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Zusammenfassung

Tiefe neuronale Netze (engl. deep neural networks (DNNs)) sind sehr erfolgreich bei
verschiedenen anspruchsvollen Aufgaben, z.B. bei der Bild- und Sprachklassifikation.
In den letzten Jahren gab es jedoch eine rasante Entwicklung bei den sogenannten
gegnerischen Angriffen. Die Grundidee der gegnerischen Angriffe besteht darin, einen
vorhandenen Input zu manipulieren oder einen neuen Input zu erzeugen, der von einem
DNN als eine bestimmte Klasse klassifiziert wird, während der Input von einem Menschen
völlig anders klassifiziert wird. Ein Beispiel, auf das im Zusammenhang mit gegnerischen
Eingaben oft Bezug genommen wird, weil es höchst sicherheitskritisch ist, ist das autonome
Fahren. In diesem Zusammenhang ist ein übliches Szenario die Manipulation eines
Stoppschildes, damit es von einem DNN als Vorfahrtschild erkannt wird, während ein
Mensch noch immer ein Stoppschild erkennen würde.

Nachdem die Grundlagen des maschinellen Lernens, insbesondere neuronale Netze, und
gegnerische Eingaben im Allgemeinen vorgestellt wurden, wurde ein neues gegnerisches
Angriffsszenario eingeführt und untersucht. Um auf das Beispiel der Manipulation von
Straßenschildern zurückzukommen, wurde in der bisherigen Literatur üblicherweise davon
ausgegangen, dass ein Angreifer das Straßenschild physisch manipuliert. Zum Beispiel
durch das Abdecken des ursprünglichen Straßenschildes mit einer manipulierten und
gedruckten Version oder durch das Anbringen von graffitiähnlichen Aufklebern oder
Streifen auf dem ursprünglichen Straßenschild. Bei der vorgeschlagenen Methode wurde
die Notwendigkeit der physischen Manipulation dadurch ersetzt, dass die Störungen mit
einem Videoprojektor auf das Straßenschild projiziert wurden. Dadurch sind Angriffe
wahrscheinlich schwieriger zu erkennen und im Falle eines Unfalls ist es schwieriger, das
Versagen des autonomen Fahrsystems zu beweisen. Durch die Durchführung dieser Arbeit
wurde verstärkt, wie anfällig DNNs gegenüber manipulierten Eingaben sind, und die
Notwendigkeit zuverlässiger Abwehrmechanismen erhöht.

Anschließend wurde eine Abwehrtechnik zur Erkennung und Korrektur von gegner-
ischen Eingaben im Bereich der Bildklassifikation eingeführt. Die Motivation für diesen
Ansatz war, dass gegnerische Eingaben unvermeidlich sind, und es wurde vorgeschlagen,
diese durch interne gegnerische Angriffe als Mittel der Verteidigung zu erkennen. Nach
einem erneuten Angriff werden gegnerische Inputs als adversarial−1 Inputs bezeichnet.
Allgemeiner werden Eingaben nach dem internen Angriff als internes Gegenstück beze-
ichnet. In einer Vorstudie wurde der pixelweise Unterschied zwischen den ursprünglichen
und gegnerischen Eingaben, und ihrem entsprechenden internen Gegenstück untersucht.
Insbesondere in Bezug auf die pixelweise L2- und L∞-Norm war für die Änderung der
Klassifizierung eines ursprünglichen Inputs mehr Störung erforderlich als für die Änderung
der Klasse eines bereits manipulierten gegnerischen Inputs. Außerdem kehrten bis zu
89,94% der ursprünglich gegnerischen Eingaben nach dem internen Angriff in ihre ur-



sprüngliche Klasse zurück. Auf der Grundlage dieser Beobachtungen wurden interne
Klassifizierer trainiert, um gegnerische Eingaben zu erkennen und sie in die ursprünglich
richtige Klasse zu transformieren.

Um zu zeigen, dass das Gesamtkonzept verallgemeinerbar ist, wurde der Prozess auf die
Sprachklassifizierung übertragen. Da bei der Sprachklassifikation die Angriffe teilweise
andere Eigenschaften haben als in der Bildklassifikation, musste der Mechanismus leicht
angepasst werden. Es war möglich, eine dem Stand der Technik entsprechende kontradik-
torische Erkennungsgenauigkeit zu erreichen, und außerdem konnte die ursprüngliche
wahre Klasse bis zu einem gewissen Grad wiederhergestellt werden.

Wenn dem Angriff jedoch mehr Wissen über die Verteidigung zur Verfügung gestellt
wird, war es möglich, Eingaben zu konstruieren, die von einem unverteidigten Bildklas-
sifikator korrekt klassifiziert wurden, aber die vorgeschlagene Verteidigung erkennt sie
als gegnerische Eingaben. Daher wurde untersucht, ob es möglich ist, die Richtung
zu bestimmen, in der eine unbekannte Eingabe die Entscheidungsgrenze des Bildklas-
sifikators durch den internen Angriff überschreitet. Dazu wurden die Ausgaben der
Zwischenschichten des Bildklassifikators untersucht. Basierend auf diesen Ausgaben
wurde die Mahalanobis-Distanz zu bereits gefundenen Clustern berechnet, insbesondere
wurden die Unterschiede zwischen den Abständen vor und nach dem internen Angriff
bestimmt. Die Annahme, dass die Richtung aufgrund der Unterschiede identifiziert
werden kann, konnte nicht bestätigt werden. Aber sie könnten dazu verwendet werden,
um gegnerische Eingaben zu erkennen, oder noch allgemeiner out-of-distribution data
(OOD) (dt. Daten, die außerhalb einer bekannten Verteilung liegen). Schließlich wurden
die Fragestellungen gegnerische und OOD Eingaben zu erkennen kombiniert und auf
der Grundlage der Unterschiede in der Mahalanobis-Distanz wurden vielversprechende
Ergebnisse gefunden.
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Abstract

Deep neural networks (DNNs) are very successful in various challenging tasks, e.g.,
image and speech classification. However, in recent years rapid developments in so-called
adversarial attacks were made. The basic idea of adversarial attacks is to manipulate an
existing or create a new input, to be classified as a specific class by the DNN, while the
input is classified completely different by a human. An example which is often referred
to in the context of adversarial inputs, because it is highly safety-critical, is autonomous
driving. In that context, one usual scenario is to manipulate a stop sign to be recognised
as a priority road sign by the DNN, while a human would still recognise a stop sign.

After presenting the basics on machine learning, in particular neural networks, and
adversarial inputs in general, a new adversarial attack scenario was introduced and
investigated. Returning to the example of manipulating street signs, previous literature
usually considered that an attacker manipulates the street sign physically. For example,
by covering the original street sign with a manipulated and printed version, or to attach
graffiti-like stickers or stripes to the original street sign. In the proposed method, the
necessity of physical manipulation was substituted by projecting the perturbations onto
the street sign with a video projector. Thereby, attacks are probably more difficult to
detect and in case of an accident, it is more difficult to prove the failure of the autonomous
driving system. By conducting this work, it was reinforced how prone DNNs are to
manipulated inputs, and therefore enhanced the necessity for reliable defence mechanisms.

Afterwards, a defence technique to detect as well as reform adversarial inputs was
introduced in the domain of image classification. The motivation for the approach was
that adversarial inputs are inevitable and it was proposed to detect them by applying
internal adversarial attacks as a means to defend. Adversarial inputs, after being
attacked again, are called adversarial−1 inputs. More generally, inputs after the internal
attack are referred to as internal counterpart. In a preliminary study, the pixel-wise
difference between initially original and adversarial inputs, and their corresponding
internal counterpart were investigated. In particular regarding the pixel-wise L2- and
L∞-norm, more perturbation was required to change the classification of an original
input, than for changing the class of an already manipulated adversarial input. Also, up
to 89.94% of initially adversarial inputs returned to their original class, after the internal
attack. Based on these observations, internal classifiers were trained to detect adversarial
inputs and transform them into the original correct class.

To show that the overall concept is generalisable, the process was transferred to speech
classification. Since in speech classification the attacks have partially different properties
than in image classification, it was necessary to adapt the mechanism slightly. It was
possible to achieve state of the art adversarial detection accuracy, and besides, the original
true class was able to be restored to a certain extend.



However, giving the attack more knowledge about the defence, it was possible to
construct inputs which were classified correctly by an undefended image classifier, but
the proposed defence detects them as adversarial. Hence it was studied if it is possible to
determine the direction in which an unknown samples crosses the decision boundary of the
image classifier when attacked internally. To do so, the outputs of the intermediate layers
of the image classifier were examined. Based on these outputs the Mahalanobis distance
towards previously found clusters was calculated, in particular, the differences between
the distances before and after the internal attack were determined. The assumption that
the direction can be identified based on the differences, could not be confirmed. But they
could be used to detect adversarial inputs, or even more generally out-of-distribution
data (OOD). Finally, the problem of adversarial input and OOD detection were combined
and based on the Mahalanobis distance differences promising results were found.
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1. Introduction

In recent years, machine learning in the form of so-called deep neural networks (DNNs),
has become more and more ubiquitous in everyday devices such as mobile phones or
smart home systems. One common application for DNNs is image processing, which is
implemented in various scenarios. Some are arguably less sensitive, such as the automatic
tagging of images uploaded to cloud storages like Google Photo [Goo]. Other applications
can be at least security-sensitive, like the usage of face recognition in border control, as
used by the United States Customs and Border Protection (CBP) [CP]. Whereas other
applications can be even live critical, like image processing in health care [Fin+19] or
autonomous driving where image processing is used to detect obstacles, pedestrians, and
street signs.

Another common application of DNNs is speech recognition. Smart home devices
like Amazon’s Echo Dot or Google’s Google Home solely rely on speech commands to
assist at home. In some scenarios, the application is again arguably less sensitive, like
searching for a specific song or artist to play their music. If the smart home device
is connected to a credit card or other smart home devices such as smart locks, voice
commands could become at least security-critical. In some cases, voice commands can
even become life-critical. For example in semi-automatic cars like the ones produced by
Tesla, which can partly be controlled by voice commands.

Pointing out those safety-critical applications is necessary since recent history has
shown that DNNs are prone to so-called adversarial inputs. This term was coined by a
publication of Szegedy et al.[Sze+14], who in 2013 demonstrated that small perturbations
to an input lead to misclassification by the employed DNN. An example of such a
manipulation is given in Figure 1.1. The original input in Figure 1.1a is correctly
classified as ‘giant panda’ by a given DNN, while the adversarially manipulated version
(see Figure 1.1c) is classified as ‘chow-chow’. However, to a human, both images look the
same and the perturbation is shown in Figure 1.1b had to be enhanced to be visible.

Revising the safety-critical applications in image processing, it has been exposed that
face recognition systems could be fooled to match a given input image to a different
identity (e.g., [DZJ19]). This could potentially be used for identity theft during the,
e.g., registration process for border crossing. In the health care domain, Finlayson et
al. [Fin+19] converted an image of a benign mole to be detected as malignant, which could
lead to unnecessary or even harmful treatment. The other way around, manipulating a
malignant input to be detected as benign can lead to possible harm because necessary
treatment is not provided. In the example scenario of autonomous driving, the probably
most prominent way of fooling the image classification is to manipulate a stop sign to
be classified as a priority road sign, e.g., as demonstrated by Eykholt et al. [Eyk+18].
Another scenario is pointed out in the work of Ranjan et al. [Ran+19], in which the
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1. Introduction

(a) Original image, correct clas-
sified as giant panda.

(b) Perturbation added to the
original image, to create the
adversarial image.

(c) Adversarial image, classified
as chow-chow.

Figure 1.1.: Example for an adversarial input, imperceptible for a human being.

authors used a printed patch which hinders the detection of movements. Thereby, for
example, pedestrians present in the detected image are not recognised.

More recently, in the speech domain, similar attacks have been applied. For example,
Schönherr et al. [Sch+19]1 transformed a spoken sequence, which has initially been
correctly recognised and transcribed by a neural network as:

“Specifically the union said it was proposing to purchase all of the assets of
the of the United Airlines including planes gates facilities and landing rights.”

After transformation, the spoken sequence is indistinguishable for a human listener
but recognised and transcribed by the system as:

“Deactivate security camera and unlock front door.”

The given example demonstrates that if certain smart home devices are present,
adversaries can, for example, unlock a home for the intrusion. The necessary audio clips
can be hidden in, e.g., YouTube videos, or played via radio as adds. Thereby, such
attacks could also be used to attack semi-autonomous cars. Currently, the list of accepted
commands might be small, but already directing the mirrors or the steering wheel to
adjust rapidly to different positions, could distract the driver and lead to accidents.

1.1. Structure of the Thesis
In this thesis, two aspects of adversarial inputs are investigated, namely adversarial
attacks and adversarial defences. To provide a basis, in Chapter 2, the general field of
machine learning is introduced. In particular, classification is introduced in Section 2.1 as
the general objective in this thesis and supervised learning (Section 2.2) as the considered

1https://adversarial-attacks.net
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1. Introduction

training process. In Section 2.3 the models used for the considered classification tasks,
so-called artificial neural networks (ANNs), are introduced. Starting from their basic
components, backpropagation as a training process deserves special attention, as the
process is important for the adversarial attacks.

From Chapter 3 on, the focus is set to adversarial inputs, by first reviewing important
concepts like distance measures (Section 3.2) to quantify the quality of adversarial inputs,
the general taxonomy of adversarial attacks (Section 3.3), and the taxonomy of adversarial
defences (Section 3.4). As the transition to the first contribution, in Section 3.5 the
fast gradient sign method (FGSM) is outlined, which is one of the earliest adversarial
attacks and implements concepts, which are also used by more recent attacks. Those
used in later chapters are introduced in the Section 3.6. Based on the initial observation
that adversarial inputs exist in the digital world, they have been transferred to the real
world more recently. One of the earlier works considering the transfer to the real world
is reviewed in Section 3.7.

Talking about transferring adversarial manipulations into the real world, one common
use case are autonomous cars, and in particular, the scenario of manipulating a stop sign
to be classified as a priority road sign is a frequent example. Most preliminary work
is based on manipulating the street sign physically, by sticking a digitally manipulated
print out over the real street sign, or otherwise physically manipulate the environment.

In Chapter 4 a new threat model is proposed, in which the adversarial manipulations
are projected onto existing street signs with a home projector, or a limited projector
like a laser pointer. After introducing necessary adaptations for the proposed scenario
in Section 4.1 and the experimental setup in Section 4.2, the corresponding results are
presented in Section 4.3.

The Chapters 5 to 7 focus on a new adversarial defence. The basic idea of the
proposed defence is to adversarially attack an unknown input in an internal process. If
an adversarial input is attacked internally, the resulting sample is called adversarial−1.
In general, the outcome of the internal attack is referred to as internal counterpart of
an initial input. Based on the different behaviour of original and adversarial inputs
when attacked internally, the aim is to 1) detect and 2) revert adversarial inputs to
their original true class. After motivating and outlining the idea in more detail, the
overall workflow of the proposed defence is introduced in Section 5.1, followed by the
experimental setup in Section 5.2, and the results in Section 5.3. The results in Chapter 5
are based on image classification.

To demonstrate that the approach is generalisable, in Chapter 6 the proposed adversarial
defence is transferred to the domain of speech recognition. After an introduction to
speech processing in Section 6.1, and the employed adversarial attacks in Section 6.2, the
approach and its corresponding adaptations necessary is outlined in Section 6.3. The
results are displayed in Section 6.4.

Based on the observations in Chapter 5, in Chapter 7 the existing method is extended
to consider the intermediate output of a given image classifier during the decision making
process. After explaining the motivations in more detail, the approach with its necessary
adaptations is described in Section 7.1, followed by the experimental setup in Section 7.2.
In Section 7.3, the corresponding results are reported and discussed.

3
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Finally, Chapter 8 concludes this thesis, and outline possible directions for future
research.

1.2. Preliminary Publications
Some results and contributions presented in this thesis have previously been published in
the following conference articles:

• Results and concepts of Chapter 5 are partly partly published in:
– Nils Worzyk and Oliver Kramer. “Properties of adv-1 - Adversarials of

Adversarials”. In: 26th European Symposium on Artificial Neural Networks,
ESANN 2018, Bruges, Belgium, April 25-27, 2018. 2018.

– Nils Worzyk and Oliver Kramer. “Adversarials -1: Defending by Attacking”.
In: 2018 International Joint Conference on Neural Networks, IJCNN 2018,
Rio de Janeiro, Brazil, July 8-13, 2018. 2018, pp. 1–8. doi: 10.1109/IJCNN.
2018.8489630.

• Results and concepts of Chapter 4 are partly partly published in:
– Nils Worzyk, Hendrik Kahlen, and Oliver Kramer. “Physical Adversarial

Attacks by Projecting Perturbations”. In: Artificial Neural Networks and
Machine Learning - ICANN 2019: Image Processing - 28th International
Conference on Artificial Neural Networks, Munich, Germany, September 17-
19, 2019, Proceedings, Part III. 2019, pp. 649–659. doi: 10.1007/978-3-030-
30508-6\_51.

• Results and concepts of Chapter 6 are partly partly published in:
– Nils Worzyk, Stefan Niewerth, and Oliver Kramer. “Adversarials -1 in Speech

Recognition: Detection and Defence”. In: 28th European Symposium on
Artificial Neural Networks, ESANN 2020, Bruges, Belgium, 2020 (in print).
2020.
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2. Machine Learning and Neural Networks

In contrast to traditional programming where the developer defines the behaviour of a
program explicitly, machine learning aims at providing a program, usually called model,
which adapts to a specific behaviour based on given data. In general, the model can be
seen as a function f (x,θ), which maps an I-dimensional input or feature vector x to an
J-dimensional output or prediction vector y, depending on the internal parameter vector
θ of the model. Formally this can be written as:

f (x,θ) : x ∈ RI → y ∈ RJ , I,J ∈ N . (2.1)

Within the broad field of machine learning, there are different dimensions used to
specify different approaches. One dimension is the task the model should solve. In
this thesis, the focus is on classification, which is introduced and defined in Section 2.1.
Besides classification, Regression and Reinforcement Learning are two other general types
of problems tackled with machine learning. For more information on those tasks, I refer
to, e.g., [GBC16] or [RN16].

Another dimension is the accessibility of data during the learning process. In this thesis,
supervised learning is assumed, which is explained in Section 2.2. Aside from supervised
learning, there exists the scenario of unsupervised learning, where less knowledge about
the training data is considered. For more information on unsupervised learning I refer to,
e.g., [GBC16] or [RN16].

After introducing these basic concepts, in Section 2.3 ANNs are introduced, as they
are the models used in this thesis to classify image or audio inputs. At the hand of
an example the elements of ANNs, namely neurons (Section 2.3.1), common activation
(Section 2.3.2) and loss functions (Section 2.3.3), and backpropagation (Section 2.3.4) are
explained. In Section 2.4 a special form of ANNs is introduced, so called convolutional
neural networks (CNNs) which are very successful in, e.g., image classification.

If not otherwise referenced, the depiction in the following Sections is oriented to the
introductory books “Deep Learning” by Goodfellow, Bengio, and Courville [GBC16]
and the widely known “Artificial Intelligence: A Modern Approach” by Russell and
Norvig [RN16].

2.1. Classification
In this thesis classification is considered as main task, in particular image classification.
For a given model f , the general goal is to assign the correct of C classes to an unknown
input x. In terms of image classification, the input is usually an image of size h× w × z,
where h is the height of the image, w the width, and z the number of colour channels.
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Common values for z are 1, if the image is in grey-scale, or z = 3 if the image consists of
the three colour channels red, green, and blue. In addition, in image classification the
pixel values are commonly scaled to the interval [0,1]. Therefore, the general machine
learning Equation 2.1 can be reformulated to be

f(x,θ) : x ∈ [0,1]h×w×c → {1, . . . ,C} (2.2)

A more comprised formulation is y = f (x,θ), where y could be a single number
representing the chosen class {1, . . . ,C}. However, in modern classification models, y is
usually encoded as a vector y ∈ RC consisting of calculated values for each class. The
class with the highest value is assumed to be the chosen class c. Depending on the format
of the output, e.g., if the output values are in the interval [0,1], the scores are referred to
as probabilities or confidence scores for each class.

As a running example, email spam classification as depicted in Figure 2.1a is considered.
For the sake of simplicity, there are two types of words—good words which occur in
regular mails, and bad words which occur mainly in spam mails. Furthermore, it is
assumed that if the number of good words exceeds the number of bad words, the mail
should be classified as regular (blue area above the bold line). Otherwise, the mail should
be classified as spam (orange area below the bold line). Based on these assumptions, the
ideal decision boundary of the truth f∗ is given by the bold line.

However, in real-world problems like image classification, f∗ is not known and often
the true decision boundary is too complex to be derived directly. Therefore, somehow
the system has to learn, i.e., approximate f∗ by adapting to given samples of the true
function.

2.2. Supervised Learning
In supervised learning, f∗ is considered as an oracle, which implements the ideal behaviour
desired to approximate. However, the internal structure of an oracle is not accessible, but
the oracle can be queried with different inputs and returns the corresponding true output
y∗. For example, in image classification, the human decision is usually assumed to be the
ground truth. By querying the oracle, a dataset X of samples is created, each consisting
of an input feature vector x and a corresponding correct output y∗. The samples derived
by querying the oracle are called ground truth since they are assumed to be correct in its
prediction.

In the spam classification example, the feature vector consists of the number of good
and bad words, and the corresponding output is either regular or spam. In Figure 2.1b
samples are depicted, where circles represent regular inputs, and triangles depict spam
inputs, based on the decision of the true model f∗.

In supervised learning these samples are used to train a model f , to predict the
correct output for a given input as precisely as possible. However, if the model is only
trained and evaluated on the whole dataset X , in the worst case it simply memorises
all inputs and their corresponding outputs, and is not able to abstract the classification
to unknown inputs—the model over-fitted to the given data. But the capability to

6
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(a) All emails within the blue area above the
decision boundary (bold line) are classified
as regular, while the orange area below is
classified as spam.
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(b) Samples of regular mails (circles) and spam
mails (triangles), as classified by the under-
lying true model f∗.

Figure 2.1.: Schematic representation of the email classification problem. The bold line
represents the underlying true decision boundary.

abstract or generalise the classification behaviour to previously unknown inputs is a
very important feature of a good classification model. This is particularly important in
real-world scenarios when dealing with dynamic environments. To achieve generalisation,
and to counter memorisation, X is usually split into a training set Xtrain and a test
set Xtest, where Xtrain ∪ Xtest = X and Xtrain ∩ Xtest = ∅. During training, the model
only has access to the data of the training set to adapt to the given behaviour. After
the model has been trained, the generalisation capability is evaluated on the test set by
predicting previously unknown inputs. However, this could either only be done once,
after completing the training, or it could be done during the training process to reasoning
if the model already over-fitted to the training data or not. In the latter case, the test
data is seen during the training process, which should be avoided. Therefore, the training
data is further split into a smaller training and a disjunct validation set Xval. The new
training set is used to train the model, while the validation set is used to check the
generalisation capability during the training process. After having the model trained
to achieve a good classification accuracy and a good generalisation capability, the final
model is tested on the completely unknown test set. The necessity to split the complete
dataset X also shows that usually, it is necessary to acquire lots of samples to achieve a
good performance as well as generalisation capability. For modern image classification
tasks, the necessary amount of samples to achieve good generalisation is in the millions.

Aside from dataset splitting, there are several other techniques to further improve
the generalisation capability of machine learning models, e.g., regularisation or cross-
validation. The interested reader is therefore referred to the more complete books of
Goodfellow et al. [GBC16] or Russell and Norvig [RN16].
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2. Machine Learning and Neural Networks

2.3. Artificial Neural Networks

It has been shown that ANNs are very successful when it comes to complex classification
tasks1. In this thesis mainly feed-forward models are used, for which an example is
displayed in Figure 2.2. Formally, a feed-forward ANN is a directed acyclic graph
consisting of several neurons (circles). The original structure of neurons was introduced
in [MP87], where they were named Perceptron. To structure the graph, several neurons
are summarised to layers.

The raw input x, e.g., the pixel values of an image are fed to the input layer, which
has as many neurons as the dimensionality of the input. The last layer of an ANN is
called output layer since it returns the output or prediction. Therefore, the output layer
has as many neurons as the output dimensionality. All layers between the in- and output
layers are called hidden layers since they are hidden from direct access by a user.

The example in Figure 2.2 is furthermore called a fully-connected ANN because
each neuron of each layer is connected with each neuron of the following layer. The
connections between the different neurons represent the flow of the information through
the model, and while passing through the model, the information gets transformed by
weight matrices Wi and functions fi which is explained in more detail in Section 2.3.1.
Training an ANN means to adjust the weight matrices Wi to solve a specific task. The
most common routine to adjust the weights—referred to as backpropagation—is explained
in Section 2.3.4.

In addition to feed-forward fully-connected ANNs, there are other types of ANNs
tailored to solve specific tasks. For time series classification, so-called recurrent neural
networks (RNNs) are successful. The speciality of RNNs are that neurons of hidden
layers not necessarily feed their output to neurons of the following layer, but instead
recurrent connections of neurons to earlier layers or even the same layer are allowed.
Thereby, the output of a neuron in one time-step can influence the calculation of an
earlier neuron in a later time-step. In Section 6.1.2 an RNN is introduced in more detail
in the context of speech classification.

Another specialised type of ANNs are CNNs. They perform better when some sort of
locality is important, like in image classification. In Section 2.4 CNNs are explained in
more detail.

2.3.1. Perceptron

The basic elements of earlier ANNs have been perceptrons. Although, over time they
have been developed from the original version presented in [MP87]. In modern ANNs
the perceptrons are usually referred to as neurons. In Figure 2.3 the structure of a single
neuron is depicted and each neuron implements the general function

f̂
(
x̂,θ̂
)

: x̂ ∈ RÎ → ŷ ∈ R1 . (2.3)

1For a detailed historic overview of ANNs in general and successful applications, I refer to [Sch15]
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layer 1
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Figure 2.2.: Scheme of a fully-connected feed-forward ANN. Each layer is comprised of
several neurons (circles). The complete model is comprised of one input layer,
two hidden layers implementing the functions f1 and f2, and one output
layer implementing function f3. The weight matrices W1, W2, and W3
implement the relations between the different layers, described by weights
and biases.

x̂1
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ŵ2
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Figure 2.3.: Schematic figure of a neuron with the input features {x̂1, . . . ,x̂n}, their
corresponding weights {ŵ1, . . . ,x̂n}, the bias b̂, the sum ∑, the activation
function ϕ, and the output ŷ.
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2. Machine Learning and Neural Networks

Most left is the input vector x̂, containing the outputs of the connected neurons from
the previous layer. Each input x̂i is multiplied by a weight factor ŵi, and the weighted
inputs are summed up. Mathematically speaking, this is a vector multiplication to whose
result the so-called bias b̂ is added. The sum of the weighted inputs and the bias is
fed into an activation function ϕ, which calculates the output ŷ of the observed neuron.
Summarised, the function each neuron implements can be formalised as

ŷ = ϕ

∑
i∈Î

(x̂i · ŵi) + b̂

 . (2.4)

Generalising to an ANN, the weights between two consecutive layers are summarised
as weight matrix W (compare Figure 2.2), and the biases for each neuron of a given layer
are summarised as the bias vector b. Thereby, the output ŷ of a layer i in an ANN is
calculated by

ŷi = x̂i−1 ·Wi + bi
where x̂i−1 is the output of the previous layer as a row vector, and bi are the biases of
the observed layer as a column vector. Further more, all weight matrices and bias vectors
combined are referred to as the parameter vector θ of the model f .

2.3.2. Activation Function
The sum of Equation 2.4 can only describe linear relationships, but real world problems
are usually highly non-linear. Therefore, one desired property of the activation function ϕ
is to be non-linear. One prominent non-linear function is the sigmoid function, defined as

sigmoid (x̂) = 1
1 + e−x̂

= ex̂

ex + 1 . (2.5)

The output of sigmoid is a value between 0 and 1, as can be seen in Figure 2.4b,
which could directly be interpreted as probability or confidence score. Hence, the sigmoid
function is sometimes used as activation function in the output layer, to return the
probability that the input belongs to a certain class. Another common activation function
is rectified linear unit (ReLU) [GBB11] (see Figure 2.4a), which is defined as

ReLU (x̂) = max (0,x̂) . (2.6)

In particular, in current state of the art models, ReLU is preferred to other activation
functions like sigmoid due to its fast computation, simplicity, and better results [GBB11].
One drawback of ReLU in comparison to sigmoid is that the output values are not bound
to the interval [0,1]. Therefore, they can not directly be interpreted as probabilities. To
solve this issue, if ReLU is used in the output layer the results are usually transformed
at some point by the softmax function, defined as

softmax (x̂)i = ex̂i∑C
j=1 e

x̂j
= ŷi , (2.7)

10



2. Machine Learning and Neural Networks

where x̂ is the output vector of the last layer, i is the class for which the softmax value
should be calculated, and C is the total number of different classes. After application of
softmax, the new values for ŷi are in the interval [0,1] and ∑C

i=1 ŷi = 1, and therefore
can be interpreted as probabilities.
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(a) ReLU activation function.
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(b) Sigmoid activation function.

Figure 2.4.: Plot of two common activation functions.

2.3.3. Performance Measure

To evaluate the performance of a model f , a quantitative measure has to be defined.
Another name for the performance measure, especially during training is loss function
because it calculates the difference—the loss—of the output of f to the ground truth.

In image classification, the desired output y ∈ [0,1]C of a model is a value for each
class, which can be interpreted as probability of the input belonging to the class, i.e., a
probability distribution over all classes. To compare the predicted probability distribution,
the ground truth y∗ is also encoded as a probability distribution, where y∗i = 0 ∀i 6= c
and y∗c = 1, where c is the index assigned to the ground truth classification. This type
of encoding is referred to as one-hot encoding. To compare the probability distribution
calculated by f , and the one-hot encoded ground truth, a common loss function is the
cross entropy loss, defined as

L (y,y∗) = −
C∑
i=1

[
y∗i · log (yi)

]
. (2.8)

Since y∗i = 0 ∀i 6= c, and y∗c = 1, where c is the true class, Equation 2.8 is shortened to
be

L(y,c) = − log (yc) , (2.9)

which is referred to as negative log likelihood loss. Since usually softmax is applied before
calculating the loss, all values in y are in the interval [0,1]. Thereby, if the predicted
value for the true class is 0, i.e., the lowest value possible, the loss L is calculated to
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be ∞. If the prediction matches the ground truth perfectly, i.e., prediction and ground
truth are both 1 for the true class, L is evaluated to be 0. During the training process
it is therefore the goal to minimize the loss function by adapting the parameters of the
model accordingly (see Section 2.3.4).

However, the values of the loss function are difficult to interpret. Therefore, the quality
of a fully trained model is usually reported by the accuracy or error rate. The accuracy
(acc) calculates the proportion of correctly classified samples to the number of all samples
N

acc =
∑N
i=1 1

[
arg maxj (yi,j) = arg maxj

(
y∗i,j

)]
N

,

where j ∈ {1, . . . ,C}, and arg maxj is the class with the highest calculated value. The
indicator function 1 evaluates to 1, if the given condition is true. Contrary, the error
rate (err) is defined as the proportion of incorrect classified samples, i.e.,

err = 1− acc =
∑N
i=1 1

[
arg maxj (yi,j) 6= arg maxj

(
y∗i,j

)]
N

.

2.3.4. Backpropagation

The goal in supervised classification is to adjust the parameter vector θ of a model f
to adapt to a specific classification behaviour, given by observed samples. Probably the
most common routine to achieve this is backpropagation [RHW86]. To demonstrate
the algorithm, the simple feed-forward fully-connected ANN depicted in Figure 2.5 is
assumed to solve the spam classification problem introduced in Section 2.1. As a recap,
the goal is to calculate the probability of an unknown mail being regular (y1) or spam
(y2), based on the number of good words (x1) and bad words (x2). The neurons in the
network have ReLU (Equation 2.6) as activation function, softmax (Equation 2.7) is
applied to the outputs of the model, and the negative log-likelihood (Equation 2.9) is
used as loss function to quantify the performance of the model during training.
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Figure 2.5.: Simple ANN with two inputs, two hidden neurons, and two output neurons
to solve the spam classification problem. The result of the output neurons
are fed to a softmax function, which returns the final two prediction values
y1 and y2.

At the start of the process, the weights of the model, i.e., the parameter vector θ is
initialised at random. For simplicity, the bias for each neuron is omitted in the example.
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Different strategies to initialise θ can be used, where two common strategies are the
‘Xavier’ [GB10], or the ‘He’ [He+15] initialisation. Both strategies propose to use a
normal distribution with a mean of 0, but different strategies to calculate the standard
deviation. For the considered example, the weights are initialised by a normal distribution
centred around 0 and a standard deviation of 1, given in Table 2.1.

Table 2.1.: Randomly initialised weights by a normal distribution with mean of 0, and a
standard deviation of 1.

w1 = −0.4487 w5 = 0.4378
w2 = 0.8904 w6 = 0.5844
w3 = −1.8170 w7 = −0.3223
w4 = −1.2820 w8 = 0.4010

After initialisation, the first step of the backpropagation algorithm itself is to calculate
the output for a given sample. This step is called forward pass. Assuming the number of
good words is x1 = 80 and the number of bad words to be x2 = 50. The true prediction
therefore should be ‘regular mail’, i.e., y∗1 = 1 and y∗2 = 0. For the given input and
weights, the output of h1 is

h1 = ReLU
(
w1 · i1 + w2 · i2

)
= ReLU

(
(−0. 4487 · 80) + (0. 8904 · 50)

)
= ReLU

(
− 35. 896 + 44. 52

)
= ReLU

(
8. 624

)
= 8. 624

Doing the same calculation for the other neurons, the outputs given in Table 2.2 are
assumed.

Table 2.2.: Exemplary output vales of the internal neurons considering the weights of
Table 2.1.

h1 = 8.624 o1 ≈ 3.7756
h2 = 0 o2 = 0

Afterwards, the softmax function (Equation 2.7) is applied to the outputs:

y1 = softmax(o1) y2 = softmax(o2)
= softmax(3. 7756) = softmax(0)

= e3.7756

e3.7756 + e0 = e0

e3.7756 + e0

≈ 0.9776 ≈ 0.0224 (2.10)
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2. Machine Learning and Neural Networks

Based on these outputs, and considering that the true class should be y1 = 1, the loss
for the given sample is calculated by

L(y,1) = − log (y1)
= − log(0.9776)
≈ 0.0227

After the loss has been determined for a given sample, the second step of backpropaga-
tion is to calculate the partial influence of each weight on the overall loss. To find the
partial influence of a weight to the overall loss, the partial derivation of the loss has to
be calculated, concerning the single weights, formally

∂L (y,c)
∂wi

for i ∈ {1, . . . ,8} ,

where c is the true class. This also applies for the following equations.
However, L (y,c) is not directly dependent of the weights itself, but rather a chained

calculation of outputs of earlier neurons. Thus, going backwards through the model and
calculate the partial influence of the intermediate outputs is necessary, to calculate the
influence of the corresponding weights. Therefore, this second step is called backwards
pass. As for the example, the output y is dependent on the softmax calculation of o1
and o2. Formally, the chain rule is applied to get

∂L(y,c)
∂oi

= ∂L(y,c)
∂yc

· ∂yc
∂oi

, (2.11)

where i ranges over the number of inputs for the observed derivation from the previous
layer. Deriving the first term yields

∂L(y,c)
∂yc

=
∂
(
− log (yc)

)
∂yc

= − 1
yc

(2.12)

Unfolding the second term on the right side of Equation 2.11 yield

∂yc
∂oi

= ∂

∂oi
·
(

eoi∑C
j=1 e

oj

)
,

and applying the quotient rule grants

∂yc
∂oi

= ∂

∂oi
·
(

eoi∑C
j=1 e

oj

)
=

(
∂
∂oi
eoi
)
·
(∑C

j=1 e
oj
)
− (eoi) ·

(
∂
∂oc

∑C
j=1 e

oj
)

(∑C
j=1 e

oj
)2

=
(eoi) ·

(∑C
j=1 e

oj
)
− (eoi) · (eoi)(∑C

j=1 e
oj
)2 = eoc∑C

j=1 e
oj
·

(∑C
j=1 e

oj
)
− eoc∑C

j=1 e
oj

= yc · (1− yc) (2.13)
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Inserting Equations 2.12 and 2.13 into Equation 2.11 leaves us with

∂L (y,c)
∂oi

= ∂L (y,c)
∂yc

· ∂yc
∂oc

= − 1
yc
· (yc · (1− yc)) = −yc − y

2
c

yc

= yc − 1

Inserting the example output values given in Table 2.2 into Equation 2.10 with respect
to the desired classification, yields

∂L(y,1)
∂o1

= y1 − 1 = 0.9776− 1 = −0.0224 (2.14)

In general, the derivative of a function indicates the slope of the function, which in the
given example means that an increase of o1 leads to a decrease of L (y,1).

Following that strategy and proceeding further back through the model, to calculate
the derivatives of the hidden layer outputs, it is necessary to know that the derivative of
ReLU is

∂

∂x̂
ReLU (x̂) =

{
0 if x̂ < 0
1 if x̂ > 0

, (2.15)

where the derivative at position x̂ = 0 is undefined but solved by randomly choosing 0 or
1 as solution. Thereby, the influence of w5 on the output of o1 is calculated by

∂o1
∂w5

=
∂
(
ReLU (o1)

)
∂o1

· ∂o1
∂w5

=
∂
(
ReLU (h1 · w5 + h2 · w6)

)
∂ (h1 · w5 + h2 · w6) · ∂ (h1 · w5 + h2 · w6)

∂w5

=
∂
(
ReLU (h1 · w5 + h2 · w6)
∂ (h1 · w5 + h2 · w6) · h1

∣∣∣∣∣
h1=8.624,w5=0.4378,h2=0,w6=0.5844

= 1 · 8.625
= 8.625

Hence, knowing that increasing the value of w5 increases the value of o1 as well,
and recalling Equation 2.14, increasing o1 leads to a decrease in the overall loss. The
same process can be done for all parameters in θ of the model. The last step of one
backpropagation cycle is to adapt all parameters in θ of the model to minimise the loss
function. This process is generally called gradient descent and can be formalised as

θi = θi−1 − η∇L (x,y∗,θi−1) ,

where η is called learning rate and controls how much the parameters are changed, and
∇L (x,y∗,θi−1) is the gradient, i.e., the tangential vector pointing in the direction of the
steepest ascent, when evaluating L regarding a certain in- and output combination, with
the current parameter vector θi−1.

After all training samples have been processed once, the model has been trained for one
epoch. As in the example, the dataset can be processed sample by sample, and after each
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input, the parameters are updated. This approach is called stochastic gradient descent
(SGD), however, in real-world scenarios when hundreds, thousands, or even more training
samples exist, processing one input at a time has several drawbacks. One epoch can
take very long, and the parameter updates can be too noisy which reduces the stability
and generalisation capability of the learning process. In contrast, processing the whole
training dataset at once, i.e., calculate the gradient-based on all samples and update
the parameters only once, is called gradient descent. The problem of this approach is
that all samples together can be rather large and therefore difficult to process due to
memory limitations. Another disadvantage is that θ is only updated once, and hence the
training set has to be processed for many epochs to find a satisfying solution. The most
common solution is to use batch-wise gradient descent, i.e., divide the whole training set
into random disjunct subsets called batches of a given size, which are used to calculate
the parameter update. After each epoch, the batches are drawn again at random.

By adjusting the parameter vector θ iteratively, the model learns to adapt to the given
samples. In Figure 2.6 the spam classification example is extended accordingly. The
circles are the given samples of regular mails, the triangles depict samples of spam emails,
and the bold line is the decision boundary of the underlying truth f∗. The dotted line
symbolises the decision boundary for a model f , which was trained on the given samples
to separate them with the least possible loss. Ideally, the dotted line fits the solid line,
but this is hardly possible depending on the complexity of the problem to solve and the
given samples.
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Figure 2.6.: Example of a decision boundary of a model f (dotted line), trained to
separate the regular mails (circles) from the spam mails (triangles) with the
least possible loss. In comparison the underlying true decision boundary
(bold line) by the ground truth f∗.

2.4. Convolutional Neural Networks
Usually, the first groundbreaking success in image classification is attributed to Krizhevsky,
Sutskever, and Hinton [KSH12], when they reported a top-5 test error rate2 of 15.3% in the

2The top-5 error rate calculates the percentage of samples, for which the true class is not among the
five classes with the highest confidence scores.

16



2. Machine Learning and Neural Networks

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2012 competition [Rus+15].
One novelty of the proposed architecture was that it used convolutions which led to the
name CNN of architectures which leverage such convolutions. Where fully-connected
ANNs consider all outputs of the previous layer to calculate the output of one neuron,
CNNs make use of so-called filters or kernels to consider only parts of the previous output
to calculate their output on. This behaviour is depicted in Figure 2.7.
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Figure 2.7.: Example of a convolutional layer with two filters. Each filter is shifted
over the full input (depicted for three steps) but calculates only one output
per receptive field. In this example, the output is calculated as sum over
the elementwise product of the filter element and the corresponding input
element. Empty elements in the input and filter are considered to have the
value 0.

On the most left, the input image is displaying a diamond of 1’s. All other values of
the input are 0’s and therefore omitted. One important task in image processing is edge
detection to find the shape of certain objects. Therefore, two filters are considered, where
Filter 1 is detecting upward right diagonals, while Filter 2 is detecting downward right
diagonals. Both filters are shifted over the whole input (depicted for three steps) with a
certain step size called stride while observing the underlying area of the input, called
receptive field. The operation ∗ to calculate the output is called convolution and is in
the two-dimensional discrete case defined as

out (m,n) = ω ∗ in (x,y) =
wk−1∑
s=0

hk−1∑
t=0

ω(s,t) · i (x+ s,y + t)

where out (m,n) is the output for the position (m,n), ω is the filter matrix, in (x,y) is the
input at position (x,y), and wk, hk are the width, resp. the height of the filter matrix.
In the given example that would be 3 for both, width and height. Other common filter
sizes are 1× 1 or 5× 5, while in general the filter size depends on the problem to solve.
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By convolving, the spatial resolution of the input is reduced. In the example, the input
is 5 × 5 pixel large, while the output for each filter is 3 × 3 pixels. If a reduction in
spacial resolution is not wanted, the input can be padded. There are different strategies
for padding (see, e.g., Tang et al. [TOB19]), but one of the most common techniques
is to add 0’s around the input to extend the borders and thereby prohibit the spacial
reduction of the input3.

In Figure 2.7, convolving Filter 1 and the upper left area of the input leads to an
output of 3. However, when shifted to the upper right corner of the input, the output
value sums up to 1, because Filter 1 and the input values do not overlap well. In contrast,
convolving Filter 2 with areas of the input showing downward right edges, i.e., the upper
right and lower left area, the results are relatively large. By shifting both filters over the
whole input, the output resembles the matching of the filters for the observed receptive
fields.

In general, the values within the filters are considered as weights during the training
process, and therefore adapt to the specific task. In image processing, it has been
shown [Yos+15] that the filters in the first convolutional layer learn edge like structures,
as well as colour gradients. The number of filters per convolutional layer is depending on
the problem to solve, and architecture of the model. Commonly the number of filters
increases from the first to the last layer of a CNN, while the spatial resolution of the
output is reduced.

3For a more sophisticated review on convolution arithmetic, I like to refer the reader to the paper ”A
guide to convolution arithmetic for deep learning“by Dumoulin and Visin [DV16].
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3. Foundations of Adversarial Inputs

In Chapter 2 it was explained how ANNs learn to solve specific tasks, taking into account
the example of spam classification for which the final result of the training process is
recapped in Figure 3.1a. The circles and triangles represent the samples used for training.
Based on these samples a model f is trained, which implements the decision boundary
given by the dotted line. In comparison, the bold line represents the true decision
boundary given by the truth f∗. For both decision boundaries, samples above the line
are classified as regular emails, while samples below the line are classified as spam.
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(a) Example of a trained model f to classify
regular (circle) and spam (triangle) mails.
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(b) By increasing the number of good words
(arrow), a spam mail is converted into a
regular one, when classified by f . Classified
by f∗, the input would still be identified as
spam. The newly created input (cross) is
called adversarial input.

Figure 3.1.: Adversarial inputs as a consequence of the different decision boundaries of the
true and a trained model. The blue area above the true decision boundary
of f∗ (bold line) indicates the decision space for regular mails, where the
circles are observed samples. The orange area below the bold line contains
spam mails, with samples depicted as triangles. Based on the samples, a
model f is trained whose decision boundary (dotted line) does not exactly
fit the true decision boundary.

As shown in Figure 3.1a, the decision boundary of the trained model (dotted line)
and the true model (bold line) do not align. Thereof, areas in the feature space appear
which are classified differently by f and the underlying truth f∗. Those areas become
dangerous if adversaries manipulate existing samples to specifically fool a trained model,
while the same input would still be classified correctly by the underlying truth f∗. This
is exemplarily shown in Figure 3.1b, where the number of good words for a given spam
sample is artificially increased (arrow). Due to the manipulation, the new input (cross)
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3. Foundations of Adversarial Inputs

is classified as regular mail by f , as it lies above the dotted line indicating the decision
boundary. However, according to the underlying true decision boundary, the input should
still be classified as spam. This process can also be applied to regular emails, to falsely
be classified as spam. In general, inputs which are manipulated to be classified differently
by the trained model f in comparison to the underlying truth, are called adversarial
inputs. This term was used first by David et al. [Dal+04] to describe manipulated inputs
in the context of spam classification.

While the spam classification problem seems trivial, with an increasing number of
dimensions the needed perturbation for each of the dimensions to fool a model becomes
less and less. This is due to a general problem in machine learning, referred to as the
curse of dimensionality. First mentioned by Richard E. Bellman [Bel15] the problem
is that with the number of observed dimensions, the volume of the space described by
these dimensions increases exponentially. Consequently, the necessary number of samples
increases exponentially, when a high dimensional space should be sampled with the
same density as a low dimensional space. Exemplary consider the distance one meter,
which can be sampled by 100 evenly distributed centimetres. If the dimensionality is
increased by one, and hence the feature space is increased to be one square-meter, already
100× 100 = 10,000 samples are needed, to have the same equal narrow distribution of
the samples as for the one-dimensional meter. Considering this observation, the median
distance d for a number of samples N on a p-dimensional unit ball towards the centre is
calculated as [HTF13]

d (p,N) =
(

1− 1
2

1
N

) 1
p

. (3.1)

In image classification a common dataset is MNIST, which has N = 6000 samples
per class. Each image is 28 × 28 pixels large, and each pixel has a value in the set
{0,1, . . . ,255}. This leads to an overall dimensionality of 28 · 28 · 256 = 200,704, and
inserted into Equation 3.1 a median distance of ≈ 0. 99995 is calculated, i.e., the samples
are very near the edge of the unit ball. If the boundary of the unit ball is considered
to be the decision boundary of a trained model, the samples have only to be slightly
perturbed to cross the decision boundary. The assumptions made here are simplified to
demonstrate the problem, however, Shafahi et al. [Sha+19] outline a more sophisticated
proof that in particular for high dimensional inputs like modern images, adversarial
inputs are inevitable.

Considering the dimensionality of modern images, the difference between an original
and adversarial input is virtually invisible to humans, while these slight changes change
the classification of the targeted model. An example of such an adversarial input was
shown in Figure 1.1 in the introduction. The original image would be classified as ‘panda’
from both a human and the assumed image classifier. However, the adversarial input
would still be classified as ‘panda’, whereas the model classifies the input as ‘chow-chow’,
a certain dog breed.
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3. Foundations of Adversarial Inputs

3.1. Definition of Adversarial Inputs
In general, the problem statement of adversarial inputs is to find a manipulation δ,
which is minimal regarding a certain distance function D, such that the perturbed input
x + δ = x′ is classified different to the true class c. In addition, the manipulated input
should still be in the accepted input dimension I and value range of the model f to
attack. Considering image classification, the inputs are usually scaled to the interval
[0,1]. Formally written

minimise D (x,x + δ)
such that f (x + δ) 6= c

x + δ ∈ [0,1]I .
(3.2)

In Section 3.2, common measures to quantify the distance between two inputs are
introduced. Afterwards, an overview of the taxonomy of adversarial attacks is given
in Section 3.3, followed by the taxonomy of adversarial defences in Section 3.4. A
more thorough overview on adversarial inputs, attacks, and defences, is provided in
different survey papers, e.g., of Serban et al. [SP18], Papernot et al. [Pap+16], Huang
et al. [Hua+11], Barreno et al. [Bar+06], Chakraborty et al. [Cha+18], or Yuan et
al. [Yua+19]. In Section 3.5 one of the first proposed, and very famous adversarial
attacks concerning neural networks, the FGSM, is introduced. The ideas implemented
in FGSM are also used in various, and more recently developed adversarial attacks. In
Section 3.6 four additional attacks to FGSM are explained, which are used in the later
experiments. The last Section 3.7 introduces a framework, which has been proposed to
transfer adversarial attacks from the digital world to the physical, real world.

3.2. Distance Measures
As mentioned in Equation 3.2, the perturbation δ should be minimised according to a
certain distance metric D. A common way to quantify the size of an arbitrary vector x,
in this case the size of the perturbation, is to calculate a Lp-norm, formalised as

‖x‖p =
(∑

i

|xi|p
) 1
p

, (3.3)

where i is the index over all elements of the input vector, and 0 < p ≤ ∞. In the domain
of image classification, mainly three different norms are used to calculate the perturbation
δ, i.e., the distance between the original input x and the manipulated input x′.

L0 is mathematically not a norm and can not be calculated by Equation 3.3. If an
element xi = 0, 00 is undefined, as well as 1

0 in the exponent. Therefore, the
L0-“norm” is defined as ∑i 1 (δi 6= 0), where δi is an element of the perturbation
vector δ. It counts the number of altered inputs. However, this “norm” does not
take into account the degree of change of the inputs. In this thesis, when writing
L0-norm, it is referred to the L0-“norm”.

23



3. Foundations of Adversarial Inputs

L2 also called Euclidean norm or distance, is defined as ‖x‖2 =
√∑

i |xi|
2. Since small

changes, especially in the interval (−1,1), contribute less to the overall distance
than larger changes, the L2-norm may be small, even if many input features in x
are altered. With the increase of input dimensionality this becomes more and more
problematic.

L∞ also called maximum norm is defined as ‖x‖∞ = maxi (|xi|). Based on the calculation,
only the largest manipulation subject to a single feature contributes to the overall
distance. Therefore, if all other input features are distorted a bit less than that
maximum, L∞, in comparison for example to the L2-norm, would not increase.

Another distance used in Chapter 7 is the Mahalanobis distance DM [Mah36] defined
as

DM (x) =
√

(x− µ)T Σ−1 (x− µ) ,

where µ is the mean vector and Σ−1 the inverted covariance matrix of a given distribution.
Thereby, the distance of one single sample x to a observed distribution is quantified.

3.3. Taxonomy of Adversarial Attacks

The taxonomy in the field of adversarial attacks is not uniform [Pap+16; SP18; Hua+11;
Bar+06; Cha+18; Yua+19]. In this thesis three categories are used to differentiate
between adversarial attacks:

1. The objective of the attack (Section 3.3.1)

2. The capability of an attacker during an attack (Section 3.3.2)

3. The time at which an attack takes place (Section 3.3.3)

3.3.1. Objective of an Attack

While the general goal of an adversarial attack is to fool a given target model, the
objective in detail can be different and can change the decision which attack is used.
On a higher level, Serban et al. [SP18] differ between recognisable and unrecognisable
inputs. Recognisable adversarial inputs display something, which is recognised by humans
as a specific object, e.g., the ‘panda’ in the introduction (see Figure 1.1c). Contrary,
unrecognisable inputs display something seen as random noise or pattern by humans, but
which is classified as an object by a given model. An attack creating such unrecognisable
inputs was proposed, e.g., by Nguyen et al. [NYC15]. Another dimension to distinguish
adversarial inputs is whether they are generated from scratch, usually starting based on
random noise, or if they are created by modifying already existing inputs. Based on the
creation method, the adversarial inputs can meet different objectives. Following Serban
et al. [SP18], three different objectives are defined.
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1. Confidence reduction: An attacker aims to induce class ambiguity by reducing the
confidence score of the original correct class. As an example, a classifier is considered
which only accepts an input if the confidence score of the highest class is above 90%.
Hence, the classifier could be interfered, if an input is manipulated such that the highest
confidence is below 90%. This could sometimes already be achieved by applying random
noise to the input and not necessarily requires sophisticated attacks.

2. Misclassification or untargeted attack: In this scenario, the objective for an attacker
is to create an input, which is classified by a given model, however, the specific classification
is not relevant. Usually, untargeted attacks consider a source input, which is already
classified by the model and alter the original input to be classified as something else. As
an example consider a stop sign and the adversary would like to fool autonomous cars
to not stop. To achieve this goal, it is not necessary to alter the original input to be
specifically classified, e.g., as a priority road sign, as long as the car does not stop.

3. Targeted misclassification: Here the objective is to produce an input, which is
classified as a specific class. Usually, it is assumed, that the attacker manipulates an
existing correctly classified input, to be classified as a specific target class t by the target
model. For example, an existing stop sign is assumed which is classified correctly as such.
An adversary aims to manipulate the existing stop sign to be classified specifically as a
priority road sign.

3.3.2. Capability of the Attacker

Another dimension to classify adversarial attacks is the knowledge an attacker has about
the model to attack. In this thesis, the name convention of Serban et al. [SP18] is used.

White-box attacks consider full knowledge about the system to attack, i.e., the data
used for training, the full network architecture including applied defences, the parameters
θ of the network, and in particular the gradients of the model. Because of the detailed
knowledge, white-box attacks are considered to be the strongest, and also fastest attacks.

Grey-box attacks summarise several different scenarios, in which the attacker only has
partial knowledge about the system to attack. For example Papernot et al. [Pap+16]
differentiate between

• knowledge about the architecture of the system to attack, but no knowledge about
the training data, and

• knowledge about the training data, but no knowledge about the architecture.

To attack these type of grey-box scenarios, Goodfellow et al. [GSS15] reported that
adversarial inputs are transferable between different models trained on the same data.
This observation can be leveraged if the attacker does not know the model, but knows
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the training dataset. In that case, the attacker can train its own model on the given data,
create adversarial inputs by using white-box attacks and transfer the found adversarial
input to the model to attack. Some recent approaches following this strategy are from
Liu et al. [Liu+17], Wu et al. [Wu+18], Xie et al. [Xie+19b], and Dong et al. [Don+19].

In the later experiments, mainly a grey-box scenario is considered, where the attack
has full access to the image or audio classifier, i.e., can apply white-box attacks to the
classification model. However, no knowledge about the applied defences is available.

Black-box attacks assume that the attacker has neither knowledge about the internal
structure nor knowledge about the training data. However, an attacker can usually query
the unknown model with certain inputs and gets an output returned which complies the
internal structure.

Strengthening the scenario to be black-box, the attacker could query the model to
attack, to create a synthetic dataset resembling its input-output behaviour. Based on the
synthetic dataset, the attacker trains a substitute model simulating the target’s model
behaviour. Having full knowledge about the substitute model, the attacker could apply
white-box attacks to create adversarial inputs, which finally could be transferred to the
target model. This general strategy is investigated by Papernot et al. [Pap+17] or more
recently by Pengcheng et al. [LYZ18]. Depending on the allowed maximal perturbation,
the success-rate, i.e., misclassification of transferred adversarial inputs, ranges from
around 5% for very low perturbation levels, to around 90% for higher perturbation levels,
on the datasets they investigated.

Another approach to tackle black-box scenarios is to employ derivative-free optimisation
techniques like natural evolutionary strategy [Ily+18] or other evolution-based methods.
One measure to quantify the effectiveness of black-box attacks is the number of queries
towards the target model, necessary to create an input fooling the classification. In one
recent publication by Guo et al. [Guo+19], the authors, for example, attack the Google
Cloud Vision API, which returns a list of labels with corresponding confidence scores for
arbitrary inputs. Neither the architecture, nor the data used for training are known, but
Guo et al. report that 70% of their attacks are successful within a limit of 5,000 queries.

The frequency, attacks are applied towards the system to attack, is another way to
describe the capability of an attacker, as Yuan et al. [Yua+19] point out.

Single-shot attacks manipulate the input only one time. The advantage is that the
attack is fast, i.e., the attacker takes an original input, manipulates it by a predefined
amount of perturbation, and feeds the manipulated input into the model to attack.
However, if an attacker is only capable of perturbing an input once, the perturbation
might be too small to fool the neural network and the attack would not be successful. Or,
the perturbation could be too large and therefore do not fulfil the minimal perturbation
criterion formalised in Equation 3.2. For the latter case, Serban et al. [SP18] note that
the necessity of the minimal perturbation criterion is debatable. They argue that in a
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real-world scenario, e.g., in autonomous driving, no longer humans are involved in the
process of image classification, and therefore the perturbation not necessarily have to be
unnoticeable for humans.

Aside from creating specific perturbations for each input, it is possible to create so-
called universal adversarial perturbations [Moo+17; Liu+19a]. Those have the property
to be transferable between inputs, i.e., the same perturbation pattern applied to different
inputs fool the system to attack into misclassification.

Iterative attacks manipulate the input iteratively, starting with small perturbations
which are increased, until the manipulated input is classified as desired. In contrast to
single-shot attacks, iterative attacks take longer, but as an advantage, they can achieve
the minimal or at least more optimal perturbations. This requirement becomes more
important when the perturbation has to be invisible to humans, e.g., when a human is
involved in the classification/verification process, like in border control. Besides, the
optimal perturbation to change the classification as desired, in particular for targeted
attacks, is dependent on the specific input. Some transitions require less perturbation as
others, and thereby using a predefined amount of manipulation can enhance the problems
of single-shot attacks.

3.3.3. Time of the Attack

The whole process of employing a machine learning classifier can be divided into two
phases. At first, the model is trained, and after the training phase, it is deployed and
can only process new given data. The second phase is called the inference phase. During
both phases, attacks can take place.

Poisoning attacks take place during the training phase, by poisoning the training
data to achieve a certain objective. For example, the attacker would like to achieve
that street signs are classified wrong when a sticker is attached to them. Therefore,
he could manipulate the training data in a way that unmodified street signs are still
classified correctly, but street signs with a sticker attached are classified wrong. This
is proposed, e.g., by Gu et al. [Gu+19]. Other attacks considering this scenario are
investigated in, e.g., [Che+17; WC18]. However, poisoning attacks are not considered in
later experiments.

Evasion attacks take place during inference, i.e., after the model was fully trained.
Here, it is the objective to create inputs which are wrongly classified, based on a given
model. Consider an autonomous car whose systems are already trained. The objective
is to create certain inputs to fool the car, e.g., to classify a stop sign as a priority sign,
based on the already trained systems.
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3.4. Taxonomy of Adversarial Defences
Adversarial defences are usually divided into proactive and reactive approaches. Serban
et al. [SP18] mention a third category—obfuscation defences—but mention themselves
that those techniques heavily overlap with other proactive approaches. Therefore, only
the terms proactive and reactive are used in this thesis.

Proactive defences aim to make the model itself more robust against adversarial inputs.
This is done during the training phase, such that in inference no additional computations
have to be executed.

Reactive defences aim to identify adversarial inputs during inference and process them
accordingly afterwards. This can either be done by rejecting adversarial inputs at all or
trying to restore the original true class.

A clear differentiation between several proposed techniques is, however, not possible
because they often implement proactive and reactive approaches within one technique.
In the following sections, some examples of recent defence techniques are explained.

3.4.1. Binary Classification

In addition to an initial model f1 trained as a usual image classifier, Gong et al. [GWK17]
propose to train an additional binary model f2, based on original and adversarial samples,
to distinguish between them based on the raw pixel values. On first-round attacks, i.e.,
inputs which are adversarial regarding f1, around 100% of the adversarial inputs are
detected as such by f2. However, the authors find that in case of a second-round attack,
i.e., inputs which are created to be adversarial to f2 as well, the binary classifier has a very
high false-negative rate—basically, all inputs are detected as adversarial. In real-world
problems the implications of such behaviour are debatable. The authors state that they
don’t see a problem because the goal is to block adversarial inputs. On the other hand,
if more or less all inputs are identified as adversarial and have to be processed manually,
there is no need for a machine learning classifier in the first place. Also, they face another
drawback, in that the binary classifier is sensitive to the amount of perturbation of the
adversarial images. If the binary classifier is trained on adversarial images with a fixed
amount of perturbation, but an attacker creates adversarial images with less perturbation,
the accuracy of the binary classifier reduces.

3.4.2. Model Regularisation

A common technique to make models generally more robust is to apply random noise to
the training samples, i.e., the features during the training process [SD91]. Traditionally,
noise is only added to the input features, but more recently, e.g., He et al. [HRF19]
propose to inject noise to the parameters of a model as well as the outputs of the hidden
layers, to increase the robustness against adversarial attacks. Besides, they propose to
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control the magnitude of the applied noise by a parameter, which itself is adapted during
training.

3.4.3. Adversarial Training

Instead of including randomly perturbed inputs into the training process, Szegedy et
al. [Sze+14] propose to include adversarial inputs into the training process as a mean
of regularisation. This process is referred to as adversarial training or retraining. In
addition to stronger robustness against adversarial inputs, Szegedy et al. [Sze+14] also
report an increase in the overall generalisation capability of their model. However, due
to the limited memory BFGS (L-BFGS) [LN89] attack they use, the overall process is
computational very expensive and therefore not practical.

In [GSS15], Goodfellow et al. introduce a faster attack method (Section 3.5), and
based on their FGSM, they extend the used training loss function to incorporate an
adversarial objective function. Testing their model, they report a better classification
accuracy on clean data, while additionally reducing the adversarial error.

However, one major drawback of adversarial training is that the perturbation level of
the adversarial inputs during training has to be predefined. Therefore, this technique is
not robust against iterative adversarial attacks, as, e.g., Kurakin et al. [KGB17b] show.

In a more recent approach, Madry et al. [Mad+18] propose to harden a model against
adversarial inputs by “replacing the input points by their corresponding adversarial
perturbations and normally training the network on the perturbed input” [Mad+18].
Thereby, they report promising results, but at the same time show that the approach is
still prone to iterative attacks.

3.4.4. Data Preprocessing

Aside regularising the model, data preprocessing is another approach to defend against
adversarial inputs. Buckman et al. [Buc+18], for example, motivate to use input trans-
formations, to “break the linear extrapolation behaviour of machine learning models
by preprocessing the input with an extremely non-linear function. This function must
still permit the machine learning model to function successfully on naturally occurring
inputs” [Buc+18]. Therefore, they propose to round the real-valued inputs of the interval
[0,1] into bins, e.g., values in the interval [0,0. 1) to be in bin 0, values in [0. 1,0. 2) are in
bin 1, and so forth. These bins are encoded as binary vectors, either in one-hot or in
thermometer encoding. In Table 3.1 some examples for these two types of encoding are
given.

Shaham et al. [Sha+18] also experiment with input transformations, namely “low-
pass filtering, PCA, JPEG compression, low resolution wavelet approximation, and
soft-thresholding” [Sha+18]. They show that JPEG compression and soft-thresholding
achieve better accuracies, compared to an unprotected model when attacked. However,
depending on the attack, the defensive effect is small and only occurs with stronger
perturbation levels. For lower perturbation levels, all input transformations even reduce
the classification accuracy of the baseline model. More recently, Liu et al. [Liu+19b]
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Table 3.1.: Example mapping of real-valued inputs to the corresponding one-hot-encoding,
resp. thermometer-encoding, as introduced by Buckman et al. [Buc+18].

Real-valued One-hot Thermometer
0.13 [0100000000] [0111111111]
0.66 [0000001000] [0000001111]
0.92 [0000000001] [0000000001]

propose a revised version of JPEG compression to a) maximise the filtering of malicious
features in adversarial inputs, and b) minimise the false-classification of benign inputs.
Based on their enhanced compression technique, they report a small degradation of ≤ 1%
in accuracy on benign inputs, while improving the classification accuracy of adversarial
inputs from ∼ 20% to ∼ 90%.

3.4.5. Building Robust Model Architectures

Another approach to defending against adversarial inputs is by modifying the architecture
of the model. Meng et al. [MC17] for example propose to use a specific form of ANNs,
so-called auto encoders (AEs) [HZ93]. The structure of an AE can be divided into two
separate ANNs. The first part, called encoder, takes as input the original sample and
usually returns an output of smaller dimension than the original input, called latent space.
Based on the reduced representation of the raw input, the second part, the so-called
decoder, tries to restore the original input. During training, the whole model learns the
most efficient low dimensional representation of the original input, to restore the original
input as accurately as possible.

Based on the error between the in- and output, Meng et al. identify adversarial
inputs. In addition, they use a specific form of AEs, so-called denoising auto encoders
(DAEs) [Vin+08], to restore the original class of adversarial inputs. During the training
of DAEs noise is added to the original inputs, but the restored input, i.e., the output
of the model is compared to the clean original input. Thereby, the model learns to
remove noise. However, Meng et al. report that the restoration is only possible for small
amounts of adversarial perturbation. Lamb et al. [Lam+18] further propose to include
several DAEs between the hidden layers of a given model to remove adversarial noise
successively. More recently, Jia et al. [Jia+19] also propose to use a variant of a DAE,
which compresses the original 24-bit maps describing the colour information of an input
to 12-bit maps. In the latent space Gaussian noise is added “to improve the reconstructed
quality, and further enhance the defense ability” [Jia+19]. Afterwards, the original input
is reconstructed based on the noisy reduced version of the input.

Xie et al. [Xie+19a] propose a different approach to clean (adversarial) noise by so-
called denoising blocks, which can be added to existing model architectures. Those blocks
provide denoising operations like non-local means, bilateral, mean or median filters.
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3.4.6. Ensemble Techniques

All prior defences are applied to a single model. However, using an ensemble of models is
another common way to achieve better and more robust performance. One usual way to
employ ensembles is to train different single models independently, to achieve the best
possible classification accuracy on its own. Afterwards, the predictions of the different
models are evaluated by a simple majority vote1 to determine the final prediction. The
intuition is that each model has its own decision boundary, which are similar but not
identical among the ensemble members. This is due to the randomness in the training
process, e.g., by the random initialisation. Thereby, some inputs are classified wrong
in one model but are classified correctly in another. Even though adversarial inputs
are transferable between models (Section 3.3.2), the success rate of adversarial attacks
decreases when transferring manipulated inputs. Tramèr et al. [Tra+18] propose to
combine an ensemble of models and adversarial training, to counter the transfer property
of adversarial inputs. For each model, adversarial inputs are created and included in
the training set. More recently, Pang et al. [Pan+19] propose a new training regime for
ensembles, to increase the diversity between the ensemble members. Thereby, they can
further increase the adversarial robustness.

Abbasi et al. [AG17] propose a different approach levering ensemble techniques. They
observed that for each possible class, an untargeted FGSM attack had a high tendency to
change the classification only to a limited number of false classes. Based on the calculated
confusion matrix, they trained an ensemble of specialist models. Each specialist is only
trained on a subset of classes, and thereby specialised to distinguish between those classes.
In addition to the specialists, they trained a general model to differentiate between all
classes. During inference, they found that the prediction confidence score for adversarial
inputs decreases, in comparison to benign inputs. This observation was used in a second
step to identify and reject adversarial inputs based on a threshold for the confidence.

3.5. Fast Gradient Sign Attack

The first adversarial attack optimised for ANNs was proposed by Goodfellow et al. [GSS15]
and is called FGSM. The basic idea is to apply backpropagation to optimise the inputs
regarding a certain output behaviour. As explained in Section 2.3.4, during training
the inputs and corresponding labels are considered as fixed, while the parameters of the
model are variable and change over the training process. To create adversarial inputs,
the parameters θ of a model are assumed to be fixed, and the input, i.e., the pixel values
are treated as variables. Backpropagation is then applied, i.e., the given loss function
L is derived regarding the input pixel values x to minimise the loss for a given target
classification t. To apply this concept, it is necessary to have full access to the target

1Assuming there are 5 different models and 4 of them predict class ‘A’ for a given input, while one
model predicts class ‘B’ to be the true label. In a simple majority vote, the final prediction would be
A. Aside simple majority votes, there are other voting strategies, cf. [SL13; AS14; Bab+15].
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model, especially the parameters θ and the loss function L, i.e., to operate in a white-box
scenario. If these conditions are met, the following equation can be solved

δ = ε · sign (∇xL (x,t,θ)) , (3.4)

where ε is a hyper-parameter, controlling the maximum allowed amount of perturbation,
and sign (∇xL (x,t,θ)) denotes the sign of the gradient of the loss function L. The value
for ε is predefined and then fixed for all inputs to manipulate. However, a fixed value
for ε has the disadvantage that if it is chosen too small, inputs could still be classified
correctly regarding the ground truth, i.e., the attack is not successful. If the perturbation
is too large, the minimality assumption in Equation 3.2 is not fulfilled.

It is therefore important to mention that the implementation of FGSM used in the
later experiments is already an optimised version. Starting from an initial small value,
ε is iteratively increased to find a minimal value large enough to fool the target model.
But still, for each ε the attack calculates the gradient based on the original, and not on
intermediate adversarial inputs. When the term FGSM is used in the following, it refers
to the optimised version.

3.6. Examples of Adversarial Attacks
Following FGSM, several other adversarial attacks have been proposed, optimised for
different objectives. In the following sections, different attacks are introduced, which are
used in the later experiments.

3.6.1. Basic iterative method and projected gradient descent
To counter the drawback of the original FGSM’s static ε, Kurakin et al. [KGB17a] propose
the basic iterative method (BIM) which increases the applied perturbation iteratively
until the desired misclassification is achieved, based on intermediate solutions. This can
be formalised as

x′n=0 = x
x′n+1 = clipx,ε{x′n + α · sign

(
∇x′nL

(
x′n,t,θ

))
} ,

(3.5)

where x is the original input, x′n is the (intermediate) adversarial input, and L (x′n,t,θ) is
the loss function, used to train the model in the first place, depending on the parameters
θ of the model, the intermediate input x′n, and the target class t of the attack. The
parameter α defines the step size of the attack, and is usually smaller than ε in FGSM.
The intermediate result x′n is then clipped to be within a given L∞ ε-neighborhood of
the source image x. The clip function is process pixelwise and given by

clipx,ε
(
x′n (p,z)

)
= min

{
1,x′n (p,z) + ε,max

{
0,x′n (p,z)− ε,x′n (p,z)

}}
,

where z indicates the colour channel of the given image, and p indicates the specific
pixel to address. Another name for this attack is projected gradient descent (PGD), as
proposed by Madry et al. [Mad+18].
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3.6.2. Jacobian-based Saliency Map
Papernot et al. [Pap+16] introduce an attack called Jacobian-based saliency map at-
tack (JSMA). This attack implements three steps, which are iterated until the desired
misclassification is achieved or a given limit for introduced distortion is reached.

The first step is to calculate the Jacobian matrix of the function which the neural
network implements. The resulting matrix contains for each possible class c ∈ {1, . . . ,C}
the derivative regarding all input features p, i.e., the pixel of the input image. The
calculation can be formalised as

∇f (x) = ∂f (x)
∂x =

[
∂fc (x)
∂xp

]
,

where f is the model to attack, and x is the given input.
Based on the derivatives, the second step is to calculate a saliency map to determine

which input feature has the largest influence on the decision towards the desired target
class. With the same variables as previous, the salience map is calculated by

S(x,t)p =

0 if ∂ft(x)
∂xp

< 0 or ∑j 6=t
∂fj(x)
∂xp

> 0∣∣∣∂ft(x)
∂xp

∣∣∣ (∑c 6=t
∂fc(x)
∂xp

)
otherwise

where t is the desired target class. It is also possible to define the Saliency map to
indicate inputs, which should be decreased in order to achieve the desired classification.
In the implementation provided by foolbox [RBB17], for each pixel the impact on the
target classification is taken into account, regardless whether the pixel value has to be in-
or decreased.

The third and last step of each iteration is to perturb the pixel with the overall largest
impact on the classification, in the calculated direction, i.e., either decrease or increase
the pixel for a given amount.

3.6.3. Carlini and Wagner
Carlini and Wagner [CW17] introduce an attack, usually referred to as CW. The attack
used in the later experiments is the L2 based attack, which, given an input x, searches
for the perturbation δ, by a change of variables defined as

δp = 1
2
(
tanh

(
wp
)

+ 1
)
− xp

that solves

minimize
w

∣∣∣∣∣∣∣∣12 (tanh (w) + 1)− x
∣∣∣∣∣∣∣∣2

2
+ c · g

(1
2 (tanh (w) + 1)

)
,

with g defined as

g(x′) = max
[

max
(
Z
(
x′
)
c : c 6= t

)
− Z

(
x′
)
t ,− κ

]
,

where Z (x′) are the logits of the model for the adversarial candidate x′, t is the target
class of the attack, and κ controls the confidence with which the misclassification should
occur.
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3.6.4. Deepfool
DeepFool (DF) is an untargeted adversarial attack proposed by Moosavi-Dezfooli et
al. [MFF16]. The algorithm has three steps, which are iterated until the classification
of the adversarial input x′ is different to the classification of the original input x, i.e.,
f (x) 6= f (x′), where f is the model to attack. Moosavi-Dezfooli et al. proposed their
attack initially based on the L2-norm, but as well generalised it to any Lp-norm. In the
later experiments, when speaking of DF, the L∞ implementation is meant.

After initialising x′n=0 = x, the first step of the algorithm is to calculate the differences
of the gradients w′c and predictions p′c for each class c unequal the initially predicted
class c∗. Formally, this can be written as

w′c = ∇fc (xN )−∇fc∗ (xN )
p′c = fc (xN )− fc∗ (xN ) .

The second step is to calculate the closest hyperplane h, separating the original class
from one of the other classes. Formally

h = arg min
c6=c∗

|p′c|
||w′c||1

,

and further on they calculate the minimal perturbation δn needed to project the current
adversarial x′n onto that hyperplane. Formally

δn = |p′h|∣∣∣∣w′h∣∣∣∣1 sign
(
w′h
)
.

The last step of each iteration is to update the intermediate adversarial input with the
calculated perturbation, i.e., x′n+1 = x′n + δn, and start the next iteration by checking
if x′n+1 is already misclassified.

3.7. Transfer to the Real World
At first adversarial attacks have been applied to digital inputs to show the potential
weaknesses of neural networks. Based on the digital application, Lu et al. [Lu+17] claim
that there is “NO Need to Worry about Adversarial Examples in Object Detection in
Autonomous Vehicles”. They state that in the real world the distance, angle, or rotation
of a camera can vary, and thereby adversarial inputs can not robustly fool a given model.
To prove their claim, they printed out a manipulated version of a stop sign and attached
it to a post. Taking pictures at different distances and angles showed that the stop sign is
still classified correctly in the vast majority of situations. However, shortly after Athalye
et al. [Ath+18] have proposed a framework to create robust adversarial inputs in the real
world, called Expectation over Transformation (EoT).

Their basic idea is to predefine a distribution Tr over expected transformations occurring
when transferring adversarial inputs into the real world, like rotation, scaling, tilting,
and others. For each transformation tr1, . . . ,trE a value range is defined, e.g., rotation in
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[−10◦, 10◦]. To describe this problem formally, they redefine the basic formulation for
adversarial inputs (Equation 3.2) to be

arg max
x′

Etr∼Tr
[
logP

(
t | tr∗

(
x′
))]

subject to Etr∼Tr
[
D
(
tr∗
(
x′
)
,tr∗ (x)

)]
< ε

x′ ∈ [0,1]I
(3.6)

where they aim to find the adversarial input x′, which maximises the expected value
E of the logarithmised probability logP that the adversarial input x′, transformed by
the true but unknown transformation tr∗, is classified as the desired target class t. In
addition, the distance D between the original and adversarial input, transformed by the
true transformation should not exceed a certain ε, and the adversarial input have to be
in the bounds of the original input space.

Internally, Equation 3.6 can be solved by the following iterative equation

x′i=0 = x x′j=0
i+1 = x′i

x′1≤j≤Ei+1 = trj
(
x′j−1
i+1

)
x′i+1 = A

(
x′j=Ei+1

)
,

where initially the original input x is assigned to be the first intermediate adversarial
input x′. Afterwards, all transformations tr are applied successively with a random value
sampled from the corresponding value ranges. Finally, an arbitrary adversarial attack A
is executed and the overall iteration proceeds, until a certain number of iteration steps is
exceeded.

The authors emphasize that the possible transformations are not limited to rotation or
scaling, but also to the texture of the observed object or the shape, which might change
when taking pictures of 3-D physical objects. Thereby, the authors can print out 2-D,
or even 3-D objects which are robustly, i.e., recorded in different angles, distances, and
other transformations, classified as the desired class. Furthermore, the framework is
independent of the attack used to create the adversarial images. This implies that an
adversary can use white-box attacks if there is access to the model, or black-box attacks
when no further knowledge about the model to attack exists.
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4. Physical Adversarial Attacks by
Projecting Perturbations

CNNs yield remarkable results in the domain of image classification. A specific use-case
is the classification of street signs in the domain of autonomous driving systems. In this
scenario, the German Traffic Sign Recognition Benchmark (GTSRB) [Sta+11] dataset is
widely used, with reported accuracies of more than 99% on the test set, e.g., in [Mao+16;
Hoa+18]. However, as described in Chapter 3, it is possible to fool state of the art
classifiers by so-called adversarial inputs. Those specifically created inputs aim to fool the
classification model to misclassify a given input, in comparison to the correct classification
given by a human. One prominent example in street sign classification is to manipulate a
stop sign to be classified as a priority sign by a given ANN. Some examples of successful
attacks are shown in Figure 4.1.

Besides, Kurakin et al. [KGB17a] pointed out the possibility of transferring adver-
sarial inputs into the real world. Later, Athalye et al. [Ath+18] proposed a framework
(Section 3.7) to create more robust adversarial inputs. For that purpose, they printed
out manipulated versions of a stop sign, attached them somewhere in the real world,
and recorded them again with a camera. This led to robust misclassification of the
printed stop sign as a priority road sign. An example of such a print out is displayed in
Figure 4.1a.

Aside from the work of Athalye et al., Eykholt et al. [Eyk+18] suggested attaching
stickers to the street signs which look like graffiti. An example is shown in Figure 4.1b.
They argue that graffiti is widely known by humans and considered as normal. Therefore,
even though the stickers can clearly be seen by humans, they are not recognised as a
threat. Another, quite different approach by Sitawarin et al. [Sit+18] is to manipulate
corporate logos or advertisements to be recognised as the desired street sign, as shown in
Figure 4.1c. A human would usually recognise an advertisement, while the car would
stop because it detects a stop sign.

The attacks mentioned have in common that the attacker has to manipulate the street
sign or the surroundings physically. To fool the classification systems, this requires
the attachments to not be torn off or worn-out by weather conditions or pedestrians.
Furthermore, at least in the case of an incident, the physical manipulation might be
detected by the police or insurances. Probably the manipulation is even noticed earlier
and removed or altered by a human, such that the adversarial attack did no harm at all.

In this chapter, a new attack scenario is presented, in which the necessary perturbations
are projected onto the street sign with a regular office projector. This means there is no
need to physically manipulate the street sign itself, but the attack can still be carried
out in the physical world. Also, the usage of a laser pointer is simulated, which might
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(a) Subtle Poster [Eyk+18] (b) Camouflage Art [Eyk+18] (c) Corporate Logo [Sit+18]

Figure 4.1.: Examples of current real world attacks on street signs, especially to alter a
stop sign to be recognised as a priority road sign.

be handier in a real-life scenario. Therefore, the attack is restricted to only manipulate
one colour channel, in particular the green one. The usage of projections over physical
manipulations has the advantage for an attacker that non-physical manipulations are
harder to proof for insurances or the police. Another advantage is that the projector could
be controlled via the internet and only be activated under certain conditions, e.g., when a
passing car is detected. Thereby, the detectability of the manipulation would be impeded.
In addition to only allow one colour channel to simulate the usage of a laser pointer,
employing a projector implies additional, more general restrictions like non-decreasing
pixel values when projecting the perturbation. This is because by projecting an image
onto an existing surface, the recaptured value of the surface can only be brightened, i.e.,
increased. Projecting a “shadow”, i.e., decreasing the recorded value in comparison to no
projection, is hardly noticeable.

The remainder of this chapter is organised as follows. In Section 4.1 the adaptations
made to the adversarial attack are explained. Afterwards, the experimental setup for the
conducted experiments is outlined in Section 4.2, followed by the corresponding results
in Section 4.3. Finally, Section 4.4 concludes this chapter. Parts of the results have been
published in [WKK19] and have been achieved under the supervision of the master thesis
“Using projectors to deceive traffic sign classifiers with projections of physical adversarial
perturbations on a single color channel basis” of Hendrik Kahlen in 2018.

4.1. Adaptation of the Attack

As mentioned in the introduction of this chapter, certain adaptations to the attack are
necessary to comply with the described scenario. At first, because the perturbations are
projected onto the street sign, the attack is restricted to only increase the pixel values. A
decrease in pixel values would hardly be visible when projected. This is implemented by
calculating the perturbation δ as the difference between the (intermediate) adversarial
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image x′ and the original image x after each iteration of the attack, and truncate δ to
the range [0,1] by

δ = min
(
1,max

(
0,x′ − x

))
. (4.1)

The second adaptation is based on the assumption that the attacker might use a laser
pointer with a specific attachment to project the perturbation. Since laser pointers
normally only have one colour, the following equation is applied to restrict the attack to
manipulate one colour channel

RGBx,U{x′} (p,z) =
{

xp,z z ∈ U
x′p,z else

, (4.2)

where x, x′ denotes the original, resp. adversarial image, p is a specific pixel, and z is the
colour channel of the image. The variable U defines the set of unwanted colour channels
over the set {r,g,b}, where r is the red colour channel, g the green, and b the blue one.
Thereby, only the wanted colour channel is perturbed, while the unwanted are kept on
their original value. Thus, the initial formulation for BIM (see Equation 3.5) can then be
extended to

x′n=0 = x

x′n+1 = RGBx,U

{
clipx,ε

{
x′n + α · sign

(
Ox′nL

(
x′n,t,θ

) )}} (4.3)

where in each iteration the perturbation is clipped according to Equation 4.1.

4.2. Experimental Setup
The GTSRB [Sta+11] is used, which consists of 39,209 training and 12,630 test images
of more than 40 different classes. Based on this dataset, two CNNs are trained, namely
Inception-v3 [Sze+16] and VGG-16 (version D) [SZ15], with 95.2% and 94.02% accuracy,
respectively. The adapted attack (Section 4.1) is used to generate the adversarial examples.
The aim of the attack is always to transfer a stop sign into a priority sign. Furthermore,
an attack is only considered to be successful if the target class is top-1, i.e., the input is
classified as the target class with the highest confidence among all possible classes. This
explicit assumption differs from other works like [KGB17a], where the authors observe the
top-5 success, i.e., the target class is among the classes with the highest five confidences.
However, I question the general applicability of the top-5 accuracy in the used case of
autonomous driving. Even though the correct class might be among the five classes with
the highest confidences, the question concerning the correct reaction is still unsolved1. In

1The top-5 accuracy can be useful in contexts where different individual classes can be grouped to a
higher level class. For example, knives and forks are both cutlery. If an image of a knife is classified as
a fork, with the second-highest confidence score belonging to the class ‘knife’, the detailed classification
might be wrong, but both classes belong to the superclass cutlery, and thereby some semantic meaning
of the top-5 classes can be extracted. In terms of street sign classification, there is only one stop sign
and no superclass other than the general class ‘street sign’.
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this chapter, it is assumed that a real-life model is only able to make a decision based on
the class with the highest confidence.

As framework to transfer the adapted attack into the physical world EoT (see Sec-
tion 3.7) is used. The different transformations assumed to occur, and their value ranges
are given in Table 4.1. The transformations scale, rotation, brightness, and Gaussian
noise are taken from the paper of Athalye et al. [Ath+18]. Contrast, gamma, saturation,
and ‘salt & pepper’ are added to the set of transformations. For further information on
the different image transformations, see for example [BB16].

Table 4.1.: Value ranges for the assumed transformations.
scale ∈ [0. 9, 1. 1] contrast ∈ [0. 9, 1. 1]

rotation ∈ [−10. 0◦, 10. 0◦] gamma ∈ [0. 875, 1. 125]
brightness ∈ [−0. 05, 0. 05] saturation ∈ [0. 93, 1. 07]

Gaussian noise ∈ N (0, 0. 1) salt & pepper 70%

The first experiments are conducted virtually, to verify the theoretical applicability
of the adapted attack and assumed transformations in an ideal environment. The
corresponding results are given in Section 4.3.1.

Regarding the physical applicability of the attack, two scenarios are investigated. The
first one is to project the created adversarial image onto a white wall and track the
adversariality, i.e., the percentage of adversarial images classified as the target class,
as well as the top-1 confidence of the captured image classification. The results for
the corresponding experiments are given in Section 4.3.2. In the second scenario, only
the adversarial perturbation is projected onto a printed stop sign, attached to a white
wall. The second scenario is further referred to as physical adversarial perturbation
(PAP) and the respective results are outlined in Section 4.3.3. The setup for the physical
experiments is depicted in Figure 4.2a. A 1080p home projector, a 1080p webcam, and a
professional printout of a stop sign are used. The captured images of the stop sign are
then semi-automatically cropped to the necessary area.

Two examples of manipulated stop signs captured by the webcam located at an angle of
45◦ to the wall are shown in Figure 4.2. The manipulations to the stop sign in Figure 4.2b
are calculated based on the Inception-v3 model, the manipulations in Figure 4.2c on the
VGG-16 model.

For all experiments, the attack has been restricted in different ways. When referring to
‘plain’, all colour channels are allowed to be increased and decreased, i.e., no restrictions
are applied. Whereas, ‘rgb 1’ expresses that only the green colour channel is manipulated,
and the postfix ‘inc’ indicates that the attack only increases the pixel values.

4.3. Results
In this section, the results of the experiments described in Section 4.2 are presented,
starting with the preliminary virtual study to verify the general approach under optimal
conditions in Section 4.3.1. Afterwards, in Sections 4.3.2 and 4.3.3, the observations are
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(a) Picture of the setup, consisting
of a webcam, a projector, and a
printout of a stop sign.

(b) Example of an adver-
sarial input based on
Inception-v3.

(c) Example of an adversar-
ial input based on VGG-
16.

Figure 4.2.: Setup for the physical tests and two example of projected adversarial pertur-
bations.

given, when the complete adversarial images are projected onto a wall, resp. only the
perturbations are projected onto the printed stop sign. In both sections, a 45◦ camera
angle to the projection is assumed, to resemble a more realistic recording of the street
sign by an autonomous car. However, in Section 4.3.4 the scenario that the camera is
located directly in front of the projection is further investigated.

4.3.1. Preliminary Virtual Study

The first goal of the preliminary virtual study is to verify the general setup and to repro-
duce results published in the literature. Therefore, the attack is allowed to manipulate
all colour channels and to both increase and decrease the pixel value. In this basic
scenario, an adversariality, i.e., the number of successful adversarial attacks, of 99.89%
on Inception-v3, respectively 98.36% on VGG-16 is achieved. These results are slightly
better than the reported adversariality of 96.4% on Inception-v3 reported by Athalye et
al. [Ath+18].

Based on the verification of the general setup, the adaptations to the attack are
applied to establish its applicability in an optimal surrounding. Considering the attack
restrictions ‘rgb 1 inc’, an adversariality of 72.8% on Inception is achieved, respectively
52.04% on VGG. Based on these results, the attack is transferred to the physical world.

4.3.2. Projection of Adversarial Images

In this section, the scenario that an attacker projects the complete manipulated stop
sign onto a white wall is considered. Figure 4.3a depicts the results for successful attacks,
i.e., the target class is top-1, when attacking the Inception-v3 model. The corresponding
results for VGG-16 are given in Figure 4.3b. There the ε-values, which indicate the
amount of perturbation allowed for the attack (see Equation 4.3), and the top-1 confidence
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of the projected adversarial images are plotted. Each cross illustrates the mean confidence
of two adversarial inputs for the given ε.
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(a) Top-1 confidences for Inception-v3.
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(b) Top-1 confidences for VGG-16.

Figure 4.3.: Top-1 confidence of projected adversarial images for different perturbation
levels.

When the attack restriction ‘plain’ is considered, confidence levels near 100% are
achieved in the adversarial class (priority sign) at low perturbation levels for both attacked
models. If the attacker is restricted to only increase the pixel values or manipulate a
single colour channel, the two models behave differently.

Restricting the attack to scenario ‘plain inc’, the confidence levels in the target class
raise from 0% to around 100% for perturbation level below 0.3, when attacking Inception-
v3. For higher perturbation levels than 0.3, the confidence is very near 100% in this
scenario. In comparison, when attacking VGG-16 with the same attack restrictions, the
confidence level is more or less binary. Either the confidence is around 0% or 100%, but
no noticeable confidences between are measured. Concerning the amount of perturbation,
VGG-16 starts being fooled for perturbation levels around 0.2.

The same binary behaviour for VGG-16 also appears if the attacker is restricted to
attack scenario ‘rgb 1’, or even further to scenario ‘rgb 1 inc’. The necessary amount of
perturbation to fool the model increases as the attacker is further restricted, to be around
0.25 for ‘rgb 1’ and 0.45 for ‘rgb 1 inc’. In comparison, for Inception-v3 continuous
confidence scores between 0% and 100% are monitored when further restricting the
attacker. More interestingly, scenario ‘rgb 1 inc’ achieves robustly higher confidence
scores at lower perturbation levels, compared to the ‘rgb 1’ scenario.

Taking a closer look at the adversariality, scenario ‘plain’ can fool the Inception-v3
model in 97.94% of the cases, resp. VGG-16 in 98.35% of the cases overall observed
perturbation levels of ε. This is slightly less compared to the virtual experiment where an
adversariality of 99.89% on Inception, resp. 98.36% on VGG is achieved. When restricting
the attack to scenario ‘plain inc’, the success rate of the attacks reduces to 89.71% for
Inception-v3, resp. 82.51% on VGG-16. If the attack is controlled to manipulate the green
colour channel, Inception-v3 is only fooled in 36.42% of the cases, while the adversariality
for VGG-16 only slightly decreases to 80.66%. More interestingly, the success rate of
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the attacks for Inception-v3 increases to 49.59%, when scenario ‘rgb 1 inc’ is assumed.
However, this complies with the observation for the confidence scores. For VGG-16, the
adversariality decreases further to 56.79% under condition ‘rgb 1 inc’.

Concerning the adversariality, it is noteworthy that the unsuccessful adversarial attacks
combine images for which the manipulation already failed in the generation process
(failed attack), the manipulated image is still recognised as stop sign (original), or the
manipulated image is recognised as a completely different street sign (other top-1), as
shown in Figure 4.4. For VGG-16 an attack is basically either successful (target top-1) or
the attack failed to find an adversarial image at all (failed attack), as shown in Figure 4.4b.
In contrast, for Inception-v3 under restriction ‘rgb 1 inc’ a proportion of 18.31% of the
attacks did not bring the target class into top-1, but another class unequal to the original
label.

target top-1
original top-1
other top-1
failed attack

pl
ai
n

pl
ai
n_

in
c

rg
b_

1

rg
b_

1_
in
c

0

100

200

300

400

500

#
 c

la
ss

if
ic

at
io

n

(a) Distribution of successful and unsuccessful
inputs for Inception-v3.
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(b) Distribution of successful and unsuccessful
inputs for VGG-16.

Figure 4.4.: Distributions of successful (target top-1) and different type of unsuccessful
adversarial attacks, while projecting adversarial images.

In the experiments, an attack is not considered as successful, if the resulting image
is neither classified as the target class, nor as to the original true class. However, in
the context of autonomous cars, those inputs could still yield the desired chaos, where
wrongly classified stop signs can have fatal effects on the traffic.

4.3.3. Projection of Adversarial Perturbation

The third experiment investigates the projection of the perturbations onto a printed
stop sign, and the top-1 confidence results are shown in Figure 4.5. In comparison to
the projected complete adversarial images, the confidence levels are worse in almost all
cases. But it is noticeable that for VGG-16, the confidence levels are still near 100% if an
adversarial attack is successful. It is also noticeable that the ‘inc’ variations, i.e., those
attacks which are optimised to only increase the pixel values, achieve better results in
general than the comparable attacks without ‘inc’.
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(a) Top-1 confidences for Inception-v3.
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(b) Top-1 confidences for VGG-16.

Figure 4.5.: Top-1 confidence of projected adversarial perturbations for different pertur-
bation levels.

In terms of the adversariality, the non-‘inc’ variations for Inception-v3 drop from 97.94%
to 30.45% under restriction ‘plain’, and from 36.42% to 0.41% under restriction ‘rgb 1’,
when compared to the fully projected adversarial images. For VGG-16 the adversariality
reduces from 98.35% to 46.50% under restriction ‘plain’, and from 80.66% to 66.67% for
restriction ‘rgb 1’.

Considering the restriction ‘plain inc’ and Inception-v3, the adversariality when pro-
jecting the full adversarial image of 89.71% reduces only to 79.22%. In contrast, for
VGG-16 the adversariality improves from 82.51% to 88.48%. Observing ‘rgb 1 inc’, again
for Inception-v3, the adversariality diminishes from 49.59% to 21.61%, but for VGG-16
the adversariality stays the same at 56.79%.

A detailed overview of the distribution over the different outcomes of the attacks is
given in Figure 4.6. Similar to the results in Section 4.3.2, it is interesting that for VGG-
16, an attack is either successful or fails at all because either no adversarial image could
be created or the adversarial input is still classified as original. Attacking Inception-v3,
however, there are between 4.94% and 22.97% cases, in which the manipulated stop sign
is neither classified as the original, nor as to the target label.

4.3.4. Consideration of no Angle towards the Projection

For the previous results, an angle of 45◦ between the projection on the wall, and the
camera recapturing the stop sign is considered. In this section, the camera is assumed to
be directly in front of the projection, i.e., recapturing the stop sign with the projected
manipulation at an angle of 0◦. For the inception-v3 model, the classification results
of the manipulated stop sign are shown in Figure 4.7a. The attacks completely fail
to put the target label at top-1 confidence, however 35.18% and 41.77% of the inputs
are classified as something else that is neither the original nor the target class. In
contrast, when attacking the VGG-16 model (Figure 4.7b) the successrate of the attacks
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(a) Distribution of successful and unsuccess-
ful inputs for Inception-v3.
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(b) Distribution of successful and unsuccess-
ful inputs for VGG-16.

Figure 4.6.: Distributions of successful (target top-1) and different type of unsuccessful
adversarial attacks, while projecting adversarial perturbations.

increases. Especially with no restrictions to the attack (‘plain’), considering an angle
of 45◦ between projection and camera, 47.12% of the manipulated inputs are classified
correctly. Positioning the camera directly in front of the projection leads to a 100%
success rate of the adversarial attack.

This behaviour could be explained by differences in the model architectures and
reflections, which occur when having zero angle between the projection and the camera.
The model architecture of VGG-16 is formed like a cone, i.e., the earlier layers of the
classification pipeline have a larger spatial resolution, and the layers are connected in a
straight feed-forward manner [SZ15]. When backpropagating the adversarial manipulation,
a larger area of the original input is affected, due to the spatial compression of the input
during the inference. A sample for the created perturbation for VGG-16 is shown in
Figure 4.2c. The pattern already resembles reflections, which are further enhanced by the
reflections of the printed stop sign. In comparison, the Inception-v3 architecture contains
parallel convolution layers with different filter sizes, to preserve spatial information of
the input. Thereby, backpropagating the adversarial manipulations can lead to specific
pixels, rather than larger areas, which have to be altered to change the classification.
The adversarial patterns look similar to Figure 4.2b, and compared to Figure 4.2c the
manipulations are much finer and therefore disturbed by the reflections of the printed
stop sign.

4.4. Conclusion

Previous attacks on traffic signs assume direct physical access to the sign or its environ-
ment. Eykholt et al. [Eyk+18] for example proposes to attach stickers or graffiti, while
others (e.g., Athalye et al. [Ath+18]) propose to print out a manipulated version and
cover the original street sign or attach the manipulation somewhere else. Because of the
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(a) Distribution of successful and unsuccessful
inputs for Inception-v3.
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(b) Distribution of successful and unsuccessful
inputs for VGG-16.

Figure 4.7.: Distributions of successful (target top-1) and different type of unsuccessful
adversarial attacks, while projecting adversarial perturbations with an angle
of 0◦ between camera and projection.

physical manipulation, those attacks might be easy to recognise by, e.g., the police or
insurance companies.

In this chapter, a new threat scenario has been proposed, in which a regular business
or home projector is used to project the manipulations onto a printout of a stop sign.
Those projections alone deceive the target models to classify the initial stop sign with
the adversaries target class, i.e., as a priority road sign. At first, the adversarial attack is
allowed to manipulate all colour channels but is later restricted to only manipulate one
colour channel, in particular the green one. This is to simulate the usage of a limited
projector like a laser pointer, to successfully fool the target models. In the proposed
scenario, physical manipulation of the road sign itself is no longer necessary, which could
make it more difficult to prove manipulation in the event of an accident. Furthermore,
an attacker could synchronise the attack with passing cars such that no perturbation is
projected when no traffic passes. This imposes new dangers and makes the understanding
of neural networks and how they behave under attack even more important in the domain
of safety-critical systems.

To verify the applicability of this threat scenario, necessary restrictions to the basic
attack are imposed, namely that 1) only one colour channel is manipulated to simulate the
usage of a laser pointer and 2) the attack is only allowed to increase the pixel values. The
latter adjustment is necessary because projections of darker values are hardly noticeable
in real-life scenarios. The presented results show that it is indeed possible to fool neural
networks by only projecting adversarial images to a white wall. Restricting the adversarial
attack to exclusively increase values of the green colour channel, an adversariality of
49.59% for the investigated Inception-v3 model, resp. 56.79% for the VGG-16 model is
reported. Even more concerning is that only projecting the perturbations to a printed
sign leads to a high number of successful attacks. For that scenario and applying the
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strongest restrictions to the attack, Inception-v3 can be fooled in 21.61% of the cases,
whereas VGG-16 can be fooled in 56.79% of the cases.

As the two models have different adversarialities, an option for future work could be to
investigate the effect of the model architecture on the appearance of adversarial inputs
further. In Section 4.3.4, it is shown that the adversarial manipulations based on the
VGG-16 model resemble reflections, which might be the reason why the adversariality
even increased when the camera is directly located in front of the projection. For
Inception-v3 the adversarial manipulations are subtler, and therefore might be disturbed
by the reflections, which in turn leads to unsuccessful adversarial attacks.

Another direction of future research could be to extend the proposed threat scenario
by using black-box attacks (Section 3.3.2) and the classification output of the visual
system of a real car to test adversarial attacks in a more realistic scenario. Recently,
Ranjan et al. [Ran+19] demonstrated that it is possible to fool a real autonomous car,
however, they used crafted printouts as adversarial attacks. Using projections would be
easier and faster than printing out the manipulated version of a street sign. In addition,
using projections enables to perform a sequence of adversarial attacks which preserves
the common sequence of observed traffic signs when, for example, changing from the
freeway into the city.

47





Part II.
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5. Adversarial−1: Defending by Attacking

As demonstrated in Chapters 3 and 4, modern ANNs are prone to adversarial inputs.
Those are slightly perturbed inputs, which fool a given classifier into misclassification,
even though the manipulated inputs would still be classified correctly by humans.

In this chapter, a new defence against adversarial inputs is presented, which was
inspired by a paper of Tabacof and Valle [TV16]. They investigate the research question,
if adversarial inputs only “exist as isolated points in the pixel space, reachable only
by a guided procedure” [TV16] or if “they inhibit large and contiguous regions in the
space” [TV16]. To answer that question, they used a process, schematically shown in
Figure 5.1, where the different coloured areas indicate the class, which is assigned to
inputs within this area. The original input x (circle) is manipulated by an adversarial
attack (bold line) to be classified wrongly x′ (cross). Afterwards, they perturbed the
adversarial input with different amounts of random noise (pentagons). The randomly
manipulated inputs x′′ are created by x′′ = clamp (x′ + ε), where ε ∼ N

(
µ, λσ2), and

clamp limits the altered input to be in the acceptable input space [0,1]. The scaling factor
λ within the normal distribution N ranges from 2−5 to 25, while µ, σ2 are the mean and
variance of the pixel-wise difference between the original input x and the corresponding
adversarial counterpart x′. Afterwards, they classified the randomly perturbed inputs
and counted how many of them remained adversarial, and how many were classified as
the original, as well as some other arbitrary class after the random perturbation.

Figure 5.1.: Scheme of the process used by Tabacof and Valle [TV16] to determine the size
of adversarial islands. The colours indicate areas of a different classification.
The original input (circle) is attacked (bold line) to be an adversarial input
(cross). Afterwards, random noise is applied to the adversarial input to create
new, randomly perturbed inputs (pentagons). Those pentagons indicate that
adversarial inputs lay within “adversarial islands”, likely surrounded by the
original true class.
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Their results suggest that adversarial inputs span larger areas. Even at medium
perturbation levels, i.e., λ = 20, depending on the observed dataset between ≈ 30% and
≈ 75% of the randomly perturbed adversarial inputs are still classified as the initial
adversarial input. Besides, their results indicate that adversarial inputs which are moved
out of the adversarial areas are often classified correctly afterwards.

Based on their observations, in this chapter, the random perturbation is substituted
by an internal adversarial attack. This concept is depicted in Figure 5.2. As before,
the colour shades indicate different classification areas of inputs. An original input
(circle) is attacked (bold line), and thereby brought into an adversarial area (cross).
Afterwards, instead of applying random noise, another adversarial attack (dashed lines)
to the adversarial input is applied. To differ between inputs which are attacked one, resp.
two times, those inputs which have been attacked two times are called adversarial−1

inputs, indicated in Figure 5.2 as question marks.

Figure 5.2.: Scheme of the proposed research questions, if original and adversarial inputs
behave differently when attacked. The colours indicate areas of classification.
The original input (circle) is attacked (bold line) to be an adversarial input
(cross). After another adversarial attack (dashed lines), it is to be investigated,
if the adversarial−1 input (question marks) return to the original classification
area (question mark 1) or change its classification to another, different class
(question mark 2).

Based on this concept, the initial goal was to answer two research questions:

• Is it possible to distinguish between original and adversarial inputs, based on the
perturbation necessary to change the classification of the unknown input?

• To what extend do adversarial−1 inputs return to their original correct class (‘?1’
in Figure 5.2) when an adversarial attack is applied?

In order to investigate these questions, in Section 5.1 our approach to conduct the
experiments is outlined, followed by the experimental setup, namely the used dataset and
image classifier, in Section 5.2. The corresponding results are presented in Section 5.3.
Finally, Section 5.4 concludes this chapter.

52



5. Adversarial−1: Defending by Attacking

5.1. Approach

As introduced by the two initial research questions (see Page 52), the experiments were
divided into two phases—the detection and the classification phase. The workflow of
the detection phase is depicted in Figure 5.3. In preparation to evaluate the properties
of adversarial−1 inputs, all attacks introduced in Section 3.6, as well as FGSM (see
Section 3.5) were used to create adversarial inputs. The adversarial attack on original
inputs before they are fed to the proposed defence is referred to as external attack.
Following the literature, the external attacks were targeted whenever possible, while the
target is randomly chosen for each sample.

Within the defending process, another attack is applied to the given initial input
of unknown origin, either original or adversarial. The internal attacks are executed
untargeted because the attack was assumed to find the closest decision boundary itself,
independent of a given class. Further on, these attacks are named internal attacks, and
the resulting manipulated inputs are defined as the internal counterpart of the initial
input. In particular, the L0, L2, and L∞-norm distances (see Section 3.2) between the
initial input, and its internal counterpart were calculated, based on their respective pixel
values. Here, the distance was calculated based on the pixel values, because the available
attacks optimise the perturbation with regards to those. Based on the resulting Lp-norm
differences a dataset was build, with the origin of an input (original or adversarial) as
labels.

In the later experiments, different classifiers were trained on different subsets of the
dataset of calculated Lp-norm distances, to differ between initially original and adversarial
inputs. Those classifiers are referred to as internal classifiers.

orig adv
attack

L0, L2, L∞

adv adv−1attack
L0, L2, L∞

internal attack

orig
external
attack

dataset

classifiers

orig ∨ adv

internal classifier

Figure 5.3.: General workflow of the detection stage during training. During training
original inputs are transformed by a targeted external attack. Afterwards,
original, as well as adversarial inputs are transformed by an untargeted
internal attack, and the differences between the input and internal counterpart
are calculated. Those differences are used to train a classifier to differentiate
between original and adversarial inputs.
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Regarding the second initial research question, the adversarial−1 inputs were classified
by the image classifier, and the classification accuracy concerning the initially correct
class was recorded.

5.2. Experimental Setup

In this Chapter, the experiments were conducted on the Cifar-10 [KH09] dataset. It
consists of 60,000 images of size 32× 32 with 3 colour channels, representing 10 different
classes. The classes are ’airplane’, ’automobile’, ’bird’, ’cat’, ’deer’, ’dog’, ’frog’, ’horse’,
’ship’, and ’truck’, and some samples as well as the documentation can be found at [Tor].
Each class is equally represented with 6,000 images. The complete dataset was split into
50,000 training and 10,000 test images. For training the model, the training set was
further split into 40,000 training and 10,000 validation samples.

During the initial analysis of the properties of adversarial−1 and for training the
classifiers, adversarial inputs based on the validation set of Cifar-10 were used. The
validation set was chosen over the training set because during training the decision
boundaries are mainly fitted towards the training set. In a real-world scenario, however,
it has to be assumed that an attacker manipulates inputs which are not previously known
to the system. When it comes to detecting adversarial inputs, the process was tested on
inputs based on the test dataset of Cifar-10.

To process the images a ResNet architecture [He+16] was used. The overall architecture
is enlisted in Table 5.1, where the total number of layers is 34. Hence, this specific
architecture is referred to as ResNet-34. The structure of the Basic Block (BB) is depicted
in Figure 5.4. The input vector x̂ for the block is transformed by a convolutional (conv)
layer, followed by batch normalisation (bn) [IS15], ReLU, and another convolutional
and batch normalisation layer. A novelty introduced by the ResNet architecture are
skip-connections. The input is not only processed by the internal layers but also skips
them and is concatenated (plus symbol) to the internal processed information. This allows
to preserve certain features of the initial input, which might otherwise get lost during
the internal transformations1. Finally, another ReLU activation function is applied.

The model was trained with SGD, an initial learning rate of 0.1, a momentum of
0.9, and a weight decay of 0.0005. Besides, the learning rate was reduced by a power
of ten after 150 and 250 epochs. Overall, the model was trained for 350 epochs. The
loss function for training was the cross-entropy loss. Based on those parameters, a
classification accuracy of 95.46% on the test set of Cifar-10 was achieved.

5.3. Results

The first results presented and discussed in Section 5.3.1 are the success rates of the
different attacks. Afterwards, in Section 5.3.2 the inspection of the different Lp-distances
measured between the input and the internal counterpart is described. Based on these

1For further information, it is referred to the original paper by He et al. [He+16].
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Table 5.1.: ResNet-34 architecture used for classifying Cifar-10.
layer type kernel size, channel padding stride output size
Input - - - 32 × 32 × 3
Convolution 3 × 3, 64 1 × 1 1 × 1 32 × 32 × 64
BatchNormalisation - - - 32 × 32 × 64

Basic Block
[
3× 3, 64
3× 3, 64

]
× 3 - - 32 × 32 × 64

Basic Block
[
3× 3, 128
3× 3, 128

]
× 4 - - 16 × 16 × 128

Basic Block
[
3× 3, 256
3× 3, 256

]
× 6 - - 8 × 8 × 256

Basic Block
[
3× 3, 512
3× 3, 512

]
× 3 - - 4 × 4 × 512

Linear - - - # classes

co
nv bn

R
eL

U

co
nv bn

R
eL

Ux̂

Figure 5.4.: General structure of a Basic Block within the ResNet-34 architecture.
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observations, the detection accuracy of adversarial inputs is presented in Section 5.3.3.
Also, the internal classifiers were not only trained to distinguish between adversarial and
original inputs but also to predict the used external attack. The results and discussion
are given in Section 5.3.4. Finally, in Section 5.3.5 the results for the question about
how many of the adversarial inputs return to their original true class are outlined and
reviewed.

5.3.1. Success Rate of Different Attacks

Adversarial attacks, in general, do not need to be successful in 100% of the cases. In
Table 5.2, the success rates of the external adversarial attacks are shown. If for example
FGSM was applied, a lower success rate compared to the other attacks was observed.
This is important because, in the process of creating the Lp-norm differences dataset, only
successful external attacks were considered, and consequently the number of adversarial
inputs to apply the internal attack on varies between the different attacks. When training
the internal classifiers, this was countered by balancing the observed subset based on the
minimum available number of samples over the observed conditions.

Table 5.2.: Success rate of the external attacks in %.
CW DF FGSM JSMA PGD

95.24 94.82 21.31 95.18 95.24

However, if applying the attacks internally, all attacks have a near or even 100% success
rate. The results are shown in Table 5.3. This was a necessity because if the aim is to
identify the origin based on the distance between an unknown input and its internal
counterpart, a high success rate of the internal attack is essential.

Table 5.3.: Success rate of the internal attacks, depending on the external attack in %.
The best mean value is indicated in bold.

external
CW DF FGSM JSMA PGD mean

in
te

rn
al

CW 99.94 99.94 100.00 100.00 100.00 99.98
DF 98.94 99.06 99.72 99.12 98.56 99.08
FGSM 100.00 100.00 100.00 100.00 100.00 100.00
JSMA 99.94 100.00 100.00 100.00 100.00 99.99
PGD 99.94 100.00 100.00 100.00 100.00 99.99

5.3.2. Distribution of Different Distances

In a first examination regarding the properties of adversarial−1 inputs, the distribution
of the L0, L2, and L∞ distances between the input and its internal counterpart were
visualised. In Figure 5.5 the different distributions are shown, where the origin indicates
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whether the input is an original input, or has previously been created by the given
external attack. The internal attack in the given example is FGSM. It is to note that for
L2 and L∞ the distance distributions are displayed in logarithmic scale.
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(c) Distributions for L∞ in log scale.

Figure 5.5.: Distributions of different Lp-norms between an input of the given origin,
either original (orig) or created by the given adversarial attack, and its
internal counterpart created by FGSM.

Especially for L2 and L∞ the calculated distances between initially original and
adversarial inputs, and their respective internal counterparts differ. Inputs with ‘orig’ as
source have a higher median distance, as well as higher values indicating the second, third,
and fourth quartile. In particular, the distributions for inputs of an adversarial origin are
located in the lower part of the first quartile of initially original inputs. Intuitively, this
made sense because an adversarial attack aims to manipulate the input to be classified
differently, with the least possible perturbation. Thereby, an original input is moved into
the direction and only slightly across a decision boundary. However, adversarial inputs
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are already very close to a decision boundary and need less perturbation to cross the
nearest decision boundary.

5.3.3. Detection of Adversarial Inputs

The observations in Section 5.3.2 were based on the validation set of Cifar-10. To evaluate
whether these observations could be transferred to previously unknown samples, different
internal classifiers were trained based on the Lp-norm difference samples created on the
validation set. The performance of those classifiers was then evaluated on samples based
on the test set of Cifar-10. Prior to training the classifiers, the features were standardised
by x−µ

σ , where x is the sample to transform, and µ,σ are the mean, and standard deviation
for each dimension over all samples. As internal classifiers, a logistic regression classifier
(LR), an extra tree classifier (ET), and a k-nearest neighbour classifier (kNN) were chosen.
All classifiers are provided by the python library scikit-learn [Ped+11]. The training was
done with 5-fold cross-validation including a grid search over the parameters given in
Table 5.4. It is to mention that the classifiers were only trained on the samples, where
the external and internal attack are the same. This assumption was made, because in
a real-world scenario the external attack applied by an attacker is unknown, and the
defender only has knowledge about the internal attack.

Table 5.4.: Grid search parameters for the different internal classifiers.
LR solver: L-BFGS
ET number of estimators: {1,5,10,20,50,100}
kNN number of neighbors: {1,5,10,20,50,100}, algorithm: auto

In Table 5.5, the detection accuracies for the different internal classifiers are reported,
depending on the external and internal attacks. It is to remember that the classifiers were
trained on data where the internal and external attack are the same. The corresponding
detection accuracies, where the attacks used for training, and the unknown external
attack are the same, are indicated in grey. The best detection results for each unknown
external attack, as well as the best mean values, are given in bold.

The results in Table 5.5 show that it is possible to predict the origin of an unknown
input, based on the Lp-norm difference between the unknown input and its internal
counterpart with high accuracy. Furthermore, the detection of unknown inputs generalised
over different external attacks. Sometimes, the detection accuracy for the unknown input
even improved, compared to the case that the classifier was trained and tested on the
same attack. For the parameters which could be controlled, i.e., the internal attack and
the internal classifier, LR overall achieved the best mean detection accuracy of 94.08%,
when JSMA was used as internal attack.

To put the results into context, in Table 5.6 the best results of the proposed detection
method are compared with the reported results of MagNet [MC17], SafetyNet [LIF17],
Lee et al. [Lee+18], as well as NIC [Ma+19] as a very recent approach.
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Table 5.5.: Detection accuracy in % for different classifiers, depending on the external
and internal attack. The grey cells indicate that the classifier has been trained
and tested on the same external and internal attack. For each classifier, the
best detection results for each external attack, as well as the best mean results,
are displayed in bold.

external
CW DF FGSM JSMA PGD mean

LR

in
te

rn
al

CW 92.75 84.20 92.88 92.71 92.72 91.05
DF 86.23 84.63 86.55 86.25 86.30 85.99
FGSM 88.00 85.26 88.55 88.00 88.00 87.56
JSMA 97.16 81.31 98.04 96.90 96.97 94.08
PGD 80.11 77.68 68.30 78.08 79.56 76.75
mean 88.85 82.62 86.86 88.39 88.71

ET

in
te

rn
al

CW 98.28 77.01 98.32 98.47 98.13 94.04
DF 84.21 81.84 79.97 83.63 84.21 82.77
FGSM 98.29 73.48 99.30 98.45 97.87 93.48
JSMA 97.97 77.89 97.91 97.42 97.64 93.76
PGD 93.34 82.89 87.85 92.09 93.28 89.89
mean 94.42 78.62 92.67 94.01 94.23

kNN

in
te

rn
al

CW 98.19 77.23 98.04 98.34 98.06 93.97
DF 77.10 75.89 68.77 75.90 77.05 74.94
FGSM 84.74 80.23 82.82 84.19 84.71 83.34
JSMA 97.68 77.86 98.04 97.22 97.48 93.66
PGD 76.86 72.32 62.71 74.48 76.31 72.54
mean 86.91 76.70 82.08 86.03 86.72

Table 5.6.: Reported adversarial detection accuracies in of different defences %, depending
on the applied attack. The defences are ordered ascending according to their
time of publication.

defence CW DF FGSM JSMA PGD
SafetyNet (2017) - - - - 95.65
MagNet (2017) 93.70 93.40 99.90 - 96.00
Lp-Norm (2018) 98.28 84.63 99.30 98.47 98.13
Lee et al.2 (known) (2018) 97.25 89.13 96.93 97.39 97.53
Lee et al.2 (unknown) (2018) 97.06 88.94 96.93 96.97 97.26
NIC (2019) 100.00 91.00 100.00 100.00 100.00
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Taken from Table 5.6, the best results reported in Table 5.5 are comparable or better
than previous results, and are still competitive to results of more recent approaches.

5.3.4. Detection of the Different Attacks

In addition to predicting the origin of an unknown input, the classifiers were also trained
to predict the external attack used to create an adversarial input in the first place.
The motivation here was, that if the prediction of the initial external attack is reliable,
specific defences tailored to the external attacks could be employed. Initially, the internal
classifiers were trained and tested on disjunct subsets of samples based on the validation
set. In Table 5.7 the corresponding confusion matrix of the predictions is reported,
when the internal classifier is ET and the attack is FGSM, which led to the overall best
accuracy of 77.09%.

Table 5.7.: Confusion matrix for ET, when trained to predict the external adversarial
attack. The internal attack is FGSM, and both training and testing have
been performed on the validation dataset.

prediction
orig CW DF FGSM JSMA PGD

or
ig

in

orig 117 0 15 0 0 0
CW 0 113 0 0 0 0
DF 9 0 83 4 0 27
FGSM 0 0 2 86 42 2
JSMA 0 0 6 50 87 2
PGD 0 2 13 3 1 113

Even though the prediction was not too accurate, the accuracy is mainly reduced by
samples of the origin FGSM and JSMA, which seem to be similar when classified by the
Lp-norm differences. However, identifying groups of adversarial attacks may even be
sufficient, because in a real-world scenario the external attack might be unknown, but
could still be associated with a certain subgroup of attacks. Based on these thoughts, the
classifiers were trained on samples of the validation set and evaluated on samples of the
test set. The resulting confusion matrix, again for ET as internal classifier and FGSM as
attack is displayed in Table 5.8. The overall classification accuracy reduced to 40.92%.

Taking from Table 5.8, more external attacks seem to be similar, when classified based
on the Lp-norm differences. For all initially adversarial inputs, a large quantity was
predicted to come from PGD as external attack. Besides, CW and DF were confused
very often, which could be separated very well when tested on the validation dataset.
This observation reinforced the overall assumption that adversarial inputs, based on
the validation/training set, and the test set of Cifar-10 might have different properties.

2Lee et al. [Lee+18] do not report adversarial detection accuracies themselves. The results reported
here are replicated in another study, see Section 7.3.2.
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Table 5.8.: Confusion matrix for ET, when trained to predict the external adversarial
attack. The internal attack is FGSM, the training samples are based on the
validation dataset, and testing is done on samples of the testing dataset.

prediction
orig CW DF FGSM JSMA PGD

or
ig

in

orig 223 9 124 0 0 2
CW 0 52 112 0 0 194
DF 11 50 167 1 1 128
FGSM 0 0 30 105 51 172
JSMA 0 16 73 20 16 233
PGD 0 12 25 3 2 316

However, in some publications, e.g., one by Lee et al. [Lee+18] the training of detection
mechanisms is tuned on parts of the test set, which can skew the results.

5.3.5. Classification of Adversarial Inputs

Introduced in Section 3.4, prior and recent defence techniques either focus on detecting
adversarial inputs or harden the system to classify adversarial inputs correctly. However,
as stated in the second research question (see Page 52), it was to investigate how many of
the adversarial inputs return to their original true class, when attacked again internally.
In Table 5.9 the results are reported, depending on the external and internal attack.

Table 5.9.: Classification accuracy in % of adversarial inputs after the internal attack,
when classified by the image classifier. The best result for each external attack
and the best means are displayed in bold.

external
CW DF FGSM JSMA PGD mean

in
te

rn
al

CW 86.62 88.50 51.62 68.48 79.21 74.89
DF 87.22 88.44 51.01 68.78 79.79 75.05
FGSM 89.44 89.11 51.47 69.75 80.65 76.08
JSMA 89.94 89.11 51.47 69.68 81.32 76.30
PGD 88.03 89.42 51.47 69.55 80.18 75.73
mean 88.25 88.92 51.41 69.25 80.23

Table 5.9 shows that depending on the external and internal attack, a large portion
of the adversarial inputs return to their original true class. The best mean results were
achieved when JSMA was used as internal attack with a classification accuracy of 76.30%
over all external attacks. DF as external attack seemed to be the easiest attack to revert,
with a classification accuracy of 88.92% over all internal attacks.
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To put these results into context, in Table 5.10 the best results in comparison to two
very recent methods, namely Ensemble Diversity [Pan+19] and ComDefend [Jia+19], are
presented.

Table 5.10.: Reported classification accuracies in % of different defences, depending on
the applied external attack.

external
defence CW DF FGSM JSMA PGD
Ensemble Diversity (2019) 80.60 - 61.70 43.5 48.40
ComDefend (2019) 89.00 88.00 86.00 - 78.00
adversarial−1 89.94 89.42 51.62 69.75 81.32

The comparison in Table 5.10 outlines that applying an internal attack reverses
adversarial inputs to the original true class to a higher percentage, than other state of
the art approaches, excluding FGSM as external attack. Also, the two approaches given
as comparison are architectural changes, which could be combined with the approach
proposed in this chapter.

5.4. Conclusion
Earlier, as well as recent approaches to defending against adversarial inputs either try to
detect those inputs, or harden the model to classify adversarial inputs correctly. In this
chapter, a new two-stage approach was introduced to at first detect adversarial inputs,
and in a second step restore the original true class.

Because adversarial inputs seem to be inevitable [Sha+19], the basic idea of the
detection stage was to attack a given input, either original or adversarial, with an
internal attack. Based on the L0, L2, and L∞-norm distances between the unknown
input and its internal counterpart, classifiers were trained to predict the origin (original
or adversarial) of the given input. Based on the external and internal attack, and the
employed classifier, it was possible to differentiate between original and adversarial inputs
with an accuracy of up to 99.30%, for the investigated Cifar-10 dataset. Compared to
other approaches, the proposed method achieved better or competitive results, even with
more recent publications like [Ma+19]. It should also be emphasised that the approach
of this Chapter generalised over different external attacks, sometimes even achieving the
best results when trained on a different internal attack, than the external attack applied
by an adversary.

Besides, in theory, it was possible to detect the external attack or at least certain
groups of attacks used to create an adversarial input in the first place. However, when
applied on samples, which have been unknown throughout the whole training process,
the accuracies reduced and a clear distinction between different external attacks, or at
least group of attacks, was not possible anymore.

In the second step, the question about how many of the adversarial inputs return to
their original true class when attacked internally was investigated. There it was found
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that a portion of up to 89.94% of the adversarial inputs returned to their original class
when attacked internally. Comparing these numbers with very recent approaches, the
resulting image classification accuracies were higher for four of five external attacks. It is
worth to notice that other approaches aiming for a high image classification accuracy are
mainly proactive (see Section 3.4). In contrast, the proposed method here is reactive and
independent of the architecture to defend. Therefore, it should be possible to combine the
internal attacks with different other approaches to further enhance the defence capability
of the overall system.
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6. Adversarials−1 in Speech Recognition:
Detection and Defence

Over the last few years, voice-controlled systems such as the Google Home-Systems have
become increasingly widespread. Many of those systems incorporate neural networks to
process speech data and understand the given commands. One example of such a system
is the DeepSpeech project by the Mozilla Foundation, which is based on a research paper
by Hannun et al. [Han+14]. However, more recently it was shown, that adversarial attack
(see Section 3) are also applicable to automatic speech recognition (ASR) systems (e.g.,
Carlini & Wagner [CW18], or Alzantot et al. [ABS18]). Thereby, a possible scenario
could be that an attacker uploads a manipulated song, e.g., to Youtube. For humans
the file sounds like the given song, but it has been manipulated in such a way that it
instructs existing smart home devices to transfer money.

In this Chapter, two different attacks are assumed. One is a white-box attack (see
Section 3.3.2) proposed by Carlini & Wagner [CW18]. The other one is a black-box
attack (see Section 3.3.2) proposed by Alzantot et al. [ABS18].

To defend against those attacks, prior works proposed to use sophisticated preprocessing,
e.g., quantization, local smoothing, or down-sampling (e.g., Yang et al. [Yan+18]). Also,
Rajaratnam et al. [RSK18] propose to use compression and filtering techniques, as well
as using ensembles to identify adversarial images. In their work, they report a maximum
precision of 97.3% when using compression/filter techniques, resp. 96.1% when using
ensembles. In another recent work, Zeng et al. [Zen+19] proposed to use ensembles of
different ASR systems, and based on the similarities of the outputs differentiate between
benign and adversarial inputs, resulting in a detection accuracy of 99.78%.

In this Chapter, the defence technique introduced in Section 5 is transferred from
the image classification domain to speech recognition. The basic idea is the same, i.e.,
to attack an unknown input and measure the difference between the input, and the
internally manipulated counterpart.

In the remainder of this Chapter, first some necessary preliminaries are introduced,
namely speech processing in general (see Section 6.1), the applied adversarial attacks (see
Section 6.2), and the investigated dataset (see Section 6.2.3). Afterwards, in Section 6.3
the overall approach is outlined. Focusing on the detection stage in Section 6.3.1 the
necessary adaptations for the audio domain are explained, as well as the results are
presented and discussed. In Section 6.3.2 the same is done for the classification stage.
Finally Section 6.5 concludes this section.

Parts of the results have been published in [WNK20] and have been achieved under
the supervision of the master thesis “Adversarials-1 in der Spracherkennung: Erkennung
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und Abwehr” (engl. “Adversarials-1 in Speech Recognition: Detection and Defence”) of
Stefan Niewerth in 2019.

6.1. Speech Recognition
Based on the work of Hannun et al. [Han+14], the Mozilla Foundation developed the
DeepSpeech project [Moz], which is used in this section as speech recognition system.
The workflow of the system can be separated into three stages—Preprocessing (see
Section 6.1.1, the speech recognition itself (see Section 6.1.2, and a final post-processing
(see Section 6.1.3).

6.1.1. Preprocessing
When recording a signal, after converting it from analogue to digital, the signal is usually
represented in the time domain, storing the specific recorded amplitude for each time step.
However, to analyse the signal, for example, to reduce environmental noise or to enhance
the spoken words, the signal is transferred to the frequency spectrum. To that aim, the
input signal x is divided into short sequences xtf called time frames of usually 20-30 ms
length [SS12]. Each sequence xtf consists of Tp elements xtf

0 ,x
tf
1 , . . . ,x

tf
Tp−1, which are used

to calculate the corresponding frequency spectrum by the discrete fourier transformation
(DFT). In general, the DFT returns the same number of frequency coefficients as elements
in the input sequence. As an example, a sampling rate of the input signal of 16 kHz is
considered, i.e., 16,000 samples per second. Slicing the original input into 25 ms long time
frames, each frame consists of Tp = 400 time points. This would lead to 400 frequency
coefficients. However, usually 256 or 512 frequency coefficients, depending on the input
sampling frequency and the time frame size, are desired. Therefore, zero values are
appended to the input sequence until Tp = 512, which is also called zero-padding. The
frequency coefficients are then calculated by

x̂tf
k =

Tp−1∑
tp=0

xtf
tp · H (tp) · e−2πi· ktp

Tp , 0 ≤ k ≤ Tp− 1 , (6.1)

where H is a Tp samples long analysis window. In speech recognition, an often applied
filtering window is the Hamming window [20003], which is visualised in Figure 6.1 and
formally defined as

H (tp) = 25
46 −

21
46 · cos

(2πtp
Tp

)
, 0 ≤ tp ≤ Tp− 1 .

Based on the obtained frequency spectrum x̂tf
0 ,x̂

tf
1 , . . . ,x̂

tf
Tp−1, the power spectrum

stf = stf
0 ,s

tf
1 , . . . ,s

tf
Tp−1 is calculated. The power spectrum can be used to quantify the

intensity of certain frequencies. For example the ratio between noise and the actual signal
can be measured and appropriate filters can be used to reduce the noise. The power
spectrum is calculated by

stf
j = 1

Tp
∣∣∣x̂tf
j

∣∣∣2 , 0 ≤ j ≤ Tp− 1 . (6.2)
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Figure 6.1.: Visualisation of the hamming window function over 1000 steps.

Because humans can not very well distinguish signals of similar frequencies, especially
in the higher spectrum, a Mel filter bank (see Figure 6.2) is applied to sum up the power
of different frequencies found in the input time frame sequence xtf . To calculate the Mel
filter bank, a lower νl and upper frequency νu are defined. In the considered example the
input is sampled at 16 kHz. Due to the Nyquist–Shannon sampling theorem [Sha49], at
a given sampling frequency ν̂ it is possible to restore the frequencies in a given signal up
to a maximum of ν̂/2. Here, the lower frequency is set to 0 Hz, and the upper one to 8
kHz, i.e., half of the sampling frequency of the input signal. Both are converted to the
Mel scale by

Z(ν) = 1125 · ln
(

1 + ν

700

)
.
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0.0

0.2

0.4

0.6

0.8

1.0

Figure 6.2.: Visualisation of the Mel filter bank with 10 filters over the frequency range 0
Hz to 16 kHz.

Afterwards, M evenly spaced points between the lower and upper Mel scaled frequency
are determined, where M is the number of employed Mel filters. In Figure 6.2 M = 10
filters are displayed for better visibility. In DeepSpeech the standard number of filters is
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set to 40. Including the previously defined lower and upper frequency, this leads to M + 2
Mel scaled frequencies νZ , which are reverted to the frequency spectrum by

Z−1(νZ) = 700 ·
(
e
νZ

1125 − 1
)
,

and rounded to the nearest frequency x̂tf
i found for the input sequence (see Equation 6.1).

The new frequencies νr are then used to calculate the filters, formally

Mel filterr(i) =



0 i < νr

i−νr
νr+1−νr νr ≤ i ≤ νr+1

νr+2−i
νr+2−νr+1

νr+1 ≤ i ≤ νr+2

0 i > νr+2

,

where i ∈ [νl,νu] are the frequencies by the DFT between the lower and upper frequency
limit, in the example 0 and 8 kHz. After having the Mel filter bank applied to the power
spectrum (see Equation 6.2), the resulting values are logarithmised.

The last step is to process the logarithmised and Mel transformed sequence x̃tf =
x̃tf

0 ,x̃
tf
1 , . . . ,x̃

tf
Tp−1 with the discrete cosine transform defined as

xtf
j =

Tp−1∑
tp=0

x̃tf
tp cos

[
π

Tp

(
tp + 1

2

)
j

]
, 0 ≤ j ≤ Tp− 1 .

The resulting coefficients are called Mel Frequency Cepstral Coefficients (MFCCs). To
suppress environmental noise in the higher frequency spectrum and because the human
speech is usually in the lower frequency spectrum of up to 4 kHz, only the first 13 MFCCs
are used as input x for the neural network to process.

6.1.2. Recognition with DeepSpeech

When processing time-dependent inputs, like speech, RNNs have shown to be very
effective. In contrast to feed-forward networks (see Section 2.3), RNNs have connections
between nodes in both the same and earlier layers. The input for such networks is usually
a time frame, in particular, the calculated MFCC outlined in Section 6.1.1, instead of the
whole time series. The recurrent connections between the internal nodes of the model
allow inputs of earlier time frames at time tf−1 to influence the calculations of later time
frames at time tf. This leads to some kind of memory, as earlier observations influence
later ones. DeepSpeech integrates a bidirectional neural network, meaning that not only
earlier time frames influence the calculation of time frame tf, but also later time frames
at time tf + 1. This is achieved by feeding the original input x in reversed order into the
model. Therefore, access to the whole sequence is assumed during training and inference.
Overall, the DeepSpeech model is comprised of five hidden layers, where the fourth layer
is the bidirectional one. At this point it should be noted that in the publication, Hannun
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et al. [Han+14] do not use long-short term memory cells (LSTMs)1 in the recurrent layer
because of computational efficiency, whereas in the github implementation [Moz] LSTMs
are employed.

For each time frame tf, the output ŷtf of the model is a probability distribution P
(
ctf |x

)
,

which is dependent on the full input sequence x, and where ctf ∈ {a,b,c, . . . ,z, ,’,Λ} is the
alphabet of accepted symbols. The complete output of the model is a sequence of those
probability distributions, where the symbols with the highest probability are considered
as label for the given time frame. The symbols ‘ ’ and ‘ in the dictionary represent
the meaning ‘space’, and ‘apostrophe’, while ‘Λ’, referred to as ‘blank’ symbolises a
non-existing symbol, e.g., silence in a recorded audio file.

When dealing with speech, one problem arising during the labelling of training data
is that different people pronounce the same word differently. Therefore, each audio file
would have to be analysed separately, and the correct symbol would have to be aligned to
each of the time frames. This is, however, very time consuming and thus not practical for
large datasets. A loss function which is independent of the correct alignment between the
audio samples and the transcribed sentences is the connectionist temporal classification
(CTC) [Gra+06]. As mentioned, the output of the neural network are probabilities of
characters for each time frame. Considering the exemplary sequence ς = a a b Λ Λ b
of symbols with the highest probability for the corresponding time frame. At first,
CTC removes all sequentially duplicated symbols. In the example a a is shortened to
a. Afterwards, all Λ symbols are removed, leading to the phrase ρ = abb. For a more
detailed view on CTC see [Han17], and for further information on the training process of
DeepSpeech see [Han+14].

6.1.3. Postprocessing

Based on the calculated character probabilities, words and sentences are composed, which
are compared to a language model. The idea of a language model is to learn a) the
correct spelling of single words and b) a probability distribution over sequences of words
in a sentence. The advantage of language models is that they can be trained fast and
unsupervised, i.e., no human labelling previously to the training process is required, on a
very large corpus of words in a reasonable time. Based on the comparison between the
predicted words and word sequences, small errors during the character classification can
be detected and fixed.

1LSTMs are a special structure of RNNs, which have shown to be more efficient than plain RNNs. For
further information, I refer to the original paper by Hochreiter and Schmidhuber [HS97].
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6.2. Adversarial Attacks on Speech Recognition

The general formulation of adversarial inputs in speech recognition is similar to that in
image processing, i.e.,

minimise D (x,x + δ)
such that f (x + δ) = t

x + δ ∈
[
−215, 215

]I
.

However, the target of an attack here is a sequence of target symbols t, instead of one
single target class, and the range of the inputs is ± 215 with an arbitrary input dimension
I. But the main difference are the distance metrics D used. Carlini & Wagner [CW18] for
example use Decibels (dB) to measure the relative loudness of the distortion δ, compared
to the input signal x, formally

dB (x) = max
i

20 · log10 (xi)

dBx (δ) = dB (δ)− dB (x) .
(6.3)

In this Chapter, two different attacks are employed, in particular a white-box attack
explained in Section 6.2.1 and a black-box attack outlined in Section 6.2.2.

6.2.1. White-box attack

As a white-box attack, Carlini & Wagner [CW18] propose to solve the following formula-
tion of the problem

minimise |δ|22 + b · ` (x + δ,t)
such that dBx (δ) ≤ ε

, (6.4)

where in an initial formulation ` (x′,t) = CTC (x′,t) is considered. The parameter ε
indicates the maximal amount of perturbation allowed, and is decreased iteratively. Also
the parameter b is used to balance between the importance to be adversarial and the
importance to be close to the original input. For this to be a white-box attack, it is
important to note that Carlini & Wagner were able to differentiate through the whole
classifier, i.e., starting from the input audio sample, through the MFCC process, and the
neural network, to the final loss.

However, the problem of using plain CTC is that the perturbation is not guaranteed to
be minimal. This is because CTC always considers the whole transcription of the input
sequence. But if the sequence ‘left’ which is already transcribed as ‘lefd’ is considered,
minimising CTC would lead to also making the ‘l’ even more ‘l’-like, while only the
‘d’ has to be transcribed as ‘t’. To solve this problem, Carlini & Wagner formulate a
loss function which does not decrease further if the output character with the highest
probability already matches the target character t, formally

` (y,t) = max
(
yt −max

t′ 6=t
yt′ ,0

)
. (6.5)
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In the context of audio signals, they consider an alignment ζ of probabilities y for a
given phrase ρ. Hence, the extended loss function over all time frames tf is

L (x,ζ) =
∑
tf
`
(
f
(
xtf
)
,ζtf
)
, (6.6)

with ` being the loss defined in Equation 6.5. Based on the observation that certain
characters are more difficult to transcribe than other characters, they further reformulate
Equation 6.4 to consider a different b for each time frame

minimise |δ|22 +
∑
tf

[
btf · Ltf

(
x + δ,ζtf

)]
such that dBx (δ) < ε

(6.7)

where Ltf
(
x,ζtf

)
is the loss defined in Equation 6.6, but evaluated for one specific time

frame tf, i.e., one specific character transcription. The necessary alignment ζ for this
calculation is derived by solving the initial Equation 6.4. Based on this approach, Carlini
& Wagner report a success rate of 100% for their attack.

6.2.2. Black-box attack
As the second attack in this section, the black-box attack proposed by Alzantot et
al. [ABS18] is used, in which they basically employed a (µ+ λ)-evolutionary strategy. In
this context, µ is referred to as ‘parents’ or ‘current population’. In general, evolutionary
strategies work iteratively as shown in Figure 6.3.

Initialisation

Termination

Crossover

Selection

Mutation

Figure 6.3.: General process of an evolutionary algorithm, starting with the initialisation,
followed iteratively by selection, crossover, and mutation, until a termination
criterion is reached.

In the initialisation phase, they instantiate µ (default: 20) audio samples referred to as
the current population, by randomly perturbing the second byte of each input time point
within a certain range (default: ±28 = ±256) with a small probability (default: 0.0005).
Alzantot et al. [ABS18] only perturb the second byte, representing the lower frequencies
of the input signal, because they argue that perturbations to those frequencies are less
perceptible by humans. For each of the µ instances, they calculate the respective fitness,
i.e., the probability of the individuals being classified as the desired target sequence. The
instances with the highest fitness values (e, default: 2) are selected and stored as elitists

71



6. Adversarials−1 in Speech Recognition: Detection and Defence

for the next iteration. If one of the individuals is already classified as the desired sequence,
the algorithm stops. Otherwise, based on the current population λ = µ− e new instances
are created by crossover, referred to as children. Alzantot et al. [ABS18] implement
crossover by randomly selecting two individuals, where the selection is weighted based on
their fitness. Afterwards, for each time point with a probability of 0. 5 they either select
the value of the first or the second individual to be used as the value for the new child.

Following the circle of evolutionary algorithms, the individuals created by crossover are
again mutated by randomly perturbing the second byte of each time point with a small
probability. The λ offspring after crossover and mutation, plus the e elitists selected
previously, build the new population for the next iteration of the evolutionary algorithm.

This process is repeated until one of the instances is classified as the desired target
sequence, or a maximum number of iterations is exceeded. Alzantot et al. [ABS18] report
a success rate of 87%.

6.2.3. Dataset

In this Chapter, a pre-trained DeepSpeech model is used, which can be downloaded on
the corresponding github repository [Moz]. In accordance to the literature, e.g., [ABS18],
an old version [Kag] of the Speech Command Dataset [War18] is employed, consist-
ing of 64,727 one-second long utterances of 30 short words, by thousands of different
people. Based on the documentation of the SpeechCommand dataset [War18] and the
literature [ABS18], the following ten words are assumed as labels for the classification:
‘down’, ‘go’, ‘left’, ‘no’, ‘off’, ‘on’, ‘right’, ‘stop’, ‘up’, and ‘yes’. Tested on words of these
categories, the DeepSpeech model achieves an accuracy of 86.51%. Aside from those ten
words in the dataset, two additional classes exist, ‘silence’ and ‘unknown’, which are
omitted in the experiments.

6.3. Approach
The general approach in this chapter is similar to the process introduced in Section 5
for image classification. In the first phase, adversarial inputs are to be detected by
applying internal attacks and tracking the differences between the input and its internal
counterpart. The adaptations made to the detection phase are outlined in Section 6.3.1.
The second phase aims to restore the original true class of adversarial inputs. Here, larger
adaptations are necessary, which are explained in Section 6.3.2.

6.3.1. Detection

The general workflow for the detection phase is depicted in Figure 6.4. At first, an
initial adversarial dataset is created by randomly sampling sequences from the 10 words
present in the SpeechCommand dataset (see Section 6.2.3) and manipulating them to be
classified as each of the other nine classes. Afterwards, original and the previously created
adversarial inputs are attacked internally, and the differences between the input and
its internal counterpart are calculated. In contrast to image classification, no targeted
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attacks can be executed here. Therefore, we manipulate each unknown input to be
classified as each of the other nine possible classes to build the dataset the internal
classifiers are trained on. Another adaptation made is the calculated distances. The raw
pixels in image classification would correspond to the raw audio file in speech recognition.
Therefore, we calculate the L0, L2, and L∞-norm distances between the raw audio file
and the internally manipulated audio file. However, DeepSpeech itself is fed with the
MFCC after preprocessing the raw audio file (see Section 6.1) to classify the input
sequence. Hence, additionally the L1, L2, and L∞-norm distances between the original
and manipulated MFCC are considered. For the MFCC the L1-norm performs better
than the L0 norm, and is used instead. It is assumed, that this is due to the binning
process during calculating the MFCC where the probability that at least one value
changes within each bin is high. The L1-norm is calculated according to Equation 3.3 on
Page 23. Thereby, six different values quantifying the induced perturbation are recorded,
which are stored to a dataset.

orig adv
attack

L0, L1, L2, L∞

adv adv−1attack
L0, L1 L2, L∞

internal attack

orig
external
attack

dataset

classifiers

orig ∨ adv

internal classifier

Figure 6.4.: General workflow of the detection stage during training. During training
original inputs are transformed by a targeted external attack. Afterwards,
original as well as adversarial inputs are transformed by an untargeted internal
attack, and the differences between the input and internal counterpart are
calculated. Those differences are used to train a classifier to differentiate
between original and adversarial inputs.

The internal classifiers used in this chapter are an ANN, kNN, and a decision tree
classifier (DT). The ANN is comprised of three layers with 4, 8, and 16 nodes each, and
ReLU as activation function. For kNN k is set to 10. All classifier implementations are
based on the python machine learning library scikit-learn [Ped+11]. The corresponding
results for detecting adversarial inputs are presented in Section 6.4.2.

6.3.2. Classification

Regarding the classification stage, it is not directly possible to apply the approach
proposed in Section 5.3.5. In the image domain, an untargeted attack is used as the
internal attack, and the subsequently predicted class is assumed to be the originally
correct one. However, this is not possible in the speech domain. When transferring single
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characters untargeted to be classified as random other characters, the resulting sequence
would not resemble a known word. As a result, the internally transformed sequence would
either be rejected or corrected by the postprocessing step. Hence, it is always necessary
to define a certain target sequence which should be detected, i.e., apply a targeted attack.

In a first test, adversarial inputs are transferred internally towards all other nine
possible classes, and for each manipulation, the distances are calculated. The assumption
is, that the target class which requires the least perturbation applied might be the original
true sequence. However, following this approach the prediction accuracy is around 11.1%.

As an alternative, the classifiers of the detection stage were extended to predict the
initial correct sequence for adversarial inputs. If the target sequence of the internal attack
matches the original true sequence, the prediction accuracy for the original class is very
high. This is shown in Figure 6.5 for the instances of the original sequence ‘left’, which
were transferred to all other nine possible classes. When the target of the internal attack
is ‘left’, kNN predicts for 94.8% of these instances, that the original sequence is ‘left’ (see
Figure 6.5a). In comparison, if the target of the internal attack is the sequence ‘down’,
the predictions for the original sequence are distributed among all possible classes (see
Figure 6.5b). Overall, for kNN the highest divergence between the prediction distributions
of the true source sequence and all other sequences was observed.
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Figure 6.5.: Distribution of the predictions in % over all possible labels, depending on
the target of the internal attack. The original label is ‘left’.

The conclusions derived from Figure 6.5 are possible, because the whole dataset was
used to create the displayed distributions. In a real-world scenario, however, only one
single input is available. To still apply this statistical evaluation, an adversarial input
was transformed ten times to each of the nine other words. Here it is important that the
transformations had to be different. Therefore Alzantot’s attack was applied internally
which includes certain randomness. For each of the different transformations, the original
source sequence was predicted. Thereby, it was possible to calculate similar distributions
as shown in Figure 6.5. Finally, the number of predictions for each of the possible classes
are summed up, and the sequence that was most often predicted as the original source
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sequence is assumed as the original true classification. The classification results achieved
by this method are outlined in Section 6.4.2.

6.4. Results
Based on the experiments described in Section 6.3, in Section 6.4.1 the corresponding
results for the detection phase are given, whereas in Section 6.4.2 the results for classifying
adversarial inputs are outlined.

6.4.1. Detection of Adversarial Inputs

The results for the detection stage are presented in Table 6.1. The column ‘external’
indicates the external adversarial attack, which the defender can not control, while
column ‘internal’ indicates the internal adversarial attack. The column ‘sensitivity’
indicates the percentage of correctly classified benign inputs, while ‘specificity’ indicates
the percentage of correctly classified adversarial inputs. The column ‘prediction’ gives
the overall percentage of correctly classified inputs over all benign and adversarial inputs.

Table 6.1.: Detection accuracy of adversarial (specificity) and benign (sensitivity) inputs.
external internal classifier sensitivity in % specificity in % prediction in %

Alzantot

Alzantot
ANN 17.4 97.7 62.8
kNN 89.7 99.7 95.3
DT 99.8 99.9 99.8

Carlini
ANN 67.1 89.6 79.3
kNN 97.5 98.3 98.0
DT 99.9 97.7 98.7

Carlini

Alzantot
ANN 18.9 98.1 63.5
kNN 88.4 100.0 94.9
DT 99.8 99.9 99.9

Carlini
ANN 62.2 94.0 79.4
kNN 92.8 99.4 96.4
DT 94.2 100.0 97.3

Table 6.1 shows that the ANN performs worse, especially regarding the sensitivity,
compared to the other two internal classifiers. Presumably, it is possible to increase
the performance of the ANN by further investigations of the model architecture or by
modifying the training process, e.g., by increasing the amount of training data. However,
since the overall good performance, in particular of the DT, there was no urgent necessity
to further investigate how to improve the performance of the ANN. This could, however,
be investigated in further research.

Regarding the specificity, two special cases can be observed in which a 100% correct
identification of adversarial inputs is reported. However, the corresponding sensitivity is
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comparatively low. Therefore, it is assumed that the classifier learned an over-specificity,
i.e., the classifier classifies more inputs as adversarial as it is necessary. Some people argue,
that depending on the context this could be considered as a good behaviour [GWK17],
but in general, a good specificity, as well as a good sensitivity is desirable.

Regarding the overall prediction accuracy, DT performs best regardless of the external
and internal attack. Besides, 1% to 2% better results are reported, when applying
Alzantot’s attack internally, compared to the results when using Carlini’s attack. Overall,
using the proposed technique on audio files, a prediction accuracy of 99.8%, resp. 99.9%
is achieved, depending on the attack applied by an adversary.

To put these number into context, in Table 6.2 they are compared to the reported
detection results of other defence techniques. Rajaratnam et al. [RSK18] proposed to use
two different approaches, where the first one was to use different preprocessing methods
and compare the prediction of the raw input with the prediction of the preprocessed input.
If the predictions did not align, the input was declared as adversarial. For Band-Pass
Filtering, they reported the best precision, i.e., detection of adversarial inputs, of 97.3%.
However, the corresponding recall was only 40.6%. Considering F1 as a quality measure,
they reported the highest value of 0.91 for Speex Compression. Based on those results
they proposed to employ different compression methods as ensembles, which led to a
highest reported precision of 96.1% with a recall of 88.1%, while the best F1 is reported
to be 0.924. Similarly, Zeng et al. [Zen+19] proposed to use different ASR-systems
and compare their outputs. Based on the distance between the predicted sequences
they classified the input as adversarial or benign. As adversarial attacks they used a
black-box attack proposed by Taori et al. [Tao+19] and the attack proposed by Carlini
& Wagner [CW18]. Trained and tested on benign and adversarial inputs they reported
their best detection accuracy of 99.88%.

Table 6.2.: Reported success measures for different defence strategies in %. Rajaratnam et
al. reported the precision, i.e., the percentage of correctly detected adversarial
samples over all samples classified as adversarial. These values are used in
the comparison since the aim is to detect adversarial inputs. The reported
results for Zeng et al. [Zen+19] and the defence proposed in this chapter are
the detections accuracies over adversarial and benign samples.

defence white-box black-box
Carlini Taori Alzantot

Rajaratnam compression - - 97.30
ensemble - - 96.10

Zeng et al. [Zen+19] ensemble 99.88 99.88 -
Lp-norm 99.85 - 99.85

Considering the most similar results, the adversarial detection based on the Lp-norm is
competitive when Carlini & Wagner’s attack is used externally. When applying Alzantot
et al.’s attack, the detection accuracy based on the Lp-norm is higher than the other
reported values. However, the other proposed methods only detect adversarial inputs
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and discard them. The approach proposed in this chapter is also used to restore the
correct label of an adversarial input.

6.4.2. Classification of Adversarial Inputs

Similar to the detection stage, an ANN, kNN, and a DT were used to predict the original
sequence. In contrast to the detection stage, for this task kNN achieved the best results,
as shown in Table 6.3. Over a testset of 259 adversarial words, the correct label was
restored in 67.6% of the cases, by the process introduced in Section 6.3.2.

Table 6.3.: Correct classification of adversarial inputs after the internal attack.
NN kNN DT

accuracy 9.7% 67.6% 33.6%

6.5. Conclusion
In this chapter the concept proposed in Chapter 5 was transferred from image classification
to speech recognition. To adapt the detection stage to the speech domain, not only the
L0-, L2-, and L∞-norm distances of the raw audio input and its internal counterpart
are calculated, but also the L1-, L2-, and L∞-norm differences of the MFCC. Based on
these six values an ANN, kNN, and a DT were trained to distinguish between benign
and adversarial inputs. The results show that a DT is best suited for this task, as well as
using the attack of Alzantot et al. [ABS18] as an internal attack. On an independent
test set an overall detection accuracy of 99.8%, resp. 99.9% was achieved, depending on
the attack used by the adversary. These detection accuracies itself are competitive or
better than other reported values in the literature (e.g., [RSK18; Zen+19]).

However, in addition to identifying adversarial inputs, in a second step the process
proposed to restore the original class of adversarial inputs (see Section 5.3.5) was adapted
to the speech domain as well. Similar to the detection stage, different classifiers were
trained to predict the source sequence of the adversarial inputs. If the target sequence of
the internal attack was the same as the original source sequence, the prediction accuracy
of the internal classifiers are higher than if the internal target sequence is different from
the original one. Based on this observation, the reformation process was adapted to
transform an adversarial input ten times to each of the other nine words, and for each
transformation, the original source sequence was predicted. Evaluating this process shows
that it is possible to restore the source sequence successfully in 67.6% of the cases on an
independent test set of adversarial inputs. To the best of my knowledge, this is the first
method to restore the original sequence for an adversarial input in the audio domain, in
such a manner.

However, a general drawback of the proposed process is that it requires internal
adversarial attacks, which can take a non-negligible amount of time. Especially in the
classification stage, where it is necessary to apply C · (C − 1) = C2 − C attacks to an
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identified adversarial input, where C is the number of accepted words for the observed
dataset. As the corpus of accepted sequences grows, like in multi-purpose ASR-systems,
e.g., in mobile phones, the number of internal attacks required increases quadratically
with the size of the corpus.

To counter this drawback, it might be an option to randomly sample target labels from
the possible acceptable sequences for the internal attack. This is done until a meaningful
distribution like in Figure 6.5a emerges.
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In Chapter 5 and 6 the Lp-norm difference between an unknown input and its internal
counterpart was used to detect adversarial inputs. However, during the development of
the method, the question arose whether it is possible to create inputs which are classified
correctly by a system without any adversarial detection mechanism, but are detected as
adversarial, and thereby classified wrong by the proposed defence. The intuition was,
that the internal classifier creates a margin around the decision boundary where samples
inside this margin are classified as adversarial, while samples outside the margin are
classified as original. This is depicted in Figure 7.1. Based on an original input, a new
input (question mark) is created, which is very near to the decision boundary of the
undefended system but still classified correctly. If the internal attack is applied, the
internal counterpart (cross) of the input is within the adversarial area. However, the
distance between the input and its internal counterpart is similar, as if the adversarial
input (cross) would be internally attacked and its internal counterpart would be the
input depicted as a question mark. Consequently, the input (question mark) is wrongly
classified as an adversarial input, and thereof the wrong class prediction is given.

?

Figure 7.1.: The internal classifier creates a margin (dashed lines) around the decision
boundary of the image classification model. The unknown sample (question
mark) would be classified correctly by the image classifier. However, the
defence would detect it as adversarial input, because it behaves similar to
genuine adversarial inputs, and by the internal attack change the image
classification to be wrong.

In a preliminary test, a recent black-box attack proposed by Guo et al. [Guo+19] was
applied to investigate this question further. The simplest version of the attack iterates
randomly over all pixels of the input. For each pixel a certain amount of perturbation
α is added, and if the predicted probability of the original class already decreases, the
algorithm proceeds with the next pixel. Otherwise, the original value of the observed pixel
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is decreased by α. This process is repeated until either the input is classified differently
to the original classification, or a limit of iterations is exceeded. Employing the attack,
inputs were detected as adversarial a few iteration steps earlier, before the classification
of the input changes, i.e., the inputs are legitimate adversarial inputs. This observation
led us to the question if it is possible to identify the direction in which an input crosses
the decision boundary when attacked internally. So whether an input moves from the
original area into an adversarial island or vice versa.

In Section 7.1 the overall approach for the experiments in this chapter is outlined,
followed by the experimental setup in Section 7.2. The results for the different experiments
are given in Section 7.3 and Section 7.4 concludes this chapter.

7.1. Approach

As described in the introduction, the research question was extended to identify whether a
given sample crosses the decision boundary from the original area towards an adversarial
island or vice versa, when attacked internally. Therefore, it was necessary to further
specify the position of a given sample or in particular the change in position by the
internal attack. For this purpose, the outputs of the hidden layers were added to the
considerations. In this chapter we use the same ResNet-34 architecture introduced in
Section 5.2, and modified it to return the output values after each of the four internal
BBs. The adapted overall workflow is depicted in Figure 7.2.

An unknown input x is processed by the ResNet-34 model and the calculated outputs
after the four BBs are recorded. Since the dimensionality of the raw outputs is rather
large, e.g., the output dimension of the first Basic Block is 32 · 32 · 64 = 65,536, they are
compressed. Initially, the dimensionality was tried to be reduced with different forms
of AEs, but the training process is tedious and according to the reconstruction error,
the results were not convincing. Lee et al. [Lee+18] proposed to calculate the channel-
wise mean of the outputs to reduce the dimensionality. Thereby, the observed output
dimensionality for the four BBs was reduced to be 64, 128, 256, and 512 respectively.

Based on the compressed intermediate outputs, the Mahalanobis distance [Mah36] (see
Section 3.2) is evaluated. The mean values and the inverted covariance matrices necessary
to implement the Mahalanobis distance were calculate based on the intermediate outputs
of images used for training the image classifier, for a given class. This is schematically
shown in Figure 7.3.

Returning to Figure 7.2, the same process described for the unknown input is applied
to its internal counterpart x′, i.e., the intermediate outputs are evaluated and compressed.
However, the Mahalanobis distance is calculated towards the class associated with the
mean and covariance values which led to the closest distance when processing the initial
input. The four differences between the calculated Mahalanobis distances for the initial
input and its internal counterpart are stored to a dataset which is used to train classifiers
to determine if the initial input was original or adversarial.

The overall intuition to use the Mahalanobis distance was that benign samples are close
to other clean samples which have been seen by the model during training. Therefore,
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Figure 7.2.: Schematic figure of the overall workflow in this section. For an unknown
input x, as well as its internal counterpart x′, the outputs of the Basic Blocks
are calculated and compressed. Afterwards, the Mahalanobis distances are
calculated, and the difference between them is taken. The resulting four
distance differences are stored to a dataset to train and test the internal
classifiers.
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Figure 7.3.: Schematic figure of the outputs the extended ResNet-34 architecture gen-
erates. Here, x are samples from the training set which was used to train
the image classifier. The intermediate outputs after each Basic Block are
compressed by calculating the channel-wise mean. Based on the compressed
values, the ground truth label dependent mean µ and inverted covariance
matrices Σ−1 are determined. Those are needed for the later Mahalanobis
distance calculation.

when processing an initially original input, the corresponding Mahalanobis distance is
assumed to be small. By applying the internal attack, the sample was assumed to move
“away”, i.e., the Mahalanobis distance increases concerning the initially found cluster.
Consequently, the difference between the Mahalanobis distance previous and after the
internal attack should be negative. Vice versa, observing an initially adversarial input, the
initial Mahalanobis distance was assumed to be large. However, after the internal attack,
the distance was assumed to decrease towards the initially found cluster, because the
initially adversarial input moves out of the adversarial island and towards the centre of
the surrounding benign area. The difference between the two distances should, therefore,
be positive.

The first experiments were conducted to evaluate this assumption by applying the
black-box attack proposed by Guo et al. [Guo+19] to an initially clean sample. After
each iteration of the attack, the Mahalanobis distance was calculated and the difference
between the distances of consecutive steps built. It was assumed, that the difference will
only become positive in the last iteration step, i.e., when the classification of the initially
original input changes. The corresponding results are shown in Section 7.3.1. Based on
the obtained observations, the distance differences are used to detect adversarial inputs
in general, with the results outlined in Section 7.3.2.

In addition to detecting adversarial inputs, Lee et al. [Lee+18] proposed to use
Mahalanobis distance to detect out-of-distribution data (OOD) in general. The idea
of OOD detection is, that samples, e.g., adversarial inputs, differ from the observed
distribution of the clean training samples. The intuition is that samples which have no
direct connection to the dataset the image classifier was trained on, are located somewhere
between original inputs, which are close to the clusters, and adversarial inputs, which
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are close to the assumed decision boundary. The results of this investigation are outlined
in Section 7.3.4.

Following the observations made in adversarial and OOD detection, in the last set
of experiments the internal classifiers were trained to differentiate between original,
adversarial, and OOD data. The gained insights could be used to further describe the
decision space of image classifiers or in general the decision-making process of neural
networks. To the best of my knowledge, this problem has not been investigated before,
and the corresponding results are summarised in Section 7.3.5. d

7.2. Experimental setup

As indicated in Section 7.1, the experiments in this chapter were conducted using the
ResNet-34 architecture (see Section 5.2). The image classifier was trained on Cifar-10
(see Section 5.2), and the adversarial attacks used as external, as well as internal attacks,
are CW, DF, FGSM, JSMA, and PGD (see Sections 3.6 and 3.5).

For the OOD detection experiments, the street view house number dataset (SVHN)
[Net+11] was used, as it has the same spacial dimension as Cifar-10, i.e., 32× 32 pixels
with 3 colour channels. The dataset consists of 73,257 samples for training and 26,032
samples for testing1, where only samples of the test set were used for the experiments.
Each sample displays a number between 0 and 9 taken from house number plates.

7.3. Results

In Section 7.3.1 the results are given, when the image classifier is attacked with the
black-box attack proposed by Guo et al. [Guo+19]. In particular, the development
of the Mahalanobis distance differences throughout the attack is outlined. Based on
the observations there, in Section 7.3.2 the results are shown when using the distance
differences to detect adversarial inputs. Following, in Section 7.3.3, the results are given
when the Mahalanobis distances are used to classify the images, in particular the internal
counterparts of a detected adversarial input. The outcomes for the OOD detection
experiments are outlined in Section 7.3.4. Finally, in Section 7.3.5, the observations for
the combined detection of original, adversarial, and OOD samples are presented.

7.3.1. Black-box Attack

The motivation to observe the Mahalanobis distance differences was to investigate if it is
possible to determine the direction towards which a sample crossed the decision boundary
when attacked internally. Applying the black-box attack by Guo et al. [Guo+19] to
original samples, the Mahalanobis distances were tracked previously to and after each
iteration step of the attack. The changes in the distances between consecutive steps after
each of the four BBs are shown in Figure 7.4 for one observed sample.

1There are 531,131 more samples available, which are not used in this section.
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Figure 7.4.: Progression of the Mahalanobis distance difference between input and internal
counterpart during the black-box attack after the four Basic Blocks.
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Figure 7.4 shows, that it is not directly possible to identify the iteration at which the
sample crosses the decision boundary. However, in particular, the calculated Mahalanobis
distance differences after the fourth BBs evolved as assumed. At the beginning of the
black-box attack, large negative distance differences were observed, which approached
towards 0 throughout the attack, i.e., the initial input got closer to the assumed decision
boundary. The distance difference progression of two examples, which strongly behaved
as assumed, are shown in Figure 7.5.
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Figure 7.5.: Progression of the Mahalanobis differences for two samples after the fourth
Basic Block. In both cases no clear point can be defined when the decision
boundary is crossed.

Even though it was not directly possible to detect the exact iteration at which a sample
crossed the decision boundary, a strong decrease in the distance differences from the
initial clean sample towards the final adversarial input was observable. To evaluate this
behaviour on a larger scale, the black-box attack necessary to investigate the difference
progressions was exchanged for the different white-box attacks (see Section 7.2) which
only calculates a final adversarial input. For each adversarial input, as well as the original
inputs, the Mahalanobis distance was calculated before and after the internal attack,
and afterwards, the difference between these distances was determined. In Figure 7.6
the resulting distribution densities of the differences for initially original and adversarial
inputs is shown when the internal attack is JSMA. For a better visibility, the densities
are scaled to the maximal expansion of the original inputs. It is recognisable that the
distributions differ between original and adversarial inputs, especially for the outputs
after the fourth BB. In general, the distance differences for adversarial inputs were
observed to be centred around 0, while the distance differences for original inputs are
located further away from the assumed decision boundary.

7.3.2. Detection of Adversarial Inputs
As outlined in Section 7.1, a dataset of Mahalanobis distance differences was build, based
on original, as well as different adversarially manipulated inputs, to train and test the
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Figure 7.6.: Density distribution of the Mahalanobis difference between input and internal
counterpart after the four Basic Blocks for original and adversarial inputs.
The internal attack is JSMA.
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internal classifiers on. Prior to training the classifiers, the features were standardised by
x−µ
σ , where x is the sample to transform, µ are the mean values for each dimension over

all samples, and σ are the standard deviation values for each dimension over all samples.
As internal classifiers a LR, an ET, and kNN were used. All classifiers are provided by the
python library scikit-learn [Ped+11]. The training was done with 5-fold cross-validation,
and a grid search over the parameters given in Table 7.1. It is also to mention that the
classifiers were only trained on samples, where the external and internal attack were the
same. This assumption was made, because in a real-world scenario the external attack
is not known, and only the internal attack is available. To test the classifiers, images
of the test set of Cifar-10 were processed the same way as described in Section 7.1, i.e.,
the intermediate outputs before and after the internal attack were compressed and the
Mahalanobis distance difference was calculated. However, for the testing set, all attacks
presented were used to create the initially adversarial inputs.

Table 7.1.: Grid search parameters for the different internal classifiers.
LR solver: L-BFGS
ET number of estimators: {1,5,10,20,50,100}
kNN number of neighbors: {1,5,10,20,50,100}, algorithm: auto

As the usage of Mahalanobis distances was investigated by Lee et al. [Lee+18], the
first aim was to replicate their results. Therefore, only the Mahalanobis distances of
the initial inputs were used to train the internal classifiers. For the training process,
it is important to mention, that Lee et al. [Lee+18] used parts of the testing data to
tune their LR. Besides, they considered that the external attack was either known, i.e.,
the adversarial inputs were created by the same adversarial attack during training and
testing, or FGSM was considered as the known attack to evaluate the generalisation of
their method. In the replication study, no parts of the testing data were used to train the
internal classifiers. In Table 7.2 the detection accuracies are shown when the different
combinations of internal and external attacks are employed. Here, the internal attack
indicates the attack applied to create the adversarial inputs for training the classifiers.

After building the baseline, the features for the training and testing process were
changed to be the differences between the Mahalanobis distance before and after the
internal attacks. The results are given in Table 7.3.

Motivated by the promising results reported in Section 5.3.3 the Mahalanobis distance
differences were combined with the Lp-Norm differences, to evaluate if the addition in
features leads to better detection accuracy. The results were worse in almost all cases,
and are therefore not reported.

To put the results of this section into context, in Table 7.4 the detection accuracies
are compared with the reported results of MagNet [MC17], SafetyNet [LIF17], the
replicated results based on the approach of Lee et al. [Lee+18], and NIC [Ma+19], as
well as the results reported in Section 5.3.3. One conclusion from the comparison is
that observing the Mahalanobis distance differences yields overall slightly better results
than the baseline, i.e., observing the Mahalanobis distance of the initial input. This
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Table 7.2.: Detection accuracy in % when using the Mahalanobis distance before the
internal attack to train and test the classifiers. The grey cells indicate, that
the classifier was trained and tested on the same external and internal attack.
The best detection results for each external attack, depending on the classifier,
as well as the best mean results for each classifier, are displayed in bold.

external
CW DF FGSM JSMA PGD mean

LR

in
te

rn
al

CW 97.25 87.78 97.49 97.34 97.34 95.44
DF 91.63 89.13 93.00 91.64 91.66 91.41
FGSM 97.06 88.94 96.93 96.97 97.26 95.43
JSMA 97.26 87.09 97.49 97.39 97.42 95.33
PGD 97.34 88.58 97.35 97.37 97.53 95.63
mean 96.11 88.30 96.45 96.14 96.24

ET

in
te

rn
al

CW 96.78 87.85 96.79 96.90 96.94 95.05
DF 90.49 88.02 90.90 90.47 90.52 90.08
FGSM 96.81 88.03 97.07 96.90 97.03 95.17
JSMA 97.26 86.77 97.21 97.39 97.35 95.19
PGD 97.22 87.60 97.63 97.37 97.38 95.44
mean 95.71 87.65 95.92 95.81 95.84

kNN

in
te

rn
al

CW 97.19 88.03 97.35 97.25 97.25 95.41
DF 92.04 89.48 93.42 92.11 92.17 91.84
FGSM 97.06 88.52 96.93 97.13 97.16 95.36
JSMA 97.06 87.93 97.49 97.16 97.16 95.36
PGD 97.25 87.98 97.77 97.34 97.34 95.54
mean 96.12 88.39 96.59 96.20 96.22
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Table 7.3.: Detection accuracy in % when using the differences between the Mahalanobis
distance before and after the internal attack to train and test the classifiers.
The grey cells indicate, that the classifier was trained and tested on the same
external and internal attack. The best detection results for each external
attack, depending on the classifier, as well as the best mean results for each
classifier, are displayed in bold.

external
CW DF FGSM JSMA PGD mean

LR

in
te

rn
al

CW 97.56 90.05 97.77 95.77 98.34 95.90
DF 85.30 87.39 75.71 85.09 80.70 82.84
FGSM 97.91 90.48 98.88 98.04 98.60 96.78
JSMA 97.87 90.06 98.32 97.68 98.62 96.51
PGD 97.88 90.08 98.94 97.87 98.72 96.69
mean 95.30 89.61 93.92 94.89 95.00

ET

in
te

rn
al

CW 97.75 92.89 97.81 95.22 98.16 96.37
DF 85.68 88.34 75.61 82.47 81.20 82.66
FGSM 98.04 93.84 98.74 97.91 98.74 97.45
JSMA 98.06 92.84 98.29 97.64 98.31 97.03
PGD 98.09 92.87 98.90 97.87 98.84 97.32
mean 95.53 92.16 93.87 94.22 95.05

kNN

in
te

rn
al

CW 97.53 93.08 98.10 94.71 98.37 96.36
DF 86.24 88.37 76.81 84.09 80.32 83.17
FGSM 97.63 93.84 98.88 97.77 98.74 97.37
JSMA 97.87 93.06 98.48 98.03 98.66 97.22
PGD 97.91 93.09 98.94 98.16 98.78 97.37
mean 95.44 92.29 94.24 94.55 94.97
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increase is most noticeable for the strongest attack—DF—where an increase from 89.48%
detection accuracy in the baseline to 93.84% when considering the distance differences was
monitored. This was also the best detection accuracy for DF overall compared defences.
However, the overall results when observing the Lp-norm differences are slightly better
than monitoring the Mahalanobis distance differences, in three of the five investigated
attacks.

Table 7.4.: Reported detection accuracies in % of different defences, depending on the
applied attack. The defences are ordered ascending according to their time of
publication.

defence CW DF FGSM JSMA PGD
SafetyNet (2017) - - - - 95.65
MagNet (2017) 93.70 93.40 99.90 - 96.00
Lp-Norm (our) 98.28 84.63 99.30 98.47 98.13
Mahalanobis (known) (our) 97.25 89.13 96.93 97.39 97.53
Mahalanobis (unknown) (our) 97.06 88.94 96.93 96.97 97.26
Mahalanobis (overall best) (our) 97.34 89.48 97.77 97.39 97.53
NIC (2019) 100.00 91.00 100.00 100.00 100.00
Mahalanobis differences (our) 98.09 93.84 98.94 98.16 98.84

7.3.3. Reversion to the True Class
In addition to detecting adversarial inputs, Lee et al. [Lee+18] also report that the
Mahalanobis distance can be used as a way to classify original inputs. They propose
to calculate the class of the nearest cluster after each of the four BBs. Based on the
classes associated with the found clusters, they execute a majority vote to identify the
final classification. This process led to a small increase in classification accuracy when
compared to the standard softmax classification implemented by the ResNet-34 model.

Motivated by the observations reported in Section 5.3.5 that up to 89.94% of adversarial
inputs return to their original true class after the internal attack, it was investigated,
whether a classification based on the nearest clusters can achieve similar or even better
results. In Table 7.5 the classification accuracies are reported for adversarial inputs after
the internal attack, based on the approach to calculate the nearest cluster after each
BBs and the following majority vote. For comparison, the classification results of the
standard softmax approach are shown.

Comparing the results in Table 7.5 show, that taking the Mahalanobis approach to
classifying adversarial−1 inputs is not well suited for the investigated scenario.

7.3.4. Out of Distribution Detection
Based on the observations of Lee et al. [Lee+18], it was investigated whether the
distributions of the Mahalanobis distance differences can also be used to differentiate
between original and OOD data. In Figure 7.7 the calculated density distributions are
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Table 7.5.: Classification accuracy in % of the internal counterpart of adversarial inputs
after the internal attack, when taking the majority vote over the four nearest
clusters. In comparison, the classification results taking the softmax prediction
of the image classifier. The best result for each external attack and the best
means are displayed in bold.

external
CW DF FGSM JSMA PGD mean

majority vote

in
te

rn
al

CW 54.90 32.61 16.54 49.03 46.88 39.99
DF 52.53 36.29 15.81 48.67 46.03 39.87
FGSM 53.35 33.05 15.92 48.93 46.71 39.59
JSMA 61.70 36.47 17.77 51.98 50.77 43.74
PGD 52.48 32.29 15.46 48.29 46.04 38.91
mean 54.99 34.14 16.30 49.38 47.29

softmax

in
te

rn
al

CW 86.62 88.50 51.62 68.48 79.21 74.89
DF 87.22 88.44 51.01 68.78 79.79 75.05
FGSM 89.44 89.11 51.47 69.75 80.65 76.08
JSMA 89.94 89.11 51.47 69.68 81.32 76.30
PGD 88.03 89.42 51.47 69.55 80.18 75.73
mean 88.25 88.92 51.41 69.25 80.23

shown, when the internal attack is JSMA. Similar to adversarial inputs, the distributions
differ and can potentially be used to train internal classifiers to differentiate between
original and OOD data. To quantify the detection capability of the Mahalanobis distance
differences in this scenario, at first, the results of Lee et al. [Lee+18] were replicated as a
baseline to compare to. The results of the replication study are listed in Table 7.6.

Table 7.6.: Detection accuracy for different classifiers, when considering the initial Maha-
lanobis distance to differentiate between original and SVHN data. The best
results are displayed in bold.

LR ET kNN
94.47 94.06 94.47

In Table 7.7 the results are listed when the Mahalanobis distance differences are
considered to train and test the classifiers, denoted as mahal diff. Besides, the results are
listed when adding the Lp-norm differences to the training and testing data (mahal diff
+ Lp), as well as singularly considering the Lp-norm differences (Lp) between the input
and the internal counterpart to differentiate between original and the SVHN data.

Table 7.7 display that including the Lp-norm data into the detection process leads
to a small increase in accuracy. However, overall considering the Mahalanobis distance
differences was slightly worse than considering the initial Mahalanobis distance of the
unknown input, without an internal attack. To put the numbers into context, in Table 7.8
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Figure 7.7.: Density distribution of the Mahalanobis distance differences for original and
SVHN data.

Table 7.7.: Detection accuracy in % when using different combinations of data to train
and test the internal classifiers to differentiate between original, and SVHN
data. The best results for each classifier are displayed in bold.

internal attack
classifier CW DF FGSM JSMA PGD

mahal diff
LR 91.81 87.40 90.03 93.58 91.38
ET 92.41 88.33 90.45 93.12 91.03
kNN 91.66 88.62 90.97 92.19 90.59

mahal diff + Lp

LR 91.56 90.53 89.26 93.83 91.31
ET 93.59 93.42 92.13 93.90 93.34
kNN 91.44 83.20 89.16 91.96 89.81

Lp

LR 90.44 91.22 62.97 86.22 89.97
ET 92.22 92.32 87.61 85.57 92.47
kNN 93.13 87.30 84.06 86.12 73.63
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the results of this section are set in comparison to other techniques, namely a baseline
Hendrycks et al. [HG17] proposed and ODIN [LLS18]. For the approach considering the
initial Mahalanobis distance, the values of Lee et al. (Lee [Lee+18]) are reported, as well
as the accuracies found in the replication study (mahal).

Table 7.8.: Detection accuracies in % for different detection algorithms, when considering
SVHN as OOD data, while Cifar-10 is the original dataset.

Baseline ODIN Lee [Lee+18] mahal mahal diff + Lp
85.1 91.1 95.8 94.47 93.90

Overall, the results reported in this section verified that original and OOD data behave
differently when attacked internally. Even though for this purpose the Mahalanobis
distance of the initial unknown input was better suited to identify OOD data, observing
the distance difference still outperformed earlier methods.

7.3.5. Original vs. Adversarial vs. Out of Distribution detection

Comparing the density distributions of the Mahalanobis distance differences for original,
adversarial and SVHN data in Figure 7.8 illustrates, that they are different to each other
and could potentially be used to differentiate between these three sources of unknown
input samples.
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Figure 7.8.: Density distribution of the Mahalanobis distance differences for original,
adversarial, and SVHN data.

In the experiments, the detection accuracies were determined, when the internal
classifiers were trained and tested on the Mahalanobis distance of the initial inputs (mahal),
the Mahalanobis distance differences between the input and its internal counterpart
(mahal diff), and the mahal diff values enriched by the Lp-norm differences (mahal diff
+ Lp) proposed in Section 5. Considering Mahal diff + Lp achieved the overall best
detection accuracies on the task to differentiate between original, adversarial, and SVHN
inputs. The comparison is given in Table 7.10, while a detailed overview of the results
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achieved when using mahal diff + Lp to train and test the internal classifiers is outlined
in Table 7.9.

Table 7.9.: Detection accuracy in % for different internal classifiers when using the
Mahalanobis distance differences combined with the Lp-norm differences to
differ between original, adversarial, and SVHN inputs, based on the internal
and external attack. The best detection results for each external attack,
depending on the classifier, as well as the best mean results for each classifier,
are displayed in bold.

external
CW DF FGSM JSMA PGD mean

LR

in
te

rn
al

CW 79.15 64.07 79.80 80.86 81.21 77.02
DF 48.47 59.15 49.95 50.09 48.64 51.26
FGSM 79.12 64.99 80.63 80.02 80.90 77.13
JSMA 90.57 76.87 88.83 90.17 89.91 87.27
PGD 81.24 64.72 81.01 79.88 82.23 77.82
mean 75.71 65.96 76.04 76.21 76.58

ET

in
te

rn
al

CW 88.18 70.25 79.80 88.99 88.54 83.15
DF 66.92 65.42 60.13 66.54 68.08 65.42
FGSM 82.19 65.57 88.08 79.87 82.97 79.74
JSMA 89.00 74.69 90.60 91.18 90.10 87.11
PGD 79.11 66.54 70.58 77.24 80.15 74.72
mean 81.08 68.49 77.84 80.76 81.97

kNN

in
te

rn
al

CW 79.30 63.61 79.80 80.15 80.63 76.70
DF 69.28 60.69 62.46 67.28 70.03 65.95
FGSM 52.81 58.45 75.14 69.25 55.91 62.51
JSMA 82.74 72.02 88.36 87.17 86.42 83.34
PGD 71.61 61.23 61.67 69.56 71.15 67.04
mean 71.35 63.20 73.49 74.68 72.83

7.4. Conclusion
When applying a black-box attack to an original input, it was classified as adversarial
by the process proposed in Chapter 5 a few iteration steps before the classification
changes and the input is a legitimate adversarial input. Motivated by this observation,
it was the aim to investigate if it is possible, to determine the direction in which an
unknown sample crosses a decision boundary. To specify the position of an unknown
sample in the decision space, in particular during the decision making process of the
image classifier, the intermediate outputs of the four BBs were monitored. Since the raw
outputs itself are high dimensional, they were compressed by calculating the channel-wise
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Table 7.10.: Overall best detection accuracy scores for different external attacks when
considering the Mahalanobis distances of the input (mahal), the Mahalanobis
distance differences between input and internal counterpart (mahal diff),
and mahal diff plus the Lp-norm differences between input and internal
counterpart (mahal diff + Lp). The best results are displayed in bold.

external
CW DF FGSM JSMA PGD

mahal 87.45 82.26 86.22 88.01 85.87
mahal diff 89.11 78.31 89.48 90.02 88.72
mahal diff + Lp 90.57 76.87 90.60 91.18 90.10

mean values. This might lead to information loss, in particular to spatial information
loss of specific features, and can be the topic of further research to find a probably better
way of compressing the features.

Based on the compressed intermediate outputs of unknown inputs, the Mahalanobis
distance towards previously defined clusters was determined. The necessary mean and
covariance values describing the clusters for each possible class were calculated based on
training samples of Cifar-10. After the internal attack, the Mahalanobis distance of the
internal counterpart was calculated towards the same clusters as for the initial input, and
finally, the difference between these distances was monitored. The difference was assumed
to be the distance of the initial input towards the decision boundary separating the input
from another classification area. The assumption here was that the difference is negative,
i.e., the input moves further away from the cluster’s centre, when processing initially
original inputs. Contrary, when processing initially adversarial inputs, the difference
was assumed to increase, because the input moves towards the centre of the cluster
surrounding the adversarial island. To evaluate these assumptions, the progression of the
distance differences throughout a black-box attack was monitored. The results showed,
that the distance towards the assumed decision boundary indeed shrunk during the
adversarial attack, however, the difference either did not become positive, i.e., the sample
did not cross the assumed decision boundary, or the distance difference became already
positive before the input’s classification changed. Therefore, no precise point could be
identified at which the sample crossed the decision boundary.

Even though at this point it is not possible to identify the direction towards which
a sample crosses the decision boundary, the distributions of the distance differences
were different between original and adversarial inputs. Following the idea of Lee et
al. [Lee+18], at first the classifiers were trained on the Mahalanobis distances of the
initial input without any internal attack to replicate the results of Lee et al. [Lee+18]
and to establish a baseline. By using the distance differences instead, the adversarial
detection results improved slightly to be between 93.84% and 98.94%. However, those
results were still slightly worse to the detection results reported in Section 5.3.3, when
observing the Lp-norm differences between input and internal counterpart. But looking
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at the most difficult attack—DF—the detection accuracy improved to 93.84% when using
the Mahalanobis distance differences and surpass state of the art.

Even though the adversarial detection results reported in this section are similar to
the ones reported in Section 5.3.3, a similar problem is imaginable which led to the
investigation of the Mahalanobis distances in the first place. Namely, that the internal
classifier creates margins around the decision boundaries, which could lead to clean
inputs being detected as adversarial inputs, and also contrary, adversarial inputs outside
that margin to be classified as original inputs. However, the approach proposed in this
section might be more challenging for an attacker, because several steps during the
decision-making process are considered to identify adversarial inputs. An attacker would,
therefore, have to optimise for several problems, which could increase the hardness of the
model. This problem should be investigated in future work.

Lee et al. [Lee+18] report, that the Mahalanobis distance can also be used as an
alternative to classifying unknown inputs. Therefore, they consider the class associated
with the nearest cluster after each of the four BBs and make a majority vote over the
found classes to determine the final classification. Motivated by the results reported in
Section 5.3.5, that up to 89.94% of adversarial inputs return to their original true class
after the internal attack when classified by the standard softmax image classifiers, the
classification accuracies were also calculated based on the Mahalanobis distance approach.
However, the results showed that taking the Mahalanobis approach is worse than the
standard softmax classifier, and thereby is no option for this kind of classification.

In addition to detecting specifically adversarial inputs, Lee et al. [Lee+18] propose to
use their method to detect OOD data in general. Considering SVHN as OOD, detecting
them based on the initial Mahalanobis distance yielded the best detection accuracy of
94.47%. In comparison, making the decision based on the distance differences, even
combined with the Lp-norm differences, achieved a detection accuracy of at best 93.90%.

Finally, the problems of detecting adversarial and SVHN as OOD samples were
combined. Even tough adversarial and SVHN data both can be considered as OOD,
an investigation to differentiate between original, adversarial, and OOD samples was
interesting. Original samples were assumed to have the strongest relationship to the
clusters, i.e., are located near the centres of the clusters and further away from the
assumed decision boundaries. In contrast, adversarial inputs were assumed to be located
near the decision boundary. While OOD samples were assumed to be located somewhere
between the decision boundary and the centre of the clusters. In Figure 7.8 it is shown
that this assumption is valid. The distance differences indicate that original samples are
the furthest away from the assumed decision boundary, while adversarial inputs are the
closest. The distance distributions based on SVHN samples are located somewhere in
the middle between the clusters and the decision boundary. The detection results further
confirmed, that it is possible to differentiate between original, adversarial, and SVHN
samples with an accuracy between 90.10% and 91.18%, depending on the external attack.

In the investigated scenario, access to the OOD data during the training process
is given. But the detection results indicate that it should be possible to extend the
scenario to also detect novel inputs, i.e. inputs about which no knowledge is available
during the training process. Traditionally, novelty detection is considered as one-class
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problem [Pim+14], because during training only the clean original data are usable, for
example, Cifar-10. However, by training the image classifier as usual and applying internal
attacks to unknown inputs, the position of the unknown input in the decision space could
be specified, and thereby it could be determined if the input is an original, adversarial, or
novel sample. Even though the Mahalanobis distance of the initial unknown input towards
the clusters could also be used as a feature to decide whether an input is original or novel,
a threshold would have to be defined from which distance on an input is considered as
novel. Monitoring the distance difference between an input and its internal counterpart,
the decision is anchored around the decision boundary at a distance difference of 0, and
the mean of the cluster is at distance dm. The closer an unknown input is to the decision
boundary, the more likely it is to be a novel input. When also including adversarial
inputs into the overall consideration, it could be possible to estimate a distance difference
towards the decision boundary, for which inputs are considered to be adversarial instead
of novel. In general, a differentiation between original, adversarial, and novel inputs
is useful in, e.g., autonomous driving. For adversarial inputs, the true classification,
in theory, should be known, while for novel inputs there is no chance to classify them
correctly. Therefore, only separating between original and adversarial inputs could lead
to a false prediction of an even in theory unpredictable input, while only differentiating
between original and novel inputs could lead to not correctly predicting an in theory
correctly predictable sample. These considerations should be the subject of further
studies.
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8. Conclusion
In modern society, machine learning in the form of DNNs becomes more and more
ubiquitous. Whether autonomous cars are considered, which observe their environment
with cameras, or smart home assistances which are commanded by speech. The underlying
system usually at some point implements DNNs to classify a given input, i.e., give an
input a certain semantic meaning. In the example of an autonomous car, this could
be to classify a found street sign as a stop sign and as a consequence the car brakes.
Despite their good performance, DNNs are prone to adversarial inputs. The modern
usage of the term describes the phenomenon, that inputs can be manipulated, essentially
undetectable for humans, but trick the classifier into misclassification. In this thesis, two
aspects of adversarial inputs were investigated, namely adversarial attacks, i.e., how to
create adversarial inputs, and adversarial defences to detect manipulated samples.

8.1. Physical Adversarial Attacks
One common application scenario of adversarial attacks is in the context of autonomous
driving. A stop sign is manipulated in such a way, that the car’s visual system classifies
a priority road sign, even though humans would still classify the stop sign correctly.
Previous approaches tackling this scenario are based on physical manipulation of the
environment. Athalye et al. [Ath+18] for example propose to print out a manipulated
version of the stop sign, and either attach it somewhere or paste it over the original stop
sign. A different approach by Eykholt et al. [Eyk+18] is to attach stickers to an existing
stop sign to fool models into misclassification. Even though the stickers are noticeable to
humans, the authors argue that the stickers look like graffiti and therefore seem innocuous
to humans. Both approaches share the necessity to manipulate the original street sign
or environment physically. Thereby, the attachments have to be resistant to different
weather conditions and may be easy to prove in an investigation.

In Section 4 a new threat model was introduced, where a projector was used to project
an adversarial image onto a wall or to project the adversarial perturbations onto an
existing stop sign. Thereby, no physical manipulations were needed, and the attack might
be harder to prove in a real scenario. When projecting the complete adversarial image
onto the wall, the adversarial attack did not need to be restricted in any way, i.e., all
colour channels were allowed to be de- and increased to create an adversarial image of a
stop sign. Without any restrictions to the attack, the investigated Inception-v3 model was
fooled in 97.94% of the cases. Considering the VGG-16 model, an adversariality of 98.35%
was achieved. When projecting only the perturbations to an existing stop sign, different
restrictions to the attack were applied. The first one was to increase the pixel values only.
This was, because a decrease in pixel values, i.e., making the recaptured value at a specific
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location darker, is hardly noticeable. The results confirmed this assumption. Considering
no restrictions to the attack, but only projecting the perturbation, the adversariality for
Inception-v3 was 30.45%. However, restricting the attack to only increase the pixel values,
the success rate of the attack was 79.22% on the same Inception-v3 model. Considering
VGG-16 as the target model, the adversariality was 88.48% for the same scenario of
only increasing the pixel values. Aside from restricting the attack to increase the pixel
values only, it was further restricted to only manipulate the green colour channel. This
restriction aimed to simulate the usage of a laser pointer, which might be easier to carry
around, and can thereby further decrease the detectability of an attack in a real-life
scenario. Restricting the attack to exclusively increase the pixel values of the green
colour channel, Inception-v3 was still fooled in 21.61% of the cases, while VGG-16 seems
to be more prone to the adapted attack with an adversariality of 56.79%. Overall, it
was possible to fool classification models in the context of street sign classification by
only projecting the necessary perturbations onto an existing street sign. Even when
considering a projector with one colour channel, like a laser pointer, the investigated
models were fooled substantially.

8.2. Adversarials−1: Detecting Adversarial Inputs with Internal
Attacks

In the Chapters 5 to 7 a new adversarial defence was proposed, based around the idea of
internal attacks. Taking an unknown input, it was manipulated by an adversarial attack
internally, and afterwards, the L0, L2, and L∞-norm distances between the input and
its internal counterpart were calculated. In a preliminary study, the observed distances
for an initially original and an initially adversarial input were found to be different—the
distances for initially adversarial inputs were smaller than for initially benign inputs.
Based on that observation, a LR, kNN, and an ET were trained, to distinguish between
original and adversarial inputs, based on the calculated distances after the internal attack.
Hence, an accuracy to differentiate the two possible origins of an unknown input between
84.63% and 99.30% was reported. Comparing these results to the reported values of other
researchers [MC17; LIF17; Lee+18; Ma+19], the proposed method to monitor the Lp-
norm differences had a higher detection accuracy than previous publications. Compared
to more recent approaches, the process implemented for the experiments achieved in part
still better results or is at least comparable in its performance. Our observations are
reinforced by a recent publication of Hu et al. [Hu+19], who also proposed to use internal
attacks to differ between original and adversarial inputs. However, they did not consider
the Lp-norm distances as a measure to quantify the difference between the initial input
and its internal counterpart, but the number of necessary iteration steps to change the
classification. In the outlook in Section 8.3.2, the difference is discussed in more detail
with regard to possible future work.

In addition to detecting adversarial inputs, it was also investigated how many of the
initially adversarial inputs return to their original true class after the internal attack.
The results showed that up to 89.94% of the initially adversarial inputs reverted to their
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original true class. In comparison to other publications, the classification accuracy of
adversarial inputs after the internal attack surpassed even very recent publications in
four of the five considered external attacks.

Based on the promising results in image classification, the general approach was
transferred to speech classification. Concerning the detection of adversarial inputs,
the approach from the image domain could be transferred without larger adaptations.
For the observed dataset, and the two adversarial attacks1 an accuracy to differentiate
between original and adversarial inputs of 99.9% was reported for Carlini & Wagners
attack [CW18], resp. an accuracy of 99.8% for Alzantot et al.’s [ABS18] attack. Compared
with recent literature, the reported detection accuracies were competitive or higher than
other reported values [RSK18; Zen+19].

As with image classification, it was also examined if the internal attacks could be used
to restore the original class of adversarial inputs. Here, major adjustments were necessary,
because in speech classification no untargeted attacks, like in image classification, are
possible. This is because even when each subsequence of the audio file could be attacked
untargeted, the final word has to be coherent. To counter this property, the internal
classifiers were trained to predict the original true class for an initially adversarial input.
When the original true class is the same as the target of the internal attack, the prediction
accuracy of the initial correct word is rather high. Using this observation, 67.6% of the
adversarial inputs were reverted to their original true classification. To the best of my
knowledge, this was the first time the original true class of adversarial inputs was restored
in such a manner.

Even though the detection accuracies of adversarial inputs in a grey-box scenario were
convincing, a problem occurred when giving the attack knowledge about the defence.
Having that knowledge, it was possible to create inputs which were still benign but
detected as adversarial, and in the consequence classified wrong. This observation led to
the research question if it is possible to determine the direction in which a sample crosses
the decision boundary when attacked internally. Switching back to image classification,
the intermediate outputs of the employed ResNet-34 image classifier were included in
the overall considerations. Based on the outputs of the hidden layers, the Mahalanobis
distance towards previously defined clusters was calculated to specify the position of
unknown inputs in the decision space. The mean and covariance values defining the
clusters were determined based on the training samples of Cifar-10, on which ResNet-34
was trained as well. Besides, the Mahalanobis distance was also calculated for the internal
counterpart after the internal attack. Afterwards, the differences between the distances
before and after the internal attack were monitored. It was assumed, that initially original
inputs move away from the centre of the clusters, i.e., crosses the decision boundary from
an original area towards an adversarial island. Vice versa, a decrease in the distances
indicates that the input was initially adversarial and moved towards the original true
classification area. However, applying a black-box attack to investigate the progression
of the distance differences towards a misclassification, there was no evidence that it is

1Adversarial attacks in speech classification are more recent than in image classification. Therefore, in
the current literature mainly two adversarial attacks are considered.
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possible to determine the exact point, at which an input crosses the decision boundary,
and in which direction.

Still, the Mahalanobis distance differences could be used to identify adversarial inputs,
similar to the Lp-norms. The results on detecting adversarial inputs were comparable to
the accuracies reported for the Lp-norms, i.e., between 98.09% and 98.94% for four of
the five attacks. For the fifth attack, DF, which is the hardest to detect for all compared
defences, the detection accuracy of 84.63% when considering the Lp-norm differences,
increased to 93.84% when taking the Mahalanobis distance differences for the detection
process. Compared to the literature, the results reported in this thesis surpasses the
state of the art.

In addition to detecting adversarial inputs, the Mahalanobis distance differences could
be used to identify OOD samples in general. In comparison on detecting a different
dataset, a slightly lower detection accuracy of 93.90% was reported, compared to the
95.8% published by Lee et al. [Lee+18] considering the Mahalanobis distance of the
initial input to differentiate between original and OOD samples. However, it was also
investigated if it is possible to differentiate between original, adversarial and SVHN data,
all at once. To the best of my knowledge, this is the first time considering that type
of problem. Taking the Mahalanobis distance of the initial input towards the nearest
cluster, as Lee et al. [Lee+18] propose, as a feature to differ between the different origins
of an unknown sample, accuracies between 85.87% to 88.01% were achieved, for four of
the five external attacks. In the case of DF, an accuracy of 82.26% was reported. When
taking the Mahalanobis distance differences combined with the Lp-norm differences, those
accuracies improved to be between 90.10% and 91.18%. Only for DF as the external
attack, the accuracy reduces to 76.87%.

8.3. Future work

Based on the results, and in general, during the development of this thesis ideas for
future research emerged.

8.3.1. Physical adversarial attacks

Motivated by a variety of possible attacks to autonomous cars, further investigations
are crucial to make the underlying systems more robust, and also more trustworthy
by giving some guarantees for the safety of such systems. Regarding the exploration
of adversarial attacks, it seems to be necessary to have better insight into the systems
used in real autonomous cars. In the experiments conducted in Chapter 4, the attacks
were tested on openly accessible image classification models, similar to other comparable
publications. Currently, there are very few publications using the classification feedback
of real autonomous cars. However, when such feedback of the whole system is available,
the proposed method of projecting adversarial inputs can speed up the process of, e.g.,
black-box attacks to find weaknesses of the overall system. By reversing the found
weaknesses, the overall system could become more robust.
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8.3.2. Adversarials−1: Detecting adversarial inputs with internal attacks
The observation that original and adversarial inputs behave differently when attacked
internally, is reinforced by the very recent work of Hu et al. [Hu+19]. In contrast to this
thesis, they considered the number of iteration steps necessary to change the classification
of an input as the distance measure, instead of Lp-norm distance. This decision has also
been questioned by Tramèr et al. [Tra+20] in a very recent publication. In addition to the
distance towards the decision boundary, Hu et al. [Hu+19] also included the robustness of
an input against Gaussian noise to differentiate between original and adversarial inputs.
They argue that original inputs are more robust against Gaussian noise, in particular
when random noise is used within the training process of the image classifier. However,
adversarial inputs more easily change their classification when subjected to Gaussian
noise. If the adversarial input is therefore moved deep into an adversarial island to be
more robust against Gaussian noise, it would need more iteration steps of an adversarial
attack to change its classification, in comparison to an original input. Against Hu et al.’s
claim, that they can achieve a worst-case detection accuracy of 49% against white-box
attacks, Tramèr et al. [Tra+20] were still able to produce inputs which are wrongly
classified and to reduce the detection accuracy to 0%.

Another aspect of internal attacks is to quantify the distance towards the nearest
decision boundary. This knowledge could be used during the training process, by
maximising the distance of training samples towards the nearest decision boundary.
Thereby, it could be quantified how distant an unknown sample has to be, to be classified
differently. This would enhance the explainability and general understanding of DNNs.

Other than that, it was shown that the proposed defence can be transferred from
image to speech classification. Future work could be to transfer the defence to even
other domains like malware or spam classification, as it has been shown that adversarial
attacks are also possible in those domains. As a necessity, there have to exist some sort of
distance measure to create adversarial inputs. And in consequence, it should be possible
to attack adversarial inputs again, and based on the internal distances detect adversarial
inputs.

105





Bibliography

[20003] European Telecommunications Standards Institute 2003. “Speech processing,
transmission and quality aspects (STQ); Distributed speech recognition;
Advanced front-end feature extraction algorithm; Compression algorithms”.
In: ETSI ES 201.108 (2003), p. v1.1.3 (cit. on p. 66).

[ABS18] Moustafa Alzantot, Bharathan Balaji, and Mani B. Srivastava. “Did you
hear that? Adversarial Examples Against Automatic Speech Recognition”.
In: CoRR abs/1801.00554 (2018). arXiv: 1801.00554 (cit. on pp. 65, 71, 72,
77, 103).

[AG17] Mahdieh Abbasi and Christian Gagné. “Robustness to Adversarial Examples
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Acronyms

AE auto encoder

ANN artificial neural network

ASR Automatic speech recognition.

BB A component of the ResNet-34 architecture, comprised of a convolutional layer,
followed by batch normalisation, ReLU, another convolutional layer, and batch
normalisation. Afterwards, the original input of the basic block is concatenated
with the processed input. Finally, ReLU is applied to calculate the output for the
basic block.

BIM Iterative version of FGSM, the basic iterative method, as proposed by Kurakin et
al. [KGB17a].

Cifar-10 Cifar-10 dataset [KH09], consisting of 60,000 images (50,000 for training and
10,000 for testing) of size 32 × 32 with 3 colour channels, representing natural
objects like ’airplane’ or ’bird’, available at: https://www.cs.toronto.edu/˜kri
z/cifar.html

CNN convolutional neural network

CTC Connectionist temporal classification as proposed by Graves et al. [Gra+06] to
train ASR systems.

CW Adversarial attack proposed by Carlini and Wagner [CW17], simply referred to as
CW.

DAE denoising auto encoder

DF DeepFool is an untargeted attack, proposed by Moosavi-Dezfooli et al. [MFF16]

DFT Discrete Fourier Transformation to transfer a signal from time to frequency domain.

DNN deep neural network

DT Decision Tree classifier.

EoT Expectation over Transformation framework to transfer adversarial inputs into the
real world, as proposed by Athalye et al. [Ath+18]
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Acronyms Acronyms

ET Extra Tree classifier.

FGSM Fast gradient sign method, as proposed by Goodfellow et al. [GSS15].

GTSRB German Traffic Sign Recognition Benchmark [Sta+11], available at: http:
//benchmark.ini.rub.de/?section=gtsrb&subsection=dataset

JSMA Jacobian-based saliency map attack, as proposed by Papernot et al. [Pap+16].

kNN k-nearest Neighbour classifier.

L-BFGS Limited memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) algorithm, as
proposed by Liu et al. [LN89].

logits Logits are the raw, non-normalised predictions of a neural network.

LR Logistic regression classifier.

LSTM Long-short term memory cells, as proposed by Hochreiter and Schmidhuber
[HS97]

MFCC Mel Frequency Cepstral Coefficients, used to simulate the human hearing.

MNIST MNIST dataset [LeC98], consisting of 70,000 images of size 28× 28 in grey scale,
representing handwritten digits, available at: http://yann.lecun.com/exdb/mn
ist/

OOD By name, out-of-distribution (OOD) data is data, which differs from the observed
distribution given by clean training data. Examples of OOD are adversarial samples,
outliers, or data from a different dataset than the initial classifier was trained on.

oracle An oracle is a system, which is assumed to represent the truth, and a user can
query to obtain certain input-output combinations, but no knowledge of the internal
structure of that system is available.

PAP Projection of adversarial perturbations onto a street sign

PGD Projected gradient descent as proposed by Madry et al. [Mad+18] is an alternative
name for the BIM.

ReLU rectified linear unit

RNN recurrent neural network

SGD stochastic gradient descent
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Acronyms Acronyms

SVHN Street view house number dataset [Net+11], consisting of 630,420 images (73,257
for training, 26,032 for testing, and 531,131 for optional additional training) of size
32 × 32 with 3 colour channels, representing house numbers between ’0’ and ’9’,
available at: http://ufldl.stanford.edu/housenumbers/
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Symbols

c The predicted class or label of a given sample.

c∗ The ground truth class or label for a given sample.

C Number of classes or labels for a classification problem.

D Distance between two inputs arbitrary inputs x1,x2

f Arbitrary machine learning model trained for a specific task.

f∗ Unknown model implementing the ground truth.

I Arbitrary input dimension ∈ N.

J Arbitrary output dimension ∈ N.

L Loss function to train a machine learning model.

L0 L0 distance between two inputs, calculated as ∑i 1 (xi 6= 0).

L1 L1 distance between two inputs, calculated as ‖x‖1 = ∑
i |xi|.

L2 L2 distance between two inputs, calculated as
|x‖2 =

√∑
i |xi|

2.

L∞ L∞ distance between two inputs, calculated as ‖x‖∞ = maxi (|xi|).

Lp General Lp distance between two inputs, calculated as ‖x‖p = (∑i |xi|
p)

1
p .

N Overall number of samples in a given dataset.

p Arbitrary dimension.

p A specific pixel, at position x,y, where x is the row, and y is the column of a given
image.

P Probability distribution.

t Target class or label for an adversarial attack.

123



Symbols Symbols

x Single input value.

x Arbitrary input vector.

X Dataset of samples, each consisting of a feature vector x and a corresponding output
y

Xtest Subset of a dataset X to test a model on.

Xtrain Subset of a dataset X to train a model on.

Xval Subset of a dataset X to validate a model on.

x′ Adversarial input vector.

x̂ Intermediate input vector to the hidden layers of a model.

y Single output value.

y Arbitrary output or prediction vector.

y∗ The ground truth output or prediction vector for a given sample.

z Colour channel of an image.

α An iterative amount of perturbation added to an (intermediate) adversarial input.

θ Parameters of a model, including all weights and biases.

δ Perturbation, which is applied to an original image to create an (intermediate) adver-
sarial input.

ε Maximum allowed perturbation.

µ Vector of mean values over all feature dimensions of an observed dataset.

ω Filter or kernel of a CNN

ϕ Activation function applied to the output of a neuron.

Σ Covariance matrix based on the features of an observed dataset.

σ Vector of standard deviation values over all feature dimensions of an observed dataset.
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