
Fakultät II – Informatik, Wirtschafts- und Rechtswissenschaften
Department für Informatik

Highly Available Data Replication
Strategies Exploiting Data Semantics,

Operation Types and Finite State
Space

Dissertation zur Erlangung des Grades und Titels eines
Doktors der Naturwissenschaften

vorlegt von

M.Sc. Awais Usman

Gutachter:
Prof. Dr.-Ing. Oliver Theel
Prof. Dr. Oliver Kramer

Tag der Disputation:
19.09.2023

It is because of the love and prayers of my beloved mother and father, that I am
able to write this thesis. There were difficult times during the PhD with a lot of
pressure and uncertainty, but my loving wife – Tayyaba – and children always stood
beside me and encouraged me to keep going till the end. It was not possible without
the support of my family to complete the PhD. I am really grateful to them.

I would like to sincerely acknowledge the guidance of Prof. Dr.-Ing. Oliver Theel
throughout the PhD. He gave me the confidence and freedom to research and experi-
ment on complex ideas. His critical analytical skills persuaded me to bring in novelty
and quality. I am also very thankful to Prof. Dr. Ernst-Rüdiger Olderog to pro-
vide me the opportunity to pursue my PhD in his SCARE research group. SCARE
turned out to be an excellent platform for me, where I can collaborate with my fellow
researchers. It was a wonderful time at Carl von Ossietzky University of Oldenburg
and it left permanent pleasant marks in my memories.

– Awais

iii

Abstract

In this highly dynamic era of the technology, most of the data intensive applications
are designed to target an optimal combination of high operation availabilities, scala-
bility, data consistency, fault tolerance, and operation costs. To accomplish this the
research community introduced many valuable techniques based on data replication
or data distribution. This work is among the continuations of the research focused
on data replication. Data replication is an important research area, as reliable ac-
cess to data makes up the base of most of the information technology services. In
data replication multiple and identical copies of the data item are managed. These
multiple copies are known as data replicas. High operation availabilities, low oper-
ation costs, and data consistency are the major conflicting targets in almost every
research on data replication strategies. Operation availability means the availability
of operation in the presence of failure. The number of replicas needed to execute
the operation determine the operation cost. The Data consistency is the property
of a data replication strategy to keep the data replicas consistent, i.e., the impact of
operation executions on a set of replicas is the same as the operations are executed
on a single data item. This is a particular notion of data consistency and is known as
one-copy serializability which is generally ensured with the help of two phase locking
protocol. If replicated data is consistent, then data consistency is satisfied and vice
versa.

The classic design considerations for data replication strategies are: i) those which
focus on high operation availabilities and strong data consistency result in higher
cost, ii) those which focus on high operation availabilities and low operation costs
cannot guarantee strong data consistency, and iii) those which focus towards low
operation costs and strong data consistency compromise on high operation availabil-
ities. In this work, we researched on the development of data replication strategies
which provide high operation availabilities and try to achieve strong data consistency
with low operation costs. In the scope of this work, three data replication strategies
are proposed and discussed: i) Semantic data replication (SDR), ii) the Component-
based highly available replication strategy (CbHaRS), and iii) the Data replication
strategy for replicated service registry (DℜSℜ). Next, these three strategies are
briefly introduced.

Semantic data replication Most of the state-of-the-art data replication strate-
gies exploit read and write operations. The data replicas are manipulated with the
help of read quorums and write quorums. A quorum is a set of replicas. The read
operation and write operation are executed by read quorum and write quorum, re-
spectively. A quorum can be made of a subset of the replicas or it can contain all
the replicas. A quorums intersection property is used to ensure data consistency. In
semantic data replication we adopted a different technique for data consistency . The
SDR’s mechanism is to exploit data semantics and encoding techniques to achieve
high operation availabilities. It is done by figuring out the replicas to write based
on the input – for a write operation, input means the data to be written, e.g., write

v

value of a variable x = 5, and for a read operation, input means to data to be read,
e.g., read value of variable x. In SDR, the data to write is encoded into codes. These
codes are then redundantly distributed among the replicas. The encoding technique
makes it possible to deterministically identify the replicas to be written based on the
codes of data. It is done by exploiting the structure of the codes. This helps SDR
to provide high operation availabilities with low operation costs.

Component-based highly available replication strategy In the past, the re-
search community had introduced many valuable techniques based on data replica-
tion and data distribution. However, in the ongoing research there is a paradigm
shift: the research community is targeting to minimize the inter-application coor-
dination – the coordination required to ensure data consistency – to achieve high
operation availabilities. Two-phase locking and distributed locking are examples of
coordination protocols required to ensure data consistency. In this work, we present,
a component-based highly available replication strategy which exploits operation types
and a hybrid communication method – synchronous and asynchronous communica-
tion methods – to achieve high operation availabilities. Distributed locking protocol
is enforced for scenarios identified by the application. CbHaRS is highly scalable as
it utilizes data components as the building blocks for the replication strategy. Causal
data consistency in CbHaRS is ensured by a so-called component administrator. The
application knowledge is used to overcomes the limitations of causal data consistency.
The communication type between the data component and the component admin-
istrator depends upon the state of the data component. Additionally, the state of
the data component depends upon the operation type. We further extend the con-
cept of client specific on-demand replication to general component-based replication.
CbHaRS is a project in progress. To prove the effectiveness of CbHaRS, we have
implemented the CbHaRS prototype and discussed the achieved results.

Data replication strategy for the replicated service registry The Internet
market is highly competitive and is influenced by high expectation levels of internet
users, continuous advancement in the information technology, and high processing
and storage capabilities of the hardware. In this work, we focus on the design and
development of a replicated and highly available service registry for the microservice
architecture. The service registry key-value store comprises of six nodes and supports
a total of 216 microservices. Existing replicated service registries, like ZooKeeper and
ETCD are based on majority consensus strategies. Moreover, if these strategies fail
to achieve majority consensus, then they are bound to provide limited functionality.
As part of this research, we propose a highly available data replication strategy for the
replicated service registry. In order to overcome the limitations faced by the existing
strategies, the a data replication strategy for a replicated service registry exploits i)
a simple encoding scheme; and ii) a mapping method for efficient distribution of the
encoded values to the service registry nodes.

vi

The objective – provide high operation availabilities with low operation costs –
for each of the replication strategies is same. However, they distinguish from each
other in terms of the methodology that they use to achieve their objective and their
application. Each of the proposed data replication strategies focuses on a particular
set of problems. SDR is suitable for write intensive applications e.g. recording event
trail or logs. CbHaRS can be applied to those applications where data consistency
is guaranteed by enforcement of application specific rules. DℜSℜ focuses on the
applications having a maximum of 216 different values e.g a service registry.

vii

Zusammenfassung

In diesem hoch dynamischen Feld der Technologie sind die meisten Applikationen
mit hohem Datendurchsatz darauf ausgelegt, eine optimale Kombination einer hohen
Operationsverfügbarkeit, Skalierbarkeit, Datenkonsistenz, Fehlertoleranz und Opera-
tionskosten anzustreben. Um dies zu erreichen, hat die Gemeinschaft der Forschenden
viele nützliche Techniken basierend auf Datenreplikation oder Datenverteilung vor-
gestellt. Diese Arbeit setzt auf Datenreplikation fokussierte Forschung fort. Daten-
replikation ist ein wichtiges Forschungsfeld, weil ein zuverlässiger Zugriff auf Daten
die Basis der meisten informationstechnischen Dienste ist. Durch die Datenreplika-
tion werden viele und identische Kopien einer Dateneinheit verwaltet. Diese Kopien
werden Replikate genannt. Hohe Operationsverfügbarkeit, niedrige Operationskosten
und Datenkonsistenz sind die größten konfliktären Ziele in nahezu jeder Forschung
bezüglich Datenreplikationsstrategien. Operationsverfügbarkeit bedeutet die Verfüg-
barkeit der Operation in Anwesenheit eines Ausfalls. Die Anzahl an Replikaten, wel-
che mindestens benötigt wird, um die Operation auszuführen, bestimmt die Operati-
onskosten. Die Datenkonsistenz ist die Eigenschaft einer Datenreplikationsstrategie,
welche die Daten konsistent hält. Der Effekt der Ausführung von Operationen auf
eine Sammlung von Replikaten ist der selbe, wenn die Operationen auf eine einzelne
Dateneinheit ausgeführt werden. Das ist eine bestimmte Idee von Datenkonsistenz
und ist als Ein-Kopien-Serialisierbarkeit bekannt, welche im Allgemeinen mithilfe des
Zwei-Phasen-Sperrprotokolls gewährleistet wird. Wenn replizierte Daten konsistent
sind, dann ist die Datenkonsistenz gewährleistet und vice versa.

Die klassischen Designüberlegungen für Datenreplikationsstrategien sind: i) hohe
Operationsverfügbarkeit und starke Datenkonsistenz resultieren in hohen Kosten,
ii) hohe Operationsverfügbarkeit und niedrige Operationskosten können eine starke
Konsistenz nicht gewährleisten und iii) niedrige Operationskosten und starke Da-
tenkonsistenz verhindern eine hohe Operationsverfügbarkeit. In dieser Arbeit un-
tersuchen wir die Entwicklung von Datenreplikationsstrategien, welche eine hohe
Operationsverfügbarkeit bieten und versuchen dabei, eine hohe Datenkonsistenz bei
niedrigen Operationskosten zu erreichen. Drei Datenreplikationsstrategien werden
vorgeschlagen und diskutiert: i) Semantische Datenreplikation (SDR), ii) komponen-
tenbasierte hoch verfügbare Replikationsstrategie (CbHaRS) und iii) Datenreplika-
tionstrategie für replizierte Serviceverzeichnisse (DRSR). Nachfolgend werden diese
Strategien kurz vorgestellt.

Semantische Datenreplikation Die meisten der etablierten Datenreplikations-
strategien nutzen Lese- und Schreiboperationen. Diese Datenreplikate werden mithil-
fe von Lese- und Schreibquoren modifiziert. Ein Quorum ist eine Menge an Replika-
ten. Die Leseoperation wird mit einem Lesequorum ausgeführt, eine Schreiboperation
wird mit einem Schreibquorum ausgeführt. Ein Quorum kann aus einer Untermen-
ge aller Replikate oder allen Replikaten insgesamt bestehen. Die Schnittmenge aus
Quoren wird verwendet, um Datenkonsistenz zu gewährleisten. Bei der Semanti-
schen Datenreplikationsstrategie haben wir eine andere Technik zur Wahrung der

ix

Datenkonsistenz eingeführt. Der SDR-Mechanismus nutzt die Semantik von Daten
und Kodierungstechniken, um eine hohe Operationsverfügbarkeit zu erreichen. Dafür
werden die Replikate ermittelt, welche bei einer Eingabe beschrieben werden müs-
sen. Dann bedeutet eine Eingabe, dass Daten geschrieben werden müssen (z.B. das
Schreiben eines Wertes in eine Variable (x = 5)). Für eine Leseoperationen bedeutet
eine Eingabe, dass Daten gelesen werden müssen (z.B. lese den Wert der Variablen
x). Bei SDR werden die zu schreibenden Daten in Codes kodiert. Diese Codes wer-
den dann redundant über die Replikate verteilt. Die Kodierungstechnik ermöglicht
die zu beschreibenden Replikate deterministisch zu ermitteln, basierend auf der Ko-
dierung der Daten. Dafür wird die Struktur der Codes genutzt. Das hilft SDR hohe
Operationsverfügbarkeiten bei geringen Operationskosten zu erreichen.

Komponentenbasierte hoch verfügbare Replikationsstrategie In der Ver-
gangenheit hat die Gemeinschaft der Forschenden viele wertvolle Techniken basierend
auf Datenreplikation und Datenverteilung vorgestellt. Aktuelle Forschung durchläuft
allerdings einen Paradigmenwechsel: Die Forschungsgemeinschaft versucht den Ko-
ordinationsaufwand zwischen Applikationen zu minimieren, um hohe Operationsver-
fügbarkeiten zu erreichen. Koordination ist allerdings erforderlich, um Datenkonsi-
stenz zu gewährleisten. Zwei-Phasen-Sperrung und verteiltes Sperren sind Beispiele
von Koordinationsprotokollen. In dieser Arbeit präsentieren wir eine komponenten-
basierte hoch verfügbare Replikationsstrategie, welche die Operationstypen und eine
hybride Kommunikationsmethode (synchrone und asynchrone Kommunikationsme-
thoden) nutzt, um hohe Operationsverfügbarkeiten zu erreichen. Das Verteilte Sperr-
protokoll ist beschränkt auf Szenarien, welche durch die Applikationen vorgegeben
werden. CbHaRS ist hoch skalierbar, weil es die Datenkomponenten als Grundlage für
die Replikationsstrategie nutzt. Kausale Datenkonsistenz ist in CbHaRS durch einen
sogenannten Komponentenadministrator sichergestellt: Das Wissen über die Anwen-
dung wird verwendet, um die Limitationen kausaler Datenkonsistenz zu überwinden.
Die Art der Kommunikation zwischen den Datenkomponenten und den Komponen-
tenadministrator hängt vom Status der Datenkomponente ab. Zusätzlich hängt der
Status der Datenkomponente vom Operationstyp ab. Wir erweitern das Konzept
der klientenspezifischen Replikation auf Nachfrage zu einer generellen, komponen-
tenbasierten Replikation. CbHaRS ist ein laufendes Projekt. Um die Wirksamkeit
von CbHaRS zu beweisen, haben wir einen CbHaRS-Prototypen implementiert und
diskutieren die Ergebnisse.

Datenreplikationstrategie für replizierte Serviceverzeichnisse Der Markt
des Internets ist hoch kompetitiv und wird von hohen Erwartungen der Nutzer, kon-
tinuierlicher Weiterentwicklung der Informationstechnologie und hohen Berechnungs-
und Speicherkapazitäten der Hardware beeinflusst. In dieser Arbeit fokussieren wir
uns auf das Entwerfen und Entwickeln einer Replikation für hoch verfügbare Ser-
viceverzeichnisse für die Mikroservice-Architektur. Der Schlüssel-Wert-Speicher eines
Serviceverzeichnisses umfasst sechs Knoten und unterstützt eine Anzahl von 216 Mi-

x

kroservices. Existierende, replizierte Serviceverzeichnisse wie ZooKeeper und ETCD
basieren auf der Majority-Consensus-Strategie. Wenn diese Strategien in der Menge
der Replikate keine Mehrheit finden, dann sind sie nur eingeschränkt funktionsfähig.
Als Teil dieser Arbeit stellen wir eine hoch verfügbare Datenreplikationsstrategie für
Serviceverzeichnisse vor. Um die Grenzen existierender Strategien zu umgehen, nutzt
die Datenreplikationsstrategie für Serviceverzeichnisse i) ein simples Kodierungssche-
ma und ii) eine Zuordnungsmethode für effiziente Verteilung kodierter Werte zu den
Knoten des Serviceverzeichnisses.

Das Ziel – hohe Operationsverfügbarkeiten bei niedrigen Operationskosten – ist
für jede der Replikationsstrategien dasselbe. Sie unterscheiden sich untereinander
in der Methodik, welche sie zum Erreichen dieses Ziels verwenden und in dem An-
wendungsfall. Jede der vorgestellten Datenreplikationsstrategien fokussiert eine be-
stimmte Menge an Problemen. SDR ist für schreibintensive Anwendungen, wie Log-
ging oder das Aufzeichnen von Änderungen, geeignet. CbHaRS kann angewendet
werden, wenn Datenkonsistenz durch anwendungsspezifische Regeln gewährleistet
werden kann. DℜSℜ fokussiert sich auf Anwendungen, welche maximal 216 unter-
schiedliche Werte benötigen, wie ein Serviceverzeichnis.

xi

Contents

List of Figures xiv

List of Tables xvi

List of Algorithms xvii

Acronyms xxi

1 Introduction 1
1.1 Data Partitioning . 2
1.2 Data Replication . 2
1.3 Quorum Systems . 4

1.3.1 Quorum Intersection Property 4
1.4 Trade-off Parameters for Data Replication 6
1.5 Classification of Data Replication Strategies 9
1.6 Thesis Contributions . 10

1.6.1 Semantic data replication . 10
1.6.2 Component-based highly available replication strategy 11
1.6.3 Data replication strategy for the replicated service registry . . 12

2 A Novel Data Replication Strategy exploiting Data Semantics and a
Coding Technique 15
2.1 Introduction . 15
2.2 State of the Art . 21

2.2.1 Syntactic data replication . 21
2.2.2 Semantic data replication . 21
2.2.3 Erasure Codes . 22

2.3 Problem Statement . 23
2.4 Replication Strategy . 23

2.4.1 Functional Model . 23
2.4.2 SDR Replication Strategy . 28
2.4.3 Implementation . 30
2.4.4 Availability Analysis . 34
2.4.5 Results . 38

xiii

Contents

2.5 Conclusion & Future work . 40

3 Component-Based Data Replication Strategy 41
3.1 Literature Review . 41
3.2 Introduction . 45
3.3 Problem Statement . 47
3.4 Replication Strategy . 47

3.4.1 RI-related operation execution in a synchronized state 49
3.4.2 RI-related operation execution in an unsynchronized state . . 49
3.4.3 GI-related operation execution by CA 52

3.5 Conclusion & Future Work . 54

4 A Data Replication Strategy for A Replicated Services Registry 57
4.1 Introduction . 57
4.2 Related Work . 61
4.3 Microservices Architecture . 62

4.3.1 µSA without a Sℜ . 63
4.3.2 µSA with a Sℜ . 63

4.4 A Data replication strategy for a replicated service registry 64
4.4.1 The Functional Model . 64
4.4.2 Replication Strategy . 67
4.4.3 Analysis . 69
4.4.4 Analytical Results . 72

4.5 Conclusion & Future Work . 75

5 Outlook 77

References 82

Publications 93

xiv

List of Figures

1.1 Pros and cons of a non-replicated system 2
1.2 Pros and cons of a replicated system 3
1.3 Example of write quorum and read quorum 5
1.4 Quorums intersection example . 6
1.5 Data replication strategy trade-off parameters 7

2.1 Classification of data replication strategies 16
2.2 Quorum intersection graph for queue data type[Her1984] 17
2.3 ENQ and DEQ operation example 18
2.4 SDR complete state space . 20
2.5 Quorum intersection graph for PagedFile data type[Her1984] 22
2.6 SDR encoding example . 24
2.7 Finite state space for D . 25
2.8 Timestamp generation for r(“1A$”) having r−id = 250 29
2.9 SDR write example . 30
2.10 State space for even and odd numbers 36
2.11 State space for prime and not prime numbers 37
2.12 SDR read operation availability . 38
2.13 SDR write operation availability . 39

3.1 CAP Theorem . 43
3.2 CbHaRS components overview . 46
3.3 Replica invariant-related operation exeuciton 48
3.4 Global invariant-related operation execution 53
3.5 Comparison of replica invariant-related and global invariant-related

operation executions . 55

4.1 Internet connectivity bandwidth growth 58
4.2 Supercomputer computing abilities trend 58
4.3 Hard drive storage-cost trend . 59
4.4 µSA containing replicated µS instances 62
4.5 A simple reservation business process example 63
4.6 µSA containing multiple µS s and a Sℜ 64

xv

List of Figures

4.7 DℜSℜ node model . 66
4.8 Read operation availabilities . 73
4.9 Write-operation availabilities . 74
4.10 DℜSℜ read operation operation cost comparision 74
4.11 DℜSℜ write operation operation cost comparision 75

xvi

List of Tables

2.1 SDR codes and semantic classes extraction 28
2.2 SDR example for write and read operations for r(A). 30

xvii

List of Algorithms

1 SDR Write Operation . 31
2 SDR Read Operation . 33

3 Replica invariant related operation execution 50
4 Global invariant related operation execution 51

5 DℜSℜ ISℜ operation . 68
6 DℜSℜ USℜ operation . 70

xix

List of Acronyms

1SR one-copy serializability
2PL two phase locking protocol

A architecture. description of architecture
ADC ASCII decimal codes

B billion

C16 Code16
CA component administrator
CBHARS component-based highly available replication strat-

egy
CMRDTS commutative replicated data types
CRDTS conflict-free replicated data types
CVRDTS convergent replicated data types

DBS database system
DC data consistency
DCM data component
DDBS distributed database system
DEQ Dequeue operation
DI data item
DR data replication
DRSR a data replication strategy for a replicated service

registry
DRST data replication strategy
DS distributed system
DSEM data semantics

En enough nodes
ENP EvenNotPrime
ENQ Enqueue operation

xxi

Acronyms

EP EvenPrime
EXU execute-update operation

f NIndices mapping to nodes
f−1 nodes mapping to NIndices
FQ Final write quorum
FSS finite state space
FT fault-tolerant
FTC fault tolerance

G complete mapping
GI global invariant
GP Grid protocol
GTQP Generalized tree quorum protocol

HA highly available
HGP Hierarchical grid protocol
HOA high operation availability
HQC Hierarchical quorum consensus

ISℜ inquire service
IC inconsistent
INV.-LOC. invocation-location
IQ Initial read quorum

KVS key-value store

LNT logical network topology
LOC low operation cost

M million
µ micro
MCS majority consensus strategy
MQB multimedia quorum based protocol
MS microservice
MSA microservice architecture

NHA not highly available
NI NIndices

OA operation availability
OB-CRDTS operation-based conflict-free replicated data types
OC operation cost
ONP OddNotPrime

xxii

Acronyms

OP OddPrime

PIT partition-intolerant
PITC partition intolerance
PRU prepare-update operation
PT partition-tolerant
PTC partition tolerance

ℜ registry
RI replica invariant
RO read operation
ROWA Read-One Write-All
ROWAA Read-one write-all available
RST replication strategy
RWO read and write operation

S service
SB-CRDTS state-based conflict-free replicated data types
SD service discovery
SDR semantic data replication
SI microservice’s key
SNST synchronized state
SR service registry
SRK service registry key
SS state space
SSS sub-state space
STDR syntactic data replication
SYNTH synchronization threshold

TLP triangular lattice protocol
TQP Tree quorum protocol
TSR timestamped reference

USℜ update service
UDP update package
UNSNST unsynchronized state

WO write operation
WS web service
WVS weighted voting strategy

YCSB Yahoo Cloud Serving Benchmark

xxiii

1
Introduction

There is an old Greek saying, interpreted as, "change is the only constant in life,"
and it is definitely true from the perspective of technology. From the last couple
of decades the technological advancements are immense and there is a lot that has
been changed. However, the changes are outcome of the continuous improvements.
Presently, the online application giants like Facebook, Google, Amazon etc. support
millions of a continuously growing number of users. These applications rely on strong
distributed backend infrastructures [DHJ+2007, BAC+2013, CDE+2013]. One of
the primary reasons of having such a strong backend infrastructures is to provide
enhanced user experience. The system should provide high operation availabilities
to accomplish this. The higher the operation availabilities are the richer is the user
experience [BDF+2013, BFF+2014, UST2017].

In this work, we focus on data replication, one of the concepts that contributes
towards achieving high operation availabilities. In data replication, high operation
availability is the high probability that the operation can successfully be performed
at an arbitrary point in time. E-commerce, online booking, search engine, and so-
cial networking are some classes of highly available systems. These systems manage
multiple copies of their data items called data replicas. These systems continue to
perform in the presence of k1 data replica failures. Several hundreds or thousands
of users simultaneously access these systems. For example, in November 2017, ama-
zon.com had around 2.9 billion (B) visits, facebook.com had approximately 30.66B
visits, youtube.com had nearly 24.47B visits, expedia.com had around 51.45 mil-
lion (M) visits, booking.com had approximately 369.77M visits, and google.com
had nearly 43.43B visits [Sim2017]. The internet market is highly competitive and
is influenced by high expectation levels of the internet users, continuous advance-
ment in the information technology, and high processing and storage capabilities

1k < n and n is total number of replicas. k varies depending upon the system requirements

1

1 Introduction

of the hardware [McA2010]. However, to survive in such a highly competitive
environment, these systems are primarily focusing on high operation availabilities
[DHJ+2007, CDE+2013, BAC+2013].

1.1 Data Partitioning

Data replication is the primary focus of this work however, data partitioning is also
briefly explained in this section. Data partitioning is a concept where a data item is
split into parts.

Example Let us consider a record of a person as a data item. This record contains
fields like ID, name, street address, city, and bank balance. There are two write oper-
ations namely: updateAddress(ID) and updateBankBalance(ID). updateAddress(ID)
writes new value of street address and city against the search value ID. update-
BankBalance(ID) writes new value of bankbalance against the search value ID. Both
of the write operations write the new value of person data item and are mutually ex-
clusive to each other. However, this mutual exclusion can be avoided if the data item
is split into parts known as data partitions. For example, one data partition – partA
– consists of fields ID, name, street address, and city. The other partition – partB –
consists of fields ID and bank balance. Now updateAddress(ID) writes on partA and
updateBankBalance(ID) writes on partB simultaneously. This approach is known
as horizontal partitioning. The split can be done by a horizontal method, vertical
method, or a hybrid method [Run2008, Kha2010]. Along with the infrastructure a
variable percentage of the data is redundantly distributed to different sites.
Ticket Management System

Data item

t = 300 auction tickets

(a) A simple non-replicated system with one running
instance of a data item. It is easy to manage, and
it is cost-effective as read-cost and write-cost will
always be 1.

Ticket Management System

Data item

t = 300 auction tickets

(b) A simple non-replicated system with failed in-
stance of a data item. In case of failure, it does
not provide a successful operation execution at
that time.

Figure 1.1: Pros and cons of a non-replicated system

1.2 Data Replication

Most of the time-critical business, e-Commerce, and social networking applications
depend heavily upon a strong backend infrastructure. From the design and archi-
tecture point of view, usually, the backend infrastructure is logically or physically

2

1.2 Data Replication
Ticket Management System

Data replica 1

t = 300 auction tickets

Data replica 2

(a) A replicated system with two replicas of the data
item. The replicated system increases operation
costs as compared to non-replicated system, but
it may provides higher operation availabilities de-
pending on data replication strategy and fault
model adopted.

Ticket Management System

Data replica 1

t = 300 auction tickets

Data replica 2

(b) A replicated system can bear replica failure. If a
replica fails, then the other replica is available for
operation executions – depending upon the data
replication strategy. Therefore, the addition of a
replica increases the operation availabilities of the
system.

Figure 1.2: Pros and cons of a replicated system

distributed across multiple sites [CDK2005]. A logically distributed backend infras-
tructure is mostly supported by virtual machines or a physically distributed backend
infrastructure. The virtual machines are hosted by powerful servers [TVS2007]. The
physically distributed backend infrastructure is either supported by the heteroge-
neous collection of computing resources in the form of a grid [JBFT2005] or the
homogeneous collection of computing resources in the form of a cluster [Pra2008]. In
contrast to data partitioning, multiple copies of data item are created. These copies
are known as data replicas. Data replication focuses on high operation availabilities
and data distribution increases performance of system by providing the user localized
access to the system with respect to its geographical distribution space.

Example In Figure 1.1 we explain a centralized non-replicated online booking
system. In this case, the system has one data item. This kind of systems is easy
to manage and operate. There is only one data item, and for this reason it is cost-
effective as the operational costs for one data item are low. However, it suffers from
low operation availabilities because in case of data item failure, there are no available
operations.

In Figure 1.2, the data item is replicated into two data replicas. This kind of
systems requires a strategy to manage the data consistency among the replicas. The
operation costs on two replicas also increases as compared to the operation cost of
single data item. However, it will increase the operation availability of the system,
and the system will be able to execute operations in presence of a single failure.

With having the data replicated among multiple sites arose the requirement to
keep the replicated data consistent. To deal with this requirement, the replicas of
data items are created and the strategies which are used to manipulate the data
replicas are provided by so-called data replication strategies [Iak2012]. A very im-
portant aspect of data replication is the enhancement of the system capabilities to be
fault-tolerant. Data replication also enables the system to execute concurrent opera-

3

1 Introduction

tions resulting in high performance and/or throughput and improved responsiveness.
Concurrent operation execution depends upon operation type and data replication
strategy. Classical data replication strategies use two types of operations: i) read op-
eration and write operation. These operations are executed via the use of a concept
called quorums. In the next section we briefly elaborate on quorum system.

1.3 Quorum Systems

A Quorum is a set of replicas that work together to achieve a common goal. For
example, in case of a write operation on a quorum to be successful, each replica
of the respective quorum must commit to perform the write operation otherwise
the write operation will not be performed. This means that, to perform a certain
operation, a group of replicas come into an agreement to perform that operation. In
[Gif1979], voting method is exploited to obtain the agreement. Each replica is given
a vote. These votes are used when forming a read quorum Vr or write quorum Vw to
perform a read operation or a write operation respectively. The following two rules
are enforced to ensure one-copy serializability.

• Vr + Vw > V where V ∈ N is the number of votes of data item

• Vw ≥ V/2 + 1

In distributed control [Tho1979], majority consensus protocol, and voting method a
site initiates the voting. It then collects the responses and if the majority of replicas
votes in the favor of it, then it submits the transaction.

The data replication strategy defines a quorum system. The size of the quorum
– the number of replicas in a quorum – depends upon the data replication strategy.
Most of the data replication strategies define two types of quorums: i) a write quorum
and ii) a read quorum. A write quorum is used to execute the write operation, i.e.,
write quorum updates value of the data item. Similarly, a read quorum is used
to execute the read operation, i.e., read quorum reads value of the data item. To
ensure one-copy serializability, a read quorum must intersect with a write quorum.
And there must exist an intersection between the write quorums. This intersection
is guaranteed with the help of quorum intersection property, that is discussed in the
proceeding section.

1.3.1 Quorum Intersection Property

Along with providing high operation availabilities, it is also important to keep the
data consistent across the replicas. In this section we focus on one-copy serializability,
which is a notion of data consistency. It is ensured when a read operation returns
the last written value of the data item. This is achieved with the help of a so called
quorum intersection property. Let us suppose a replicated system made up of five
replicas as shown in Figure 1.3. A write quorum Qw containing the replicas {a, b, c, d}

4

1.3 Quorum Systems

• Quorum: A a set of replicas that work together to achieve a common goal

a b c d e

• A write quorum Qw:

a b c d e

• A read quorum Qr:

a b c d e

Figure 1.3: Example of a write quorum Qw = {a, b, c, d} and a read quorum Qr =
{d, e}.

is formed. A read quorum Qr is formed having the replicas {d, e}. According to the
quorum intersection property:

Qw ∩Qr ̸= {}

These read and write quorums fulfill the intersection property of the quorum systems

{a, b, c, d} ∩ {d, e} = {d}

because replica d ensures that the read quorum will always return the last written
value by the write quorum.

Qwi , Qwj ∈ {Qw1 , Qw2 , Qw3 , . . . , Qwn} where n ∈ N number of write quorums
Qrk ∈ {Qr1 , Qr2 , Qr3 , . . . , Qrm} where m ∈ N number of read quorums
Qwi ∩Qwj ̸= ∅ where i ̸= j, i ∈ N, j ∈ N
Qwi ∩Qrk ̸= ∅ where i ∈ N, k ∈ N

(1.1)
Equation 1.1 explains the quorum intersection property. Most of the replication
strategies ensure the following rules:

• Read quorums must intersect with write quorums

• Write quorums must intersect with write quorums

In Figure 1.4, we explain the read and write operation executions with the help of
an example. The initial version (v) of the replicas a, b, c, d, and e is v = 1 and the
value of data item (x) is x = 0. First, a write operation write(x, 1) selects the
write quorum Qw = {a, b, c} and updates the value of x to 1. Also, the highest
version among the replicas is picked, incremented by 1, and then set as v = 2 for
all the replicas in the write quorum. The next write operation write(x, 0) selects

5

1 Introduction

• Check for quorum availability

a

x = 0
v = 1

b

x = 0
v = 1

c

x = 0
v = 1

d

x = 0
v = 1

e

x = 0
v = 1

• write(x, 1) by acquiring a write quorum Qw1 = {a, b, c}

a

x = 1
v = 2

b

x = 1
v = 2

c

x = 1
v = 2

d

x = 0
v = 1

e

x = 0
v = 1

• write(x, 0) by acquiring a write quorum Qw2 = {c, d, e}

a

x = 1
v = 2

b

x = 1
v = 2

c

x = 0
v = 3

d

x = 0
v = 3

e

x = 0
v = 3

• read(x) by acquiring a read quorum Qr1 = {b, c, d}

a

x = 1
v = 2

b

x = 1
v = 2

c

x = 0
v = 3

d

x = 0
v = 3

e

x = 0
v = 3

Figure 1.4: Read and write quorum intersection example. Write quorums Qw1 and
Qw2 intersect with each other. Read quorum Qr1 also intersects with
write quorums Qw1 and Qw2. This quorum intersection property ensures
data consistency.

the write quorum Qw = {c, d, e} and updates the value of x to 0. Replica c has the
highest version v = 2 among the quorum. It is incremented by 1 and then set as
v = 3 for c, d, and e. The next operation read(x) is a read operation to get the last
written value of x. The operation is carried out via read quorum Qr = {b, c, d}. The
replica with the highest version in the quorum is searched and value of the x is read
from that replica. In this example, last written value of x can be read from replicas
c and d. Both of the replicas have v = 3 and x = 0.

1.4 Trade-off Parameters for Data Replication

To have gains in high operation availabilities, researchers have provided a number of
data replication strategies focusing on this matter. Every data replication strategy

6

1.4 Trade-off Parameters for Data Replication

low costs

high costs

unavailability

inconsistency

Figure 1.5: Data replication strategy trade-off parameters. High operation avail-
ability and low operation cost leads towards data inconsistency. High
operation availability and data consistency results in higher costs. Data
consistency with low operation cost causes operation unavailability.

revolves around the trade-off factors like high operation availabilities, data consis-
tency, fault tolerance, and costs [His1989, GL2002, Aba2012, UST2017]. There exist
diverse data consistency models in literature for data replication strategies ranging
from stricter data consistency notions and then gradually moving towards weaker no-
tions of data consistency like one-copy serializability, sequential consistency, causal
consistency, and eventual consistency etc. [BHG1987, Lam1979]. The selection of
an appropriate data consistency notion for a data replication strategy is made in
accordance to the trade-off factors [His1989]. Brewer’s CAP theorem demonstrates
that the high operation availabilities are impacted by strong data consistency and
partitioning intolerance [GL2002]. To achieve high operation availabilities, strong
data consistency or partitioning intolerance need to be relaxed [DHJ+2007].

In Figure 1.5, we explain the trade-off between data consistency, operation avail-
abilities, and operation costs. Data replication strategies focusing towards high
operation availabilities and strong data consistency results in high operation costs.
Because, this case enforces quorum intersection between read quorums and write
quorums, and between write quorums and write quorums. The size of the quorum
depends upon the data replication strategy, for example, in case of Read-One Write-
All the read quorum size is one, on the other hand the write quorum size is n where

7

1 Introduction

n is total number of replicas. The operation cost is directly proportional to the size
of quorum. The data replication strategies trying to achieve high operation availabil-
ities with low operation costs may suffer from data inconsistency. In this case small
read and write quorums are used to reduce operation cost. However, there is a high
probability that small quorums do not fulfill the intersection property which leads to
data inconsistency. Lastly, the data replication strategies which lean towards strong
data consistencies and low operation costs are impacted by unavailability. This is
the case of not-fully distributed quorum system where the failure of certain replica(s)
impact the availability of the quorum(s).

We also experience the same in case of transaction execution. To ensure ACID
properties [HR1983] two transactions cannot execute simultaneously, if both try to
update a common data item. In this case, one of the transactions stalls for the
availability of the resources acquired by the already running transaction. And, in
case of network partitioning the stalling transaction can stall for much longer or until
restart, because the required resource is no longer available due to network partition-
ing [BDF+2013]. In [BFF+2014, BDF+2015] the authors have exploited application-
specific rules for high operation availabilities, and the authors have introduced the
concept of minimizing coordination – coordination required between replicas to en-
sure consistency – among the data replicas. The coordination minimization majorly
depends upon the application invariants – correctness predicates for the replicas –
and transactions’ isolation levels [BDF+2013, BFF+2014, BDF+2015]. The applica-
tion operations are categorized into two broad categories:

• conflicting operations: operations of conflicting categories cannot execute si-
multaneously, because, their simultaneous execution may invalidate a global
application invariant – these invarinats are a set of data consistency rules that
are enforced on all the replicas.

• non-conflicting operations: operations of non-conflicting categories can execute
simultaneously. These operations depend primarily on replica-level application
invariants – these invarinats are a set of data consistency rules that are enforced
on a single replica independent of other replicas. These operations can be
concurrent read-read, concurrent read-write and concurrent write-write.

The main idea behind the operation categorization is to ensure the validity of global
application invariants during simultaneous execution of replica-level application in-
variants. We have exploited this approach for one of our data replication strategies
presented in chapter 3. So far we had discussed about the need for data replication,
and elaborated on the benefits of quorum system. We also explain briefly the three
factors impacting design and development of the data replication strategy. In the
next section we focus on the classification of them.

8

1.5 Classification of Data Replication Strategies

1.5 Classification of Data Replication Strategies

The data replication strategies, based on their type, can be classified into two main
groups: i) Syntactic data replication (StDR) and ii) Semantic data replication (SDR)
[Iak2012] as shown in Figure 1.6. Data replication strategies like Read-One Write-All
(ROWA) [BG1984], the Tree quorum protocol (TQP) [AA1990], the majority con-
sensus strategy (MCS) [Tho1979], and the weighted voting strategy (WVS) [Gif1979]
belong to the class of syntactic data replication [HHB1996]. These strategies consider
the execution mechanism required for read and write operations. The main focus is
to develop strategies which address “how read and write operations will be carried
out on the replicas”. These strategies depend upon syntactic information about the
transaction and its operations. For example, the signature – operation execution call
– of the read and write operation describes the number and type of parameters for the
operation [Iak2012]. The input2 to the operations is evaluated against some syntax
rules or some grammatical structure defined as the input validation expressions, and
the actual data semantics is not considered. In majority of the cases, syntactic data
replication makes use of quorums to carry out read and write operations and they
guarantee one-copy serializability (1SR) by exploiting quorum intersections between
read and write quorums and between write and write quorums [Iak2012].

Figure 1.6: Classification of data replication strategies

The other category of data replication strategies, namely semantic data replication
strategies, takes benefit by exploiting semantics of the application domain, applica-
tion data, and the data type used to store and manipulate application data [Iak2012].
In [Her1985] and [Her1986], the author focuses on object’s data type to improve the
operation availabilities, and introduces strategies having robust configurations and
high operation availabilities. The author uses timestamps and logs instead of ver-

2For a write operation, input means the data to be written, e.g., write value of a variable x = 5,
and for a read operation, input means to data to be read, e.g., read value of variable x

9

1 Introduction

sion numbers. The benefit of using timestamps and logs is that the write quorum
intersection is no loner required to find highest version number among the replicas.
Instead, in a syntactic data replication strategy, write quorum intersection is always
required to find the value written by the last write operation to guarantee data con-
sistency. However, in semantic data replication strategy, a write operation appends
write quorum logs with the newest timestamp and updates the data item value. Re-
fer to Figure 2.3 for an example. Data consistency is guaranteed by constructing a
view of the replicated object from these replicated logs [Her1986]. Considering the
effectiveness of this strategy, we also utilize a timestamp-based approach for SDR
(Chapter 2).

1.6 Thesis Contributions

This thesis focuses on an important research area which is to provide high operation
availabilities, achieve strong data consistency, and reduce operation costs. Our ef-
fort results in three data replication strategies namely i) Semantic data replication
(SDR), ii) Component-based highly available replication strategy (CbHaRS), and iii)
Data replication strategy for a replicated service registry (DℜSℜ). A brief overview
about these data replication strategies is given in Sections 1.6.1, 1.6.2, and 1.6.3
respectively. For detailed discussion on SDR please refer to Chapter 2. CbHaRS is
elaborated in Chapter 3. In Chapter 4, we explain DℜSℜ. And finally, in Chapter
5, we summarize our research and share future directions.

1.6.1 Semantic data replication

Semantic data replication [UST2017] is an enhancement of the research done by
Gifford [Gif1979] and Herlihy [Her1985, Her1986]. However, the distinctive features
of our work in data semantics is the utilization of a coding scheme in a replicated
environment to achieve high operation availabilities. Semantic data replication has
six replicas. The replicas are divided into two groups. One group contains semantic
information of the data and the other group contains the codes of the data as shown
in Figure 1.7. For complete details of the replication strategy please refer to Section
2.4. The feature set of SDR is made up of data semantics, finite state space, and
coding scheme distinguishes our work from existing data replication strategies. Now,
we briefly explain the underlying logic of our feature set.

1. Finite state space (Θ): SDR defines a Θ around the semantics of the data3.
For the scope of our work, we utilize ASCII codes [ANS1986] to define the Θ. The
Θ is represented in the form of a connected directed graph. Its vertices represent
four nodes of the distributed systems and each edge represents a digit of the ASCII
code (we explain this in detail in Section 2.4.1). This Θ is then used in read and
write operations to identify the subset of replicas to be read and written. The
Θ is the key feature of SDR and it distinguishes SDR from existing replication

3Data is the input processed by the system

10

1.6 Thesis Contributions

Figure 1.7: A visual representation of different steps of SDR. This example shows
how the input value is processed to obtain its semantic information, and
how SDR codes are generated from it.

strategies [HHB1996] as the Θ guides the write operation to select the replicas based
on the input. For read operation, it determines the next replica to read based on
the value of the current replica. In Section 2.4.3, we give an example of read and
write operation executions. In case of strategies relying on quorum consensus and
voting, the operation execution depends upon a search-and-select mechanism – for
predefined quorum or participation from a certain percentage of replicas to form a
dynamic quorum – to make a decision [Tho1979, Gif1979]. However incase of SDR,
replica selection is made with the help of Θ.

2. Coding scheme: We introduce a light-weight coding scheme in SDR. Our coding
scheme encodes the input value according to its semantic information. The write
operation utilizes the encoded value of the data to identify the replicas which will take
part in operation execution. In case of the read operation, the semantic information
and Θ guide the read operation to a reduced set of replicas to get the latest value
based on the timestamp. The encoded values are then decoded to regenerate the
actual value. Section 2.4.1.3 elaborates the coding scheme in detail.

3. Replica roles: We bind the replicas into groups. Each group is tagged with
the role to store unique code value4. One of the groups is dedicated to store the
semantic information about the data, and the other group is used to store the encoded
values of the data. In [KBMP1996] replica roles can be switched as a result of
a reconfiguration. However in our case, replica roles are not switched because of
their distinct role. SDR is designed to be fault-tolerant without reconfiguration.
It takes advantage of the Θ knowledge and the redundantly distributed codes. The
redundancy is incorporated in the codes by the encoding scheme. We gave an example
of SDR replication in Figure 1.7. In the upcoming section we discuss our component-
based data replication strategy.

1.6.2 Component-based highly available replication strategy

In [UZT2017a], we present component-based highly available replication strategy.
The focus of this research work is to develop application-specific highly available
data replication strategy. In case of application-specific data replication strategies,

4The code value is part of the codes which are generated via SDR coding scheme

11

1 Introduction

the data consistency rules are defined by the application semantics. Component-
based highly available replication strategy (CbHaRS) focuses towards achieving high
operation availabilities by utilizing the states of the data components (DCMs) –
a replica and the data item hosted by that replica collectively are represented as
data component (DCM)5 – and by exploiting the semantics of the data component’s
operations. CbHaRS uses DCMs as the building blocks for the data replication
strategy. The DCMs exist at different abstraction levels. From the application’s
perspective, there exists a DCM for each client. And, from the client’s perspective
there exist multiple copies of its DCM [BCD+2000]. For the scope of our work, we
elaborate on the client’s perspective which is the basic unit for our data replication
strategy. CbHaRS is scalable and at the same time it is fault-tolerant. Plugging in a
data component contributes towards scalability because then there will be one more
component for concurrent operation execution, for more information see Section 3.4.

Among the data components, one of the data component plays the role of compo-
nent administrator (CA). Application invariants – data consistency rules defined by
the application semantics – are categorized into replica invariants (RIs) and global
invariants (GIs). Refer to Figure 1.8 for an overview of the CbHaRS. In [BDF+2015]
the concept of global and local application-level constraints is defined with the help
of a middleware running on top of a geo-replicated date store. In CbHaRS, the RIs
are defined on DCMs other than the CA and GIs are defined only on the CA. The
RIs allow simultaneous local-operation executions on multiple DCMs targeting the
same data item. In case of GIs, the operation executions are managed by the CA. To
ensure data consistency of the global state of the system, the operation executions
that involve GIs may result in a change to the RIs. These operations are executed
in synchronous communication mode. On the other hand, the DCMs communicate
with each other via the CA asynchronously. The following are the main contributions
of our work:

• exploit operation types and a hybrid communication model to achieve high
operation availabilities

• utilization of data components for scalability and high operation availabilities

• non-blocking concurrent operation executions while ensuring strong data con-
sistency

In the proceeding section we provide a brief overview of our final data replication
strategy and afterwards close this chapter.

1.6.3 Data replication strategy for the replicated service registry

In [UZT2018], we focus on high operation availabilities from the perspective of a
microservice architecture [DGL+2017]. We designed a highly available and fault-
tolerant service registry for a fixed number i of microservices, 0 ≤ i ≤ 216. We achieve

5Here, the assumption is that, each replica hosts only one data item.

12

1.6 Thesis Contributions

Application Semantics

RI | SynTHRI | SynTH

GI RI | SynTH

PRU EXU

Data Component

Component Admin…

PRU EXU

Data Component

PRU EXU

Data Component

PRU EXU

Component Admin…

PRU EXU

Figure 1.8: The application semantics layer defines the rules to implement the re-
quired data consistency. The replica invariant enforces the data consis-
tency at replica level. That means the replica must hold the invariant
defined for it. Prepare-update operation (PRU) and execute-update op-
eration (EXU) are used to manipulate the data item. Global invariant is
enforced by the component administrator.

these properties by replicating the service registry on six independent nodes. In a
replicated environment, the independent nodes work together to achieve the common
goal [The1993]. A replicated service registry is more fault-tolerant as compared to a
non-replicated centralized service registry. Because, there exist n replicas of Sℜ and
it can bear m faults, where m < n and m,n ∈ N and value of m depends upon the
data replication strategy. To support operations execution on the replicated service
registry, we design a data replication strategy which we call a data replication strategy
for a replicated service registry (DℜSℜ). High operation availability is among the
primary objectives of a replicated environment [BDF+2013, BFF+2014]. The key
contributions of our work are:

• the development of a replicated and highly available service registry for a mi-
croservice architecture

• development of a simple and efficient encoding scheme for a finite number
i, 0 ≤ i ≤ 216 of microservices

13

1 Introduction

• and, a mapping method for efficient distribution of encoded values to service
registry nodes

In this section, we briefly explain the three data replication strategies and their
key characteristics. The way we exploited simple coding schemes and finite state
space is the differentiating factor between our work and the existing data replication
strategies.

14

2
A Novel Data Replication
Strategy exploiting Data

Semantics and a Coding Technique

Data replication is an important research area, as reliable access to data makes up
the base of most of IT services. High operation availabilities, low operation costs,
and data consistency are major target conflicts in almost every data replication
research. In this chapter, we discuss a data semantics and data encoding-based
data replication strategy called the Semantic data replication (SDR). SDR exploits
data semantics, coding schemes, and efficient search algorithms to come up with a
strategy whose goal is to provide high operation availabilities with low operation
costs. SDR primarily takes advantage of the finite state space introduced by the
coding scheme for the replicated objects, and it uses the a-priori knowledge of the
finite state space to know right away which replicas to contact for an operation. This
feature distinguishes SDR from existing infinite state space replication strategies.
Exploitation of the data coding schemes is a significant contribution in SDR, as
the coding scheme helps in fast execution of read and write operations. It provides
consistent access to the state of the replicated object for the read operations.

2.1 Introduction

Most of the time-critical business, e-Commerce and social networking applications
depend heavily upon a strong backend infrastructure. From the design and archi-
tecture point of view, usually the backend infrastructure is logically or physically
distributed across multiple sites [CDK2005]. A logically distributed backend infras-
tructure is mostly supported by virtual machines, which are hosted by powerful

15

2 A Novel Data Replication Strategy exploiting Data Semantics and a Coding Technique

servers [TVS2007], and a physically distributed backend infrastructure is either sup-
ported by a heterogeneous collection of computing resources in the form of a grid
[JBFT2005] or a homogeneous collection of computing resources in the form of a
cluster [Pra2008]. Along with the infrastructure, a variable percentage of the data,
the data files, and the metadata is also distributed and replicated to different sites.
One of the reasons behind this distribution is to increase the performance of the
system by providing localized access to the system with respect to its geographical
distribution space. With having the data distributed among multiple sites arose the
requirement to keep the distributed or replicated data consistent and up to date. To
deal with the above mentioned requirement, replicas of the data items are created.
The strategies which are used to manipulate the data replicas are provided by the
so-called data replication strategies [Iak2012].

A very important aspect of data replication is the enhancement of the system ca-
pabilities to be fault-tolerant. Data replication also enables the system to process
concurrent requests resulting in high performance and/or throughput and improved
responsiveness. Currently, there are numerous data replication strategies available,
and the choice among them is made by considering the trade-off between the factors
like operation availability, data consistency, and read-write operation cost [His1989].
In literature, there exist diverse data consistency classes for data replication strategies
ranging from stricter data consistency notions and then gradually moving towards
weaker notions of data consistency like one-copy serializability (1SR), sequential con-
sistency, causal consistency, and eventual consistency etc [BHG1987, Lam1979]. The
selection of an appropriate data consistency notion for a data replication strategy
is made in accordance to trade-off factors [His1989]. We describe the data consis-
tency notion for our data replication strategy in Section 2.4.3. The data replication

Figure 2.1: Classification of data replication strategies

strategies can be categorized into two broad categories as shown in Figure 2.1. One
of the categories belongs to syntactic data replication strategies [Iak2012] like the
Read-One Write-All (ROWA) strategy [BG1984], the Tree quorum protocol (TQP)

16

2.1 Introduction

[AA1990], the majority consensus strategy (MCS) [Tho1979], and the weighted vot-
ing strategy (WVS) [Gif1979] etc. [HHB1996]. The strategies that fall under the
umbrella of syntactic data replication only consider the execution mechanism re-
quired for read and write operations. The main focus is on developing strategies
which address “how read and write operations will be carried out on the replicas?”
These strategies depend upon syntactic information about the transaction and its
operations. For example, the signature – operation execution call – of the read and
write operation describes the number and type of parameters for the operation. The
input to the operations is evaluated against some syntax rules or some grammatical
structure defined by the input validation expressions, and the actual data semantics
is not considered. In majority of the cases, syntactic data replication makes use of
quorums1 to carry out read and write operations and they guarantee 1SR by exploit-
ing quorum intersections between read and write quorums, and between write and
write quorums.

The other category of data replication strategies, namely semantic data replica-
tion strategies, takes benefit by exploiting the semantics of the application domain,
application data, and the data type used to store and manipulate application data
[Iak2012]. In [Her1984, Her1985, Her1986], the author focuses on the object’s data
type to improve the operation availabilities, and introduces strategies having ro-
bust configurations and high operation availabilities. He defined different operation
types for each data type. For example, an enqueue operation (ENQ) and a dequeue
operation (DEQ) are defined for a Queue data type. Each operation is supported
by an initial read quorum (IQ) and final write quorum (FQ). Figure 2.2 shows a

ENQ DEQ

Operation (IQ, FQ)
ENQ (0,1) (0,2) (0,3)
DEQ (5,1) (4,2) (3,3)

Figure 2.2: Quorum intersection graph for five replicas of queue data type[Her1984].

possible quorum intersection graph for the Queue data type. The arrow represents
the intersection-relationship between the IQ and FQ. The intersection-relationship
is necessary to ensure data consistency. The arrow from ENQ to DEQ elaborates
that FQ of ENQ must intersect with IQ of DEQ. The arrow from DEQ to DEQ

1A quorum is the minimum number of participants that should agree to perform an operation.

17

2 A Novel Data Replication Strategy exploiting Data Semantics and a Coding Technique

elaborates that FQ of DEQ must intersect with IQ of DEQ.

Enqueue operation and Dequeue operation operation example: From Fig-
ure 2.2 let us take the following configuration:

• ENQ(0, 3) means that the size of IQ is 0 and of FQ is 3.

• DEQ(3, 3) means that the size of IQ is 3 and FQ is 3.

Now we explain how ENQ(x = 2), ENQ(x = 5), and DEQ(x) are performed. The

• ENQ(x = 2): Timestamp T = t1 via FQ={a, c, e}

a

x = 2
T = t1

b

x = 0
T = t0

c

x = 2
T = t1

d

x = 0
T = t0

e

x = 2
T = t1

• ENQ(x = 5): Timestamp T = t2 via FQ={a, b, c}.

a

x = 5
T = t2

b

x = 5
T = t2

c

x = 5
T = t2

d

x = 0
T = t0

e

x = 2
T = t1

• DEQ(x): IQ={c, d, e} found t2 as the highest Timestamp.

a

x = 5
T = t2

b

x = 5
T = t2

c

x = 5
T = t2

d

x = 0
T = t0

e

x = 2
T = t1

• DEQ(x): FQ={a, c, e} set x = 5 with Timestamp T = t3.

a

x = 5
T = t3

b

x = 5
T = t2

c

x = 5
T = t3

d

x = 0
T = t0

e

x = 5
T = t3

Figure 2.3: ENQ and DEQ operation example

author uses timestamps and logs instead of version numbers and versions, respec-
tively. The benefit of using timestamps and logs is that the write quorum intersection
is no loner required to find the highest version number among the replicas. We ex-
plained this with help of an example in Figure 2.3. In syntactic data replication
strategies, write quorum intersection is always required to find the value written by
the last write operation to guarantee data consistency. However, in a semantic data
replication strategy, a write operation appends to the write quorum logs with the

18

2.1 Introduction

newest timestamp and updates the data item value, and data consistency is guaran-
teed by constructing a view of the replicated object – with the help of IQ and FQ –
from these replicated logs [Her1986]. This ensure that for 5 replicas the FQ of ENQ
operation will always intersect with IQ of DEQ operation. Also, the IQ of its DEQ
operations will always intersect with FQ of its DEQ operation. Considering the ef-
fectiveness of this strategy, we also utilize a timestamp-based approach for semantic
data replication.

Up to this point, we briefly discussed the two categories of data replication strate-
gies. Now, in a nutshell, we illustrate our motivation to come up with a data replica-
tion strategy belonging to the category of semantic data replication. Researcher are
paying a lot of attention towards data semantics in the context of data analysis and
knowledge discovery, by actually understanding the meaning of data. And here, in
our work, we insist on the utility of the data semantics in the context of distributed
systems – online transaction processing systems (OLTP) – which can provide high
operation availabilities at low costs. The syntactic data replication strategies pro-
vide high operation availabilities by exploiting the logical network topology (LNT)
of the distributed system, whereas, semantic data replication strategies not only
utilize the underlying LNT, but also exploit the semantics of the data to provide
better operation availabilities, as compared to syntactic data replication strategies.
Our work is a continuation of the research done by Gifford [Gif1979] and Herlihy
[Her1985, Her1986]. However, the distinctive features of our work is the exploitation
of data semantics, and utilization of a coding scheme in a replicated environment to
have high operation availabilities. This feature set, made up of data semantics, finite
state space, and coding scheme, distinguishes our work from existing data replication
strategies. Now, we briefly explain the idea behind using a 1) finite state space, 2)
coding scheme, and 3) replica group roles:

1. Finite state space (Θ): SDR defines a Θ around the semantics of the data.2

For the scope of our work, we utilize ASCII codes [ANS1986] to define the Θ. The
Θ is represented in the form of a connected directed graph as shown in Figure 2.4.
Its vertices represent four nodes of the distributed systems and each edge represents
a decimal of the ASCII code (we explain this in detail in Section 2.4.1). This Θ is
then used in read and write operations to identify the subset of replicas to be read
and written. The Θ is the key feature of SDR and it distinguishes SDR from existing
replication strategies [HHB1996] as the Θ guides the write operation to select the
replicas based on the input. For a read operation, it predicts the next replica to read
based on the value of the current replica. In Section 2.4.3 we give an example of read
and write operation execution in SDR. In SDR, replica selection is made on the basis
of Θ. In case of strategies relying on quorum consensus and voting, the operation
execution depends upon the search-and-select mechanism – for a predefined quorum
or participation from a certain percentage of replicas to form a dynamic quorum –
to make a decision [Tho1979][Gif1979].

2. Coding scheme: We introduce a simple coding scheme in SDR. Our coding

2Data is the input processed by the system

19

2 A Novel Data Replication Strategy exploiting Data Semantics and a Coding Technique

α

δ

γ

β

00 01

11

10
1

4

2 8 9 6

3

5 0

7

Figure 2.4: SDR complete state space

scheme encodes the data according to its semantic information. The write opera-
tion utilizes the encodes value to identify the replica(s), which will take part in the
operation execution. In case of a read operation, the semantic information and Θ
guide the read operation to a reduced set of replicas to get the latest value based on
the timestamp. The encoded values are then decoded to regenerate the actual value
(Section 2.4.1.3 elaborates the coding scheme in detail).

3. Replica roles: We grouped the replicas into groups and each group is tagged
with the role to store unique code value.3 One of the groups is dedicated to store
the semantic information about the data, and the other group is used to store the
encoded values of the data. In [KBMP1996], replica roles can be switched as a result
of a reconfiguration, but in our case, replica roles are not switched because of their
distinct role. SDR is designed to be fault-tolerant without reconfiguration by taking
advantage of the Θ knowledge and the redundant information. The redundancy is
incorporated in the codes by the encoding scheme.

The rest of the chapter is organized as follows. Section 2.2 sheds light on the
existing literature regarding data replication strategies. In Section 2.4, we explain
our approach SDR in detail, and we elaborate SDR’s functional model followed by
its implementation details. In Section 2.4.5, we present the results obtained so far.

3The code value is part of the codes which are generated via SDR coding scheme

20

2.2 State of the Art

At the end in Section 2.5, we conclude our work by sharing the achievements we
have made and the future directions of our work.

2.2 State of the Art

Data Replication is among the research fields addressing the domain of distributed
database system (DDBS). These systems manage n copies of a data item x hosted
at m different sites. Each site km is an independent entity. All sites work together to
achieve the common global goal. We refer to a site with a data item as the replica.
In this section, we shed light on existing work in the context of data replication.

2.2.1 Syntactic data replication

As discussed in Section 2.1, syntactic data replication focuses on operation execution
mechanism for the read and write operations. A number of strategies have been
proposed in this category. One of the aspects that differentiate these strategies is
their underlying logical network topology (LNT). LNT is the logical representation
of interconnections between the replicas on top of a physical network, i.e. how
the replicas are logically connected with each other on top of a physical network.
ROWA, ROWAA [BG1984], MCS [Tho1979], and WVS [Gif1979] don’t have any
LNT. These strategies assumes a fully connected network topology. TQP [AA1990]
and its variation Generalized tree quorum protocol (GTQP) [AEA1992], Hierarchical
quorum consensus (HQC) [Kum1991] arrange replicas in the form of logical trees.
Grid protocol (GP) and its variation Hierarchical grid protocol (HGP) [KC1991],
and trinagular lattice protocol (TLP) [WB1992] follow a grid-like LNT. These data
replication strategies e.g. [KA2011b],[KA2011a], and [SKB2004] exploit the logical
structuring of the replicas to achieve high operation availabilities, with a focus on
high write operation availabilities at low operation costs.

The strategies discussed so far are based on the read and write operation execution
mechanism on top of a LNT. In the next section, we discuss strategies which utilize
semantic information for high operation availabilities.

2.2.2 Semantic data replication

In [Her1984, Her1986, Her1985] M. Herlihy exploited type-specific properties of ab-
stract data types4 (ADT) to obtain high operation availabilities. These availability
gains are facilitated by type-specific operations which are the only means of ma-
nipulating the object of their respective data types [Mey1988]. Another distinct
characteristics of this strategy is the replication of the timestamped events instead
of version numbers. These events collectively represent the complete history of all the
events that occurred on the data item. As shown in Figure 2.5, Append, WritePage,

4the data structure used to store the data.

21

2 A Novel Data Replication Strategy exploiting Data Semantics and a Coding Technique

ReadPage, and Size operations are defined for a PagedFile data type. Each opera-
tion defines an initial read quorum and a final write quorum. Depending upon the
system configurations, the number of replicas in the initial read quorum and the
final write quorum varies. In Section 2.1, we explained how the arrows represent
intersection-relationship between FQ and IQ of dependent operations. For thorough
study kindly refer to [Her1984].

Append WritePage(i,*)

Size ReadPage(i)

Operation (IQ,FQ)
Append (0,5) (0,5) (0,4) (0,3) (0,2) (0,1)

Size (1,0) (1,0) (2,0) (3,0) (4,0) (5,0)
ReadPage (1,0) (3,0) (3,0) (3,0) (4,0) (5,0)
WritePage (1,5) (1,3) (2,3) (3,3) (4,2) (5,0)

Figure 2.5: Quorum intersection graph for PagedFile data type[Her1984].

In [OAET2013], the multimedia quorum based protocol (MQB) is presented which
is specifically designed to deal with distributed multimedia objects in an overlay
network. MQB introduces two types of write operations named Enriching and Im-
poverishing. In case of the enriching operations execution, the replicas involved in
the operation execution are updated immediately and move to the updated state.
In case of the execution of the impoverishing operation, the respective replicas are
not updated and the write operation is recorded in the replicas for later execution.
When a read operation is executed on a replica which is previously updated by an
impoverishing write operation, then, first the recorded write operations is executed
to change the state of the replica and then the read operation is executed to get
the updated state. In this strategy, the author exploits the semantics of the write
operation to reduce the processing overhead in case of multimedia files as the write
updates are deferred until the execution of a read operation. This strategy is suit-
able for environments where there are relatively less read operations then the write
operations.

2.2.3 Erasure Codes

H. Weatherspoon and D. Kubiatowicz [WK2002] investigated data replication strate-
gies based on erasure codes and non-erasure codes. In erasure codes, a data item x
is divided into i parts and then these i parts are encoded into j encoded parts such

22

2.3 Problem Statement

that j > i. The original data item can be reconstructed from any i encoded parts.
For example, if x is divided into 4 parts and afterwards these 4 parts are encoded
into 12 encoded parts, then to reconstruct x any of 4 encoded parts will be required.
The rate of encoding r is defined as r = i

j < 1. The storage cost overhead due to
erasure code is determined by factor 1

r . For our example the storage cost overhead is
3 (r = 4

12 ,
1
r = 3). As per the analyses in [WK2002], erasure coded systems perform

far better than their counter-part (replication strategies without erasure codes), and
also are efficient in terms of network bandwidth, storage requirements, and I/O. Also,
a recent study [GIM2016] on erasure codes and data replication has demonstrated
that combining the two strategies – erasure codes and non-erasure code based data
replication strategies – helps to develop a system with high operation availabilities.

So far we discussed the state-of-the-art data replication strategies. In the next
Section 2.3 we present our problem statement and after that we explain in detail our
data replication strategy in Section 2.4.

2.3 Problem Statement

In the data replication strategies proposed by Gifford [Gif1979] and Herlihy [Her1985],
they utilized timestamps and histories inorder to provide high operation availabili-
ties. They also described how to make use of different operation types to avoid write
quorum intersection. Influenced by these approached, we thought, how to exploit
the semantics of data, encoding techniques and a finite state space to achieve high
operation availabilities and low operation costs? The basic idea is to instruct the
write operation to select the replicas based on the input values, e.g., if the input value
is A, then replica kα and replica kβ will be written. And for the read operation, how
to know in advance the value by contacting few number of replicas, and to guide the
read operation which replica to read based on the value of the current replica, e.g.,
if a read operation reads replica kϵ and replica kρ then which next replica to read
will be identified by the values of these replicas.

2.4 Replication Strategy

In this section, we first explain the SDR model and its corresponding characteristics.
After that, we elaborate its design and implementation details. At the end, we
highlight important achievements as result of our analyses.

2.4.1 Functional Model

We can call data the unprocessed or not refined form of information. When data is
expressed in an organized manner, it is known as a data item (X). It is the unit
of replication [WPS+2000]. The collection of data in a structural manner is known
as a database (DB). A database is managed by a database management system
(DBMS). In replicated databases, there exist multiple physical copies Xi of data

23

2 A Novel Data Replication Strategy exploiting Data Semantics and a Coding Technique

item X. Data replication strategies abstract these multiple copies to a single copy
presented to the client. In SDR, we represent the input value of a data item as X.
Now, we discuss in detail the important parts of the SDR model.

2.4.1.1 SDR Replica Model

The input value of the data item is encoded into replication pointers as codes X ′. X ′

are the 2-bit binary codes – 002, 012, 102, 112 – which determine the replica group to
be read or written. These codes are distributed across the replicas ℜ. Replicas are
divided into 2 groups in total, one group with 2x replicas for semantic replicas ℜσ

and one group with 4x replicas for code replicas ℜω. Each replica group is assigned
a dedicated role.

Semantic information about the input value X is stored in replica group ℜσ. En-
coded information about the input value X is saved in replica group ℜω. Section
2.4.2 elaborates the need and utilization of the semantic information and the codes.
Equation 2.1 explains how the replicas are grouped together. Among replica group
ℜω, there exist 4 replicas defined as α, β, γ and δ. These four replicas are responsi-
ble to save encoded value X ′ of X. The replica group ℜσ has 2 replicas defined as
ϵ and ρ. The replica ϵ is dedicated to save information about two semantic proper-
ties: i) whether the code value of the input X is even, ii) or whether the code value
is odd. The replica ρ is dedicated to save information about two more semantic prop-
erties: i) whether the code value of the input X is prime, ii) or whether the code
value is not− prime. These semantic properties are discussed in detail in upcoming
Section 2.4.1.2 about semantic modeling.

ℜω = {α, β, γ, δ}
ℜσ = {ϵ, ρ}
ℜ = ℜω ∪ ℜσ

(2.1)

Figure 2.6: A visual representation of the steps involved in SDR. This example shows
how the input value is processed to obtain its semantic information and
how SDR codes are generated from it. Once we have both then those are
written to their respective replicas. SDR codes are saved on α, β, γ and δ.
Semantic information is saved on ϵ and ρ.

24

2.4 Replication Strategy

2.4.1.2 SDR Semantic Model

In ASCII code [ANS1986], every character is represented by numbers in some format
like decimal, octa, hexa etc. For the SDR semantic model, we utilized ASCII decimal
codes for character encoding. These decimal codes are made up of decimals ranging
from 0 to 9 (D).

D = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

The input value X is first decoded into the ASCII decimal codes (ADC) which is
expressed in the form of decimal decimals. Refer to the example given in Figure 2.6,
the input value X is an alphabet “A” and it is expressed as 65 which is its ADC. In
proceeding steps, the two semantic properties – refer to Equation 2.2 and Equation
2.3 – are identified for each decimal of the ADC.

Figure 2.7: Subfigure (a) is the finite state space. It contains all the decimals from
0 to 9. Subfigures (b),(c),(d), and (e) explain sub-state spaces. The 4-
bit binary code of the decimals are mapped to the replicas. Subfigures
(b),(c),(d), and (e) are derived from subfigure (a). Semantic properties
of the decimals are used to derive these sub-state spaces.

As the first step of the replication process, a finite state space (Θ) based on D
is generated. In Figure 2.7a, we describe the Θ with the help of a directed graph.
The graph for Θ is defined by using the code replicas ℜω. The vertices of the graph
are composed of α, β, γ, and δ. Each edge on and between the vertices represents a
decimal d, d ∈ D.

Θ = {00002, 00012, 00102, 00112, 01002,
01012, 01102, 01112, 10002, 10012}

Θ utilizes the 4-bit binary code of d for the decimal representation on the edges. The
direction of the edge determines the from replica and to replica to regenerate the 4-
bit binary code of decimal d. For example, as shown in Figure 2.7a the edge between
α and γ determines d = 00112 which is the code for 3. The process to regenerate
decimal d is explained in Section 2.4.1.3. The SDR semantic model exploits the
following two semantic properties of each decimal di:

25

2 A Novel Data Replication Strategy exploiting Data Semantics and a Coding Technique

1. Whether di is prime p or not prime np?

di ∈ p, p ⊂ D, p = {2, 3, 5, 7}
or
di ∈ np, np ⊂ D,np = {0, 1, 4, 6, 8, 9}

(2.2)

2. Whether di is even e or odd o?

di ∈ e, di ⊂ D, di = {0, 2, 4, 6, 8}
or
di ∈ o, di ⊂ D, di = {1, 3, 5, 7, 9}

(2.3)

Based on the two semantic properties, four semantic classes θi for D are derived,
namely EvenNotPrime (θenp), OddNotPrime (θonp), EvenPrime (θep)and Odd-
Prime (θop). Refer to Sub-Figures b,c,d, and e in Figure 2.7.

θep = {00102}
θop = {00112, 01012, 01112}
θenp = {00002, 01002, 01102, 10002}
θonp = {00012, 10012}
Θ = θep ∪ θop ∪ θenp ∪ θonp

The semantic class is expressed in the form of sub-state space (θ). There exists a
non-intersecting property between the semantic classes, which states that each of θx
is a subset of Θ such that:

θep ∩ θop = ϕ

θep ∩ θenp = ϕ

θep ∩ θonp = ϕ

θop ∩ θenp = ϕ

θop ∩ θonp = ϕ

θenp ∩ θonp = ϕ

Θ = θep ∪ θop ∪ θenp ∪ θonp

(2.4)

Equation 2.4 present the non-intersecting properties of θx. In Section 2.4.2, we
elaborate the effectiveness of these non-intersecting properties and we explain how
the semantic classes θx play their role in increasing the operation availabilities. These
classes help to know in advance which replicas will be involved in an operation.

2.4.1.3 SDR Encoding Model

In the preceding Section 2.4.1.2, we explained the semantic model of SDR which is
based on the ADC. We also explained how the semantic model makes use of the
semantic properties of the decimals d. In this section, we elaborate the encoding

26

2.4 Replication Strategy

model. Along with the semantic model, it sets the the foundation for our replication
strategy.

First, the input value X is encoded into an ADC. Afterwards, each decimal di of
the ADC is converted to a 4-bit binary code. The purpose of using 4-bit binary code
is to utilize a minimum number of bits required to encode the decimals from 0 to 9,
because the ADC is made up of decimals from 0 to 9. The 4-bit binary code is splited
into two 2-bits parts. One part is made up of the lower order 2-bits and the other
part is made up of the higher order 2-bits. We refer to these 2-bit binary codes as
X ′. X ′ is a replication pointer. It determines the replica group to be read or written.
By utilizing the ADC, the binary code for input value X is calculated. The binary
code is then splited into X ′. Based on 2-bits, the only four possible combination for
X ′ are:

{002, 012, 112, 102} ∋ X ′ (2.5)

Here, we focus on the mapping part that exists between X ′ and the replica group
ℜω. Each of the 2-bit combination X ′

i is mapped to a specific replica in the replica
group ℜω. This “X ′ to replica mapping” guides the write operation to identify
the target replicas in ℜω. This is a very important characteristic of SDR. It uses
the knowledge obtained as a result of semantic analysis and binary coding to know
exactly which replicas to update. It eliminates the need to use replica searching
and selection algorithms, resulting in high operation availabilities. For example, in
a quorum system, a replica commit to an operation execution request with the help
of its vote. These votes are then collected by the requesting replica to determine
whether it has enough votes to perform the operation execution or not. However, in
our approach, there is no search for votes. It is the input value that identifies which
replicas will participate in the operation execution. In Section 2.4.4, we explain in
detail the high operation availability mechanism. Details of the mapping are:

002 7→ α

012 7→ β

112 7→ γ

102 7→ δ

(2.6)

For the read operation, sub-state space θx is used to identify the target replicas to
read the codes. It also provides information about the read order, i.e., the order in
which the replicas should be read. Afterwards, the two 2-bit code pairs are combined
to get the actual value. Table 2.1 illustrates an example of the SDR encoding model.
We demonstrate the process of encoding the input value X into X ′ and extraction
of the semantic classes. So far, we have studied the modeling part of the SDR. We
discuss the replicas model, the data semantics model, and the data encoding model.
In the proceeding Section 2.4.2, we explain the SDR replication strategy in detail
based on SDR functional model.

27

2 A Novel Data Replication Strategy exploiting Data Semantics and a Coding Technique

• Get ASCII codes
Input ASCII Binary codes

1 49 410 = 01002, 910 = 10012
A 65 610 = 01102, 510 = 01012
$ 36 310 = 00112, 610 = 01102

• Generate SDR codes
Input ASCII Binary codes SDR codes

1 49 410 = 01002, 910 = 10012 (012 7→ β , 002 7→ α),(102 7→ δ , 012 7→ β)
A 65 610 = 01102, 510 = 01012 (012 7→ β , 102 7→ δ),(012 7→ β , 012 7→ β)
$ 36 310 = 00112, 610 = 01102 (002 7→ α , 112 7→ γ),(012 7→ β , 102 7→ δ)

• Extract SDR classes
Input ASCII Binary codes SDR codes SDR semantic classes

1 49 410 = 01002, 910 = 10012 (012 7→ β , 002 7→ α),(102 7→ δ , 012 7→ β) 4 7→ θenp,9 7→ θonp
A 65 610 = 01102, 510 = 01012 (012 7→ β , 102 7→ δ),(012 7→ β , 012 7→ β) 6 7→ θenp,5 7→ θop
$ 36 310 = 00112, 610 = 01102 (002 7→ α , 112 7→ γ),(012 7→ β , 102 7→ δ) 3 7→ θop,6 7→ θenp

Table 2.1: SDR codes and semantic classes extraction

2.4.2 SDR Replication Strategy

In this section, we describe how we develop the replication strategy based on SDR
model. First, we describe the request resolution process. After that, we explain how
the sub-state space θ is selected and how the 2-bit binary codes X ′ are distributed
on the target replicas. Then, we elaborate on the implementation mechanism for
SDR. At the end, we describe our analysis, and finally, we state our results.

2.4.2.1 Request Resolution

A unique request id (r−id) is generated for each client request. In case of the write
operation, the value X of the input request (r) is decoded to get its ADC. Refer to
Figure 2.6, for the request r, the value to be replicated is “A”. The ADC for “A” is
65. As per our semantic model, each decimal di of the ADC is analyzed separately
against the two semantic properties – refer to Formulas 2.2 and 2.3. The analysis
result for the ADC’s first decimal 6 is that: it is even e and not a prime number np,
therefore its semantic class is θenp. For the second decimal 5 is: it is odd o and a
prime number p, therefore its semantic class is θop. Once the semantic analysis is
done, the 4-bit binary code of each decimal di is obtained. In our example, the 4-bit
binary codes for 6 and 5 are 01102 and 01012, respectively. In Table 2.1 we explained
these steps.

The SDR generates a timestamped reference for each request, based on Lamport
clocks [Lam1978]. The timestamped reference is made up of system−timestamp,
r−id, ch−index and di−index. The system−timestamp contains the datetime value
of the replica. It is incremental and unique for each write operation. During a read
operation it is used to oder the timestamped reference in ascending order to decode
the written value from them. r−id is the request identifier. There are multiple write
operations for each write request and r−id is same in each write operation. r−id is
used to group the write operations of a request. ch−index represents the character
index in the overall request, e.g., for request r(”1A$”), ch−index for 1 = 0, A =
1, $ = 2. di−index contains the index of decimal di in ADC. The structure of the

28

2.4 Replication Strategy

timestamped reference is as follows:

system−timestamp︷ ︸︸ ︷
□□□□□□□□□□□ |

r−id︷ ︸︸ ︷
□□□□□ |

ch−index︷ ︸︸ ︷
□□□□□ |

di−index︷ ︸︸ ︷
□□□ |

od−index︷︸︸︷
□□ (2.7)

In Figure 2.8, we give an example of timestamped reference for input request
”1A$”. There are separate write operations for every di ∈ ADC. During a read
operation, correctly identifying the index position of decimal di is important, as
incorrect index positions can lead to different character codes. For example the
ADC for “A” is 65, and if we switch the position of 6 and 5 then it will become 56
which is the ADC for 8.

/ ∗ASCII code for 1 is 49 ∗ /
Timestamp for 4⇒ system−timestamp, 250, 0, 0

Timestamp for 9⇒ system−timestamp, 250, 0, 1

/ ∗ASCII code for A is 65 ∗ /
Timestamp for 6⇒ system−timestamp, 250, 1, 0

Timestamp for 5⇒ system−timestamp, 250, 1, 1

/ ∗ASCII code for $ is 36 ∗ /
Timestamp for 3⇒ system−timestamp, 250, 2, 0

Timestamp for 6⇒ system−timestamp, 250, 2, 1

Figure 2.8: Timestamp generation for r(“1A$”) having r−id = 250

SDR replicates the X ′ instead of the actual value. Referring to Figure 2.9, the
input value to be replicated is “A”, SDR transforms the input value into its ADC
(which is 65). After that, it gets the semantic information of each decimal di of the
ADC (6 and 5), and then gets the 4-bit binary code of each decimal di of the ADC
(which is 01102 and 01012, respectively). Finally, with the help of Formula 2.6, SDR
distributes these codes and the semantic information on to the replicas.

2.4.2.2 θx Selection and X ′ Distribution

After the request resolution step, the next step is the selection of sub-state space θx
from the finite state space (Θ) for a particular operation. The θx selection is based
on the analysis result of the two semantic properties 2.2 and 2.3. θx selection is a
repetitive step and it is performed for each di in ADC for request r. That is, for the
input request r(“A”), its extracted ADC is 65. The θx selection is first performed
for 6 and then for 5. θenp (EvenNotPrime) is the outcome of the analysis result
of 6, and θop (OddPrime) is the outcome for 5. Figure 2.7b shows the sub-state
space θenp based on the semantic class EvenNotPrime, and Figure 2.7e shows the

29

2 A Novel Data Replication Strategy exploiting Data Semantics and a Coding Technique

αP/~PE/O γ δβ

6(, β, δ)

5(, β, β)

✓ ✓ ✓

✓ ✓

Figure 2.9: This figure shows how replicas are updated by the write operation for
input value A. On top six replicas are shown. On left side, semantic
classes and NIndices are given. The white tick marks tells which replicas
are updated.

sub-state space θop based on the semantic class OddPrime. Once θx is selected, the
next step is to split the 4-bit binary code of di into two 2-bit binary codes X ′, and
then map those to replicas of group ℜω. In Figure 2.7b, 6 is represented as the edge
between replicas β and δ, because, the 2-bit binary code assigned to β is 012 and
the 2-bit code assigned to δ is 102. The 4-bit binary code for 6 is 01102(βδ) that
means, the 4-bit binary code for 6 is distributed as two 2-bit binary codes X ′ on
the replicas β and δ. The direction of the edge determines the from and to replicas
to regenerate the 4-bit binary code of the decimal d. That is, the binary code for
610 = 01102 splits into 012 and 102 and is then mapped to replica β and replica δ,
respectively, as per our mapping Formula 2.6. In the next section, we explain the
implementation of SDR.

2.4.3 Implementation

Until now we explained the key ideas for the SDR replication strategy, now, we
discuss the write and read operation execution mechanisms. As an example, assume
that for request r(“A”), the request id r−id is 250. A timestamped reference (tr) T250
is generated against the r−id. Timestamped reference represents all the records that
have the same r−id. There exist multiple write operations against a r−id, because
all the ADC codes are made up of more than one decimal.

ℜσ ℜω

ϵ ρ α(002) β(012) γ(112) δ(102)

610 = 01102 7→ (δ, β), 610 7→ ϵ T250− 0 – – T250− 0 – T250− 0

510 = 01012 7→ (β, β), 510 7→ ρ – T250− 1 – T250− 1 – –

Table 2.2: SDR example for write and read operations for r(A).

30

2.4 Replication Strategy

Algorithm 1: SDR Write Operation
/* Input value to be written, e.g., A */
Input : input
/* Write operation execution response. */
Output: success−message or error−message

1 r−id ← getRequestID(Input)
2 tr ← getTimeStampRef(r−id)
3 ch−idx ← 0
/* Iterate for each character in the input, e.g., if the input is

AB then perform the below steps for A and B. */
4 foreach character ch ∈ input do
5 codeASCII ← getASCIICode(ch)
6 foreach integer d ∈ codeASCII do
7 di−idx ← getDigitIndex(codeASCII,d)

/* Apply the two semantic properties */
8 sc ← getSemanticClass(d)
9 bc ← get4bitBinaryCode(d)

/* E.g. from2bits for first decimal (6) of A are 012. */
10 from2bits ← get2bitCode(bc,higher)

/* Get the mapping from Mapping Formula 2.6 */
11 rm ← extReplicaMapping(from2bits)

/* Higher order bits */
12 od−idx ← higherOrderBits
13 ts ← genTmStamp()
14 tr ← prepareTmStamp(ts, ch−idx, di−idx, od−idx)

/* Write the first timestamp of the decimal */
15 writeToReplicas(rm, sc, tr)

/* E.g. to2bits for first decimal (6) of A are 102. */
16 to2bits ← get2bitCode(bc,lower)

/* Get the mapping from Mapping Formula 2.6 */
17 rm ← extReplicaMapping(to2bits)
18 od−idx ← lowerOrderBits

/* Write the second timestamp of the decimal */
19 ts ← genTmStamp()
20 tr ← prepareTmStamp(ts, ch−idx, di−idx, od−idx)
21 writeToReplicas(rm, sc, tr)
22 end
23 ch−index ← ch−index +1
24 end

31

2 A Novel Data Replication Strategy exploiting Data Semantics and a Coding Technique

2.4.3.1 SDR Write

In our example, two records are generated for r(“A”), one for 6 and one for 5,
and both of those are represented by T250 − 0 and T250 − 1 respectively, where
0, 1 ∈ di−index. Table 2.2 explains how the write operation writes the tr among
replicas. The values represented as “–” are null values. SDR only writes to a replica
if the evaluate-write function returns true. The evaluate-write function is comprised
of the two semantic properties discussed in the Formulas 2.2 and 2.3, and the 2-bit
binary code X ′ to replica mapping discussed in Formula 2.6. For the decimal 6 of
the request r(“A”) the responses from the evaluate-write function are:

• 6 is even, then write tr to replica ϵ.

• 6 is not prime, then do not write anything on replica ρ.

• write tr to replicas β and δ and don’t write anything on replicas α and γ.

Similarly, based on responses from the write validity predicates for the second decimal
5 of the request r(“A”), replica ϵ is not written because 5 is not even and ρ is written
because 5 is prime, and from the replica group ℜω only replica β is written because
decimal 5 is represented as a repetitive loop5 on replica β, and rest of the replicas
are not written. Algorithm 1 gives the pseudo code for the SDR write operation.

2.4.3.2 SDR Read

In the case of a read operation, the replica group ℜσ is queried first prior to replica
group ℜω, to check for the records with the latest tr. We ensured sequential data
consistency by this tr mechanism, as in tr the unique r−id is used to order the
occurrence of the read or write operation in the complete system, and ch−index
along with di−index are used for total ordering of the independent actions performed
as part of the write operation.

The read operation first extracts the semantic information about the ADC di.
After that, the semantic class is identified based on the semantic information. The
semantic class helps to select the sub-state space θx which determines its respective
replicas from ℜω. The sub-state space θx also describes the order to read from the
replicas. The read operation utilizes the sub-state space θx to extract the two 2-
bit binary codes X ′ from the replicas ℜx ∈ ℜω. It then combines the two X ′, in
the order specified by the sub-state space θx, to get the 4-bit binary code and this
4-bit binary code is the binary code for the decimal di. One important point to
remember here is that the read operation always extracts two 2-bit binary codes
against the ADC decimals 1, 2, 3, 4, 6, 7, 8, and 9, and one 2-bit code in the case of
ADC decimals 0 and 5 (because of the repetitive loop, refer to Figure 2.7). Once,
all the ADC decimals are extracted, the actual ADC is generated by arranging the
decimals in the order specified by the di−index part of the timestamped reference.
Finally, the generated ADC is decoded back into its actual input value.

5For the decimal di, the two lower order 2-bits and the two higher order 2-bits are same, e.g.,
00002 and 01012. Refer to Figure 2.7.

32

2.4 Replication Strategy

Algorithm 2: SDR Read Operation
Input : input
Output: success−message or error−message

1 output as string
/* Get all records of the latest timestamp */

2 allColl ← getTStampInfoFromℜσorℜω()
3 chIdxColl ← getAllDistictChIndex(allColl)
/* Sort the records based on character index. The reason for

sorting is to ensure that the result of read operation is the
same as the actual input in case of multicharacter input. */

4 chIdxColl ← sortByDesc(chIdxColl)
/* Iterate over the records */

5 foreach integer chIdx ∈ chIdxColl do
6 dColl ← empty

/* Get records for a ch−index */
7 foreach integer d ∈ getSubColl(chIdx) do

/* Get semantic information from ℜϵ */
8 scInfo ← extSCInfo(allColl)

/* Use the semantic information to know in advance which
replicas to read from ℜω. With the help of θx identify
the from and to replicas. After that identify the
decimal. */

9 d ← applySCInfoOnℜω(scInfo)
/* Save the decimal in d */

10 dColl ← addtoASCIICode(d)
11 end

/* Combine the decimals and then decode them to get the written
value. */

12 ch ← genChFromASCIICode(dColl)
13 output ← output + ch
14 end
15 success−message ← output

33

2 A Novel Data Replication Strategy exploiting Data Semantics and a Coding Technique

Algorithm 2 gives the pseudo code for the SDR read operation. For explaining
the algorithm, we assume that all the replicas are available. At line number 2 of
the algorithm two records with the same tr = 250 were read. For the first entry,
θenp is selected – as replica ϵ has the tr and replica ρ do not have tr therefor the
semantic class EvenNotPrime is selected – for the first record against the tr T250.
θenp explains that, to extract the decimal d, reading can be started from any of the
replicas α, β and δ (refer to Figure 2.7b), and it also elaborates the reading order
(edge direction between vertices). When reading is started from replica α, for T250
there is no record in α, which means that the only possible replicas to check to extract
the value for d are β and δ. Here, there are two ways to extract d: d can either be
predicted to be 6 because the only possible iteration is from β to δ which make up
the 4 bit binary code 0110, or read the other two replicas (β and δ) and then combine
their mapped 2-bit binary values to extract the 4-bit binary code. Both options lead
to same result, but the choice among the options is made according to the availability
of the replicas at that time. Then the same process is applied to the second record
which extracts the decimal d as 5, and then the di−index part of the timestamped
reference is used to order both decimals di (6, 5) to get the ADC which is 65. ADC is
then decoded back to get the actual character which is “A”. At line number 3 and 4,
ch−index is used to sort the records if the input has multiple character e.g. “ABC”.
The reason for sorting is to ensure that the result of read operation is the same as
the actual input. From line 5 to 14 the encoded values are read and then decoded
to get the written value. In the upcoming Section, we discuss the scenarios in detail
where θ is used to correctly predict the 4-bit binary code in the presence of replica
failures.

2.4.4 Availability Analysis

We analyzed the operation availability of SDR by putting the replicated system
into different states based on different available replica group combinations. Our
assumption is that the replicas perform independently and the replica failures are in-
dependent of each other. Atleast three of six replicas are needed to ensure strong data
consistency. We deduced that all the possible replica combnation can be grouped
into four possible scenarios. For each scenario, we explain with the help of an ex-
ample, how the read and write operations are performed. We also explain, how the
finite state space is used to know in advance the replicas to write, and in case of
read operation how finite state space is utilized to correctly guess the value. In this
section, we explain four possible replica availability scenarios. Afterwards, we dis-
cuss the write operation OpW and read operation OpR executions. For each OpW ,
X ′ – these are the 2-bit binary codes which determine the replica group to be read
or written 2.4.1.1 – guides the OpW to select one or two replicas from ℜω for tr
replication. Refer to Section 2.4.2.2 for details on tr, and Formula 2.6 for details on
X ′ to replica mapping.

34

2.4 Replication Strategy

2.4.4.1 Availability scenario 1: When replicas ϵ and ρ from replica group
ℜσ, and any two or more replicas from replica group ℜω are avail-
able

In this case, the complete replica group ℜσ is available along with two or more replicas
from the replica group ℜω. The OpW is able to replicate the tr on the complete ℜσ

group along with either partial or complete tr replication on the ℜω group. Both,
sub-state space θx and X ′ to replica mapping facilitates OpW execution. Refer to
Section 2.4.3.1 for an OpW example.
OpR reads the tr with the latest timestamped reference from the ℜσ group. First,

it extracts the sub-state space θx and then it reads the tr records from the ℜω group.
It utilizes the information provided by the sub-state space θenp about the replica
and the read order. OpR requires at least two replicas from the replica group ℜω to
generate the correct 4-bit binary code. For example, for the first record in Table 2.2,
if replica γ and replica δ are not available, then OpR checks for tr records on replicas
β and α. But, it only finds tr on replica β, and then, it predicts the 4-bit binary
code as 0110. As, replica α is empty, which mean that replica α was not written
for this tr. Referring to sub-state space θenp (refer to Figure 2.7b), the edge from
replica β to replica α is not applicable for this case. The only possibility left is the
edge from replica β to replica δ which actually represents the 4-bit binary code 0110
(βδ) which is the 4-bit binary code for 6.

2.4.4.2 Availability scenario 2: When replicas ϵ and ρ are not available
but any three or more replicas from replica group ℜω are available

In this case, the replica group ℜσ is not available but three or more replicas from
the replica group ℜω are available. OpW is guided by X ′ to replica mapping (refer
to Formula 2.6) to select the respective replicas for tr replication.
OpR reads tr from replica group ℜω and then utilizes the information provided

by the finite state space for the ADC (refer to Figure 2.7a). To correctly generate
the 4-bit binary code for di, OpR requires three or more replicas from replica group
ℜω. For example, for the first record in Table 2.2, if the replica β is not available,
then OpR needs to predict the binary code by considering the values from the rest
of the three replicas i.e. α, γ, and δ. OpR only finds the tr record in replica δ. By
analyzing the contents of tr, OpR finds out that tr at replica δ has od−idx (refer to
line numbers 13 and 18 in Algorithm 1) for the lower order 2-bits of the 4-bit binary
code, i.e. ??10. Now, as per Θ, the higher order 2-bits can only be 01??. They
cannot be 00?? or 10?? or 11??, because 002 is mapped to replica α and it contains
null (“–”), and 102 is mapped to replica δ but there is no repetitive loop on replica
δ, and 112 is mapped to replica γ which also contains null (“–”). So, OpR utilizes
the Θ to decode the value of the decimal. It then generates a complete 4-bit binary
code 01102 which is actually the binary code for 6.

35

2 A Novel Data Replication Strategy exploiting Data Semantics and a Coding Technique

(a) State space based on
semantic class θe

(b) State space based on
semantic class θo

Figure 2.10: State space for even and odd numbers

2.4.4.3 Availability scenario 3: When only replica ϵ and two or more
replicas from replica group ℜω are available

In this case, the replica ϵ and two or more replicas from the replica group ℜω are
available. Two sub-state spaces – θe and θo – from the Θ are extracted, as shown in
Figure 2.10. The reason behind the extraction of two new sub-state spaces is that the
availability of only one semantic replica, which is replica ϵ, and replica ϵ represents
the even/odd semantic property. θe (Figure 2.10a) and θo (Figure 2.10b) represent
the two semantic classes of even and odd numbers from ADC, respectively.

θe = {00002, 00102, 01002, 01102, 10002}
θo = {00012, 00112, 01012, 01112, 10012}
θe ∩ θo = ϕ

Θ = {θe ∪ θo}

OpW replicates tr on replica ϵ and at least two of the available replicas in replica
group ℜω. od−idx of tr written on replica ϵ is set to 0 for θe and 1 for θo. OpW is
facilitated by X ′ to replica mapping to identify the replicas to be written.

OpR reads the tr from replica ϵ and determines the respective newly derived sub-
state space. It can be either θe or θo. For example, for the first record in Table
2.2, OpR determines θe, and then, as per definition of θe, the binary code (to be
decoded) can only be of di ∈ even numbers. Now suppose only replicas α and γ are
available. Then as per θe, the number can not be 0, 2, 4, and 8 because replica α
has null tr. Therefore, the only possibility is 6. At the end, OpR follows the same
process of generating the binary code as explained in the previous Section 2.4.4.2.

36

2.4 Replication Strategy

(a) State space based on
semantic class θp

(b) State space based on
semantic class θnp

Figure 2.11: State space for prime and not prime numbers

2.4.4.4 Availability scenario 4: When only replica ρ and two or more
replicas from replica group ℜω are available

In this case, the replica ρ and two or more replicas from replica group ℜω are avail-
able. Two sub-state spaces – θp and θnp – from the Θ are extracted, as shown
in Figure 2.11. The reason behind the extraction of two new sub-state spaces is
that the availability of only one semantic replica, which is replica ρ, and replica ρ
represents the prime/not-prime semantic property. θp (Figure 2.11a) and θnp (Fig-
ure 2.11b) represent the two semantic classes of prime and not-prime numbers from
ADC, respectively.

θp = {00102, 00112, 01012, 01112}
θnp = {00002, 00012, 01002, 01102, 10002, 10012}
θp ∩ θnp = ϕ

Θ = {θp ∪ θnp}

OpW replicates tr on replica ρ and at least two of the available replicas in replica
group ℜω. od−idx of tr written on replica ρ is set to 1 for θp and 0 for θnp. OpW
is facilitated by X ′ to replica mapping to identify the replicas to be written.
OpR reads the tr from replica ρ and determines the respective newly derived sub-

state space θx. It can be either θp or θnp. For example, for the second record in Table
2.2, OpR determines θp, and then, as per definition of θp, the binary code can only
be of di ∈ prime numbers. Now suppose the replicas α and γ are available. Both the
replicas have null tr. Which means the value can not be 2, 3, and 7. Therefore the
value is 5. OpR follows the same process of generating the binary code as explained
in Section 2.4.4.2.

In this section we elaborated on how the finite state space is used to correctly iden-
tify the value when some replicas are not availble. For the rest of the configuration,

37

2 A Novel Data Replication Strategy exploiting Data Semantics and a Coding Technique

we consider the operations being unavailable, since they compromise on strong data
consistency. If we relax the strong data consistency level, then it further increases
the operation availabilities for SDR.

2.4.5 Results

What is actually the role of θ, X ′, and X ′ to replica group ℜω mapping, and how do
these SDR attributes increase the operation availabilities? As shown in Figure 2.6,
the 4-bit binary code of each decimal di ∈ D is mapped among the replica group
ℜω as a combination of two states or one repetitive state.6 For the read operation,
θ helps to select a sub-state space and to identify the replicas from replica group
ℜω. It also determines the sequence to read from the same set of replicas. For the
write operation, based on the input value, the X ′ to replica mapping determines the
replicas to write.

This approach of replica selection based on semantic classes and the sub-state space
is more write-efficient as compared to existing syntactic data replication strategies
like quorums consensus or voting protocols. It utilizes the a prior knowledge in the
form of the sub-state space complimented by the X ′ coding techniques. It is impor-
tant for us to come up with a highly available data replication strategy, particularly
the high write operation availability, which is a motivation behind SDR.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Probability of availability of nodes

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e
a
d
 a

v
a
ila

b
ili

ty

Semantic Data Replication

Majority Concensus Strategy

Grid Protocol

Triangular Lattice

Figure 2.12: Read operation availability

6it means, for the respective decimal d, the two lower order 2-bits and the two higher order 2-bits
are same e.g. 0000 and 0101.

38

2.4 Replication Strategy

In Figure 2.12, we demonstrate the read operation availability comparison results.
The details about the write operation availability comparison results are discussed
in Figure 2.13. The read operation and write operation availabilities are compared
against the availability probability of nodes (replicas). Availability probability of a
replica can be either 0 or 1. Our assumption was that replicas are independent of
each other. Failure of one replica do not have any impact on any other replica.

These comparison are done between our data replication strategy and some of
state-of-the-art highly available syntactic data replication strategies. For our analysis
we used six replicas. We compared our strategy with the majority consensus strategy
[Tho1979], the Grid protocol [CAA1992] and the trinagular lattice protocol [WB1992]
for the same number of replicas. These state-of-the-art data replication strategies are
selected for comparison because they provide high operation availabilities, and are
mostly referenced in literature on data replication strategies. During the analysis, we
found that the write availability of our data replication strategy is higher than the
other data replication strategies. Our approach is best suitable for the applications
which have higher percentage of write operations, for example, writing logging trails.
In the case of a read operation, the triangular lattice protocol demonstrates better
results than all the data replication strategies, but our approach is still able to achieve
higher read availability than the rest of the data replication strategies.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Probability of availability of nodes

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

W
ri
te

 a
v
a
ila

b
ili

ty

Semantic Data Replication

Majority Concensus Strategy

Grid Protocol

Triangular Lattice

Figure 2.13: Write operation availability

39

2 A Novel Data Replication Strategy exploiting Data Semantics and a Coding Technique

2.5 Conclusion & Future work

In this work, we presented a novel highly available semantic data replication strategy
which is empowered by coding techniques, finite state spaces based on ASCII decimal
codes as a priori knowledge, semantic classes, and codes to replica mapping. We have
elaborated in detail, how the input value is transformed using the ADC, and how we
established a finite state space based on ADC. Then, we explained how to extract
the semantic classes from the ADC finite state space, by classifying the decimals of
the ADC against the two semantic properties. Afterwards, we discussed, how we
transformed the 4-bit binary code of the ADC decimal into two 2-bit binary codes,
and then mapped these 2-bit binary codes to the code replicas. We focused primarily
on achieving high operation availability for write operations. We have shown that
the finite state space and semantic classes guides the write operation, based on the
input value, to the exact replicas to write. This is in contrast to syntactic data
replication strategies, where every write operation has to look among the complete
population to lock the resources by running different replica searching and selection
algorithms. Our results show that for 6 replicas, we achieve a better write availability
then the state-of-the-art syntactic data replication strategies. For the read operation
availability, our approach stood second best in the comparison.

The constraint of having 6 replicas is due to ASCII decimal codes. We need
two replicas to map semantic information (explained in Section 2.4.1.2) and four
replicas to map the ASCII decimal codes (explained in Section 2.4.1.3). There are
fewer research contributions in the field of semantic data replication as compared
to syntactic data replication. That is reason there exist a number of syntactic data
replication strategy like majority consensus strategy [Tho1979], the Grid protocol
[CAA1992] and the trinagular lattice protocol [WB1992]. However, there still exists
a lot of research potential in semantic data replication, and can be exploited for
specific applications, because, then we can design the strategy as per the needs.

Currently, our approach is utilizing ASCII decimal codes as its coding technique.
We will explore more on the coding techniques as a next step towards semantic
data replication. Furthermore, we will investigate options to utilize the semantic
properties of the underlying data structure, specifically hash table like data structure.
We will also concentrate to come up with more semantic properties about the data
and the application domain. In this work, we primarily focused on the semantic
aspect of the replication strategy. However, as part of our future work, we will be
demonstrate on the other features of this semantic replication strategy like network
latency and storage consumption.

40

3
Component-Based Data

Replication Strategy

In this highly dynamic era of technology, most of the data-intensive applications
are designed to target a good combination of high operation availabilities, scala-
bility, data consistency etc. To address this issue, the research community has in-
troduced many valuable techniques based on data replication or data distribution
[Tho1979, CAA1992, UST2017]. However, in ongoing research there is a paradigm
shift: the research community is targeting to minimize the inter-application coordi-
nation – the coordination required to ensure data consistency – to achieve high op-
eration availabilities. In this chapter, we present a component-based highly available
replication strategy (CbHaRS) which exploits operation types and a hybrid commu-
nication method to achieve high operation availabilities. CbHaRS is highly scalable.
It utilizes data components as building blocks for the replication strategy. Data
consistency in CbHaRS is ensured by a so-called component administrator. The
communication mechanism between the data components and the component ad-
ministrator depends upon the state of the data components. Additionally, the state
of the data component is manipulated by the operation type. We further extend the
concept of client specific on-demand replication to general component-based repli-
cation. To prove the effectiveness of CbHaRS, we have implemented the CbHaRS
prototype and discuss the achieved results. In the next section, we discuss the related
literature.

3.1 Literature Review

There is an old Greek saying from Heraclitus (quoted in Robinson, 1968: 90), inter-
preted as, “The only thing that is constant is change,” and it is definitely true from

41

3 Component-Based Data Replication Strategy

the perspective of technology. From the last two decades, there is a lot that has been
changed. However, these changes are the outcome of the continuous improvements.
Presently, the online hi-tech firms like Facebook, Google, Amazon etc. support mil-
lions of a continuously growing number of users. These applications rely on strong
distributed backend infrastructures [DHJ+2007, BAC+2013, CDE+2013]. The pri-
mary reason for having such strong backend infrastructures is to ensure enhanced user
experience in terms of responsiveness and to do routine tasks, and a system should
provide high operation availabilities to accomplish this. The higher the operation
availabilities are, the richer is the user experience [BDF+2013, BFF+2014, UST2017].

To have gains in high operation availabilities, researchers have provided a number
of data replication strategies. Every data replication strategy revolves around the
trade-off factors like high operation availabilities, data consistency, and operation
costs [GL2002, Aba2012, UST2017]. Data consistency is an important aspect of the
research on distributed systems. There exist different types of distributed systems
with different data consistency requirements. In [ABCH2013], authors discussed
different approaches of data consistency ranging from strong data consistency to week
data consistency. They summarized that the choice of data consistency can be made
according to the application requirements. For a global scale system, adaptation
of the traditional strong data consistency impacts the operation availabilities of the
system at a higher extent as compared to a small scale system [BCvR2009].

In [DPS+1997], authors discuss application-specific conflict resolution for weakly
consistent replicated databases. In [GDN+2003], authors make use of application-
specific distributed objects – an encapsulation of business logic and data – to provide
high operation availability. They designed separate data consistency model for each
distributed object, and they make use of persistent-asynchronous communication
between the shared objects to ensure data consistency. In [BDF+2013], authors
discuss highly available transactions. They exploit transaction isolation levels and
data consistency to introduce application-level data consistency which is the base
for highly available transactions. One of the facts is that inter-component coordi-
nation is required to ensure data consistency. The research community highlights
that an increase in coordination results in an increase in operation costs. Minimized
coordination has a positive impact on the distributed system especially from the per-
spective of operation availabilities. In [BFF+2014, BDF+2015], the authors exploit
application-specific rules for high operation availabilities, and they introduced the
concept of minimizing the coordination – coordination required between replicas to
ensure consistency – among the data replicas.

In [SPBZ2011b], conflict-free replicated data types (CRDTs) are introduced. As
the name suggests, these data structures are used to minimize conflict – the conflict
which arise as a result of simultaneous operation executions. CRDTs are distributed
among the replicas. With the help of CRDTs, replicas can be updated indepen-
dently without the need of coordination with each other. Optimistic data replication
makes use of CRDTs, it allows the conflicts to occur and later resolve the conflicts by
merging the updates from different replicas. Currently, there are several implemen-
tation of CRDTs like maps, sets, counters, registers, and flags [RED, RAIa, RAIb].

42

3.1 Literature Review

CAP Theorem

Availability Partitioning

Consistency

IC

PIT NHA

CAP

Figure 3.1: CAP Theorem [GL2002] explains how availability, data consisteny, and
partitioning influence the desing of a data replication strategy.

There are two types of CRDTs i) operation-based conflict-free replicated data types
(OB-CRDTs) and ii) state-based conflict-free replicated data types (SB-CRDTs)
[SPBZ2011a]. Both of the types offer strong eventual consistency. OB-CRDTs are
commutative in nature, that is why are also know as commutative replicated data
types (CmRDTs). They communicate with each other by sending operation requests.
CmRDTs depend on the guarantee that each replica receives the operation request
only once. However, the order in which the replica executes the operations is not
important. SB-CRDTs are convergent in nature, that is why they are also known as
convergent replicated data types (CvRDTs). SB-CRDTs differs from OB-CRDTs by
the way the replicas communicate with each other. SB-CRDTs send their complete
state to other replicas where they are joined and merged to resolve the conflicts. Like
OB-CRDTs, the order in with the states are merged is idempotent.

Brewer’s CAP theorem demonstrates that the high operation availabilities are
impacted by strong data consistency and partition intolerance [GL2002]. To achieve
high operation availabilities, strong data consistency and partition intolerance need
to be relaxed [DHJ+2007]. The data replication strategy which is highly available and
provide strong data consistency is Partition-intolerant (PIT). The data replication
strategy designed to bear partitioning and is highly available can’t guarantee strong

43

3 Component-Based Data Replication Strategy

data consistency and is Inconsistent (IC). Lastly, the data replication strategy which
is partition-tolerant and ensures data consistency are Not highly available (NHA).
We also experience the same in case of transaction execution. To ensure ACID
properties [HR1983], two transactions cannot execute simultaneously if both try to
update a common data item. In this case, one of the transactions is blocked until
the resources which are locked by the ongoing transaction are not unlocked. And, in
case of network partitioning the blocked transaction remains blocked for much longer
or until restart, because the required resource is no longer available due to network
partitioning [BDF+2013].

The coordination minimization mainly depends upon the application invariants –
the data consistency rule defined by the application – and the transactions’ isolation
levels [BDF+2015, BFF+2014, BDF+2013]. The application invariants also influ-
ence operation execution. The application operations are categorized into two broad
categories:

• conflicting operations: operations of conflicting categories cannot execute si-
multaneously, because, their simultaneous execution may invalidates a global
application invariant.1

• non-conflicting operations: operations of non-conflicting categories can execute
simultaneously. These operations depend primarily on replica-level application
invariants.2 These can be concurrent read-read, read-write, or write-write op-
erations.

Data consistency rules defined by the application semantics are enforced by the ap-
plication invariants. There are two types of application invariants: replica invariant
(RI) and global invariant (GI). For example, in an ecommerce retail store, a GI is
enforced at the application level such that:

0 <
N∑

n=1

Sold−Items(n) ≤ Total−Items ≤ 3000

and an RI is enforced on a single replica such that:

0 <

N∑
n=1

Sold−Items(n) ≤ Allocated−Items ≤ 500.

In this example Total−Items are distributed among the replicas as Allocated−Items
such that:

N∑
n=1

Allocated−Items(n) = Total−Items

When each replica enforces its RI then the data consistency – for this application in-
variant – is ensured as the sum of Allocated−Items can not be more than Total−Items.

1A data consistency rule applicable to the complete application e.g. 0 < count(x) ≤ 100, x ∈ N
2A data consistency rule applicable to the respective replica only e.g. 0 < count(x) ≤ 20, x ∈ N

44

3.2 Introduction

We elaborate in detail in Section 3.4 on the communication mechanism and how the
invariants are enforced. The main idea is to ensure the validity of global invariants
during simultaneous execution of replica invariants. In the next section we introduce
in detail our data replication strategy.

3.2 Introduction

In this chapter, we present the component-based highly available replication strategy
(CbHaRS) [UST2017]. It is continuation of research work for designing application-
specific highly available data replication strategies. CbHaRS focuses towards achiev-
ing high operation availabilities by utilizing the states of data components (DCMs)
– a replica and the data item hosted by that replica collectively are represented as
a data component (DCM)3 – and by exploiting the the data component’s opera-
tion execution mechanism. One of the data components plays the role of component
administrator (CA). The operation mechanism describe the mode of operation ex-
ecution. One mode is the local operation execution by the DCM. In this mode,
replica invariants are enforced by the DCM, and no communication is required be-
tween DCM and CA. The other mode is the global operation execution by DCM and
CA. In this mode, replica invariants are ensured by the DCM and global invariants
are ensured by the CA. Communication between DCM and CA is required to enforce
global application level invariants.

CbHaRS uses DCMs as the building blocks for the data replication strategies.
The DCMs exist at different abstraction levels. From the application’s perspective,
there exists a DCM for each client. And, from the client’s perspective, there exist
multiple copies of its DCM [BCD+2000]. For the scope of this chapter, we elaborate
on the client’s perspective which is the basic unit for our data replication strategy.
CbHaRS is scalable and at the same time it is fault-tolerant. Plugging in a DCM
contributes towards scalability. For example, during a campaign when high user
flux is expected on the system then we can add DCMs and when the campaign is
over we can remove the not needed DCM. Addition and removal of DCM requires
reconfiguration. However, the achieved benefits are much more as compared to the
reconfiguration overhead.

Application invariants are categorized into replica invariant (RI) and global invari-
ant (GI). In [BDF+2015], the concept of global and local application-level constraints
is defined with the help of a middleware running on top of a geo-replicated data store.
The RIs are defined on DCMs. The GIs are defined only on the CA. The RIs allow
simultaneous local-operation executions on multiple DCMs targeting the same data
item. In case of GIs, the operation executions are managed by the component admin-
istrator. To ensure the consistency of the global state of the system, the operation
executions that involves GIs may result in a change to the RIs. These operations
are executed in synchronous communication mode. On the other hand, the DCMs

3Here, the assumption is that each replica hosts only one data item

45

3 Component-Based Data Replication Strategy

Application Semantics

RI | SynTHRI | SynTH

GI RI | SynTH

PRU EXU

Data Component

Component Admin…

PRU EXU

Data Component

PRU EXU

Data Component

PRU EXU

Component Admin…

PRU EXU

Figure 3.2: The application semantics layer defines the rules to the implement re-
quired data consistency. Replica invariant is enforced by the data con-
sistency. Prepare-update operation and execute-update operation oper-
ations used to manipulate the data item. Global invariant is enforced by
the component administrator.

communicate with each other via the CA asynchronously. The following are the
main contributions of our work:

• we exploit operation types and a hybrid communication method to achieve
high operation availabilities

• we utilize data components for scalability and fault tolerance

• we allowed non-blocking concurrent operation executions while ensuring causal
data consistency

In Figure 3.2, we provide an overview of our data replication strategy. There is
one CA and three DCMs. All of them have two types of operation namely prepare-
update operation (PRU) and execute-update operation (EXU). These operations are
used to synchronize with CA. Along with RI the DCMs also have a synchronization
threshold (SynTH). It is used to notify CA that the DCM requires reconfiguration.
We elaborate in detail in Section 3.4. Afterwards, in Section 3.5, we summarize our
recent progress and elaborate on the future directions of our work.

46

3.3 Problem Statement

3.3 Problem Statement

In most of the data replication strategies data consistency is ensured by controlled
execution of mutually exclusive operations. Read-Write and Write-Write operations
are mutually exclusive when the target is the common data item. For these mu-
tually exclusive operations, when a write operation updates a data item, then the
read operation should not read the value of that data item until the write operation
execution completes. Same is the case for Write-Write operations execution scenar-
ios. In this work, we further extended the concept of coordination avoidance – the
communication between the replicas to mutually agree on an operation execution –
between the replicas to achieve high operation availability. Our contribution focuses
on the data consistency rules defined by an application. We exploit application rules
to allow simultaneous execution of mutually exclusive operations. The application
rules are divided into two categories. One category allows simultaneous execution
of mutually exclusion operations and the other category do not allow simultaneous
execution.

3.4 Replication Strategy

The component-based highly available replication strategy (CbHaRS) to be presented
is a component-based data replication strategy. CbHaRS focuses on a specific type
of applications. This type of applications defines data consistency criteria based
on its rules. If the application-defined rules are enforced, then data consistency is
ensured. In case of CbHaRS, operations are defined on so-called data components
(DCMs). The DCMs use these operations to communicate with each other and to
update their data item. We define two types of operations: i) the prepare-update
operation (PRU) and ii) the execute-update operation (EXU).

GI and RI are defined according to application rules. In some scenarios, a GI
is distributed among the DCMs as RI. For the DCMs, a synchronization threshold
(SynTH) is defined against the RI. When the DCM’s data item value reaches the
SynTH, then the DCM notifies the CA to update the respective RI across all the
DCMs. Because, once the DCM reaches a SynTH, it cannot process further request
against the respective RI. There is a possibility that a DCM reaches its SynTH while
other DCMs don’t. This situation is monitored by CA. We explain these concept
with the help of below example.

Example Let us take an example of an event management system. For this appli-
cation, some rules are defined, e.g., number of participants are limited, every partic-
ipant must register with a unique email address, and ticket reservations must be less
than or equal to the number of available tickets. Based on this set of rules, we define
an application invariant AVAILABLE−TICKETS as GI. A validation condition for
this GI is defined as:

RESERVATIONS ̸> AVAILABLE−TICKETS

47

3 Component-Based Data Replication Strategy

Data Component 3

Data Component 1

Data component 2

Client doReservation()

doReservation()

PRU+EXU

response(success)

AVAILABLE_TICKETS = 300
RESERVATIONS = 0

AVAILABLE_TICKETS = 300
RESERVATIONS = 3

ALLOCATED_TICKETS = 100

ALLOCATED_TICKETS = 100

ALLOCATED_TICKETS = 100

PRU+EXU

PRU+EXU

doReservation() response(success)

response(success)

Figure 3.3: Data components execute concurrent replica invariant-related operations.
A RI named ALLOCATED−TICKETS validates operation executions at
replica level. This RI ensures that a data component can do a maximum
of 100 reservations. Collectively, all the data components can do 300
reservations.

To enable coordination-less concurrent executions of the operations for DCMs, the GI
is divided among the DCMs. Each DCM now has a RI called ALLOCATED−TICKETS.
The DCM takes the responsibility to enforce its RI. The combine affect of all the
DCMs ensures the validity of the GI, that is:

N∑
n=1

ALLOCATED−TICKETS(n) ̸> AVAILABLE−TICKETS (3.1)

where N is the total number of DCMs. As shown in Figure 3.3, the DC executes a
PRU, when it receives a client’s request to update the data item. A PRU operation
prepares an update package (UDP). The UDP contains: i) the value to be updated,
ii) the steps to perform the update, and iii) the state information about the respective
RI. The DCM applies the UDP to perform the actual update with the help of EXU.
The DCMs manipulate their states depending upon: i) SynTH status and ii) RI
validation. Based on the DCM’s current state, the communication mechanism –
coordinated communication or coordination-less communication – is selected. The
CA maintains a key-value store to record the current state of each of the DCM.

48

3.4 Replication Strategy

The role of CA is to maintain consistency of the RIs across all the DCMs. It
manipulates the DCM states and performs synchronization within the DCMs in re-
sponse to the RI update requests. The DCM can be in two states: i) the synchronized
state and ii) the unsynchronized state. A DCM is in the synchronized state when
the SynTH for any of its RIs is not reached, and for the unsynchronized state it
is vice versa. In context of data replication – for some quorum-based data repli-
cation strategies for example MCS and TLP – the coordination among replicas is
required to ensure data consistency. In CbHaRS, when DCMs are in a synchronized
state, then DCM allow concurrent execution of the mutually exclusive operations.
However, the data consistency is ensured by the RIs – as explained in Equation 3.1.
We will discuss more on the DC states, operation executions, and communication
mechanisms in the following Sections 3.4.1, 3.4.2, and 3.4.3 respectively.

3.4.1 RI-related operation execution in a synchronized state

In CbHaRS, a DCM is in a synchronized state, when for its RI the limit is not
reached. For example, if the limit for ALLOCATED−TICKETS is 100 and the
DCM has done less than 100 RESERVATIONS, then the DCM can execute an op-
eration without coordinating with other DCMs. We explain the execution steps in
Algorithm 3 from Line number 6 to Line number 14. In this case, operation cost = 1,
because a single DCM is involved in an operation execution. Referring to Figure 3.3,
concurrent seats reservations are carried out simultaneously by the DCMs against
their ALLOCATED−TICKETS RI. There are three DCMs. For each DCM a RI
ALLOCATED−TICKETS is defined like:

ALLOCATED−TICKETS = 100

0 ≤ RESERVATIONS ≤ 100

RESERVATIONS ≤ ALLOCATED−TICKETS

No coordination is required among the DCMs during these operation executions. The
data consistency at DCM is ensured by ALLOCATED−TICKETS RI. The operation
availability depends upon the availability of the DCM, and a quorum formation is
not needed. The AVAILABLE−TICKETS GI is ensured because, in total, all the
DCMs cannot do more than 300 seat reservations.

3.4.2 RI-related operation execution in an unsynchronized state

When against a RI, a DCM reaches its limit, then the DCM switches its state to un-
synchronized state. For example, in case of ALLOCATED−TICKETS RI, if a DCM
has done 100 RESERVATIONS, then the DCM change its state to unsynchronized
state – line number 12 to 14 in Algorithm 3. The unsynchronized state means that
the DCM requires coordination with other DCMs and CA. In this case, operation
cost > 1 ≤ N where N is total number of DCM.

Once a DCM reaches it SynTH, it informs the CA. At this point, the CA collects
the RI utilization status from all the DCMs and performs one of the following actions:

49

3 Component-Based Data Replication Strategy

Algorithm 3: Replica invariant related operation execution
Input : input
Output: response
/* Get DCM state: synchronized or unsynchronized */

1 stateFlag ← getCurrentState()
/* Prepare update package */

2 UDP ← prepareUpdateRequest(input)
3 if stateFlag = unsynchronized then

/* Forward the request to CA to process the request */
4 response ← putRequestToCA(UDP)
5 else

/* Is the request GI manipulative? */
6 requestType ← getRequestType(UDP)
7 if requestType = nonManipulative then

/* Process request by DCM */
8 response ← executeUpdateRequest(UDP)

/* Check if DCM threshhold reached */
9 if DCMThreshholdReached() = true then

/* Notify CA to trigger RI configuration */
10 notifyCA()
11 end

/* Check if RI limit reached */
12 if DCMLimitReached() = true then
13 stateFlag ← unsynchronized
14 end
15 else

/* Forward the request to CA to process the request */
16 response ← putRequestToCA(UDP)
17 end
18 end

50

3.4 Replication Strategy

• it recomputes the RI and its SynTH. Afterwards, it distributes the updated
value of RI to the DCMs and reset their states to synchronized states.

• if the RI limit for most of the DCM is reached, then the CA defer the ac-
tion. For example, if two of the three DCMs have done 200 RESERVATIONS
and third has done 90 RESERVATIONS, then in this case no action will be
taken. Because the overall cost of reconfiguration is higher than the remaining
RESERVATIONS.

For example, the SynTH for DCMs in Figure 3.3 is set to 80. When a DCM has done
80 reservations, then it notifies CA about the status of ALLOCATED−TICKETS
RI. After 100 reservations, the DCM switches its state to unsynchronized state state.
Meanwhile the CA receives another notification from the second DCM. At this point
in time, the CA collects the values of ALLOCATED−TICKETS RI from the three
DCMs. It will then reconfigure the ALLOCATED−TICKETS RI by increasing the
ALLOCATED−TICKETS values for first DCM and vice versa for third DCM. The
important point is that Equation 3.1 holds.

Algorithm 4: Global invariant related operation execution
Input : input
Output: response
/* Configuration could be pull or push mechanism */

1 configurationFlag ← getConfigurationFlag()
/* Prepare update request package */

2 UDP ← prepareUpdateRequest(input)
3 if configurationFlag = pullMechanism then

/* For pull mechanism, all GI related requests are executed by
the CA */

4 response ← putRequestToCA(UDP)
5 else

/* For push mechanism, all GI-manipulative operation requests
are executed by CA */

6 requestType ← getRequestType(UDP)
7 if requestType = nonManipulative then

/* GI-nonmanipulative operation request is executed by DCM */
8 response ← executeUpdateOperation(UDP)
9 else

/* GI-manipulative operation requests are executed by CA.
After the execution, the updated GI value is pushed to all
DCMs */

10 response ← putRequestToCA(UDP)
11 end
12 end

51

3 Component-Based Data Replication Strategy

3.4.3 GI-related operation execution by CA

Let us define UNIQUE−EMAIL as GI for our event management system. According
to this GI, an email address can only be used for a single registration. Now, as per
CbHaRS, this application invariant cannot be divided among DCMs. Because simul-
taneous registrations by multiple DCMs invalidate this GI. To ensure the validity of
the GIs, the GIs are managed by the CA. It is the responsibility of the CA to prop-
agate the updated information about GIs to the DCMs. For example, once an email
address is registered by the CA, then this information should also be communicated
to the DCMs. For the CA, there are two mechanisms to manage the GIs: i) a pull
mechanism and ii) a push mechanism.

3.4.3.1 Pull mechanism – On-request information retrieval

Using the pull mechanism, the DCMs always coordinate with the CA for operation
executions involving GI. For example, if a DC receives a request to inquire about
the registration status of an email address, then the DC coordinates with the CA
to determine the registration status – line number 3 and 4 in Algorithm 4. After
that, the DC returns back the registration status received against the inquiry from
the CA. This approach always returns the consistent information, but it puts an
extra burden on the CA to also address the get-value operations. We named these
get-value operations as GI-nonmanipulative operations because they only get value
of the GI and donot perform any update on it.

3.4.3.2 Push mechanism – Propagate updated information

Using the push mechanism, the DCMs address the GI-nonmanipulative operations.
However, in case of GI-manipulative operations, the DCMs require coordination with
the CA, and the DCM forward these operation requests to the CA – line number 6
to 10 in Algorithm 4. The GI-manipulative operations are the set-value operations
and are used to update the value of GI. The CA first executes a PRU to prepare
the UDP. Afterwards, it applies the UDP with the help of EXU. As soon as the
execution of the EXU is completed, the CA pushes the UDP to all the DCMs. The
DCMs upon reception of the UDP from the CA, apply the UDP with the help of
EXU.

In push mechanism, the prime responsibility of the CA is to manage GI-manipulative
operations. To ensure consistency, the CA executes this type of operations in serial
order. Referring to Figure 3.4, for the UNIQUE−EMAIL GI, a DCM addresses the
isRegistered() inquiry. Simultaneously, CA performs the deRegister() update for the
same GI. The DC responded that a registration for the email exists, but – in parallel
– the CA cancels the registration which result in temporary data inconsistency. The
data inconsistency is eliminated as soon as the the DC receives the UDP from the
CA about its GI. As shown in Figure 3.4, the CA propagates UDP to DCMs after
the update.

52

3.4 Replication Strategy

Data Component 3

Central
 Administrator .

Data Component 1

Data component 2

Client isRegistered(x)

deRegister(x)

UDP

UDP

UDP

PRU+EXU

PRU+EXU

response(success)

response(yes)

UNIQUE_EMAIL
(x = abc@domain.com)

UNIQUE_EMAIL
(x = nil)

Figure 3.4: Push mechanism scenario. The data component responds to inquiry
isRegistered(). The component administrator addresses the manipu-
late registration deRegister() request, and afterwards propagates asyn-
chronously the update package to the data components.

3.4.3.3 Overheads

We identified are few overheads in CbHaRS. First of all, to select an CA, we need
to do an election [Lam1998]. Secondly, after every GI-manipulative operations the
CA sends an UDP to each DCM, and the cost of each GI-manipulative operation is
equal to the number of DCMs, as shown in Figure 3.4. Lastly, when a DCM is in
unsynchronized state, then the cost of RI-manipulative operation is higher, because
it requires more DCMs to execute the request. However, the gains in operation avail-
abilities and low operation costs are of more value than the associated overheads.
If the consistency rules defined by the application can only be categorized as global
invariants, then it is not recommended to use CbHaRS. Because in this case the op-
eration cost will be same as of write operation cost of Read-One Write-All [BG1984]

53

3 Component-Based Data Replication Strategy

data replication strategy. CbHaRS is best suited where we can extract more replica
invariants than global invariants from the application-defined data consistency rules.

3.5 Conclusion & Future Work

Our prototype implementation of the CbHaRS has one CA and ten DCMs. We
implemented CbHaRS in Java on a Linux Arch machine. We executed four test
runs with 1000, 5000, 10000 and 15000 transactions. Each transaction is composed
of a read operation followed by a write operation. We implemented the RESER-
VATIONS process by the following two strategies: i) GI implementation by CA ii)
RI implementation by DCMs. In case of the GI-implemented strategy, each DC
coordinates with the CA for invariant validation. Here, we set 15ms for the GI
validation-and-communication time between the CA and the DCMs. However, in
case of the RI implemented strategy, the GI is distributed by the CA among the
DCMs as RI. The DCMs – in parallel – perform independent local validations. The
validation time is also set as 15ms for all the DCMs. The RI strategy – for this
particular application scenario – exploits the RI, and allows simultaneous read-write
and write-write operation executions. Refer to Figure 3.3 for details, where reser-
vations are made simultaneously in compliance with the ALLOCATED−TICKETS
RI. While, the GI strategy – for the same scenario – allows operation executions in a
serial order. Because, the invariant validation is done via AVAILABLE−TICKETS
GI.

In Figure 3.5, we present the time difference between both of the strategies to exe-
cute the same number and type of transactions. Invariant validations facilitates both
of the strategies to focus towards stronger levels of data consistencies. Considering
the outcome of the prototype, we foresee to achieve inspiring results in the future.

54

3.5 Conclusion & Future Work

1000 5000 10000 15000

Number of transactions

0

50

100

150

200

250

300

350

T
im

e
 i
n
 s

e
c
o
n
d
s

Comparison between GI and RI related strategies

GI related strategy

RI related strategy

Figure 3.5: A comparison of the GI and the RI mechanisms. Operations execution
with GI demonstrates the invariant enforced by the CA. Operations ex-
ecution with RI demonstrates the invariant enforcement by the DCMs.

55

4
A Data Replication Strategy for A

Replicated Services Registry

The Internet market is highly competitive and is influenced by high expectation
levels of internet users, continuous advancement in the information technology, and
high processing and storage capabilities of the hardware. In this chapter we focus
on the design and development of a replicated and highly available service registry
for microservice architectures. The service registry key-value store comprises of six
nodes and supports a total of 216 microservices. Existing replicated service registries,
like ZooKeeper [HKJR2010] and ETCD [ETC2017] are based on majority consensus
strategies. If these strategies fail to achieve majority consensus, then they are bound
to provide limited functionality. Neither a new service can be added not an existing
service can be removed. Because, to change the cluster state a majority consensus
is required. As part of this research, we propose a highly available data replication
strategy for replicated service registry [UZT2018]. The a data replication strategy
for a replicated service registry (DℜSℜ) exploits: i) a simple encoding scheme; and
ii) a mapping method for efficient distribution of the encoded values to the service
registry nodes.

4.1 Introduction

E-commerce, online booking, search engine, and social networking are some classes
of highly available systems. Several hundreds or thousands of users simultaneously
access these systems. For example, in November 2017, amazon.com had around
2.9 billion (B) visits, facebook.com had approximately 30.66B visits, youtube.com
had nearly 24.47B visits, expedia.com had around 51.45 million (M) visits, book-
ing.com had approximately 369.77M visits, and google.com had nearly 43.43B visits

57

4 A Data Replication Strategy for A Replicated Services Registry

Figure 4.1: Internet connectivity bandwidth growth [NNG2019]

[Sim2017]. The internet market is highly competitive and it is influenced by high
expectation levels of the internet users, continuous advancement in the information
technology, and high processing and storage capabilities of the hardware [McA2010].
From Figure 4.1 we can see that there is a consistent increase in internet connec-
tivity bandwidth. Same is the case with computing power. The steady increase in
computing power can be noticed in Figure 4.2. We also experience similar kind of

Figure 4.2: Supercomputer computing abilities trend [Wik2019]

tread about storage. The storage cost per 1 Terabyte of storage is decreasing day
by day. Also the storage devices are becoming compact over time. There is a lot
of innovation that results in such achievements as described in [BS2003]. Figure 4.3
provides an overview on storage cost over time.

Now we get an idea about technology advancements in the last couple of decades.
These are tremendous. These advancements enabled us to rethink – how to exploit

58

4.1 Introduction

Figure 4.3: Hard drive storage-cost trend [Ove2022]

the technology to take maximum benefit – the way the systems can be designed.
The internet capabilities also increased a lot as shown in Figure 4.1. We can now
design wide-area network-based distributed systems with little or less worry about the
network bandwidth and its unavailability. Amazon web services [Aws2017] is one of
the good examples. However, to survive in such a highly competitive environment,
these systems are primarily focusing on high operation availabilities [CDE+2013,
DHJ+2007, BAC+2013].

In this work, we focus on high operation availabilities from the perspective of
a microservice architecture (µSA) [DGL+2017]. We proposed a highly available
service registry (Sℜ) for a fixed number i of microservices (µS s), 0 ≤ i ≤ 216. In
the scope of this work, our encoding scheme supports a maximum of 216 values.
The µSA recommends to define µS s as granule independent packages, that can be
deployed in isolation, equipped with their own persistence mechanism, and are able
to communicate with each other via messages [DGL+2017]. A microservice (µS) is
expected to perform a small set of closely related atomic operations [Str2003]. In case
of distinct operations – the operations belonging to different modules which cannot
be grouped together – a separate µS is defined for each of the operations. Taking
the example of an e-commerce system, if there exists a manage−shopping−cart µS ,
then it is expected to manage operations related to the shopping carts only. On the
other hand, the analytical functionality to recommend products to a user based on
her/his shopping behavior is provided by an analyze−and−predict µS .

One of the important design time consideration for a µSA is service discovery
(SD) [RIN+2017]. It is a process to find the instances of a µS in a distributed
infrastructure. The distributed infrastructure can be logical or physical, and to
provide high operation availabilities, it is expected to be fault-tolerant. Nowadays,
it is possible to have a µSA based on a cloud platform [SRD2016, HKF2017]. In this
case the cloud-services provider provides the infrastructure to design, deploy, and
maintain the µS s. Some of the popular cloud-services providers are Amazon Web

59

4 A Data Replication Strategy for A Replicated Services Registry

Services [Aws2017], Azure [Azu2022], and Google cloud [Goo2022].
To utilize a µS , the client1 should have the invocation-location information of the

µS . Depending upon the system configuration and load balancing requirements, there
can exist multiple instances of a µS . Furthermore, to incorporate fault tolerance, the
µS s can be migrated from a problematic node to a functional node, thus resulting in
a change of the system configuration. In these situations, all clients utilizing those
µS s need to update their service invocation-location information. However, it is a
tedious, error-prone, and inefficient process. To deal with this problem, a service
registry (Sℜ) is utilized [BHJ2016, YSS2016, MRSU2016, BCD+2000].

According to [RIN+2017], the Sℜ acts as a database of the µS s instances. µS s
invocation-location information is saved in this database. In [BHJ2016], the authors
viewed Sℜ as having the main supporting role in the µSAs. The client queries Sℜ
to obtain the µS ’s data – in particular µS ’s invocation-location information. The
client maintains information of the Sℜ. Moreover, considering the importance of Sℜ
in a µSA, the Sℜ must be highly available and fault-tolerant.

In this work, we primarily focus on designing a highly available and fault-tolerant
Sℜ. We achieve these properties by replicating the Sℜ on six independent nodes.
In a replicated environment, the independent nodes work together to achieve the
common goal [The1993]. A replicated Sℜ is more fault-tolerant as compared to
a non-replicated centralized Sℜ. Because, there exist n replicas of Sℜ and it can
bear m faults, where m < n,m, n ∈ N and the value of m depends upon the data
replication strategy. To support operation executions on the replicated Sℜ, we design
a data replication strategy which we call a data replication strategy for a replicated
service registry (DℜSℜ). High operation availability is among the primary objectives
of a replicated environment [BFF+2014, BDF+2013]. In Section 4.4, we explain how
DℜSℜ provides high operation availabilities. The key contributions of this chapter
are:

• the development of a replicated and highly available service registry for a mi-
croservice architecture;

• the development of a simple and efficient encoding scheme for a finite number
i, 0 ≤ i ≤ 216 of microservices; and

• a mapping method for efficient distribution of encoded values to service registry
nodes.

For an overview of related work, refer to Section 4.2. In Section 4.3, we emphasize
the importance of a highly available Sℜ. We elaborate the DℜSℜ in detail in Section
4.4. The functional model, implementation, analysis, and results of DℜSℜ are dis-
cussed in Section 4.4.1, Section 4.4.2, Section 4.4.3, and Section 4.4.4, respectively.
Finally, in Section 4.5, we conclude this part.

1Client can be, by itself, a µS or an application utilizing the µS .

60

4.2 Related Work

4.2 Related Work

A µSA is an architectural type for developing applications. In this architecture type,
a large problem is divided into sub-problems. For each sub-problem a µS is de-
veloped. However, the actual art lies in defining small, granule, and independent
sub-problems. This definition is done in such a way that the µS packages – solu-
tions to sub-problems along with the storage and persistence mechanisms – can be
deployed and maintained independently [Ric2017, BWZ2017, DGL+2017, New2015,
MCL2017, FM2017]. The µS s tend to grow in large numbers due to their small and
limited scope. The loose coupling at the granule level results in more complexity and
increased communication among the packages. However, the achieved gains are much
larger as compared to additional complexities [MRSU2016, BWZ2017, HKF2017].

A classic approach to keep track of µS s in a µSA is via a Sℜ [BHJ2016, YSS2016,
MRSU2016, BCD+2000]. A Sℜ is a repository of the µS s. Along with other im-
portant information, it contains invocation-location information of µS s [RIN+2017].
Every functional – non-obsolete – µS publishes its existence by registering to the
Sℜ [Str2003]. A µS can register itself to Sℜ, or it can be the responsibility of some
other service(s) to discover functional-unregistered µS s and then register those to
Sℜ. The same process is followed by a µS to cancel its registration. The client gets
to know about functional µS via SD – it is a process of locating the µS by querying
the Sℜ [Ric2017, RIN+2017, SGT2011, WCD2017].

The important role of a Sℜ requires it to be highly available and fault-tolerant
[MIB2009]. In the literature, there exists a number of techniques dealing with the
importance, reliability, and fault tolerance of Sℜ. For example, Netflix Eureka
[Eur2017] based on AWS [Aws2017], ETCD [ETC2017], and ZooKeeper [HKJR2010].
Netflix Eureka 2.0 supports full replication. This is achieved by some broadcast mech-
anisms. However, Netflix Eureka requires continuous configuration and maintenance
needs to manage the read-only and write-only clusters of the Sℜ. ZooKeeper is well-
known because of its reliability, high operation availabilities, and data consistency.
It is a replicated system and is supported by consensus algorithms like majority
consensus strategy [Tho1979]. ETCD is based on Raft [OO2014] – also, a consen-
sus algorithm. Most of the consensus-based techniques, like ZooKeeper and ETCD,
require a majority of nodes to progress. In case of state-machine-based replicated
systems, the progress refers to a state transformation [KKW2013]. If a majority is
not available, then there is no progress, but in some scenarios read-operation execu-
tion is supported. Another highly available data replication strategy is the trinagular
lattice protocol [WB1992]. It depends upon logical arrangements of nodes in the form
of a lattice. Depending on nodes arrangement, the operation executions require a
combination – that is, a quorum – of adjacent nodes. For write operation, the trinag-
ular lattice protocol requires a quorum containing node(s) from every column and
every row. For read operation, it requires a quorum containing node(s) either from
every column or from every row. Our approach deals with the problems related to
majority consensus and logical arrangements of nodes.

In [SPSPMJP2006], Salas J. et al. presented a framework for highly available web

61

4 A Data Replication Strategy for A Replicated Services Registry

service (WS). The framework exploits full replication based on a reliable multi-cast
approach for message delivery. However, this approach requires each WS instance of
the group to know about all members of its replication group. This approach faces
an overhead of reconfiguration and a lack of robustness in case of highly dynamic
environments [RKUP2017]. However, to minimize the impacts of reconfiguration,
our approach encapsulates only the information about Sℜ in the µS s and the client.

4.3 Microservices Architecture

In [Ric2017], the author proposed various µSAs. Based on these µSAs, we proposed
a highly available Sℜ. Before going into details, it is important to understand
the role and importance of a highly available Sℜ. Let us consider the example
of a bookings management system. Such type of systems is designed to be highly
available and primarily focuses on the operation availabilities aspect of the CAP
theorem [GL2002]. According to the CAP theorem, there always exist trade-offs
among operation availabilities, data consistency, and partition tolerance.

Client:
Application/Service

Actual operation execution

µS: SearchAvailability

µS: SearchAvailabilityµS: RegisterCustomer µS: CarryOnReservation

µS: RegisterCustomer

Figure 4.4: A µSA containing replicated µS instances. The µS in grey-coloured
boxes are the new instances. The curved arrow means that the µS is not
configured yet and necessary configuration of the client and other µS s is
required to utilize the new µS s.

Figure 4.4 shows a simple µSA for a bookings management system example. There

62

4.3 Microservices Architecture

exist three services, namely: i) a RegisterCustomer µS which is responsible to exe-
cute operations related to customer registration only; ii) a CarryOnReservation µS
which is responsible to execute operations related to booking confirmations; and,
iii) a SearchAvailability µS which is designed to execute query-operations as per
customer preferences. There exists a client, which requires one or more µS s to com-
plete an operation. As shown in Figure 4.5, to perform booking, the client first
checks seat availability via SearchAvailability µS and, if the seat is available then
the client will do the booking via CarryOnReservation µS . Otherwise, client get a
seat unavailability response.

Start SearchAvailability IsAvailable CarryOnReservationYes End

No

Figure 4.5: A simple reservation business process example.

4.3.1 µSA without a Sℜ

In a simple scenario, there exists single instance of each µS . Only the client and
the µS contain invocation-location information of each other. When a configuration
change – the deployment of µS on another node, due to a node failure or maintenance
– occurs, the client and the existing µS are updated with the latest invocation-
location information of each other. For a few µS , such tight coupling is somewhat
manageable. However, it gets complicated to deal with configuration changes with
increased number or replicated instances of the µS s. As shown in Figure 4.4, to load-
balance SearchAvailability and RegisterCustomer µS s, one more instance of each µS
is brought into the system. At this point in time, the client and the existing µS s
do not have any information of the two new µS instances. This change needs to be
communicated to all components of the system.

4.3.2 µSA with a Sℜ

Figure 4.6 shows a µSA including a Sℜ. The Sℜ contains information, noticeably
the invocation-location information, about all components of the system. When the
components – µS and client – want to communicate with each other, they get the
latest invocation-location information from the Sℜ. This type of µSA reduces the
complexity associated with configuration changes. On the other hand, it increases
dependency on the Sℜ. Having the motivation to address the configuration-related
challenges, in the next section, we present a highly available replication strategy for
a replicated Sℜ.

63

4 A Data Replication Strategy for A Replicated Services Registry

Client:
Application/Service

Actual operation execution

µS:
SearchAvailability

Update services registry

µS:
ServicesRegistry

µS:
RegisterCustomer

µS:
SearchAvailability

µS:
CarryOnReservation

µS:
RegisterCustomer

Figure 4.6: A µSA with multiple µS s and a Sℜ. Addition and removal of µS s require
configuration change at the service registry. The client and other µS s
do not require any change, because they get information from service
registry.

4.4 A Data replication strategy for a replicated service
registry

This section elaborates the a data replication strategy for a replicated service registry
(DℜSℜ) [UZT2018]. It is a highly available data replication strategy, and to achieve
high operation availabilities, DℜSℜ exploits the following:

• a simple coding scheme –named as Code16 (C16) – for transforming service
registry key (Sℜ[S]) into redundant codes;

• a Sℜ in the form of a key-value store with the capacity to address 216 µS s;
and

• a mapping method for efficient distribution of redundant codes to six Sℜ nodes.

4.4.1 The Functional Model

First of all, we explain the modeling foundations of DℜSℜ. This section is divided
into three subsections: i) Subsection 4.4.1.1 discusses the model for Code16, ii)

64

4.4 A Data replication strategy for a replicated service registry

Subsection 4.4.1.2 elaborates the service registry nodes model, and iii) Subsection
4.4.1.3 sheds light on the validation model of DℜSℜ.

4.4.1.1 The Code16 Model

DℜSℜ maintains the Sℜ in the form of a key-value store.2 The coding scheme
transforms the input3 service registry key (Sℜ[S]) to a 16-bit binary code.

S := {i | i ∈ N, 0 ≤ i ≤ 216} (4.1)

For example, the 16-bit binary code of a µS having the S= 2680610 is 01101000101101102.
The binary code is then divided into eight equal parts starting from lower order bits
to higher order bits. Each part is made up of two bits as shown in the following:

I8︷︸︸︷
01

I7︷︸︸︷
10

I6︷︸︸︷
10

I5︷︸︸︷
00

I4︷︸︸︷
10

I3︷︸︸︷
11

I2︷︸︸︷
01

I1︷︸︸︷
10

The four possible distinct two bits binary codes are: 00, 01, 10, and 11. Where
I1, I2, . . . , I8 are their index positions. The binary code and their index positions
have the following relationships:

I = {I1, I2, I3, I4, I5, I6, I7, I8}
A,B,C,D ⊆ I, A ∪B ∪ C ∪D = I

A = {Ik | 002 = S ∧ (112(4
k−1)), 1 ≤ k ≤ 8}

B = {Ik | 012 = S ∧ (112(4
k−1)), 1 ≤ k ≤ 8}

C = {Ik | 102 = S ∧ (112(4
k−1)), 1 ≤ k ≤ 8}

D = {Ik | 112 = S ∧ (112(4
k−1)), 1 ≤ k ≤ 8}

(4.2)

The two bits binary codes and their indices are referred as NIndices. The NIndices
are distributed among Sℜ nodes. The 16-bit binary code of S = 2680610 in the form
of NIndices, utilizing the Constraints 4.2, is represented as:

M = {A,B,C,D}
NIndices : S 7→M×M×M×M
NIndices(26806) = (A,B,C,D)

= ({I5}, {I2, I8}, {I1, I4, I6, I7}, {I3})

(4.3)

In this section we explained, how the Sℜ[S] is transformed into NIndices. In the
next section we elaborate on the mechanism to distribute the NIndices on the service
registry nodes.

4.4.1.2 The Sℜ Model

The DℜSℜ takes six nodes into account to form a highly available Sℜ. As shown in
2A key-value store is a collection of keys along with their values. The keys are unique.
3The input represents a µS ’s key in the Sℜ.

65

4 A Data Replication Strategy for A Replicated Services Registry

ϵ ζ

βα δ γ

L1

L2

Figure 4.7: DℜSℜ node model. Dotted line is used to separate L1 and L2 group.
Thick arrows represent complete redundancy of NIs. Thin arrows show
partial redundancy of NIs.

Figure 4.7, the Sℜ nodes are divided into two levels: L1 and L2. There are two nodes
on L1. They are denoted as ϵ and ζ. At level L2, there are four nodes. They are
denoted as α, β, γ, and δ. While updating Sℜ, the Sℜ[S] is distributed in form of
the NIndices to a subset of Sℜ nodes. At the time of reading from Sℜ, the NIndices
are read from a subset of Sℜ nodes to regenerate the Sℜ[S]. A pair of NIndices is
mapped to each Sℜ node. The NIndices mapping to nodes (f) is as follows:

f : M×M 7→ { ϵ, ζ, α, β, γ, δ}
f con = {(A,C, ϵ), (B,D, ζ), (A,D,α),

(B,C, β), (D,A, γ), (C,B, δ)}
(4.4)

f is the function which relates NI and the nodes. The f con explains the actual
relationship between NIndices and the nodes. For example, (A,C) 7→ ϵ and (B,D) 7→
ζ. For our node setting, as shown in Figure 4.7, this mapping fulfills our needs.

From the Equation 4.4, we can observe that a pair of the same NIndices – A,D – is
mapped to α and γ. Another pair of the same NIndices – B,C – is mapped to β and
δ. The reason to keep redundant NIndices is to enhance the fault tolerance capability
of the DℜSℜ. Referring to Figure 4.7, the arrows between the nodes demonstrate
the redundancy relationship. The thick arrows between the Sℜ nodes on L2 show
the complete redundancy of the NIndices. For example, node β and node δ have a
thick arrow between them, because both of them have the same pair of NIndicess
– B,C – mapped to them. However, the thin arrows directing from the Sℜ nodes
from L1 to L2 highlight the partial redundancy of the NIndices. For instance, node
ϵ and node α have one common NIndices – A – mapped to them.

4.4.1.3 The Validation Model

The DℜSℜ validation model defines the correctness conditions for the two Sℜ op-
erations: i) update service (USℜ) and ii) inquire service (ISℜ) operations. The cor-
rectness conditions are derived from the following two definitions.

66

4.4 A Data replication strategy for a replicated service registry

Definition 1. The minimum number of unique nodes required by a Sℜ operation is
called enough nodes (En).

En ⊂ {ϵ, ζ, α, β, γ, δ}

Definition 2. The nodes mapping to NIndices (f−1), such that I is mapped to
enough nodes is known as complete mapping.

f−1 : { ϵ, ζ, α, β, γ, δ} 7→M×M
f−1
con = {(ϵ, A,C), (ζ,B,D), (α,A,D),

(β,B,C), (γ,D,A), (δ, C,B)}
G = {b | b ∈ F1 ∪ F2 ∧ a ∈ En

∧ f−1
con(a) = (F1,F2) ∧ F1,F2 ∈M}

(G = M) ≡ complete mapping

(4.5)

As per Equation 4.4, the NIndices distributed redundantly among nodes. The
NIndices are mapped to nodes in such a way that fewer nodes are required to com-
plete an operation. Because of redundancy, we need a subset of nodes to collect all
NIndices. f−1 is the function which explains the relationship between nodes and
NIndices. However, f−1

con is the function that explains which nodes contains which
NIndices. For example, node ζ has NIndices B and D, and node δ has NIndices
C and B. In Equation 4.5, G represents complete mapping. When we are able to
map all the NIndices to a subset of nodes – known as enough nodes (En) – then we
say we have complete mapping (G).

The USℜ operation is executed for the µS ’s registration and cancel-registration
request. In general, the USℜ is a write operation (WO). The ISℜ is executed on
the Sℜ to determine the µS ’s invocation-location information. In general, it is a
read operation (RO). The operation execution – for USℜ and ISℜ – is correct, if the
following holds:

• according to Equation 4.4, while an USℜ operation execution, enough nodes
are available to receive their mapped NIndices; and

• during an ISℜ operation execution, enough nodes are available and it is possible
to extract complete mapping.

In Section 4.4.3, we discuss the operation execution in detail.

4.4.2 Replication Strategy

The replication strategy is based on DℜSℜ’s functional model described in Section
4.4.1. This section elaborates on the DℜSℜ data replication strategy. It discusses
in detail the mechanism used to replicate NIndices to Sℜ nodes. We explain the
replication strategy from the perspective of ISℜ and USℜ requests. The important

67

4 A Data Replication Strategy for A Replicated Services Registry

Algorithm 5: DℜSℜ ISℜ operation
/* inquire service request */
Input : S
/* microservice’s location or failure−message */
Output: response
/* extract NIndices of request */

1 request ← extractServiceDetails(Input)
/* determine availability scenario */

2 availableNodes ← findNodes(request)
/* valid scenario available */

3 if !enoughNodes(availableNodes) then
4 response ← failure−message
5 return response
6 end
/* determine minimum nodes */

7 tNodes ← determineNodes(availableNodes)
8 NIndices ← readIndices(tNodes)
/* generate code from NIndices */

9 binary16 ← generateBinaryCode(NIndices)
/* get service location information */

10 response ← getServiceLocationInfo(binary16)
11 return response

68

4.4 A Data replication strategy for a replicated service registry

steps for ISℜ and USℜ operations are explained in Algorithm 5 and Algorithm 6,
respectively.

One of the important focus areas of a data replication strategy is its high operation
availability. As per the CAP theorem [GL2002], there always exist trade-offs among
operation availabilities, data consistency, and partition tolerance. In a replicated
environment, the operation availability is mainly affected by the number of replicas
required to execute an operation. The fewer the number of replicas required by an
operation, the higher are the operation availability [UST2017, UZT2017a, ST2017,
BDF+2013, DHJ+2007, AEA1992, Tho1979, Gif1979]. We also describe Algorithms
5 and 6 from the perspective of high operation availabilities. As explained in Section
4.4.1.1 that the Sℜ is a key-value store where the key is a unique microservice’s key
(S) and the value is its invocation-location information. In context of this work, Sℜ
nodes are considered as replicas of Sℜ key-value store.

In Algorithm 5, we explain the ISℜ operation. It is a RO executed on the Sℜ for the
discovery of µS ’s invocation-location. The first step is to extract S from the request.
After that, a search among the Sℜ nodes is made to check their availability. If En

are not available, then the ISℜ operation is not available and a failure−message is
returned to the source. Otherwise, En are selected and the ISℜ operation execution
extracts the NIndices which are later used to regenerate the 16-bit binary code of the
S. Finally, Sℜ utilizes S to extract the µS ’s invocation-location information Sℜ[S].

In Algorithm 6, we explain the USℜ operation. It is a WO executed on Sℜ to
register a new µS or to delete the registration of an existing µS . The first step is
to extract S from the request. The next step is to get the 16-bit binary code of S.
After that, the binary code is used to generate NIndices. The next step is to run
a search across the Sℜ to check the nodes’ availability. If En nodes are available –
in compliance with Equation 4.4, and a complete mapping exists – as per Definition
2, then the USℜ operation is executed successfully along with the latest timestamp.
Otherwise, the operation execution fails and a failure−message is returned to the
source. The timestamp is unique for every USℜ operation and is used to find out the
latest written value.

4.4.3 Analysis

We unveil the high operation availability of the DℜSℜ by analytically evaluating
it and then comparing it with state-of-the-art data replication strategies. We also
describe, how Code16 model 4.4.1.1 and Sℜ model 4.4.1.2 play their important roles
to achieve high operation availabilities, and how the validation model 4.4.1.3 helps
to ensure data consistency. There are four possible availability scenarios. Each of
the scenarios refers to µS ’s example from Section 4.4.1.

69

4 A Data Replication Strategy for A Replicated Services Registry

Algorithm 6: DℜSℜ USℜ operation
/* update service request */
Input : S
/* success−message or failure−message */
Output: response
/* extract NIndices of request */

1 request ← extractServiceDetails(Input)
/* generate 16-bit binary serviceID */

2 binary16 ← extractBinaryCode(request)
/* extract indices for 002, 012, 102, 112 */

3 NIndices ← extractIndices(binary16)
/* check if nodes are available */

4 avaiablelNodes ← findNodes(NIndices)
5 if !enoughNodes(availableNodes) then
6 response ← failure−message
7 return response
8 end
/* get nodes w.r.t. indices and nodes’ availability */

9 tNodes ← determineNodes(availableNodes)
10 timstamp ← generateTimestamp(request)

/* replicate indices with timestamp */
11 if distributeIndices(tNodes,timestamp) then
12 response ← success−message
13 else
14 response ← failure−message
15 end
16 return response

70

4.4 A Data replication strategy for a replicated service registry

4.4.3.1 Availability scenario 1: When the complete L1 group is available

NIndices for µS having S equal to 26806 are presented by Equation 4.3. According to
Equation 4.4, node ϵ has the NIndices A and C, therefore, has the following mapping.

f−1
con(ϵ) = (A,C) = ({I5}, {I1, I4, I6, I7})

Furthermore, the NIndices for node ζ are B and D, hence, has the given below
mapping.

f−1
con(ζ) = (B,D) = ({I2, I8}, {I3})

The nodes ϵ and ζ are enough nodes, and according to Definition 2, they represent
a complete mapping of NIndices.

G = {A,C,B,D} = {{I5}, {I1, I4, I6, I7}, {I2, I8}, {I3}} = M

When the nodes ϵ and ζ are available, then the USℜ and ISℜ operations for all the
possible values of S are available. Therefore, the scenario is in compliance with
DℜSℜ validation model.

4.4.3.2 Availability scenario 2: When ϵ and two nodes from the L2 group
are available

In this scenario, in the L1 group, node ϵ is available but node ζ is not available.
However, in the L2 group, two or more nodes are available. To comply with the
DℜSℜ validation model, En are required to have a complete mapping. For example,
some of the possible cases are {ϵ, α, δ}, {ϵ, β, γ}, and {ϵ, α, β}. Let us examine the
first case – {ϵ, α, δ}. As per Equation 4.4, NIndices for the node ϵ are A and C,
hence, has the following mapping:

f−1
con(ϵ) = (A,C) = ({I5}, {I1, I4, I6, I7})

The NIndices for the node α are A and D. Hence, it has the given below mapping:

f−1
con(α) = (A,D) = ({I5}, {I3})

Lastly, the NIndices for the node δ are C and B. It, therefore, has the following
mapping:

f−1
con(δ) = (C,B) = ({I1, I4, I6, I7}, {I2, I8})

As per the Definition 1 and Definition 2, the nodes ϵ, α, and δ are enough nodes and
they have a complete mapping, respectively.

G = {A,C,D,B} = {{I5}, {I1, I4, I6, I7}, {I3}, {I2, I8}} = M

Thus, this case also complies with DℜSℜ validation model.

71

4 A Data Replication Strategy for A Replicated Services Registry

4.4.3.3 Availability scenario 3: When ζ and two nodes from the L2 group
are available

In this scenario, in the L1 group, node ζ is available but node ϵ is not available.
However, in the L2 group, two or more nodes are available. As described in Section
4.4.3.2, if there exist enough nodes, and they have a complete mapping, then the
scenario is in compliance with the DℜSℜ validation model. For example, some
of the possible cases of En having a complete mapping are {ζ, δ, γ}, {ζ, β, γ}, and
{ζ, α, δ}.

4.4.3.4 Availability scenario 4: When the L1 group is not available

In this scenario, only the nodes in L2 are available. To comply with the DℜSℜ
validation model, three out of four nodes in L2 are required. And, if three nodes are
available, then they are enough nodes and have a complete mapping. For example,
some of the possible cases of En are {α, β, γ}, {γ, β, δ}, and {α, γ, δ}. Let us evaluate
one of the cases – {γ, β, δ}. According to Equation 4.4, NIndices for the node γ are
D and A. This results in the following mapping:

f−1
con(γ) = (D,A) = ({(I3)}, {I5})

The NIndices for the node β are B and C. Therefore, it has the given below mapping:

f−1
con(β) = (B,C) = ({I2, I8}, {I1, I4, I6, I7})

Finally, the NIndices for the node δ are C and B, and, it results in the following
mapping:

f−1
con(δ) = (C,B) = ({I1, I4, I6, I7}, {I2, I8})

As per the Definition 1 and Definition 2, the nodes γ, β and δ are enough nodes and
they have a complete mapping, respectively.

G = {D,A,B,C} = {{I3}, {I5}, {I2, I8}, {I1, I4, I6, I7}} = M

4.4.4 Analytical Results

In Sections 3.2 and 4.3, we motivated the need of having a highly available service
registry and the important role that it plays in a microservice architecture, respec-
tively. In this section, we present the results of our work. We compare the DℜSℜ
with baseline data replication strategies: i) the majority consensus strategy (MCS)
[Tho1979] and ii) the trinagular lattice protocol (TLP) [WB1992]. For the analysis,
we consider operation availabilities and operation cost as the comparison character-
istics. We calculate the access cost by the method proposed in [ST2017]. Refer to
[Koc1994] for details on the method to calculate the operation availabilities. Further-
more, our assumptions for the analysis are six independent nodes, a fully connected

72

4.4 A Data replication strategy for a replicated service registry

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Node availability probability

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e
a
d
 o

p
e
ra

ti
o
n
 a

v
a
ila

b
ili

ty
 p

ro
b
a
b
ili

ty

Read operatoins availability comparison

Triangular lattice 2X3

Majority consensus

DRSR

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Node availability probability

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e
a
d
 o

p
e
ra

ti
o
n
 a

v
a
ila

b
ili

ty
 p

ro
b
a
b
ili

ty

Read operatoins availability comparison

Triangular lattice 2X3

Majority consensus

DRSR
Figure 4.8: Read operation availabilities

network, and a fixed number i of microservices (µS s), 0 ≤ i < 216. The TLP, MCS,
and DℜSℜ are analyzed on the same set of assumptions.

We present in Figure 4.8 and Figure 4.9 the operation availability comparison
results. Figure 4.8 provides our analysis results for read operation (ISℜ) availabilities.
We can observe that, for a node-availability of p between 0 < p < 0.6, the TLP has
a higher read operation availability than MCS and DℜSℜ. However, for p between
0.7 ≤ p < 1.0, the ISℜ availabilities for the three data replication strategies, at a
higher level, are the same. When we look closely then, we see that DℜSℜ availability
is higher than the others. Figure 4.9 elaborates our analysis results with respect to
the write operation (USℜ) availabilities. In this case, DℜSℜ provides higher write
operation availabilities than MCS and TLP.

We present operation cost comparison results in Figure 4.10 and Figure 4.11.
Figure 4.10 provides our analysis results with respect to the read costs. For six
nodes, we can observe that MCS has the highest access cost, that is 3, for all values
of p. The read cost for DℜSℜ is between 2 and 3. TLP has the minimum read cost
around 2. Figure 4.11 provides our analysis results with respect to the write costs.
For six nodes, we can observe that MCS has the highest access cost , that is 4, for
all values of p. The write cost for TLP is between 3 and 4. DℜSℜ has the minimum
write cost between 2 and 3.

73

4 A Data Replication Strategy for A Replicated Services Registry

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Node availability probability

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

W
ri
te

 o
p
e
ra

ti
o
n
s
 a

v
a
ila

b
ili

ty
 p

ro
b
a
b
ili

ty

Write operations availability comparison

Triangular lattice 2X3

Majority consensus

DRSR

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Node availability probability

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

W
ri
te

 o
p
e
ra

ti
o
n
s
 a

v
a
ila

b
ili

ty
 p

ro
b
a
b
ili

ty

Write operations availability comparison

Triangular lattice 2X3

Majority consensus

DRSR Figure 4.9: Write-operation availabilities

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Node availability probability

1

1.5

2

2.5

3

3.5

4

R
e
p
lic

a
 c

o
s
t

Read operations cost comparison

Triangular lattice 2X3

Majority consensus

DRSR

Figure 4.10: DℜSℜ read operation operation cost comparision

74

4.5 Conclusion & Future Work

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Node availability probability

1

1.5

2

2.5

3

3.5

4

4.5

5

R
e
p
lic

a
 c

o
s
t

Write operations cost comparison

Triangular lattice 2X3

Majority consensus

DRSR

Figure 4.11: DℜSℜ write operation operation cost comparision

4.5 Conclusion & Future Work

As we have discussed in Section 4.2, the service registries like [HKJR2010] and
[ETC2017] are developed on top of a majority consensus algorithm. If a major-
ity of the nodes is not available, then the system cannot progress, i.e., a USℜ is
not available. But, in some scenarios, ISℜ can still be performed. Similarly, for the
TLP [WB1992], the USℜ is affected by the availability of complete rows or columns
– depending upon the lattice configurations. In this work, we presented DℜSℜ –
a highly available and fault-tolerant data replication strategy for Sℜ in a µSA. It
exploits a simple encoding scheme, called Code16, which transforms microservice’s
key into NIndices. The DℜSℜ then replicates these NIndices onto six Sℜ nodes with
the help of an efficient NIndices mapping to nodes method. Our analytical results
showed that with a slightly higher costs, the DℜSℜ achieves competitive operation
availabilities for ISℜ. While, for USℜ, our strategy bears minimum cost and achieves
higher operation availabilities. Also notably, DℜSℜ does not require a nodes major-
ity nor adjacent nodes availability. For our future work, we will enhance DℜSℜ to
adopt multiple encoding schemes. The plan is come up with a replication strategy
which will distribute the µS s keys into equal sized buckets. The sorting of µS s keys
will be done on the basis of semantic similarity. A variable number of replicas and
a particular encoding scheme will be linked to each of the buckets. We are hopeful,
that by this bucketing strategy, we will be able to achieve even higher operation
availabilities at lower operation costs.

75

5
Outlook

Our work emphasized on the techniques to develop highly available data replication
strategies with low operation costs. We took into account a distinctive set of features,
such as predictability, data semantic, encoding, application semantic, and operation
types, to design highly available data replication strategies. Most of the baselined
data replication strategies, like Read-One Write-All [BG1984], majority consensus
strategy [Tho1979], and trinagular lattice protocol [WB1992] depends upon read
quorums and write quorums. They exploit the quorums intersection property to
ensure strong data consistency. We discussed, how we can utilize encoding along with
redundancy to provide high operation availabilities. Also, the intention was to ensure
data consistency and low operation costs. Having this motivation, we presented three
data replication strategies namely: Semantic data replication (SDR)[UST2017], the
component-based highly available replication strategy (CbHaRS) [UZT2017a], and a
data replication strategy for a replicated service registry (DℜSℜ) [UZT2018]. These
data replication strategies followed different methodologies but the primary objective
behind them is the same – provide high operation availabilities with low operation
costs.

SDR is a novel highly available semantic data replication strategy which is em-
powered by coding techniques, a finite state space based on ASCII decimal codes,
apriori knowledge, semantic classes, and codes to replica mapping. We elaborated in
detail, how the input value is transformed using the ASCII decimal codes and, how
we established a finite state space based on these codes. We defined two semantic
properties. These properties were used to classify the ASCII decimal code digits into
semantic classes. We discussed how to transform the 4-bit binary code of each of the
ASCII decimal codes digits into two 2-bit binary codes. Afterwards, we explained the
mechanism to map these 2-bit binary codes to the code replicas. In SDR, we focused
primarily to achieve high operation availabilities for write operations. We showed

77

5 Outlook

that the finite state space and semantic classes guide the write operation – based on
the input value – to the exact replicas to write. This is in contrast to syntactic data
replication strategies, where every write operation has to look among the complete
population to lock the resources by running different replica searching and selection
algorithms. Our results show that for multiple of six replicas, we achieve a better
write availability then the baselined syntactic data replication strategies. For the
read operation availability, our approach stood second best in the comparison. SDR
is best suited for write-intense application types. In these application types activity
logging is important for example blockchain and financial services.

Currently, SDR coding technique utilizes only ASCII decimal codes. We will ex-
plore more on the coding techniques as a next step towards SDR improvements.
Furthermore, we will investigate options to utilize the semantic properties of the
underlying data structure, specifically hash table-like data structure. In this work,
we primarily focused on the semantic aspect of the data. We will also concentrate
to come up with more semantic properties about the data and the application do-
main. For SDR, we presented a generalized approach irrespective of any application
domain. We did not considered the data consistency and high operation availability
requirements of a specific application. As part of our future work, we will research
on the mechanism to link application-specific requirements to the design considera-
tions of data replication strategies. We will explore on, how we can enhance SDR
capabilities to incorporate application-specific requirements.

CbHaRS is our first attempt to design a data replication strategy which is influ-
enced by application-specific requirements. CbHaRS ensures data consistency with
the help of rules – these rules are derived from the application-specific requirements.
The prototype implementation of the CbHaRS has one component administrator
(CA) and ten data components (DCMs). Component-level data consistency is en-
sured by the replica invariant (RI) constraints defined for each DCM. Application-
level data consistency is ensured by the global invariant (GI) constraints defined
for the CA. We executed multiple test runs with varying number of transactions.
Each transaction is composed of a read operation followed by a write operation. We
tested the RESERVATIONS process with two data replication strategies – one with
GI and RI mechanism, and the other with a GI-only mechanism. In first case, the
GI was distributed by the CA among the DCMs as RI. The data consistency was
ensured by implementation of threshold mechanism by each replica. We observed
that, the replicas can make a decision about some of operation executions itself due
to presence of RI. It omits the need to form a quorums for some operations. Because
of that, different operations were executed in parallel by different replicas until the
threshold was reached. After that, the operation executions were carried out with
the help of component administrator – which enforces global invariant to ensure data
consistency. On the other hand, for GI-only mechanism, each DC coordinates with
the CA to ensure data consistency. Here we observed, that the GI-only strategy
allows operation executions in a serial order.

Invariant validations facilitates both types of the strategy to focus towards stronger
levels of data consistencies. By delegating the data consistency requirements in

78

the form of RI constraints to DCs, we can achieve high operation availabilities as
compared to quorums based data replication strategies. DCMs coordinates with
each other and CA for a limited set of scenarios. These scenarios are not general
and may vary from application to application. Considering the outcome, we foresee
to achieve inspiring results in the future. For our future work – on a larger scale, we
will implement CbHaRS on top of TPC-C benchmark, and will utilize Yahoo Cloud
Serving Benchmark (YCSB) for the performance evaluation.

Some online business applications – mostly from the E-commerce domain and cloud
services providers – exploit a microservice architecture (µSA) [Ric2017] to provide
high operation availabilities. µSA is designed on top of microservices (µS s). A µS is
a granule-functional unit which can execute its tasks on its own, and can be deployed
independent of other µS s. However, the implementation of a business process may
require multiple µS s. The number of µS s tends to grow large for complex systems.
A service registry (Sℜ) is often used to keep track of all the µS s. Whenever a µS
wants to communicate with another µS , it gets the required information about the
other µS from the Sℜ. A Sℜ introduces simplicity and liberty to design a highly
available µSA but it increases the importance of its availability. The failure of the Sℜ
may results in operation unavailability, which is a big risk. The service registries like
[ETC2017] and [HKJR2010] are developed on top of a majority consensus algorithm.
If a majority of the nodes is not available, then the system cannot progress, i.e., a
write operation is not available. But, in some scenarios, read operation can still be
performed. In Chapter 4, we presented DℜSℜ – a highly available and fault-tolerant
data replication strategy for Sℜ in a µSA. It exploits a simple encoding scheme,
called as Code16, which transforms a microservice’s key into NIndices. The DℜSℜ
then replicates these NIndices onto six Sℜ nodes with the help of an efficient f -
mapping-to-nodes method. Our analytical results showed that with a slightly higher
cost, the DℜSℜ achieves competitive operation availabilities for the read operation.
However, for the write operation, our strategy bears minimum cost, and achieves
higher operation availabilities. Also notably, DℜSℜ does not require nodes majority
and adjacent nodes availability. For our future work, we will enhance DℜSℜ to
adopt multiple encoding schemes. The plan is come up with a replication strategy
which will distribute the µS s keys into equal sized buckets. The sorting of µS s keys
will be done on the basis of semantic similarity. A variable number of replicas and a
particular encoding scheme will be linked to each of the buckets. We are hopeful, that
by this bucketing strategy, we will be able to achieve higher operation availabilities
at lower operation costs.

Semantic data replication is an interesting research area. There is more complexity
inherent in it as compared with syntactic data replication. That is the reason there
are fewer research efforts in the area of semantic data replication as compared to syn-
tactic data replication. However, having the belief in and to highlight the potential
of semantic data replication, we decided to explore this area. We demonstrated that
high operation availabilities with reduced operation costs can be achieved by incor-
porating the concepts like encoding schemes, application specific rules, and selection
of replicas based on input values.

79

Publications

a) A. Usman, R. Schadek and O. Theel. A Novel Highly Available Data Replica-
tion Strategy exploiting Data Semantics, Coding Techniques and Prior At-
Hand Knowledge. In Proceedings of the 22nd IEEE Pacific Rim Interna-
tional Symposium on Dependable Computing, pages 301–310, Christchurch,
New Zealand, January 2017. IEEE

b) A. Usman, P. Zhang and O. Theel. A Component-Based Highly Available Data
Replication Strategy Exploiting Operation Types and Hybrid Communication
Mechanisms. In Proceedings of the 14th IEEE International Conference on
Services Computing, pages 495–498, Honolulu, HI, USA, June 2017. IEEE

c) A. Usman, P. Zhang and O. Theel. An Efficient and Updatable Item-to-item
Frequency Matrix for Frequent Itemset Generation. In Proceedings of the Sec-
ond International Conference on Internet of Things, Data and Cloud Comput-
ing, ICC ’17, pages 85:1–85:6, New York, NY, USA, 2017. ACM

d) A. Usman, P. Zhang and O. Theel. A Highly Available Replicated Service Reg-
istry for Service Discovery in a Highly Dynamic Deployment Infrastructure. In
Proceedings of the 15th IEEE International Conference on Services Computing,
pages 265–268, San Francisco, CA, USA, July 2018. IEEE

81

Bibliography

[AA1990] Divyakant Agrawal and Amr El Abbadi. The Tree Quorum Pro-
tocol: An Efficient Approach for Managing Replicated Data. In
Proceedings of the 16th International Conference on Very Large
Data Bases, VLDB ’90, pages 243–254, San Francisco, CA, USA,
1990. Morgan Kaufmann Publishers Inc.

[Aba2012] Daniel Abadi. Consistency Tradeoffs in Modern Distributed
Database System Design: CAP is Only Part of the Story. IEEE
Computer Magazine, 45(2):37–42, February 2012.

[ABCH2013] Peter Alvaro, Peter Bailis, Neil Conway and Joseph M. Hellerstein.
Consistency Without Borders. In Proceedings of the 4th Annual
Symposium on Cloud Computing, SOCC ’13, pages 23:1–23:10, New
York, NY, USA, 2013. ACM.

[AEA1992] Divyakant Agrawal and Amr El Abbadi. The Generalized Tree
Quorum Protocol: An Efficient Approach for Managing Repli-
cated Data. ACM Transactions on Database Systems (TODS),
17(4):689–717, December 1992.

[ANS1986] X3 ANSI. 4: Coded character set–7-bit american national standard
code for information interchange. Am. Nat’l Standards Inst., New
York, 1986.

[Aws2017] Aws. AWS. https://aws.amazon.com/, 2017. [accessed 13-
December-2017].

[Azu2022] Azure. Azure. https://azure.microsoft.com/en-us/, 2022. [ac-
cessed 12-September-2022].

[BAC+2013] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka,
Peter Dimov, Hui Ding, Jack Ferris, Anthony Giardullo, Sachin
Kulkarni, Harry Li, Mark Marchukov, Dmitri Petrov, Lovro Puzar,
Yee Jiun Song and Venkat Venkataramani. TAO: Facebook’s Dis-
tributed Data Store for the Social Graph. In Proceedings of the
USENIX Annual Technical Conference, pages 49–60, San Jose, CA,
2013. USENIX.

83

https://aws.amazon.com/
https://azure.microsoft.com/en-us/

Bibliography

[BCD+2000] R. Bramley, K. Chiu, S. Diwan, D. Gannon, M. Govindaraju,
N. Mukhi, B. Temko and M. Yechuri. A Component Based Services
Architecture for Building Distributed Applications. In Proceed-
ings of the Ninth International Symposium on High-Performance
Distributed Computing, pages 51–59, Pittsburgh, PA, USA, 2000.
IEEE.

[BCvR2009] Ken Birman, Gregory Chockler and Robbert van Renesse. Toward
a Cloud Computing Research Agenda. SIGACT News, 40(2):68–80,
June 2009.

[BDF+2013] Peter Bailis, Aaron Davidson, Alan Fekete, Ali Ghodsi, Joseph M.
Hellerstein and Ion Stoica. Highly Available Transactions: Virtues
and Limitations. Proc. VLDB Endow., 7(3):181–192, November
2013.

[BDF+2015] Valter Balegas, Sérgio Duarte, Carla Ferreira, Rodrigo Rodrigues,
Nuno Preguiça, Mahsa Najafzadeh and Marc Shapiro. Putting
Consistency Back into Eventual Consistency. In Proceedings of
the 10th European Conference on Computer Systems, EuroSys ’15,
pages 6:1–6:16, New York, NY, USA, 2015. ACM.

[BFF+2014] Peter Bailis, Alan Fekete, Michael J. Franklin, Ali Ghodsi,
Joseph M. Hellerstein and Ion Stoica. Coordination Avoidance in
Database Systems. Proc. VLDB Endow., 8(3):185–196, November
2014.

[BG1984] Philip A. Bernstein and Nathan Goodman. An Algorithm for
Concurrency Control and Recovery in Replicated Distributed
Databases. ACM Transactions on Database Systems (TODS),
9(4):596–615, December 1984.

[BHG1987] Philip A. Bernstein, Vassco Hadzilacos and Nathan Goodman.
Concurrency Control and Recovery in Database Systems. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1987.

[BHJ2016] Armin Balalaie, Abbas Heydarnoori and Pooyan Jamshidi. Migrat-
ing to Cloud-Native Architectures UsingÂ Microservices: An Expe-
rience Report, pages 201–215. Springer International Publishing,
Cham, 2016.

[BS2003] Richard Bradshaw and Carl Schroeder. Fifty years of ibm innova-
tion with information storage on magnetic tape. IBM Journal of
Research and Development, 47(4):373–383, 2003.

[BWZ2017] Justus Bogner, Stefan Wagner and Alfred Zimmermann. Automat-
ically Measuring the Maintainability of Service- and Microservice-

84

Bibliography

based Systems: A Literature Review. In Proceedings of the 27th In-
ternational Workshop on Software Measurement and 12th Interna-
tional Conference on Software Process and Product Measurement,
pages 107–115, New York, NY, USA, 2017. ACM.

[CAA1992] Shun Yan Cheung, Mostafa H Ammar and Mustaque Ahamad. The
grid protocol: a high performance scheme for maintaining repli-
cated data. IEEE Transactions on Knowledge and Data Engineer-
ing, 4(6):582–592, Dec 1992.

[CDE+2013] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes,
Christopher Frost, J. J. Furman, Sanjay Ghemawat, Andrey
Gubarev, Christopher Heiser, Peter Hochschild, Wilson Hsieh, Se-
bastian Kanthak, Eugene Kogan, Hongyi Li, Alexander Lloyd,
Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan, Rajesh
Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak, Christopher
Taylor, Ruth Wang and Dale Woodford. Spanner: Google’s Glob-
ally Distributed Database. ACM Trans. Comput. Syst., 31(3):8:1–
8:22, August 2013.

[CDK2005] George F Coulouris, Jean Dollimore and Tim Kindberg. Distributed
systems: concepts and design. Pearson Education, 2005.

[DGL+2017] Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch Lafuente,
Manuel Mazzara, Fabrizio Montesi, Ruslan Mustafin and Larisa
Safina. Microservices: Yesterday, Today, and Tomorrow, pages
195–216. Springer International Publishing, Cham, 2017.

[DHJ+2007] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavard-
han Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan
Sivasubramanian, Peter Vosshall and Werner Vogels. Dynamo:
Amazon’s Highly Available Key-value Store. In Proceedings of 21st
ACM SIGOPS Symposium on Operating Systems Principles, SOSP
’07, pages 205–220, New York, NY, USA, 2007. ACM.

[DPS+1997] Alan J Demers, Karin Petersen, Michael J Spreitzer, Douglas B
Terry, Marvin M Theimer and Brent B Welch. Application-specific
conflict resolution for weakly consistent replicated databases,
February 11 1997. US Patent 5,603,026.

[ETC2017] Team ETCD. ETCD. https://coreos.com/etcd/, 2017. [accessed
13-December-2017].

[Eur2017] Team Netflix Eureka. Netflix Eureka. https://github.com/
Netflix/eureka/wiki/Eureka-at-a-glance, 2017. [accessed 13-
December-2017].

85

https://coreos.com/etcd/
https://github.com/Netflix/eureka/wiki/Eureka-at-a-glance
https://github.com/Netflix/eureka/wiki/Eureka-at-a-glance

Bibliography

[FM2017] C. Y. Fan and S. P. Ma. Migrating Monolithic Mobile Application
to Microservice Architecture: An Experiment Report. In Proceed-
ings of the IEEE International Conference on AI Mobile Services,
pages 109–112, Honolulu, HI, USA, June 2017. IEEE.

[GDN+2003] Lei Gao, Mike Dahlin, Amol Nayate, Jiandan Zheng and Arun
Iyengar. Application Specific Data Replication for Edge Services.
In Proceedings of the 12th International Conference on World Wide
Web, WWW ’03, pages 449–460, New York, NY, USA, 2003. ACM.

[Gif1979] David K. Gifford. Weighted Voting for Replicated Data. In Pro-
ceedings of the Seventh ACM Symposium on Operating Systems
Principles, SOSP ’79, pages 150–162, New York, NY, USA, 1979.
ACM.

[GIM2016] Marco Gribaudo, Mauro Iacono and Daniele Manini. Improving Re-
liability and Performances in Large Scale Distributed Applications
with Erasure Codes and Replication. Future Generation Computer
Systems, 56:773–782, March 2016.

[GL2002] Seth Gilbert and Nancy Lynch. Brewer’s Conjecture and the Fea-
sibility of Consistent, Available, Partition-tolerant Web Services.
SIGACT News, 33(2):51–59, June 2002.

[Goo2022] Google. Google Cloud. https://cloud.google.com/, 2022. [ac-
cessed 12-September-2022].

[Her1984] Maurice Herlihy. General quorum consensus: a replication method
for abstract data types. 01 1984.

[Her1985] Maurice Herlihy. Atomicity vs. Availability: Concurrency Control
for Replicated Data. 1985.

[Her1986] Maurice Herlihy. A Quorum-consensus Replication Method for
Abstract Data Types. ACM Transactions on Computer Systems
(TOCS), 4(1):32–53, February 1986.

[HHB1996] Abdelsalam A. Helal, Abdelsalam A. Heddaya and Bharat B Bhar-
gava. Replication Techniques in Distributed Systems, volume 4 of
Advances in Database Systems. Springer US, 1996.

[His1989] Hisgen, Andy and Birrell, Andrew and Mann, Timothy and
Schroeder, Michael and Swart, Garret. Availability and Consis-
tency Tradeoffs in the Echo Distributed File System. In Proceed-
ings of the Second Workshop on Workstation Operating Systems,
pages 49–54, Pacific Grove, CA, USA, 1989. IEEE.

86

https://cloud.google.com/

Bibliography

[HKF2017] A. Habl, O. Kipouridis and J. Fottner. Deploying Microservices
for a Cloud-based Design of System-of-Systems in Intralogistics. In
Proceedings of 15th IEEE International Conference on Industrial
Informatics, pages 861–866. IEEE, July 2017.

[HKJR2010] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira and Benjamin
Reed. ZooKeeper: Wait-free Coordination for Internet-scale Sys-
tems. In Proceedings of the 2010 USENIX Annual Technical Con-
ference, USENIXATC’10, Berkeley, CA, USA, 2010. USENIX As-
sociation.

[HR1983] Theo Haerder and Andreas Reuter. Principles of Transaction-
oriented Database Recovery. ACM Comput. Surv., 15(4):287–317,
December 1983.

[Iak2012] K Kiss Iakab. Probabilistic Quorum Systems for Dependable
Distributed Data Management. OlWIR Oldenburger Verlag für
Wirtschaft, Informatik und Recht, Oldenburg, 2012.

[JBFT2005] Bart Jacob, Michael Brown, Kentaro Fukui and Nihar Trivedi. In-
troduction to Grid Computing. IBM RedBooks, 2005.

[KA2011a] Vinit Kumar and Ajay Agarwal. Generalized Grid Quorum Con-
sensus for Replica Control Protocol. In Proceedings of the Interna-
tional Conference on Computational Intelligence and Communica-
tion Networks, pages 395–400, Gwalior, India, Oct 2011. IEEE.

[KA2011b] Vinit Kumar and Ajay Agarwal. Multi-dimensional Grid Quorum
Consensus for High Capacity and Availability in a Replica Control
Protocol, pages 67–78. Springer Berlin Heidelberg, 2011.

[KBMP1996] Karama Kanoun, Marie Borrel, Thierry Morteveille and Alain
Peytavin. Modeling the Dependability of CAUTRA, a Subset of
the French Air Traffic Control System. In Proceedings of Annual
Symposium on Fault Tolerant Computing, pages 106–115, Sendai,
Japan, June 1996. IEEE.

[KC1991] Akhil Kumar and Shun Yan Cheung. A High Availability
√
N Hi-

erarchical Grid Algorithm for Replicated Data. Information Pro-
cessing Letters, 40(6):311–316, December 1991.

[Kha2010] Khan, Shahidul and Latiful Haque, Abu. A New Technique for
Database Fragmentation in Distributed Systems. International
Journal of Computer Applications, 5, 08 2010.

[KKW2013] T. Kobus, M. Kokocinski and P. T. Wojciechowski. Hybrid
Replication: State-Machine-Based and Deferred-Update Replica-

87

Bibliography

tion Schemes Combined. In Proceedings of the 33rd IEEE Interna-
tional Conference on Distributed Computing Systems, pages 286–
296, Philadelphia, PA, USA, July 2013. IEEE.

[Koc1994] Hans-Henning Koch. Entwurf und Bewertung von Replikationsver-
fahren (In German). PhD thesis, Technische Hochschule Darm-
stadt, Germany, 1994.

[Kum1991] Akhil Kumar. Hierarchical Quorum Consensus: A New Algorithm
for Managing Replicated Data. IEEE Transactions on Computers,
40(9):996–1004, 1991.

[Lam1978] Leslie Lamport. Time, Clocks, and the Ordering of Events in a
Distributed System. Communications of the ACM, 21(7):558–565,
July 1978.

[Lam1979] Leslie Lamport. How to Make a Multiprocessor Computer That
Correctly Executes Multiprocess Programs. IEEE Transactions on
Computers, 28(9):690–691, September 1979.

[Lam1998] Leslie Lamport. The part-time parliament. ACM Trans. Comput.
Syst., 16(2):133â169, may 1998.

[McA2010] Andrew McAfee. The Weird and Wonderful Economics of Digiti-
zation. https://hbr.org/2010/03/the-weird-and-wonderful-
econom.html, March 2010. [Online; accessed 13-December-2017].

[MCL2017] G. Mazlami, J. Cito and P. Leitner. Extraction of Microservices
from Monolithic Software Architectures. In Proceedings of the 24th
IEEE International Conference on Web Services, pages 524–531,
Honolulu, HI, USA, June 2017. IEEE.

[Mey1988] Bertrand Meyer. Object-Oriented Software Construction, volume 2.
Prentice Hall New York, 1988.

[MIB2009] Microsoft, IBM and BEA. WS-Coordination/WS-Transaction
Specification, February 2009.

[MRSU2016] Antonio Messina, Riccardo Rizzo, Pietro Storniolo and Alfonso
Urso. A Simplified Database Pattern for the Microservice Archi-
tecture. In Proceedings of the 8th International Conference on Ad-
vances in Databases, Knowledge, and Data Applications. IARIA
XPS Press, June 2016.

[New2015] S. Newman. Building Microservices: Designing Fine-Grained Sys-
tems. O’Reilly Media, 1st. edition, February 2015.

[NNG2019] NNGROUP. NNGROUP. https://www.nngroup.com/articles/
law-of-bandwidth/, 2019. [accessed 17-July-2019].

88

https://hbr.org/2010/03/the-weird-and-wonderful-econom.html
https://hbr.org/2010/03/the-weird-and-wonderful-econom.html
https://www.nngroup.com/articles/law-of-bandwidth/
https://www.nngroup.com/articles/law-of-bandwidth/

Bibliography

[OAET2013] Tadateru Ohkawara, Ailixier Aikebaier, Tomoya Enokido and
Makoto Takizawa. Quorum-Based Synchronization Protocols for
Multimedia Replicas. Cluster Computing, 16(4):979–988, Decem-
ber 2013.

[OO2014] Diego Ongaro and John Ousterhout. In Search of an Understand-
able Consensus Algorithm. In Proceedings of the USENIX An-
nual Technical Conference, pages 305–319, Philadelphia, PA, 2014.
USENIX.

[Ove2022] Team OverWorldInData. OverWorldInData. https:
//ourworldindata.org/grapher/historical-cost-of-
computer-memory-and-storage?country=~OWID_WRL, December
2022. [accessed 05-September-2022].

[Pra2008] CSR Prabhu. Grid and Cluster Computing. PHI Learning Pvt.
Ltd., 2008.

[RAIa] Team RAIK. RAIK CRDTs. https://docs.riak.com/riak/kv/
2.2.3/developing/data-types/. [accessed 28-April-2019].

[RAIb] Team RAIK. RAIK CRDTs Guide. https://gist.github.com/
russelldb/f92f44bdfb619e089a4d/. [accessed 28-April-2019].

[RED] Team REDIS. REDIS CRDTs. https://redislabs.com/blog/
getting-started-active-active-geo-distribution-redis-
applications-crdt-conflict-free-replicated-data-types/.
[accessed 28-April-2019].

[Ric2017] Chris Richardson. Microservice Architecture. http://
microservices.io/, 2017. [Online; accessed 13-December-2017].

[RIN+2017] C. Rotter, J. IllÃ©s, G. NyÃri, L. Farkas, G. CsatÃ¡ri and
G. Huszty. Telecom Strategies for Service Discovery in Microser-
vice Environments. In Proceedings of the 20th Conference on In-
novations in Clouds, Internet and Networks, pages 214–218, Paris,
France, March 2017. IEEE.

[RKUP2017] D. Richter, M. Konrad, K. Utecht and A. Polze. Highly-Available
Applications on Unreliable Infrastructure: Microservice Architec-
tures in Practice. In Proceedings of the IEEE International Con-
ference on Software Quality, Reliability and Security Companion,
pages 130–137, Prague, Czech Republic, July 2017. IEEE.

[Run2008] Adrian Runceanu. Fragmentation in distributed databases. In
Khaled Elleithy, editor, Innovations and Advanced Techniques in
Systems, Computing Sciences and Software Engineering, pages 57–
62, Dordrecht, 2008. Springer Netherlands.

89

https://ourworldindata.org/grapher/historical-cost-of-computer-memory-and-storage?country=~OWID_WRL
https://ourworldindata.org/grapher/historical-cost-of-computer-memory-and-storage?country=~OWID_WRL
https://ourworldindata.org/grapher/historical-cost-of-computer-memory-and-storage?country=~OWID_WRL
https://docs.riak.com/riak/kv/2.2.3/developing/data-types/
https://docs.riak.com/riak/kv/2.2.3/developing/data-types/
https://gist.github.com/russelldb/f92f44bdfb619e089a4d/
https://gist.github.com/russelldb/f92f44bdfb619e089a4d/
https://redislabs.com/blog/getting-started-active-active-geo-distribution-redis-applications-crdt-conflict-free-replicated-data-types/
https://redislabs.com/blog/getting-started-active-active-geo-distribution-redis-applications-crdt-conflict-free-replicated-data-types/
https://redislabs.com/blog/getting-started-active-active-geo-distribution-redis-applications-crdt-conflict-free-replicated-data-types/
http://microservices.io/
http://microservices.io/

Bibliography

[SGT2011] Mohamed Sellami, Walid Gaaloul and Samir Tata. An Implicit
Approach for Building Communities of Web Service Registries. In
Proceedings of the 13th International Conference on Information
Integration and Web-based Applications and Services, pages 230–
237, New York, NY, USA, 2011. ACM.

[Sim2017] Team SimilarWeb. SimilarWeb. https://www.similarweb.com/,
December 2017. [accessed 13-December-2017].

[SKB2004] Bujor Silaghi, Pete Keleher and Bobby Bhattacharjee. Multi-
Dimensional Quorum Sets for Read-Few Write-Many Replica Con-
trol Protocols. In Proceedings of the IEEE International Symposium
on Cluster Computing and the Grid, pages 355–362, Chicago, IL,
USA, April 2004. IEEE, IEEE.

[SPBZ2011a] Marc Shapiro, Nuno Preguiça, Carlos Baquero and Marek Zawirski.
A comprehensive study of Convergent and Commutative Replicated
Data Types. PhD thesis, Inria–Centre Paris-Rocquencourt; INRIA,
2011.

[SPBZ2011b] Marc Shapiro, Nuno Preguiça, Carlos Baquero and Marek Zawirski.
Conflict-Free Replicated Data Types. In Xavier Défago, Franck Pe-
tit and Vincent Villain, editors, Stabilization, Safety, and Security
of Distributed Systems, pages 386–400, Berlin, Heidelberg, 2011.
Springer Berlin Heidelberg.

[SPSPMJP2006] Jorge Salas, Francisco Perez-Sorrosal, Marta Patiño-Martínez and
Ricardo Jiménez-Peris. WS-replication: A Framework for Highly
Available Web Services. In Proceedings of the 15th International
Conference on World Wide Web, pages 357–366, New York, NY,
USA, 2006. ACM.

[SRD2016] G. Sousa, W. Rudametkin and L. Duchien. Automated Setup of
Multi-cloud Environments for Microservices Applications. In Pro-
ceedings of the 9th IEEE International Conference on Cloud Com-
puting, pages 327–334. IEEE, June 2016.

[ST2017] R. Schadek and O. Theel. Increasing the Accuracy of Cost and
Availability Predictions of Quorum Protocols. In Proceedings of
the 22nd IEEE Pacific Rim International Symposium on Depend-
able Computing, pages 98–103, Christchurch, New Zealand, Jan-
uary 2017. IEEE.

[Str2003] Thomas Strang. Towards Autonomous Services for Smart Mobile
Devices, volume 2574, pages 279–293. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2003.

90

https://www.similarweb.com/

Bibliography

[The1993] O. Theel. General structured voting: a flexible framework for mod-
elling cooperations. In Proceedings of the 13th International Con-
ference on Distributed Computing Systems, pages 227–236, Pitts-
burgh, PA, USA, May 1993. IEEE.

[Tho1979] Robert H. Thomas. A Majority Consensus Approach to Concur-
rency Control for Multiple Copy Databases. ACM Transactions on
Database Systems (TODS), 4(2):180–209, June 1979.

[TVS2007] Andrew S Tanenbaum and Maarten Van Steen. Distributed Sys-
tems. Prentice-Hall, 2007.

[UST2017] A. Usman, R. Schadek and O. Theel. A Novel Highly Avail-
able Data Replication Strategy exploiting Data Semantics, Coding
Techniques and Prior At-Hand Knowledge. In Proceedings of the
22nd IEEE Pacific Rim International Symposium on Dependable
Computing, pages 301–310, Christchurch, New Zealand, January
2017. IEEE.

[UZT2017a] A. Usman, P. Zhang and O. Theel. A Component-Based Highly
Available Data Replication Strategy Exploiting Operation Types
and Hybrid Communication Mechanisms. In Proceedings of the
14th IEEE International Conference on Services Computing, pages
495–498, Honolulu, HI, USA, June 2017. IEEE.

[UZT2017b] A. Usman, P. Zhang and O. Theel. An Efficient and Updatable
Item-to-item Frequency Matrix for Frequent Itemset Generation.
In Proceedings of the Second International Conference on Internet
of Things, Data and Cloud Computing, ICC ’17, pages 85:1–85:6,
New York, NY, USA, 2017. ACM.

[UZT2018] A. Usman, P. Zhang and O. Theel. A Highly Available Replicated
Service Registry for Service Discovery in a Highly Dynamic Deploy-
ment Infrastructure. In Proceedings of the 15th IEEE International
Conference on Services Computing, pages 265–268, San Francisco,
CA, USA, July 2018. IEEE.

[WB1992] Chienwen Wu and Geneva G Belford. The Triangular Lattice Pro-
tocol: A Highly Fault Tolerant and Highly Efficient Protocol for
Replicated Data. In Proceedings of the 11th Symposium on Reliable
Distributed Systems, pages 66–73, Houston, TX, USA, Oct 1992.
IEEE, IEEE.

[WCD2017] Lucas Waye, Stephen Chong and Christos Dimoulas. Whip:
Higher-order Contracts for Modern Services. Proceedings of the
ACM on Programing Languages (PACMPL), 1(ICFP):36:1–36:28,
August 2017.

91

Bibliography

[Wik2019] Wikipedia. SupercomputerWiki. https://en.wikipedia.org/
wiki/Supercomputer, 2019. [accessed 17-July-2019].

[WK2002] Hakim Weatherspoon and John D Kubiatowicz. Erasure Coding vs.
Replication: A Quantitative Comparison, pages 328–337. Springer
Berlin Heidelberg, 2002.

[WPS+2000] Matthias Wiesmann, Fernando Pedone, André Schiper, Bettina
Kemme and Gustavo Alonso. Understanding Replication in
Databases and Distributed Systems. In Proceedings of the 20th In-
ternational Conference on Distributed Computing Systems, pages
464–474, Taipei, Taiwan, 2000. IEEE.

[YSS2016] Yale Yu, H. Silveira and M. Sundaram. A Microservice Based
Reference Architecture Model in the Context of Enterprise Archi-
tecture. In Proceedings of the IEEE Advanced Information Man-
agement, Communicates, Electronic and Automation Control Con-
ference, pages 1856–1860, Xi’an, China, October 2016. IEEE.

92

https://en.wikipedia.org/wiki/Supercomputer
https://en.wikipedia.org/wiki/Supercomputer

Hiermit versichere ich, dass ich diese Arbeit selbstständig verfasst und keine anderen als
die angegebenen Hilfsmittel und Quellen benutzt habe.
Ebenso versichere ich, dass ich diese Disseration nur in diesem Promotionsverfahren
eingereicht habe und dass diesem Promotionsverfahren keine anderen endgültig nicht
bestandenen Promotionsverfahren vorausgegangen sind.

Awais Usman, Bochum, den 15.11.2023

	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	Introduction
	Data Partitioning
	Data Replication
	Quorum Systems
	Quorum Intersection Property

	Trade-off Parameters for Data Replication
	Classification of Data Replication Strategies
	Thesis Contributions
	Semantic data replication
	Component-based highly available replication strategy
	Data replication strategy for the replicated service registry

	A Novel Data Replication Strategy exploiting Data Semantics and a Coding Technique
	Introduction
	State of the Art
	stdr
	sdr
	Erasure Codes

	Problem Statement
	Replication Strategy
	Functional Model
	SDR Replication Strategy
	Implementation
	Availability Analysis
	Results

	Conclusion & Future work

	Component-Based Data Replication Strategy
	Literature Review
	Introduction
	Problem Statement
	Replication Strategy
	ri-related operation execution in a snst
	ri-related operation execution in an unsnst
	gi-related operation execution by ca

	Conclusion & Future Work

	A Data Replication Strategy for A Replicated Services Registry
	Introduction
	Related Work
	Microservices Architecture
	msa without a sr
	msa with a sr

	A Data replication strategy for a replicated service registry
	The Functional Model
	Replication Strategy
	Analysis
	Analytical Results

	Conclusion & Future Work

	Outlook
	References
	Publications

