather using the current strategy, the potential
consequence of failure and the factor that may cause the failures, etc. Domain experts can then use the
information to evaluate the applicability of these strategies and improve them.

This use case is simplified to focus on the extreme weather phenomenon, i.e., the storm. The simulated
environment component needs to simulate the storm data required by the ship model during the
simulation execution. When developing this component using the framework prototype introduced in
Chapter 6, a minimum possible number of Java files are generated at the PSM layer. The small size
output is easy to present and reflects the structure of the generated model code from the implemented
transformation in the framework prototype. Subsection 7.3.2 presents these files for this use case and uses
them to explain the PSM-layer generation structure by the prototype in more detail. The initial
requirements about the storm generated from the simulated environment component are briefly
summarized in Table 7.2.

Storm 1. For each execution, ship modelers should be able to configure an initial location of
a storm with an unnavigable area to the ship.

2. The evolving pattern of the storm should match the normal behaviors of the storms
in the Atlantic Ocean in a season which can be chosen by users for one execution.

3. The maximum wind speed of the storm, the moving speed, and the direction of its
center should be computed and provided to the ship model at each simulation step.

100

4. The unnavigable area to the ship caused by the storm is an area with the wind speed
higher than a threshold. This area should be computed by the component under
development at each simulation step based on its at-moment status. Users should be
able to set a threshold for an execution.

Table 7.2: Initial Requirements of Environmental Phenomena in Use Case 2.
7.3.1 SEDL Description

The simulated environment of this use case is documented in an SEDL file using the textual editor of
the framework prototype. The full description is shown in Appendix B.2. During the voyage, the ship
should avoid entering the area under some unnavigable conditions to the ship. In this simplified case, the
risky condition caused by a storm is defined as the wind speed higher than a threshold wmax m/s. The ship
modeler decides that the simulated environment component should in charge of informing the current
area with the wind speed higher than wmax to the ship at each simulation step. The storm is conceptually
abstracted as an individual object with spatial extent representing its unnavigable area to the ship. It is
documented as a regional SpatialIndividuality named “Storm”. As summarized in Table 7.2, the ship
model still needs to know the maximum wind speed, the moving direction and the moving speed of the
storm’s center. These characteristics are explicitly listed as the ThematicProperty-s of the “Storm”.

Ship modelers expect that characteristics of a storm change over a simulation execution, which should
follow normal behaviors of storms that appear in the Atlantic sea in a season chosen by users for this
execution. These requirements are documented as instances ThemeDynamics belonging to these
ThematicProperty-s. The alterable condition “season” is recorded as a ConfigurableParameter of the
“Storm”. During the analysis phase, developers of the simulated environment component shall explain to
ship modelers the overall idea of how the required changes could be computed and make agreements on
these ideas with them. Based on the agreements, some preliminary information about the computation
idea can be added to the SEDL description, such as the refined name and free-text description of the
ThemeDynamics instances in this use case. The free-text description pieces are transformed as comments
within computation units in follow-up transformation steps to guide the implementation. More discussion
about the developer-refined information can be found in the summary of this use case in Subsection 7.3.3.

The size and the location of a storm’s unnavigable area should also change during executions as the
evolvement of the storm. The center of the storm should move in a way that matches normal behaviors
of the Atlantic storms. Similar to the Use Case 1, two LocationThemeDependency-s are added to inform
the transformation that the moving speed and direction of the storm are needed for computing its
movement. Developers then derive that this area should be computed based on the current state of the
maximum wind speed, which has been described as a ThematicProperty. Thus, the dependency between
the unnavigable area and this property is documented by the GeometryThemeDependency
“UnavigableArea” marked with “Derived by developers”.
7.3.2 Transformed Artifacts

This subsection presents the transformation outputs of this use case in a similar way as Subsection
7.2.2 does, starting from the SEDL description in Appendix B.2. The support tools used for illustration
are the same as Use Case 1.

The PIM-layer outputs from the input SEDL description generated by the two ATL transformation,
i.e., SEDL2Configuration and SEDL2Structure, are illustrated in Figure 7.11. In the configuration Ecore
model on the left side of the figure, an EEnumeration named “Season” is generated for adding options of
the configuration item “season” that is an EAttribute in the Ecore model. The “season” is generated from
the ConfigurableParameter “Season” which is the Option type. SEDL descriptions do not formally
document options of such a parameter. The transformation generates an EEnumeration with a default
EEnumeration Literal, which should be refined by developers. The data structure model (on the right
side of the figure) in this use case is simple, while only one phenomenon type needs to be computed
according to the input SEDL description.

101

Four EEnumerarion Literal representing four seasons are added to the “Season” by developers. Then,
both outputs are fed to platform-specific code generation. As shown in the left part of Figure 7.12, the
files of the configuration model code are placed in the “stormySeaCon” package. They are generated by
the EMF code generation facilities and are not presented in detail. The Java class “StormData” generated
from the RegionalFeature with the same name in Figure 7.11 is placed in the “stormySeaData” package.
The right side of Figure 7.12 shows the visualized diagram of this class. An instance of this class holds
state values of the relevant storm characteristics during the simulation execution. In this prototype, the
geometry of the PIM-layer RegionalFeature is mapped to a MasonGeometry.

The PIM-PSM Acceleo transformation of data structure models turns each single-valued feature type
specified in Subsubsection 5.2.2.4 into a JavaBean and adds necessary stereotype-specific attributes to it
in the Java form. It also generates a JavaBean for each SpatialFunction and each CollectiveFeatureUnit,
as Use Case 1 has shown. The geometry attributes of these classes are created as attributes that have the
MasonGeometry type of Mason library. Besides, statements in the computation model code skeleton are
generated by the transformation. These statements initialize the wrapped geometry of such a
MasonGeometry instance as a Point or a Polygon based on the applied stereotype of the input PIM class.

Figure 7.11: PIM-Layer Configuration Model and Data Model in Use Case 2.

Figure 7.12: PSM-Layer Java Classes of Configuration and Data Model in Use Case 2.

102

The output code of the SEDL2Computation Acceleo transformation is placed in the
“stormySeaCompute” package as shown in Figure 7.12. In this simplified case, two classes are created
as visualized in Figure 7.13 as explained below.

First, the “ComputeStormySea” class manages the routine that simulates the whole simulated
environment. This class extends the Mason SimState which represents a simulation. Its Constructor
initializes an instance of this class with a configuration object. The configuration object is an instance of
the “StormySea” class in the configuration model. The “start()” method of the “ComputeStormySea”
initializes computation objects for configured phenomena in the configuration object and adds them to
the schedule of this simulation. These computation objects are instances of classes that implement the
Mason Steppable interface, e.g., the “ComputeStorm” class in this use case.

The SEDL2Computation Acceleo transformation generates a Mason SimState class for each
simulation and names it after a SimulatedEnvironment in an input SEDL description. In Use Case 1, this
SimState is the “ComputeSea” class.

Second, the “ComputeStorm” class holds the skeleton of the code that computes a storm during the
simulation. This class implements the Mason Steppable interface. It holds following data objects and
attributes which are generated based on the transformation rules specified in Appendix A.3~A.5: 1)
instances of the “StormData” class in the data structure code to hold states of the storm being computed,
i.e., “storm” and “storm_now”; 2) attributes to hold configured parameters of the storm being computed,
i.e., “initialLocation”, “season” and “windSpeedThreshold”.

This class also holds the following behavioral elements as Java methods, which are transformed based
on the rules in Appendix A.3~A.5: 1) the constructor “ComputeStorm(ComputeStormySea, Storm)”,
which initializes an instance of this class with a configuration object of the “Storm” type; 2) skeletons
of private methods (marked with red squares in Figure 7.13) whose body should implement computation

Figure 7.13: PIM-Layer Java Classes of Computation Model in Use Case 2.

103

units according to Appendix A.3, with the free-text description of the input SEDL pieces transformed
as Java comments within the methods; 3) private methods whose body should implement the combined
effort of necessary units to compute an attribute of the storm, i.e., the computeLocation()”; 2) the
“step(SimState)” method of Mason Steppable, which contains the computation flow to update the state
of the storm at a simulation step, as specified in Appendix A.5.

Third, platform-specific structures and utilities are also generated in this class, which are only
necessary and/or useful in the chosen technical platform of the framework prototype. These structures
and utilities include: 1) the public “get” and “set” methods to access the data objects and attributes held
by this class, which follow the JavaBeans conventions, e.g., the “getIntialLocation()” and
setIntialLocation()32; 2) the “sereialVersionUID” that is used for Java serialization control; 3) the Mason
utilities “fact” and “affineTransformation”, which can be used to handle the creation and the update of
the simulated storm’s geometry.

The SEDL2Computation generates a Mason Steppable class with a similar structure as the
“ComputationStorm” class for each SpatialIndividuality to hold the computation model, as also have been
illustrated in Use Case 1.

When a SpatialIndividuality describes the members of a FieldOfIndividualities, it is transformed into
a CollectiveFeatureUnit in the PIM-layer data structure model. The FieldOfIndividualities is transformed
into a CollectiveFeatureType. Developers should replace the applied stereotype of the
CollectiveFeatureType to a more specific subtype when necessary. Then, the PIM-layer data structure
model is also used as the input of the SEDL2Computation code generation, as shown in Figure 7.14. For
such a CollectiveFeatureType, the transformation generates the following code in the above-explained
SimState class: 1) a GeomVectorField object or a GeomGridField depending on the applied stereotype
of this CollectiveFeatureType, which represents the whole field; 2) a private method for each
CharacteristicVariation of the SpatialIndividuality 3) loop code in the “start()” method to initialize a set
of the Steppable class instances for computing members in the field and add them to the simulation
schedule (Mason-specific). Indexes of these instances are created using the methods of corresponding
CharacteristicVariation. The “BackgroundTraffic” in Use Case 1 provides an illustration.

This implementation let SimState classes manage the relationships and variations among units of
collective features for simplification reason. However, the SimState class is related to a particular
simulation. This implementation decision brings the drawback that the computation model of a
CollectiveFeatureType is completely decoupled from the simulation as the PIM-layer models do. This
hinders the reuse of such computation models in other simulations. This part of PSM-layer output
structure should be optimized in the future so that all computation logic of a CollectiveFeatureType can
be maintained in a self-contained subcomponent.
7.3.3 Summary

This use case involves phenomenon type (i.e., the storm) that is conceptualized in the following way.
The alterable conditions (e.g., its location when the simulation starts) of such a phenomenon for a
simulation execution should be controlled individually. This phenomenon has a regional effect on the
system of interest, which in this specific case is an area that the ship should not enter in. Its influential
area changes during the simulation with the evolvement of its other characteristics which are also of
interest to the ship (e.g., the maximum wind speed).

Similar to Use Case 1, developers also contribute to the SEDL description in this use case, as explained
in Subsection 7.3.1. These refined pieces of description have two primary purposes. First, it is used to
document the overall implementation idea that has been agreed with the component users, i.e., the ship
modelers. Second, it is used to add information that guides further developments. The added information
is preserved in relevant pieces of code skeletons by the transformation to guide the implementation.

32 Other similar access methods are omitted from this figure due to the limitation of space.

104

An SEDL description is used to describe the phenomenon types whose information is required by, but
not handled by the system of interest. In this use case, the SEDL description includes the requirements
about the simulated environment from the view of the ship modeler. As a result, the sea surface and the
circulation of the air over the ocean are not documented as environmental phenomena in this description,
since this use case does not require their information to be sent to the ship model during the simulation.
Instead, the developer-refined description items “AlteredBySeaTemperature” and
“AlteredByAtmosphericCirculation” record the agreed idea to use the sea temperature data and
atmospheric circulation data for computing the states of storms.

It also needs to notice that the terms “system of interest model” and “simulated environment” are
relative. In the view of the storm modeler, the sea temperature and the atmospheric circulation should be
part of the simulated environment for their system of interest model, i.e., the storm model. The storm
simulation shall also have an external environment component when necessary. Requirements of this
component can be expressed in an SEDL from the view of the storm modeler. In this use case, information
about these two phenomena is supposed to be provided by the static data that are manageable by the storm
computation component. Thus, no additional component needs to be developed. In Use Case 1, the
bathymetry is not included in the SEDL description for the same reason, as mentioned in Section 7.2.

The transformation chain and the generated artifacts of this use case are summarized in Figure 7.14.
The working flow and execution time of transformations are similar to Use Case 1.

Figure 7.14: Transformations of Use Case 2.

105

8 Discussions
This chapter provides a summary of this thesis and discusses related issues. Section 8.1 summarizes

the contributions of this thesis and denotes that how the research objectives identified in Chapter 1 are
fulfilled. Section 8.2 discusses the limitation of transformations in this thesis due to the nature of the
model-driven development and strategies to deal with it. Section 8.3 provides visions and preliminary
conceptual design for possible extensions of the anchor language SEDL and its transformations. Section
8.4 further discusses the emerging reuse issues with the evolvement of developed components by the
framework and needed upgrade of the current framework to handle these issues.
8.1 Contributions and Objective Fulfillment

As introduced in Chapter 1, the development of simulated environments in multi-component spatial
simulations encounters difficulties such as miscommunication among various roles, huge development
efforts and possible failures of integration with systems of interest due to not correctly preserved
requirements. To overcome these difficulties, this thesis develops a domain-specific, language-driven
framework. After investigations on existing works to build theoretic foundations and identify missing
points as summarized in Chapter 2 and Chapter 3, the framework architecture is specified in Chapter 4.
This is followed by Chapter 5 that specifies the domain-specific languages that form the backbone of this
framework. The developed framework assists in overcoming the identified difficulties during
developments as summarized below. The framework is demonstrated by use cases in Chapter 7 on a
prototype implementation as described in Chapter 6.

First, domain-specific languages ease communication among involved roles in the development
of simulated environment components.

The analysis-phase language SEDL in Section 5.1 assists in documenting requirements about these
components in a structured form. It provides a communication tool to exchange and discuss produced
context and behaviors of the component under development. An SEDL description categorizes the
expected context of simulated environments into pieces, each of which enclosed in an instance of a
formally defined term. These pieces are organized in a simple hierarchical structure as the language model
specified, which fulfills Objective 1.1 that captures a cognitive-level description structure of simulated
environments. Terms in SEDL are mainly specified based on conceptual forms of spatial phenomena and
types of changes they may exhibit. These terms of change types are systematically derived from a
common definition of the change expression to fulfill Objective 1.2. The language model is derived from
common-sense perceptions and has a small size so that it can be understood by various roles that have
different expertise with small learning effort.

At the software design phase, the domain-specific profiles specified in Section 5.2, especially the two
describing back ends, assist in describing models of environment components concisely. They cover
both structural and behavioral aspects of these components to fulfill Objective 2.1 that captures a generic
metamodel for computer simulation components producing simulated environments. Stereotypes in these
profiles are specified based on well-established datatypes and actions in spatial computations and
simulations. Each stereotype regulates the common structure to model elements applying it, as well as
derivable structure for an element through some associations, e.g., the structure of a Snapshot should be
derived from its linked SimulatedFeatureTypes. These common structures can be made implicit in a
model applying this profile. Thus, such a model has a higher-level of abstraction than a model of the same
context in basic UML. They are more readable and easier to be discussed. Besides, model elements
represent meaningful software units and are loosely coupled, each of which can be treated as a self-
contained task assigned to suitable developers.

Second, the framework enables automated software engineering that reduces development
efforts of simulated environment components through various mechanisms.

This thesis categories possible conceptual context of simulated environments and analyses necessary
artifacts in software in order to produce them. In Chapter 5, These two perspectives are modeled in the
SEDL language model and design-level profiles, respectively, mapped to each other by formally specified

106

transformation rules that can be automated. These rules fulfill Objective 2.2. By realizing the language
tooling based on these models and rules as specified in Subsection 4.2.1, preliminary software models
can be created by the automated transformations to save manual work when the expected simulated
environments are documented in SEDL. These software models can be further transformed to generate
architectural code skeletons to reduce coding work. This specification regulates how the proposed
framework should be built, which fulfills Objective 3.1. An implementation of the proposed framework
is presented in Chapter 6. The guide of the development process with the framework to fulfill Objective
3.2 is presented in Section 4.4 and is demonstrated with use cases in Chapter 7.

Further, stereotypes in the two back-end profiles in Subsection 5.2.2 and Subsection 5.2.3 regulate
stereotype-specific structures and operations. These stereotype-specific artifacts only need to be
implemented once at the platform-specific layer on a chosen platform and be embedded in the framework
implementation. For a component under development, these implementations are invoked by generated
code in addition to the architectural code created by automated transformations to the PSM layer. This
strategy further reduces the coding work. The same advantage applies to the configuration profile, while
each component or item type in this profile can be implemented once at a platform-specific representation
layer as visual interface elements. Besides, since stereotypes in these profiles are determined based on
existing works, they guide developers to utilize existing implementation libraries.

Third, transformations from human-perspective descriptions to software models preserve
functional requirements of environments component under development.

Domain-independent, formally specified transformations often start from the PIM layer. They can
preserve existing model units but do not have mechanisms to help to ensure that the analysis-phase
identified requirements have been modeled. With SEDL being introduced to provide a way to express
structured human-perspective models of simulated environments, transformations specified in Section
5.3 already starts from the CIM layer. For each piece of SEDL description, these transformations create
corresponding model elements associated with free-text descriptions about them. Through this way,
documented requirements in SEDL are preserved in formal design models whose structure can be
preserved (although refined to be platform-specific) through further formally specified transformations,
together with the free-text descriptions that shall guide implementations.

Besides, the specified transformations create configuration schemas aligned to SEDL description with
parameters denoted by user-specified names. This ensures user-understandable configuration interfaces.
They also create behaviors to pass each configuration item derived from some part of an SEDL
description to back-end functions derived from the same part. It helps to make sure that user-configured
values being used at intended places.

Assisted by the automated transformations in the realized framework as explained in Chapter 4 and
illustrated in Chapter 6, prototypes of environment components can be fast created and be presented to
users. Based on this, the recommended development process in Section 4.3 that follows the rapid-
prototyping paradigm[126], [127] can be executed. Component users are kept informed and give their
feedback during the development while the prototypes are recursively improved, so that functions
deviating from their requirements can be identified and implemented.
8.2 Limitation of Model Transformations in Development

A model-driven development process for a computer system consists of a chain of transformation
steps, each turning more abstract models of the system to more concrete models. More details and
restrictions are included in the output models at each step until a complete system is developed. This
nature limits the transformation automation in development, since the information that determines some
part of a concrete model does not exist (both explicitly and implicitly) in the corresponding abstract
models. This part is not derivable from the more abstract models but needs to be brought in by developers.

Model transformations in this thesis are not exceptions. Transformations specified in Chapter 5 only
recognizes the formal part of an SEDL description. This part is mapped to elements that form a
component skeleton, or further to architectural code in chosen computation paradigms and/or

107

implementation platforms. Application-specific behaviors33 enclosed in these elements are supposed to
be formalized manually in later phases, e.g., as code in function bodies in the final implementation.

To overcome this limitation, this thesis recommends a manual refinement step in the CIM-PIM
transformation chain, since the PIM-layer profiles proposed by this thesis contain stereotypes implying
information that cannot be formally captured by an SEDL description. For instance, while a
FieldOfIndividualities may be mapped to a CollectiveFeatureType, the geometry of its units may not be
totally captured by the formal part of this FieldOfIndividualities. The general CollectiveFeatureType may
be replaced with a subtype of it by developers at the PIM layer, which could then enable transformation
automation in further steps. Besides, Subsections 5.2.2~5.2.3 also introduce various PIM-layer
stereotypes that extend Actions/Operations. They provide more concise constructs to support developers
modeling application-specific behaviors that are not formally captured by SEDL and transforming them
into more specific layers.

Adding component structures that are not derivable from the more abstract models via automated
transformation requires embedding such knowledge into the automated function. Two strategies are
recommended for this mission as introduced below.

Over-generation: in this way, the transformation generates both derivable artifacts and some artifacts
that are only possible to be used. The recommended CIM-PIM transformation details at the specification
level in Appendix A uses this strategy. For instance, Listing A.5 suggests adding an additional object of
a phenomenon’s datatype to the class that holds the computation model of the phenomenon type. At the
beginning of an execution step, this object is assigned with the current values of the object that holds the
state values of the being-computed phenomenon. It is used for “update” style computations which need
to calculate the difference between the current value and the value from the previous step of some
phenomenon’s property, for updating another property. However, it may be redundant for some other
computation methods and may not be used in the final implementation.

Pre-determination: a type of elements in a more abstract model may be modeled in various ways in
a more concrete model. Following this strategy, the automated transformation assumes that this type is
always transformed into elements modeled in one of these ways. The choice is determined when the
automated transformation is implemented.

For instance, ExecutionRoutine in SEDL expresses that some data are communicated between
simulated environment components and system of interest components. The communication process is
not application-specific but still can be modeled in multiple paradigms, e.g., through messages between
two components, or a component dealing with global communication among other components. An
automated transformation may be developed to generate model artifacts following one of the paradigms,
often depending on the platform for final implementation. Also, instead of manually choosing a subtype
of TesserlatedFeatureType at the design phase, when the implementation platform uses a fixed type of
tessellation, an automated transformation can generate elements applying the stereotype from Subsection
5.2.2 corresponding to that tessellation type.

Since the choice of mapping options often depends on the applied paradigms of the implementation
platform, this thesis suggests that automated transformations using the pre-determination strategy to
embed the mapping from PIMs to the platform-specific application model/code skeletons.

For transformation realizations, the trade-off between the manual work needed and the freedom given
to application developers has to be made. The model structure generated by an automated transformation
may not be optimized for a particular component, which needs developer interference for optimization.
Besides, SEDL does not contain vocabularies that can formalize application-specific behaviors, e.g., the
mode of a movement is usually denoted by the name and the free-text comment of an instance of
Movement but not an interpretable formal representation. Thus, it is not recommended to directly
interpreting a description expressed by the core SEDL constructs, since the possible result is limited due
to the restricted expressiveness.

33 Some of them may be derived from the free-text part of an element in SEDL.

108

Another reason that causes incomplete application model comes from the not-identified requirements
that are not documented in an input SEDL description. This issue does not influence transformation
execution itself. It cannot be resolved at the technical level but should be resolved via communications
among various roles.
8.3 Visions of SEDL Extension

When this thesis provides a core set of terms and a syntactic structure of the analysis-level language
SEDL, several useful extensions shall be made for this language. This section discusses potential useful
terms that can be formalized in SEDL in future work, as well as a short proposal on how to formalize
them and consequent PIM-layer mapping.
8.3.1 Environmental Phenomenon as Network

A straightforward extension that can be made is to add terms for describing a set of individualities that
forms a visually recognizable network, such as networks of roads or waterways. The geometry of an
individuality in such a network is often abstracted as a polygon or a polyline.

In current SEDL, individuality groups can be described by a FieldOfIndividualities. Their structure
at the design phase may be represented by a class applying a subtype of CollectiveFeatureType. As
Subsubsection 5.2.2.2 specifies, relation networks among individualities can be derived from geometries
of existing CollectiveFeatureType stereotypes and be used in the computation. The key difference
between the network features and instances of these existing types is that a member individuality in a
CollectiveFeatureType is treated as a vertex in its implied network. When not specified otherwise at the
application level, edges and their weights in such a network are derived based on either adjacency and/or
geometric distances among individualities. These edges often do not have geometries. In contrast, an
individuality in a network feature is conceptually perceived as an edge. It should also be digitalized in
this way when being modeled in computer applications.

Networks are common phenomenon types in some domains, such as traffic simulations. An example
is to simulate voyage behaviors of ships along dynamic waterways in a small area, in which the ship
model is allowed to move beyond the area of the waterways as the trigger of some adjustment behaviors
in simulations. State values of edges (i.e., waterways) need to be updated rather than the vertices (i.e.,
intersections of waterways). Besides, the geometry of waterways cannot be ignored to reduce the
simulated environment representation to a non-spatial graph.

The current SEDL does not have terms to denote that an individuality in a described group is perceived
as a network edge. Subtypes or attributes of FieldOfIndividualities shall be included to enable this
distinction so that more specific transformations can be performed from SEDL. As discussed above,
CollectiveFeatureType stereotypes also have not covered the network features. With SEDL being
extended, subtypes of CollectiveFeatureType representing network feature types shall be added to the
structural profile. Then, CIM-PIM transformations can be established to map the extended terms to these
subtypes and further to stereotype-specific implementations through the transformation process as the
current framework specifies.

Two stereotypes for representing network feature types are suggested to be included in the future in
the structural profile, i.e., a type whose units are abstracted to lines, and a type whose units are abstracted
as polygons while the shape of network edges matters to the simulation.
8.3.2 Influence Between Phenomenon Types

A term to express requirements about influences between EnvironmentalPhenomenon can be added
to SEDL in the future. In the current version of SEDL, the requirements of each phenomenon type are
described separately within the scope of an EnvironmentalPhenomenon. The computation of each type is
developed as a self-contained subcomponent. However, the phenomenon of some type in a simulated
environment may be influenced by other types. This situation leads to dependency between
subcomponents of the resulting application, in which some type’s instances must be computed at first and

109

are fed to the subcomponent that computes another type’s instances. To identify and to implement these
connections are often the task of environmental modelers. Nevertheless, at the analysis phase,
introducing the suggested term could be useful in the following cases.

First, users of the simulated environment component may express such a requirement: when behaviors
and states of EnvironmentalPhenomenon A are computed, states of some other
EnvironmentalPhenomenon B should be taken into consideration. Data transition between
subcomponents can be derived from such descriptions in design models. However, this influence may
turn out to be negligible in the simulation or not exists, decided by environment modelers via
communication or in later phases. Thus, the transformation for such a piece of description follows over-
generation strategy as introduced in Subsection 8.2.1.

Second, component developers may also identify missing requirements when reviews an SEDL
description. They can add an influential type that is not required by the system of interest. In this case,
automated transformation shall save their later work.

The suggested term in a UML-based specification shall be modeled as an Association class
referencing two involved phenomenon types. Attributes can be added to it to denote the relevant
properties of the influential phenomenon type. An instance of this term is conceptually an influencedBy
link between two EnvironmentalPhenomenon instances as shown in Figure 8.1. The link in the figure
implies that in the component under development, the computation functions of the phenomenon “wave”
requires the state of phenomenon “wind”. Transformation generating computation sequences via these
links shall be specified following a similar logic as in Listing A.5 of Appendix A to generate a property
update sequence for a phenomenon.

8.3.3 Using Spatial Predicates at the System Analysis Phase
Conceptual-level spatial predicates evaluate if a topological relation between two spatial entities

satisfies or not. Sets of spatial predicates have been comprehensively investigated and modeled in
researches such as [137], [138]. They are applied in spatial databases to form powerful query languages
that use topological relations as filters[139]. These predicates may as well benefit the development of
simulated environment components when being introduced to SEDL.

In spatial-aware simulations, locations of phenomena are often changing, and so do their topological
relations. Some of their behaviors exist when they are in a certain relation, while some other behaviors
are triggered when their relation switches to another. A set of terms, each based on a spatial predicate,
can be introduced to extend SEDL. An instance of these suggested terms in an SEDL description holds
the description of expected behaviors of involved EnviromentalPhenomenon-s, when its represented
relationship satisfies (for relations that may last such as “overlap”) or occurs (for instantaneous relations
such as “meet”).[87] This subsection suggests considering the following aspects when formalizing a term
in this set as SEDL terms.

First, this term denotes a topological relation that guides the described behavior, which can be taken
from existing models such as [87].

Second, slots need to be provided to reference involved types, which may be one
EnvironmentalPhenomenon denoting the described behavior should happen when the predicate is true
between two instances of this type, or to two EnvironmentalPhenomenon which means that the behavior
should happen when the predicate is true between two instances, one for each type.

Third, some behavior types can be identified to formally describe expected behaviors when the
predicates are evaluated as true. These behaviors could include: behaviors that change the existence of
phenomena, e.g., appear, disappear, merged and split; behaviors that alter geometries like a conditional

Figure 8.1: An influencedBy Link in an SEDL Description.

110

Deformation; behaviors that alter thematic property like a conditional ValueDynamics. These behaviors
can be recognized by transformations to create necessary subactions within computation units
transformed from SEDL Variation-s, which have to be added by developers in the current framework.

At the logical design or more specific layers, spatial predicates are often performed on geometries,
which can be implemented independently from the application-specific feature types. Thus, with these
terms being added to SEDL, transformations can be established to transform instances of these terms to
conditional actions (or further operation code skeletons) based on the evaluation of corresponding
predicates on the suitable simulated feature instances.
8.4 Reuse of Implemented Environmental Phenomena

This thesis focuses on the development of environment components in simulations, whose models
have not been implemented within the framework proposed by this thesis. With the evolvement of
developments, various phenomenon types would be implemented within a chosen platform. It brings new
issues of managing and reusing implementations. This section discusses the functionalities needed by the
proposed framework to handle these issues.

In transformations specified in Section 5.3, computation models of phenomena types and execution
routines for a specific simulation are generated into different classes. It means that developed
phenomenon types could be re-grouped into another simulated environment component. To-enable user-
oriented reuse of these types, the following upgrade of the current framework could be needed. A
conceptual illustration of the potential upgrade is shown in Figure 8.2.

First, transformations need to create fully de-coupled subcomponents per EnvironmentalPhenomenon
and organize them in a repository. This improvement needs to be made on the current transformation
SEDL2Config, whose outputs have not been fully de-coupled. In the upgraded version, code for routines
and configuration schemas that are specific for simulation applications should be separated from the
model code for an EnvironmentalPhenomenon and its user-configurable parameters.

Figure 8.2: Conceptual Architecture for Implementation Reuse.

111

Then, application vocabulary packages need to be integrated into the syntactic model of SEDL. Each
term in these packages represents an implemented EnvironmentalPhenomenon. It enables analysis-phase
descriptions that some implemented types should be used for a described component. A key problem to
be solved here is to deal with terms that cross modeling-levels since these terms are instances of the
EnvironmentalPhenomenon. It could be solved by extending SEDL with a special subtype of
EnvironmentalPhenomenon (denoted by the “Subtype” placeholder in Figure 8.2), whose values can be
picked from an extensible list.

Further, mechanisms need to be provided to link terms in application packages to corresponding
implementations, e.g., via annotations. Transformations from such a piece of description should not
generate any new computation skeletons or data structures, but only invocation code in an execution
routine and a ConfigSchema transformed from its belonged SimulatedEnvironment. For those
descriptions which only require using implemented phenomenon types, a platform-specific
transformation should generate ready-to-run applications.

Besides, the specification of FieldOfIndividualities shall be extended to enable an instance of
FieldOfIndividualities to have its member pointed to an implemented SpatialIndividuality, as well to
allow adding a CharacteristicVariation that maps to a function for systematically generating parameters
of this SpatialIndividuality. It does not break the structure of implemented SpatialIndividuality-s but
saves users’ work to configure their instances one by one in the new simulation.

Finer-grained reuse, e.g., reuse of implemented actions, is only recommended to be exposed to
component developers. It requires further de-coupling of the action units by transformations and
organizing the implemented actions into a code library. In addition, model editing supports at the design
phase could be provided, allowing developers to pick an implemented action of a specific stereotype at a
legible location in the design model, which can be further transformed to invocation code in the new
application.

112

References
[1] J. Banks et al., Discrete-Event System Simulation. Pearson, 2005.
[2] J. A. Sokolowski and C. M. Banks, Principles of Modeling and Simulation: A Multidisciplinary
Approach. John Wiley & Sons, 2011.
[3] F. Klügl, M. Fehler, and R. Herrler, “About the role of the environment in multi-agent
simulations”, in 1st International Workshop on Environments for Multi-Agent Systems (E4MAS04),
2004, pp. 127–149.
[4] C. Läsche, V. Gollücke, and A. Hahn, “Using an HLA simulation environment for safety concept
verification of offshore operations”, in 27th European Conference on Modelling and Simulation, 2013,
pp. 156–162.
[5] M. Berger, W. Helmers and K. Terheyden, Handbuch Nautik 1: Navigatorische Schiffsführung.
Springer, 2013.
[6] C. Atkinson and T. Kühne, “Model-driven development: a metamodeling foundation”, Software,
vol. 20, no. 5, pp. 36–41, 2003.
[7] R. France and B. Rumpe, “Model-driven development of complex software: a research roadmap”,
in FOSE ’07: 2007 Future of Software Engineering, 2007, pp. 37–54.
[8] Object Management Group, “Model Driven Architecture (MDA) - MDA Guide rev. 2.0”, 2014,
[Online]. Available: http://www.omg.org/mda/.
[9] Object Management Group, “OMG Meta Object Facility (MOF) Core Specification, Version
2.5”, 2016, [Online]. Available: https://www.omg.org/spec/MOF/2.5.
[10] Object Management Group, “OMG Unified Modeling Language, Version 2.5.1”, 2017, [Online].
Available: https://www.omg.org/spec/UML/2.5.1.
[11] Object Management Group, “Unified Modeling Language: Infrastructure, Version 2.0”, 2005,
[Online]. Available: https://www.omg.org/spec/UML/2.0.
[12] Object Management Group, “Object Constraint Language, Version 2.4”, 2014, [Online].
Available: https://www.omg.org/spec/OCL/2.4.
[13] Object Management Group, “XML Metadata Interchange (XMI) Specification, Version 2.5.1”,
2015, [Online]. Available: https://www.omg.org/spec/XMI/2.5.1.
[14] World Wide Web Consortium, “Extensible Markup Language (XML)”, 2016, [Online].
Available: https://www.w3.org/XML/.
[15] Object Management Group, “Meta Object Facility (MOF) 2.0 Query/View/Transformation
Specification, Version 1.3”, 2016, [Online]. Available: https://www.omg.org/spec/QVT/1.3.
[16] C. Atkinson, M. Gutheil, and B. Kennel, “A flexible infrastructure for multilevel language
engineering”, IEEE Transactions on Software Engineering, vol. 35, no. 6, pp. 742–755, 2009.
[17] C. Atkinson, “Supporting and Applying the UML Conceptual Framework”, in The Unified
Modeling Language «UML»’98: Beyond the Notation, 1999, pp. 21–36.
[18] C. Atkinson and T. Kühne, “Profiles in a strict metamodeling framework”, Science of Computer
Programming, vol. 44, no. 1, pp. 5–22, 2002.
[19] O. Eriksson, B. Henderson-Sellers, and P. J. Ågerfalk, “Ontological and linguistic metamodelling
revisited: A language use approach”, Information and Software Technology, vol.55, no.12, pp. 2099–
2124, 2013.
[20] J. C. Mitchell, Foundations for Programming Languages, Vol. 1. Cambridge: MIT press, 1996.
[21] C. Ghezzi and M. Jazayeri, Programming Language Concepts. John Wiley & Sons, 2008.
[22] T. Parr, Language Implementation Patterns: Create Your Own Domain-Specific and General
Programming Languages. Pragmatic Bookshelf, 2009.
[23] R. Harper, Practical Foundations for Programming Languages. Cambridge University Press,
2016.
[24] M. Völter, DSL Engineering: Designing, Implementing and Using Domain-Specific Languages.
CreateSpace Independent Publishing Platform, 2013.
[25] A. van Deursen, P. Klint, and J. Visser, “Domain-specific languages: an annotated bibliography”,
Sigplan Notices, vol. 35, no. 6, pp. 26–36, 2000.
[26] J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to Automata Theory, Languages, and
Computation, 3rd ed. Pearson Education India, 2006.

113

[27] M. Mernik, J. Heering, and A. Sloane, “When and how to develop domain-specific languages”,
ACM Computing Surveys (CSUR), vol. 37, no. 4, pp. 316–344, 2005.
[28] M. Fowler, Domain-Specific Languages, 1st ed. Addison-Wesley Professional, 2010.
[29] M. Fowler, “Language Workbenches: The Killer-App for Domain Specific Languages?”, 2005,
[Online]. Available: http://www.martinfowler.com/articles/languageWorkbench.html.
[30] M. Erwig, R.F.Paige and E.Van Wyk, eds, “The state of the art in language workbenches:
conclusions from the Language Workbench Challenge”, in Proceedings of the International Conference
on Software Language Engineering (SLE2013), 2013, pp. 197–217.
[31] S. Erdweg et al., “Evaluating and comparing Language Workbenches: existing results and
benchmarks for the Future”, Computer Languages, Systems and Structures, vol. 44, pp. 24–47, 2015.
[32] M. Pfeiffer and J. Pichler, “A comparison of tool support for textual domain specific languages”,
in 8th OOPSLA Workshop on Domain-Specific Modeling (DSM’08), 2008, pp. 1–7.
[33] B. Merkle, “Textual modeling tools: overview and comparison of language workbenches”, in
Companion to the 25th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications (SPLASH/OOPSLA 2010), 2010, pp. 139–148.
[34] M. Völter and V. Pech, “Language modularity with the MPS language workbench”, in 34th
International Conference on Software Engineering (ICSE), 2012, pp.1449-1450.
[35] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF: Eclipse Modeling Framework,
2nd ed. Addison-Wesley Professional, 2008.
[36] M. Eysholdt and H. Behrens, “Xtext: implement your language faster than the quick and dirty
way”, in Companion to the 25th Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications (SPLASH/OOPSLA 2010), 2010, pp. 307–309.
[37] F. Heidenreich et al., “Derivation and refinement of textual syntax for models”, in Model Driven
Architecture - Foundations and Applications, 2009, pp. 114–129.
[38] Lennart C.L. Kats and E. Visser, “The Spoofax language workbench: rules for declarative
specification of languages and IDEs”, in ACM International Conference on Object Oriented
Programming Systems Languages and Applications, 2010, pp. 444–463.
[39] Frédéric Jouault, Freddy Allilaire, Jean Bézivin, and Ivan Kurtev, “ATL: A model transformation
tool”, Science of Computer Programming, vol. 72, no. 1–2, pp. 31–39, 2008.
[40] J.-N. Mazón, J. Pardillo, and J. Trujillo, “A model-driven goal-oriented requirement engineering
approach for data warehouses”, in Advances in Conceptual Modeling – Foundations and Applications:
ER 2007 Workshops CMLSA, FP-UML, ONISW, QoIS, RIGiM,SeCoGIS, 2007, pp. 255–264.
[41] E. S. K. Yu, “Towards modelling and reasoning support for early-phase requirements
engineering”, in ISRE'97: 3rd IEEE International Symposium on Requirements Engineering, 1997, pp.
226–235.
[42] N. Koch and A. Kraus, “The expressive power of uml-based web engineering”, in Second
International Workshop on Web-oriented Software Technology (IWWOST02), 2002, vol. 16, CYTED.
[43] A. Kraus, A. Knapp, and N. Koch, “Model-driven generation of web applications in UWE”, in
International Workshop on Model-Driven Web Engineering (MDWE), vol. 261, 2007.
[44] N. Koch, G. Zhang, and M. J. Escalona, “Model transformations from requirements to web
system design,” in 6th International Conference on Web Engineering, 2006, pp. 281–288.
[45] M. J. Escalona and N. Koch, “Metamodeling the Requirements of Web Systems”, in Web
Information Systems and Technologies, 2007, pp. 267–280.
[46] F. Jouault and I. Kurtev, “Transforming models with ATL”, in International Conference on
Model Driven Engineering Languages and Systems, 2005, pp. 128–138.
[47] A. Fatolahi, S. S. Somé, and T. C. Lethbridge, “Towards A Semi-Automated Model-Driven
Method for the Generation of Web-based Applications from Use Cases”, in 4th Model Driven Web
Engineering Workshop @ MoDELS, 2008, pp. 31-39.
[48] Use Case Editor (UCEd), [Online]. Available:
https://www.site.uottawa.ca/~ssome/Use_Case_Editor_UCEd.html.
[49] Witold Suryn, S. Kherraf, and É. Lefebvre, “Transformation from CIM to PIM using patterns
and archetypes”, In 19th Australian Software Engineering Conference, 2008, vol. 00, pp. 338–346.
[50] C. Larman, Applying UML and Patterns: An Introduction to Object-Oriented Analysis and
Design and Iterative Development, 3rd ed. Addison-Wesley Professional, 2004.
[51] M. Kardos and M. Drozdova, “Analytical method of CIM to PIM transformation in Model Driven
Architecture (MDA)”, Journal of Information and Organizational Sciences, vol.34, no. 1, pp. 89-99, 2010.

114

[52] W. Zhang, H. Mei, H. Zhao, and J. Yang, “Transformation from CIM to PIM: a feature-oriented
component-based approach”, in Model Driven Engineering Languages and Systems: 8th International
Conference (MoDELS 2005), 2005, pp. 248–263.
[53] A. Rodríguez, E. Fernández-Medina, and M. Piattini, “Towards CIM to PIM transformation:
from secure business processes defined in BPMN to Use-Cases”, in Business Process Management: 5th
International Conference (BPM 2007), 2007, pp. 408–415.
[54] A. Rodríguez, E. Fernández-Medina, and M. Piattini, “CIM to PIM Transformation: a reality”,
in Research and Practical Issues of Enterprise Information Systems II, 2008, pp. 1239–1249.
[55] A. Rodríguez, E. Fernández-Medina, and M. Piattini, “Towards Obtaining Analysis-Level Class
and Use Case Diagrams from Business Process Models”, in Advances in Conceptual Modeling –
Challenges and Opportunities: ER 2008 Workshops CMLSA, ECDM, FP-UML, M2AS, RIGiM,
SeCoGIS, WISM, 2008, pp. 103–112.
[56] A. Rodríguez, I. G.-R. de Guzmán, E. Fernández-Medina, and M. Piattini, “Semi-formal
transformation of secure business processes into analysis class and use case models: An MDA approach”,
Information and Software Technology, vol. 52, no. 9, pp. 945–971, 2010.
[57] A. Rodríguez, E. Fernández-Medina, J. Trujillo, and M. Piattini, “Secure business process model
specification through a UML 2.0 activity diagram profile”, Decision Support Systems, vol. 51, no. 3, pp.
446–465, 2011.
[58] J. J. Gutiérrez et al., “Visualization of use cases through automatically generated activity
diagrams”, in Model Driven Engineering Languages and Systems: 11th International Conference
(MoDELS2008), 2008, pp. 83–96.
[59] C. Hahn, D. Panfilenko, and K. Fischer, “A model-driven approach to close the gap between
business requirements and agent-based execution,” in Proceedings of the 4th Workshop on Agent-based
Technologies and Applications for Enterprise Interoperability, 2010, pp. 13–24.
[60] Object Management Group, “Service Oriented Architecture Modeling Language, Version 1.0.1”,
2012, [Online]. Available: http://www.omg.org/spec/SoaML.
[61] C. Hahn, C. Madrigal-Mora, and K. Fischer, “A platform-independent metamodel for multiagent
systems”, Autonomous Agents and Multi-Agent Systems, vol. 18, no. 2, pp. 239–266, 2009.
[62] V. De Castro, E. Marcos, and J. M. Vara, “Applying CIM-to-PIM model transformations for the
service-oriented development of information systems”, Information and Software Technology, vol. 53,
no. 1, pp. 87–105, 2011.
[63] J. Gordijn and J. M. Akkermans, “Value-based requirements engineering: exploring innovative
e-commerce ideas”, Requirements Engineering, vol. 8, no. 2, pp. 114–134, 2003.
[64] M. D. D. Fabro, J. Bézivin, and P. Valduriez, “Weaving Models with the Eclipse AMW plugin”,
In Eclipse Modeling Symposium, Eclipse Summit Europe, 2006, pp. 37-44.
[65] B. Bousetta, O. El Beggar, and T. Gadi, “A methodology for CIM modelling and its
transformation to PIM”, Journal of Information Engineering and Applications, vol. 3, no. 2, 2013.
[66] A. Kriouile, N. Addamssiri, T. Gadi, and Y. Balouki, “Getting the static model of PIM from the
CIM”, in 3rd IEEE International Colloquium in Information Science and Technology (CIST), 2014, pp.
168–173.
[67] A. Kriouile, T. Gadi, N. Addamssiri, and A. E. Khadimi, “Obtaining behavioral model of PIM
from the CIM”, in 4th International Conference on Multimedia Computing and Systems (ICMCS), 2014,
pp. 949–954.
[68] A. Kriouile, A. Addamssiri, and T. Gadi, “An MDA method for automatic transformation of
models from CIM to PIM”, American Journal of Software Engineering and Applications, vol. 4, no. 1,
pp. 1–14, 2015.
[69] Y. Rhazali, Y. Hadi, and A. Mouloudi, “Disciplined approach for transformation CIM to PIM in
MDA”, in 3rd International Conference on Model-Driven Engineering and Software Development
(MODELSWARD), 2015, pp. 312–320.
[70] Y. Rhazali, Y. Hadi, and A. Mouloudi, “A methodology for transforming CIM to PIM through
UML: From business view to information system view”, in 3rd World Conference on Complex Systems
(WCCS), 2015, pp. 1–6.
[71] Y. Rhazali, Y. Hadi, and A. Mouloudi, “Transformation approach CIM to PIM: from business
processes models to state machine and package models”, in 1st International Conference on Open Source
Software Computing (OSSCOM), 2015, pp. 1–6.

115

[72] Y. Rhazali, Y. Hadi, and A. Mouloudi, “A new methodology CIM to PIM transformation
resulting from an analytical survey”, in 4th International Conference on Model-Driven Engineering and
Software Development (MODELSWARD), 2016, pp. 266–273.
[73] Y. Rhazali, Y. Hadi, and A. Mouloudi, “Model transformation with ATL into MDA from CIM
to PIM structured through MVC”, Procedia Computer Science, vol. 83, no. Supplement C, pp. 1096–
1101, 2016.
[74] Y. Rhazali, Y. Hadi, and A. Mouloudi, “A model transformation in MDA from CIM to PIM
represented by web models through SoaML and IFML”, in 4th IEEE International Colloquium on
Information Science and Technology (CiSt), 2016, pp. 116–121.
[75] Y. Rhazali, Y. Hadi, and A. Mouloudi, “CIM to PIM transformation in MDA from service-
oriented business models to web-based design models”, International Journal of Software Engineering
and Its Applications, vol. 10, no. 4, pp. 125–142, 2016.
[76] M. Brambilla and P. Fraternali, Interaction Flow Modeling Language: Model-Driven UI
Engineering of Web and Mobile Apps with IFML. Morgan Kaufmann, 2014.
[77] T. Yue, L. C. Briand, and Y. Labiche, “A systematic review of transformation approaches
between user requirements and analysis models”, Requirements engineering, vol. 16, no. 2, pp. 75–99,
2011.
[78] H. R. Sharifi, M. Mohsenzadeh, and S. M. Hashemi, “CIM to PIM transformation: An analytical
survey”, International Journal of Computer Technology and Applications, vol 3, no. 2, pp.791-796, 2012.
[79] IEEE Standard Glossary of Software Engineering Terminology.IEEE, 1990.
[80] A. Kriouile, T. Gadi, and Y. Balouki, “CIM to PIM transformation: a criteria based evaluation”,
International Journal of Computer Technology and Applications, vol. 4, no. 4, pp. 616–625, 2013.
[81] H. Couclelis, “People manipulate objects (but cultivate fields): beyond the raster-vector debate
in GIS”, in Theories and Methods of Spatio-temporal Reasoning in Geographic Space, 1992, pp. 65–77.
[82] A. Galton, “A formal theory of objects and fields”, in International Conference on Spatial
Information Theory, 2001, pp. 458–473.
[83] M. Worboys and M. Duckham, GIS: A Computing Perspective. London: Taylor & Francis, 1995.
[84] M. Yuan, “Representing complex phenomena with both object- and field-like properties”,
Cartography and Geographic Information Science, vol. 28, no. 2, pp. 83–96, 2001.
[85] T. J. Cova and M. F. Goodchild, “Extending geographical representation to include fields of
spatial objects”, International Journal of Geographical Information Science, vol. 16, no. 6, pp. 509–532,
2002.
[86] R. H. Güting et al., “A foundation for representing and querying moving objects,” ACM
Transactions on Database Systems, vol. 25, no. 1, pp. 1–42, 2000.
[87] R. H. Güting and M. Schneider, Moving Objects Databases. Morgan Kaufmann, 2005.
[88] J. Xu and R. H. Güting, “A generic data model for moving objects”, GeoInformatica, vol. 17, no.
1, pp. 125–172, 2013.
[89] G. Camara, M. J. Egenhofer, K. Ferreira, and P. Andrade, “Fields as a generic data type for big
spatial data”, in 8th International Conference on Geographic Information Science, 2014, pp. 159-172.
[90] W. Kuhn and A. Ballatore, “Designing a language for spatial computing”, in Proceedings of
AGILE 2015, Geographic Information Science as an Enabler of Smarter Cities and Communities, 2015,
pp. 309–326.
[91] International Organization for Standardization, “ISO19101-1 Geographic information —
Reference model — Part 1: Fundamentals”, 2014.
[92] International Organization for Standardization, “ISO19103 Geographic information —
Conceptual schema language”, 2015.
[93] International Organization for Standardization, “ISO19107 Geographic information — Spatial
schema”, 2003.
[94] International Organization for Standardization, “ISO 19137 Geographic information — Core
profile of the spatial schema”, 2007.
[95] International Organization for Standardization, “ISO19108 Geographic information — Temporal
schema”, 2002.
[96] International Organization for Standardization, “ISO19141 Geographic information — Schema
for moving features”, 2008.
[97] International Organization for Standardization, “ISO19123 Geographic information — Schema
for coverage geometry and functions”, 2005.

116

[98] International Organization for Standardization, “ISO 19109 Geographic information — Rules for
application schema”, 2015.
[99] Open Geospatial Consortium, “OGC Reference Model, Version 2.1”, 2011, [Online]. Available:
https://www.ogc.org/standards/orm.
[100] Open Geospatial Consortium, “The OGC Abstract Specification Topic 0: Abstract
Specification Overview, Version 5”, 2005, [Online]. Available:
https://portal.opengeospatial.org/files/?artifact_id=7560.
[101] International Organization for Standardization, “Co-operative agreement between ISO/TC 211
Geographic information/Geomatics and the Open GIS Consortium, Inc. (OGC)”, 1999.
[102] Open Geospatial Consortium, “The OpenGIS Abstract Specification Topic 5: Features, Version
5.0”, 2009, [Online]. Available: https://portal.opengeospatial.org/files/?artifact_id=29536.
[103] D. O’Sullivan and G. L. Perry, Spatial Simulation: Exploring Pattern and Process. John Wiley &
Sons, 2013.
[104] S. Tisue and U. Wilensky, “NetLogo: A simple environment for modeling complexity”, in
International Conference on Complex Systems, 2004, vol. 21, pp. 16–21.
[105] K. Sullivan, M. Coletti, and S. Luke, “GeoMason: geospatial support for MASON”, Department
of Computer Science, George Mason University, Technical Report Series, 2010.
[106] J. B. Dabney and T. L. Harman, Mastering Simulink. Pearson, 2004.
[107] W. J. Pierson Jr and L. Moskowitz, “A proposed spectral form for fully developed wind seas
based on the similarity theory of SA Kitaigorodskii”, Journal of Geophysical Research, vol. 69, no. 24,
pp. 5181–5190, 1964.
[108] C. D. Mobley, “Modeling sea surfaces: a tutorial on Fourier transform techniques, Version 2.0”,
2016, [Online]. Available: https://oceanopticsbook.info/view/references/publications/#mobley-2016.
[109] D. V. Widder, The Heat Equation. Academic Press, 1976.
[110] J. D. Logan, Applied Partial Differential Equations. Springer, 2014.
[111] T. Toffoli and N. Margolus, Cellular Automata Machines: A New Environment for Modeling.
Cambridge: MIT Press, 1987.
[112] D. O’Sullivan, “Graph cellular automata: a generalised discrete urban and regional model”,
Environment and Planning B: Planning and Design, vol. 28, no. 5, pp. 687–705, 2001.
[113] XS. Yang and Y. Young, “Cellular automata, PDEs, and pattern formation,” in Handbook of
Bioinspired Algorithms and Applications, pp.271-282, 2005.
[114] J. Rudnick and G. Gaspari, Elements of the Random Walk: An Introduction for Advanced
Students and Researchers. Cambridge University Press, 2004.
[115] L. M. Marsh and R. E. Jones, “The form and consequences of random walk movement models”,
Journal of Theoretical Biology, vol. 133, no. 1, pp. 113–131, 1988.
[116] D. Ben-Avraham and S. Havlin, Diffusion and Reactions in Fractals and Disordered Systems.
Cambridge University Press, 2000.
[117] M. E. Newman and R. M. Ziff, “Fast Monte Carlo algorithm for site or bond percolation”,
Physical Review E, vol. 64, no. 1, 016706, 2001.
[118] J. Adler and U. Lev, “Bootstrap percolation: visualizations and applications”, Brazilian Journal
of Physics, vol. 33, no. 3, pp. 641–644, 2003.
[119] K. Malarz and S. Galam, “Square-lattice site percolation at increasing ranges of neighbor bonds”,
Physical Review E, vol. 71, no. 1, p. 016125, 2005.
[120] M. Eden, “A two-dimensional growth process”, Dynamics of fractal surfaces, vol. 4, pp. 223–
239, 1961.
[121] J.-F. Gouyet, Physics and Fractal Structures. Springer, 1996.
[122] D. Stauffer and A. Aharony, Introduction to Percolation Theory, 2nd ed. London: Taylor &
Francis, 2018.
[123] T. Clark, P. Sammut, and J. Willans, Applied Metamodelling: A Foundation for Language Driven
Development, 3rd ed. arXiv, 2015.
[124] J. Guttag, “Abstract data types and the development of data structures”, Communications of the
ACM, vol. 20, no. 6, pp. 396–404, 2002.
[125] J. L. Sierra, “Language-driven software development (invited talk)”, in OpenAccess Series in
Informatics (OASIcs), 2014, vol. 38, pp. 3–12.
[126] M. M. Tanik and R. T. Yeh, “Rapid prototyping in software development”, Computer, vol. 5, pp.
9–11, 1989.

117

[127] W. R. Bischofberger and G. Pomberger, Prototyping-Oriented Software Development: Concepts
and Tools. Springer Science & Business Media, 2012.
[128] Object Management Group, “Business Process Model and Notation (BPMN), Version 2.0”, 2011,
[Online]. Available: https://www.omg.org/spec/BPMN/2.0/.
[129] J. V. Guttag and J. J. Horning, “The algeraic specification of abstract data types”, Acta
Informatica, vol. 10, no. 1, pp. 27–52, 1978.
[130] International Organization for Standardization, “ISO19111 Geographic information -- Spatial
referencing by coordinates” 2007.
[131] R. Rew and G. Davis, “NetCDF: an interface for scientific data access”, IEEE Computer
Graphics and Applications, vol. 10, no. 4, pp. 76–82, 1990.
[132] D. A. Griffith, Spatial Autocorrelation and Spatial Filtering: Gaining Understanding Through
Theory and Scientific Visualization. Springer Science & Business Media, 2003.
[133] A. Okabe et al., Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, 2nd ed.
John Wiley & Sons, 2000.
[134] P. A. Longley et al., Geographic Information Systems and Science. John Wiley & Sons, 2005.
[135] N. Wirth, “What can we do about the unnecessary diversity of notation for syntactic definitions?”,
Communications of the ACM, vol. 20, no. 11, pp. 822–823, 1977.
[136] Object Management Group, “MOF Model to Text Transformation Language, Version 1.0”, 2008,
[Online]. Available: https://www.eclipse.org/acceleo/.
[137] M. J. Egenhofer and R. D. Franzosa, “Point-set topological spatial relations”, International
Journal of Geographical Information System, vol. 5, no. 2, pp. 161–174, 1991.
[138] E. Clementini, J. Sharma, and M. J. Egenhofer, “Modelling topological spatial relations:
Strategies for query processing”, Computers & Graphics, vol. 18, no. 6, pp. 815–822, 1994.
[139] M. J. Egenhofer, “Spatial SQL: a query and presentation language,” IEEE Transactions on
Knowledge and Data Engineering, vol. 6, no. 1, pp. 86–95, 1994.

118

Appendix A: CIM-PIM Transformations
 This appendix documents details of transformations from SEDL descriptions to PIM-layer models,
which are introduced in Section 5.3. Elements in the listings of this appendix are denoted by their names.
Since the output model elements may get the name from the input SEDL elements, output model elements
are written in italic to avoid confusion. For a clear representation, some steps are presented in separate
listings as support functions and are invoked in other listings. This appendix does not fix an exact way of
transforming the free-text description of a DescriptionItem (i.e., its “description” attribute) but leaves it
as an implementation choice. In general, it is recommended to transform this piece of text as the comment
that is referenced to and/or placed with the generated artifacts from the DescriptionItem.

A.1 Description2Config
 Listing A.1-a presents the overall transformation logic from an SEDL description to a configuration
schema expressed by Configuration Schema Description Profile specified in Subsection 5.2.1.
 Require: a valid SEDL description s with entry SimulatedEnvironment Envi
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

Create ConfigSchema Envi;

For each SpatialIndividuality SI of Envi
 Boolean configSI ← false;
 Perform CreateConfigSI(SI, configSI);
 If configSI = true Then
 Add the generated component SI to Envi;
 End if;
End for;

For each FieldOfIndividualities FoI of Envi with member M
 Boolean configFoI ← false;
 Boolean configM ← false;
 Perform CreateConfigSI(M, configM);
 If configM = true Then
 Perform CreateConfigComponent(FoI, configFoI);
 Add a SubComponent link between the generated component M (as the sub end) and
the generated component FoI;
 End if;
 For each CharacteristicVariation CV of FoI
 If CV has any parameter Then
 Perform CreateSimpleConfig(CV);
 Perform CreateConfigComponent(FoI, configFoI);
 Add a SubComponent link between the generated component CV (as the sub end)
and the generated component FoI;
 End if;
 End for;
 If configFoI = false Then
 If FoI has any parameter, Then
 Perform CreateSimpleConfig(FoI);
 configFoI ← true;
 End if;
 End if;
 If configFoI = true Then
 Add the generated component FoI to Envi;
 End if;
End for;

Listing A.1-a: Description2Config.

119

 The function CreateConfigSI (SpatialIndividuality SI, Boolean configSI) used in Listing A.1-a is
presented in Listing A.1-b. This function transforms a SpatialIndividuality to necessary structures in a
configuration schema.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

For each ThematicProperty P of SI
 Boolean configP ← false;
 For each Variation IV_P of P
 If IV_P has options Then
 Perform CreateAlternativeConfig(IV_P);
 Perform CreateConfigComponent (P, configP);
 Add a SubComponent link between the generated component IV_P (as the sub end)
and the generated component P;
 Perform CreateConfigComponent(SI, configSI);
 Add a SubComponent link between the generated component P (as the sub end)
and the generated component SI;
 End if;
 If IV_P has any parameter Then
 Perform CreateSimpleConfig(IV_P);
 Perform CreateConfigComponent (P, configP);
 Add a SubComponent link between the generated component IV_P (as the sub end)
and the generated component P;
 Perform CreateConfigComponent(SI, configSI);
 Add a SubComponent link between the generated component P (as the sub end)
and the generated component SI;
 End if;
 End for;
End for;
For each individuality Variation IV_SI of SI
 If IV_SI has options Then
 Perform CreateAlternativeConfig(IV_SI);
 Perform CreateConfigComponent(SI, configSI);
 Add a SubComponent link between the generated component IV_SI (as the sub end) and
the generated component SI;
 End if;
 If IV_SI has any parameter Then
 Perform CreateSimpleConfig(IV_SI);
 Perform CreateConfigConponent(SI, configSI);
 Add a SubComponent link between the generated component IV_SI (as the sub end)
and the generated component SI;
 End if;
End for;
For each CharacteristicVariation CV_SI of SI
 If CV_SI has any parameter Then
 Perform CreateSimpleConfig(CV_SI);
 Perform CreateConfigConponent(SI, configSI);
 Add a SubComponent link between the generated component CV_SI (as the sub end)
and the generated component SI;
 End if;
End for;
If configSI = false Then
 If SI has any parameter Then
 Perform CreateSimpleConfig(SI);
 configSI ← true;
 End if;
End if;

Listing A.1-b: CreateConfigSI (SpatialIndividuality SI, Boolean configSI).

120

 The function CreateSimpleConfig(Configurable Con) used in previous listings are presented in
Listing A.1-c. It transforms a Configurable to a SimpleConfig.
1
2

Create SimpleConfig Con;
Perform AddConfigItems(Con, Con);

Listing A.1-c: CreateSimpleConfig(Configurable Con).

 Listing A.1-d presents the function CreateAlternativeConfig(Configurable Con). It transforms a
Configurable with options to an AlternativeConfig.
1
2
3
4
5
6

Create AlternativeConfig Con;
For each option Option of Con
 Perform CreateSimpleConfig(Option);
 Add a ConfigOption link between the generated component Option (as the option end) and
the generated component Con;
End for;

Listing A.1-d: CreateAlternativeConfig(Configurable Con).

 The function CreateConfigComponent(Configurable Con, Boolean configCon) is presented in
Listing A.1-e. It transforms a Configurable to a ConfigComponent with nested ConfigComponent-s, if
the current transformation process has not done it.
1
2
3
4
5
6
7
8
9
10

If configCon = false Then
 If Con has any parameter Then
 Create ConfigComponent Con;
 Perform AddConfigItems(Con, Con);
 configCon ← true;
 Else
 Create GroupComponent Con;
 configP ← true;
 End if;
End if;

Listing A.1-e: CreateConfigComponent(Configurable Con, Boolean configCon).

 The function AddConfigItems(Configurable Con, ConfigComponent Con) presented in Listing A.1-
f transforms ConfigurableParameter-s to ConfigItem-s in a configuration schema. For a
ConfigurableParameter whose type is Options, the transformation adds an Enumeration to the generated
schema as the type of the generated ConfigItem. This Enumeration should contain all possible options of
this ConfigItem, Since the current SEDL does not provide formal terms to catch configuration options
separately, they should be added by component developers.
1
2
3
4
5
6
7
8
9
10
11
12

For each ConfigurableParameter P of Con
 Add ConfigItem p to the generated ConfigComponent Con from P
 paratype ← type of P
 Switch(paratype)
 Case FreeText: set p to the String type;
 Case DataSource: set p to the SourceString type;
 Case Spatial: set p to the SpatialString type;
 Case Time: set p to the TimeString type;
 Case Options: add an Enumeration P to the generated schema, set the p’s to it;
 Case Switch: set p to the Boolean type;
 Case Number: set p to the Real type;
End if;

Listing A.1-f: AddConfigItems(Configurable Con, ConfigComponent Con).

A.2 Descrption2Structure
 Listing A.2-a provides the details to transform an SEDL description to a data structure model
applying Simulated Environment Structure Profile specified in Subsection 5.2.2 in a two-dimensional
context.

121

 Require: a valid SEDL description s with entry SimulatedEnvironment Envi
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

For each SpatialIndividuality SI of Envi
 Create Class SIData;
 If dimNum of SI equals to 2 Then
 Apply the LocalFeature stereotype to SIData;
 Set geometry of SIData to Polygon;
 Else if SI has change involving geometry Then
 Apply the LocalFeature stereotype to SIData;
 Set geometry of SIData to Polygon;
 Else if dimNum of SI equals to 0 Then
 Apply the LocalFeature stereotype to SIData;
 Set geometry of SIData to Point;
 Else if SI has RigidBodyMovement or LocationThemeDependency
 Apply the LocalFeature stereotype to SIData;
 Set geometry of SIData to Point;
 Else
 Apply the GlobalFeature stereotype to SIData;
 End if;
 End if;
 End if;
 End if;
 For each ThematicProperty P of SI
 Add Attribute p to SIData;
 If P has ThematicValueDistribution Then
 Perform CreateSpatialFunction(P);
 Set type of p to SIP_Dist which is generated from the previous line;
 Else
 Set p to a default value type;
 End if;
 End for;
End for;

For each FieldOfIndividualities FoI of Envi with member M
 Create Class FoIData;
 Create Class MData applying the CollevtiveFeatureUnit stereotype as its unit;
 If M has change involving geometry Then
 Apply the PolygonSetFeature stereotype to FoIData;
 Set geometry of MData to Polygon;
 Else if dimNum of M equals to 2 Then
 Set geometry of MData to Polygon;
 If M has change involving location Then
 Apply the PolygonSetFeature stereotype to FoIData;
 Else
 Apply the TesserlatedFeatureType stereotype to FoIData;
 End if;
 Else
 Set geometry of MData to Point;
 If M has change involving location Then
 Apply the PointSetFeature stereotype to FoIDara;
 Else
 Apply the PointSitesFeature stereotype to FoIData;
 End if;
 End if;
 End if
 For each CharacteristicVariation CV_M of M
 For each of its indexName “idx_m”

122

56
57
58
59
60
61
62

 Add Attribute idx_m to MData;
 End for;
 End for;
 For each ThematicProperty P of M
 Add Attribute p to MData;
 End for;
End for;

Listing A.2-a: Descrption2Structure.

 The function CreateSpatialFunction(ThematicProperty SIP) used in Listing A.2-a is presented in
Listing A.2-b. It transforms a ThematicProperty with some ThematicValueDistribution-s to a class
applying the SpatialFunction stereotype, which holds the distribution functions representing the spatially
heterogeneous property. The generated SpatialFunction class is set as the type of the generated attribute
from SIP. After initializing an instance of this class, the values of its attributes that control the distribution
functions could be altered during executions. This essentially updates the distribution forms of its
represented property.
 In the following listing, SIP is the configuration component generated from SIP by the
transformation documented in Appendix A.1. If no such a component is generated from SIP, this
parameter remains empty. The same applies to other generated operations in the following steps.
1
2
3
4
5
6
7
8
9
10
11
13
14
15
16
17
18
19
20
21
22

Create a Class SIP_Dist applying the SpatialFunction stereotype;
For each ThematicValueDistribution Dist of SIP
 Add Operation dist() to SIP_Dist;
 For each of its ConfigurableParameter CP
 Add Attribute cp with the declared type to SIP_Dist;
 End for;
 If Dist has options Then
 Add Attribute dist_op to SIP_Dist; // to mark the active option
 For each option Option of Dist
 Add Operation option() to SIP_Dist;
 For each ConfigurableParameter CP_O of Option
 Add Attribute cp_o with the declared type to SIP_Dist;
 End for;
 End for;
 Add a conditional brunch34 to dist() which: 1) checks the value of dist_op, 2) invokes
the generated Operation from the corresponding option denoted by the value of dist_op as the
behavior of dist();
 End if;
 Add Constructor SIP_Dist (SIP sip) to SIP_Dist and statements in it to initialize all attributes
generated from ConfigurableParameter-s using sip;
End for;

Listing A.2-b: CreateSpatialFunction(ThematicProperty SIP).

A.3 Mapping from SEDL Items to Computation Units and Supporting Structures
 In Listing A.3, SIData and SI are the outputs from SpatialIndividuality SI by the transformations
documented in Appendix A.1 and Appendix A.2, respectively. Similarly, FoI and FoIData with MData
as its unit type are the outputs from FieldOfIndividualities FoI, respectively. If no SI or FoI is generated
from A.1, generation pieces in this listing corresponding to them remain empty.
 Require: a valid SEDL description s with entry SimulatedEnvironment Envi

Require: output of s from Description2Config in A.1
Require: output of s from Description2Structure in A.2

1
2

For each SpatialIndividuality SI
 Create Class ComputeSI;

34 The Java-based implementation in Chapter 6 maps it to a switch statement at the PSM layer.

123

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

 Add Object si of the SI type to ComputeSI;
 Add Constructor ComputeSI(SI si_con) to ComputeSI;
 Add statements in the Constructor to initialize si with si_con35;
 For each ConfigurableParameter CP within the scope of SI
 Add Attribute cp of the declared type to ComputeSI;
 If CP does not belong to an AlternativeMode
 Add statements to the Constructor to initialize cp with the value in si_con;
 End if;
 End for;
 For each CharacteristicVariation CV of SI
 Add Operation cV() to ComputeSI;
 For each of its indexName “idx”
 Add Attribute named “idx” to ComputeSI;
 End for;
 For each of its ConfigurableParameter CP_CV
 Add a Parameter cp_cv of the declared type to cV();
 End for;
 Add statements to the Constructor to use cV() to initialize the generated Attributes
from CV’s indexes, using corresponding Attributes generated from CP_CV-s as actual
parameters;
 End for;
 For each individual Variation IV of SI or of its ThematicProperty
 If IV is not a ThematicValueDistribution
 Add Operation iV() to ComputeSI;
 Add Parameter var to iV();
 Set the type of var to the mapped attribute type in SIData from the Variable of
IV, and iV()’ return type to the type from the Variant of IV;
 If IV has options Then
 Add Attribute iV_op to ComputeSI; // to mark the active option
 For each option Option of IV
 Add Operation option() to ComputeSI;
 Add Parameter var_o to option();
 Set the type of var_o to the mapped attribute type in SIData from the
Variable of IV, and option()’s return type to the type from the Variant of IV;
 End for;
 Add a conditional brunch to the Constructor which: 1) checks which option
of iV() is configured in si_con, 2) initializes iV_op based on the configured option and Attributes
in ComputeSI relevant to this option using values in si_con.
 Add a conditional brunch to iV() which: 1) checks the value of iV_op to
determine the active option, 2) invokes the generated Operation corresponding to active option
as the behavior of iV();
 End if;
 End if;
 End for;
End for;

For each FieldOfIndividualities FoI with member M
 Create Class ComputeFoI;
 Add Object foiData of the FoIData type to ComputeFoI; Add Object foi of the FoI type to ComputeFoI;
 Add Constructor ComputeFoI (FoI foi_con) to ComputeFoI;
 Add statements in the Constructor to initialize foi with foi_con;
 For each ConfigurableParameter CP within the scope of FoI
 Add Attribute cp of the declared type to ComputeFoI;

35 e.g.,“this.si = si_con” in the Java-like form

124

57
58
59
60
61
62
63
64
65
66
67
68
69
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

 If CP does not belong to an AlternativeMode
 Add statements to Constructor to initialize cp with the value in foi_con;
 End if;
 End for;
 For each CharacteristicVariation CV of FoI
 Add Operation cV() to ComputeFoI;
 For each of its indexName “idx”
 Add Attribute named “idx” to ComputeFoI;
 End for;
 For each of its ConfigurableParameter CP_CV
 Add Parameter cp_cv of the declared type to cV();
 End for;
 Add statements in Constructor to use cV() to initialize the generated Attributes from
CV’s indexes, using the corresponding Attributes generated from CP_CV-s as actual
parameters;
 End for;
 For each CharacteristicVariation CV_M of M
 Add Operation cV_M() to ComputeFoI;
 For each of its ConfigurableParameter CP_CVM
 Add Parameter cp_cvm of the declared type to cV_M();
 End for;
 Add statements in the Constructor which: 1) get the units iterator of foiData, 2) loop
over this iterator to execute cV_M() whose body part should implement the function that
initializes the generated Attributes from CV_M’ indexes for each unit, using the corresponding
Attributes generated from CP_CVM-s as actual parameters;
 End for;
 For each individual Variation IV_M of M or of its ThematicProperty
 Add Operation iV_M() to ComputeFoI;
 Add Parameter var to iV_M();
 Set the type of var to the mapped attribute type in MData from the Variable of IV_M,
and iV_M()’s return type to the type from the Variant of IV_M;
 If IV_M has options Then
 Add Attribute iV_M_op to ComputeFoI; // to mark the active option
 For each option Option of IV_M
 Add Operation option() to ComputeFoI;
 Add Parameter var to option();
 Set the type of var to the mapped attribute type in MData from the Variable
of IV_M, and iV()’s return type to the type from the Variant of IV_M;
 End for;
 Add a conditional brunch to the Constructor which: 1) checks which option of
iV() is configured in foi_con, 2) initializes iV_M_op based on the configured option and
Attributes in ComputeSI relevant to this option using values in foi_con.
 Add a conditional brunch to the iV_M() which: 1) checks iV_M_op to determine
the active option, 2) invokes the generated Operation from the active option as the behavior of
iV_M();
 End if;
 End for;
End for;

Listing A.3: Generate Computation Units and Support Structures.

A.4 Generate the Dependency Graph for EnvironemtnalPhenomenon Computation
 Listing A.4 generates a directed graph for an EnvironmentalPhenomenon Ep based on its Variation-
s. This graph is used to derive the execution order of the generated computation units from Ep by the
transformation documented in Appendix A.3 at a simulation step, as introduced in Subsection 5.3.4.
 Require: a valid EnvironmentalPhenomenon Ep

Require: Class ComputeEp generated from Ep by the transformation in A.3

125

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

//Initial construction of the graph
If Ep is a FieldOfIndividualities
 Use its member SpatialIndividuality as Ep in the following steps;
End if;
Create a directed graph G with
 Each edge has an attribute that stores references to Operations of computation units
generated from Variation-s of Ep by the transformation documented in A.3;
 Node’s attribute that stores a reference to a subgraph;
Add nodes t, l, g to G; //represents time, location, geometry
For each ThematicProperty p of Ep
 Add a node p to G;
End for;
If RigidBodyMovement m of Ep exists Then
 Add an edge t → l to G;
 Store references to Operations generated from every m with this edge;
End if;
If Deformation d of Ep exists Then
 Add an edge t → g to G;
 Store references to Operation generated from every d with this edge;
End if;
If GeometryLocationDependency gl_d of Ep exists Then
 Add an edge between g and l, pointed to the Variant of gl_d;
 Store references to the Operations generated from every gl_d with this edge;
End if;
For each GeometryThemeDependency gc_d of Ep
 If no following edge exists Then
 Add an edge between g and the involved p node, pointed to the Variant of gc_d;
 End if;
 Store a reference to the Operation generated from gt_d with this edge;
End for;
For each LocationThemeDependency lt_d of Ep
 If no following edge exists Then
 Add an edge between l and the involved property node, pointed to the Variant of lt_d;
 End if;
 Store a reference to the Operation generated from lt_d with this edge;
End for;
For each ThemeDependency tt_d within the scope of Ep
 If no following edge exists Then
 Add an edge between the two involved property nodes, pointed to the Variant of tt_d;
 End if;
 Store a reference to the Operation generated from tt_depend with this edge;
End for;
For each ThematicProperty p If ThemeDynamics dyn_p of p exists Then
 Add an edge t → p to G;
 Store references to Operation generated from every dyn_p with this edge;
 End if;
End for;
 //Loops elimination
Search for cycles in G;
For each found cycle Add a node cyc to G;
 Add Operation cyc() to ComputeEp;
 For each incoming edge e of a node in this cycle from a node n outside this cycle
 If n → cyc does not exist in G Then
 Add an edge n → cyc to G;

126

57
58
59
60
61
62
63
64
65
66
67
68
69
70

 End if;
 Add the referenced Operations of e to the reference list of n → cyc; Remove e;
 End for;
 For each outgoing edge e’ of a node in this cycle to a node n’ outside this cycle
 If cyc → n’ does not exist in G
 Add an edge cyc → n’ to G;
 End if;
 Add the referenced Operations of e’ to the reference list of cyc → n’; Remove e’;
 End for;
 Store a reference to the subgraph of the cycle with cyc;
 Exclude the nodes in the subgraph from the computation order derivation;
End for;

Listing A.4 Generate Dependency Graph for Computation.

A.5 Generate the Computation Activity for an EnvironemtnalPhenomenon
 Listing A.5-a presents the transformation from a SpatialIndividuality to the computation activity to
simulate it. Listing A.5-b presents the transformation to create the same kind of activity from a
FieldOfIndividualities. Listing A.5-c presents the similar steps in these two listings as a support function.
 For a concise representation, the following elements are denoted using the same reference, e.g., n, if
not being explicitly denoted otherwise: a node n in the dependency graph, its represented property n of
the EnvironmentalPhenomenon, and the transformed attributes n in the SimulatedFeatureType class (or
in the class instances) from this property.
 Require: a valid SpatialIndividuality SI

Require: Class ComputeSI generated from SI by the transformation in A.3
Require: dependency graph G of SI generated by A.4

1
2
3
4
5
6

Add Object siData of the SIData type to ComputeSI; Add Operation computeSI(Time t) to ComputeSI;
Add Object siData’ of the SIData type to ComputeSI36;
Append statements to computeSI(Time t) to assign values of siData to siData’;
Append statements to computeSI(Time t) to update timestamp of siData;
Perform CreateComputationActivity (G, ComputeSI, siData, computeSI(Time t));

Listing A.5-a Generate Computation Activity for a SpatialIndividuality.

 In Listing A.5-b, the feature data object in ComputeFoI generated by the transformation documented
in Appendix A.3 is denoted as FoIData foiData. The type of its units is denoted as MData.
 Require: a valid FieldOfIndividualities FoI

Require: Class ComputeFoI generated from FoI by the transformation in A.3
Require: dependency graph G of FoI generated by A.4

1
2
3
4
5
6
7
8
9

Add Operation computeFoI(Time t) to ComputeFoI;
Add Object foiData’ of the FoIData type to ComputeFoI37;
Append statements to computeFoI(Time t) to assign values of foiData to foiData’;
Append statements to computeFoI(Time t) to update timestamp of foiData;
Add Operation computeM(Time t, MData mData) to ComputeFoI;
Perform CreateComputeActivity (G, ComputFoI, mData, computeM(Time t, MData mdata));
Append statemens to computeFoI(Time t) which: 1) get the units iterator of foiData, 2) loop over
this iterator to update states of all units of foiData, by executing computeM(Time t, MData
mData) with each unit as the value of the mData;

Listing A.5-b Generate Computation Activity for a FieldOfIndividualities.

36 This step and the next step create an object to hold the current state of the data object before updating it at a
computation step. It may become unnecessary when being mapped to more specific layers.
37 similar to the siData’ in Listing A.5-a.

127

 The parameters of the support function in Listing A.5-c should be the transformation outputs from
the same Environmental Phenomenon. The G should be the graph generated from Ep by the function
documented in Appendix A.4.
 When Ep is a SpatialIndividuality SI, the Class ComputeEp should be the computation class
ComputeSI generated from SI by the transformation documented in A.3. The epData should the feature
data object siData held by the class. The Operation computeEp() should be computeSI(Time t) of
ComputeSI as shown in Listing A.5-a.
 When Ep is a FieldOfIndividualities FoI, the Class ComputeEp should be the computation class
ComputeFoI generated from FoI by the transformation documented in A.3. The Operation computeEp()
should be the computeM(Time t, MData mData) in ComputeFoI and the epData should its parameter
mData, as shown in Listing A.5-b.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

Traverse G starting with node t to get a topologic sequence of nodes;
For each node n after t in the sequence
 Add Operation computeN() to ComputeEp;
 If n represents a ThematicProperty Then
 Set the return type of computeN() to corresponding n’s type in epData;
 Add local Object n_obj to computeN(), which is of its return type;
 Add statements to computeN() which: 1) execute the referenced Operations of its
incoming edges, 2) use the value of an Attribute a in epData as the corresponding Parameter a’s
value of the executed Operation, 3) use n_obj to hold intermediate values;
 Add a return statement at the end of computeN() which returns n_obj;
 Append statements to computeEp() which update the corresponding n of epData by
executing computeN();
 Else if n represents geometry or location Then
 Set the return type of computeN() to the geometry type in epData;
 Add local Object geo_obj to computeN(),which is of its return type;
 Add statements to computeN() which: 1) execute referenced Operations of its incoming
edges, 2) use the value of Attribute a in epData as the corresponding Parameter a’s value of the
executed Operation, 3) use geo_obj to hold intermediate values;
 Add a return statement at the end of computeN() which returns geo_obj;
 Append statements to computeEp() which update the geometry value of epData by
executing computeN();
 Else if n represents a cyclic subgraph cyc Then
 Add a member Datatype Cyc to ComputeEp38;
 For each node n_cyc within cyc
 Add an Attribute of corresponding n_cyc’ s type in epData to Cyc;
 End for;
 Set the return type of computeN() to Cyc;
 Add local Object cyc_obj of the Cyc type to computeN();
 Add a return statement to the end of computeN() which returns cyc_obj;
 Append statements to computeEp() which execute computeN() and assign
involved attribute values of epData with values of computed cyc_obj;
 End if;
 End if;
 End if
End for;

 Listing A.5-c CreateComputeActivity
(Graph G, Class ComputeEp, Object epData, Operation computeEp()).

38 Create a compound datatype to return multiple values. The specific form of the multiple return values in an
implementation combined with PIM-PSM transformations should be adapted to the chosen platform. The
compound datatype is only one strategy.

128

Appendix B: SEDL Descriptions for Use Cases
 This appendix provides the SEDL descriptions for use cases in Chapter 7, written in the
demonstrative implementation of SEDL with textual concrete syntax as introduced Chapter 6.

B.1 SEDL Description for the Alternative Path Assessment Use Case

129

130

B.1 SEDL Description for the Alternative Path Assessment Use Case

131

132

Declaration of Authorship

I, Liqun Wu, born on June 12, 1987 in Anhui, China, hereby declare that I am the sole author of
the thesis with the title “A Language-Driven Development Framework for Components to
Generate Environmental Data for Simulation Scenarios” and have not used any sources other
than those specified. I further declare that I have followed the general principles of scientific
work and publications, as defined in the guidelines of good academic practice of the Carl von
Ossietzky University of Oldenburg.

 Liqun Wu Date

