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Abstract

In the analysis of complex real-time systems, several aspects have to be covered, e.g.,
behaviour that conforms to communication protocols, rich data structures, and timing
constraints such that the system reacts timely to external events. In practise it turns
out that to handle such systems engineers fall back on combinations of techniques. An
example is the Unified Modelling Language, combining multiple graphical notations
for different views of a design. Similarly, in the world of formal analysis there has
been a lot of work on integrating specification techniques to condense advantages of
single formalisms into combined formalisms. However, a major problem remains: these
integrated techniques are designed for heterogeneous systems, and when formally
verifying those systems, one has to cope with their inherent complexity.
To solve this problem, we propose to verify global properties by combining local

analyses using abstract, behavioural protocols. This idea originates from previous case
studies, where a specification of the European Train Control System is decomposed
according to a behavioural protocol. The protocol splits the system runs into several
phases with local real-time properties which hold during these phases. After showing
the correctness of a desired global safety property, this property is also guaranteed
by all instances of the protocol that fit to the structure of the protocol and satisfy all
local properties. We generalise and formalise this approach in a uniform framework
for combined real-time formalisms.
As several combined specification formalisms are based on Communicating Sequen-

tial Processes (CSP), we introduce a CSP extension to specify system protocols with
data and unknown processes to capture a large class of systems. On the unknown
processes, local real-time assumptions are specified by formulae in an arbitrary lo-
gic. By this means, a decomposition of a global property into local assumptions on
protocol phases is defined. We call these protocols with local real-time assumptions
Verification Architectures (VA). To establish safety properties on VAs, we embed the
CSP extension into a temporal dynamic logic and introduce a sound sequent-style
proof calculus. We prove that all models that structurally refine the CSP part of a
VA and that satisfy the real-time assumptions inherit the desired properties.
The instantiation of VAs is exemplified with a combined formalism, called CSP-OZ-

DC. The real-time logic Duration Calculus is used to specify assumptions on protocol
phases. We introduce a syntactical proof rule to show efficiently that a CSP-OZ-DC
specification structurally refines a VA protocol. The correctness of the assumptions is
shown by using an existing model checking approach. Furthermore, by presenting a
case study from the European Train Control System, we demonstrate the verification
of a complex real-time system with the VA approach.
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Zusammenfassung

Für die Analyse komplexer Realzeitsysteme sind verschiedene Faktoren relevant und
müssen berücksichtigt werden. Dazu gehören unter anderem Kommunikations- und
Kontrollflusseigenschaften, die verwendeten Datenstrukturen und das zeitliche Ver-
halten des Systems. Um diese heterogenen Aspekte umfassend beschreiben zu können,
hat es sich in der Praxis durchgesetzt, Kombinationen von Analysetechniken zu ver-
wenden. Ähnliches gilt für die formale Analyse und Verifikation von Realzeitsystemen,
für die ebenfalls verschiedene formale Techniken kombiniert werden. Da diese Syste-
me, die mit kombinierten Techniken untersucht werden, inhärent komplex sind, gerät
die formale Analyse an die Grenzen ihrer Möglichkeiten – es müssen Wege geschaffen
werden, die Komplexität der Systeme zu reduzieren.
Aus diesem Grund wird in dieser Arbeit ein Ansatz vorgeschlagen, der die Analyse

globaler Systemeigenschaften auf lokale Eigenschaften reduziert. Dies geschieht mit
Hilfe von formalen Entwurfsmustern, die abstrakte Protokolle für bestimmte System-
klassen beschreiben. Die Protokolle unterteilen Systemabläufe in verschiedene Pha-
sen, für die Realzeiteigenschaften als Annahmen vorausgesetzt werden. Wenn gezeigt
werden kann, dass das Protokoll gewünschte Sicherheitseigenschaften gewährleistet,
dann gelten diese Eigenschaften für alle Instanzen des Protokolls; dazu müssen Struk-
tur von Instanz und Protokoll übereinstimmen und die lokalen Realzeiteigenschaften
nachgewiesen werden. In dieser Arbeit wird dieser Ansatz mit Fokus auf kombinierte
Spezifikationstechniken untersucht.
Da verschiedene kombinierte Formalismen auf der Prozessalgebra Communicating

Sequential Processes (CSP) basieren, wird eine Erweiterung von CSP um Daten und
unbekannte Prozesskomponenten vorgestellt, mit der abstrakte Systemprotokolle mit
großem Freiheitsgrad beschrieben werden können. Für die unbekannten Prozesskom-
ponenten können Realzeitannahmen in einer beliebigen Logik definiert werden. Da
sich auf diese Weise globale Eigenschaften des Protokolls in lokale Annahmen zerle-
gen lassen, werden solche Protokolle als Verifikationsarchitekturen (VA) bezeichnet.
Um globale Eigenschaften von VAs nachweisen zu können, werden eine Einbettung
der CSP-Erweiterung in Dynamische Logik und ein Sequenzenkalkül für diese Logik
präsentiert.
Die Instanziierung von VAs wird exemplarisch für die kombinierte Sprache CSP-

OZ-DC gezeigt, indem eine Beweisregel für einen syntaktischen Verfeinerungsnachweis
eingeführt wird. Die Korrektheit der lokalen Eigenschaften wird mit existierenden
Model-Checking-Verfahren gezeigt.
Abschließend wird mit Hilfe einer Fallstudie über das Europäische Zugkontrollsys-

tem belegt, dass der VA-Ansatz geeignet ist, komplexe Realzeitsysteme zu verifizieren.
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1 Introduction

People want to forget the impossible. It makes
their world safer.

(Silas, in The Graveyard book, Neil Gaiman)

1.1. Running Example: A Small Train Control System . . . . . . . . . 5
1.2. Overview of the VA Approach . . . . . . . . . . . . . . . . . . . 6
1.3. Related Work on Pattern-Based and Compositional Verification 8
1.4. Structure of this Thesis . . . . . . . . . . . . . . . . . . . . . . . 11
1.5. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Systematic analysis of software and hardware is an important instrument to increase
the safety of computer systems, and this is particularly relevant when designing sys-
tems in safety critical application domains like transportation systems or industrial
plants whose malfunction may endanger monetary investments, environment, or life.
For this reason, there is a lot of ongoing research with the aim of helping system
engineers to develop high-quality software or hardware that is guaranteed to answer
the desired purpose. There are two major research directions to tackle these issues.
On the one hand, informal software engineering approaches aim at methods and

tools to capture the complexity of a system which usually can only be handled based
on the division of labour. Systematic and standardised techniques are investigated,
like development processes, architectural concepts, modelling languages, and quality
control. The main focus of those techniques is to increase the quality of complex
software systems during the entire development and life cycle.
On the other hand, formal analysis techniques are also targeted to increase the

quality of software systems, but these techniques approach from the side of rigor-
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1. Introduction

ously mathematical methods. Systems are described by languages that are often not
focused to convenient applicability when developing large software systems, rather
having a well-defined semantics in a mathematical domain that can be exactly ana-
lysed. Ideally, those analyses are performed completely automatic with the help of
sophisticated verification tools. To cope with the increasing complexity of software
systems, abstraction techniques and decompositional methods are applied for redu-
cing the state space, particularly for infinite state systems, and for partitioning veri-
fication problems into smaller parts.
In this thesis, we integrate techniques of both worlds that have been proven to

be successful in their application domain, in order to bundle the advantages of the
approaches and to overcome specific difficulties from which both suffer.

Informal analysis of complex real-time systems. The subject of this work are ba-
sically complex, safety-critical systems, i.e., systems for which specific safety proper-
ties are indispensable. This includes plenty of daily-life software systems: for instance,
automated cruise-control systems or safety systems of modern vehicles, medical equip-
ment, power plants; wherever technical systems take over control from humans. Such-
like systems are often inherently complex, because they are determined by orthogonal
system dimensions. When analysing this complexity, it turns out that there is hardly
a single formalism that adequately describes all relevant aspects. Hence, in prac-
tice system engineers often fall back on combinations of different techniques for sys-
tem analysis. To cope with heterogenous system dimensions, the Unified Modelling
Language (UML) [RJB99, Dou97, Dou04] has been developed, combining multiple
graphical notations for different views of a design. But even though UML meets the
identified requirement to comprehensively capture the system dimensions of com-
plex systems by providing diagrammatic modelling techniques and even though it is
well-integrated into industrial software development processes, it lacks an important
feature that is necessary for the integration into formal software analysis: an exact
semantics. In practice, this leads to misconceptions and misunderstandings in soft-
ware development, and UML cannot directly be used in combination with formal
verification techniques.
A further concept to reduce the complexity of software designs is the use of design

patterns [GHJV95, SSRB00, Dou02], which allow developers to structure large design
problems into smaller parts for which standardised solutions exist. Once a solution to
a dedicated design problem is realised with patterns, they can be reused in different
contexts. However, similarly to UML, pattern-based approaches are usually applied
informally, often described by textual, tabular, or graphical representations. Thus,
suchlike pattern-based techniques are generally incompatible with formal analysis.

Formal analysis of complex real-time systems. In the world of formal analysis
and verification there has been a lot of work on integrating specification techniques
to condense advantages of single formalisms into combined formalisms, e.g., [But92,

2
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Figure 1.1.: Context of this thesis

RAI92, MD98, AM98, Fis00, WC01, Süh02, SLD08]. In the analysis of safety-critical
real-time systems, several important aspects have to be covered by a formalism in
order to cope with the complexity of the system:

1. behaviour that conforms to communication protocols and the internal control
flow of components,

2. rich data structures with possibly infinite domains, e.g., linked lists or real
numbers, and

3. timing constraints such that the system reacts timely to external events.

An example for such a combined specification formalism is CSP-OZ-DC, which was
developed by Hoenicke and Olderog [HO02a, HO02b, Hoe06]. CSP-OZ-DC integrates
the well-investigated formalisms Communicating Sequential Processes (CSP), to spe-
cify the control flow, Object-Z (OZ), to define the data space and data changes, and
Duration Calculus (DC), to impose dense real-time constraints on system specifica-
tions. In [Hoe06, MFHR08] an operational semantics and a model checking approach
for CSP-OZ-DC are presented, such that CSP-OZ-DC can be used for formal analysis
of real-time systems with automated methods. Furthermore, in [MORW08, FLOQ11]
CSP-OZ-DC is integrated into the software engineering process with UML by provid-
ing a UML profile for real-time systems. This profile defines a subset of UML dia-
grams, in which the elements hold certain additional annotations; a translation of
this profile into a CSP-OZ-DC semantics is given. By this means, real-time systems
can be specified with UML and formally analysed and verified with CSP-OZ-DC.
However, a major problem remains: suchlike integrated formal techniques, for which

CSP-OZ-DC is an example, are designed for heterogeneous and thus inherently com-
plex systems, and when formally verifying those systems, we have to cope with this
complexity. Even though integrated specifications can often be translated into leaner
formalisms, these still need to cover all relevant information. Particularly, systems
with a large degree of concurrency often suffer from the state space explosion prob-
lem. Thus, formal analysis of those systems is only applicable if they are decomposed
in a suited manner into smaller parts.
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Idea of the Verification Architecture approach. To solve the identified complexity
issues for heterogenous real-time systems, we carry the ideas of informal design pat-
terns over to formal specifications. To this end, a formalisation of patterns for complex
real-time systems, so-called Verification Architectures (VA), is introduced. Moreover,
we examine how these VAs are verified with respect to desired safety properties, and
how they enable compositional verification of complex systems specified with com-
bined specification languages. Figure 1.1 gives an overview of the context of this work
and the interrelation of informal models (represented by ‘UML’ in the diagram) and
design patterns in contrast to formal specifications (represented by ‘CSP-OZ-DC’)
and Verification Architectures.
The benefits of the Verification Architecture approach are twofold: First, analogous

to design patterns, VAs can be reused in different applications. In doing so, verified
properties of the VA are inherited by all instances. Second, VAs give rise to a de-
composition of the system: global properties are verified by combining local analyses.
This idea originates from previous case studies [MFHR08] in the context of the trans-
regional research centre AVACS1, where a specification of the European Train Control
System (ETCS) [ERT02] was decomposed according to its abstract behavioural pro-
tocol. The protocol splits the system runs into several phases (e.g., braking phase and
running phase) with local real-time properties that hold during these phases. After
showing the correctness of a desired global property for the protocol, this property
is also guaranteed by all instances of the protocol that satisfy the local properties.
Since the local properties correspond only to parts of the protocol, it is more efficient
to verify the local properties instead of directly checking the global safety property.
In case of the ETCS case study, the latter was not possible due to the size of the
case study model, while verification of the local properties was successful [MFHR08].
We generalise and formalise this approach in the context of combined languages. The
approach is structured into several layers:

1. abstract behavioural protocols with unknown parts, which have a large degree
of freedom to comprise a large class of concrete systems, need to be specified
and verified with respect to desired global safety properties;

2. since the analysed systems are often time-dependent, it is important to allow
imposing of additional local real-time assumptions on protocol phases, and it
must be possible to verify the protocols taking these assumptions into account;

3. it needs to be checked that concrete systems, given as combined specifications
to capture heterogeneous systems, are instances of the protocol;

4. it needs to be checked that concrete instances actually guarantee the local real-
time assumptions on the protocol phases.

The challenge is to tackle each layer of the problem with a suitable formalisation and
to integrate the heterogeneous formalisations into a uniform framework.

1http://www.avacs.org
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1.1. Running Example: A Small Train Control System

Summary of contributions. We introduce a pattern-based Verification Architec-
ture approach for complex (dense) real-time systems, a new conceptional approach
on how to use behavioural protocols as a decomposition technique to enable verifica-
tion of systems specified by combined formalisms. By establishing behavioural design
patterns for suchlike formalisms, we extend existing work on integrating combined
formalisms and software engineering processes. In particular, when using VAs in com-
bination with CSP-OZ-DC, we benefit from its descriptive UML representation and
graphical tool support.
Beyond this conceptional contribution, we present a theoretical model based on

CSP for the specification of VAs. The verification approach for VAs makes use of
theorem proving as well as model checking: an embedding into Dynamic Logic and a
sequent-style proof calculus for the VA model are introduced, whereas local assump-
tions are verified with existing model checking techniques. A refinement notion for
VAs is established that is used to automatically prove that a concrete model instan-
tiates a VA, by which the model inherits all safety properties of the VA. Finally, we
demonstrate our approach using a case study from the AVACS sub-project R1.
In the following, the basic technical details of the VA approach are introduced. But

beforehand, we present a running example that is used throughout this thesis.

1.1. Running Example: A Small Train Control System

RBC

︸ ︷︷ ︸
RD︸ ︷︷ ︸

sf︸ ︷︷ ︸
MA

Figure 1.2.: Example

The emerging European Train Control System (ETCS)
is an international standard [ECS99, ERT02] that shall
replace national train control systems to ensure cross-
border interoperability and to improve railway safety
as well as track utilisation. In the final ETCS imple-
mentation level, the existing national trackside sys-
tems for detection of train speed, location, and integ-
rity will not be used anymore. Instead, a radio block
centre (RBC) controls the traffic in a well-defined area.
It ascertains speed and position values in cooperation
with the ETCS on-board units of the trains. RBCs and
trains communicate over a GSM-R radio connection.
One objective of the ETCS is to increase the possible
traffic density. For this purpose, the moving block principle is used, by which a move-
ment authority is always granted up to a position closely behind the preceding train.
In case of an accident, the train control system has to stop all trains safely.
The setting is pictured in Fig. 1.2: an RBC grants movement authorities (MAs)

to a train. The system is considered safe as long as the train stays within the MA.
The distance of the train to the end of the MA is given by a real-valued variable sf ,
reflecting the safety of the system, that shall never be below 0. The reaching distance
position RD is the last position at which the train needs to apply the brakes to stop
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in time. To ensure safety, the system shall comply with a simple protocol structuring
all runs into phases: The first protocol phase FAR describes the situation where the
train is in a safe mode with a large distance to the end of the MA. In a second phase
CHK , the train is required to check the distance to the end of the authority and
to take an appropriate action: either it may request an extension of the MA (REQ)
or—if the train is too close to the end of the MA—it changes to a recovery phase
REC in which a counteraction is initiated, e.g., application of emergency brakes in
order to stop the train safely.
This is a typical protocol that can be realised as a VA: it comprises some defined

behaviour (for instance, the decision which is necessary when the train is too close
to the end of the MA), real-time constraints (the train has to check the situation
within certain time intervals), and some unknown behaviour that is not relevant for
the protocol (it does not matter how the train behaves in the FAR phase as long as
the train is not too close to the end of the MA).
This example is to be continued during this thesis and we will show how such

protocols are specified, verified, and instantiated.

1.2. Overview of the VA Approach
We now introduce the ideas and basic formalisations of our approach to use patterns
for the compositional verification of real-time systems.

Generic protocol. A Verification Architecture (VA) is a formalisation of a generic
protocol with local real-time assumptions that ensures the safety of a class of systems.
We use parametric CSP processes with data constraints and unknown parts to spe-
cify VAs. A VA consists of a parametric CSP process, enriched by data constraints,
and additionally, of assumptions on specific phases of the generic protocol, defined
as formulae in an arbitrary real-time logic. In our examples, we will use Duration
Calculus (DC) to specify local assumptions. Figure 1.3 depicts a VA in the dashed
box. The locations represent phases of a protocol (for instance, the protocol phases
FAR,CHK ,REQ and REC of the running example) with additional local assump-
tions asm1 up to asm4.
The name Verification Architecture reflects the purpose of the protocol, which is

dedicated to formal verification by decomposing a global property into local properties
of protocol phases. We use the terms Verification Architecture and protocol (that is
formalised as VA) synonymously. If we refer only to the structure of the protocol
process without the local assumptions, we use the notion protocol structure.

Proof rules. We use a rule-based sequent calculus to establish the validity of global
properties (e.g. collision freedom for the running example in Sect. 1.1) for VAs. To
this end, we have to take into account the timed assumption on the protocol phases
as well as the data constraints.
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1.2. Overview of the VA Approach

FAR |= asm1

CHK |= asm2

REC |= asm4REQ |= asm3

|= safe

Figure 1.3.: Illustration of a Verification Architecture

Concrete instantiations. We consider concrete instances of systems that conform
to VAs. We show when such instances actually refine the process structure of the
corresponding VA. To this end, we present a proof rule that allows us to check syn-
tactically that the structure of a concrete CSP-OZ-DC specification conforms to a
VA.

Correctness of local assumptions. One has to prove that every process of a concrete
instance that refines a protocol phase of the VA satisfies every corresponding local
assumption of the phase. For instance, a process instantiating the FAR phase of the
example is required to satisfy asm1, which is a property stating that the train is not
moving too fast. This step is done with a suited verification technique for the logic
of the assumptions. For example, in the case of DC and CSP-OZ-DC the verification
approach of [MFHR08] is used. The local assumptions only depend on parts of the
CSP-OZ-DC model and, thus, the resulting verification tasks are simpler than the
global safety property.

Guaranteed correctness. Finally, if the structural refinement relation and the local
assumptions are valid, our VA approach guarantees that the global safety property
is also valid for the entire model.

Formalisation of the VA Approach

We give a formalisation of the problem. Let prtcl(p,P1, . . .Pn) be an abstract behavi-
oural protocol depending on a vector of data parameters p and on process parameters
Pi . Additionally, we consider temporal assumptions asm1(p), . . . , asmn(p) on the Pi ,
which may also depend on the data parameters p. We denote the combination of
protocol structure and temporal assumptions as Verification Architecture (VA). Our
aim is to show that a safety property safe(p) is valid for every possible model which
is a refinement of the behavioural protocol and which respects the assumptions.

7
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To apply our approach, we have to show that the VA is correct, i.e., the protocol
is correct for all parameters and processes respecting the assumptions:

∀ p,Pi •

 ∧
i=1,...,n

Pi |= asmi(p)

⇒ (prtcl(p,P1, . . . ,Pn) |= safe(p)) (1.1)

We will provide proof rules for the verification of this proof task. Once it is verified,
this result is reusable as all instances of this architecture inherit the correctness
property automatically. We only have to show that it is a refinement of the protocol
structure and that the local assumptions are valid, which is due to their locality easier
than to verify the global property directly. We consider an instance spec(p,P0

1 , . . . ,P0
n)

of the abstract protocol, where the P0
i are instances of the process parameters. First,

we have to show that every trace of the instance is also a trace of the protocol:

∀ p • Jspec(p,P0
1 , . . . ,P0

n)K ⊆ Jprtcl(p,P0
1 , . . . ,P0

n)K. (1.2)

This relation is shown syntactically for a specific class of instances (cf. Sect. 5.1).
Second, we have to show that the assumptions are valid for the concrete specification:

∀ p • P0
i |= asmi(p) for all i ∈ 1..n. (1.3)

This is done by applying existing verification techniques for the language of the
assumptions. With this, our approach yields that the desired safety property is valid
for the concrete model. We argue that this proposition is correct. From (1.1) and
(1.3) we can conclude (1.4), and with (1.2) we get the desired property (1.5).

∀ p • prtcl(p,P0
1 , . . . ,P0

n) |= safe(p) (1.4)
∀ p • spec(p,P0

1 , . . . ,P0
n) |= safe(p) (1.5)

We summarise that if a correct VA is given, we only have to show that (1) a concrete
model is actually a structural refinement of the abstract protocol, and (2) the model
respects the local assumptions. Then we can conclude the correctness of the entire
model.

1.3. Related Work on Pattern-Based and Compositional
Verification

We present a formal and generic framework for reusable verification patterns that are
used to decompose a specification and to simplify verification of complex systems. To
this end, the VA approach involves formal analysis on several stages:

1. behavioural protocols (comprising data aspects and allowing for a large degree
of freedom) with a formal semantics
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2. verification of these protocols (proof calculus)

3. refinement by concrete specifications

4. combination with higher-level specifications (e.g., CSP-OZ-DC and the UML
profile for CSP-OZ-DC)

5. formal verification of local assumptions (e.g., by model checking)

6. inheritance of safety properties

Other works on formal design patterns often focus on single aspects or on handling
of standard design patterns (considering static analysis of code and structures in
object-oriented languages) in contrast to the behavioural, protocol-based pattern we
consider here. In the following, we review related pattern-based and decompositional
approaches.

Design Patterns. Our approach is inspired by [DHO06], where for a fixed DC pro-
tocol, a design pattern for cooperating traffic agents is introduced. The work [KRS07]
presents Design Verification Patterns, which are also motivated by [DHO06]. These
patterns are introduced as a formal counterpart to the well-known design patterns
from classical software engineering. [KRS07] proposes to use Rely-Guarantee pairs
as proof obligations to characterise patterns and exemplary gives such pairs for two
design patterns. But contrary to the Verification Architectures approach, no formal
framework for the use and application of design patterns is introduced. It is neither
examined how to verify the patterns itself nor exploited that the pattern may lead
to a natural decomposition for verification. Moreover, no tool support for automated
verification is provided.
A general overview on formalisation techniques for design patterns is contained

in [Tai07], but without considering verification of real-time systems. Instead, several
formalisation approaches and languages are listed, basically with the aim to avoid the
ambiguity of standard design patterns. An example is [FCA07], where object-oriented
design patterns, like the Observer pattern [GHJV95], are specified in terms of the
RAISE Specification Language [RAI92]. Other works with a similar focus to design
patterns for static organisation of specifications, can be found in [SH04, BH07]. On
the contrary, we consider behavioural protocol patterns used for formal verification
of real-time systems. The work [HKM07] is more related to our approach: they also
consider behavioural design patterns, which are specified in the experimental Ocsid
language and verified by theorem proving. The desired properties are specified with
linear-time temporal logic. The patterns are used for synthesis of instances, whereas
we use a syntactic refinement check to establish a connection between pattern and
instance. Additionally, they do not examine real-time specifications and do not present
a formal framework for the decompositional verification of complex systems using
design patterns.
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Pattern-based approaches for real-time systems, e.g., [TZY+03, DHQ+04, KC05,
FVVC06], often introduce timing patterns for bounded response, task periods, etc.,
contrary to our work, where arbitrary real-time properties are imposed on protocols.
A behavioural design pattern method that is similar to ours is realised in the

context of the Fujaba tool suite [GTBF03, Gie03]: design patterns are specified with
discrete-time state charts without data and syntactically instantiated by refinement.
This work is reviewed in more detail in Sect. 7.4.

Compositional methods. To establish global properties of a VA, their correctness
has to be shown under certain local assumptions over unknown components. When
verifying that a concrete specification is an instance of the VA, these assumptions
have to be checked such that the instance is guaranteed to inherit the desired global
property. By this means, the VA approach is similar to classical Assume-Guarantee
(A-G) reasoning (in the context of combined, parametric specifications), where prop-
erties over components are shown under the assumption that the environment sat-
isfies specific ‘Assume’ properties. A-G reasoning was initially introduced in the
early 80s in [MC81, Jon81] and has been developed further in several works, e.g.,
[AL93, AL95, FMS98, MCF+97]. The work [dRdBH+01] contains a general introduc-
tion into A-G reasoning without time and without the context of conjoint verification
techniques.
In contrast to our approach, classical A-G approaches usually consider components

together with assumptions on the environment of a component, i.e., components are
analysed with respect to a parallel environment. In the VA approach, assumptions
over unknown protocol parts are integrated into more complex protocol structures,
also incorporating sequential and parallel composition as well as recursion. However,
existing A-G methods can be used to complement our approach to solve properties
over parallel unknown components. In particular, we apply Rely-Guarantee reasoning
in Sect. 6.1.3, which is a sub-form of A-G reasoning dedicated to shared variable
systems; we adapt Rely-Guarantee reasoning for the handling of properties of parallel
unknown components. In a similar way, it will be possible to adapt other existing A-G
methods to the VA approach.
In [MWW08, Met10] an A-G verification approach for CSP-OZ (without time) is

presented that does not consider decompositions by given protocols but instead uses
a learning-based algorithm to generate assumptions on layered components.
An approach with basic ideas similar to ours was developed by D’Errico and Loreti

[DL09, DL10]: they investigate concrete CCS processes [Mil80] with an unknown
environment that is constrained by Hennessy-Milner logic [HM85]. They provide a
compositional proof system based on A-G reasoning for these processes and introduce
a notion of property-preserving refinements of the unknown parts. The main difference
to the work presented here is that they are focused on simple, only event-based, CCS
processes and Hennessy-Milner logic and consider no more complex or combined
specification languages and neither real-time properties nor data constraints.
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1.4. Structure of this Thesis

1.4. Structure of this Thesis

In this first chapter, we have motivated the usage of the conceptual Verification Ar-
chitecture approach in the context of informal and formal models of software systems.
We have introduced the basic idea of VAs to use abstract behavioural protocols to
structure verification tasks. By this means, VAs are used as a decomposition technique
to enable verification of complex systems specified by combined formalisms.

• In Chap. 2, we preliminary present basic formalisms that are needed throughout
this work. These are the combined formalism CSP-OZ-DC and Phase Event
Automata, a timed automata model for the operational semantics of CSP-OZ-
DC.

• Chapter 3 introduces a new CSP dialect eCSP that extends classical CSP by
data constraints and unknown processes with local real-time assumptions for
the specification of VAs. Furthermore, we analyse semantical properties of this
CSP dialect and present two useful normal forms.

• To prove properties over eCSP, it is embedded into Dynamic Logic in Chap. 4.
A sequent calculus for this logic is introduced and proven correct.

• In Chap. 5, we establish a notion of refinement for eCSP and for combined spe-
cifications in terms of CSP-OZ-DC. Moreover, we present efficient, syntactical
rules to prove that a CSP-OZ-DC specification is a structural refinement of an
eCSP process, and we analyse property inheritance for the refinement relation.

• Limitations and possible extensions of the VA approach are discussed in Chap. 6.
In particular, we examine how parallelism over unknown parts is solved and
present a second semantics for eCSP that is suited to adequately describe par-
allelism over unknowns. We compare the different semantics of eCSP and discuss
shared variable access in eCSP. In addition, we shortly analyse verification of
timed properties and completeness issues. An examination of decomposition
techniques that complement the VA approach concludes the chapter.

• Chapter 7 shows how the VA approach is embedded into a software engineering
process: a graphical UML tool is presented that supports Verification Architec-
tures and the UML profile for CSP-OZ-DC.

• The application of the VA approach is demonstrated in Chap. 8 by two case
studies: the train control system of the running example and a larger ETCS
case study from the AVACS sub-project R1.

• Finally, Chap. 9 concludes this thesis with a general discussion and an evaluation
of the VA approach.
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• In the appendix, the reader finds a glossary of symbols and an index, which
might be helpful while reading this thesis. Furthermore, a list of all rules of the
introduced sequence calculus and auxiliary case study material are provided.

Sources

Some parts of this thesis are based on previously published works by the author (most
of them significantly revised):

• Section 1.2 is partly taken from [Fab10a].

• Parts of Chap. 2 contain adapted material from [FS07] (Sect. 2.1.1), [FJSS07,
MFHR08] (Sect. 2.3), and from [FLOQ11] (the part about the CSP-OZ-DC
translation into PEA).

• Chapter. 3 is based on [Fab10b, Fab10a].

• Parts of Chap. 7 (Sect. 7.1 and 7.2) are taken from [FLOQ11], which is joint
work with Sven Linker, Ernst-Rüdiger Olderog, and Jan-David Quesel.

• The running example (Sect. 8.1, App. A.1) was presented in [Fab09, Fab10b].

• The ETCS case study in Sect. 8.2 and the CSP-OZ-DC model in App. A.2.1
are based on case study material in [MFR06, FM06, MFHR08], which is joint
work with Roland Meyer, Jochen Hoenicke, and Andrey Rybalchenko, but the
VA and the modified ETCS model are presented here for the first time.
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2 Preliminaries

You know something? We came here for you, a
long time ago, when you died. Well, it wasn’t
here and that wasn’t you, but we did anyway.

(Delirium, in The Wake, Neil Gaiman)
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2.3.1. Syntax and Semantics of Phase Event Automata . . . . . . 33
2.3.2. Operational CSP-OZ-DC Semantics in Terms of PEA . . . 38

The focus of this thesis is on the analysis and verification of complex real-time sys-
tems that are determined by heterogeneous system dimensions. To cope with such
different dimensions, Hoenicke and Olderog introduced CSP-OZ-DC [HO02a, HO02b]
that combines three well-investigated formalisms into a single language: it uses CSP
[Hoa85, Ros98] to model the control flow of a system, Object-Z (OZ) [Smi92, Smi00]
to specify data space and state changes via OZ schemata, and it applies a restricted
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class of DC formulae [ZHR91, ZH04] for defining (dense) real-time constraints. CSP-
OZ-DC is a declarative and object-oriented language. A key feature of CSP-OZ-DC
is its separation of concerns, because every part, i.e., the control flow, the data space,
and the timing part can be specified on its own. Its semantic is given in terms of
interpretations, and it is compositional. Thus, if one can establish a safety property
for a single part of the specification the property automatically holds likewise for the
entire specification.
Due to this features, we make use of CSP-OZ-DC in the context of Verification

Architectures, particularly, as specification language for concrete instances of archi-
tectures and for our case studies in Chap. 8. In this chapter, we introduce CSP-OZ-DC
and a model for its operational semantics in detail.

2.1. CSP, OZ, and DC

2.1.1. Communicating Sequential Processes

Communicating Sequential Processes (CSP) is a notation to describe concurrent and
sequential processes. It was initially developed by C.A.R. Hoare [Hoa78, Hoa85]. Its
basic building units are instantaneous events that can be arranged into processes
using process algebraic operators, e.g., for sequential or parallel composition. We
denote the set of all events by Events and the set of events occurring in a process P,
the alphabet of P, by alph(P).

Syntax of CSP

The CSP syntax is defined by the following BNF grammar:

P ::= Stop | Skip | a → P | P1 2 P2 | P1 u P2 |
P1 ‖A P2 | P1‖|P2 | P1

o
9 P2 | P[R] | P \A | X .

We denote the so-defined set of process expressions with Process, Process == P.
The process Stop denotes a deadlocking process, Skip a terminating process. For
an event a ∈ Events, a → P denotes a process that communicates the event a and
then behaves as the process P. The operators 2 and u represent external choice
and internal choice, respectively. An external choice is resolved by the environment
of the process, while internal choice is non-deterministically resolved by the process
itself. Concurrent processes are described by ‖A and ‖|. The former operator is used
for processes that synchronise on events from a set A ⊆ Events, and the latter for
interleaved processes without any synchronisation. The operator o

9 denotes sequential
composition of processes, i.e., the process behaves like P1 until the process terminates
and then it behaves like P2. Hiding of events from a process can be specified with
\. The operator P[R] renames the events in P according to a relation R on events.
Finally, X stands for a process identifier, which must be declared with an expression
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X c
= P and which can be used to recursively define processes. Another representation

of recursive processes is the fixed point expression µX • F(X).

Example 2.1.1. As example we consider the following CSP process equation system
specifying a train component for the running example of Sect. 1.1.

main c
= (extend → main) u FAR

FAR c
= ((InitialState0 ‖| InitialState1) o

9 (check → Checked))

InitialState0
c
= updSpd → updPos → (InitialState0 u Skip)

InitialState1
c
= (sendCurPos → InitialState1) u Skip

Checked c
= (fail → REC ) 2 (pass → main)

REC c
= ((applyEB → RecCycle) o

9 Stop)

RecCycle c
= (updSpd → updPos → RecCycle)

This process equation system defines a process main as an internal choice between
a process extend → main and FAR. The latter is a process reference defined by the
second equation of the system. The former is a prefix process, i.e., the process fires an
event extend and behaves then as the main process again. The FAR process contains
a sequential composition of two sub-processes, where the first is an interleaving of
InitialState0 and InitialState1. The process Checked is defined as external choice: the
process either receives a fail event from its environment and then behaves as process
REC or it receives a pass and the main process is started again.

Semantics of CSP

There are three types of semantics that are commonly used to define the meaning of
CSP processes: operational semantics, defining the semantics in terms of transition
systems; denotational semantics, defining the semantics of a process in terms of a
mapping into a semantical domain such that the semantics of a compound process
can be computed by the semantics of its parts; and algebraic semantics, defining by
algebraic laws which processes are meant to be equivalent. Roscoe [Ros98] gives an
overview on these different semantical approaches to CSP.
In the class of denotational CSP semantics common representatives are the trace,

the stable-failures, and the failures-divergences semantics. The former gives an ab-
stract view to a process, because only sequences of events are considered, and the
failures-divergences semantics gives the most accurate view, also including all dead-
locks and divergences of a process. As we are basically interested in safety properties
here, the trace semantics suffices for our needs.
Traces can easily be extracted from transition systems forming the operational

semantics of CSP. It is defined as a labelled transition system (LTS)

(Q,EventsτX, q0,−→),
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with a special eventX representing the termination of a process, and an internal event
τ that is not visible from outside. Eventsτ is the set of events including τ , EventsX the
set of events including X, and EventsτX the combination of both. The set Q contains
all CSP processes, and q0 ∈ Q is the initial process. The transition relation −→ is
defined inductively over the structure of CSP processes by the following firing-rules.

Skip
X−→ Ω

(skip)

a → P a−→ P
(prefix)

P τ−→ P ′

P 2 Q τ−→ P ′ 2 Q

P a−→ P ′

P 2 Q a−→ P ′

Q τ−→ Q′

P 2 Q τ−→ P 2 Q′

Q a−→ Q′

P 2 Q a−→ Q′

a ∈ EventsX (extchoice)

P u Q τ−→ P P u Q τ−→ Q
(intchoice)

P b−→ P ′

P ‖
A
Q b−→ P ′ ‖

A
Q

P a−→ P ′ Q a−→ Q′

P ‖
A
Q a−→ P ′ ‖

A
Q′

Q b−→ Q′

P ‖
A
Q b−→ P ‖

A
Q′

Ω ‖
A

Ω
X−→ Ω

b ∈ EventsτX \A
a ∈ A \ {τ}

(parallel)

P X−→ P ′

P o
9 Q

τ−→ Q
P a−→ P ′

P o
9 Q

a−→ P ′ o9 Q
a ∈ Eventsτ (seqcomp)

P τ−→ P ′

P[R]
τ−→ P ′[R]

P X−→ P ′

P[R]
X−→ Ω

P a−→ P ′

P[R]
b−→ P ′[R]

aRb (renaming)

P a−→ P ′

P \ B a−→ P ′ \ B
P b−→ P ′

P \ B τ−→ P ′ \ B
a 6∈ B, b ∈ B (hiding)
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X τ−→ P
X c

= P (call)

µX • F(X)
τ−→ F(µX • F(X))

(recursion)

We additionally use the convention that Ω \A = Ω and Ω[R] = Ω.
We extend this single-step transition relation to a multi-step relation: The τ -step

transition relation P a
=⇒ P represents the τ -closure of the single-step relation a−→,

i.e., P a
=⇒ P means that the LTS of P has a run from P to P

〈a0, a1, . . . , ai , a, ai+1, . . . , an〉, (2.1)

such that ai = τ holds for all i ∈ 0..n. The run (2.1) exists if there are transition
steps Pi

ai−→ Pi+1 for i ∈ 0..n and P0 = P,Pn+1 = P. Furthermore, for a sequence
of events w = 〈a0, . . . , an〉 the multi-step transition relation P w

=⇒ P denotes the
consecutive application of the single-step relation

P w
=⇒ P := P a0=⇒ ◦ · · · ◦ an=⇒ P.

We use =⇒∗ to denote a sequence of arbitrary transition steps, i.e., P w
=⇒ P with

arbitrary w.
With this multi-step transition relation, we can define the set of finite, prefix-closed

traces of a process P by

traces(P) := {w | ∃Q : P w
=⇒ Q}.

Even though the systems we consider are reactive and usually have infinite behaviour,
it is sufficient to include finite traces in the semantics, because the infinite traces can
be computed from the set of all finite traces. This holds as long as no infinite branching
processes are allowed [Ros98], which we explicitly exclude here.

2.1.2. Object-Z

Object-Z [Smi00] is an object-oriented extension for the mathematical Z notation
that has been developed mainly in the 1980s [Spi92]. It was standardised in 2002
[ISO02]. Z provides a notation for logical operators, sets, relations, and, based on this,
a mathematical toolkit containing Z definitions for common mathematical operators
and expressions like ∪,∩,⊆,∅, and notation for natural numbers and integers as well
as sequences. One of the most obvious features of the Z notion is the use of a specific
schema notation to structure a specification into smaller pieces. To give an example,
the schema

17
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Train
maxbd,maxcd,maxspd,ma, pos : R

maxbd > 0
maxcd > 0
maxspd > 0

describes (a part of) the state space of a simple train control system: it declares three
real-valued variables that need all to be larger than 0 and the variables ma and pos.
The lines below the horizontal dash contain a predicate that has to be valid for the
declared variables (the predicates in each line are connected by conjunction). Such
a schema defines the set of all mappings from names (maxbd,maxcd, maxspd, ma,
and pos) to values from the corresponding domain (R). These mappings are called
bindings, written

〈| maxbd == 3.2,maxcd == 2.5,maxspd == 500,ma == 1000, pos == −1.7 |〉,

which is a valid binding for the schema above. Schemas can also be written in a
condensed form, e.g., the Train schema can also be defined by

Train ==

[maxbd,maxcd,maxspd,ma, pos : R | maxbd > 0 ∧ maxcd > 0 ∧ maxspd > 0].

Variables are also used in decorated form with the standard decorations ′, !, and ?.
A primed variable x ′ denotes the state of the variable x after an operation, while !
and ? distinguish output and input variables, respectively. For instance, the operation
schema

extend
∆(Train)
newMA? : R

ma′ = newMA?

declares an input variable newMA? of type real and sets the new value of variable
ma to the value of this input variable. The ∆-expression in the first line introduces
the symbols from the schema Train. Additionally, primed versions of all symbols of
the Train schema are introduced such that ma′ is actually declared for the extend
operation.

Z Syntax

The basic building blocks in Z are paragraphs comprising the already introduced
schemas, axiomatic descriptions, basic type definitions, abbreviation definitions, and
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free type definitions:

Z Paragraph ::= NAME
DeclPart

(schema)

[ Predicate ]

| DeclPart
(axiomatic
description)

[
Predicate ]

| [NAME , . . . ,NAME ]
(basic type
definition)

| NAME == Expression (abbreviation
definition)

| NAME ‘ ::= ’ Branch ‘ | ’ . . . ‘ | ’ Branch (free type
definition)

Branch ::= NAME | NAME � Expression �

Axiomatic descriptions introduce possibly constrained global variables, and basic type
definitions allow for introducing identifiers for new types. Moreover, abbreviations can
be defined, e.g., Position == R+ declares a new type Position. Finally, free types
can be declared in a BNF syntax.
DeclPart is a declaration of the shape NAME1 : TYPE1, . . . ,NAMEn : TYPEn . A

Predicate is a Z expression that evaluates to true or false and comprises the standard
operators from predicate logic, ∧,∨,⇒,⇔ and quantifications

Predicate ::= ∀SchemaText • Predicate |
∃SchemaText • Predicate

SchemaText ::= DeclName [ ‘ | ’ Predicate ] .

For instance, monotonicity of a function f : R→ R is defined in Z syntax by

∀ x, y : R | x ≤ y • f (x) ≤ f (y).

To avoid unnecessary mixing of syntactic constructs, we will use the notation of Z
for predicates throughout this document.

Remark 2.1.2 (Booleans and reals in Z). Note that we follow the approach of Hoen-
icke with respect to the Boolean type B. The type B is often useful but not directly
declared in the Z standard. Nevertheless, as explicated in [Hoe06], B can easily be
defined as abbreviation in standard Z syntax, so we consider B as given. Analogously,
the type R is also not defined in the mathematical toolkit of the Z standard. We do
not explicitly give an axiomatisation of real numbers in terms of a Z specification and
instead refer to existing works on this [Art96, OB97, Toy98].
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Z Semantics

The Z ISO standard [ISO02] defines the semantics of Z expressions as the set of
possible values for all named symbols. The following symbols are used to describe the
Z semantics: U is the universe of all semantical values for Z expressions, W is a set
of subsets of U for expressions that are not generic, and Model : NAME 7 7→ U assigns
values to symbols, where NAME is the set of all possible named Z symbols, and 7 7→
denotes a finite partial function. With these basic elements, the semantical relations
on Z terms are defined:

• JParagraphKD ∈ Model ↔ Model assigns a meaning to paragraphs with the
intuition that a paragraph declaring or restricting Z symbols relates an input
model to a model that is extended according to the paragraph.

• JPredicateKP ∈ PModel assigns a set of valid models to a predicate.

• JExpressionKE ∈ Model → W assigns a meaning to Z expressions, i.e., for a
given model of the symbols from the expression, the expression is evaluated to
a value from the semantical domain W.

Object-Z

Object-Z (OZ) has been developed by Graeme Smith [Smi92, Smi00] to facilitate
object-oriented modelling with a Z-based language. Thus, it incorporates the standard
concepts of object-orientation like classes, objects, inheritance, and polymorphism.
Beyond that, OZ is a conservative extension of Z such that all Z specifications are
also valid OZ specifications.
To give an example of the main OZ construct, a class specification, we extend the

Train example from the beginning of this section:

Train

pos, spd : R
ok, ebApplied : B
ma, bd : R
maxbd,maxcd,maxspd : R

maxbd > 0
maxcd > 0
maxspd > 0

Init
maxcd = 110
maxspd = 10
maxbd > 0
ma − pos > maxbd + maxcd
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com updPos
∆(pos)

pos′ = pos + spd ·DT

com extend
∆(ma)
newMA? : R

ma′ = newMA?

...

This class Train (which is not completely presented here) describes the state space
of Train objects together with possible operations on the state space, as well as all
allowed initial values of attributes. The state space is defined with a so-called state
schema, that defines, similarly to a standard Z schema, real-valued variables pos and
spd representing the position and speed values of a train, some Boolean attributes
ok, ebApplied etc. The schema marked with Init contains a predicate, defining initial
values of the class attributes. The named schemas com updPos and com extend are
the operations of the class, which change the state space. The use of such operations
is the only way to change the state space of the class. For example, the operation
com updPos defines how the position variable pos is updated (DT is the length of the
time interval from the last position update). Analogously to standard Z schemas, the
∆-expression is used to introduce the primed version of pos, i.e., a (primary) variable
can only be changed if it occurs in the ∆-list of an operation. The com extend schema
additionally declares an input variable newMA?.
The syntax of state schema, Init schema, and operation schema is defined by:

OZ State ::= DeclPart
[ ∆
DeclPart ]

(state schema)

[ Predicate ]

Init ::= Init
Predicate

(Init schema)

Operation ::= com NAME
∆(NAME , . . . ,NAME)

(operation schema)

[ DeclPart ]
[ Predicate ]
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2.1.3. Duration Calculus

The Duration Calculus (DC) is an interval based dense real-time logic that was intro-
duced in the early 1990s by Zhou Chaochen, C.A.R. Hoare, and A.P. Ravn [ZHR91]
as part of the ProCoS project [HHF+94]. With DC formulae, properties over the dur-
ation of states in given time intervals can be formulated. The textbook [ZH04] gives
a general overview on theoretical results on the DC. The following sections explicate
syntax and semantics of DC.

DC Symbols

The syntax of DC is built on the following set of symbols.

• Observables X ∈ Obs. Observables (or state variables) are time-dependent vari-
ables having a finite domain, denoted DX for an observable X . We use continu-
ous time as time domain: Time == R+ (for DC with discrete time see, e.g.,
[ZH04]).

• Functions f : Rn → R and predicate symbols p : Rm → B.

• Time-independent variables Vars.

These symbols are interpreted by the following mappings:

• The semantics of an observable X is a mapping from time into the data domain
of the observable

IJXK : Time → DX ,

called interpretation. The mapping IJXK is required to have finite variability,
i.e., in every finite time-interval a state is not changed infinitely often.

• Function and predicate symbols are interpreted by corresponding functions

f̃ : Rn → R and p̃ : Rm → B.

We always interprete the arithmetical function symbols +,−, ∗, / and relations
<,≤,=,≥, > by their standard meaning.

• Global variables are interpreted by valuations

V(x) ∈ R.

The set of all valuations is denoted by Val.
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State Assertions

State assertions (also state expressions) describe the state of the system at a given
point in time, and they are defined by the following grammar:

StateExpr ::= 0 | 1 | X = d | ¬StateExpr | (StateExpr ∧ StateExpr),

where d ∈ DX . The values 0 and 1 represent the Boolean constants true and false
(for the purpose of the definitions of this section, we identify B with the set {0, 1}).
The remaining Boolean connectives like ∨,⇒ are considered as abbreviations.
The semantics of state assertions, which are also time-dependent, is given by the

inductively defined extension of interpretations I from observables to state assertions,
IJStateExprK : Time → B.

IJ0K(t) = 0

IJ1K(t) = 1

IJX = dK(t) =

{
1, if IJXK(t) = d
0, otherwise

IJ¬πK(t) = 1− IJπK(t)

IJπ1 ∧ π2K(t) =

{
1, if IJπ1K(t) = 1 and IJπ2K(t) = 1

0, otherwise.

DC Terms

DC terms express the duration of states in fixed time-intervals. The syntax is defined
by

TermDC ::= x | ` |
∫

StateExpr | f (TermDC , . . . ,TermDC ),

where x is a global variable, f a function symbol, and ` a special symbol referring to
the length of a time-interval.
A term θ is interpreted by a mapping

IJθK : Val × Intv → R

over a fixed interval from the set

Intv := {[b, e] | b, e ∈ Time, b ≤ e}

and a valuation of global variables from Val. The mapping is inductively defined by

IJxK(V, [b, e]) = V(x)

IJ`K(V, [b, e]) = e − b

IJ
∫
πK(V, [b, e]) =

∫ e

b
IJπK(t)dt

IJf (θ1, . . . , θn)K(V, [b, e]) = f̃ (IJθ1K(V, [b, e]), . . . , IJθnK(V, [b, e])),
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with terms θi and a state assertion π. That is,the semantics of ` is the length of the
considered interval. The semantics of a term

∫
π is the overall time, in which π is

evaluated to true on the considered interval. The expression
∫ e
b IJπK(t)dt is Riemann-

integrable because of the finite-variability of all observables. Therefore, the definition
is well-defined.
If a term does not contain global variables, we omit V and abbreviatory write
IJTermDC K[b, e] instead.

DC Formulae

Based on DC terms, we now define DC formulae:

FormulaDC ::= p(TermDC , . . . ,TermDC ) | ¬FormulaDC
| (FormulaDC ∧ FormulaDC ) | ∀ x : FormulaDC | FormulaDC aFormulaDC .

Besides the usual Boolean connectives and quantifications (the missing connectives
are again defined as abbreviations), DC formulae may contain the essential chop
operator FaG, dividing an interval into two sub-intervals such that F holds on the
first sub-interval and G on the second.
The semantics of a DC formula F is defined by the mapping

IJFK : Val × Intv → B

with

IJp(θ1, . . . , θn)K(V, [b, e]) iff p̃(IJθ1K(V, [b, e]), . . . , IJθnK(V, [b, e]))

IJF1 ∧ F2K(V, [b, e]) iff IJF1K(V, [b, e]) and IJF2K(V, [b, e])

IJ∀ x : F1K(V, [b, e]) iff for all d ∈ R holds IJF1K(V[x := d], [b, e])

IJF1; F2K(V, [b, e]) iff there is m ∈ [b, e] such that
IJF1K(V, [b,m]) and IJF2K(V, [m, e]),

where the Fi are DC formulae and the θi DC terms. We again omit the valuation V
if it is not needed, and we say that a DC formula F holds on an interval [b, e] for
I (written I, [b, e] |= F) iff IJFK(V, [b, e]) holds for all valuations V. We say that I
satisfies F (written I |= F) iff F holds for an interval [0, t] for I:

I, [0, t] |= F for a t ∈ Time with t > 0.

We sometimes write JFK if we mean the set of all interpretations satisfying F .
The following useful syntactic constructs are defined as abbreviations:

de := ` = 0 (point interval)
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dϕe := (

∫
ϕ = `) ∧ (` > 0) (ϕ holds everywhere)

3F := trueaFatrue (F holds eventually)
2F := ¬3¬F (F holds always).

Integrating Z Expressions into DC

Up to now, we considered standard DC with state assertions over observables with a
finite domain. But we are interested in a uniform integration of DC with CSP and OZ,
where Z predicates are used to describe the state of a system. Hence, it is preferable
to use Z predicates for definitions of system states in DC formulae. Hence, we extend
the syntax for DC state assertions by Z predicates:

StateExpr ::= Predicate.

In Z, the semantics of a predicate ϕ is given by JϕKP , i.e., a set of models. Thus, to
interprete the predicate as a DC state assertion, which needs to be time-dependent,
we use—analogously to interpretations for observables—a mapping assigning a model
to the symbols in ϕ for every point in time: IZ : Time → Model. We again require
the finite-variability for I. Then, a state assertion ϕ can be interpreted by

IJϕK(t) =

{
1, if IZ (t) ∈ JϕKP

0, otherwise.

Event Model

The semantical domain of DC and Z symbols is defined in terms of models or valu-
ations if a symbol is interpreted at a given point in time. It is defined in terms of
interpretations if a symbol is interpreted over a time-interval. In order to integrate
events into DC (and later into CSP-OZ-DC) it is therefore helpful to express the event
notion of CSP in the same way. Thus, we model events with Boolean variables with
the idea that the corresponding event occurs whenever the Boolean variable changes
its value.
This notion of events can be integrated into the DC. The occurrence of an event e

is written as l e and defined by

I, [b, e] |= l e iff b = e ∧ ∃n,m ∈ Time | n < b < m • IJeK([n, b]) 6= IJeK([e,m]).

With this, we can also define the non-occurrence of events in point intervals (6 l e) and
on non-singular intervals (� e):

6 l e == ¬l e ∧ ` = 0

� e == ¬(` > 0al ea` > 0).
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DC Counterexample Traces

The DC is an expressive language to formulate dense real-time properties, but it
is undecidable [ZH04] and cannot be implemented in general. A standard example
substantiating this issue is the DC formula

¬3(l aa` = 1al a), (2.2)

which requires that exactly one time unit after an event a no a event occurs. This
formula cannot be implemented with a finite number of clocks, because we need a
new clock for every a event that occurs.
For this reason, there has been a lot of work in identifying sub-sets of DC that

are suitable for automated verification [Rav94, BLR95, Pan02, Frä04, Hoe06, FH07,
MFHR08]. In particular, Hoenicke defines DC counterexample traces that can be
translated into Phase Event Automata and, thus, are suitable for the use with CSP-
OZ-DC. Their syntax is defined as follows:

ce formula ::= ¬(phasea(phase | events)
a · · ·a(phase | events)atrue)

phase ::= (true | dPredicatee) [ ∧ ` ∼ t |∧ ` ∼ NAME ]
[ ∧ �NAME · · · ∧ �NAME ]

∼ ::= ≤ | < | > | ≥
events ::= lNAME | 6 lNAME

| events ∧ events | events ∨ events.

By this, one cannot specify phases with an exact length; thus, problematic formulae
like (2.2) are excluded. Following [FJSS07], this definition slightly extends Hoenicke’s
counterexample formulae, because symbolic constants can be used to specify the
length of intervals: ` ∼ NAME .

2.2. Combining CSP, OZ, and DC Into a Parametric
Specification Language

We now integrate the three single languages of the previous section into the combined
formalism CSP-OZ-DC. The definitions of syntax and semantics of CSP-OZ-DC ba-
sically follow the definitions in [Hoe06], but are slightly widened with respect to
parametric systems. Generally, we are interested in several notions of parameters:

• Data parameters

• Timing parameters

• Parametric compound processes
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Train(DT : Q)
method check, fail, pass method sendCurPos : [curPos! : R]

chan extend : [newMA? : R] local chan applyEB, updPos, updSpd

main c
= (extend → main) u FAR

FAR c
= ((InitialState0 ‖| InitialState1) o

9 (check → Checked))

InitialState0
c
= updSpd → updPos → (InitialState0 u Skip)

InitialState1
c
= (sendCurPos → InitialState1) u Skip

Checked c
= (fail → REC) 2 (pass → main)

REC c
= ((applyEB → RecCycle) o

9 Stop)

RecCycle c
= (updSpd → updPos → RecCycle)

pos, spd : R
ok, ebApplied : B
ma, bd : R
maxbd,maxcd,maxspd : R

Init
maxcd = 110
maxspd = 10
maxbd > 0
ma − pos > maxbd + maxcd

com sendCurPos
curPos! : R

curPos! = pos

com extend
∆(ma)
newMA? : R

ma′ = newMA?

enable fail

¬ok

enable pass

ok

com updPos
∆(pos)

pos′ = pos + spd ·DT

com applyEB
∆(ebApplied)

ebApplied′

com updSpd
∆(spd, bd)

0 ≤ spd′ ≤ maxspd
0 ≤ bd′ ≤ maxbd
ebApplied ⇒

(ma − pos − spd′ > bd′ ∧
(spd′ = 0 ∨ spd′ < spd) ∧
(bd′ = 0 ∨ bd′ < bd))

com check
∆(ok)

(ma − pos ≤ maxbd + maxcd
∧ ¬ok′) ∨

(ma − pos > maxbd + maxcd
∧ ok′)

¬3(l updPosa(dtruee ∧ ` < DT)al updPos)
¬((dtruee ∧ � fail)a6 l faila(dtruee ∧ � fail ∧ � check ∧ ` > 10 ·DT)a true)

In
te
rf
ac
e

C
SP

pa
rt

O
Z
pa

rt
D
C

pa
rt

Figure 2.1.: Exemplary CSP-OZ-DC specification

• Parametric number of parallel processes

The good news is that the standard definition of CSP-OZ-DC already supports para-
metric specifications: data parameters—specified with Z—are inherently integrated in
the of CSP-OZ-DC. Timing parameters of CSP-OZ-DC are introduced in [FJSS07].
Nevertheless, CSP-OZ-DC does not directly support compound processes. We will
develop a notion of parametric compound processes in Chap. 3 up to Chap. 6 that
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is used in our Verification Architecture approach and that integrates well with the
CSP-OZ-DC approach. Verification of a parametric number of processes is not part
of this work.

2.2.1. Syntax of CSP-OZ-DC

A (parametric) CSP-OZ-DC specification is defined as follows.

Param COD Class ::=

NAME [ [NAME , . . . ,NAME ] ] [ (SchemaText) ]
Interface
Paragraphs
OZ State
Init
[ Operation · · ·Operation ]

[ DC ]

Paragraphs ::= ProcessDeclaration NL
[ Z Paragraph · · ·Z Paragraph ]

NL stands for a line break. So, a CSP-OZ-DC extends the OZ concept of a class
by an interface, a process declaration part, and the DC part, which are introduced
below. The remaining elements, Z Paragraph, OZ State, Init, and Operation, are the
same as for OZ classes as defined in Sect. 2.1.2. Behind the class name, a class may
introduce formal parameters: in square brackets a list of free types can be defined that
are local to the class, optionally followed by round brackets declaring further class
parameters. For instance, the class Train in Fig. 2.1—that gives an exemplary CSP-
OZ-DC specification for the train controller of our running example—has a rational
parameter DT , which is used as time constant to model the cycle time of a train.
The basic idea for the integration of OZ and CSP is that the CSP part structures the

control flow of the operations occurring in the OZ part. At every point in time when a
CSP event occurs, the corresponding state change from the OZ part is executed. The
DC formulae can further restrict the control flow by imposing timing constraints on
the events. With the embedding of Z expressions into DC formulae from Sect. 2.1.3,
the DC part can additionally restrict the state changes from the OZ part.

Interface

At the beginning of every CSP-OZ-DC class the interface to other classes needs to
be declared. The interaction of CSP-OZ-DC classes is modelled with CSP processes,
which fully encapsulates the inter-class communication in CSP-OZ-DC. Thus, the
interface needs to declare all CSP events or channels that can be used for synchron-
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isations. The syntax of the interface part is defined by:

Interface ::= ChannelDecl NL . . .NL ChannelDecl
ChannelDecl ::= chanNAME , . . . ,NAME [ : [DeclPart] ]

| methodNAME , . . . ,NAME [ : [DeclPart] ]
| local chanNAME , . . . ,NAME [ : [DeclPart] ]

There are three types of channels, global channels, local channels, and methods. The
channel types chan and method only differ in a software engineering view: method is
used when it is intended that the class implements itself, whereas chan indicates that
the method from another class is called. Formally there is no difference. Local channels
are not visible to the outside of the class and cannot be used for synchronisations.
Channels can have parameters whose types are specified with a DeclPart declaration.
These parameters are used to share data values between classes.
The example in Fig. 2.1 declares the methods check, fail, and pass, for which op-

erations are defined in the OZ part. The control flow of the methods is restricted by
the process equation in the CSP part (which is identical to the CSP equation system
from Example 2.1.1). The methods sendCurPos and the channel extend have real-
valued parameters for sending the current train position (output variable curPos!) to
an environment component (for instance the RBC) and for receiving a new movement
authority (input variable newMA?).

Process Declarations

The CSP part in CSP-OZ-DC consists of a process equation system with standard
CSP processes (Sect. 2.1.1) extended with unknown processes in order to deal with
the structures we develop in this work.

ProcessDeclaration ::= ProcessEquationNL · · ·NL ProcessEquation
ProcessEquation ::= NAME c

= (Process | UnknownProc)

UnknownProc ::= Proc\A,V ,

where A ⊆ Events and V ⊆ State. A special process main is used to indicate the
process that is initially active. The idea of an unknown process Proc\A,V is that
arbitrary behaviour is allowed expect for events from the exclusion alphabet A and
except state changes in V . Unknown processes are analysed in the following chapters.
To simplify the presentation, we use a restricted version of CSP processes in CSP-

OZ-DC specifications here. Fischer and Hoenicke additionally allow Z schema expres-
sions within the CSP part (e.g., to pass local values from one event to another or to
parameterise process equations) and also define parameterised operators for parallel
composition and choice. We go without these more complex CSP expressions, because
they are not supported by the verification tools we use for our case studies. For a full
definition of ProcessDeclaration see [Fis00, Hoe06].
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DC Part

The DC part consists of a list of DC counterexample traces.

DC ::= ce formula NL . . .NL ce formula

Events and variables of the DC part need to be defined in the interface or in the state
schema of the class.
The example of Fig. 2.1 contains two counterexample formulae. The first one spe-

cifies that there are at least DT time units between two updPos events, where DT
has been defined as class parameter. The second states that as long as no fail event
occurs, a check event occurs at least every 10 · DT time units. A second possibility
would have been to enforce a similar behaviour by accessing the state space of the
class, e.g., with a formula

¬(dokea(doke ∧ � check ∧ ` > 10 ·DT )a true),

demanding the desired behaviour for check as long as the Boolean variable ok has
the value true.
Note that the state space of suchlike systems is infinite due to several reasons: we

have a system with dense real-time behaviour, the state space is infinite because of
infinite data types like reals or possibly rich infinite data structures like lists, and
processes with unknown parts represent an infinite number of concrete processes.
Moreover, the case study requires the transfer of messages including data values
from infinite domains (real-valued train positions), which is not possible within the
standard CSP approach, where message transfer is realised via compound events
[Sch99].

2.2.2. Semantics of CSP-OZ-DC
We have already defined the semantics of DC formulae with events and data in terms
of interpretations, which is a suitable semantical domain also for the CSP-OZ-DC
combination. Overall, the possible interpretations of a CSP-OZ-DC specification can
be directly computed by the interpretations of its single parts.
So far the semantics of a CSP process is a set of traces of events, but we have already

expressed events by changes of Boolean variables. Therefore, traces can canonically be
modelled by interpretations. An interpretation I satisfies a process P, written I |= P,
iff there is a run 〈a1, a2, . . . 〉 of the LTS of P and points in time t0, t1, · · · ∈ Time
with 0 = t0 < t1 < t2 < . . . and models I(t) =Mi for ti ≤ t < ti+1 such that

Mi(ai+1) 6=Mi+1(ai+1) for i ≥ 0,

where the ai are Boolean variables. The sequence 〈M0,M1, . . . 〉 is called untimed
sequence of I and denoted with untime(I). If the main process is satisfied by an
interpretation, we also write I |= CSP Part.
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The semantics of Z expressions has been given by models of its symbols. The se-
mantics of OZ is in [Smi92] defined by the history of models that an object has passed
through, which basically are untimed interpretations. We say that an interpretation
I with untime(I) = 〈M0,M1, . . . 〉 satisfies the OZ part of a class, I |= OZ part, iff

M0 ∈ JInitKP

Mi ∈ JStateKP

Mi−1 ∪M′i ∪Mi(opi1) ∈ Jcom opiKP

for an arbitrary sequence of operation schemas com opi .M′i is a valuation of primed
symbols:M′i(v′) =Mi(v). The symbol 1 is used to distinguish parameter variables
of operations; opi1 represents the parameters of the operation opi (for details on
handling of operation parameters see [Hoe06]).
With these arrangements we can define the semantics of CSP-OZ-DC specifications.

Definition 2.2.1 (Semantics of CSP-OZ-DC specifications)
We define the semantics of a CSP-OZ-DC specification as a set of interpretations
I : Time → Model:



[ Interface
CSP part
Paragraphs
OZ part
| DC part]



E

M :=

{M,M′,M′′ : Model; I : Time → Model |
N ∈ JInterfaceKEM
∧ (M∪N ,M′) ∈ JParagraphsKD
∧ ∀ t : Time • M′ ∪M′′ ⊆ I(t)
∧ I |= CSP part
∧ I |= OZ part
∧ I |= DC part
• I }.

The modelM is the model of the environment of the class. The interface is defined
as a set of variable constructions, and thus, its semantics is, according to the Z
standard [ISO02], given by the set of bindings JInterfaceKEM, declaring the channel
types. Therefore, in the CSP-OZ-DC semantics we need to extend the model of the
environment M by these bindings for the channels and by all local declarations in
Paragraphs. Due to I |= OZ part, the state variables are defined in the models I(t),
and the same holds for the events from CSP part.
In the original definition of the CSP-OZ-DC semantics in [Hoe06], only interpret-

ations over public channels are included by which only these channels are visible
outside of classes. We here use a visibility semantics, in which the full interpretations
of all symbols are included, because the old semantics suffers from the fact that the
state variables are not visible in the semantics such that, formally, properties over
state variables cannot directly be verified.
Sometimes it is necessary to access all possible initial models of a CSP-OZ-DC

specification. We therefore define

Init(cod) := JInitKP ∩ JStateKP ∩
⋃

M:Models
JParagraphsKDM.
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So, Init(cod) contains all models that satisfy the state schema and the initial schema
of cod and that respect the axiomatic declarations of the paragraph section.
We also define the semantics of systems of specifications. As we use the visibility

semantics for CSP-OZ-DC, we define the parallel composition of CSP-OZ-DC spe-
cifications only for classes with disjoint symbols except for public channels. If this is
not the case then local variables like state variables or local constants and channels
have to be renamed to unique, new identifiers.

Definition 2.2.2 (Parallel composition of systems)
Let c1 and c2 be two CSP-OZ-DC specifications, that agree only on the public channels
from the interface part, which can be achieved by renaming local variables, declara-
tions, and channels. Formally, if Statei ,PrivateInterfacei , and Paragraphsi are the
state schema, the private interface (i.e., the restriction of the interface to local chan-
nel declarations), and the paragraphs part of ci for i ∈ {1, 2}, we demand

domState1 ∩ domState2 = ∅
domPrivateInterface1 ∩ domPrivateInterface2 = ∅
∀M,M1,M2 : Model | (M,M1) ∈ JParagraphs1KD,

(M,M2) ∈ JParagraphs2KD • M1 ∪M2 ∈ Model.

We then define the parallel composition of CSP-OZ-DC systems like in [Hoe06]:

Jc1 ∧ c2KEM := {I1 : Jc1KEM; I2 : Jc2KEM
| ∀ t : Time • I1(t) ∪ I2(t) ∈ Model
• λ t : Time • I1(t) ∪ I2(t)}

So, the semantics of the composition of two CSP-OZ-DC specifications contains all
interpretations on which both components agree.

Remark 2.2.3 (Value and reference semantics). For the sake of simplicity, we also
follow the convention of Hoenicke and Fischer to use the value semantics for pure OZ
classes (i.e., without CSP and DC part) to avoid mutual dependencies if several classes
share the same reference to an object. See [Fis00, Hoe06] for a detailed comparison
of reference and value semantics in CSP-OZ and CSP-OZ-DC.

2.2.3. Related Combined Approaches
We have chosen to apply our approach exemplary to case studies modelled with CSP-
OZ-DC, because it has some nice properties like its strict separation of concerns that
allow modelling of the three system dimensions, control, data, and time, independ-
ently. In addition, CSP-OZ-DC has a compositional operational semantics that is
presented in the next section. Simultaneously with the development of CSP-OZ and
CSP-OZ-DC, there has been a lot of work in the integrated formal methods com-
munity on similar combined approaches: Real-time Object-Z [SH99, SH02] integrates
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real-time constraints into OZ, and TCOZ [MD98] and RT-Z [Süh99] combine OZ and
Z with Timed CSP [RR86, Sch95, Sch99], a CSP dialect with a time-out operator.
The untimed language CSP-OZ developed by Fischer [Fis97] is the basis for CSP-

OZ-DC. Another combination of CSP with Z (without time) is Circus [WC01], which
has been developed with a focus to step-wise refinement of specifications. Analogously,
there are several combinations of Event-B [AM98] with CSP [But00, TS00, STW10]
(also without time).
For more details on combined approaches related to CSP-OZ-DC and CSP-OZ, we

refer to the work of Hoenicke or Fischer.

2.3. Phase Event Automata
2.3.1. Syntax and Semantics of Phase Event Automata
Phase Event Automata (PEA) are a class of timed automata [AD94] that describe the
behaviour of state- and event-based systems. They are developed in [HM05b, Hoe06]
as a model for the operational semantics of CSP-OZ-DC specifications.
In contrast to standard timed automata introduced by Alur and Dill [AD94], which

only comprise event occurrences and timing constraints over real-valued variables
called clocks, PEA also allow to specify properties over the data of a system. A
distinguished feature of PEA is that parallel components synchronise on both data
and events, which induces that the parallel composition of PEA is compositional
with respect to safety properties. Due to this compositionality and the inclusion of
events, data, and time, PEA are well-suited as a model for the operational semantics
of CSP-OZ-DC.

Syntax of PEA

PEA inherit the notion of clocks from timed automata. A clock is a special variable
that is automatically incremented as time passes. The following definition of PEA is
based on [Hoe06], but differs in that we also allow symbolic constants (called timing
parameters) to occur in clock invariants.

Definition 2.3.1 (Clock constraints)
For a set Clock of clock variables and timing parameters TimePar, the set L(C ) of
clock constraints with constants is defined by the following BNF grammar:

θ ::= c < q | c ≤ q | c < T | c ≤ T | θ ∧ θ | ¬θ,

where c ∈ Clock is a clock, q ∈ Q+ is a rational constant, and T ∈ TimePar is a
timing parameter.
The set of convex clock constraints Lc(C ) is given by the following grammar:

θc ::= c < q | c ≤ q | c < T | c ≤ T | θc ∧ θc

The operator strict(θ) replaces all occurrences of ≤ in θ by <.
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The semantics is given by clock valuations η : Clock → Time, assigning values from a
time domain to clocks. The set of all clock valuations is denoted by ClVal. Here, the
time values are usually given by non-negative reals R+. The semantics of a timing
parameter T is given by a modelM : TimePar → Q+ assigning a rational constant
to T that has an arbitrary value but is fixed over time. We write η,M |= θ iff θ holds
for η andM. For a set of clocks X , we denote by (η+ t) the increasing of clocks, i.e.,
(η+ t)(c) := η(c) + t, and by η[X := 0] the valuation, where each clock in X is set to
zero, and the values of the remaining clocks are given by η.
Let L(V ) denote the set of predicates over variables in V . Its semantics is defined by

models (or valuations) from Model, i.e., mappingsM : L(V )→ D into a semantical
domain D.

Definition 2.3.2 (Phase Event Automaton)
A phase event automaton is a tuple A = (P,V ,A,C ,E , s, I ,P0), where

• P is a finite set of locations with initial locations P0 ⊆ P,

• V is a finite set of system variables,

• A is a set of Boolean event variables,

• C is a finite sets of real-valued clocks,

• E ⊆ P × L(V ∪V ′ ∪A ∪ C )× P(C )× P is a set of transitions,

• s : P → L(V ) associates with each location a state invariant,

• I : P → Lc(C ) associates with each location a convex clock invariant.

A tuple (p1, ϕ,X , p2) ∈ E represents a transition from p1 to p2 with a guard ϕ over
(possibly primed) variables, clocks, and events, and with a set X of clocks that are re-
set when taking the transition. Primed variables v′ denote the post-state of v, whereas
v always refers to the pre-state. As predicates over clocks, the clock constraints from
Def. 2.3.1 are allowed. In addition, we postulate the presence of a stuttering transition
for every location of the automaton:

Definition 2.3.3 (Stuttering transition)
A transition (p, ϕ,∅, p) is called stuttering transition if∧

e∈A
¬e ∧

∧
v∈V

v′ = v ∧ s(p) ∧ strict(I (p))⇒ ϕ.

This allows the automaton to take a transition doing nothing, i.e., no event occurs,
no clock is reset, and no state variable is changed. This is particularly useful when
defining the parallel composition of PEA below, because we do not have to distinguish
between transitions that are executed synchronously and transitions that are executed
by only one parallel component. Instead every transition step of a parallel composition
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is executed synchronously, and every component that is not involved just executes a
stuttering transition.
Note that in contrast to [Hoe06], our PEA definition does not incorporate initial

transitions to define initial constraints on variables. Instead the definition presented
here is in line with [MFR06, FJSS07, MFHR08] and uses initial locations like in finite
automata or in standard timed automata [AD94, OD08].

Semantics of PEA

The operational semantics of PEA is given by runs over configurations of the shape

(p,Y ,M, η, t) ∈ P × PA×Model × ClVal × Time.

Definition 2.3.4 (Run of a PEA)
A run of a PEA A is a finite sequence of configurations

〈(p0,E0,M0, η0, t0), (p1,E1,M1, η1, t1), . . . (pn ,En ,Mn , ηn , tn)〉,

with locations pi ∈ P, event sets Ei ⊆ A, models of variablesMi , clock valuations ηi ,
and points in time ti ∈ Time. Additionally, we demand that the following conditions
are true:

• p0 ∈ P0

• Mi(a) 6=Mi+1(a) for all i ∈ 0..n − 1 and a ∈ Ei

• Mi |= s(pi)

• η0(c) = 0 for c ∈ Clock

• ηi + ti |= I (pi) for all i ∈ 0..n

• ti > 0 for all i ∈ 0..n

• for all i ∈ 0..n − 1 there is a transition (pi , ϕ,X , pi+1) with

Mi ∪M′i+1, ηi + ti |= ϕ

and ηi+1 = (ηi + ti)[X := 0].

The intuition is that the run of the automaton starts in the location p0. The auto-
maton stays in the location pi for ti time units. During this time, the variables in
V must not change their values, which are given by the model Mi and that satisfy
the state invariant s(pi). The values of the clocks, when pi is entered, are given by
ηi . They are incremented by ti when pi is left. At that time the clock invariant I (pi)
holds. The events in Ei occur and the guard ϕ holds when the transition from pi to
pi+1 is taken. Its unprimed variables are evaluated by the modelMi and the primed
variables byM′i+1. The new value of the clock valuation, γi+1, is computed by adding
the delay ti for the current transition to the old clock valuation under consideration
of the clock resets X of the transition.
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true c ≤ DT

¬updPos

updPos ∧ c := 0

updPos ∧
c ≥ DT ∧ c := 0

¬updPos ∧
c < DT

¬updPos ∧ c ≥ DT

Figure 2.2.: Exemplary Phase Event Automaton

Example 2.3.5. Figure 2.2 pictures a PEA accepting the same interpretations as the
DC formula

¬3(l updPosa(dtruee ∧ ` < DT )al updPos) (2.3)

from the train example in Fig. 2.1. The left location is the initial location with
invariant true. The automaton may stay in this location and execute arbitrary events
except for updPos. An updPos event forces the automaton to enter the right location,
by which the clock variable c is reset. Now, for DT time units the location cannot be
left, and no updPos event can occur before the clock c reaches DT . The invariant of
the location enforces that the location is left, or with another updPos event the clock
is reset again.

Interpretations corresponding to runs. Since PEA are introduced to serve as op-
erational semantics for CSP-OZ-DC, and PEA are also used in Chapter 6 to analyse
timing properties of Verification Architectures, it is useful to examine which inter-
pretations correspond to runs of PEA. We recall that an interpretation is a mapping
assigning points in time to models of symbols, I : Time → Model.

Definition 2.3.6 (Run matches interpretation)
A run 〈(p0,E0,M0, η0, t∆

0 ), . . . (pn ,En ,Mn , ηn , t∆
n )〉 matches an interpretation I iff

for ti =
∑

k∈0..i t∆
k holds

• I(t) =M0 for t < t0

• I(t) =Mi+1 for i ≥ 0 and ti ≤ t < ti+1

• Mi(a) 6=Mi+1(a) for all a ∈ Ei and i ∈ 0..n − 1.

The sequence of models 〈M0,M1, . . . ,Mn〉 is called untimed sequence of I and
denoted by untime(I). We write I |= A iff A has a run that matches I. So, we can
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also relate PEA and DC formulae in the canonical way: a PEA implements a DC
formula, A |= F, iff they accept the same interpretations, i.e., for all I

I |= A ⇔ I |= F .

Parallel composition. PEA composed in parallel synchronise on common events and
additionally on common variables. That is, a variable that occurs in both automata
may only be changed if both automata agree. Clocks are not shared between the
automata. The automata can always step synchronously, because any automaton can
always take its stuttering transitions.

Definition 2.3.7 (Parallel composition of PEA)
The parallel composition of PEA A1 and A2 with Al = (Pl ,Vl ,Al ,Cl ,El , sl ,Ll ,P0

l )
with disjoint clock sets, C1 ∩ C2 = ∅, is given by

A1 || A2 := (P1 × P2,V1 ∪V2,A1 ∪A2,C1 ∪ C2,E , s1 ∧ s2, I1 ∧ I2,P0
1 × P0

2 ),

where ((p1, p2), ϕ1 ∧ ϕ2,X1 ∪X2, (p′1, p′2)) ∈ E iff (pl , ϕl ,Xl , p′l) ∈ El for l = 1, 2.

Hoenicke [Hoe06] shows that the parallel composition of two automata that are stut-
ter invariant, i.e., where every location has a stuttering transition, is again stutter
invariant.
Moreover, in [Hoe06] a very important compositionality result for PEA is proven,

which we cite here.

Theorem 2.3.8 (Compositionality of PEA)
Given PEA A1 and A2 and DC formulae F1 and F2 with A1 |= F1 and A2 |= F2 then

A1 ‖ A2 |= F1 ∧ F2.

This particularly means that any property that has been proven for one component
is also valid for every parallel composition containing this component.

Sequential composition. In later chapters of this thesis, we also need a notion of
sequential composition for PEA that correspond to sequential composition in CSP
processes. To this end, we consider extended PEA with a final location:

A = (P,V ,A,C ,E , s, I ,P0, f ),

in which f ∈ P is a single distinguished location marked as final. One could now
define a specific acceptance condition over final locations, but for our purpose the
final locations are only necessary as glue point for the sequential composition. The
following definition is in line with, e.g., the definition from [OS10].
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Definition 2.3.9 (Sequential composition of PEA)
The sequential composition of PEA A1 and A2 with final locations, where Al =
(Pl ,Vl ,Al ,Cl ,El , sl ,Ll ,P0

l , fl), l ∈ 1..2, with disjoint locations and clock sets, P1 ∩
P2 = ∅ and C1 ∩ C2 = ∅, is given by

A1
o
9 A2 := (P1 ∪ P2 ∪ Pg,V1 ∪V2,A1 ∪A2,C1 ∪ C2,E , s1 ∪ s2, I1 ∪ I2,P0

1 , f2).

The set of locations Pg is a set of new locations that is used to glue together both
automata. It is defined by Pg := {f1} × P0

2 with s(f1, p) = s(f1) ∧ s(p) and I (f1, p) =
I (f1) ∧ I (p) for (f1, p) ∈ Pg. The set of transitions E is defined by

E := E1 \ {e | e = (p, ϕ,X , f1) ∈ E1} ∪
E2 \ {e | e = (p0, ϕ,X , p) ∈ E2, p0 ∈ P0

2} ∪
{(p, ϕ,X ∪ C2, pg) | (p, ϕ,X , f1) ∈ E1, pg ∈ Pg} ∪
{((f1, p0), ϕ,X , p) | (p0, ϕ,X , p) ∈ E2, p0 ∈ P0

2}.

2.3.2. Operational CSP-OZ-DC Semantics in Terms of PEA
In order to apply automated verification techniques, e.g., model checking [CGP99],
to a CSP-OZ-DC specification, Hoenicke defines a translation from CSP-OZ-DC into
PEA. The translation is compositional in the sense that every part of the CSP-OZ-DC
specification is translated on its own:

PEA(CSP-OZ-DC) = PEA(CSP) ‖ PEA(OZ ) ‖ PEA(DC )

if CSP-OZ-DC is a CSP-OZ-DC specification with the corresponding parts CSP, OZ ,
DC . The DC part generally consists of several DC formulae DC1, . . . ,DCn that are
each translated into a single automaton, i.e.,

PEA(DC ) = PEA(DC1) ‖ . . . ‖ PEA(DCn)

CSP part. The translations of the CSP and the OZ part are simple. The CSP
process is translated into a labelled transition system (see Sect. 2.1.1) and rewritten
as PEA without data constraints and time. The LTS has to be finite to be verifiable
by model checking. An example is given in Fig. 2.3.

OZ part. The PEA PEA(OZ ) belonging to an OZ specification OZ is given by
PEA(OZ ) := (P,V ,A,C ,E , s, I ,P0), where

P = {p0, p1}
V = State(var) ∪ {c : A • c1}
A = Set of channels with operation schemas.
C = ∅
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REC applyEB → RecCycle RecCycle

updSpd → updPos → RecCycle updPos → RecCycle

¬applyEB ∧
¬updPos ∧
¬updSpd

applyEB ∧
¬updPos ∧
¬updSpd

¬applyEB ∧
¬updPos ∧
¬updSpd

¬applyEB ∧
¬updPos ∧
updSpd

¬applyEB ∧
updPos ∧
¬updSpd

Figure 2.3.: A PEA representing the REC process of Fig. 2.1 (for the alphabet {ap-
plyEB, updPos, updSpd}; all invariants of the locations are true)

E = {c : A |
c1 = [q1 : Q1; . . . ; qn : Qn ] ∧ com c = [q̂1 : Q1; . . . ; q̂n : Qn | P] ∧
(∀ i : 1..n • q̂i ∈ {qi , qi?, qi !}) •
(p1, only(c) ∧ (let q̂1 == c1′.q1, . . . , q̂n == c1′.qn • com c),∅, p1)}

∪ {i : {1, 2} • (pi , only(τ) ∧ ΞState,∅, pi)}
∪ {(p0, only(τ) ∧ ΞState,∅, p1)}

s = {p0 7→ Init, p1 7→ State}
I = true

P0 = {p0}

The Z term ΞState expresses that no symbol from the state schema is changed, i.e.,
an expression v′ = v is added for every variable v. The OZ part is translated into
an automaton with two locations, one initial location, having the Init schema of the
CSP-OZ-DC specification as invariant, and a second location with a loop transition
for every operation of the CSP-OZ-DC class. The constraint of the state schema of the
CSP-OZ-DC class becomes the invariant of both of the locations. So, the constraints
of the operation schema are directly passed to the transitions and invariants of the
PEA.
In Fig. 2.4, we present a simple example demonstrating the translation of the OZ

part for a CSP-OZ-DC specification.

DC part. The most difficult part is the translation of the DC formulae. Hoenicke
[Hoe06] defined a translation from DC counterexample traces into PEA. When trans-
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Example
chanfoo
chanbar : [p : A]

a, b : A

com foo
∆(a)

a′ = F(a)

com bar
∆(b)
p! : A

b′ = F(b)
p! = b′

(a)

¬foo ∧ ¬bar ∧
a′ = a ∧ b′ = b

¬foo ∧ ¬bar ∧
a′ = a ∧ b′ = b

¬foo ∧ ¬bar ∧
a′ = a ∧ b′ = b

¬foo ∧ bar ∧
b′ = F(b) ∧
bar1′.p = b′ ∧
a′ = a

foo ∧ ¬bar ∧
a′ = F(a) ∧ b′ = b

(b)

Figure 2.4.: Translation of the OZ part (a) into PEA (b)

lating such a formula into an automaton, the resulting automaton has to decide
whether a run matches all of the consecutive phases of a trace formula. The problem
arises that the consecutive phases are not mutually exclusive in the sense that at
any point in time several phases are potentially active. For instance, in formula (2.3)
from Example 2.3.5 when the automaton detects the first updPos event, then the
second trace (` < DT ) can potentially be active or the first true phase can be act-
ive. So, the automaton has to reflect all possible combinations of phases by which
a power-set construction becomes necessary, similarly to the construction of a de-
terministic automaton from a non-deterministic automaton. By this, the size of the
resulting automaton is exponential in the length of the DC counterexample traces.
[MFHR08] gives an overview over this construction. The automaton of Fig. 2.2 is
exactly the outcome of the automated PEA construction of Hoenicke when applied
to formula (2.3).
Note that the translation of Hoenicke can directly be carried over to DC formu-

lae and PEA with symbolic clock constants instead of concrete rational constants
[FJSS07]: Since the translation of Hoenicke and, analogously, the soundness and com-
positionality results do not depend on having concrete values for rational constants,
we can treat timing parameters exactly like rational constants in the translation.

Compositionality of CSP-OZ-DC

Hoenicke showed in [Hoe06] that the compositional PEA semantics of CSP-OZ-DC is
sound, i.e., every part of the specification can be translated on its own into a PEA, and
the parallel composition is computed afterwards. Thus, the compositionality result
for PEA from Thm. 2.3.8 holds similarly for CSP-OZ-DC specifications: if a property
is proven correct for one part of the specification, then it is also correct for the entire
CSP-OZ-DC specification. This enables modular reasoning, because often it suffices
to consider, e.g., only the DC part to prove timing properties.
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3 Extended CSP for
Verification Architectures

We do what we must, Lucien. Sometimes we
can choose the path we follow. Sometimes our
choices are made for us. And sometimes we
have no choice at all.

(Dream, in Season of Mists, Neil Gaiman)
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3. Extended CSP for Verification Architectures

3.1. CSP Processes for Verification Architectures
We firstly define an extension of CSP by data types; then, in a further extension
we introduce constrained unknown processes that are useful to model Verification
Architectures. We denote this extension of CSP by data constraints and unknowns
eCSP.

Terms and formulae. For specifying constraints over data types within CSP pro-
cesses and our dynamic logic extension dCSP, we consider many-sorted first-order
formulae with predicates and function symbols from a signature

Σ = (Sort,SysVar ,Const,Var),

where Sort is a set of sorts, SysVar is a set of (primed and unprimed) system variables
and function symbols with sorts from Sort. Const is a set of unprimed constants or
parameter symbols, and Var is a set of variables. In contrast to the system variables,
the variables in Var do not describe the global state of the system but instead are
used as local variables in constraints, e.g., they are applied to define parameters of
events. Predicate symbols are modelled as special function symbols of sort B. We
distinguish between non-rigid functions SysVar that can be changed over time and
constants (or parameters) Const that are time-independent. We denote terms over
this signature with TermΣ and formulae with FormΣ. In the following, we demand that
every signature Σ contains the function and predicate symbols +,−, ∗, /,=, <,>,≤,≥
for arithmetical operations with the usual fixed interpretations. We write SysVar(P)
or SysVar(γ) to denote the set of all system variables in a process P or a formula γ,
respectively.

Interpretation of function symbols. We express updates of system variables using
the primed notation: in an expression

x ′ = x + c

the primed variant of the system variable x refers to the post-state of x and the
unprimed variant refers to the pre-state of x. We make a commitment that SysVar
implicitly contains a primed symbol for every unprimed symbol whereas Const and
Var do not contain any primed symbols. Note that with respect to the signature
Σ, the system variable x is a non-rigid function symbol with arity 0 from SysVar .
This means that the valuation of the system variable x can change over time, which
is modelled by sequences of valuations for system variables. On the other hand, the
constant symbol c is always interpreted in the same way during a system run. If
such a constant symbol is not fixed to a specific value we denote it as parameter of
a system. Moreover, standard symbols like + are function symbols from Const with
arity 2. As a convention, these symbols are interpreted in the same and usual way for
all possible system runs. One advantage of this proceeding is that we can model data
structures like arrays and lists as functions from SysVar that may change over time.
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Semantics of terms and formulae. The semantical domain for a signature Σ =
(Sort,SysVar ,Var ,Const) is given by sets of values DS for sorts S ∈ Sort. A model
(or valuation) for variables, system variables, or parameters of sort S is a (partial)
mapping M : Var 7→ DS , M : SysVar 7→ DS , or M : Const 7→ DS , respectively. A
model M of an n-ary function symbol f : S1 × · · · × Sn → S is a function on the
data domain:M(f ) : DS1 × · · · × DSn → DS . We consider only models that interpret
standard symbols like +,−, ∗, /,=, <,>,≤,≥ etc. in the usual way and denote the
set of all such models by Model. The semantics of a term f (θ1, . . . , θn) is a mapping
J·K : Model → DS with

Jf (θ1, . . . , θn)KM =M(f )(Jθ1KM, . . . , JθnKM).

The semantics of atomic formulae is defined analogously:

M |= p(θ1, . . . , θn) iff M(p)(Jθ1KM, . . . , JθnKM)

The semantics of quantifiers and Boolean connectives are defined as usual. We use
the convention thatM is a model only for unprimed function symbols, whileM′ is
a model for primed symbols.
With M[v := d] we denote the substitution of a symbol v in the model M. The

modelM[v := d] does agree withM except for v that is evaluated to d:

M[v := d](u) :=

{
d if u = v
M(u) otherwise.

3.1.1. CSP Processes with Data Constraints
As in standard CSP [Hoa85], we consider processes synchronising on structured events,
i.e., events are combinations of a channel with some messages as parameter: c.v1.v2

behaves like a simple event that can be used for synchronisation. It consists of the
channel c and some values or messages v1, v2. Here, channels have a unique sort. With
a channel declaration c : S1 × · · · × Sn the channel c can be used to communicate
values of sort S1 up to Sn , e.g., c.v1. . . . .vn is an event of this channel if vi : Si for
i ∈ 1..n. We denote the sort of a channel c by sort(c).
As usual, we define abbreviations c!y to express the sending of a value in variable y!

and c?x to express the receiving of a value into the variable x?. We use the convention
from CSP-OZ-DC that output variables are always indicated by ! and input variables
by ?. We call x! and y? message variables of c. If the channel is declared as a channel
of sort c : S , then x has to be a variable of sort S . We denote the set of all channels
by Channels. The set of all events is then defined by1

Events == {c : Channels; v1 : S1; . . . ; vn : Sn | sort(c) = S1×· · ·×Sn • c.v1. . . . .vn}.
1Using standard Z syntax for set expressions (similarly to the schema definitions in Sect. 2.1.2), see
[Spi92, ISO02] for details.
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Like in [Hoe06], we use special parameter variables c1i : Si with i ∈ 1..n that hold
the values of the messages of a channel c : S1× · · · × Sn . The distinguished symbol 1
always indicates parameter variables and shall not be used elsewhere.
The alphabet of a process P, i.e., the set of events on which P may communicate,

is given by alph(P).

Syntax of CSP Processes with Data Constraints

The syntax of CSP processes with data over a set of events Events is then given by
the following BNF:

P ::= Stop | Skip | (a • ϕ)→ P | P1 2 P2 | P1 u P2 | P1‖|P2

| P1 ‖A P2 | P1
o
9 P2 | X ,

where a ∈ Events,A ⊆ Events and ϕ is a formula from FormΣ.
In this definition, the difference to the standard CSP definition is that we have

constrained occurrences of events a • ϕ. The intuition is that when the event a
occurs, the state space is changed according to the constraint ϕ, where unprimed
function symbols in ϕ refer to the valuations before the occurrence of a and primed
function symbols to the valuations after a. If a is a structured event with messages,
the constraint ϕ may also include these variables, e.g.,

a!x?y • x! = y? + 1

is a valid constrained event with messages. As a notational convention, we write
ϕ′ to denote a constraint that is equal to ϕ except that every unprimed function
symbol x is replaced by x ′. If not stated otherwise, we write a instead of a • true. As
usual, a process may also be a call of a process identifier X . In this case, there has
to be a unique process declaration X c

= F , which can also be a recursive definition
X c

= F(X), where F(X) is a guarded process containing references to X . As in
[Hoa85], we denote the solution of this process equation by µX • F(X) and demand
that F(X) is a guarded process, i.e., a process that begins with an event (thus, F(X)
does not engage in infinite internal steps). For simplicity, we restrict ourselves to
processes that can be represented without hiding and renaming in order to avoid
infinite non-determinism that can be introduced with these operators.
Additionally, we use replicated CSP operators [Fis00, Hoe06] as an abbreviation:

for a set of events E the following BNF describes processes with replicated operators.

P ::= (2 e : E • P) | (‖A e : E • P) | (‖| e : E • P) | (o9 e : E • P)

We demand that the set E does not introduce non-deterministic infinite branching.
That is, for all processes P and each event a the set

{Q | P a−→ Q}
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has to be finite. Therefore, choices like 2n : N • (a → Pn) are not allowed.
Sometimes it is convenient to throw away the constraints within a CSP process

to get a standard CSP process. Hence, we define a function unconst returning the
unconstrained CSP process for a given CSP process with data constraints:

unconst(P) :=


a → unconst(Q) if P = (a • ϕ)→ Q
unconst(P1) op unconst(P2) if P = P1 op P2

P otherwise,

where op ∈ {2, ‖, ‖|,u, o9}.

Remark 3.1.1. CSP processes may generally be constructed by infinite process terms.
But we restrict ourselves, here and in what follows, to processes with an inductively
constructed syntax. Thus, we only consider replicated process terms like defined above
to obtain inductive process terms, in opposite to [Ros98], where non-deterministic
choices over arbitrary process sets are possible. We already excluded non-determinis-
tically infinite-branching processes. With these restrictions to an inductively defined
syntax, we are able to use structural induction over process terms in our proofs.

Semantics of CSP Processes with Data Constraints

The semantics of CSP processes with data constraints is given here by interpretations
I, mappings from a time domain Time (usually N or R) into the set of all models:
I : Time → Model. A model (or valuation) M for system variables and parameters
of sort S is a (partial) mapping into a corresponding domain:

M : (SysVar ∪ Const) 7→ DS .

We denote the set of all interpretations by Interpretation. So, an interpretation is a
timed sequence of models that corresponds to state changes performed by constrained
event occurrences. Every interpretation belongs to a run of the CSP process. Events
are modelled as Boolean variables that change their values if a corresponding event
occurs (cf. Sect. 2.1.3, page 25). To compute the semantics, we first compute the
labelled transition system (LTS) of the CSP process in the standard way as if there
were no data part (see Sect. 2.1.1) but with events that are annotated with data
constraints. That is, the events of the LTS are compound events of the shape a • ϕ,
which are treated as standard LTS events. Only for the parallel composition a different
LTS rule is used that conjoins the constraints of synchronising events, but apart from
that, it is identical to the standard rule:

P a•ϕ−→ P ′ Q a•ψ−→ Q′

P ‖
A
Q a•ϕ∧ψ−→ P ′ ‖

A
Q′

a ∈ A \ {τ} (constrained parallel)
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We say that an interpretation I fits to a run π = 〈(a1 • ϕ1), (a2 • ϕ2), . . . 〉 of the
LTS iff there are a points t0, t1, · · · ∈ Time with 0 = t0 < t1 < t2 < . . . and models
I(t) =Mi for ti ≤ t < ti+1 such that

Mi(ai+1) 6=Mi+1(ai+1) for i ≥ 0,

where all ai are of sort B in the signature Σ. We call the sequence 〈M0,M1, . . . 〉
untimed sequence of I, denoted by untime(I).
On this basis, we define the semantics of a process: I ∈ JPKM iff

1. there is a run π = 〈a1, a2, . . . 〉 of the LTS of unconst(P) such that I fits to π.
Let the resulting untimed sequence be 〈M0,M1, . . . 〉.

2. M0 =M

3. (Mi−1 ∪M′i) |= ϕi for i > 0

4. Mi(v) =Mi+1(v) for all parameter v ∈ Const and i ≥ 0

5. if ai = X thenMi−1(v) =Mi(v) for all symbols v ∈ SysVar ,

whereM′i is a model for primed symbols, i.e.,M′i(f ′) =Mi(f ).
Note that this definition makes use of the trace semantics and not the failures-

divergences semantics of CSP. If not stated otherwise, we always have the trace se-
mantics in mind. One consequence is that we do not have to distinguish external
choice and internal choice that are semantically equal in trace semantics. But many
results likewise hold for the stable failures model.

Notation. An interpretation I maps points in time to models. But often the exact
points in time of event occurrences do not matter, only the order in which events
occur and the models that are changed. Thus, for the sake of conciseness, when we
write

I = 〈M0, a1,M1, a2, . . . 〉
we mean an interpretation with I(0) = M0 and events a1, a2, . . . that occur in the
specified order at arbitrary points in time and that change the models according to
the definition of the semantics above. To express the occurrence of an event between
two consecutive modelsM and N , we writeM∪N ′ |= l e iffM(e) 6= N (e).
In order to avoid redundancies, we write 〈. . . ,M,X〉 instead of 〈. . . ,M,X,M〉 to

denote that an interpretation represents a terminated run of a process. We omit the
model after X, because it is equal toM except for the valuation of the X-event.
The concatenation of interpretations I1 = 〈. . . ,M〉, I2 = 〈M, b, . . . 〉, where par-

ticularly I1(t) =M,∀ t ≥ t0, is denoted by I1
a I2 with the meaning

(I1
a I2)(t) :=


I1(t) if t < t0 ∧M =M
I2(t − t0) if t ≥ t0 ∧M =M
undefined else.
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The symbol ≡ denotes equivalence—with respect to interpretations—of processes,
also called interpretation-equivalence. That is, P1 ≡ P2 means that for all modelsM
the sets of interpretations for P1 and P2 are equal: JP1KM = JP2KM. We use the
symbol = to denote syntactical equality on process terms. Sometimes we also need the
classical trace-equivalence on processes not considering the data constraints. To this
end, we use the symbol P1 ≡T P2 iff traces(P1) = traces(P2), where the constrained
events a • ϕ are treated as compound events.

3.1.2. Unknown Processes

To be able to specify Verification Architectures we need a higher degree of freedom
than in the CSP definitions of Sect. 3.1.1. To this end, we additionally introduce
unknown processes [Fab09, Fab10a, Fab10b]. Unknown processes are special processes
that allow the occurrence of arbitrary events except for events from a fixed alphabet
and arbitrary changes of variables except for variables from a fixed set. An unknown
process can also choose to terminate. Additionally, these unknown processes may
be restricted by constraints from an arbitrary logic (at least, if this logic has the
same semantical domain as CSP with data constraints). On the level of CSP, these
constraints are handled as black boxes that restrict the possible behaviour of a process.
Those constrained unknown processes are introduced in the next section; we start by
defining unconstrained unknown processes here.

Syntax of CSP with Unknown Processes

The syntax of CSP with unknown processes, denoted eCSP, is an extension of the
syntax from Sect. 3.1.1 by

P ::= Proc\A,V | Proc∞\A,V ,

where A ⊆ Events and V ⊆ SysVar .
An unknown process Proc\A,V can perform arbitrary events except for events from

the given set A. In addition, all variables from set V are not allowed to be changed in
the execution of the process. An unknown process marked with the∞-symbol Proc∞

will never terminate. We use Proc(∞)
\A,V if we refer to either Proc\A,V or Proc∞\A,V . An

unknown process Proc\A,V can be rewritten to

Proc\A,V = Skip 2 (2 a : UτEvents \A • (a • ΞV → Proc\A,V )),

where UτEvents is the universe of all possible events including τ (in contrast to UEvents,
the universe of events without τ). Since the operational semantics of CSP processes
is given by labelled transition systems, we need to extend the set of transition rules
constituting the LTS semantics of a process.
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Transition Rules for Unknown Processes

The set of transition rules for computing the LTS of a CSP process is extended by
the following rules to cope with unknown processes:

Proc
(∞)
\A,V

a•ΞV−→ Proc
(∞)
\A,V

, where a ∈ UτEvents \A

The process can perform an arbitrary event that is not in the set A, and the constraint
of the event has to ensure that symbols from the set V are not changed, which is
expressed in Z syntax by ΞV .

Proc\A,V
X−→ Ω

If the process is not marked as infinite unknown process, it may non-deterministically
decide to terminate.
We constitute our claim of the alternative representation of unknown processes

given above in the following theorem.

Theorem 3.1.2 (Equivalent representation of unknown processes)
Unknown processes can equivalently be represented as

Proc\A,V ≡ µX • Skip 2 (2 a : UτEvents \A • (a • ΞV → X))

and
Proc∞\A,V ≡ µX •2 a : UτEvents \A • (a • ΞV → X).

Proof. We consider the process P1 = Proc\A,V as defined in Sect. 3.1.2 and

P2 = µX • Skip 2 (2 a : UτEvents \A • (a • ΞV → X).

We prove the stronger result that P1 and P2 are equivalent even in stable-failures
semantics2. For this purpose, we have to show that the traces and the failures sets of
both of the processes coincide.
Let the corresponding labelled transition systems be LTS(P1) and LTS(P2). The

initial state of LTS(P1) is Proc\A,V . There are the following possible transitions from
Proc\A,V :

Proc\A,V
a•ΞV−→ Proc\A,V and Proc\A,V

X−→ Ω (3.1)

for all a ∈ UτEvents \A; there are no other locations than Proc\A,V . From this we get
sets of traces

traces(P1) = {w : (UEvents \A)∗ • 〈w〉} ∪
{w : (UEvents \A)∗ • 〈w,X〉}.

2A failure in the stable-failures semantics of CSP is a tuple of a trace and a set of events that can
be refused by the process after executing the trace.

48



3.1. CSP Processes for Verification Architectures

Since the LTS can always perform a X-event in the only location Proc\A,V , it has
no stable3 location. Thus, to compute the failures of P1, we only need to consider all
finite traces that end up in states where a X is possible, which are all finite traces.
The X causes that every set of events may be refused:

failures(P1) = {w : traces(P1),X ⊆ UXEvents • (〈w,X〉,X)}.

The process P2 consists of an external choice. The single parts can perform the
transition steps

Skip
X−→ Ω

(2 a : UτEvents \A • (a • ΞV → X))
b•ΞV−→ X

for all b ∈ UτEvents \A. So, the entire external choice, i.e., the process P2, may perform
the same steps: P2

X−→ Ω and P2
b•ΞV−→ X . The process reference X can be resolved

by X τ−→ P2.
In contrast to LTS(P1), the LTS of P2 has two locations, but again there are no

stable locations, because it is always possible to execute a τ or a X-step. The traces
of LTS(P2) are arbitrary finite traces of events from UEvents \A, and after every trace
the process may terminate. Thus, traces(P2) = traces(P1). Since both of the LTS
have no stable locations and both of the processes have the same alphabet, we also
get failures(P2) = failures(P1), which finishes this proof. �

We could have used the alternative representation as definition for unknown pro-
cesses. Anyway, we have introduced the semantics of unknown processes by means of
its own transition rules for the operational semantics, because it makes the handling
of unknown processes in proofs easier.

3.1.3. Assumptions on Unknown Processes
If we always allow nearly arbitrary behaviour for unknown CSP processes, it will be
hard to prove anything useful over unknown CSP processes. Therefore, unknown pro-
cesses will usually occur in a context where the behaviour of a system is constrained
by additional temporal formulae. Hence, we introduce unknown CSP processes with
additional constraints.

Syntax of constrained unknown processes. The syntax of unknown CSP processes
with additional constraints is given by the following BNF.

P ::= (Proc\A,V •F) | (Proc∞\A,V •F),

where A ⊆ Events, V ⊆ SysVar and F is a temporal formula. The only restriction we
impose on the logic of F is that it has to be defined in the same semantical domain

3A location is stable if it has no outgoing τ or X-transitions.
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as CSP with data constraints, i.e., its semantics has to be given by interpretations
J·K : Model → Interpretation.
The intuition behind an unknown process like Proc\{a,b},{v} • F , where F is, e.g.,

a DC formula, is that during the execution of the process arbitrary behaviour is
allowed provided that the formula F is not violated. In addition, the events a and
b are forbidden and the variable v cannot be changed in this execution. Like in the
previous section the ∞-symbol indicates that the process will never terminate.
The semantics of these additionally constrained processes is given by the inter-

pretations that are permitted by both the unknown process and the constraining
formula.

Semantics of constrained unknown processes. The semantics of an constrained
process is given by interpretations

I ∈ JProc(∞)
\A,V •FKM

iff

• I ∈ JProc(∞)
\A,V KM and

• I is in the semantics of F : I ∈ JFK.

The latter is well-defined because we have demanded that the semantical domain of
F is compatible with the semantics of CSP with data constraints.
The semantics of a constrained unknown process in the context of a CSP expression

can then be computed by exploiting that the trace semantics is a congruence for
the corresponding operators, which is further examined in the next section. So, to
compute the semantics of P � Proc\A,V • F with � ∈ {2, o9}, we lift the operators to
the interpretation level: if I1 ∈ JPKM and I2 ∈ JProc\A,V • FKM, then (I1 � I2) ∈
JP � Proc\A,V • FKM. Unfortunately, this does not work for parallel composition
of processes, because the set of interpretations of a parallel composition cannot be
computed from the interpretations of its constituents. Thus, we focus on processes
without parallel compositions over unknowns at first and instead analyse parallel
compositions over unknowns in Sect. 6.1.
For convenience, we will always write Proc

(∞)
\A,V instead of Proc(∞)

\A,V • true, and
with Proc

(∞)
\A,V • ϕ we implicitly refer to both unconstrained and constrained unknown

processes.

3.1.4. Running Example: A Train Control Protocol
In the introduction (Sect. 1.1), a small train control system was presented, realising
a simple movement authority (MA) procedure for a train and an RBC. The purpose
of the protocol is to allow a train for requesting extensions of an MA while ensuring
that the train never exceeds its current MA.
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For the part of the architecture, we keep the safety of the system abstract: we use
a real-valued variable sf containing a safety value for the system, that is filled with a
concrete meaning when instantiating the system. For the purpose of defining a safe
architecture it is sufficient to demand that sf is never lesser than 0.
The signature of the VA is given by

Σ = ({R,B,Time}, {sf : R, ok : B}, {RD : R,CT : Time},∅),

using the sorts R and B and a time sort Time. Besides the safety value sf , there
is only one other variable ok. In addition, two constants are declared: RD, which
contains a safety distance to the end of the MA, and a time constant CT .
With A = {check, fail, pass, extend} and C = {RD,CT} the process defining the

VA is given by

System c
= (FAR o

9 check • ϕcheck
→ (fail • ϕfail → REC 2 pass • ϕpass → System))

2

(extend • ϕextend → System)

FAR c
= Proc\A,C • FFAR

REC c
= Proc∞\A,C • FREC .

The System process consists of a choice over two sub-processes: one extends the MA
by performing an extend event and the other executes a check cycle. The system phase
FAR, modelled as unknown process, represents the situation where the train is at a
safe distance to the end of the authority. Periodically, a check event is executed and
based on its output the System process is recursively started again or the REC phase
is entered, bringing the train into a safe recovery state (and it is never left again in this
simplifying protocol). REC is defined as an unknown process that never terminates.
Both unknown processes can change the system variables sf and ok arbitrarily, but
the symbols RD and CT are kept constant. No event from A can occur in FAR or
REC . The constraints of this process are given by

ϕcheck = Ξ(sf ) ∧ sf ≤ RD ∧ ¬ok ′ ∨ Ξ(sf ) ∧ sf > RD ∧ ok ′

ϕfail = Ξ(sf ) ∧ ¬ok
ϕpass = Ξ(sf ) ∧ ok

ϕextend = sf ′ > sf
FFAR = ¬3(dsf > RDea` < CTadsf ≤ 0e) ∧

¬3(` > CT )

FREC = ¬3(dsf > 0eadsf ≤ 0e).
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The notation Ξ(sf ) is adapted from the Z language [Spi92], and it denotes a system
variable that is not changed, Ξ(sf ) ≡ sf ′ = sf . The constraint ϕcheck sets the new
value of ok, i.e., ok ′, depending on whether sf is greater or lesser than the safety
distance RD. The movement authority is extended with ϕextend , demanding that the
safety is increased by this operation.
We use DC formulae here to define timed constraints on the unknown parts FAR

and REC . FFAR demands that the safety cannot decrease below 0 within CT time
units if FAR is entered with a safety distance large enough. Additionally, the phase
is to be left after CT time units. And finally, FREC demands that if it is entered with
a safe sf value, then it remains safe.
The safety property, that is to be guaranteed, is that sf is never below or equal to

0, specified by the DC formula

¬3(dsf ≤ 0e).

3.2. Properties of Extended CSP

As our semantics from Sect. 3.1.1 enriches standard CSP trace semantics by data
constraints, one may ask whether important properties of the trace semantics carry
over to our extension. One such property is that the trace semantics is continuous
with respect to the ⊆-order—a property that is useful when examining fixed points
of recursive CSP expressions (cf. Sect. 4.4). It turns out that we can lift most of the
CSP operators to a corresponding relation on interpretation level. To that, we apply
a result of [Ros98] to conclude continuity of the operators. Unfortunately, this does
not hold for the parallel composition operator, which is due to the presence of shared
data. Anyhow, we first show the continuity for the remaining operators and discuss
the problematic parallel composition afterwards.

3.2.1. Continuous CSP Operators

To show the continuity of CSP operators, we express all operators in terms of rela-
tions on interpretations such that the set of all interpretations of a process P⊕Q can
be computed by applying the relations to the interpretation set of the sub-processes
P and Q. For every binary operator ⊕ four relations are necessary: [⊕]1, mapping
interpretations of the first participating process to output interpretations, [⊕]2 map-
ping interpretations of the second process to output interpretations, a ternary rela-
tion [⊕]1,2, describing the output interpretations for the case that both processes are
active, and finally the set of output interpretations [⊕]• for the case that no pro-
cess is active. With these relations the set of interpretations can be —identically to
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[Ros98]—computed by lifting all operators to the interpretation level:

JP ⊕QKM = JPKM⊕I JQKM
S ⊕I R = {u | ∃ s ∈ S , t ∈ R : (s, t, u) ∈ [⊕]1,2} ∪

{u | ∃ s ∈ S : (s, u) ∈ [⊕]1} ∪
{u | ∃ t ∈ R : (t, u) ∈ [⊕]2} ∪
[⊕]•

(3.2)

For the unary operator a → P only [·]1 and [·]• are needed, for basic processes and
unknown processes only [·]•.
The relations for our process semantics are computed as follows4.

[Stop]• = {I | I = 〈M〉}
[Skip]• = {I | I = 〈M,X〉}

[a • ϕ→]• = {I | I = 〈M〉}

[a • ϕ→]1 = {(I1, I2) | I1 = 〈M, . . . 〉, I2 = 〈M, a,M〉a I1 s.t.
M∪M′ |= ϕ and ∀ c ∈ Const :M(c) =M(c)}

[2]1,2 = {(I, 〈M〉, I), (〈M〉, I, I)}
[u]• = {〈M〉}
[u]1 = {(I, I)}
[u]2 = {(I, I)}
[o9]1 = {(I, I) | I does not terminate}

[o9]1,2 = {(〈I1〉a 〈M,X〉, I2, I) | I = I1
a I2}

[Proc\A,V ]• = {I | I = 〈M0, a1,M1, . . . , an ,Mn〉 with
∀ i ∈ 0..n : ai 6∈ A ∧
∀ v ∈ V , ∀ i, j ∈ 0..n :Mi(v) =Mj(v)}

[Proc∞\A,V ]• = {I | I = 〈M0, a1,M1, . . . , an ,Mn〉 with an 6= X ∧
∀ i ∈ 0..n : ai 6∈ A ∧
∀ v ∈ V , ∀ i, j ∈ 0..n :Mi(v) =Mj(v)}

[Proc\A,V • F ]• = {I ∈ JFK ∩ [Proc\A,V ]•}
[Proc∞\A,V • F ]• = {I ∈ JFK ∩ [Proc∞\A,V ]•}

[\X ]1 = {(I1, I2) | I1 fits to run π and I2 fits to run π \X}
[[R]]1 = {(I1, I2) | I1 = 〈M0, a1,M1, a2, . . . 〉 ∧

I2 = 〈M0, b1,M1, b2, . . . 〉 with ∀ i : aiRbi}
4If a relation is not given for an operator it is empty. To avoid cluttering up the definitions we omit
the quantification over the modelM: if not stated else the definitions hold for arbitrary models
M : Model.
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Here, the run π \X is the restriction of π to events not in X .
These definitions of relations for every CSP operator allows us to convey the fol-

lowing theorem about the continuity of the operators.

Theorem 3.2.1 (Continuity of CSP operators in trace semantics)
All CSP operators of our CSP extension with data and unknowns, except for parallel
composition, are continuous with respect to the underlying interpretation semantics
and the ⊆-order. Continuity here means that every operator on interpretation level ⊕I
(with one argument fixed) applied to the least upper bound of a non-empty directed5
set S of interpretations6, written

⊔
S, is equal to the least upper bound of the set

where ⊕I is applied to each interpretation in S, i.e.,

X ⊕I (
⊔

S) =
⊔
{X ⊕I Y | Y ∈ S}.

Proof. In [Ros98] it is proven that every operator that can be lifted to its semantical
domain using a family of relations, as in equation (3.2), is continuous in each argument
with respect to the ⊆-order. �

For this notion of continuity, every continuous operator is also monotone.
An important consequence of this result is that recursive processes defined over

these continuous operators can be identified with its unique fixed point [Ros98], which
particularly facilitates the definition of an induction-based proof rule in Sect. 4.3.6.

3.2.2. Discontinuity of Parallel Composition

When directly conveying the definitions for parallel composition of [Ros98] from traces
to interpretations, we get the relation

[‖A]1,2 = {(I1, I2, I) | I ∈ I1 ‖A I2}

with

I1 ‖A I2 = I2 ‖A I1

〈M〉 ‖A 〈M〉 = {〈M〉}
〈M〉 ‖A 〈M, a,M〉 = {〈M〉}
〈M〉 ‖A 〈M, b,M〉 = {〈M, b,M〉}

〈M1, a,M2〉a I1 ‖A 〈M1, b,M2〉a I2 = {〈M1, b,M2〉a I |

I ∈ 〈M1, a,M2〉a I1 ‖A I2}

〈M1, a,M2〉a I1 ‖A 〈M1, a,M2〉a I2 = {〈M1, a,M2〉a I | I ∈ I1 ‖A I2}
5A set S is directed if each finite subset has an upper bound in S .
6The least upper bound exists, because the set of interpretations is a complete lattice with respect
to the ⊆-order.
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〈M1, a1,M2〉a I1 ‖A 〈M1, a2,M2〉a I2 = {〈M1〉}

〈M1, b1,M2〉a I1 ‖A 〈M1, b2,M2〉a I2 = {〈M1, b2,M2〉a I |

I ∈ 〈M1, b1,M2〉a I1 ‖A I2} ∪

{〈M1, b1,M2〉a I |

I ∈ I1 ‖A 〈M1, b2,M2〉a I2}

for a, a1, a2 ∈ A with a1 6= a2 and b, b1, b2 6∈ A. The trace set is empty for all re-
maining cases. Note that a has a higher precedence than ‖. This definition of trace
synchronisation reveals a characteristic of the CSP semantics with data constraints:
parallel components synchronise on events as specified in the synchronisation alpha-
bet and on the data constraints if a common transition step is possible, but if one
component executes a step single-handedly it may change the system variables arbit-
rarily (according to its constraints). Thus, this definition is actually only correct for
processes synchronising on all events and for data-independent parallel components,
i.e., components that do not read symbols that are changed by the other component.
The following example demonstrates this issue.

Example 3.2.2. An example shows why continuity and even monotonicity for parallel
composition with shared data fails. Consider the processes

P1
c
= (a • x ′ = 1 ∧ y′ = 1)→(

(b1 • x = 1 ∧ y′ = 1→ Skip) 2 (b2 • x = 0 ∧ y′ = 0→ Skip)
)

P2
c
= (c • x ′ = 0 ∧ y′ = y)→ Skip.

WithM0 |= y = 1, the interpretations of JP1KM0 are of the shape

〈M0, a,M1, b1,M2〉,

s.t.Mi |= y = 1 for i ∈ 1..2. All interpretations of JP2KM0 have the shape

〈M0, c,M3〉,

with M3 |= x = 0 and M3 |= y = 1. Particularly, all interpretations of P1 and P2

satisfy y = 1 for all its models, and additionally, the branch of P1 with b2 is never
activated. Thus, b2 does not occur in the set of interpretations for P1.
But in the parallel composition of P1 and P2, JP1 ‖ P2KM0, the interpretation

〈M0, a,M1, c,M3, b2,M4〉

with M4 |= y = 0 occurs, because the b2 branch is now activated since P2 sets
x ′ = 0. For this reason, the set JP1 ‖ P2KM0 contains interpretations that cannot be
derived from the semantics of its parts JP1KM0 and JP2KM0. The parallel composition
operator is neither continuous nor monotone for the interpretations semantics.
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For this reason, our interpretation-based semantics has the weakness that paral-
lel compositions cannot directly be used under recursion because, in this case, the
recursion does not need to have a unique fixed point anymore. For simple parallel
compositions without unknown processes this is actually not relevant for our proof
system, because parallel composition is anyway resolved by expansion into a process
over choices (Def. 3.3.1). This is possible, since the interpretation semantics of a pro-
cess is computed by first deriving a trace from the LTS of a process and, then, the
data-part is considered in a second step. In this second step, the information about
the potential structure (like the second branch of the P1 choice in Example 3.2.2)
of the process gets lost. By translating the process into an equivalent representation
without parallel composition before computing its interpretations, we can circumvent
this problem.
With parallel composition over constrained unknowns, this is not possible anymore

because we do not have an LTS representation of such a process and cannot trans-
late it into a process without parallel composition. Therefore, we investigate parallel
compositions over unknowns in Chap. 6 and present an alternative semantics for pro-
cesses with data in Sect. 6.1.5, which is more complex but does not have the identified
problems. A further approach that will presumably not have these problems is to use
a parallel composition operator that synchronises also on data similarly to PEA. But
this does not reflect the behaviour of systems that can access common variables (like
this is also the case for processes within CSP-OZ-DC class specifications), that are
the application domain of this work. Hence, we do not consider this approach here.

3.3. Normal Forms

Before introducing our dynamic logic extension dCSP for CSP processes with data
and sequent calculus rules, we need a further utility that helps us handle parallel
composition and interleaving in the process terms occurring in dCSP expressions: a
guarded normal form for CSP expressions.

Definition 3.3.1 (Guarded Normal Form)
A CSP process (with data) P is in Guarded Normal Form (GNF) if it is of the shape

P ::= 2 ai : Σ • ai → Pi |2 ai : Σ • ai → Pi 2 Skip | Skip | Stop | X

| Proc(∞)
\A,V • F | Proc

(∞)
\A,V • F � P | P � Proc

(∞)
\A,V • F ,

where ai 6= aj for i 6= j, Σ ⊆ UEvents, and � ∈ {‖,2, o9}. The process call X is declared
by X c

= Q where Q is a choice, 2 ai : Σ • ai → Pi or 2 ai : Σ • ai → Pi 2 Skip,
that has to be again a process in GNF.
Note that the events ai can be constrained events ai • ϕ, but we omit the constraints

in the definition, because they are of no relevance here.
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An unknown process Proc(∞)
\A,V is considered to be in GNF, because we apply them

like basic processes that cannot be further decomposed. Thus, we also need to list
unknown processes in all possible operator contexts in the definition.
We directly affiliate the following theorem:

Theorem 3.3.2
Every CSP process is trace-equivalent to a process in guarded normal form.

Proof. Let P be a CSP process with data. The proof is by structural induction over
P. For the basic cases P = Stop,P = Skip, and P = Proc

(∞)
\A,V • F the proposition

follows immediately. For P = X , we need to examine the declaring process. So, our
induction hypothesis is that the proposition holds already for all sub-processes of P.
We examine the possible top-level operators of P (we omit all constraints of events
since they are not relevant for the proof):

P = a → Q: Then P is of the desired shape 2i∈1..1 a → Q.

P = P1 u P2: In trace semantics also P ≡ P1 2 P2.

P = P1 2 P2: We show for processes P1 and P2 in GNF by induction over the sum of
the maximal nesting depth of the replicated choice operator 2 ai : Σ • ai → Qi
in P1 and P2 that P1 2 P2 is also in GNF.
P1 = P2 = Skip: Then, P ≡ Skip.
P1 = Stop: Then, P ≡ P2.
P1 = Skip,P2 = 2 ai : Σ • ai → Qi : Then, P is already of the desired shape.

P1 = Proc
(∞)
\A,V • F : Then, P is already of the desired shape.

P1 = Skip,P2 = 2 ai : Σ • ai → Qi 2 Skip: Then, P ≡ P2.
P1 = 2 ai : Σ1 • ai → Qi ,P2 = 2 bj : Σ2 • bj → Qj : Let ai = bi for i ∈ 1..n.

We build up a new external choice of the desired shape:

P ≡2i∈1..n ai → GNF(Qi 2 Qi) 22i>n ai → Qi 22i>n bi → Qi ,
(3.3)

in which GNF(Qi 2 Qi) is a GNF process equivalent to Qi 2 Qi . Such
a process exists, because the induction hypothesis is applicable, since the
sum of the maximal choice nesting depth in Qi 2 Qi is lower than for P.

If a Skip occurs in the choices of P1 or P2 then it also occurs in (3.3). The
symmetric cases are omitted.

P = P1 ‖A P2: We show for processes P1 and P2 in GNF by induction over the sum of
the maximal nesting depth of the replicated choice operator 2 ai : Σ • ai → Qi
in P1 and P2 that P1 ‖A P2 has also an equivalent process in GNF.
P1 = Stop,P2 = Stop: Then, P ≡ P1 ‖A P2 ≡ Stop is in GNF.
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P1 = Skip,P2 = Skip: Then, P ≡ P1 ‖A P2 ≡ Skip is in GNF.

P1 = Skip,P2 = Stop: Then, P ≡ P1 ‖A P2 ≡ Stop is in GNF.

P1 = 2 ai : Σ1 • ai → Qi ,P2 = 2 bj : Σ2 • bj → Qj : Then,

P ≡ (2 ai : A ∩ Σ1 ∩ Σ2 • ai → Qi ‖A Qi)

2 (2 ai : Σ1 \ (A ∪ Σ2) • ai → Qi ‖A P2)

2 (2 ai : Σ2 \ (A ∪ Σ1) • ai → P1 ‖A Qi)

2 (2 ai : Σ1 ∩ Σ2 ∩A • ai → (P1 ‖A Qi) 2 (Qi ‖A P2)),

where we can apply the induction hypothesis to Qi ‖A Qi ,Qi ‖A P2, and
P1 ‖A Qi because the maximal choice nesting depth is reduced in at least
one component. Thus, they can all be represented in GNF. For (P1 ‖A
Qi) 2 (Qi ‖A P2), we apply the induction hypothesis to each of the choice
operands and get that P1 ‖A Qi and Qi ‖A P2 can be represented in GNF.
We apply the insight from the previous case that choices of GNF processes
can again be represented in GNF to get that (P1 ‖A Qi) 2 (Qi ‖A P2) can
be represented in GNF and, thus, P is also in GNF.

P1 = 2 ai : Σ1 • ai → Qi ,P2 = Skip: Then, P ≡ 2 ai : Σ1 \ A • ai → Qi . If
Σ1 \A is empty then P ≡ Stop.

P1 = 2 ai : Σ1 • ai → Qi ,P2 = Stop: Then, P ≡ 2 ai : Σ1 \ A • ai → (Qi ‖
Stop). By applying the induction hypothesis, Qi ‖ Stop can be represented
in GNF. If Σ1 \A is empty, then P ≡ Stop.

The symmetric cases are omitted again.

P = P1
o
9 P2: If P1 = Stop, then P ≡ Stop; if P1 = Skip, then P ≡ P2; and if

P1 = 2 ai : Σ1 • ai → Qi , then P ≡ 2 ai : Σ1 • ai → (Qi o
9 P2). All of these

cases can be converted to GNF by applying the induction hypothesis.

�

Since the interpretations of a process are computed by first calculating the traces of
the process and then translating the traces into interpretations, we can directly infer
the following theorem about the interpretations of GNF processes.

Corollary 3.3.3
Every process is interpretation-equivalent to a process in guarded normal form.

Another helpful representation of CSP processes with data is the unknown process
normal form, which partitions a CSP process into its defined process parts and its
unknown parts.
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Definition 3.3.4 (Unknown process normal form)
A CSP process P is in unknown process normal form, denoted Proc normal form, if
it is of the shape

P c
= Q

X1
c
= Proc

(∞)
\A1,V1

• ϕ1

...

Xn
c
= Proc

(∞)
\An ,Vn

• ϕn ,

where Q is a process without Proc(∞) processes that may contain references to X1, . . . ,
Xn but to no other processes. The process Q is called characteristic process of P. We
also use this normal form for unconstrained processes Proc(∞), which means that all
ϕi are true.

In the proof of Thm. 3.3.6, we need an operator to rename process identifiers in CSP
expressions:

Definition 3.3.5 (Renaming of process identifiers)
Given a CSP process P, the renaming of a process identifier Y into a fresh identifier
X, written P[X/Y ], is defined as follows:

P[X/Y ] :=



X if P = Y
a → Q[X/Y ] if P = a → Q
Q1[X/Y ] op Q2[X/Y ] if P = Q1 op Q2

µZ • F(Z )[X/Y ] if P = µZ • F(Z )

µX • F(X) if P = µY • F(Y )

P otherwise,

where op ∈ {2, ‖, ‖|,u, o9} and Z 6= Y ; X ,Y and Z denote process identifiers and
P,Q and Qi processes.

Theorem 3.3.6
Let P be a CSP process with data containing references to unknown processes, then
P can be equivalently represented in Proc normal form.

Proof. In a first step, we remove all references to process identifiers in the definition
of P. Let P be represented by a process equation system

X = P
X1

c
= P1

...
Xn

c
= Pn ,

59



3. Extended CSP for Verification Architectures

such that all Pi may contain references to X ,X1, . . . ,Xn .
We now replace inductively all occurrences of process identifiers Xi in P. Start-

ing by index i = 1, every ocurrence of X1 in P and Pi with i > 1 is replaced by
µY1 • P1[Y1/X1], where Y1 is a fresh identifier. Afterwards, let the resulting process
equation system be

X = P ′

X2
c
= P ′2
...

Xn
c
= P ′n .

Then, P ≡ P ′ and P ′ does not contain identifier X1 anymore. We iterate this pro-
cedure until no references to other process equations are left in P ′. This procedure
terminates because we reduce the number of process equations in every iteration.
We give now a proof that P ′ can be represented in Proc normal form by induction

over the structure of P ′: for the base cases, where P ′ equals Stop or Skip, P ′ is
already in Proc normal form. For the case that P ′ equals Proc∞\A,V • ϕ, we introduce
a new process equation Z1

c
= Proc∞\A,V • ϕ, and P ′′ c

= Z1 is equivalent to P ′ and in
Proc normal form.
For the induction step, we consider P c

= P1opP2 with op ∈ {2, ‖, ‖|,u, o9}, where
we assume that P1 and P2 are already in Proc normal form with characteristic
processes P1 and P2 as well as process identifiers representing unknown processes
Z1, . . . ,Zn for P1 and Zn+1, . . . ,Zm for P2. Then, P ′ can equivalently be represented
by P ′′ c

= P1opP2, which is again in normal form with identifiers Z1, . . . ,Zm standing
for unknown processes. The prefix case P ′ c

= a → P1 is analog. Since by construction
P ′ contains no process references Xi , the proof is finished. �

3.4. Discussion

3.4.1. Parametric Systems

Our CSP extension by data and unknown processes enables us to specify architectures
of parametric systems: Firstly, we can use global data parameters as declared in the
signature of a specification. These parameters have fixed but arbitrary values for
every system run. Secondly, the unknown processes give a parametric view to process
components that are not fixed but instead represent a class of concret processes. In
doing so, we provide a general formalism that is on the one hand flexible enough to
express behavioural protocols with a large degree of freedom, and on the other hand,
integrates well with combined specification formalisms based on CSP [MD98, Fis00,
WC01, Süh02, Hoe06, SLD08]. So, our goal was not to introduce a further combination
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of CSP with data as a replacement for existing formalisms but to provide a notation
for VAs that can be used in combination with these formalisms.
CSP with data extends standard CSP in a direct way by integrating state changes

directly into processes, by which the formalism enables a concise presentation of het-
erogenous systems involving data and time without complex syntactic constructs as
in other combined formalisms. In particular, it turned out that direct usage of a
combined formalism with complex syntactic structures like CSP-OZ-DC is not ap-
propriate for a proof rule approach because of the combination of several languages
in an object-oriented structure. Nevertheless, it is not the objective of the CSP ex-
tension to provide a developer-friendly syntax for the modelling of complex systems,
because that has been the goal of the aforementioned combined approaches. Instead
it extracts the basic elements of a lot of combined formalisms, processes and data
changes, and thus can be used in combination with them like presented in this work
for the Verification Architecture approach.

3.4.2. Semantics

The chosen semantics of our CSP extension from Sect. 3.1.1 directly reflects the trace
semantics of CSP. By this, its integration of the event traces of a process with data
changes are very similar to the CSP-OZ-DC approach (Sect. 2.2.2) and nevertheless
general enough for applications beyond CSP-OZ-DC.
On the downside, this leads to a discontinuous parallel composition operator, which

has been examined in Sect. 3.2.2. With the possibility to reformulate parallel com-
positions into choices of processes, this causes no problems for the basic proof rule
approach presented in the next chapter, as long as processes without parallelism over
unknown parts are considered. We address the problems arising from the discontinu-
ity of the parallel composition operator, in particular with parallelism over unknown
parts, in Sect. 6.1.
Apparently, one difference in the semantics of CSP-OZ-DC and eCSP is the com-

positionality of CSP-OZ-DC and PEA (Sect. 2.3.2 and Thm. 2.3.8) that does not hold
for eCSP, even though the semantics of CSP-OZ-DC classes and eCSP processes are
defined in a similar way. The reason for this maybe unexpected difference is that
CSP-OZ-DC compositionality only holds with respect to CSP-OZ-DC classes (and
for its CSP, OZ, DC parts) but not within the CSP process of a CSP-OZ-DC class.
That is, the compositionality result does not hold for the components of a CSP pro-
cess: a process main c

= P1 ‖ P2 can not be verified by translating P1 and P2 into PEA
and checking properties of them separately because P1 and P2 may fire events chan-
ging the state space of the system in an asynchronous way. The state change caused
by one component does not need to be reflected by the other component, which is
the basis for the compositionality of CSP-OZ-DC verification. So, the semantics of
CSP with data fits to the semantics of CSP processes within CSP-OZ-DC classes, by
which the CSP extension can be used to analyse and decompose processes of single
CSP-OZ-DC classes (using the verification approach of the following chapters).
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3.4.3. Related work

We already mentioned some combined formalisms in Sect. 2.2.3, and as CSP with
data is not intended to replace existing combined formalisms with a more complex
syntactical structure, we here focus on approaches that integrate data or unknown
components in a similar way.

CSP with data. The Process Analysis Toolkit (PAT) is an analysis and verifica-
tion framework for CSP# [SLD08, SLDC09]. The idea is to specify data aspects in
sequential, terminating programs in terms of an imperative programming language.
These programs are used as atomic CSP events. Thus, CSP# is similar to our CSP
processes with data constraints with a different focus: they use a simple procedural
low-level programming language (in C# syntax), whereas we here use a general CSP
extension with declarative logical constraints (generally over arbitrary sorts without
a fixed syntax). Events corresponding to data changes cannot be used for synchron-
isations in PAT. Due to the generality of our CSP extension, CSP# programs can
be carried over to CSP with data constraints. PAT supports complex data structures
but currently only with a finite data domain. In [Liu09, SLDP09] this approach is
extended towards Timed CSP by integrating fixed real-time constraints to specify
deadlocks, timed interrupts and time-outs.

Unknown components. The early work of Larsen and Xinxin [LX91] introduces a
concept similar to the unknown processes of this work. They define context systems
that are partial designs of systems that can be instantiated with concrete processes.
The work is not bound to a specific process algebra but gives a general operational
semantics for contexts. The unknown processes of eCSP can be modelled by these
contexts. Context systems are designed to generally reflect arbitrary process algebras
for theoretical analysis, and thus are less suited for modelling of concrete systems.
Hence, we preferred the explicit representation of CSP processes with unknown parts,
but the results of Larsen and Xinxin carry over to our approach. They examine how
to generate compositional formulae in Hennessy-Milner logic [HM85] that have to be
satisfied by the unknown components of the partial design in order to satisfy the
entire specification. The authors consider the generation of assumptions for a specific
logic, while we use a fixed process algebra but allow arbitrary real-time logics for
the assumptions. In [LX91] no real-time aspects are examined and neither are data
aspects. They do not give a proof system to establish properties of given partial
designs but suggest to use step-wise refinement to derive correct implementations of
an initial partial design.
Another related approach developed by D’Errico and Loreti that is based on

Hennessy-Milner logic and assumption-guarantee verification can be found in [DL09,
DL10]. It presents a sound and complete tableau-based proof system to reason about
CCS processes with assumptions on the environment. These assumptions as well as
the properties to be proven for the overall system are specified in (different) dialects
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of Hennessy-Milner logic. There are several differences to our approach: neither real-
time properties, data constraints, nor combined specifications are considered. The
assumptions on the environment can be compared to our constrained unknowns: the
unknown processes of eCSP are explicitly represented as process expressions, and
thus they can be flexibly used everywhere within processes. On the contrary, the en-
vironment assumptions of D’Errico and Loreti are always composed in parallel to the
system process. Both approaches have in common that they are property-preserving
for instantiations of the unknown parts.
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In order to show safety properties of CSP processes with unknown processes and
additional temporal constraints, we introduce a sequent calculus in this chapter. It
turned out (cf. Chap. 9) that the straightforward use of model checking to verify VAs
is not working due to the potentially large number of parallel local assumptions for un-
known components. Thus, different verification approaches are needed, and we suggest
to apply a rule-based approach here. Instead of defining novel free-style proof rules,
we decided to integrate our CSP dialect with Dynamic Logic [Har79, Har84, HKT00]
and to give proof rules in a sequent-style calculus [Gen35]. By this, the advantages of
Dynamic Logic for program verification carry over to our approach: Dynamic Logic
is—in opposite to Hoare logic [Hoa69]—closed under first-order operations, we can
use existing compositional proof rules for the first-order part of our logic, and we also
benefit from existing tools [HHRS86, BHS07, PQ08, PQR09] that prove Dynamic
Logic to be well-suited for automatisation.

4.1. Dynamic Logic over CSP Processes with Data
We now define dCSP, an extension of Dynamic Logic that we use to verify Verification
Architectures given by eCSP processes. The main idea is to use eCSP processes
instead of programs within the box operator [ · ] and the diamond operator 〈 · 〉.

Definition 4.1.1 (Syntax of dCSP formulae)
We consider a signature Σ = (Sort,SysVar ,Const,Var) and define the set FormdCSP
of dCSP formulae inductively:

if p ∈ FormΣ, p : S1 × · · · × Sn → B and
θ1, . . . , θn ∈ TermΣ, θ1 : S1, . . . , θn : Sn then p(θ1, . . . , θn) ∈ FormdCSP

if δ1, δ2 ∈ FormdCSP then (¬δ1), (δ1 ∧ δ2) ∈ FormdCSP

if δ ∈ FormdCSP , x ∈ Var then (∀ x • δ), (∃ x • δ) ∈ FormdCSP

if δ ∈ FormdCSP ,P a CSP process then ([P]δ), (〈P〉δ) ∈ FormdCSP

if ϕ ∈ FormdCSP ,P a CSP process then ([P]2ϕ), (〈P〉3ϕ) ∈ FormdCSP

We use 〈[P]〉γ if a formula or rule applies to both [P]γ and 〈P〉γ.

The symbol x denotes vectors of variables and ∃ x • ϕ (and analogously for ∀) denotes
quantifications over vectors of variables. We use the convention that δ and ε are dCSP
formulae, i.e. particularly, they never begin with a path operator 3 or 2, whereas γ
always represents a dCSP formula δ or a path formula 2δ or 3δ.
So this definition allows first-order combinations over the box and the diamond

operator that can be arbitrarily nested. Thus, constructs like

([P1]〈P2〉3[P3]δ)⇒ [Q]2ϕ
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4.1. Dynamic Logic over CSP Processes with Data

are in the syntax of dCSP. Not contained is direct nesting of path operators, i.e.,
[P]23δ, and constructs with alternations, [Q]3ϕ. The latter could easily be allowed
in syntax and semantics of dCSP, but we do not have proof rules for those constructs,
and therefore we omit them.
Before defining the semantics of dCSP formulae, we introduce the notion of a

terminating model, which is the last, stable model in an interpretation of a terminating
process.

Remark 4.1.2 (Handling of termination and deadlocks). On the semantical level,
termination is represented by interpretations for finite untimed event sequences with
X as the last event (cf. Sect. 3.1.1). Like for normal events, the X-event is modelled
by a Boolean variable that changes exactly at the point in time when the X-event
occurs. Deadlocks do not have a semantical representation because of the underlying
trace semantics.

Definition 4.1.3 (Terminating model)
An interpretation I : Time → Model has a terminating model iff there is a point in
time t0 ∈ Time at which the event X occurs, and for every ti ∈ Time with ti > t0 for
i ∈ 1..2

I(t1) = I(t2)

holds. Then, I(t1) is called the terminating model.

We now define the semantics of dCSP formulae.

Definition 4.1.4 (Semantics of dCSP formulae)
The semantics of a dCSP term f (θ1, . . . , θn) with sort S of f is a mapping J·K :
Model → DS defined by

Jf (θ1, . . . , θn)KM = fI(Jθ1KM, . . . , JθnKM).

The semantics of dCSP formulae is given by modelsM∈ Model:

M |= p(θ1, . . . , θn) iff pI(Jθ1KM, . . . , JθnKM)

M |= ¬γ iffM 6|= γ

M |= γ1 ∧ γ2 iffM |= γ1 andM |= γ2

M |= ∀ x • γ iff for all d ∈ DS holdsM[x 7→ d] |= γ

M |= ∃ x • γ iff there is a d ∈ DS s.t.M[x 7→ d] |= γ

M |= [P]2δ iff I |= 2δ holds for every
interpretation I ∈ JPKM

M |= [P]δ iffM′ |= δ holds for every I ∈ JPKM with
terminating modelM′

M |= 〈P〉3δ iff I |= 3δ holds for some
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interpretation I ∈ JPKM
M |= 〈P〉δ iffM′ |= δ holds for some I ∈ JPKM with

terminating modelM′

Here, S is the sort of variable x. The formula 2δ holds for an interpretation I, i.e.,
I |= 2δ, iff for all t ∈ Time • I(t) |= δ. Analogously, I |= 3δ if there is a point in
time t0 ∈ Time with I(t0) |= δ. For the sake of completeness, we also define I |= δ
if I has a terminating model M with M |= δ or I does not terminate. The set JγK
then denotes the set of all interpretations satisfying γ, defined by

JγK := {I | I |= γ}.

4.2. Sequent Calculus
In this section, we define verification rules in a sequent calculus to prove validity of
dCSP formulae.

Definition 4.2.1 (Sequent)
Given finite sets of formulae ∆ and Γ, we define the sequent ∆ ` Γ as the abbreviation
for the dCSP formula ∧

ϕ∈∆

ϕ⇒
∨
ψ∈Γ

ψ.

The formulae ∆ on the left side of the sequent symbol ` are called antecedent; the
formulae Γ on the right side succedent. We also write ∆, ϕ ` ψ,Γ if we mean a
sequent with ϕ in the antecedent and ψ in the succedent in the context of arbitrary
sets of formulae ∆ and Γ, i.e., ∆ ∪ {ϕ} ` Γ ∪ {ψ}.
A sequent ∆ ` Γ is valid iff

∀M : Model • M |= ∆ ` Γ,

that is, it holds for all models.

In the following, we introduce a sequent calculus to prove properties over dCSP
formulae. The calculus consists of rule schemata of the shape

Φ1 ` Ψ1 · · · Φn ` Ψn
Φ ` Ψ

that can be instantiated with arbitrary contexts ∆,Γ to rules of the form

∆,Φ1 ` Ψ1,Γ · · · ∆,Φn ` Ψn ,Γ

∆,Φ ` Ψ,Γ
.

If the rule schema contains no sequent symbol, e.g.,

Φ

Ψ
,
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then it defines rules that can be used symmetrically to both sides of a sequent in
arbitrary contexts, so it represents

∆,Φ ` Γ

∆,Ψ ` Γ
and ∆ ` Φ,Γ

∆ ` Ψ,Γ
.

As usual, formulae above the line are premises and the formula below the line the
consequence: if the premises (and possibly some side-conditions) are true, then the
consequence also holds. The basic idea, that the proof rules have in common, is
to syntactically reduce a proof goal to smaller formulae that have less operators or
contain a dCSP formula with smaller processes. However, the rules are usually applied
from bottom to top, from the conclusion to the premises. That is, starting from a
proof goal the rules are applied backwards—by this, the sequent formulae are stepwise
reduced—until every branch of the resulting proof tree is closed by an axiom.

Definition 4.2.2 (Derivability)
A formula ψ is derivable in the sequent calculus from a formula set Φ0, written
Φ0 `SC ψ, if there is a proof tree that proves Φ0 ` ψ, that is, a tree of sequents with
the following properties:

• Φ0 ` ψ is the root

• every leaf is an axiom from the calculus

• for every node ∆,Φ ` Ψ,Γ with children ∆,Φi ` Ψi ,Γ there is a rule schema

Φ1 ` Ψ1 · · · Φn ` Ψn
Φ ` Ψ

(or a corresponding rule) in the calculus.

Of course, we are only interested in sound proofs. The sequent calculus is sound iff
∆ `SC Γ always implies that ∆ ` Γ is valid, which is the case if all proof rules are
sound. Hence, we define soundness and the stronger notion of local soundness.

Definition 4.2.3 (Soundness)
A rule schema

Φ1 ` Ψ1 · · · Φn ` Ψn
Φ ` Ψ

is called locally sound iff the conclusion follows from the premises in arbitrary con-
texts ∆,Γ (with fixed model):

∀M : Model • (M |= (∆,Φ1 ` Ψ1,Γ) and . . . andM |= (∆,Φn ` Ψn ,Γ)

implies
M |= (∆,Φ ` Ψ,Γ))
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It is called sound iff the validity of the conclusion follows from the validity of the
premises:

∀M : Model • M |= (∆,Φ1 ` Ψ1,Γ) and
...

∀M : Model • M |= (∆,Φn ` Ψn ,Γ)

implies
∀M : Model • M |= (∆,Φ ` Ψ,Γ)

Note that local soundness implies soundness.

4.3. Proof Rules

In the following sections, we introduce the rule schemata establishing our sequent
calculus. First, we include standard rules to reason about propositional and first-
order formulae. Afterwards, we enrich this set of rules by rules for symbolic execution
of dCSP processes. The appendix contains a list of all sequent rules on page 279.

4.3.1. Structural Rules

The structural rules are needed for basic modifications: unnecessary formulae may
be dropped from a sequent, or we may split up a proof goal into two sub-goals using
an auxiliary formula and the cut rule. Since we consider sequences to be sets of
formulae we do not need rules for contraction and permutation of sequent elements.
It is a conclusion of Gentzen’s Hauptsatz [Gen35] that the cut rule is actually not
necessary, but it is included to simplify proofs.

`
γ `

(weakening left)

`
` γ

(weakening right)

γ ` ` γ
`

(cut)

4.3.2. Propositional Rules

There are two rules for all propositional operators and an axiom rule stating that ϕ
always implies ϕ.

ϕ ` ϕ
(axiom)
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4.3. Proof Rules

` ϕ
¬ϕ `

(negation left)

ϕ `
` ¬ϕ

(negation right)

ϕ,ψ `
ϕ ∧ ψ `

(and left)

` ϕ ` ψ
` ϕ ∧ ψ

(and right)

ϕ ` ψ `
ϕ ∨ ψ `

(or left)

` ϕ,ψ
` ϕ ∨ ψ

(or right)

ψ ` ` ϕ
ϕ⇒ ψ `

(implication left)

ϕ ` ψ
` ϕ⇒ ψ

(implication right)

4.3.3. First-Order Rules

For quantified formulae, we also use the standard sequent calculus proof rules.

ϕ[t/x], ∀ x : T • ϕ `
∀ x : T • ϕ ` (all left)

` ϕ[y/x]

` ∀ x : T • ϕ (all right)

ϕ[y/x] `
∃ x : T • ϕ ` (exists left)

` ϕ[t/x], ∃ x : T • ϕ
` ∃ x : T • ϕ (exists right)

The term t is of type T , i.e., t ∈ T , and y is a fresh variable of type T not occurring
elsewhere.
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4.3.4. Symbolic Execution of dCSP Formulae
In the following, we introduce new proof rules to handle dCSP formulae that extend
the standard proof rules we have presented above. They execute the CSP programs
with data constraints occurring in the formulae symbolically, and unwind the pro-
grams along their process structure.
We use the following conventions in the definition of the rules: ϕ always represents

a predicate, δ a dCSP formula, and γ a path formula of the form 2δ, 3δ, or a dCSP
formula. In the proof rules, we write for the sake of conciseness a → P instead of
a • ϕ→ P if the constraint ϕ is of no relevance for the rule. In addition, we abbreviate
formulae 〈[a → Skip]〉γ by 〈[a]〉γ. We recall that we use the combined operator 〈[ · ]〉 if
a rule applies to [ · ] and 〈 · 〉. The process Q in the first rule is defined by Q c

= P.

〈[P]〉γ
〈[Q]〉γ

(process call)

δ

〈[Skip]〉δ
(skipδ)

ϕ

[Skip]2ϕ
(skip2)

ϕ

〈Skip〉3ϕ
(skip3)

〈[a]〉〈[P]〉δ
〈[a → P]〉δ

(prefixδ)

[a]2ϕ ∧ [a][P]2ϕ

[a → P]2ϕ
(prefix2)

〈a〉3ϕ ∨ 〈a〉〈P〉3ϕ
〈a → P〉3ϕ (prefix3)

[P1]γ ∧ [P2]γ

[P1 2 P2]γ
(box choice)

〈P1〉γ ∨ 〈P2〉γ
〈P1 2 P2〉γ

(diamond choice)

〈[P1]〉〈[P2]〉δ
〈[P1

o
9 P2]〉δ

(sequenceδ)

([P1]2ϕ) ∧ ([P1][P2]2ϕ)

[P1
o
9 P2]2ϕ

(sequence2)

(〈P1〉3ϕ) ∨ (〈P1〉〈P2〉3ϕ)

〈P1
o
9 P2〉3ϕ

(sequence3)
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These rules correspond to the operators of the process expressions as defined in
Sect. 3.1.1. None of them contains a sequent symbol, so the rules can all be ap-
plied on both sides of a sequent. The rule (process call) is used to replace a process
identifier with its defining process in a dCSP expression. Generally, there are four
rules for every operator, because we need different rules to cover the temporal case
and the non-temporal, as well as the box and the diamond case, in all combinations.
For the non-temporal case, the box and the diamond rules are symmetric. Thus,
we summarise both in one rule using the 〈[ · ]〉 notation, cf. (skipδ), (prefixδ), and
(sequenceδ). In the following, we denote the non-temporal case with δ-case and the
temporal case with 2- or 3-case.
For the Skip process, the rules reflect the fact that Skip does not change any

variables. The rules replace the Skip expression with the property we want to check—
a property holds during or after a Skip if it is already valid without the Skip.
In the δ-case of the prefix operator, we want to check that after all executions (for

the box operator) of a → P the property δ is true. The rule (prefixδ) says that we can
instead verify that after all executions of a the dCSP formulae [P]δ is valid. So, the
rule splits the process a → P into two parts, which can be handled with further rules
in the calculus. The diamond case is treated in the same way. For the box version
of the rule (prefix2) we need to check that a formula ϕ is valid everywhere on all
executions of a → P. To this end, we need to prove that 2ϕ holds for every execution
of a—or more precisely for every execution of the process a → Skip—and we need to
prove that [P]2ϕ holds after every execution of a. So, the rule reflects exactly this
conjunction. As we will see later (cf. the description to rule (box step)), the former
formula [a]2ϕ also requires that a holds at the beginning of every execution.
The idea behind the remaining rules up to (sequence3) is very similar. The rule

(box choice) splits up a choice of processes into a conjunction of formulae. The dia-
mond rules (prefix3) and (diamond choice) are equal to their box versions except
that a disjunction is used instead of a conjunction, because we do not need to check
every sub-process, but only that the formula holds for one possible sub-process. The
sequence rules are built-up identical to the prefix rules, which is not surprising as a
prefix process a → P can be transformed into a → Skip o

9 P. So, we could omit the
prefix rules and always replace a prefix operation by such a sequential composition,
but it is more convenient to have rules for directly handling prefix operations.
The following step rules actually perform the execution of an event step with a

corresponding data constraint. In doing so, the constrained event is consumed and
replaced by a new formula representing the data change according to the event’s
constraint. A formula ψv0

v denotes the replacement of variables v with variables v0

for all unprimed variables v in ψ. Analogously, ψv0
v′ denotes the replacement of all

primed variables v′ in ψ by v0.

∀ v0 • ψv0
v′ ⇒ δv0v

[a • ψ]δ
(box stepδ)
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∃ v0 • (ψv0
v′ ∧ δ

v0
v )

〈a • ψ〉δ (diamond stepδ)

ϕ ∧ [a • ψ]ϕ

[a • ψ]2ϕ
(box step)

ϕ ∨ 〈a • ψ〉ϕ
〈a • ψ〉3ϕ (diamond step)

The rule (box stepδ) replaces the dCSP expression [a • ψ → Skip]δ by an implication
that does not contain the event a. Events are only required for synchronisation of CSP
processes and in the sequential situation, where this rule can be applied, the event a
is not necessary anymore. The constraint ψ of the event a generally contains primed
and unprimed variables, where the former relates to the post-state of the operation
and the latter to the pre-state. With the replacement ψv0

v we introduce new variables
v0 for the post-state of ψ, by which the post-state can be accessed in the δ-part of the
dCSP formula. The δ is a dCSP formula that needs to be valid for all executions of
a • ψ and that may contain further dCSP expressions. In this, we replace all pre-state
variables occurring in ψ with the newly introduced variables. Thus, in the implication
ψv0
v′ ⇒ δv0v the post-state variables of the left side and the corresponding pre-state

variables of the right side coincide. Hence, the state change of the ψ constraint is
symbolically executed. Note that in the replacement δv0v actually all occurrences of v
are replaced even if they occur in a constraint below a diamond or a box operator in
sub-expressions of δ.
In rule (diamond stepδ) the idea of of symbolically executing the state change as

specified in the constraint ψ is similar to rule (box stepδ). The difference is that we
need to check that there actually is a possible execution. Hence, the rule demands
that there exists v0 so that ψv0

v′ and δv0v are valid.
The rules (box step) and (diamond step) do not consume the event a from the pro-

cess expression. Instead, to prove that a formula ϕ holds always for all interpretations
of a process a • ψ, i.e., ϕ holds before and after all executions of a, the rule reduces
this proof task to checking that ϕ is valid in the current context, and it is also valid
after the execution of a. In the diamond case, the rule ensures that ϕ is valid either
in the current context or after execution of a.
Finally, we also define rules to handle parallel composition of processes. In the

following rule (parallel2), P and Q are in guarded normal form. That is,

P = (2i∈1..n ai • ϕi → Pi) 2 (2i∈1..n bi • ϕn+i → Pn+i)

Q = (2i∈1..m ai • ψi → Qi) 2 (2i∈1..m ci • ψm+i → Qm+i)
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with n0 ≤ min{n,m}, and ai = ai for all i ≤ n0, and ai 6= ai for i > n0. Furthermore,
let aj ∈ A, bj , cj 6∈ A for all j.

[a1 • (ϕ1 ∧ ψ1)→ (P1 ‖A Q1)]γ

∧ . . .

∧ [an0 • (ϕn0 ∧ ψn0)→ (Pn0 ‖A Qn0)]γ

∧ [b1 • ϕn+1 → (Pn+1 ‖A Q)]γ

∧ . . .

∧ [cm • ψm+m → (P ‖A Qm+m)]γ

[P ‖A Q]γ
(parallel2)

〈ai → (Pi ‖A Q)〉γ
〈P ‖A Q〉γ (interleaving3)

〈aj → (Pj ‖A Qk)〉γ
〈P ‖A Q〉γ (sync3)

The rule (parallel2) is a derived rule, because the parallel process in the conclusion
of the rule is equivalent (with respect to the interpretation semantics of eCSP) to
the choice of the processes from the premises. Thus, with the application of rule
(process equivalence) and rule (box choice) we get the soundness of rule (parallel2).
In rules (interleaving3) and (sync3), P and Q are in guarded normal form with P =

a1 → P1 2 · · · 2 an → Pn and Q = b1 → Q1 2 · · · 2 bn → Qm . Let ai 6∈ A for rule
(interleaving3) and aj = bj ∈ A for rule (sync3). For the diamond case, we only need
to show that there is at least one execution of the parallel composition, such that the
desired formula γ is valid. That is, we only need to find an appropriate unwinding of
P ‖A Q. So, rule (interleaving3) proves that there is such an unwinding for executions
starting without a synchronisation, whereas rule (sync3) unwinds executions starting
with a synchronisation.
We make use of the auxiliary rule (process equivalence) to transform CSP processes

into guarded normal form or to apply the rules to the symmetric cases, for instance
to unwind process Q instead of P in rule (interleaving3).

4.3.5. Symbolic Execution of dCSP Specifications with Unknown
Processes

We need rules to handle unknown processes with temporal constraints. The idea
is not to treat these constraints in our calculus directly. Instead, we call an external
procedure that checks if the constraints of the unknown process actually ensure prop-
erties by which the remaining proof can be completed. Thus, the rules we give here
for unknown processes can be seen as oracle rules that access external techniques to
reason over the temporal constraints. Hence, the rules directly reflect the semantics
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of constrained unknown processes. By this means, arbitrary timed logics to formulate
assumptions on unknown processes are integrated in our approach.
Rule (assumption axiom) is an axiom expressing the trivial fact that after termin-

ation of all non-terminating processes everything is true.

ψ ` [Proc∞\A,V • F ]δ
(assumption axiom)

For the remaining rules, the interesting part is contained in the side-conditions. Rule
(box assumptionδ) is sound if for all modelsM withM |= ψ and all interpretations
I ∈ JProc\A,V • FKM with terminating modelM the formula ϕ holds:M |= ϕ. This
describes exactly the interpretations of [Proc\A,V • F ]ϕ for models with M |= ψ.
Further, the conclusion of the rule demands that ϕ implies δ. The rule only applies
to terminating unknown processes; for the infinite case the unknown process cannot
be consumed. Note that this rule contains sets of formulae ∆ and Γ and, thus, it
is actually a rule and not a rule schema according to the definition in Sect. 4.2.
In particular, the premise of rule (box assumptionδ) does actually not contain the
context formulae of the conclusion. So, the premise proves that δ follows from ϕ,
independent from the specific contexts ∆ and Γ.

ϕ ` δ
∆, ψ ` [Proc\A,V • F ]δ,Γ

(box assumptionδ)

Analogously, there is rule (diamond assumptionδ) to handle constrained unknowns
for 〈 · 〉. The side-condition is here that for all models M with M |= ψ there is
an interpretation I ∈ JProc\A,V • FKM with terminating model M for which the
formula ϕ holds:M |= ϕ. The rule again applies only to terminating processes.

ϕ ` δ
∆, ψ ` 〈Proc\A,V • F〉δ,Γ

(diamond assumptionδ)

Remark 4.3.1. It is not obvious that a formula like 〈Proc\A,V • F〉δ actually makes
sense, because the process may loop infinitely and decide to never terminate. Anyway,
the semantics of 〈 · 〉δ only demands that there is an interpretation in the semantics
with a terminating model that ensures δ. For an unconstrained process Proc\A,V ,
this is always the case – for a constrained process Proc\A,V • F it only depends on
the constraint. Whether an unknown process Proc eventually terminates or not is a
fairness question, which we do not examine here.
In the same way, we define the proof rules for the 2-case: the side condition that

must be proven for application of rule (assumption2) is that for all modelsM with
M |= ψ and all interpretations I ∈ JProc(∞)

\A,V • FKM the formula 2ϕ holds: I |= 2ϕ.
We recall that with Proc(∞) we express that the rule scheme may apply to both to
Proc and to Proc∞.

ψ ` [Proc
(∞)
\A,V • F ]2ϕ

(assumption2)
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With the side-condition that for all models M with M |= ψ there is an interpret-
ation I ∈ JProc\A,V • FKM for that the formula 3ϕ holds, i.e., I |= 3ϕ, the rule
(assumption3) is defined by:

ψ ` 〈Proc(∞)
\A,V • F〉3ϕ

(assumption3)

In this way, we can use an arbitrary proof method for the temporal logic if it is
possible to check the side-conditions of rules (box assumptionδ) up to (assumption3)
in this logic. In this work, we typically use the Duration Calculus (DC) [ZHR91] as
timed logic for unknown processes. Thus, we apply the approach of [MFHR08] to
solve the constraints via model checking, but we could also use alternative rule-based
approaches like a calculus for DC [SS94].
We do not have rules for parallel composition of unknown processes here. Par-

allelism over unknown processes causes some interference problems. Therefore, we
dedicate a section to this problem and discuss possible solutions in Sect. 6.1.

4.3.6. Induction Rules
In contrast to standard Dynamic Logic over while programs, dCSP expresses prop-
erties over recursive processes. Hence, we provide some induction rules to allow re-
duction of recursion in CSP expressions. These rules are variants of the Proof Rule
for Recursion and the Fixed point Induction Rule of Roscoe [Ros98], but they are
adapted to our needs in the context of the Dynamic Logic extension. In the following
rule, we consider a simple recursive process of the shape P ≡ Q o

9 P, in which Q
does not contain any further references to P. Note that the rule is actually a rule and
not a rule schema. In particular, in the middle and in the right formula the context
formulae ∆ and Γ are not considered.

∆ ` ϕin ,Γ ϕin ` [Q]γ ϕin ` [Q]ϕin
∆ ` [P]γ,Γ

(box loop)

∆ ` ϕin(y),Γ ϕin(y), ∀ x • (ϕin(x)⇒ [Qx
y ]γ(x)) ` [F(Q)]γ(y)

∆ ` [P]γ(y),Γ
(box loop gen)

In both rules, the formula γ may represent the temporal and the non-temporal
case, so γ can be a formula 2ϕ or δ (but not 3ϕ). In (box loop gen), P is a recursive
process expression defined by P c

= F(P). The formula γ(y) is a formula over a vector
of all function symbols occurring in the sequent. The formula ϕin(y) is an initial
condition that is true at every beginning of the recursion. The formulae γ(y) and
ϕin(y) do not contain free function symbols besides y. The rule (box loop gen) is a
generalisation of the simpler rule (box loop), but it is sufficient to apply (box loop)
in many cases. Moreover, in (box loop) the ideas of both fixed point induction rules
become clear: if we want to prove that a formula γ holds always on every execution
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x3 ≤ 8
(axiom)
` x3 ≤ 8, [Qx3

x ]2x3 ≤ 10 x3 ≤ 8, [Qx3
x ]2x3 ≤ 10

(axiom)
` [Qx3

x ]2x3 ≤ 10

(implication left)x3 ≤ 8, (x3 ≤ 8⇒ [Qx3
x ]2x3 ≤ 10) ` [Qx3

x ]2x3 ≤ 10 (all left)
x3 ≤ 8,H ` [Qx3

x ]2x3 ≤ 10 (arith)
x ≤ 8, x1 = x + 1, x2 = x1 + 1, x3 = x2 − 2,H ` [Qx3

x ]2x3 ≤ 10 (implication right)
...

(implication right) x ≤ 8, x1 = x + 1,H ` [a1 → b1 → Qx1
x ]2x1 ≤ 10

x ≤ 8,H ` x1 = x + 1⇒ [a1 → b1 → Qx1
x ]2x1 ≤ 10 (box stepδ)

x ≤ 8,H
(∗)
` [a]2x ≤ 10 x ≤ 8,H ` [a][a → b → Q]2x ≤ 10 (and right)

x ≤ 8,H ` [a]2x ≤ 10 ∧ [a][a → b → Q]2x ≤ 10 (prefix2)
x = 0

(arith)
` x ≤ 8 x ≤ 8,H ` [F(Q)]2x ≤ 10 (box loop gen)

x = 0 ` [F(P)]2x ≤ 10

Figure 4.1.: Proof tree for Example 4.3.2

of P, that consists of an infinitely often repeated sub-process Q, then we first show
that γ holds for Q under the assumption that a starting condition ϕin is valid. In
addition, we need to show that after all executions of Q the same starting condition
is valid as for the first execution of Q, by which γ remains valid for the next execution
of Q and so on. Thus, the rule requires to prove ∆ ` ϕin ,Γ stating that the starting
condition ϕin is valid in the current context. And it requires to show that [Q]γ is a
consequence from the starting condition ϕin and so is [Q]ϕin , which corresponds to
the intuition that after execution of Q the same starting condition holds again.
The rule (box loop gen) generalises this idea to arbitrary recursive processes. We

again need to show that an initial condition ϕin(y) holds in the current context.
The rule bases on an inductive argument: assuming that ϕin implies that γ holds
for an arbitrary process Q, we must show that γ also holds for F(Q). The induction
hypothesis is given by

∀ x • (ϕin(x)⇒ [Qx
y ]γ(x)).

It states that regardless of how ϕin is instantiated with function symbols x, if ϕin is
valid for these x, then [Qx

y ]γ(x) is also valid. In this term all function symbols y in
Q need to be replaced by x, because of the function symbol replacements performed
when symbolically executing the process F(Q): the induction hypothesis can only be
applied if its function symbols correspond to the function symbols introduced in the
symbolic execution.
Example 4.3.2. To further illustrate this, we prove

x = 0 ` [F(P)]2x ≤ 10,

where F(P) is the recursive process

F(P)
c
= a • (x ′ = x + 1)→ a • (x ′ = x + 1)→ b • (x ′ = x − 2)→ P.
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With a small equivalence conversion, we could use rule (box loop) for the proof, but
for demonstration we apply the rule (box loop gen) with ϕin(x) ≤ 8 followed by three
applications of (box stepδ). We abbreviate the induction hypothesis by

H := ∀ z • (z ≤ 8⇒ [Qz
x ]2z ≤ 10).

The proof tree for the desired property is pictured in Fig. 4.1. We omit the con-
straints of the events for the sake of readability. The goal (∗) is easy to close us-
ing (among structural and arithmetic rules) the rules (box step) and (box stepδ);
the induction hypothesis is not needed here. In the dotted part of the proof tree,
the previous three proof steps are repeated two times to reduce the remaining pro-
cess a → b → Qx1

x . The interesting part of the proof tree is the application of
(box loop gen) in the first (bottom-line) proof step and the instantiation of the in-
duction hypothesis with rule (all left). There, we instantiate the variable z with the
current function symbol of the formula we want to prove, which is x3. Hence, in the
last proof step, we resolve the implication of the hypothesis and need to prove that
the initial condition x3 ≤ 8 is valid (left branch) by which we directly get the desired
validity of formula [Q3]2x3 ≤ 10 (right branch) and our proof is finished.

Currently, we have no induction rules for the diamond cases. Diamond properties
are proven by unwinding processes as long as the desired property is not true. The
proof finishes if one can show that a property holds after n unwindings. This is
possible with the rules from Sect. 4.3.4 but it only works if the number of necessary
unwindings is fixed. Otherwise, we need an induction rule again that must comprise
a termination argument (for the δ-case of the rule). As our focus is to prove safety
properties we do not examine such termination checking proof rules here. Proof rules
for checking termination can be found, e.g., in [AdBO09].

4.3.7. Auxiliary dCSP Rules
At last, we also define some simple auxiliary rules that can be used to transform
processes and that may help when performing proofs with our calculus.
If P and Q are equivalent CSP processes: P ≡ Q we can apply the following rules

to replace P with Q.

〈[Q]〉γ
〈[P]〉γ

(process equivalence)

[P]2ϕ

[P]ϕ
(2-introduction)

δv0y ` ε
v0
y

[Q]δ ` [Q]ε
(process step)

Rule (2-introduction) says that, if we know that on all executions of P always ϕ
holds, then we can conclude that after all executions ϕ holds, because the latter is
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simply a special case of the former. This rule can be very helpful in combination with
rule (box loop), because when applying this rule we often have to reduce two proof
branches which do only differ in the 2-operator. Thus, with rule (2-introduction) we
can use one proof branch where we proved [P]2ϕ to close the other with [P]ϕ. Rule
(process step) allows us to consume a process if it occurs on both sides of the sequent
symbol. Since the process Q possibly changes system variables we have to replace
all system variables occurring in the conclusion by fresh symbols v0. This rule is for
instance helpful to prove the soundness of rule (box loop).

Remark 4.3.3 (Rules for Data Structures). To reason about data structures, we
follow the approach of, e.g., [Rei95]: arbitrary theories can be integrated into our logic
by specifying a set of axioms that describe an algebraic data type over an appropriate
signature, for instance natural numbers or lists. These axioms are used as implicit
premises in sequent-style proofs. For practical applications it is convenient to derive
corresponding proof rules dedicated to commonly used theories. In our examples,
we use the theory of real numbers and additional rules to reason over relations on
real numbers. For instance, in the proof tree of Example 4.3.2 in Fig. 4.1, we use an
implicit rule (arith) to indicate arithmetical conversions in the theory of real numbers.
In this thesis, we focus on the general case and do not explicitly introduce rules for
specific theories (cf. [Rei95, BHS07]).

4.4. Soundness of the Calculus
We examine the soundness of our calculus and discuss its incompleteness in the fol-
lowing theorems.

Theorem 4.4.1 (Soundness)
The calculus as presented in Sect. 4.3 is sound, i.e., validity follows from derivability
in the calculus.
Proof. To prove the soundness of the calculus, we need to prove soundness of every
single rule from Sect. 4.3. For the standard first-order rules (weakening left) up to
(exists right), the proof is as usual. Thus, we only give the soundness proof for the
dCSP rules here. First, we show the soundness of the rules for the box case and then
the rules for the diamond case.
Box cases:

Rule (process equivalence): We prove this rule in the beginning, because it is used
in some of the proofs for the remaining rules. The side-condition P ≡ Q implies
that every interpretation of P is also an interpretation of Q and vice versa. Let
M |= [Q]γ, i.e., for every interpretation in JQKM the formula γ is valid. Due to
equivalence of P and Q for an arbitrary interpretation I ∈ JPKM, I ∈ JQKM
is true. Due to I |= γ1 we get the desiredM |= [P]γ.

1We recall that γ represents a temporal or a non-temporal formula, i.e., I |= γ means (1) in the
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Rule (process call): We utilise the fact that Q c
= P implies the equivalence Q ≡ P

in trace and interpretation semantics. By this, we get the soundness of rule
(process call) by applying rule (process equivalence).

Rule (skipδ): We prove that
δ

[Skip]δ

is locally sound. So, let M |= δ. We need to show that at the end of every
interpretation I ∈ JSkipKM the desired property δ is valid. This is true, because
JSkipKM contains exactly one interpretation of the shape 〈M,X,M〉, i.e.,M
is the terminating model withM |= δ. Thus,M |= [Skip]δ.
Since the rule can be applied to both sides of the sequent symbol, we also need
to show the other direction, i.e., M |= ¬δ implies M |= ¬[Skip]δ, which is
equivalent to M |= [Skip]δ implies M |= δ. The argument is here, and in the
following rules, completely analogue to the first implication.

Rule (skip2): This rule is also locally sound: with the same argumentation as in the
previous case the interpretation I satisfies 2ϕ, i.e.,M |= [Skip]2ϕ.

Rule (box choice): Let M |= [P1]γ ∧ [P2]γ, which means that M |= [P1]γ and
M |= [P2]γ. We examine I ∈ JP1 2 P2KM with terminating model M′ and
show that M′ |= γ. There are two cases: I corresponds to an interpretation
of P1 or to an interpretation of P2. Assuming that the former is true, then
I ∈ JP1KM with terminating model M′. Due to the premise M′ |= γ. The
argumentation is the same for the second case. By this,M |= [P1 2 P2]γ.

Rule (sequenceδ): LetM |= [P1][P2]δ, which means that for every interpretation in
JP1KM with terminating modelM′,M′ |= [P2]δ is true, i.e., for every termin-
ating modelM′′ of interpretations in JP2KM′ the formula δ holds:M′′ |= δ.
We examine an interpretation I ∈ JP1

o
9 P2KM with terminating model M.

The proof is finished if we can show M |= δ. Note that if P1 does not ter-
minate then the proposition is trivially true, because the interpretations of
P1

o
9 P2 have no terminating model. The interpretation I has the shape I =

〈M, a1,M1, . . . ,X,M〉. Due to the semantics of P1
o
9 P2, we can decompose I

into two sub-interpretations

I1 := 〈M, a1,M1, . . . ,Mk ,X,Mk〉
I2 := 〈Mk , ak+1,Mk+1, . . . ,M,X,M〉,

such that I1 is interpretation of P1 (starting with model M and terminating
modelMk) and I2 interpretation of P2 (starting with modelMk and termin-
ating modelM).

case of γ = δ that δ is true for the terminating model of I or (2) in the case of γ = 2ϕ that ϕ is
true everywhere on I.
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We now apply the premises (by instantiatingM′ withMk andM′′ withM):
due to I1 ∈ JP1KM with terminating modelMk , we can concludeMk |= [P2]δ.
With I2 ∈ JP2KMk and the second premise, we get that for the terminating
modelM of I2 the desiredM |= δ is true.

Rule (sequence2): Let M |= [P1]2ϕ and M |= [P1][P2]2ϕ. We examine I ∈ JP1
o
9

P2KM and need to show that I |= 2ϕ. Like for rule (sequenceδ), we split I into

I1 := 〈M, a1,M1, . . . ,Mk ,X,Mk〉
I2 := 〈Mk , ak+1,Mk+1, . . . ,Mn ,X,Mn〉.

From the premiseM |= [P1]2ϕ we can conclude that

∀ i ∈ 1..k • Mi |= ϕ (4.1)

and from the second premise (since Mk is terminating model of P1) Mk |=
[P2]2ϕ. Since I2 ∈ JP2KMk , we conclude I2 |= 2ϕ, i.e.,

∀ i ∈ k..n • Mi |= ϕ. (4.2)

From (4.1) and (4.2), we get I |= 2ϕ.

Rule (prefixδ): This is a derived rule because of the process equivalence a → P ≡
a → Skip o

9 P. We can then deduce

[a][P]δ (sequenceδ)
[a → Skip o

9 P]δ (process equivalence)
[a → P]δ.

Rule (prefix2): Analogously to the previous case, we derive

[a]2ϕ ∧ [a][P]2ϕ (sequence2)
[a → Skip o

9 P]2ϕ (process equivalence)
[a → P]2ϕ.

Rule (box stepδ): In this rule, vectors of variables are replaced in formulae like δv0v to
symbolically execute the state change of an operation. To simplify the present-
ation, we show the soundness of the rule considering v as a single variable, but
keep in mind that v actually represents a vector of symbols and δv0v a replace-
ment of multiple symbols v by corresponding v0.
This rule is not locally sound (see below), so we have to take care on the context
∆,Γ, which is implicit in the rule. We need to prove two cases: (1) Assuming
∀M ∈ Model :M |= ∆ ` ∀ v0 • ψv0

v′ ⇒ δv0v ,Γ, we have to show

∀M ∈ Model :M |= ∆ ` [a • ψ]δ,Γ (4.3)
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and (2) assuming ∀M ∈ Model : M |= ∆, ∀ v0 • ψv0
v′ ⇒ δv0v ` Γ, we have to

show

∀M ∈ Model :M |= ∆, [a • ψ]δ ` Γ (4.4)

In both cases, if for a modelM |= ∆ ` Γ, thenM is also model of the formulae
in (4.3) and (4.4) (because the sequent formulae are actually disjunctions).
Thus, we only have to examine models with M 6|= ∆ ` Γ. We start with the
first case and consider such anM withM 6|= ∆ ` Γ. Due to the assumption of
case (1) it generally holds for every fresh symbol v0 not occurring elsewhere

∀M : Model ifM 6|= ∆ ` Γ thenM |= ψv0
v′ ⇒ δv0v . (4.5)

We prove that M |= [a • ψ]δ. Thus, we consider I ∈ Ja • ψKM and show
M |= δ for the terminating modelM. All such interpretations have the shape

I = 〈M, (a • ψ),M,XM〉.

If there is no suchlike interpretation, then the desired property is trivially true.
The interpretation I implies, according the semantics of a • ψ,

M∪M′ |= ψ. (4.6)

We examine the modified model N [v′ := N (v0)], where N is defined by

N :=M∪M′[v0 := (M∪M′(v′))].

The model N [v′ := N (v0)] has the property that it is equal toM∪M′ except
for the variables in v0:

N [v′ := N (v0)](x) =

{
N (v0) if x = v′

N (x) if x 6= v′

=


M∪M′(v′) if x = v′

M∪M′(x) if x 6= v′ ∧ x 6= v0

M∪M′(v′) if x 6= v′ ∧ x = v0

=

{
M∪M′(x) if x 6= v0

M∪M′(v′) if x = v0.

Since ψ does not contain the variable v0, which has been introduced as fresh
variable, we conclude from (4.6)

N [v′ := N (v0)] |= ψ.

To that we apply the substitution lemma (e.g., [AdBO09]) and get N |= ψv0
v′ .

The model N is equal toM except for v0, which is not contained in ∆ and Γ by
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the side-condition of the rule, and for primed symbols, which are not relevant
to interpret ∆ and Γ. So, from M 6|= ∆ ` Γ we infer N 6|= ∆ ` Γ and, with
premise (4.5) we conclude N |= δv0v . By applying the substitution lemma again,
we infer

M∪M′ |= (δv0v )v
′
v0 .

Since δ does not contain v0, this is equivalent toM∪M′ |= δv
′

v , in which the
formula only contains primed variables, because the side-condition of rule (box
stepδ) demands that all unprimed system variables in δ are replaced. Thus,

M|Const ∪M
′ |= δv

′
v ,

whereM|Const is the modelM reduced to constant symbols. This is by defini-
tion ofM′—defined in Sect. 3.1.1 byM′(x ′) =M(x)—equivalent2 toM|Const∪
M |= δ. SinceM andM are from the same interpretation I both models coin-
cide on the constant symbols in Const (according to the semantics of processes
from Sect. 3.1.1). So, we infer M |= δ, which concludes the proof for the first
case of this rule.
In the second case, the argument is dual to the first case. We considerM with
M 6|= ∆ ` Γ and M |= (∀ v0 • ψv0

v′ ⇒ δv0v `), i.e., M |= ¬(∀ v0 • ψv0
v′ ⇒ δv0v ),

which is equivalent toM |= ∃ v0 • ψv0
v′ ∧ ¬δ

v0
v . So, we can assume

∀M : Model ifM 6|= ∆ ` Γ thenM |= ∃ v0 • ψv0
v′ ∧ ¬δ

v0
v (4.7)

and need to prove M |= ¬[a • ψ]δ, which can be reformulated to M |= 〈a •
ψ〉¬δ. Analogously to the first case, we consider the possible interpretations of
Ja • ψKM but we now need to show that there actually is an interpretation
with terminating model satisfying δ. This is the case if there is an model M
with

M∪M′ |= ψ andM |= ¬δ. (4.8)

Without loss of generality, let v0 be a fresh symbol with a valuation M(v0)
such that

M |= ψv0
v′ ∧ ¬δ

v0
v , (4.9)

which is possible because of (4.7). We define M := M[v := M(v0)] and show
that thisM satisfies the properties of (4.8):

(4.9)⇒M |= ψv0
v′

{subst. lemma} ⇒M[v′ :=M(v0)] |= ψ

{Def. ofM} ⇒M∪M′ |= ψ,

2The substitution lemma is implicitly used again for this argument.
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where for the last implication we have used that M does not contain primed
symbols and that all primed symbols of ψ are covered by v′.

(4.9)⇒M |= ¬δv0v
{subst. lemma} ⇒M[v :=M(v0)] |= ¬δ
{Def. ofM} ⇒M |= ¬δ

This proves (4.4) and by this concludes the proof for rule (box stepδ).
Note that this proves the rule to be sound but not locally sound. Recall into
memory that local soundness means that every model of the premise is also
model of the conclusion. Indeed, the rule is not locally sound, which can be seen
by a simple counterexample: consider the dCSP formula [a • x ′ = 1](x = 0) and
a model M with M(v) = 0. For this model the premise of rule (box stepδ) is
valid if we use v as replacement symbol:

M |= (x ′ = 1)vx′ ⇒ (x = 0)vx

⇒M |= (v = 1)⇒ (v = 0)

butM 6|= [a • x ′ = 1](x = 0), so the rule is not locally sound.

Rule (box step): Let M |= ϕ and M |= [a • ψ]ϕ. We need to prove that for every
model in the interpretation 〈M, a,M,X,M〉 ∈ Ja • ψKM the formula ϕ is
valid. For M this is true due to the first premise. The second premise M |=
[a • ψ]ϕ says that for every terminating model of interpretations in Ja • ψKM
the formula ϕ holds. So, ϕ also holds for the terminating model M and thus
M |= [a • ψ]2ϕ.

Rule (parallel2): This is a derived rule, because the process P ‖A Q is equivalent to
a choice of processes. Thus, we can apply rule (process equivalence) to replace
the parallel composition by choices, and then apply rule (box choice) to resolve
the choices into the conjunctions of the premise of rule (parallel2).
Hence, we show that P ‖A Q is actually equivalent to a choice of processes in
the desired manner. Let P and Q be processes as defined in the side-condition
of rule (parallel2). We show that P ‖A Q is equivalent to

R := a1 • (ϕ1 ∧ ψ1)→ (P1 ‖A Q1)

2 . . .

2 an0 • (ϕn0 ∧ ψn0)→ (Pn0 ‖A Qn0)

2 b1 • ϕn+1 → (Pn+1 ‖A Q)

2 . . .

2 cm • ψm+m → (P ‖A Qm+m).

The argument is by case distinction over the possible transitions of P ‖A Q:
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• ai for i ∈ 1..n0: All these ai are in A, and P as well as Q can engage in
the event ai . Thus, a synchronised transition

ai • (ϕi ∧ ψi)→ (Pi ‖A Qi)

is possible. According to the semantics of synchronisation in CSP with
data, the constraints of both events are conjugated.

• ai and ai for i > n0: Because of ai ∈ A, the parallel composition over
alphabet A demands synchronisation on these events, but each event is
only possible in one of the components. So, no transition is possible for
these events.

• bi for i ∈ 1..n: As bi is not in A, a bi transition of process P is possible,
whereas Q does nothing:

bi • (ϕn+i)→ (Pn+i ‖A Q).

• ci for i ∈ 1..m: Symmetrically to the previous case, a ci transition is
possible for Q:

ci • (ψm+i)→ (P ‖A Qm+i).

These are exactly all possible transitions for P ‖A Q and of the choice process
R. Thus, the processes are equivalent in trace and interpretation semantics.

Rule (assumption axiom): It is to be shown that each terminating model of inter-
pretations in JProc∞\A,V KM satisfies formula δ. This is trivially true, because
the process Proc∞\A,V does not contain the process Skip as sub-process and,
thus, there is no terminating model.

Rule (box assumptionδ): We assume that

∀M ∈ Model :M |= ϕ ` δ (4.10)

and need to show that for all sets of formulae ∆ and Γ also

∀M ∈ Model :M |= ∆, ψ ` [Proc\A,V • F ]δ,Γ

holds. To this end, we must prove that for all modelsM withM |= ψ and all
interpretations I ∈ JProc\A,V • FKM with terminating modelM the formula
δ is valid, i.e.,M |= δ. Due to the side-condition of rule (box assumptionδ), we
can infer thatM |= ϕ and with the precondition (4.10) we concludeM |= δ.
Note that we actually need a proposition for all modelsM in the premise (4.10).
This is the reason for the special shape of rule (box assumptionδ), where in the
conclusion the context formulae ∆ and Γ are considered but not in the premise.
With a premise with context

∆, ϕ ` δ,Γ
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the rule would become inaccurate, because this premise implies

∀M ∈ Model : ∆, ϕ ` δ,Γ

instead of (4.10). Hence, it is possible that Γ holds forM but not δ—which is
not the case with the premise in (4.10).

Rule (assumption2): We need to show that for all models M with M |= ψ and
interpretations I ∈ JProc(∞)

\A,V • FKM the property I |= 2ϕ is valid, which is
exactly the statement of the side-condition of the rule.

Rule (box loop gen): The process P is recursively defined by P c
= F(P), i.e., it is

given by the fixed point of F . We first define the set of interpretations

L :=
{
JQK|∀N ∈ Model : ((N |= ϕin(y))⇒ JQKN ⊆ Jγ(y)K)

}
,

where we abbreviate JQK :=
⋃
MJQKM. Since γ is of the shape 2δ or δ, as stated

in the side-condition of rule (box loop gen), the constraint JQKN ⊆ Jγ(y)K) is
equivalent to N |= [Q]γ(y). The idea of this set L is that it contains all traces
of “good” processes P for that the desired property N |= [P]γ(y) holds in the
case that N is a model satisfying ϕin(y).
We prove the soundness of the rule in three steps:
1. We prove that the set L is a complete lattice with respect to the ⊆-order.
2. On this set, we define a function f that is the semantical counterpart to

the process function F(P).
3. Then, we show that f is monotone (and continuous) and, thus, it has a

fixed point in L, which corresponds to the fixed point of F(P).
With this last argument, the proof is completed, because F(P) then has the
desired property by construction of L. We now go through the three proof steps:

1. The set of non-empty, prefix closed set of traces of a CSP process is a com-
plete lattice wrt. the ⊆-order [Ros98]. We need to show that, likewise, the set L
is a complete lattice for the ⊆-order. Let X be a non-empty subset of L, i.e., for
each JQiK ∈ X it holds ∀N : (N |= ϕin(y)⇒ JQiKN ⊆ Jγ(y)K). The least upper
bound of X , written

⊔
X , is given by

⋃
X , that is non-empty again.

⋃
X is

actually in L, because it is in the semantics of the choice process 2i Qi , which
is given by

J2i QiKM =
⋃
i

JQiKM.

Thus,
⊔
X =

⋃
X = J2i QiK. For every modelM0 withM0 |= ϕin(y) it holds

JQiKM0 ⊆ Jγ(y)K. Hence,⋃
i

JQiKM⊆ Jγ(y)K and by this J2i QiKM0 ⊆ Jγ(y)K
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and we conclude
⊔
X = J2i QiK ∈ L—the least upper bound exists and is in L.

The greatest lower bound of X , written
d
X , is given by

⋂
X . This is non-empty

again because every JQiK ∈ X contains the subset {〈M〉 | M ∈ Model}, i.e.,
an empty interpretation, corresponding to an empty run of the LTS of Qi , for
every initial model. For this reason, this subset is the ⊥-element of L.

⋂
X is

actually in L because for everyM0 |= ϕin(y)⋂
X|M0

⊆ JQiKM0 ⊆ Jγ(y)K,

in which
⋂
X|M0

is the restriction to interpretations starting with modelM0.
Moreover,

⋂
X is equal to the semantics of the process that synchronises on all

events and their constraints, denoted by ‖i Qi . By this, J‖i QiK contains exactly
the interpretations that are allowed by all processes Qi . So,

l
X =

⋂
i

JQiK = J‖i QiK ∈ L.

By this means, L is a complete lattice with the identified ⊥ and the >-element
L.

2. We now define a function f on L, which is the semantical counterpart of the
process function F(P), with the basic idea that the semantics of the fixed point
of F(P) is a fixed point of f . Let f be a function f : L → L with

f (JQK) := JF(Q)K.

That is, f maps the set of interpretations for Q to the semantics of F(Q). This
function is well-defined if we can show that JF(Q)K is actually an element of L.
We prove this by taking the premises of rule (box loop gen) into account:

We consider a process Q with JQK ∈ L. Therefore,

∀M ∈ Model :M |= ϕin(y)⇒ JQKM⊆ Jγ(y)K
⇔∀M ∈ Model :M |= ϕin(y)⇒ [Q]γ(y)

⇔∀M ∈ Model :M |= ∀ x : ϕin(x)⇒ [Qx
y ]γ(x) (4.11)

The last equivalence is correct, because ϕin(x) and γ(x) contain by assumption
only system variables x. To show that JF(Q)K is in L, letM0 be a model with
M0 |= ϕin(y). To this and to (4.11), we apply the right premise of the rule,

ϕin(y),∀ x • (ϕin(x)⇒ [Qx
y ]γ(x)) ` [F(Q)]γ(y),

and get M0 |= [F(Q)]γ(y), which is equivalent to JF(Q)KM0 ⊆ Jγ(y)K. That
is, f (JQK) = JF(Q)K ∈ L.
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3. According to Thm. 3.2.1, all considered CSP operators are continuous for
the ⊆-order on the interpretation semantics. Parallel compositions are replaced
by equivalent choices over processes (Cor. 3.3.3). Thus, we infer that f (·) is also
continuous and monotonic. With the Knaster-Tarski theorem [Kna28, Tar55],
we conclude that f has a least fixed point in L, i.e.,

µX .f (X) ∈ L. (4.12)

The semantics of the process P, declared by P c
= F(P), is identified with the

least fixed point of the interpretations of F(P), i.e.,

JPK = JµX .F(X)K := µJXK.JF(X)K = µX .f (X).

Thus, with (4.12) JPK ∈ L.
With this observation we can finally conclude the soundness of the rule: Consider
a modelM fulfilling the left premise,M |= ∆ ` ϕin(y),Γ. IfM |= ∆ ` Γ, the
conclusion of the rule follows directly. So we assumeM |= ϕin(y). Due to JPK ∈
L we infer from the definition of L that ifM |= ϕin(y), then JPKM ⊆ Jγ(y)K,
which is equivalent to the desiredM |= [P]γ(y).

Rule (box loop): This rule is a consequence of (box loop gen), that can be derived
within the sequent calculus. We give the proof tree here. Let P c

= Q o
9 P.

We set F(P) = Q o
9 P, ϕin(y) = ϕin , and γ(y) = γ to be able to apply rule

(box loop gen). The proof tree demonstrates the application of the induction
rule (box loop gen), as well as the application of rule (process step).
In the first part of the proof tree, the rule (box loop gen) is applied. The open
goal ∆ ` ϕin(y),Γ is the first premise of the rule (box loop). In the next step,
rule (sequence2) is applied, assuming that γ begins with the 2-operator. If this
is not the case, i.e., in the δ-case, then rule (sequenceδ) is to be applied, the
next intermediate step (and right) and sub-goal (G1) are omitted, and the proof
continues in exactly the same way with goal (G2).

(G1) (G2) (and right)
ϕin(y),∀ x • (ϕin(x)⇒ [Px

y ]γ(x)) ` [Q]γ(y) ∧ [Q][P]γ(y) (sequence2)
∆ ` ϕin(y),Γ ϕin(y),∀ x • (ϕin(x)⇒ [Px

y ]γ(x)) ` [Q o
9 P]γ(y)

(box loop gen)∆ ` [P]γ(y),Γ

Sub-goal (G1) can be closed with ϕin(y) ` [Q]γ(y), which is a further premise
of rule (box loop):

ϕin(y) ` [Q]γ(y) (weakening left)
ϕin(y), ∀ x • (ϕin(x)⇒ [Px

y ]γ(x)) ` [Q]γ(y)
(G1)
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We apply the cut rule to goal (G2) and make a case distinction over the last
premise of rule (box loop), ϕin(y)⇒ [Q]ϕin(y).

(C1) (C2) (cut)
ϕin(y), ∀ x • (ϕin(x)⇒ [Px

y ]γ(x)) ` [Q][P]γ(y)
(G2)

For the first case, we remove unneeded formulae and resolve the implication to
end up with the right premise of rule (box loop).

ϕin(y) ` [Q]ϕin(y) (implication right)
` ϕin(y)⇒ [Q]ϕin(y) (weakening right)

` [Q][P]γ(y), ϕin(y)⇒ [Q]ϕin(y) (weakening left)
ϕin(y),∀ x • (ϕin(x)⇒ [Px

y ]γ(x)) ` [Q][P]γ(y), ϕin(y)⇒ [Q]ϕin(y)
(C1)

To close the proof, we finally apply the induction hypothesis (by instantiating
the ∀-constraint). In addition, we make use of the premise ϕin(y)⇒ [Q]ϕin(y)
by applying the rule (process step) to consume the Q process.

ϕin(v0),
(axiom)
` [Pv0

y ]γ(v0), ϕin(v0) ϕin(v0), [Pv0
y ]γ(v0)

(axiom)
` [Pv0

y ]γ(v0)

(implication left)ϕin(v0), ϕin(v0)⇒ [Pv0
y ]γ(v0) ` [Pv0

y ]γ(v0)
(all left)

ϕin(v0),∀ x • (ϕin(x)⇒ [Px
y ]γ(x)) ` [Pv0

y ]γ(v0) (weakening left)
ϕin(v0), ϕin(y),∀ x • (ϕin(x)⇒ [Px

y ]γ(x)) ` [Pv0
y ]γ(v0) (process step)

[Q]ϕin(y), ϕin(y),∀ x • (ϕin(x)⇒ [Px
y ]γ(x)) ` [Q][P]γ(y)

ϕin(y),∀ x • (ϕin(x)⇒ [Px
y ]γ(x))

(axiom)
` [Q][P]γ(y), ϕin(y) (implication left)

ϕin(y)⇒ [Q]ϕin(y), ϕin(y),∀ x • (ϕin(x)⇒ [Px
y ]γ(x)) ` [Q][P]γ(y)

(C2)
This finishes the proof of rule (box loop).
As mentioned above, if γ is a δ-formula, the proof tree remains exactly the same
except for the omission of one application of (and right) and the omission of
sub-goal (G1). Interestingly, without sub-goal (G1) the proof does not depend
on the premise ϕin(y) ` [Q]γ(y) anymore. Thus, it can be omitted in the δ-
case. By this, no premise of the rule contains γ, which seems weird at first
sight. But, P is a non-terminating process and, thus, every formula is valid
after every terminating run of P. This is correctly revealed by this proof tree.
The consequence is that rule (box loop) is indeed valid for the δ-case but does
not make much sense for δ-expressions.
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Rule (2-introduction): LetM |= [P]2ϕ, i.e., for all I ∈ JPKM hold I |= 2ϕ, thus,
∀ t : I(t) |= ϕ. If I has a terminating model, i.e., I(t0) =M for a point in time
t0, then alsoM |= ϕ.

Rule (process step): For all modelsM withM 6|= ∆ ` Γ the premise

∆, δv0y ` ε
v0
y ,Γ

allows us to deduceM |= δv0y ` ε
v0
y . IfM |= ∆ ` Γ, then the conclusion directly

holds for thisM.
Let M now be such a model with M 6|= ∆ ` Γ and M |= δv0y ` ε

v0
y . In a first

step, we show that for all models N coinciding withM on all constant symbols,
N|Const =M|Const , the property N |= δ ` ε holds. This is valid, because v0 does
by assumption not occur in ∆ or Γ, and δv0y ` ε

v0
y holds for arbitrary valuations

of v0:

∀N : Model | N|Const =M|Const ,N (y) =M(y) • N 6|= ∆ ` Γ (4.13)
⇒ ∀N : Model | N|Const =M|Const ,N (y) =M(y) • N |= δv0y ` ε

v0
y

⇒ ∀N : Model | N|Const =M|Const ,N (y) =M(y) • N [y = N (v0)] |= δ ` ε.
(4.14)

Formula (4.13) holds becauseM 6|= ∆ ` Γ, andM and N agree on all constant
symbols and system variables y. Formula (4.14) follows with the substitution
lemma. In particular, (4.14) holds for every possible valuation N (v0) (since v0

has been introduced as fresh symbol and is not further constrained in ∆ or Γ)
and is independent of N ’s valuation for y. Thus, we can further infer

(4.14)
⇔ ∀N | N|Const =M|Const • N [y = N (v0)] |= δ ` ε (4.15)
⇔ ∀N | N|Const =M|Const • N |= δ ` ε (4.16)

With this we showM |= [Q]δ ` [Q]ε. So, assumingM |= [Q]δ, we get from the
semantics of [Q]δ that for all interpretations

〈M, a,M1, . . . ,Mn ,X〉 ∈ JQKM

the constraintMn |= δ holds. The semantics (cf. Sect. 3.1.1) demands that no
symbols from Const change within an interpretation. Therefore, Mn|Const =
M|Const . With (4.16) we concludeMn |= ε and, thus, the desiredM |= [Q]ε.

Diamond cases: The proofs for the diamond cases of the rules are predominantly
completely dual to the box cases, because the rule schemata are symmetric, i.e.,
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they can be applied to both sides of the sequent symbol (negated and non-negated
formulae), and because of the equality

[P]γ = ¬〈P〉¬γ. (4.17)

The diamond cases of the rules (prefixδ), (prefix3), (diamond choice), (sequenceδ),
(sequence3), (diamond stepδ), (diamond step) can be directly proven by this duality.
For example, the soundness of (sequenceδ) can be shown by the transformation

M |= 〈P1〉〈P2〉δ
{(4.17)} ⇔M |= ¬[P1]¬〈P2〉δ
{(4.17)} ⇔M |= ¬[P1][P2]¬δ
{(∗)} ⇔M |= ¬[P1

o
9 P2]¬δ

{(4.17)} ⇔M |= 〈P1
o
9 P2〉δ,

in which equivalence (∗) follows from the box case of rule (sequenceδ)3.
The rules (interleaving3) and (sync3) can be combined to a rule, which is dual

to (parallel2). For this reason, (interleaving3) and (sync3) are in this split form not
locally sound. Rule (skip3) is sound, because nothing prevents Skip from terminating
and Skip does not change the state space. And finally, the side-conditions of the
rules (diamond assumptionδ) and (assumption3) directly imply the soundness of the
rules. �

Theorem 4.4.2 (Incompleteness)
The calculus as presented in Sect. 4.3 is not complete, i.e., we cannot derive every
valid formula in the calculus.
Proof. This is a direct consequence of the integration of an arbitrary temporal logic
to constrain unknown processes. By this, we can choose an undecidable logic like the
full DC [ZH04] and, thus, cannot resolve the constraints of those unknown processes
in every case.
With the restriction to decidable logics for unknown parts, our calculus is still in-

complete, because dCSP includes first-order arithmetic. By this, it is a consequence
of Gödel’s Incompleteness Theorem [Göd31] that our calculus can also not be com-
plete. However, for similar incomplete calculi one can often state relative completeness
results, showing that the non-derivable first-order formulae are the only cause that
inhibits completeness of the calculus. That is, one has to prove that for any valid
sequent ∆ ` Γ, there is a set ∆FO of valid first-order formulae such that ∆FO,∆ ` Γ
is derivable in the calculus (cf. [Har79, BHS07]). Even though it is likely that a similar
result can be established for our calculus, completeness of the calculus is so far an
open issue. �

3The local soundness of the rule for the box case actually implies that conclusion and premise are
equivalent.
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4.5. Embedding of a Real-Time Logic

The calculus presented in the previous section is generic in terms of the underlying
real-time logic to specify assumptions on unknown parts. For this reason, the side-
conditions of the rules (box assumptionδ) up to (box assumptionδ) need to be verified
in the applied real-time logic. Thus, we now give an example embedding of the real-
time logic Duration Calculus (DC) in order to verify the side-conditions of the rules
over unknown parts. We choose the DC because it is used in our case studies as
language for assumptions over unknowns.
We show how to use the model checking approach from [MFHR08] to reduce formu-

lae with unknown processes and DC formulae by applying the rules (box assumptionδ)
– (assumption3) automatically.

4.5.1. Checking the Side-Conditions for the Box Operator

We recall that if we want to reduce a process using rule (box assumptionδ), we need
to check the side-condition:

For all modelsM withM |= ψ and and all interpretations
I ∈ JProc\A,V • FKM the formula ϕ holds: I |= ϕ.

Since DC formulae are defined in the same semantical domain, i.e., the semantics of
DC formulae (cf. Sect. 2.1.3) is given by mappings from a time domain into the set
of all models I : Time → Model, we can express the negation of this property with
the DC formula

(dψeatrue) ∧ F ∧
∧
ev∈A

� ev ∧ (truealXad¬ϕe), (4.18)

where ψ and ϕ are time-dependent state expressions and the variables in V are
global constants. Runs that are terminated must explicitly perform a X-event such
that the terminating model can be checked with DC. This causes no problems when
checking the DC formulae against PEA, where such a X can be added to every
transition reaching a terminating location (e.g., a location representing the Ω process
when the PEA is generated from a CSP process)4. The unsatisfiability of formula
(4.18) can be verified automatically using the PEA construction for DC formulae
from [Hoe06, MFHR08] (cf. Sect. 2.3.2).

Remark 4.5.1. Actually, this verification approach [Hoe06, MFHR08], which uses a
power set construction to obtain a PEA that equivalently represents a DC formula,
does not consider DC formulae with global variables, i.e., variables that are not time-
dependent. Anyway, it is easy to extend the power set construction for DC with

4Another possibility without an explicit X, which often can be applied, is to check an invariant
condition I |= 2ϕin instead, that implies ϕ.
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constant variables V by adding the constraint∧
v∈V

v′ = v

to every transition of the resulting PEA. This way, the variables in V can initially
be set to any value (if not further restricted), but may never be changed during the
run of the resulting automaton.

Analogously, the side-condition of rule (assumption2) is equivalent to the unsatis-
fiability of

(dψeatrue) ∧ F ∧
∧
ev∈A

� ev ∧ (3d¬ϕe), (4.19)

Remark 4.5.2. Property (4.19) implies property (4.18), so often it suffices to check
only (4.19) to verify the side-conditions of both (assumption2) and (box assumptionδ).

We prove the correctness of the stated equivalences:

Theorem 4.5.3
The DC formula (4.18) is unsatisfiable if and only if for all models M |= ψ and
interpretations I ∈ JProc\A,V • FKM the terminating model M of I is model of ϕ:
M |= ϕ.

Proof. We show both directions:

“⇒” We consider an arbitrary model M with M |= ψ and an interpretation I ∈
JProc\A,V • FKM. We need to show for the terminating model M |= ϕ. Due
to the semantics of JProc\A,V • FKM, we can conclude I(0) |= ψ and I |= F .
From the former, we also get I |= dψeatrue. In the transition rule for Proc\A,V
there are no transitions that changes variables in V . So, ∀ t1, t2 : Time, v : V •
I(t1)(v) = I(t2)(v), which means that all variables in V are global constants in
the sense of DC. In addition, the transition rule in 3.1.2 contains no transition
for events from A, so we also get I |=

∧
e∈A� e. We summarise our knowledge

about I:
I |= (dψeatrue) ∧ F ∧ (

∧
e∈A
� e)

for global constants V . Due to our assumption that (4.18) is unsatisfiable we
can conclude

I 6|= (truealXad¬ϕe).

That is, if I has a terminating modelM thenM |= ϕ must be true.
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“⇐” We prove the second case by contradiction and assume that (4.18) is satisfiable.
That is, there is an interpretation I with terminating model such that

I |= dψeatrue (4.20)
I |= F (4.21)

I |=
∧
e∈A
� e (4.22)

I |= truealXad¬ϕe. (4.23)

From (4.23), we conclude for the terminating modelM that

M |= ¬ϕ (4.24)

holds. With (4.20), I(0) |= ψ is true. Since all variables from V are DC constants
in formula (4.18) and due to (4.21) and (4.22), we get

I ∈ JProc\A,V • FKI(0).

We can now apply the precondition by which for such interpretations with
I(0) |= ψ the terminating modelM is also model of ϕ. Thus,M |= ϕ, which is
a contradiction to (4.24). �

The proof that formula (4.19) correctly reflects the side-condition of (assumption2)
is very similar: we do not need to take care of the terminating model, but examine the
desired property ϕ for every model at arbitrary points in time of the interpretation.

4.5.2. Checking the Side-Conditions for the Diamond Operator
Checking the side-conditions of the diamond operator rules is not as straightforward
as for the box operator case. The reason is that the Duration Calculus is a linear-time
logic allowing us to verify properties over all initial models and all interpretations of
formulae (or its negation, that there is one initial model for that the desired inter-
pretation can be found). But here we need to verify side-conditions of the shape that
for all models M withM |= ψ there is an interpretation I ∈ JProc\A,V • FKM for
that the formula 3ϕ holds, I |= 3ϕ. Thus, we need to figure out the existence of
a particular run for every possible initial model M that makes the desired property
valid. We are basically much more interested in the box case, because our aim is
usually to verify safety of real-time systems and not liveness properties (for which
the DC may not be the right choice). However, with some effort (and for a restricted
set of DC formulae) it is possible to also verify the diamond cases using DC formulae.
For the sake of completeness, we sketch the idea of how to verify the side-conditions
of the diamond rules here.
As already mentioned, the problem with the diamond case is that we need to find

a valid trace or interpretation for every possible initial model M, i.e., models with
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M |= ψ. Hence, the straightforward solution to solve the problem by checking the
satisfiability of the DC formula

(dψeatrue) ∧ F ∧
∧
ev∈A

� ev ∧ (truealXadϕe) (4.25)

fails, because it only yields that there is at least one such interpretation without
taking the initial modelM into account. A simple counterexample is (with ψ ≡ true,
F = (dx < 10⇒ y > 0e), and ϕ ≡ y = 0)

(dx < 10⇒ y > 0e) ∧ (truealXady = 0e), (4.26)

which is satisfiable for x ≥ 10, but the rule (diamond assumptionδ) requires that
there is an interpretation for all initial modelsM, so even forM |= x < 10, for which
(4.26) has no interpretation. Thus, formulae of the shape of (4.25) cannot be used to
verify the side-condition of the rule.
The idea to solve this issue is to partition all possible initial models according to the

value of ψ and the constraints of F such that all relevant values of these constraints
are covered. Then, we verify the validity of the desired side-condition by checking the
satisfiability of (4.25) for all possible configurations.
To this end, we restrict ourselves to DC trace formulae F that can be represented

as disjunctive normal form of the shape F ≡ F1 ∨ . . . ∨ Fn and for that all possible
initial values can be described by constraints ψi for i ∈ 1..n with the property

M |= ψi if M∈ {I : JFiK • I(0)}
ψ ⇔ ψ1 ∨ . . . ∨ ψn .

These configurations ψi must uniquely cover all possible valuations of system vari-
ables and constants, which is directly possible for finite data domains and sufficient
determined initial constraints ψ, i.e., if ψ describes a finite number of valuations for
all relevant symbols (for instance, ψ ≡ x = 15 ∨ x = 3 if x is the only variable in the
considered trace).
For infinite data domains, one has to find a way to cover all possible initial models in

an adequate way. The correctness condition is that all interpretations of Fi starting
with a model of ψi can be slightly modified by exchanging the first model of the
interpretation by any other model satisfying ψi . This condition is formally defined by

∃M : Model, I : JFi ∧ (truealXadϕe)K • M |= ψi ∧ I(0) =M
⇒

∀N : Model | N |= ψi • (∃ I ∈ JFi ∧ (truealXadϕe)K, t0 ∈ Time
• I ′(t) = N ∧ I(t) =M for t < t0 and I ′(t) = I(t) for t > t0), (4.27)

which is satisfied for all configurations ψi describing a single valuation for every
variable in the DC formula as in the example above. In the case that the constraints
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in the DC formulae are arithmetical constraints over real-valued system variables
one could use constraints restricting the range of the variables. For instance, the
formula in (4.26) could be checked using initial configurations x ≥ 10 and y > 0,
by which the latter reveals (4.26) to be unsatisfiable for y > 0. Due to our focus on
safety properties, we do not go into detail and do not examine here how to find such
configurations in general.
Given suitable configurations according to condition (4.27), it can be shown for all

i ∈ 1..n

(dψ ∧ ψieatrue) ∧ Fi ∧
∧
ev∈A

� ev ∧ (truealXadϕe) is satisfiable (4.28)

iff the side-condition of (diamond assumptionδ) is valid. Variables v ∈ V in the side-
condition are assumed to be global DC variables.

Remark 4.5.4. Without loss of generality, we assume that none of the ψi is covered
by another one, i.e., there is no index i with ψi ⇒ (

∨
j∈{1..n}\{i} ψj). In this case, we

could ignore the index i and check (4.28) for all indices but i. In the special case that
ψi = ψj for i 6= j we only need to check the satisfiability of the DC formulae in (4.28)
for one of the indices.

The following theorem shows that (4.28) can indeed be used for the verification of
the side-condition.

Theorem 4.5.5
The DC formulae in (4.28) are satisfiable if and only if for all models M |= ψ there
is an interpretation I ∈ JProc\A,V • FKM such that the terminating model M of I
is also model of ϕ, i.e.,M |= ϕ.

Proof.

“⇒” We premise the satisfiability of (4.28) for all i ∈ 1..n and consider a model
M |= ψ. We need to show that there is an interpretation I such that I ∈
JProc\A,V • FKM withM |= ϕ for the terminating modelM.
Since ψ ⇒ ψ1 ∨ . . . ∨ ψn there is a ψi with M |= ψi (if there are more than
one matching ψi , we can choose one freely). Due to our premise, there has to
be an interpretation I for this i that satisfies

(dψ ∧ ψieatrue) ∧ Fi ∧
∧
ev∈A

� ev ∧ (truealXadϕe). (4.29)

We assume that I(0)(e) =M(e) for all events e, which can always be achieved,
because in I the occurrence of events is only determined by changes of the
event variables—I does not depend on the exact valuation of an event e at
any point in time. Because of condition (4.27), there also is an interpretation
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I ′ ∈ JFi ∧ (true a lX a dϕe)K that equals I, except for the initial model,
which is replaced by M. For the terminating model of I, formula ϕ holds.
Since all v ∈ V are considered as DC constants (cf. proof of Thm. 4.5.3) and
I ′ |=

∧
ev∈A� ev, we get the desired result

I ′ ∈ JProc\A,V • FKM.

“⇐” We need to show the satisfiability of (4.28) for all ψi . Since ψ ⇔ ψ1 ∨ . . . ∨ ψn ,
there is a model M with M |= ψ and M |= ψi . Using Remark 4.5.4, there is
such anM that is not model of any other ψj with j 6= i, because otherwise ψi
would be completely covered by the ψj . Therefore and due to definition of the
ψi ,M is initial model (M∈ {I : JFiK • I(0)}) of Fi only. Using this model, we
apply the precondition and get the interpretation

I ∈ JProc\A,V • FKM

with terminating model M |= ϕ. Since M is only initial model of Fi , we also
know I ∈ JFiK. As the events in A and the global DC variables in V are both
respected by Proc\A,V and with I(0) = M |= ψ ∧ ψi , we can conclude the
desired

I |= (dψ ∧ ψieatrue) ∧ Fi ∧
∧
ev∈A

� ev ∧ (truealXadϕe).

�

Finally, as for (diamond assumptionδ) we can also check the side-condition of rule
(assumption3) by checking whether

(dψ ∧ ψieatrue) ∧ Fi ∧
∧
ev∈A

� ev ∧ (trueadϕeatrue) is satisfiable

for all i ∈ 1..n and the same preconditions as in (4.28). The correctness proof is almost
identical to the proof of Thm. 4.5.5, but we do not need to consider the terminating
model of interpretations.

Remark 4.5.6 (Over-approximation). Without an adequate set of configurations ac-
cording to condition (4.27) it is still possible to check the following formulae

(dψeatrue) ∧ F ∧
∧
ev∈A

� ev ∧ (truealXad¬ϕe) is unsatisfiable

(dψeatrue) ∧ F ∧
∧
ev∈A

� ev ∧ (truealXadϕe) is satisfiable.

This check is an over-approximation, because it is shown that every terminating
model of an interpretation starting in a model of ψ satisfies ϕ. The second condition
ensures that there actually is such an interpretation.
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(a) good (b) bad (c) ugly

Figure 4.2.: Protocol structures to be handled with the DL approach

4.6. Discussion

4.6.1. Discussion of the VA Approach

One of the key ideas behind the VA approach is to provide a general formalism for
specifying abstract behavioural patterns for real-time systems. In this chapter, we
have introduced an approach to verify architectures with a sequent style calculus
based on a Dynamic Logic (DL) extension for CSP processes. We have made use of
DL as an instrument to compositionally reason about processes. For this reason, we
benefit from the advantages of DL but also inherit its weaknesses.
Dynamic Logic was essentially developed by David Harel [Har79, Har84, HKT00]

and there is a lot of work by several authors on using DL for automated verification
of programs [HHRS86, HRS87, Bal05], with promising results with respect to tool
support, which is one of the main reasons to choose DL as the basis for our proof
calculus. For instance, there are the theorem provers Karlsruhe Interactive Verifier
(KIV)5 [HBB+05] and KeY 6 [BHS07].
The use of DL to reason about VA processes works out particularly well on se-

quential protocol structures, that can be verified compositionally with the sequent
calculus. Figure 4.2 sketches different shapes of protocol structures that we wish to
handle with DL. In the best case (a), the considered process has a fully sequential
structure with unknown parts and also recursions. Solid nodes in Fig. 4.2 represent
normal sub-processes, whereas dashed nodes stand for constrained unknown pro-

5http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/kiv/
6http://www.key-project.org/
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cesses. In the second situation (b), the structure also contains parallel parts over
normal processes not containing unknown parts. These parallel parts can be handled
with rule (parallel2), that requires to unfold the process into a choice of processes.
This is of course not ideal, because of the blow-up of the process structure by explicitly
computing the parallel composition. This is a well-known issue of the DL approach
that is, e.g., examined in [Bal05]. The most difficult situation we want to verify is
sketched in (c): parallel processes over unknown parts with timing constraints over
the unknowns and potentially shared variable access in the parallel components7. The
verification of these process structures is difficult, because of the interaction of the
parallel components due to timing constraints and because of the usual challenges
with shared variable access [dRdBH+01]. We have not given an answer on how to
handle such processes in this chapter, but will discuss possible extensions of our cal-
culus in Sect. 6.1 in order to cope with these issues. To handle such processes is
particularly important, because unknown processes are the only processes that can
be restricted with timed properties. Thus, restricting the overall timing behaviour of
a VA process is only possible by a parallel composition with a constrained unknown
process. Note that it is not possible to simply forbid shared variable access, because
one of our main applications is the usage of VAs with combined specification formal-
isms that may allow shared variable access (for instance, CSP-OZ-DC allows shared
variable access within classes).

4.6.2. Related Work

In the following, we compare our Dynamic Logic extension with similar approaches for
CSP processes or timed languages. Afterwards, we review related work with respect
to verification in the presence of unknown parts.

Dynamic logic for JCSP. In JCSP concurrency and communication for Java pro-
grams is modelled within a dedicated CSP Java library. The work [KRSS05] uses
KeY [BHS07] to verify the Java part of JCSP programs and a translation to Petri
nets for the CSP library calls. Recursion in CSP processes, infinite data, and timing
constraints are not considered.

Dynamic temporal logic for hybrid programs. In [Pla07a, Pla08, Pla10] a dynamic
logic extension for hybrid programs (dL) is introduced. A further extension of this
work is the integration of temporal properties in [Pla07b]. The main difference to
our work is that it focuses on hybrid programs instead of event-based communicating
processes, and by this does not integrate as well with existing combined specification
languages as our work. Unknown process parts that have shown to be useful in the
context of design patterns for formal verification are not supported directly. Instead

7There may also be shared variable access in (b), which causes no problems as every possible mutual
access is made explicit by unfolding the parallel composition.
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Table 4.1.: Differences and similarities between dCSP and dL
dL dCSP

Specification of
states

by formulae over R by many-sorted first-order
formulae

System variables system variables are non-rigid function symbols of arity 0

Discrete updates via value assignment via first-order constraints

Programs hybrid programs without
communication

CSP processes with
handshake communication

Parallel computing parallel programs by
preprocessing

parallel CSP processes

Control structure regular program structures context-free program
structures

Unknown behaviour star operator for undefined
variables x := ∗

unknown processes Proc

Program extensions by differential equations by general (real-time) logics

Refinement no notion of refinement simple refinement rule for
CSP-OZ-DC; easy to
transfer to other combined
formalisms

in dL (like in standard Dynamic Logic [HKT00]) one can explicitly set variables to
undefined values using the star operator: x := ∗. With this it is possible to construct
unknown programs, which are similar to unknown processes by expressions like

x := ∗; y := ∗; ?F(x, y).

Here, F(x, y) is an expression in dynamic logic. This expression could encode large
real-time formulae in hybrid programs, but this results generally in a large blow-up
of the program size. For instance, in case of DC formulae the hybrid program has to
reflect the power set automaton construction of Hoenicke [Hoe06, MFHR08], result-
ing in several, large parallel automata—each with a size exponential in the number
of DC phases. Hence, it is not possible to directly (i.e., without further encoding)
specify that real-time formulae have to be valid in the context of unknown parts of
hybrid programs. A further advantage of using the standard language CSP is that
we can apply existing techniques to reason about CSP—for instance, we could use
a refinement checker for CSP (e.g., FDR8 [Ros98]) to simplify a calculus proof for
a complex CSP structure. In [PQ09] a fragment of the ETCS without concurrency

8http://www.fsel.com/software.html
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is verified using dynamic logic for hybrid systems. In Sect. 8.2, we present an ETCS
case study, solved with the VA approach, consisting of several communicating paral-
lel components but without hybrid dynamics. Table 4.1 summarises differences and
similarities between dL and dCSP.

Hybrid CSP calculus. The recent article [LLQ+10] reports on ongoing work about
a calculus for a hybrid extension of CSP (HCSP). It presents a logic based on Hoare
Logic [Hoa69, AdBO09], DC, and Differential Invariants [PC08]. The used CSP dia-
lect integrates continuous dynamics by allowing differential equations to occur in
processes. It also incorporates a time-out operation similarly to Timed CSP [Sch99].
Parallel composition is restricted such that no data, neither continuous nor discrete,
is shared between parallel components and no recursive processes are analysed. The
work on the calculus is not completed yet; for instance, it has not been proven to be
sound.

Verification in the presence of unknown components. The AVACS sub-project S1
develops techniques to compositionally verify complex systems in the presence of black
box components in partial designs. Sven Schewe [Sch08] solved general decidability
problems for the synthesis of black box implementations in partial designs: he showed
that synthesis in partial designs is decidable if and only if the system contains no
information fork. For the decidable case, the algorithm is exponential in the number
of black boxes. Mealy automata with shared variables are used as model. A partial
design with black box processes can also be seen as a pattern similar to Verification
Architectures. Like in this work, the architecture has to be given manually.
In addition, in the context of the sub-project S1, Finkbeiner et al. [FSB06] exam-

ine automated synthesis of assumptions for single components of larger systems. In
[FPS08, FPS10] this work is extended to timed systems modelled as timed automata.
While both approaches, the S1 approach and the VA approach, need an architecture

given in advance, it is the goal of S1 alone to automatically partition the architecture
into black and white boxes, to automatically derive assumptions for black boxes,
and to automatically establish properties for partial designs. By contrast, the work
presented here focuses on combined specification formalisms and provides a general
framework for semi-automatically establishing properties for given VAs. These can
be instantiated by given combined specifications—even if no automated assumption
generation and partial design verification is possible. Due to the general undecidability
[PR90] of the distributed synthesis problem, there will always be such cases where
for a given architecture no automated synthesis is possible.
In contrast to our examination of combined specification languages, S1 considers

basic formalisms like shared-variable Mealy processes. It is not directly clear how to
use the results of S1 in the context of combined specification languages. Even though
it is possible to translate combined specifications into its operational semantics, the
parallel product of CSP, OZ, and DC part has to be computed, by which all struc-
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tural information gets lost. It makes not much sense to consider the CSP, OZ, or DC
parts as single components in a complex architecture, because of the tight integration
between them. The VA approach can be seen as a step towards an integration of the
S1 techniques with combined specification languages, because it answers the question
of how to structure a combined specification into a partial design that may be used
for compositional verification: that is, processes are used to define the architectures
with data constraints, unknown processes as black boxes, and additional temporal
assumptions over them; and we establish a refinement relation between so-defined
architectures and a combined specification language. An interesting question for fu-
ture work is to use S1 techniques to automatically generate architectures from the
CSP and OZ parts of a given concrete specification, or to automatically generate
assumptions on unknown components.
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5 Refinement of
Verification Architectures

After all, this is completely straightforward.
What could possibly go wrong?

(Dream, in Brief Lives, Neil Gaiman)

Any view of things that is not strange is false.

(A voice in the desert, in Fables & Reflections,
Neil Gaiman)
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5.1. Refinement of Verification Architectures

In this section, we examine how CSP processes with data are refined. In particular,
we consider the refinement not only by other CSP processes but also by parametric
CSP-OZ-DC specifications. We provide a simple, sound rule to prove refinement by
CSP-OZ-DC specifications syntactically. We recall that in our approach we verify
instantiation relations in two steps: assumptions on unknown processes are verified
by customary verification approaches for the temporal logic, and a refinement relation
for the process structure needs to be established. Thus, we here provide a matching
rule to prove refinement by CSP-OZ-DC specifications syntactically. To this end, the
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assumptions on unknown processes are ignored, and a refinement check is performed
on the structure of a VA.
In the remainder of this chapter, we first establish a refinement relation between

VAs and CSP-OZ-DC specifications, and based on this relation, we introduce a proof
rule for checking refinement. Finally, a matching rule is presented. We start by defining
the notion refinement as for the trace semantics of CSP [Ros98]:

Definition 5.1.1 (Refinement of CSP processes)
Given CSP processes without data constraints P,Q we say that Q refines P, written
P v Q, iff the set of traces of Q, JQK, is contained in the set of traces of P:

JPK ⊇ JQK.

We extend this refinement relation to CSP processes with data constraints, and we
define refinement of P by Q, written P v Q, by

∀M : Model • JPKM⊇ JQKM.

That is, P allows more behaviour than Q or Q is more defined than P.
We do not distinguish these two notions of refinement syntactically, but it should

be clear from the context which variant is used.

We further extend this definition to refinement of VAs by CSP-OZ-DC specifications.
CSP processes with data and CSP-OZ-DC have by construction the same semantical
domain except that channels are declared differently in both specification languages
as also discussed in [Hoe06]. On the side of CSP, channels have tuple type, whereas
on the side of CSP-OZ-DC channels have schema type. But the channels can be easily
transformed in the other representation:

Remark 5.1.2 (Transformation of channels). If a CSP channel c : S1 × S2 is given,
the corresponding CSP-OZ-DC channel depends on the choice of variable names in the
channel declaration. For instance, a possible channel declaration is c : [x1 : S1; x2 : S2].
At level of CSP-OZ-DC the order of the channel parameters is not relevant, even
though it is at CSP level. That is, both expressions1

c〈| x2==v; x1==w |〉 and c〈| x1==w; x2==v |〉

represent the same, well-defined event belonging to the CSP-OZ-DC channel de-
claration of c. The equivalent representation at CSP level is c.w.v. To simplify the
presentation, we will consider both representations as equivalent without explicitly
stating the correlation between the channel declarations on CSP-OZ-DC and CSP
level. We will particularly not distinguish the different representations in the follow-
ing definitions of refinement.

1Hoenicke uses the Z binding presentation (cf. page 18 and [Hoe06, ISO02]) for compound channels:
the == symbol within 〈||〉-brackets binds channel parameter names to corresponding values, here
v and w.
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Firstly, we give a straightforward definition of refinement between CSP processes
and CSP-OZ-DC and continue by a more sophisticated definition including refine-
ments that consider different names and data types.

Definition 5.1.3 (Refinement of CSP processes with data by CSP-OZ-DC spe-
cifications)
Given a CSP process VP (VA process) with data and a CSP-OZ-DC specification cod,
a refinement of VP by cod, written VP v cod, is given iff

∀Menv : Model •
{Minit : Init(cod) | I ∈ JVPK(Menv ⊕Minit) • I} ⊇ JcodKEMenv , (5.1)

where Init(cod) is the set of all models that are valid initial models of the specification
cod (which may consist of several CSP-OZ-DC classes and defining paragraphs).

This definition implies that the symbols, which are introduced in cod and thus are
interpreted by the modelMinit , coincide with the symbols of the signature of a refined
process VP. The definition needs to bridge the gap between the different semantical
approaches of processes with data and CSP-OZ-DC specifications. Therefore, we need
to override (using the standard Z operator ⊕) the environmental models Menv for
symbols in VP and cod by modelsMinit for symbols that are introduced in cod, which
are implicit in the semantics of CSP-OZ-DC but not in the semantics of processes
with data.
Even though this definition does not explicitly impose restrictions on how symbols

are declared and used in cod, it implicitly enforces the desired behaviour: whenever
a symbol is changed in an execution of VP and occurs in a corresponding execution
of the CSP-OZ-DC specification, the symbol must be declared in the state schema of
cod – otherwise, a change of this symbol would not be possible in any execution of
cod.
For the sake of applicability of our approach, we do not want to restrict ourselves to

refinements of CSP processes where all symbols of the abstract architecture directly
reoccur in the concrete instantiating CSP-OZ-DC specification. Instead, it is helpful
to establish a relation between the symbols of the CSP process and the CSP-OZ-
DC specification. By this we can also analyse instantiations of abstract data types
by more concrete data types. Thus, we generalise the refinements of Def. 5.1.3 to
refinements respecting an instantiation relation.

Definition 5.1.4 (Generalised refinement of CSP processes with data)
We consider a CSP process VP with data, a CSP-OZ-DC specification cod, and an
instantiation schema inst = [Decl(cod),SysVar ,Const | ϕ], where Decl(cod) is the set
of all declarations, e.g., from state schemas or declaring paragraphs, occurring in a
CSP-OZ-DC specification. Let JinstK ⊆ Interpretation be the set of all interpretations
respecting inst, i.e., ∀ t : Time, I : JinstK • I(t) ∈ JinstKP .

107



5. Refinement of Verification Architectures

Then, a refinement of VP by cod that respects inst, written VP vinst cod, is given
iff

∀Menv : Model •
{Minit : Init(cod) | I ∈ JVPK(Menv ⊕Minit) • I} ⊇ JcodKEMenv ∩ JinstK.

(5.2)

The idea of inclusion (5.2)—that equals (5.1) except for the intersection on the right
side of the inclusion—is to restrict the examined traces of cod to interpretations that
respect inst, such that inst selects just the interpretations where the symbols of cod
and VP are in the desired relation.
The schema inst represents an instantiation relation that maps symbols from the

abstract CSP process with data to concrete realising symbols of the CSP-OZ-DC
specification. For instance, if an abstract data type like a list over arbitrary objects
is realised by a list of integer values, then the instantiation schema maps the abstract
list to the concrete one.

Example 5.1.5 (Instantiation relation for the running example). The VA process
for the running example from Sect. 3.1.4 contains the system variables sf , ok and con-
stants RD,CT . However, in a concrete realisation of the architecture (see Sect. 8.1)
the abstract safety value sf is usually replaced by concrete values for, e.g., positions
of a train and a movement authority (MA). In the CSP-OZ-DC specification instan-
tiating the VA process of the example, the system variables ma and pos are used to
model the current MA position and the train position, respectively. Thus, the safety
of the system can be described by the distance of the train to the end of the MA.
Similarly, a constant maxbd contains the maximal braking distance for the train and
maxcd the check distance, which is the maximal distance a train can move during one
check cycle. The distance RD that is examined during the check cycle of the VA can
be computed by summation of maxcd and maxbd.
Hence, the instantiation relation for the train control example is given by the

following schema:

inst
sf ,RD : R
pos,ma,maxbd,maxcd : R

sf = ma − pos
RD = maxbd + maxcd

The remaining symbols, ok and CT are not mapped to different symbols and are
used like specified in the VA.
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5.2. Simulation of Processes
Since simulation is an established proof method to check refinement of processes
[He89], we introduce the notion simulation below (following [Mil99]) to verify that a
CSP-OZ-DC specification refines a CSP specification.

Definition 5.2.1 (Simulation on CSP processes)
A relation ∼: Processes ↔ Processes on processes is a simulation iff

P ∼ Q and Q a
=⇒ Q implies

that there is a process P with P a
=⇒ P and P ∼ Q.

A process P simulates a process Q, written P � Q, iff there exists such a relation ∼
from process P to Q. The event a may also be an internal event τ .

Note that this definition actually defines a forward-simulation (also called down-
simulation). But since it is the only simulation relation we need here we refer to it
simply by the term simulation.
We prove a lemma about simulation, which we need to show the correctness of

the refinement rules in Thm. 5.3.1 and 5.3.2. It constitutes the relationship between
simulation and refinement of processes (without data constraints).

Lemma 5.2.2
Given two processes P and Q (without data) such that P simulates Q (P � Q), we
can conclude that Q is a refinement of P

P v Q

in the trace semantics of CSP.

Proof. Since P � Q, there is a relation P ∼ Q according to Def. 5.2.1. It is to be
shown that JPK ⊇ JQK. Let s be a trace of JQK with a corresponding LTS run

Q s
=⇒ Q;

we show by induction over the length of s that it is also a trace of JPK and that there
is a corresponding LTS run

P s
=⇒ P with P ∼ Q.

s = 〈〉 : Then, s is trivially a trace of P. Additionally, by prerequisite, P ∼ Q. Hence,
with Def. 5.2.1 there is a process P with P 〈〉

=⇒ P and P ∼ Q.

s = w a 〈a〉 : The event sequence s is a trace of JQK with an LTS run

Q w
=⇒ Q a

=⇒ R.
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By applying the induction hypothesis to the sub-sequence w, w is a also a trace
of JPK, i.e., the LTS of P has a run

P w
=⇒ P with P ∼ Q.

Now, as P ∼ Q is a simulation according to Def. 5.2.1, and due to Q a
=⇒ R,

there exists a process S with P a
=⇒ S and S ∼ R. Moreover, with the run

P w
=⇒ P a

=⇒ S

of the LTS of P the trace s = w a 〈a〉 is also in JPK.

�

This lemma is a standard result in the theory of CSP. For the stable-failures semantics
and the failures-divergences semantics this result holds in a similar way.

5.3. Proof Rules for Checking Refinement

With the following proof rules, a refinement relation between a CSP-OZ-DC spe-
cification and a CSP process can be verified. It is based on a simulation relation
between the main process and the unconstrained CSP process. In contrast to that,
the definition of matching in Def. 5.4.1 gives rise to a purely syntactical proof rule.

Theorem 5.3.1 (Refinement rule)
Let VP be a CSP process with data, and let cod be a CSP-OZ-DC class with CSP
process main. Then, cod refines VP, VP v cod, if the following conditions hold:

1. a) The process VP with all data constraints removed (using the unconst func-
tion defined in Sect. 3.1.1) simulates the process main:

unconst(VP) � main.

b) For every sub-process P of main that is in 1a) simulated by an unknown
process Proc

(∞)
\A,V we demand that the system variables from V are not

changed, i.e., given an operation schema com a for a ∈ alph(P) no change-
able system variable from the delta list ∆(s1, . . . , sn) is in V , so si 6∈ V
for i ∈ 1..n.

2. The symbols of the signature Σ of VP coincide with the symbols introduced in
cod. That is, for Σ = (Sort,SysVar ,Const,Var) the types of cod correspond to
the sorts Sort, state variables of cod to symbols from SysVar, global constants
to Const, and message variables to variables from Var.
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3. For all occurrences of an event a • ϕ in VP, declared by a : [x1 : S1; . . . ; xn :
Sn ], system variables s1, . . . , sm and primed system variables u′1, . . . , u′l occurring
in ϕ, there is an operation schema

com a = [∆(u1, . . . , ul); x1 : S1; . . . ; xn : Sn | ϕ]

in cod, and the function symbols are declared in the state schema: si ∈ State(cod)
for i ∈ 1..n. The variables x1 to xn are the message variables of channel a.

The last condition also implies that for two events a • ϕ1 and a • ϕ2 from the process
VP the condition ϕ1 = ϕ2 is true, because different definitions of com a are not
allowed in CSP-OZ-DC specifications.
The refinement rule 5.3.1 is defined with respect to the simplified refinement notion

from Def. 5.1.3, demanding that symbols from CSP-OZ-DC specification and VA
process have to coincide. In the case of the generalised refinement of Def. 5.1.4, an
instantiation relation inst is used to establish more sophisticated connections. The
following rule extends rule 5.3.1 by incorporating such an instantiation relation.

Theorem 5.3.2 (Generalised refinement rule)
With the same premises as in 5.3.1, cod is a refinement of VP respecting the instan-
tiation schema inst = [Decl(cod),SysVar ,Const | ψ], i.e.,

VP vinst cod,

if conditions 1. and 2. from Thm. 5.3.1 hold (under consideration of inst) and

3. For every constrained occurrence a • ϕ in VP, declared by a : [x1 : S1; . . . ; xn :
Sn ], system variables s1, . . . , sm and primed system variables u′1, . . . , u′l occurring
in ϕ, there is an operation schema

com a = [∆(u1, . . . , ul); x1 : S1; . . . ; xn : Sn | ϕ]

in cod, such that
(ψ ∧ ψ′ ∧ ϕ)⇒ ϕ

holds, that is, ϕ implies the constraint ϕ of the CSP process, as long as the
instantiation constraint ψ is respected.

In this rule, we allow that the refinement system cod introduces new deadlocks, which
is the case if ϕ is stronger than ϕ such that the execution of a is blocked in the
refinement cod but not in the process VP. This difference to [Fis00] is possible, since
we do not consider failure semantics here.

Remark 5.3.3 (Uniqueness of inst). The generalised refinement rule can only be
applied if the instantiation relation inst uniquely assigns valuations of VP symbols
to cod symbols. This is a consequence of condition 1b), which demands that a process
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refining an unknown process Proc(∞)
\A,V does not change variables in V . This can only

be achieved in the case that the symbols of the refining process are uniquely mapped
to symbols in V – otherwise the valuation of the V symbol could be changed with
every event, because multiple values are allowed by inst. For instance, in the relation
of Example 5.1.5 a constraint like sf < ma − pos would not be possible: with such
an instantiation relation the symbol sf can be changed in every operation. To avoid
suchlike behaviour, we only allow unique instantiation relations.

Correctness of refinement rule. The refinement rule of Thm. 5.3.1 is correct, i.e.,
the conditions 1. up to 3. actually imply the refinement

VP v cod.

Proof. To prove VP v cod we need to show that the inclusion (5.1) of Def. 5.1.3 holds.
To this end, we consider an arbitrary modelMenv : Model and an interpretation

I : JcodKEMenv (5.3)

with an untimed sequence 〈M0,M1, . . . 〉. The proof is finished if we can show that
there is a modelMinit with

I ∈ JVPK(Menv ⊕Minit). (5.4)

This is the case if the semantical conditions from Sect. 3.1.1 on page 46 are true. We
provide evidence that these conditions hold:

1. There is a run π of the LTS of unconst(VP) such that π fits to I. This holds,
because we know from (5.3) and the semantics of cod that I |= main, that is,
there is a run π of the LTS of main: π ∈ JmainK. From condition 1a) of rule
5.3.1 and Lemma 5.2.2, it can be inferred that

unconst(VP) v main.

Hence, π, for that we already know that it fits to I, is also a run of unconst(VP).

2. We need to show that there is an initial modelMinit : Init(cod) of cod such that
the first modelM0 of the interpretation I is equal toMenv⊕Minit . This is true
by construction of Init(cod), which contains all possible initial models of cod
respecting the three parts CSP, OZ, and DC, and the local paragraphs. Since
the semantics of cod, given by JcodKEMenv , is not empty, there actually is such
a model, namelyMinit , that possibly overwrites symbols defined inMenv . Alto-
gether, the interpretations of the cod semantics need to respect the environment
model Menv and initially the model Minit from Init(cod) (which covers that
models from local paragraphs may overwrite symbols from the environment).
Thus,

M0 =Menv ⊕Minit .
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3. We examine the untimed sequence 〈M0,M1, . . . 〉 of I: Let Mi−1 and Mi be
models with Mi−1(a) 6= Mi(a), i.e., the event a induces a state change from
Mi−1 toMi . We consider two cases:
a) a • ϕ occurs in the process VP directly (i.e., not only as possible event

of an unknown process): condition 3. from Thm. 5.3.1 yields that there is
a communication schema com a = [S | ϕ], where S is a declaration. Due
to (5.3) and the CSP-OZ-DC semantics we can conclude Mi−1 ∪M′i ∈
Jcom aKP and by this Mi−1 ∪M′i |= ϕ. Since the symbols from cod and
the signature of VP coincide as demanded in condition 2. of Thm. 5.3.1,
we also get

(Mi−1 ∪M′i) |= ϕ

in the signature of VP.
b) a does not explicitly occur in VP, i.e., the event a occurs within an un-

known process Proc
(∞)
\A,V . Hence, according to the semantics of unknown

processes, the occurrence of a in the LTS of VP is constrained by a • ΞV ,
and we need to show

Mi−1 ∪M′i |= ΞV (5.5)

Due to condition 1b) of Thm. 5.3.1, if there is an operation schema com a
in a process refining Proc

(∞)
\A,V with ∆(s1, . . . , sn), then si 6∈ V (hence, no

symbol from V can be changed). Thus, (5.5) actually holds.

4. To show the fourth semantical condition from page 46, we consider an arbitrary
parameter v ∈ Const. Due to condition 2. of Thm. 5.3.1, it corresponds to
a constant declaration of cod. Since global constants cannot be changed, the
CSP-OZ-DC semantics directly yields the desired conditionMi−1(v) =M′i(v).

Thus, all semantical conditions are fulfilled, and we can actually conclude (5.4), i.e.,
that I is an interpretation of VP for Menv ⊕Minit . Since we chose I arbitrarily,
inclusion (5.1) holds and, by this, VP v cod. �

Correctness of generalised refinement rule. The generalised refinement rule of
Thm. 5.3.2 is correct.
Proof. The proof is very similar to the proof of Thm. 5.3.1, particularly, the proof steps
1. and 2. coincide. The only difference is that we need to consider the modified condi-
tion 3. of Thm. 5.3.2 and the refinement relation inst = [Decl(cod),SysVar ,Const | ψ]
for all state changes in the examined interpretation I. As we need to show inclu-
sion (5.2), we only consider interpretations I that respect inst, so I : JcodKEMenv ∩
JinstK.
We examine an event a of cod with com a = [S | ϕ] and a state change in I

triggered by this event a, Mi−1 ∪M′i |= ϕ. Since I is an interpretation respecting
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inst,Mi−1∪M′i |= ψ ∧ ψ′. For an a occurring directly in VP, we can apply condition
3. of 5.3.2 and get that there is a corresponding event a • ϕ of VP and

(ψ ∧ ψ′ ∧ ϕ)⇒ ϕ.

Therefore,Mi−1∪M′i |= ϕ. If a only occurs in sub-processes refining an unknown pro-
cess, then with 1b) and the instantiation relation inst we get that variables restricted
by the unknown process cannot be changed (see also Remark 5.3.3).
Since this argument holds for all state changes of I we can conclude

I ∈ JVPK(Menv ⊕Minit)

and, by this, inclusion (5.2). �

5.4. Syntactical Proof Rule for Process Refinement
We now give a definition of a matching between processes and CSP-OZ-DC specifica-
tions. This definition can be used as a proof rule that establishes a refinement relation
between a CSP process with data and a CSP-OZ-DC specification. The rule is not
complete, i.e., not all valid refinements can be shown applying the rule. But this is not
our goal here, because in our application scenario concrete realisations are modelled
with respect to a given VA, and thus, we assume that the concrete model reflects the
structure of the VA directly. Hence, our proof rule connects abstract processes with
concrete models of a particular well-fitting shape.

Definition 5.4.1 (Matching)
Let VP be a CSP process with data in Proc normal form with characteristic process
CP and unknown processes U1

c
= Proc

(∞)
\A1,V1

, . . . ,Un
c
= Proc

(∞)
\An ,Vn

, and let cod be a
CSP-OZ-DC class with CSP process main. We say that cod matches VP if conditions
2. and 3. from Thm. 5.3.1 or from Thm. 5.3.2 are valid, and instead of condition 1.
the following syntactical conditions hold:

1. a) main = CP[Y1/U1, . . . ,Yn/Un ], where CP = unconst(CP) and the Yi are
new process identifiers defined as Yi

c
= CPi for i ∈ 1..n. That is, the

main process structurally equals VP, except that all unknown processes are
replaced by implementing processes. We additionally demand that processes
implementing Proc∞ do not contain the Skip process, i.e., they do not
terminate.

b) For every process CPi we demand that (1) the forbidden events from A
are respected, alph(CPi) ∩ Ai = ∅, and (2) the function symbols from V
are not changed, i.e., given an operation schema com a for a ∈ alph(CPi)
no changeable function symbol from the delta list ∆(s1, . . . , sn) is in V , so
si 6∈ V for i ∈ 1..n.
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Instead of checking the simulation relation on the processes directly, as it is done
in condition 1. of 5.3.1 and 5.3.2, a matching demands that the main process of a
CSP-OZ-DC specification syntactically coincides with the process VP except for the
unknown processes that are implemented by concrete processes in main.

Example 5.4.2 (Matching processes). As an example, let us consider a part of the
VA process of the running example:

System c
= (FAR o

9 check • ϕcheck
→ (fail • ϕfail → REC 2 pass • ϕpass → System))

FAR c
= Proc\A,C • FFAR

REC c
= Proc∞\A,C • FREC .

This process already is in Proc normal form, because it consists of the characteristic
System process and only has references to sub-processes FAR and REC , representing
unknown processes.
The following instantiating main process matches System according to Def. 5.4.1:

main c
= (FAR o

9 check
→ (fail → REC 2 pass → main))

FAR c
= P1‖|P2‖|P3

REC c
= applyEB → (µX • updSpd → updPos → X),

where P1 up to P3 are further concrete sub-processes (see Sect.8.1 for details). These
example shows that the processes main and System coincide syntactically except that
the event constraints do not occur in main and except that process references to
unknown processes are exchanged by new references to concrete refining processes
FAR and REC , respecting the exclusion alphabet A of the unknown processes.

The next theorem shows that condition 1. of Def. 5.4.1 actually implies that the
process VP simulates the main process. By this means, matching can be used as a
syntactical proof rule to verify process refinement by CSP-OZ-DC specifications.

Theorem 5.4.3 (Matching implies simulation)
Given a CSP-OZ-DC specification cod and a process VP in Proc normal form that
respect condition 1. from the definition of matching in Def. 5.4.1. We can conclude
that

unconst(VP) � main.

Proof. We start by defining the relation that establishes the simulation between VP
and cod. Since main equals the unconstrained characteristic process CP except for
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processes implementing unknown parts, which is in Def. 5.4.1 specified with the re-
naming CP[Y1/U1, . . . ,Yn/Un ] for Yi

c
= CPi , the desired simulation is defined as

follows:

∼ := {(R,R[Rn]) | R 6= Proc ∧ R 6= P1 op P2} ∪
{(P1 op P2,Q1 op Q2) | P1 ∼ Q1 ∧ P2 ∼ Q2} ∪

{(Proc(∞)
\Ai ,Vi

,CP i) | CPi =⇒∗ CP i},
(5.6)

where [Rn] represents the renaming [Y1/U1, . . . ,Yn/Un ]. The first case (R,R[Rn])
applies to all non-binary processes except Proc, e.g., Skip and Stop or prefixing
processes and application of recursion. The second case applies to all binary CSP
operators.
We show that this relation is indeed a simulation relation from unconst(VP) to

main by proving the simulation condition of Def. 5.2.1 for CP and CP[Rn]. Assuming
that Q a

=⇒ Q with P ∼ Q, we have to show that there is a process P such that
P a

=⇒ P and P ∼ Q. The proof is by induction over the structure of P:

1. Base cases:
P = Stop : In this case also Q = Stop. Thus, no transition step is possible for
P and also for Q.
P = Skip :

P ∼ Q {Def. ∼}⇒ Q = Skip

Q a
=⇒ Q {LTS}⇒ a = X and Q = Ω

The following transitions for P are possible:

P X
=⇒ Ω

With Ω ∼ Ω[Rn] = Ω we get P ∼ Q.
P = a → R :

P ∼ Q {Def. ∼}⇒ Q = (a → R)[Rn] = a → R[Rn] and R ∼ R[Rn]

Q a
=⇒ Q {LTS}⇒ R[Rn] = Q or R[Rn]

τ
=⇒ Q

Note that here R cannot be a Proc process due to the Proc normal form such
that we actually can assume R ∼ R[Rn] according to (5.6).
The following transitions for P are possible:

P a
=⇒ R

One can show by induction over the structure of process expressions that
whenever R1 ∼ S1 and S1

τ
=⇒ S2, then there is also an R2 with R1

τ
=⇒ R2 and
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R2 ∼ S2. In the concrete case, we apply this to R ∼ R[Rn] and R[Rn]
τ

=⇒ Q
and get that there is an P with R τ

=⇒ P and P ∼ Q. Overall, this means that
there is a transition P a

=⇒ P with P ∼ Q.
P = Proc\Ai ,Vi :

P ∼ Q {Def. ∼}⇒ Q = S with CPi =⇒∗ S

Q = S a
=⇒ S {LTS}⇒ a 6= X ∧ CPi =⇒∗ S or

a = X ∧ Q = Ω

If a 6= X, then a 6∈ Ai because of condition 1b) of Def. 5.4.1. Hence, the following
transitions for P are possible:

P a
=⇒ Proc

(∞)
\Ai ,Vi

= P

With CPi =⇒∗ S we get P ∼ S (definition of ∼ for case P = Proc). For a = X

our claim holds due to P X
=⇒ Ω (definition of Proc) and Ω ∼ Ω.

P = Proc∞\Ai ,Vi
: This case can be solved completely analogously to Proc except

that we omit the case a = X.
P = Ui :

P ∼ Q {Def. ∼}⇒ Q = Yi , where Yi
c
= CPi

Q τ−→ CPi
a

=⇒ Q {LTS}⇒ a 6= X ∧ CPi =⇒∗ Q or
a = X ∧ Q = Ω

The following transitions for P are possible:
P τ−→ Proc

(∞)
\Ai ,Vi

a
=⇒ P ⇒ a 6= X ∧ P = Proc

(∞)
\Ai ,Vi

or

a = X ∧ P = Ω

In both cases, a 6= X and a = X, we directly get P ∼ Q from (5.6).

2. Compound cases:
P = µZ • F(Z ) :

P ∼ Q {Def. ∼}⇒ Q = µZ • F(Z )[Rn] and F(Z ) ∼ F(Z )[Rn]

Q a
=⇒ Q {LTS}⇒ Q τ−→ F(µZ • F(Z )[Rn])[Rn] = F(P[Rn])[Rn] (5.7)

= F(P)[Rn] ∧ F(P)[Rn]
a

=⇒ Q
Implication (5.7) is obtained by application of the rule (recursion) of the op-
erational CSP semantics. Note that we make additionally use of the equality
F(P[Rn])[Rn] = F(P)[Rn], which holds for arbitrary processes F and renam-
ings Rn. To F(P) ∼ F(P)[Rn] and F(P)[Rn]

a
=⇒ Q we can apply the induction

hypothesis yielding that there is a process P and a transition such that the
following transition is possible:

F(P)
a

=⇒ P with P ∼ Q
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By this: P τ−→ F(µZ • F(Z )) = F(P)
a

=⇒ P with P ∼ Q as required.
P = P1 op P2 :

P ∼ Q {Def. ∼}⇒ Q = Q1 op Q2 with P1 ∼ Q1 ∧ P2 ∼ Q2

We assume
Q a

=⇒ Q. (5.8)

To examine how P may simulate this step, we need to distinguish the operators
op:
a) op = o

9: If Q1 = Ω, then the only possible transition is Q τ−→ Q2. Due to
the semantics of o

9 and requirement (5.8) there is a transition Q2
a

=⇒ Q2 =
Q. With the induction hypothesis, we get that there also is a transition
P2

a
=⇒ P2 and P2 ∼ Q2.

Because of Ω = Q1 ∼ P1 = Ω, we can simulate the transitions on the level
of P:

P = Ω o
9 P2 and P τ−→ P2

a
=⇒ P2

with P2 ∼ Q2 = Q.
If there is a transition Q1

a
=⇒ Q1 instead, we argue analogously: due to

the induction hypothesis, there is a transition P1
a

=⇒ P1 with P1 ∼ Q1.
Hence, with a process P = P1

o
9 P2 there is a transition

P a
=⇒ P with P1 ∼ Q1 ∧ P2 ∼ Q2.

Since P = (P1
o
9 P2), Q = (Q1

o
9 Q2), and P1 ∼ Q1 as well as P2 ∼ Q2, we

apply (5.6) in order to get P ∼ Q.
b) op = 2: due to the semantics of 2 and requisite (5.8), there is a transition

Qi
a

=⇒ Qi for i ∈ 1..2 with Q = Qi . We apply the induction hypothesis
with the result that there is a transition Pi

a
=⇒ P i with P i ∼ Qi . It follows

that there is a transition P a
=⇒ P i likewise, which finishes this case.

c) op = u: Like 2.
d) op = ‖A: There are three possibilities for transitions:

Q1
a

=⇒ Q1 ∧ Q2
a

=⇒ Q2 for a ∈ A

Qi
b

=⇒ Qi for i ∈ 1..2, b 6∈ A.

We start with the synchronisation case, in which Q = Q1 ‖A Q2. We apply
the induction hypothesis twice: there are transitions

P1
a

=⇒ P1 ∧ P2
a

=⇒ P2 with P1 ∼ Q1 ∧ P2 ∼ Q2.

By this, there is a transition P a
=⇒ P, where we set P = P1 ‖A P2, and

P ∼ Q holds.
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In the second case, Q = Q1 ‖A Q2, we have a transition Q b
=⇒ Q. We

apply the induction hypothesis to Q1, get a transition P1
b

=⇒ P1 with
P1 ∼ Q1, and conclude that there is a transition step P b

=⇒ P1 ‖A P2,
where (P1 ‖A P2) ∼ (Q1 ‖A Q2) = Q due to the definition of ∼ in (5.6).
The third case is completely symmetric to the second.

e) op = ‖|: This is a special case of op = ‖A.

We have proven now that ∼ is indeed a simulation relation, hence

unconst(VP) � main.

�

The following corollary establishes our argument that matching induces a syntactic
proof rule for the refinement relation between a CSP-OZ-DC specification and a
process.

Corollary 5.4.4 (Matching implies refinement)
If a CSP-OZ-DC specification cod matches a process VP according to Def. 5.4.1,
Thm. 5.4.3 yields

unconst(VP) � main.

With this we can apply the refinement rule 5.3.1 or the generalised refinement rule
5.3.2 and get

VP v cod or VP vinst cod,

respectively.

5.5. Property Inheritance

The aim of introducing a refinement notion in this chapter has been to ensure property
inheritance from established safety properties of an extended CSP process to a CSP-
OZ-DC specification. We recall that refinement has been defined in Def. 5.1.3 by

∀Menv : Model •
{Minit : Init(cod) | I ∈ JVPK(Menv ⊕Minit) • I} ⊇ JcodKEMenv . (5.1)

Basically, if a safety property has been shown for all interpretations of an extended
CSP process VP and a refinement between VP and a CSP-OZ-DC specification cod
has been established, then one can directly conclude from inclusion (5.1) that this
safety property also holds for cod (and similarly for the extended refinement notion
respecting an instantiation relation).
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Initial Models

Usually a property of an extended CSP process will not be established for all initial
models but instead for a given set of initial models. For instance, if a property safe
has been proven for an initial constraint ϕinit by showing

ϕinit ` [VP]safe,

then the safety property only holds for all interpretations of the refining specification
cod that start with a ϕinit model.
When examining the refinement rules of Sect. 5.3, we find that the Init schema

of the CSP-OZ-DC specification is nowhere considered. The reason is that the ini-
tial constraints of the specification are implicitly considered in inclusion (5.1): only
interpretations are taken into account that start with modelsMinit , i.e., valid initial
models of the CSP-OZ-DC specification.
Thus, in order to show that actually all interpretations of cod satisfy safe one has

to prove
Init⇒ ϕinit ,

where Init is the initial constraint of cod, which can be done with the sequent calculus
from Sect. 4.3. A second possibility is to directly show

Init ` [VP]safe

in the calculus. Then, all interpretations in the set JVPK(Menv⊕Minit) from inclusion
(5.1) and (5.2) actually satisfy safe, and all interpretations of cod inherit this property,
as desired.

Instantiating Unknown Parts

For the sake of clarity, we have have focused on the structural refinement of VA pro-
cesses in this chapter and predominantly ignored assumptions on unknown parts. As
motivated in the introduction in Sect. 1.2, in order to apply the VA approach, the re-
finement relation between processes and CSP-OZ-DC specification must particularly
hold if the unknown processes in a VA process are constrained with local assumptions.
Then every instantiating process of an unknown process needs to satisfy these local
assumptions. Depending on the logic of the assumptions, the local assumptions are
to be verified with an established verification approach for this logic. For instance, in
our case studies, where the assumptions are formulated as DC properties, we apply
the approach of [MFHR08] and the model checkers SLAB or ARMC to verify that
the assumptions hold for the processes instantiating the unknown parts. To this end,
we define the reduction of a CSP-OZ-DC specification to a sub-process:

Definition 5.5.1 (Reduction to a sub-process)
Given a CSP-OZ-DC specification c and a CSP process P, the reduction of c to P,
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written c|P , is defined as the CSP-OZ-DC specification that equals c except that the
main process is replaced by

main c
= P,

and the initial schema of c is replace by [true]. The latter is necessary, because the ini-
tial constraint of the original specification does not need to be valid when considering
only the sub-process P.

With the following corollary to Thm. 5.3.1 and Thm. 5.3.2, we state that the
refinement relation between a VA process with local assumptions and a CSP-OZ-
DC specification can be established with the refinement rules from this chapter if all
instantiating processes of unknown parts fulfil the corresponding assumptions.

Corollary 5.5.2 (Refinement with assumptions over unknowns)
Let VP be a VA process with constrained unknown components (U1 • F1), . . . , (Un •
Fn). Parallelism over unknowns is not allowed in VP, i.e., all unknowns occur in a
sequential context. Furthermore, let cod be a CSP-OZ-DC specification such that

1. VP with all assumptions over unknowns removed is refined by cod,

2. each DC counterexample trace of cod does not restrict the initial state, i.e., it
begins with a true phase,

3. every sub-process Pi of cod that instantiates an unknown component Ui satisfies
Fi . That is, cod|Pi |= Fi , where cod|Pi is the reduction of cod to the process Pi .

Then, VP is refined by cod, VP v cod, or VP vinst cod, in the case that an instan-
tiation relation is used.

The condition 1. can be proven with the matching rule of Sect. 5.4 or the rules of
Sect. 5.3. The restriction to processes without parallelism over unknowns is important
here, because parallel unknowns can introduce interferences of shared variables. These
interferences cannot occur in VP and can possibly violate the desired safety property
in instantiations of VP. This issue is discussed in Sect. 6.1.
For a sub-process Pi of cod that refines an unknown process Ui in a sequential con-

text, every interpretation of Pi , which is known to satisfy Fi , i.e., JFiK ⊇ Jcod|PiK
EM,

and which is known to satisfy the refinement condition for the unconstrained Ui , i.e.,
JUiKM ⊇ Jcod|PiK

EM, the following holds according to the semantics of constrained
unknowns

JUiKM∩ JFiK ⊇ Jcod|PiK
EM,

which is equivalent to

JUi • FiKM⊇ Jcod|PiK
EM.

Thus, cod|Pi actually refines the constrained unknown process Ui • Fi for all i ∈ 1..n
and, overall, VP v cod.
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5.6. Discussion

Using the example of CSP-OZ-DC, we have shown how a VA can be instantiated with
a combined specification in such a way that safety properties proven for the VA are
preserved at the level of the instantiating specification. In the following, we discuss
handling of parallel CSP-OZ-DC classes, completeness of the refinement approach,
and review related work.

Parallel CSP-OZ-DC Classes

The matching rule can be used to instantiate a VA process with a single CSP-OZ-DC
class. Nonetheless, if a composition of several CSP-OZ-DC classes is to be analysed,
there are several ways to apply the results of this chapter:

• Sometimes it is possible to reformulate the specification such that there is one
class serving as a protocol class that completely implements the VA protocol.
With this, the matching rule can be used to establish a refinement of the VA
process.

This procedure yields a correct refinement with respect to the refinement no-
tion of this chapter. However, in order to check the assumptions on unknown
processes, we have to impose some restrictions on the refinements of unknown
processes: It must always be possible to verify assumptions on refining processes
in isolation. That is, a process refining an unknown process with additional as-
sumptions may synchronise and communicate values with further parallel com-
ponents, but only if the control flow of these components cannot block behaviour
that is possible when running the entire specification. This is particularly the
case if the control flow of such a parallel component is restarted whenever a
part is entered that refines an unknown process. By this it is impossible that
the control flow blocks an execution when verifying the component in isolation
but enables the execution when running the whole specification.

For instance, this can be achieved with a parallel component that communicates
only with one process refining an unknown part, no timing constraint enforces
that the parallel component leaves its initial location, and the unknown part is
entered only once.

To ensure the correct behaviour in the general case, one can check a syntactic
correctness criterion for each component communicating with the refining sub-
process of an unknown process: if the unknown process is triggered uniquely
by an event (i.e., the event only occurs when entering the process), then it is
enforced by synchronisation that the control flow of all communicating parallel
components are in the initial location. Note that we do not need to take care
on the data here, because the assumptions need to encode all possible initial
states of processes refining unknown parts.
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• In general, given several parallel CSP-OZ-DC classes, one has to compute an ag-
gregated specification process from the main process of all CSP-OZ-DC classes.
This can be done in a straightforward way (parallel composition of all main pro-
cesses), but one has to take care by renaming of channels that no synchronisa-
tion of private channels takes place. Moreover, between CSP-OZ-DC classes no
data sharing is possible except for message parameters of synchronising events.
Thus, it has to be checked (which can be done syntactically) that no variable
of a different CSP-OZ-DC class is accessed in the aggregated process.
With these preparations both approaches presented in this chapter can be ap-
plied. Either matching can be shown via Corollary 5.4.4 or the simulation re-
lation between the VA process and the aggregated CSP-OZ-DC process can be
shown in order to apply the rules 5.3.1 or 5.3.2 directly.

Completeness

The refinement rules in this chapter have been introduced to enable a simple syntactic
refinement check between a VA process and a concrete CSP-OZ-DC specification.
They are not designed as complete refinement rules to relate arbitrary VA processes to
arbitrary instantiating processes. The reason for this is the Verification Architecture
methodology in that the basic proceeding is to design a concrete model with respect
to an existing architecture, or vice versa. Nevertheless, one may ask the question
whether the rules presented here can also be used in a more general setting: are
the rules complete in the sense that all valid refinements according to the definitions
Def. 5.1.3 and Def. 5.1.4 can actually be proven with the refinement rules in Thm. 5.3.1
and Thm. 5.3.2 or the matching condition of Def. 5.4.1?
In the case of the matching rule, the answer is clearly that it is not complete because

of the strict condition that the compared processes have to be nearly identical except
for instantiations of the unknown parts. And the same holds for the refinement rule
of Thm. 5.3.1, because condition 3. requires syntactical coincidence of the constraints
of the compared processes.
But what about the generalised refinement rule? For the time being the answer is

also that it is not complete in the form the rule is presented here. This can be seen
from standard results for process or data refinement [He89, dRE98]. A counterexample
is given by the following processes:

VP c
= (a → b → P1) 2 (a → c → P2)

main c
= a → ((b → P1) 2 (c → P2))

with P1 different from P2. These processes are equivalent in trace semantics, but VP
cannot forward-simulate main. The reason is that VP can indeed simulate the first a
step of main by which

(b → P1) ∼ ((b → P1) 2 (c → P2)) or
(c → P2) ∼ ((b → P1) 2 (c → P2))
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must be in the simulation relation ∼. In the case of the second line, (b → P1) 2 (c →
P2) can make a b step that cannot be simulated by c → P2; for the first line a c
step cannot be simulated. Thus, forward-simulation is not sufficient to prove every
refinement relation on processes.
However, if backward-simulation is considered in addition to forward-simulation

the proof method becomes complete [He89, dRE98]. Backward-simulation means that
every step of the concrete process can be simulated by a backward-step of the VA
process. That is, a relation ∼ is called backward-simulation iff

P ∼ Q and Q a
=⇒ Q implies

that there is a process P with P a
=⇒ P and P ∼ Q.

For the small example above backward-simulation can be used to show that VP
(backward)-simulates main.
So, in order to cover more cases, proof rule Thm. 5.3.2 has to be extended such that

in condition 1. the process main is either forward- or backward-simulated. However,
even with this extension the rule is not complete, because it examines event structure
and state changes separately. A counterexample is given by the following processes:

VP c
= (a → P1)

main c
= (a → P1) 2 (b • ϕ→ P2),

where ϕ evaluates to false. The extended refinement rule compares the unconstrained
processes via simulation on the event structure by which it can not be detected that
the b event never occurs. Thus, the rule cannot prove main to be a refinement of VP,
even though it actually is one with respect to Def. 5.1.3.
Hence, a complete proof rule for refinement needs to consider a forward- and

backward-simulation defined on a transition system incorporating the state space
of the VA process and the CSP-OZ-DC specification. This is not in the scope of this
work, because the refinement check is aimed at a structural and not a semantical
analyses of processes.
In a structural sense, the proof rule Thm. 5.3.2 extended by backward-simulation

is complete, because it can be used to show the refinement relation for all VA pro-
cesses and CSP-OZ-DC specifications for that the process structures fit together.
This excludes refinements where the unreachability of specific branches depends on
the data part and not the CSP process – such refinements can only be detected with
a semantical analysis.

Related Work

We have examined a simple form of CSP-OZ-DC refinement here, because only the
trace semantics of the CSP processes has been taken into account. With this, a
refining process can introduce new deadlocks that do not occur in the more abstract
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system. This needs to be forbidden when defining refinement for a semantics with
failures or similar concepts. In [He89], the refinement of processes with failures and
divergences is analysed. General results on refinement or sub-typing in CSP-OZ (also
considering failures) and related formalisms (e.g., combinations of Event-B and CSP)
can be found in [Fis00] and [Weh02, DW03, STW10]. The textbook of de Roever and
Engelhardt [dRE98] summarises results on data refinement.
The work [Rös94] describes a stepwise-refinement approach with respect to so-

called mixed terms of specification parts and programming notation: starting from a
specification of the analysed system, specification parts are stepwise replaced, end-
ing with a program in a CSP-like programming language such that the program
is a refinement of the original specification. Besides this different focus on stepwise
refinement, the approach in [Rös94] examines systems without time and does not
incorporate unknown components nor combined languages like CSP-OZ-DC.
The refinement approach of the related work of D’Errico and Loreti [DL10] that we

have already mentioned in Sect. 3.4.3 is also step-wise refinement based. They propose
a refinement cycle in that an existing and verified, but only event-based, CCS process
[Mil80] with an unknown environment can be refined with a new process. For this
refining process the weakest assumption on the environment is computed such that a
Hennessy-Milner property [HM85] is preserved.
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6 Limitations and Extensions

I lost some time once. It’s always in the last
place you look for it.

(Delirium, in Season of Mists, Neil Gaiman)
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6.1. Parallel Unknown Processes

The proof calculus as introduced in Sect. 4 contains no rules to reason directly about
constrained unknown processes running in parallel with normal processes or other
constrained unknown processes. Those parallel compositions are important to handle
certain classes of systems, but they cause some problems. Thus, they deserve a deeper
investigation, given in this section.
The main problem that occurs when composing constrained unknown processes

in parallel with other processes is the interference of the temporal constraints with
the operations of the other processes. Without constrained unknown processes, every
state change in a CSP expression is triggered by an event and executed as single step
operation or simultaneously with other events in case of synchronisation. Any pos-
sible interference of two parallel components (without unknowns) is already captured
by the rule set in Chap. 4, that unfolds the parallel composition and symbolically
executes every event and its corresponding operation step-by-step. In the case of a
constrained unknown process, this is not possible, because the temporal constraint
of an unknown process usually does not describe a single state change but a set of
possible traces. Now, every execution of a parallel state change may violate the con-
straint. Thus, we need to handle this interference problems in our calculus to be able
to treat a preferable large class of systems.
In the following, we examine two possible directions to solve this issue:

1. As a general solution, we introduce a single proof rule to handle constrained
unknown processes that are translated into CSP processes without unknowns.
Instead of handling the constraints of an unknown process in the calculus,
they are translated into a process composed in parallel with the remaining
components. Then, the standard rules from Sect. 4.3 can be used to treat the
resulting CSP process.

2. We introduce proof rules that verify explicitly that the constrained unknown
process does not interfere with the parallel process such that the desired prop-
erty is violated. The rules are Rely-Guarantee based verification rules that en-
sure no step of one component violates important properties of the other com-
ponent.

Both of these approaches are examined in the following sections. But beforehand, we
need to define the semantics of constrained parallel components since in Sect. 3.1.2
parallel compositions over unknown parts were ignored. The reason is twofold: first,
the semantics of an expression Proc

(∞)
\A,V • F cannot be directly defined in terms of

transition steps in a labelled transition system, because F describes entire interpreta-
tions and not single steps; second, it also cannot be (solely) defined in terms of sets of
interpretations because—as we have seen in Sect. 3.2—the set of interpretations of a
parallel composition cannot be computed from its constituents. This was no problem
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up to here, because parallel compositions of known processes can be computed via
the labelled transition systems of the processes.
To cope with the first reason, it is possible to translate the formula F in an LTS-

based representation, which is essentially what we do to define the semantics. To
simplify the presentation of the proof rule for parallel unknowns in the following
section, we here define its semantics directly in terms of (modified) Phase Event
Automata (PEA) that are used for the translation-based verification. In Sect. 6.1.5,
we present a more general interpretation-based semantics for parallel unknowns that
is compatible with the automata semantics.

6.1.1. An Automata-Based Semantics for Parallel Unknowns
In [Hoe06] a translation of CSP processes into PEA is given, which is also explained
in Sect. 2.3. The translation uses the LTS of the CSP process and rewrites it in terms
of a PEA (without timing constraints). We adapt this translation to our needs, but
beforehand we examine the different notions of synchronisation in PEA and CSP.
One major difference between the semantics of PEA and CSP with data is the

synchronisation on data: in contrast to the PEA semantics, data in parallel CSP pro-
cesses are not synchronised. Since this only causes problems for parallel compositions,
we remove parallelism—using the guarded normal form—from the process as far as
possible before translating it into PEA. The only parallel compositions that remain
are compositions with unknown parts.
To adequately describe the semantics with asynchronous data, a formalism between

PEA (with data and fully synchronous transition behaviour) and standard timed
automata (without data and synchronisation on common events) is necessary. Thus,
we use PEA with a special parallel composition operator that does not synchron-
ise on the data part. It can be applied to slightly modified PEA without stuttering
transitions, which are not necessary, because the new parallel composition implicitly
allows asynchronous steps of single components. The definition is similar to the stand-
ard parallel composition for timed automata and distinguishes between asynchronous
steps of single components and synchronous steps of two automata that agree on an
event from the synchronisation alphabet.

Definition 6.1.1 (Parallel composition without data synchronisation)
The data-asynchronous parallel composition of PEAAl = (Pl ,Vl ,Al ,Cl ,El , sl , Il ,P0

l ),
l ∈ 1..2, without stutter transitions but with disjoint clock sets, C1∩C2 = ∅, is defined
by

A1 ‖̃
B
A2 := (P1 × P2,V1 ∪V2,A1 ∪A2,C1 ∪ C2,E , s1 ∧ s2, I1 ∧ I2,P0

1 × P0
2 ),

where E is given by synchronisation and interleaving steps:

• Synchronisation: if (pl , ϕl ,Xl , p′l) ∈ El for l = 1, 2, then

((p1, p2), l b ∧ ϕ1 ∧ ϕ2,X1 ∪X2, (p′1, p′2)) ∈ E
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for every b ∈ B.

• Interleaving: if (p, ϕ,X , p′) ∈ E1 and q ∈ P2, then

((p, q),
∧
b∈B
6 l b ∧ ϕ,X , (p′, q)) ∈ E

and, vice versa, if (q, ϕ,X , q ′) ∈ E2 and p ∈ P1, then

((p, q),
∧
b∈B
6 l b ∧ ϕ,X , (p, q ′)) ∈ E .

With this, we define the automata-based semantics of processes with parallelism
over unknowns. We consider processes in guarded normal form having the nice prop-
erty that all parallel and sequential compositions, except for compositions with un-
known processes, are resolved. Then we can use the translation of [Hoe06] for CSP
processes and only need to pay attention to compositions with unknown parts.

PEA semantics for parallel unknowns. Let P be a process in guarded normal form
(Def. 3.3.1) with a finite process structure. We define

I ∈ JPK iff I matches a run π of PEAS(P), (6.1)

where PEAS is a PEA representing the semantics of P. It is defined by

PEAS(P) :=



PEA(P) for P ∈ {Skip, Stop, a → Q,
Q1 2 Q2,Q[Rn],Q \A}

PEAProc(P) for P = Proc
(∞)
\A,V • F

PEAS(Proc
(∞)
\A,V • F) o

9 PEAS(Q) for P = Proc
(∞)
\A,V • F o

9 Q
PEAS(Proc

(∞)
\A,V • F)‖̃

B
PEAS(Q) for P = Proc

(∞)
\A,V • F ‖

B
Q

The symmetric cases are omitted. See Sect. 6.1.5 for the argument that this definition
coincides with the definition of Sect. 3.1.2 (for processes without parallel composition
over unknowns). In this definition, unknown processes are translated into a parallel
composition of two PEA using a mapping PEAProc(P), which is defined below. Se-
quential composition by an unknown process with another CSP process is directly
translated into a sequential composition on the PEA level. The same holds for parallel
compositions with unknown components.
Processes P that do not contain unknown processes at the highest level are trans-

lated with a mapping PEA(P), which basically equals the translation from CSP to
PEA from [Hoe06] except that we have to integrate the automata for the unknown
parts. It is based on the LTS of P, given by LTS(P) = (Q ∪ QProc,L,P,−→). In
the case that P contains unknown processes, QProc with QProc ∩ Q = ∅ repres-
ents processes of the shape Proc

(∞)
\A,V • F ∈ QProc and Proc

(∞)
\A,V • F � P ∈ QProc
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for � ∈ {‖,2, o9} and its symmetric variants. They are treated as atomic processes
that are not resolved in the LTS. Also note that the labels of the LTS are annot-
ated events of the shape a • ϕ. PEA(P) is then given by the smallest automaton
A = (Ph,SysVar ∪ Const, alph(P),C ,E , true, I ,P), where

• Ph = Q ∪
⋃

q∈QProc
Phq , where Phq is the set of locations of the PEA of process

q, PEAS(q). So, the set of locations of A comprises the set of LTS locations
and the set of locations from the PEA for the unknown parts.

• E = {(q, only(a) ∧ ϕ ∧ ΞConst,∅, q ′) | q a•ϕ−→ q ′, q ′ ∈ Q} ∪
⋃

q∈QProc
Eq , where

Eq is the set of transitions of PEAS(q). Like in [Hoe06] only(a) represents a
transition where a is the only possible event.

• C =
⋃

q∈QProc
Cq , where Cq is the set of clocks of PEAS(q).

• s =
⋃

q∈QProc
sq , where sq is the set of state invariants of PEAS(q). All state

invariants for locations in Q are set to true.

• I =
⋃

q∈QProc
Iq , where Iq is the set of clock invariants of PEAS(q). All clock

invariants for locations in Q are set to true.

• Moreover, the set of system variables for the PEA is given by SysVar , constants
Const are never changing variables, the alphabet of PEA and process coincide,
and the initial location is the process P itself.

For processes without unknown parts, QProc = ∅, this definition equals the defin-
ition of Hoenicke in [Hoe06] except that constrained events a • ϕ occur in the LTS.
For processes with unknown parts, the definition glues the automata for the unknown
parts, PEAProc(q) for q ∈ QProc, into the PEA of the process part without unknowns,
which is constructed according to the standard translation for CSP. This definition
is well-defined, because we restrict ourselves to processes with a finite structure here
(for instance, processes of the shape P c

= Proc\A,V • F ‖
B
P are not allowed).

Translation of unknown parts into PEA. Hence, we now define the translation of
unknown processes into PEA in such a way that the parallel components are correctly
synchronised.
Figure 6.1 defines the translation from unknown processes into PEA. The constrain-

ing formula F is translated into an equivalent representation in terms of PEA—such
a translation exists by requirement. In addition, we demand that all transitions of
PEA(F) are event triggered. The automaton of the formula PEA(F) and a second
automaton, representing the PEA for Proc\A,V , are synchronised over the entire al-
phabet of F , i.e., the alphabet of its automaton alph(F) := alph(PEA(F)). This
second automaton consists of two locations: one representing the unknown process
and one representing the terminated process Ω. The former location has a transition
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PEAProc(P1) :=

Proc

Ω

∧
a∈A
¬a ∧∧

v∈V
v′ = v

X ‖̃
alph(F)

PEA(F )

PEAProc(P2) :=

Proc∞

∧
a∈A
¬a ∧∧

v∈V
v′ = v ‖̃

alph(F)

PEA(F )

Figure 6.1.: Translation from P1 = Proc\A,V • F and P2 = Proc∞\A,V • F into PEA

representing a data change executed by the process itself: no occurrence of events
from A and no change of variables in V are allowed. Thus, the parallel composition
may perform arbitrary events that are not in the set A as long as variables from V are
not changed. If the event is in the alphabet of PEA(F), it can only occur if allowed
by PEA(F). If an event is not restricted by PEA(F), the automaton may perform
arbitrary non-synchronised steps over this event.
The automaton for Proc∞\A,V equals that of Proc\A,V but without the Ω location,

representing the terminated process.

6.1.2. Translation-Based Approaches

A possible solution to solve properties over parallel unknown components with ad-
ditional constraints is to apply an automata-theoretic approach. That is, instead of
solving real-time constraints directly in the calculus, we translate the constraints to-
gether with all parallel components into a single CSP process with data—without tim-
ing properties and unknown components. This has the drawback that the translation
is not compositional, because the entire parallel composition is unfolded, including
all timing properties in the range of the current process.

Example 6.1.2. An example demonstrating the problems of parallel processes con-
strained by timed DC properties is

(Proc • ¬(` ≤ 5al aa true)) ‖
a,b

a → b → Bad ‖
a,b

(Proc • ¬(� b ∧ ` > 2a true)).

(6.2)

132



6.1. Parallel Unknown Processes

The process Bad represents an arbitrary process that causes undesired behaviour
violating a safety property. The left DC formula demands that for 5 time units no a
event occurs while the right DC formula requires the occurrence of a b event within 2
time units. Due to these DC formulae, b has to occur before event a, which contradicts
the middle CSP process. Hence, the Bad process cannot be reached, and the system is
safe. This property depends on the concrete time constants used in the DC formulae.
If the time constant in the right formula is replaced by a value larger than 5, then
the process Bad becomes reachable.
The problem with suchlike processes is the interdependence of all of the three

sub-processes that has to be solved by any approach to compositionally reason on
processes. Of course we would prefer to follow the deductive approach from Chap. 4,
but then we would have to find a way to step-wise reduce the expression (6.2) to a sim-
pler expression such that its meaning its preserved. Candidates for such a reduction
in (6.2) are the DC formulae and the prefix process.
The problem becomes even more difficult if we slightly extend (6.2) to

((Proc • ¬(` ≤ 5al aa true) ∧ � b) ‖
a
a → b → Bad) (6.3)

‖
b
(Proc • ¬(� b ∧ ` > 2a true) ∧ � a), (6.4)

because now it is not possible to compute the interaction of both of the DC formulae
before taking the prefix process expression into account. Instead one has to first
compute the interaction of the prefix expression with the left process. That is, if we
want to reduce these processes in a semantic-preserving way, we need a representation
for the process structure and the timing information. Neither can be dropped here,
because both are necessary for synchronisation with the right Proc expression.
So, any possible reduction of such a process expression must lead to a simpler

representation of (6.3) while preserving all relevant information for the synchron-
isation with the process in (6.4), which is nearly all information contained in the
sub-processes. Such a reduction could for instance be a timed dependency reduction
stating that event b always occurs before event a. In the example, this works only
in the case of (6.2) (when computing the parallel composition of both unknown pro-
cesses) and not for the parallel composition in (6.3) and (6.4), where we need the
time constraints for both synchronisations. This leads to the conclusion that such-
like process expressions, with a large degree of interdependence, cannot effectively
be simplified in a compositional way. However, we could transform the entire pro-
cess expression into a representation that is easier to handle. For instance, this could
be a unified representation not combining different formalisms, e.g., in this case, a
reduction to a CSP process or a DC formula.

Overall, this result is not very surprising, because it is always the case in decom-
positional verification that a system, where a property crucially depends on every
single action (and its timed behaviour) of a parallel composition, cannot be further
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decomposed. It follows that every approach to compositionally solve these parallel
compositions like in Sect. 6.1.3 can only provide a solution for dedicated situations.
Thus, as a solution for the general case, we provide a proof rule that transforms par-
allel process expressions with unknown parts into a single process expression without
parallelism and without timing constraints. This process can then further be treated
with the calculus rules from Sect. 4.2. A second solution, which we do not examine
here, is the translation of the entire process expression into a formula that can be
solved with a verification technique for the corresponding logic.

Proof Rule Based on Translation

With the following generic proof rule, general CSP processes with constrained un-
known parts can be resolved into a CSP process without further timing constraints.
The premise of the rule can then be further processed with the proof rules from
Sect. 4.2.

[ProcFree(P)]γ

[P]γ
(parallel uproc)

The process expression ProcFree(P) is a process with data but without parallel com-
positions, and it is a satisfiability equivalent representation of P in the sense that for
all formulae γ and modelsM

∃I ∈ JPKM • I |= γ iff ∃ I ∈ JProcFree(P)KM • I |= γ. (6.5)

The rule is similar to rule (process equivalence) with the difference that the processes
of conclusion and premise are not exactly equivalent but satisfiability equivalent. It is
necessary to take account of satisfiability equivalence in order to cover the case that
the interpretations of P are restricted by timing constraints whereas ProcFree(P) has
the same untimed interpretations as P without further timing restrictions.

Theorem 6.1.3 (Soundness of rule (parallel uproc))
Rule (parallel uproc) with side-condition (6.5) is sound.

Proof. We show local soundness, i.e., that M |= [ProcFree(P)]γ implies M |= [P]γ
and vice versa. For the first implication, this is the case, becauseM |= [ProcFree(P)]γ
means that

for all I ∈ JProcFree(P)KM holds I |= γ. (6.6)

If we now assume that M 6|= [P]γ, then there is an interpretation J ∈ JPKM with
J |= ¬γ. But then we can apply equivalence (6.5) and get that there also is an
interpretation I ∈ JProcFree(P)KM with I |= ¬γ, which contradicts (6.6). The other
direction of the equivalence is symmetric. �
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Construction of ProcFree(P)

Even though the proof rule introduced above can be applied to arbitrary processes
satisfying condition (6.5), we now show how to construct a satisfiability equivalent
process without unknown processes for every process P. The construction is generic,
because it can be applied to all unknown processes that are constrained by a tem-
poral logic that can be translated into timed automata [AD94]. As timed automata
representation we use PEA.
The construction shows that there actually is a process ProcFree(P) for every P

as long as the constraining logic for unknown processes in P can be translated into
PEA, like it is the case for DC formulae [Hoe06]. If P is already a process without
unknown processes, then ProcFree(P) is the process where every parallel composition
is equivalently replaced by a choice of processes like for rule (parallel2) on page 75.
The construction of ProcFree(P) can be sketched as follows.

1. The CSP process with constrained unknown parts is translated into its PEA-
based semantics according to the definitions above.

2. To this automaton the region construction of [AD94] is applied and by this all
clock constraints are removed.

3. The resulting finite state automaton, where all events are annotated by con-
straints, is translated back to a CSP process with data.

These steps are examined in detail:

PEA representation. The process P is carried over to its semantics in terms of PEA
with the mapping PEAS(P) (Sect. 6.1.1). It holds by definition that

I ∈ JPK iff there is a run π of PEAS(P) matching I. (6.7)

Region automaton for PEA with infinite data. In the next step, the clock con-
straints in PEAS , which have been introduced during the translation of the constraints
of unknown processes, need to be removed. Hence, we apply the region construction
of [AD94] to translate the infinite-state PEA into a finite LTS without clocks. The
original region construction for timed automata is without data, but can be exten-
ded to automata with finite data as done similarly for the model checker Uppaal
[LPY97, Möl02]. So, the main idea to cope with the possibly infinite data constraints
of CSP and PEA is to perform the standard region construction while treating the
data constraints as event annotations. Afterwards, the resulting automaton without
timing constraints is translated back to CSP, and we handle the data constraints on
this level. This is possible, because the timing constraints of PEA usually do not
depend on data constraints with the exception of timing parameters. Thus, we only
need to dispense with clock constraints over timing parameters (cf. Def. 2.3.1) that
actually compare clocks with data.
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Another syntactical restriction we impose is that we only consider PEA without
state invariants (clock invariants are of course allowed), which slightly simplifies the
construction and which enables the back translation into CSP with data. This is not a
significant restriction, because every PEA (after computing the parallel product) can
be translated into a PEA without state invariants by shifting the invariant constraints
to incoming transitions of the corresponding location; for initial locations with state
invariants a new dummy initial location is used to set the invariant constraint when
entering the original initial location.
To sum up, we examine PEA without state invariants where every state change is

executed at transitions triggered by events. We can see the constraints as syntactic
event annotations. To give an example, the PEA transition

(p, l a ∧ l b ∧ x ′ = x + 1 ∧ c < 15,X , q),

where x and x ′ are integer variables, a and b are event variables, c is a clock, and X
a set of clocks, can be rewritten to a transition(

p, l ( l a ∧ l b ∧ x ′ = x + 1) ∧ c < 15,X , q
)
.

In this transition, l(l a ∧ l b ∧ x ′ = x + 1) is an annotated event, where l a ∧
l b ∧ x ′ = x + 1 is regarded as the event name, and the transition can be considered
as standard timed automata transition. For simplicity, we omit the duplicate event
arrows and write l a ∧ ϕ instead of l(l a ∧ ϕ). The same event l a with a different
annotation ϕ 6= ψ is considered as a different event, i.e., l a ∧ ϕ 6= l a ∧ ψ. Note
that we do not need events for synchronisations anymore, because we have already
computed the parallel composition of all parallel components. We formally define:

Definition 6.1.4 (TA corresponding to PEA)
For a PEA A = (P,V ,A,C ,E , s, I ,P0) the timed automata representation of A,
TA(A), is a PEA without data defined by

TA(A) := (P,∅,A,C ,E ,∅, I ,P0).

For simplicity we assume without loss of generality that all guards at transitions are
conjunctions, which can always be achieved by transforming the guard into disjunctive
normal form and removing every disjunction by splitting the transition. Particularly,
every clock constraint is then a simple conjunction of (possibly negated) comparisons
according to the definitions in Sect. 2.3.
With this we define

(p, (lψ) ∧ θ,X , q) ∈ E and ψ ∈ A iff

(p, ϕ,X , q) ∈ E ,

where ϕ can be split into one part with events and data constraints and one clock
constraint, i.e., ϕ = ψ ∧ θ. We additionally demand A ∩A = ∅.

136



6.1. Parallel Unknown Processes

Lemma 6.1.5 (Runs of PEA and TA)
There is an interpretation I, with untime(I) = 〈M0,M1, . . . ,Mn〉 that matches a
run π = 〈(p0, ψ0,M0, η0, t0), . . . , (pn , ψn ,Mn , ηn , tn)〉1 of TA(A) and that addition-
ally respects the state changes according to the ψi , i.e.,Mi ∪M′i+1 |= ψi for i ∈ 0..n,
iff there is a corresponding run π = 〈(p0,E0,M0, η0, t0), . . . , (pn ,En ,Mn , ηn , tn)〉 of
A that matches I, withMi(x) =Mi(x) for all x 6∈ A.

Proof. For the “only if” case, we only have to show that π actually is a run of A,
which can be shown by proving all conditions of Def. 2.3.4: the events in the Ei ,
which correspond to the events of the constraint ψi , can occur due to the assumption
Mi ∪ M′i+1 |= ψi . Since π is a run of TA(A), we know that there is a transition
(pi , l(ψi) ∧ θi ,X , qi) for every i, which implies Mi ∪M′i+1, ηi + ti |= θi . Together
with the assumptionMi ∪M′i+1 |= ψi , we can concludeMi ∪M′i+1, ηi + ti |= ψi ∧
θ, because the ψi do not contain clock constraints by construction. The remaining
conditions of Def. 2.3.4 are true since A and TA(A) coincide on all clock constraints
and invariants.
The “if” case follows, becauseMi ∪M′i+1 |= ψi due to the semantics of PEA. Due

to Mi ∪M′i+1, ηi + ti |= ψi ∧ θ, the clock constraints are not violated by which we
get the corresponding run π of TA(A). The conditionMi(x) =Mi(x) for all x 6∈ A
ensures that the Mi from the run π do not incidentally prohibit the occurrences of
the compound events from A, which do not occur in A. �

In [AD94] it is shown that location reachability in timed automata is decidable.
This is achieved by translating the timed automaton, having an infinite state space
due to real-valued clocks, into an equivalent (with respect to location reachability)
representation without clocks. The key observation of this construction is that it is
not important to know the exact value of a clock as long as it is known in which
time interval a clock value can be and how it relates to other clocks (lesser, equal,
or greater). To this end, the time line is covered by a finite number of intervals (or
regions) up to the greatest time constant occurring in the automaton. By this, an
equivalence relation on the clock values is constructed. This equivalence relation can
be used to define for a given timed automata A the so-called region automaton for
A, denoted R(A), having a finite state space. For simplicity, we consider the region
automaton to be a finite automaton accepting runs over configurations

(p,Y , [η]) ∈ P × PA× Region,

where [η] ∈ Region denotes an equivalence class on clock valuations.
We omit the standard construction here and refer to [AD94] and [OD08] for an

exact description. We only cite the classical result for standard timed automata that
accordingly also holds for the timed automata representation of PEA.

1Note that theMi of the run can be chosen arbitrarily for all data except for events, because TA(A)
does not contain any constraint over data variables.
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Theorem 6.1.6 (Reachability in region automaton)
Given a timed automaton A, that is a PEA without data variables and state invariants
as in Def. 6.1.4, then there is for every run

〈(p0,E0, [η0]), . . . , (pn ,En , [ηn ])〉

of R(A) a corresponding run

〈(p0,E0,M0, η0, t0), . . . , (pn ,En ,Mn , ηn , tn)〉

of A and vice versa.

So, using this theorem we can decide whether a specific run of the system is prohibited
by its clock constraints or not. It is not revealed whether the run is allowed by the
data constraints of the system. For this reason, the region automaton is translated
back to a dCSP expression such that we can use the approach of Sect. 4.2 to reason
about the data part.

Translation to CSP with data. A translation from state machines into CSP can be
found in, e.g., [RW03]. Here the translation is simpler, because the region automaton
is just a finite automaton without parallel or sequential components and without
compound states.
The translation is given by a mapping peq assigning CSP process equations to

locations of the automaton. Let succ(l) ∈ A × P be the set of successors of location
l, consisting of a pair of the event and the successor location for every outgoing
transition of l. Note that for the region automaton the set of locations P consists of
tuples (p, [η]) over a symbolic location p and an equivalence class of clocks. The set
succτ (l) contains all successors that can be reached via an empty transition, that is
not triggered by an event. Then a translation into a process expression is given by
the process equation system peq: for a location l without outgoing transitions, i.e.,
succ(l) ∪ succτ (l) = ∅, peq(l) is defined by

peq(l) := (Pl
c
= Stop)

and for all other locations by

peq(l) :=
(
Pl

c
= (2(l a∧ψ,m)∈succ(l) a • ψ → Pm) u (um∈succτ (l) Pm)

)
. (6.8)

Since we use trace semantics of CSP processes in this work, u and 2 cannot be
distinguished. We consider Stop to be the neutral element of both choice operators.
Thus, if succ(l) or succτ (l) are empty, the corresponding branch in (6.8) disappears,
because

P 2 Stop = P and P u Stop = P

in trace semantics (the right equation is wrong in failures semantics). Moreover, we
have slightly simplified the presentation here by assuming that only a single event a
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occurs for the transitions in (6.8). In the general case, we need to consider compound
events representing complex event expressions over more than one event, similarly to
Def. 6.1.4. This simplification is permissible since the events are not used anymore
for synchronisations.
The translation of a region automaton R into a process CSP(R) is then defined by

CSP(R) := ul∈P0 Pl ,

where P0 is the set of initial locations of R.

Lemma 6.1.7 (Runs of CSP process and region automaton)
Let CSP(R) be a CSP process according to the construction above such that ev-
ery event ai is constrained by a formula ψi . Then, there is an interpretation I =
〈M0, a0,M1, a1, . . . 〉 of CSP(R) iff there is a corresponding run

〈(p0, (l a0 ∧ ψ0), [η0]), (p1, (l a1 ∧ ψ1), [η1]), . . . 〉

of R andMi ∪M′i+1 |= l ai ∧ ψi for all i.

Proof. The existence of a corresponding run of R follows from the construction of
CSP(R). The second condition Mi ∪M′i+1 |= l ai ∧ ψi is a direct conclusion from
the semantics of CSP with data. Vice versa, the existence of an interpretation I
follows from the CSP semantics in Sect. 3.1.1. �

The following corollary shows that these several translation steps can be used to
translate a process with arbitrary unknown parts constrained by a real-time logic into
an untimed representation that is equivalent to the original process (with respect to a
desired untimed property). Hence, a so-defined process ProcFree can be used to apply
rule (parallel uproc) in order to reduce a process with constrained unknown parts.

Corollary 6.1.8 (Construction of ProcFree(P))
If we set ProcFree(P) := CSP(R(TA(PEAS(P)))), then condition (6.5) is valid.

Proof. We apply the Lemma 6.1.7, Thm. 6.1.6, and Lemma 6.1.5 to get the desired
result. Consider I ∈ JProcFree(P)KM with untime(I) = 〈M0, . . . ,Mn〉.

1. We apply Lemma 6.1.7 and get a run π of R(TA(PEAS(P))) with side-condition
Mi ∪M′i+1 |= l ai ∧ ψi .

2. Applying Thm. 6.1.6 to π, we get a corresponding run π of TA(PEAS(P)).

3. With the side-conditionMi ∪M′i+1 |= l ai ∧ ψi , Lemma 6.1.5 yields an inter-
pretation I matching a run of PEAS(P) with untime(I) = 〈M0, . . . ,Mn〉 and
Mi(x) =Mi(x) for all x 6∈ A.

4. Due to (6.7), we can conclude I ∈ JPK.
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Since the untimed sequences of I and I are the same except for events in A, which do
particularly not occur in formula γ from condition (6.5), both interpretations cannot
be distinguished by untimed formulae γ. Since all of the used lemmas and theorems
describe equivalences, they can also be applied in the other direction to derive the
equivalence in (6.5). �

The translation steps to construct ProcFree(P) consist mainly in simple rewritings
of the process to bring it into a structure allowing for applying the region construction.
The costly parts are the unfolding of parallel compositions in the first step, when
translating the process into a PEA, and the region construction, which is exponential
in the number of clocks [AD94, OD08].

Solution without region construction. [HM05a] and [Hoe06] proposed a verifica-
tion approach for PEA that is not based on the region construction but on a trans-
lation of PEA into transition constraint systems (TCS) that can be verified using
the model checkers ARMC [PR07] or SLAB [BDFW07]. This translation can also be
used as an alternative to the region construction when generating an untimed process
ProcFree(P) for a process with unknowns P. The basic idea is the same as before:
the constrained unknown parts as well as the remaining processes are translated into
PEA, and the parallel composition has to be computed, i.e., PEAS(P). But instead
of the region construction, the translation into TCS is applied, by which the implicit
notion of a clock is replaced by arithmetical operations on real-valued variables. This
means that the real-valued variables representing the time are not automatically in-
creased, but instead are simultaneously increased by an explicit time-progress step.
For details of this translation see [Hoe06]. Afterwards, the TCS needs to be trans-
lated back to a CSP expression with data that can be verified using the calculus of
Sect. 4.2, which can be done similarly to the translation of the region automaton into
CSP, CSP(R).
The advantage of this procedure is that it avoids the exponential structural blow-up

of the process equation system, which is a result of the region construction. However, it
introduces new real-valued variables, representing the time progress, and arithmetical
operations over them, which have to be handled within the sequent calculus proof.
Thus, for generating ProcFree(P) we have the choice between the region variant
resulting in a complex process structure with simpler data constraints as opposed to
the TCS variant with a simpler process structure but more complex data constraints,
where the time progress has to be explicitly computed in a sequent proof. We have
not yet compared which variant yields better results under which circumstances.

6.1.3. Rely-Guarantee Reasoning for Parallel Unknowns

After having introduced a general but not very efficient approach for solving con-
strained parallel unknowns, we examine situations, where parallel unknowns can dir-
ectly be handled using proof rules.
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As already mentioned earlier, solving properties over parallel compositions with
unknown parts is difficult, because of the interference of the components, which can
always occur in systems with shared variables. That is, a parallel unknown process
may execute an arbitrary state change over a shared variable at any time, and by this,
it may influence parallel components such that a safety property is violated. Thus,
proof rules handling properties over parallel unknowns need to cope with these mutual
change of system variables. A classical solution from the area of program verification
of parallel programs is the use of interference freedom rules like in the approach of
Owicki and Gries [OG76a, OG76b, AdBO09]. With those rules, it is explicitly proven
that every state change of one component never influences the required properties
of all other components. One major drawback of this approach is that it only works
for closed systems, in which every component is known in advance, because one
needs to check that every executed state change does not falsify relevant properties
at any point of the execution. One approach to overcome this problem is to apply
the Assume-Guarantee paradigm for shared variables (also called Rely-Guarantee
method) [Jon81, MC81, Jon83, dRdBH+01]. Implicitly, this approach also implies a
kind of interference freedom of the parallel components, which is not formulated by
a global property over all components but as a property of every single component.
We adapt this approach in the context of CSP processes with unknown parts.
To begin with, we look at straightforward rules for parallel unknown processes and

argue why these attempts cannot work. When examining a property over a parallel
composition like

∆ ` [Proc\A1,V1
• F1 ‖

B
Proc\A2,V2

• F2]γ, (6.9)

one usually would like to have a proof rule that can be treated completely within
the sequent calculus of Sect. 4.3. That means that the rule needs to decompose the
property or the process into smaller parts that can be handled in the calculus. This
could be for instance a rule like

∆0 ` Γ0 ∆1 ` [Proc\A1,V1
• F1]γ1 ∆2 ` [Proc\A2,V2

• F2]γ2 γ1 ∨ γ2 ⇒ γ

∆ ` [Proc\A1,V1
• F1 ‖ Proc\A2,V2

• F2]γ,Γ
.

This inaccurate rule combines local properties γ1 and γ2 of the unknown processes
to conclude the desired global γ. This cannot work in the general case, because the
two unknown processes may access shared variables. Moreover, as the logic of F1 and
F2 is not known in advance, we do not know what is expressible by the assumptions.
We consider an example to clarify this:

Example 6.1.9. The dCSP formula

p ` [Proc\∅,∅ • 2p‖|Proc\∅,∅ • 2p]2p (6.10)

expresses that when starting with a valuation s.t. p holds and executing two parallel
unknown processes ensuring that p holds, the desired property is that p always holds.
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Unfortunately, even this property does not hold for all possible instantiations of the
unknown parts. A counterexample is, e.g., the process

Q c
= (a1 • p ∧ b′ ∧ p′)→

(
((a2 • b ∧ p′ ∧ ¬b′)→ Skip) 2 ((a3 • ¬b ∧ ¬p′)→ Skip)

)
as instantiation process for both unknown processes. When executing such a process
Q in isolation, then p is always true. But as soon two instances of this process run in
parallel, there is an execution such that the first process sets b to false, which enables
to second branch of the choice for the other process. So, the second process may set
p to false.
Hence, the example shows that the instances of the unknown processes in (6.10)

interfere in an unpredictable way, because the problem-causing property b does not
occur in (6.10). For this reason, to prove properties over such parallel compositions,
we need to examine every single transition of the components (instead of traces like in
the given naïve rule) to exclude property-violating interference at each possible data
change. In the framework of Owicki and Gries [OG76a], this is done by explicitly
proving non-interference for each transition step2. But this approach is not possible
for unknown processes, which are not known in advance. Instead we follow the Rely-
Guarantee (R-G) approach [dRdBH+01] and impose a Rely-Guarantee condition for
every transition of the unknown process, demanding that when every transition up
to a given point in time satisfies a rely condition, then the next transition satisfies a
guarantee condition. Thus, we require this property to be checked in the constraining
logic of the unknown processes, i.e., a property like (6.9) can be proven to actually hold
for all instantiations of unknown processes if F1 and F2 are formulated as appropriate
Rely-Guarantee formulae. Whether this is possible depends on the constraining logic
for unknowns, and we will see below how R-G formulae can be formulated in our
standard logic DC or in terms of CSP processes without unknowns.
The next section presents four proof rules to verify that parallel components do

not interfere in such a way that a desired property is violated.

Proof Rules

To begin with, we have a few simple rules that cover trivial situations—similarly to
rule (assumption axiom)—where the system is blocked due to necessary synchronisa-
tions. In this case, every state formula δ is valid. So, with a ∈ A ∩ B the following
two rules reflect this fact, for state formulae and for the temporal case.

[a → Q ‖
B
Proc

(∞)
\A,V • F ]δ

(parallel uproc axiom)

ϕ

[a → Q ‖
B
Proc

(∞)
\A,V • F ]2ϕ

(parallel uproc2)

2In Example 6.1.9 such an non-interference check fails, because the second branch of the choice in
Q actually does interfere with the desired property.
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These rules over prefix processes can be easily expanded to the general guarded
case. Instead of a single prefix process, a choice of guarded processes is examined.
For instance, instead of checking only the a event in the left premise of the rules
one needs to check all possible events that can occur in the left process. As parallel
composition is commutative, all of these rules (and likewise the following rules) also
hold for the symmetric case.
The next rule handles the case that an unknown process is actually independent

from the second parallel component, i.e., a desired property can be proven without
checking the constrained unknown part. So with a concrete process P without un-
known parts and SysVar(P)∪SysVar(γ) ⊆ V—that is Proc(∞)

\A,V • F does not change
any symbol in P and γ—the rule is as follows.

Γ ` [P]γ,∆

Γ ` [P ‖
B
Proc

(∞)
\A,V • F ]γ,∆

(independent uproc)

Note that parallel compositions satisfying the side-condition are not necessarily inde-
pendent from each other, because the unknown process could potentially forbid some
runs of P leading to bad behaviour. Therefore, the rule is not locally sound.
After these rules for handling special situations, we now introduce a general R-G

rule to solve properties over parallel processes, that may also contain unknown parts.

Γ ` ψ ∧ σ,∆ ψ ∨ g2 ` r1 ψ ∨ g1 ` r2 g1 ∨ g2 ` γ
Γ ` [P1 ‖ P2]γ,∆

(R-G uproc)

Here, γ is either defined by γ = δ, i.e., it is a state formula, or by γ = 2σ, i.e.,
it is a temporal property, and γ is given by γ = δ or γ = σ, respectively3. The
side-condition of this rule is that P1 and P2 satisfy the Rely-Guarantee criterion: if a
state satisfies a rely condition ri , then after the next state change of Pi the guarantee
condition gi is satisfied. Furthermore, gi is stable, i.e., if gi holds, then gi is still
valid after every state change of Pi . Formally: for every interpretation Ii ∈ JPiK with
untime(Ii) = 〈M0, . . . ,Mn〉 it holds for i ∈ 1..2 and j ∈ 1..n

Mj−1 |= ri ∨ gi ⇒ Mj |= gi . (6.11)

Note that we do not explicitly distinguish between transitions of the process itself
and its environment process. If γ = 2σ, then we need to show in the left premise
that σ is valid at the beginning of the execution of P1 ‖ P2. The current context
formulae ∆,Γ are also considered when proving the initial condition ψ (but not in
the remaining premises).
The rule is motivated by the parallel composition rule for Rely-Guarantee reason-

ing [dRdBH+01], but it is also similar to the Rely-Guarantee rule of [Sti88] in that
the rely and the guarantee conditions are formulated as state predicates and not as
transition predicates over primed and unprimed variables. We could have defined the

3In the case γ = δ, the σ occurring in the rule is not relevant, i.e., σ = true.
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proof rule in terms of transition predicates likewise, but with the state predicate ap-
proach, definitions and proofs become slightly simpler, and state predicates are more
convenient when defining the rely and guarantee conditions in terms of DC formulae.
In the premise of the rule, one needs to show that the guarantee condition g1 of one

component implies the rely condition r2 of the other and vice versa. In combination
with the initial condition, which holds in the current context ∆,Γ and which also
implies the rely conditions, this implies that one of the guarantees is always true.
Finally, one need to prove that each of the guarantee conditions implies the desired
property.

Theorem 6.1.10 (Soundness of proof rules for unknown processes)
The presented proof rules (parallel uproc axiom) up to (R-G uproc) with the corres-
ponding side-conditions are sound.

Proof.
Rule (parallel uproc axiom): The rule is correct, because there is only one interpret-

ation I ∈ Ja → Q ‖
B
Proc

(∞)
\A,V • FKM for all modelsM, and this interpretation

is of the shape I = 〈M〉 since no synchronisation is possible. I has no termin-
ating model, so I |= δ.

Rule (parallel uproc2): With the same argument as in the previous case we get that
the only possible interpretation of the parallel composition is I = 〈M〉. Hence,
M |= ϕ iff I |= 2ϕ which proves the rule sound.

Rule (independent uproc): We give the proof sketch here: For an interpretation

I ∈ JP ‖
B
Proc

(∞)
\A,V • FKM with I = 〈M0, a0, . . . 〉,

the projection I|V to symbols in V is considered, i.e., I|V = 〈M0|V , a0, . . . 〉,
where Mi|V (v) = Mi for v ∈ V , and Mi|V (x) is undefined for all other sym-
bols x 6∈ V . Then, for all single transition steps ai of the unknown process
Mi|V = Mi+1|V , because the unknown process does not change variables in
V . These stutter steps are removed from the interpretations which results in
an interpretation of P. To that the premise is applied by which property γ is
satisfied for the modified interpretation. Since γ contains only symbols from V ,
the property γ also holds for the original interpretation I.

Rule (R-G uproc): We consider M |= ψ ∧ σ and show M |= [P1 ‖ P2]γ. Let I ∈
JP1 ‖ P2KM with untime(I) = 〈M, a0,M1, a1, . . . ,Mn〉. We show by induction
over the length of untime(I) that for all Mi with i ≥ 1 one of the guarantee
conditions, g1 or g2, holds.
n = 1: That is, untime(I) = 〈M, a0,M1〉. With M |= ψ and ψ ∨ g2 ` r1 we
can conclude that also M |= r1 holds and, symmetrically, M |= r2. So, if the
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a0-triggered, first transition of I is a transition of process P1, we can apply
the R-G condition (6.11) and get that M1 |= g1. If it is a transition of P2,
analogouslyM2 |= g2 holds.

n = k + 1: So, untime(I) = 〈M, a0,M1, . . . ,Mk , ak ,Mk+1〉. The induction
hypothesis holds for 〈M, a0, . . . ,Mk〉. Thus, without loss of generalityMk |= g1

(the other case is symmetric). If the ak-triggered transition is a P1 transition,
then stability of g1 yields Mk+1 |= g1. Otherwise, it is a P2 transition and
we apply the premise of the rule ψ ∨ g1 ` r2 to get Mk |= r2. With the R-G
condition (6.11) for P2, we concludeMk+1 |= g2. This proves thatMi |= g1 ∨ g2

for all i ∈ 1..n.

Thus, due to the right-most premise g1 ∨ g2 |= γ the property γ holds for allMi
with i ∈ 1..n (in case of γ = σ and γ = 2σ) or forMn (in case of γ = γ = δ).
For γ = 2σ we additionally need the premiseM |= σ to conclude I |= 2σ.

�

Checking R-G Conditions for dCSP and for DC

To apply rule (R-G uproc) in our context, the constraints over unknowns need to
define R-G properties. Since these properties depend on the logic of the constraints,
we exemplarily show how to specify R-G properties with DC formulae. In addition,
proof rule (R-G uproc) can also be applied to CSP processes without unknown parts.
In that case, the R-G property can be proven with the existing sequent calculus rules.
We demonstrate these applications in the following.

DC R-G conditions. Preferably, a single DC formula is used to describe the R-G
condition (6.11) in the sense that all interpretations of the DC formula satisfy the
R-G condition. But DC formulae always describe complete system runs and not single
transitions as in (6.11). Thus, a straightforward choice of an appropriate DC formula
like

¬3(dr ∨ gead¬ge)

does not fulfil the desired purpose, because it states that in every run of a concrete
system component only allowed transitions occur—but it does not consider possible
interfering state changes of parallel components.
Hence, to nevertheless verify R-G conditions with DC verification we use DC R-G

formulae of the shape
〈r , g〉DC,

where r and g are DC state assertions. Formally, its semantics is given by the R-G
condition (6.11).
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A PEA A can be verified against DC R-G formulae 〈r , g〉DC by proving with stand-
ard approaches, e.g., with DC model checking [Hoe06],

Ainit |= ¬(dr ∨ gead¬ge), (6.12)

in which Ainit equals A except that all locations are initial locations. With this small
modification, we can check every single transition to satisfy the R-G condition.
Accordingly, a CSP-OZ-DC specification can be verified against a DC R-G formula
〈r , g〉DC—for instance when checking the constraints of a VA instantiated by a CSP-
OZ-DC specification—by translating the specification into PEA and checking that
the PEA satisfies 〈r , g〉DC using the method described above.
A second solution for CSP-OZ-DC specifications is to separately verify the formulae

in (6.12) for the OZ part using model checking. This yields the correctness of the R-
G condition for all state changes, because the OZ part describes exactly4 the state
changes of the specification.

dCSP R-G conditions. For processes with data but without unknown parts the R-G
condition can directly be proven within the sequent calculus of Sect. 4.2. Given such
a process P with a set A of constrained events occurring in P and rely and guarantee
formulae r and g, then R-G condition (6.11) can be verified by showing

`
∧

a•ϕ∈A

r ⇒ [a • ϕ→ Skip]g, (6.13)

a property that can be proven in our calculus. It checks that every single event—and
by this every state change—occurring in the process P satisfies the R-G condition.
So, using rule (R-G uproc) one can verify properties over parallel unknown parts

and also over parallel processes without unknowns. The rule can also be used for
verifying mixed compositions like

∆ ` [(Proc\A,V • 〈r1, g1〉DC) ‖
B
P]γ,

where P satisfies R-G condition (6.13) for r2 and g2. P can also contain unknown
parts as sub-processes—in this case, the unknown sub-processes must be of the shape
Proc\A,V • 〈r2, g2〉DC.

6.1.4. Instantiating Parallel Unknowns

As explicated in Chap. 1, one of the basic ideas underlying the VA approach is that the
processes instantiating unknown parts are separately verified against the assumptions
on the unknown parts in order to get a correct instantiation of a VA. We wish to

4This is only valid if the DC part does not restrict the state changes of the specification. Otherwise,
checking the OZ part alone is not a complete approach to verify the R-G condition.
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instantiate parallel unknown processes by concrete processes in a compositional way:
given a process

Proc\A1,V1
• F1 ‖

B
Proc\A2,V2

• F2

satisfying property γ, then for all instantiations Pi of Proc\Ai ,Vi that satisfy Fi , for
i ∈ 1..2, the process P1 ‖

B
P2 shall also satisfy γ. But Example 6.1.9 shows that this

fails even for simple cases. As elucidated in the previous section, the problems are
caused by instantiations of unknown parts that do introduce interferences on shared
variables.

Instantiation for R-G assumptions. If the properties over the unknowns are R-G
conditions according to the previous section, then the instantiating processes cannot
introduce interferences by construction of the R-G constraints. The argument is that
if the correctness of a process has been proven with rule (R-G uproc), one essentially
has shown that every process satisfying the R-G condition is correct with respect
to the desired property. This is reflected by the fact that the rule is actually inde-
pendent of P1 and P2 except for the side-condition that the R-G condition holds.
Thus, the desired property established by the application of the rule also holds for
all possible instances P1 and P2 satisfying the assumptions, which are in the form of
R-G conditions.

Instantiation for the general case. If the assumption on unknowns are general
real-time properties, and the correctness of a VA process has been proven, e.g., by
the translation-based approach of Sect. 6.1.2, then some extra effort is necessary to
ensure that the refining processes do not introduce interferences violating a desired
property.
One possible approach is to show that every state change of an instantiating process

does not influence a parallel process in a property-violating way. But we follow the line
of the refinement notion from Chap. 5.1 and provide some syntactic conditions under
which interference-freedom is guaranteed. In this manner, we can keep up the idea
that the instantiation of a VA is verified in two steps: with an efficient matching check
for the structure of the architecture and the automatic verification of the assumptions.

Theorem 6.1.11 (Interference-freedom for parallel processes)
Given a process P1 ‖

A
P2, where P1 and P2 satisfy safety properties P1 |= F1 and

P2 |= F2, then these properties are also valid for the parallel composition

P1 ‖
A
P2 |= F1 ∧ F2

if for all variables and events x in P1 and P2 one of the following conditions holds:

1. x is local, i.e., it is read and changed by only one of P1 or P2
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2. x is changed synchronously, i.e., P1 and P2 agree on all state changes of x

3. x has no influence on Fi , i.e., x is changed in P1 and P2 |= F2 for all possible
changes of x or, vice versa, x is changed in P2 and P1 |= F1 for all possible
changes of x.

The first two conditions are actually syntactical conditions that can be checked by
inspecting every constraint of P1 and P2. The third condition can be verified by com-
posing Pi in parallel to a chaos process that arbitrarily changes x with every state
change and checking Pi |= Fi for this composition.
Proof. The proof is by contradiction, that is, postulating that the preconditions of
the theorem are valid, we assume that there is an interpretation

I ∈ JP1 ‖
A
P2K with I 6∈ JF1 ∧ F2K.

Without loss of generality, we particularly assume I 6∈ JF1K. Since F1 only contains
symbols from the alphabet of P1, the same holds for the restriction of I to symbols
in P1, written I|P1

:
I|P1
6∈ JF1K. (6.14)

Let P∗1 be the process that behaves like P1 except that arbitrary state changes
for variables of property 3. are possible. Hence, property 3. is wrt. P1 equivalent to
P∗1 |= F1. We show by induction over the length of untime(I) that the restriction of
I to symbols in P1 is also an interpretation of P∗1 , i.e., I|P1

∈ JP∗1 K.
For the base case I = 〈M〉, I|P1

is trivially an interpretation of P∗1 . Let I = I a
〈M, a,N〉, where I |P1

is already an interpretation of P∗1 . The state change 〈M, a,N〉,
say of a variable x, can be triggered by P1, P2, or by a synchronous transition.
Moreover, one of the conditions 1. up to 3. holds for x by precondition:

1. x is local to P1 and, thus, cannot be changed by P2. P∗1 can execute the same
state change as P1.

2. x is changed synchronously by P1 and P2. Hence, according to Def. 6.1.1 there
is a corresponding transition with guard l a ∧ ϕ1 ∧ ϕ2 with N1 ∪ N ′2 |= l a ∧
ϕ1 ∧ ϕ2 in the PEA representing the semantics of P1 ‖

A
P2. This is only possible

if there is a corresponding transition of P1 with guard l a ∧ ϕ1. The transition
can be taken, because of N1 ∪ N ′2 |= l a ∧ ϕ1 by which I|P1

is also a possible
P∗1 interpretation.

3. x satisfies condition 3. Every state change of x can also be performed by P∗1 due
to the definition of condition 3: in P∗1 the same transitions and state changes as
in P1 are possible and, in the case that the state change in I has been triggered
by a P2 transition, P∗1 may arbitrarily change x.

Thus, I|P1
∈ JP∗1 K and with condition 3. we can conclude I|P1

∈ JF1K, which
contradicts the assumption (6.14). �
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6.1.5. An Interpretation-Based Semantics for Parallel Unknowns
In Sect. 3.2, we noticed that the interpretation-based semantics of Sect. 3.1.1 is not
suited to describe parallelism over constrained unknown processes. Thus, we have
introduced a PEA-based semantics at the beginning of this chapter but without re-
lating it to the original semantics. We make up for it in this section by suggesting
a semantics for parallel unknowns that fits to the original interpretation-based se-
mantics and that is equivalent to the PEA-semantics.

Interfered interpretation semantics. As we have seen in Sect. 3.2, the problem with
the pure interpretation semantics for parallel processes is that the interpretations do
not reflect behaviour that can only occur in a parallel composition and not in the
isolated execution of the process. One can think of a path in the execution that is
disabled by default and may be enabled in a parallel context like in Example 3.2.2.
Such “disabled” paths are not visible in the interpretation semantics but nevertheless
important when calculating the semantics of parallel compositions. Thus, what we
need is a semantics reflecting such potential behaviour of a process that may be
enabled in a parallel composition.
For this reason, we extend the interpretation semantics by interpretations contain-

ing all possible interference intervals. An interfered interpretation is, similarly to a
standard interpretation, a mapping I : Time 7→ Model, but now untime(I) is of the
shape

untime(I) = 〈M0, τ,M0, a1,M1, τ,M1, a2,M2, . . . ,Mn−1, an ,Mn〉,

in which τ symbolically represents an interference interval, i.e., I(t) is undefined in
these intervals, which is modelled by the empty model that is undefined for every
symbol. The idea is that the interpretation may be completed with an interfering
parallel component. More precisely, there are points in time tai , tui , tei ∈ Time for
i ∈ 0..n such that

0 = ta0 < tu0 ≤ te0 < ta1 < tu1 ≤ te1 < ta2 < . . .

with

I(t) =Mj for taj ≤ t < tuj
I(t) = undefined for tuj ≤ t < tej
I(t) =Mj for tej ≤ t < taj+1

for j ∈ 0..n − 1. So, an interfered interpretation where the undefined parts have a
length of zero andMi =Mi is exactly a standard interpretation.
Such an interfered interpretation fits to a run π = 〈a1 • ϕ1, a2 • ϕ2, . . . 〉 of the LTS

of a process P if for all i ≥ 0

Mi(ai+1) 6=Mi+1(ai+1).
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The I is in the interfered semantics of P, denoted I ∈ JPKiM0, if the conditions
from Sect. 3.1.1 hold analogously for models Mi and Mi+1; but additionally at all
interference intervals, marked with τ , arbitrary state changes are possible:

• I fits to a run π of the LTS of P

• (Mi−1 ∪Mi) |= ϕi for i > 0

• constant symbols are not changed:Mi(v) =Mi(v) =Mi+1(v) for v ∈ Const

• for an = X no symbol is changed:Mn−1(v) =Mn(v), v ∈ SysVar .

Example 6.1.12. Given two processes

P c
= a • ϕ→ Stop

Q c
= b • ψ → Stop

with corresponding untimed interpretations

IP = 〈M1, τ,M2, a,M3, τ,M4〉
IQ = 〈N1, τ,N2, b,N3, τ,N4〉,

whereM1 = N1 andM4 = N4, then the merged interpretation

〈M1, τ,N2, b,N3, τ,M2, a,M3, τ,M4〉 (6.15)

is in the semantics of the parallel composition of the processes, IP ‖ PQ ∈ JP ‖
QKiM0. Even though we only have considered untimed interpretations here, IP and
IQ must also agree on their timing behaviour in the sense that for every point in
time t

(IP ‖ IQ)(t) =


IP(t) if IQ(t) = undefined
IQ(t) if IP(t) = undefined
undefined if IP(t) = undefined and IQ(t) = undefined
IP(t) = IQ(t) otherwise.

(6.16)

Correlation with interpretation semantics. The interfered semantics of a process,
JPKiM, contains all runs of P with its corresponding data changes for every possible
interference of another parallel process. In particular, it contains as a subset the
standard interpretations of P:

JPKM⊂ JPKiM,
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6.1. Parallel Unknown Processes

namely the interpretations without interference, i.e., an interpretation

〈M0, τ,M0, a1,M1, τ,M1, a, . . . 〉

without undefined parts andMi =Mi for all i. In particular,

JPKM = {I | I ∈ JPKiM and I = 〈M, a,M1, b,M2, . . . 〉}. (6.17)

In contrast to the semantics of Sect. 3.1.1, we can now express the parallel composi-
tion operator in terms of the semantics of its constituents. The definition is analogous
to the definition of the parallel composition over interpretations for non-interfering
processes on page 54. For the sake of simplicity, we omit the timing part in the fol-
lowing definition and instead demand additionally that condition (6.16) holds in each
case. Furthermore, we write 〈M, τ,N , a〉 a I as abbreviation for the interpretation
〈M, τ,N , a,M, τ,N , b, . . . 〉 if I = 〈M, τ,N , b, . . . 〉.
The parallel composition of interfered interpretations, I1 ‖A I2, is for a, a1, a2 ∈ A

with a1 6= a2 and b, b1, b2 6∈ A defined by

Commutativity:

I1 ‖A I2 = I2 ‖A I1

No step:

〈M, τ,N〉 ‖A 〈M, τ,N〉 = {〈M, τ,N〉}
〈M, τ,N〉 ‖A 〈M, τ,N , a,M, τ,N〉 = {〈M, τ,N〉}

Single step:

〈M, τ,N〉 ‖A 〈M, τ,M, b,N , τ,N〉 = {〈M, τ,M, b,N , τ,N〉}

Single step (waiting a):

〈M, τ,N , a〉a I1 ‖A 〈M, τ,N1, b,N2, τ,N3〉a I2 =

{〈M, τ,N1, b〉a I | I ∈ 〈N2, τ,N , a〉a I1 ‖A 〈N2, τ,N3〉a I2}

Synchronous step:

〈M, τ,N , a〉a I1 ‖A 〈M, τ,N , a〉a I2 =

{〈M, τ,N , a〉a I | I ∈ I1 ‖A I2}
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Blocking:

〈M, τ,N , a1〉a I1 ‖A 〈M, τ,N , a2〉a I2 = {〈M, τ,N〉}

Asynchronous steps:

〈M1, τ,M2, b1,M3, τ,M4〉a I1 ‖A 〈N1, τ,N2, b2,N3, τ,N4〉a I2 =

{〈M1, τ,M2, b1〉a I | M1 = N1 ∧

I ∈ 〈M3, τ,M4〉a I1 ‖A 〈M3, τ,N2, b2,N3, τ,N4〉a I2} ∪

{〈N1, τ,N2, b2〉a I | M1 = N1 ∧

I ∈ 〈N3, τ,M2, b1,M3, τ,M4〉a I1 ‖A 〈N3, τ,N4〉a I2}.

Remark 6.1.13. In addition, we demand that for every occurrence M, b,N of an
event b 6∈ A the constraint M ∪ N ′ |=

∧
a∈A� a is valid, which basically states

that actually no event a occurs simultaneously with b. This is necessary, because the
occurrence of an event a ∈ A must always enforce synchronisation.

The definition basically reflects that if two interfered interpretations are composed
in parallel the next step is always either a synchronous step (i.e., both interpretations
need to agree for this step) or an asynchronous step of one component (in which the
state change of the step is executed during an explicit inference phase marked by τ of
the other component). The remaining process operators on interfered interpretations
are defined like the operators for standard interpretations in Sect. 3.2.1 except for
the necessary syntactic extension to include the interference intervals in the inter-
pretations and except for unknown processes, for which the semantics is defined in
the next section.

Example 6.1.14. We continue Example 6.1.12 and show that (6.15) actually is in the
semantics of IP ‖ IQ.

IP ‖ IQ = {〈M1, τ,M2, a〉a I | M1 = N1 ∧
I ∈ 〈M3, τ,M4〉 ‖ 〈M3,N2, b,N3, τ,N4〉} ∪

{〈N1, τ,N2, b〉a I | M1 = N1 ∧
I ∈ 〈N3, τ,M2, a,M3, τ,M4〉 ‖ 〈N3, τ,N4〉}

= {〈M1, τ,M2, a,M3, τ,N2, b,N3, τ,N4〉} ∪
{〈N1, τ,N2, b,N3, τ,M2, a,M3, τ,M4〉}

For the first equality, the ‖-definition for the asynchronous step is applied. Because
ofM4 = N4 the ‖-definition for the single step can be applied to each of the sets.
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Interfered semantics for unknowns. For a constrained unknown process Proc(∞)
\A,V •

F , we assume that F can be represented by a set of interfered interpretations JFKi .
The semantics of Proc(∞)

\A,V • F can then be defined by interfered interpretations

JProc\A,V • FKi := JFKi ‖
alph(F)

{I | untime(I) = 〈M0, τ,M0, a1,M1, τ,M1, . . . 〉,

where ai 6∈ A,Mi ∪Mi+1 |= v′ = v},

i.e., it contains arbitrary interfered interpretations as long as the exclusion sets A and
V are respected, and F is respected for all symbols from the alphabet of F . In case
of the infinite unknown process Proc∞, we require that the interpretations in the set
above do not contain the X-event.

Correlation with PEA semantics. We justify that the interfered interpretation se-
mantics actually coincides with the PEA-based semantics that is used in Sect. 6.1.2
to define a translation of processes into timed automata. To this end, we argue that
the relationship in (6.7), i.e.,

I ∈ JPK iff there is a run π of PEAS(P) matching I,

is true if we use the interfered interpretation semantics as basis for the semantics
of JPK. So, let JPK be now defined by the interfered interpretation semantics as in
equation (6.17).
We state in the following corollary that the interpretations of a process P are

exactly the interpretations that are matched by PEAS(P).

Corollary 6.1.15 (Equivalence of processes and PEA)
If P is a process with data and unknown processes in guarded normal form, then

I ∈ JPK iff there is a run π of PEAS(P) matching I.

Instead of proving this corollary directly, we show the stronger result that the
interfered interpretations of P and PEAS coincide. To this end, we add interference
intervals to PEA configurations with the same idea as for interfered interpretations of
processes. Accordingly, runs of PEA are straightforwardly extended to runs of such
interfered configurations, and an interfered run matches interfered interpretations
analogously to the definition of the interfered interpretations for a process on page
150. We denote the set of interfered interpretations that are matched by runs of an
automaton A by JAKi .
The following lemma shows that the asynchronous parallel composition on PEA

can be expressed by the interfered interpretations of its constituents.

Lemma 6.1.16
For PEA Ai = (Pi ,Vi ,Ai ,Ci ,Ei , si , Ii ,P0

i ), i ∈ 1..2, the following equality holds

JA1 ‖̃
B
A2Ki = JA1Ki‖

B
JA2Ki .
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Proof.We show by induction over the length of untime(I) that for every interpretation
of JA1 ‖̃

B
A2Ki that corresponds to a run π ending in a location (p1, p2), there are

interpretations I1 ∈ JA1Ki and I2 ∈ JA2Ki with I = I1 ‖
B
I2, corresponding to runs

ending in the locations p1 and p2, respectively. And the same holds for the other
direction.
For the base case untime(I) = 〈M, τ,N〉, I ∈ JA1 ‖̃

B
A2Ki is equivalent to I ∈

JA1Ki‖
B
JA2Ki with I ∈ I1 ‖

B
I2, and the runs matching I, I1 and I2 end up in the start

locations of the automata, (p0
1, p0

2) and p0
1 and p0

2, respectively.
So, we now consider an interpretation

I a 〈a,N1, τ,N2〉 with I = I a 〈M1, τ,M2〉. (6.18)

From the induction hypothesis we conclude I ∈ JA1 ‖̃
B
A2Ki iff I ∈ JA1Ki‖

B
JA2Ki such

that I = I1 ‖
B
I2, and I is matched by a run π of A1 ‖̃

B
A2 ending up in a location

(p, q). Moreover, according to the induction hypothesis we assume that π1 matches
I1 and π2 matches I2 such that π1 ends up in location p and π2 in q. By definition
of ‖ both, I1 and I2, also end with the modelM2 like this is the case for I.
We examine the next transition step of the automata causing the a-transition of

(6.18).

• Asynchronous step (a 6∈ B): We assume I a 〈a,N1, τ,N2〉 ∈ JA1 ‖̃
B
A2Ki . That is,

there is by definition of ‖̃
B
(without loss of generality) a transition

((p, q),
∧
b∈B
� b ∧ ϕ,X , (p′, q))

withM2 ∪ N ′1 |=
∧

b∈B � b ∧ ϕ. The timing constraints that are possibly con-
tained in ϕ are also not violated by the state invariant of p′. Hence, due to
Def. 6.1.1 there also is a transition (p, ϕ,X , p′). Thus, since I1 is an interpret-
ation of A1 ending with the modelM2,

I1
a 〈a,N1, τ,N2〉 (6.19)

is also an interpretation of A1. The interpretation I2 is of the shape I2 =
I2
a〈M1, τ,M2〉 for a particularM1. Due to the definition of ‖

B
, this modelM1

necessarily occurs somewhere in I1, because there exists an I with I ∈ I1 ‖
B
I2.

Since in JA2Ki arbitrary interferences are contained, we can extend I2 to

I2
a 〈M1, τ,N2〉. (6.20)
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This extension does not violate any timing constraints (i.e., clock invariants on
q), because I a 〈a,N1, τ,N2〉 is an interpretation of A1‖̃A2 as stated in (6.18).
By definition of the parallel composition of the interfered interpretations in
(6.19) and (6.20):

I a 〈a,N1, τ,N2〉 ∈ (I1
a 〈a,N1, τ,N2〉 ‖

B
I2
a 〈M1, τ,N2〉),

becauseM1 is contained in I1 and I ∈ I1 ‖
B
I2. With this, I a 〈a,N1, τ,N2〉 ∈

JA1Ki ‖̃
B
JA2Ki .

Vice versa, the argument is similar: if I a 〈a,N1, τ,N2〉 is an interpretation of
JA1Ki ‖̃

B
JA2Ki , we need to show that it is also an interpretation of JA1 ‖̃

B
A2Ki .

Without loss of generality, the last transition of (6.18) is triggered by a trans-
ition (p, l a ∧ ϕ,X , p′) with M2 ∪ N ′1 |= l a ∧ ϕ. Due to the condition from
Remark 6.1.13, we also know M2 ∪ N ′1 |=

∧
b∈B � b. Hence, the parallel com-

position A1 ‖̃
B
A2 has a transition

((p, q),
∧
b∈B
� b ∧ l a ∧ ϕ,X , (p′, q)). (6.21)

Due to the induction hypothesis we know that I (in (6.18)) is matched by
a run of A1 ‖̃

B
A2 that ends in location (p, q). Since M2 ∪ N ′1 |= l a ∧ ϕ ∧∧

b∈B � b transition (6.21) can be taken with Ia〈a,N1, τ,N2〉 as corresponding
interpretation. The timing behaviour cannot prevent the transition, because
then this would be also the case for one of the single automata A1 or A2. Thus,
I a 〈a,N1, τ,N2〉 ∈ JA1 ‖̃

B
A2Ki .

• Synchronous step (a ∈ B): For the interpretation Ia 〈a,N1, τ,N2〉 from (6.18),
there must be a transition

((p, q), l a ∧ ϕ1 ∧ ϕ2,X1 ∪X2, (p′, q ′))

of A1 ‖̃
B
A2 and corresponding transitions

(p, l a ∧ ϕ1,X1, p′)
(q, l a ∧ ϕ2,X2, q ′)

of A1 and A2. For these transitions, we can construct the interpretations

I1
a 〈a,N1, τ,N2〉 ∈ JA1Ki

I2
a 〈a,N1, τ,N2〉 ∈ JA2Ki ,
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and conclude by definition of ‖

I a 〈a,N1, τ,N2〉 ∈ JA1Ki ‖
B
JA2Ki ,

which is identical to the interpretation of the product

I a 〈a,N1, τ,N2〉 ∈ JA1 ‖̃
B
A2Ki .

�

Theorem 6.1.17 (Interfered interpretations of processes and PEA)
If P is a process with data and unknown processes in guarded normal form, then

I ∈ JPKi iff I ∈ JPEAS(P)Ki .

Proof.We show by induction over the structure of P that the interfered interpretations
I of JPK coincide with the interfered interpretations matched by runs of PEAS(P).
We show the most important cases:

PEAS(Stop): The PEA for Stop accepts only interpretations 〈M, τ,N〉, which are
exactly the interpretations of Stop.

PEAS(a • ϕ→ P): The PEA consists of a start location allowing an a-transition to
a second location representing P. Thus, the PEA has the interfered interpreta-
tions

〈M1, τ,M2, a,N1, τ,N2〉a I, (6.22)

in which 〈N1, τ,N2〉aI ∈ JPKi by induction hypothesis. SinceM2∪N ′1 |= ϕ for
the interpretation of the automaton and also for the process interpretation, the
interpretation (6.22) is also in Ja → PKi . Conversely, when assuming that (6.22)
is in Ja → PKi , we can conclude in the same way that it is also an interpretation
of PEAS(a • ϕ→ P).

PEAProc(Proc
(∞)
\A,V • F): The semantics of Proc(∞)

\A,V • F is defined by

JFKi ‖
alph(F)

JProc(∞)
\A,V Ki ,

in which

JProc(∞)
\A,V Ki := {I | untime(I) = 〈M0, τ,M0, a1,M1, τ,M1, . . . 〉,

where ai 6∈ A,Mi ∪Mi+1 |= v′ = v},
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and PEAProc is pictured in Fig. 6.1. It holds that

JPEA(F)Ki = JFKi (6.23)

because of the requirement that PEA(F) exactly represents the semantics of
F . The set JProc(∞)

\A,V Ki is the interference semantics of the left PEA of Fig. 6.1
(we denote it PEA(Proc) here)

JProc(∞)
\A,V Ki = JPEA(Proc)Ki , (6.24)

which can be seen by comparing the possible transitions: in both JProc(∞)
\A,V Ki

and the PEA any event is possible except for events from A and any state
change may performed, as long as the symbols from V are not changed. In case
of the infinite unknown process, no X-event is performed.
Thus, with application of Lemma 6.1.16, we conclude

JPEAProc(Proc
(∞)
\A,V • F)Ki = JPEA(Proc) ‖̃

alph(F)

PEA(F)Ki

{Lemma 6.1.16} = JPEA(Proc)Ki ‖
alph(F)

JPEA(F)Ki

{(6.23),(6.24)} = JProc(∞)
\A,V Ki ‖

alph(F)

JFKi

{Def.} = JProc(∞)
\A,V • FKi .

PEAS(Proc
(∞)
\A,V • F ‖̃

B
Q): We can again apply Lemma 6.1.16 (for the second equality)

and the induction hypothesis (for the third equality):

JPEAS(Proc
(∞)
\A,V • F ‖̃

B
Q)Ki = JPEAS(Proc

(∞)
\A,V • F)‖̃

B
PEAS(Q)Ki

= JPEAS(Proc
(∞)
\A,V • F)Ki‖

B
JPEA(Q)Ki

= JProc(∞)
\A,V • FKi‖

B
JQKi .

PEAS(Proc
(∞)
\A,V • F o

9 Q): The proposition holds for this case, because sequential
composition on PEA is a congruence for the interfered trace semantics: i.e.,
it generally holds that

JA1
o
9 A2Ki = JA1Ki o

9 JA2Ki .

Thus, we can use the same argument as in the previous case.

�
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Corollary 6.1.15 is a direct conclusion from this result. Hence, this shows that the
PEA semantics, that is used for the region construction in the context of proof
rule (parallel uproc), is actually a sound representation of processes, because the PEA
semantics and the interfered interpretation semantics for processes with parallelism
over unknowns are equivalent. For processes without parallelism over unknowns, both
of these semantics comply with the standard interpretation semantics from Sect. 3.1.1.

6.2. Verifying Timing Properties
In eCSP timing properties are integrated by imposing real-time assumptions on un-
known processes. Using the calculus from Chap. 4, it is possible to verify validity of
dCSP formulae over eCSP processes. With the box and the diamond operator of dCSP
we can specify temporal propositions to state that properties are valid somewhere on
the execution or always during the execution of a process. So with dCSP, untimed
safety properties are verified that may depend on timed processes. Until now, it is
not possible to directly prove real-time properties over processes with dCSP. Verific-
ation of untimed safety properties predominantly suffices in practice, because safety
of an entire system usually means the exclusion of some unwanted event, like collision
freedom, shared access to a critical resource, or high pressure in a tank etc. (cf. the
case studies in Chap. 8). These events are described with untimed properties, even
though they are dependent on timed behaviour.
However, in some cases it can be more natural to define safety in terms of timed

properties. Thus, it is also an interesting question how real-time properties can be
proven with dCSP and our sequent calculus.
Basically there are two approaches to integrate timing properties into dCSP. One

possibility is to introduce new proof rules for the handling of real-time formulae. This
violates our requirement that the calculus is independent of the logic in use, but it
allows us to reason about timed formulae uniformly in our calculus. On the other
hand, we can use a translation or automata-theoretic approach [VW86, KVW00,
DL02], i.e., the negation of the real-time property to be verified is translated into a
process, and we then verify that the parallel composition of the original process and
the property process is empty.
Even though these approaches are not in the focus of this work, we briefly sketch

both of them in the following sections. To this end, the syntax of dCSP is extended
to include timed properties. That is, we also allow formulae

[P]F and 〈P〉F ,

where P is an eCSP process and F a timed formulae with a semantics in terms of
interpretations. The semantics of dCSP is extended straightforwardly:

M |= [P]F iff I |= F holds for every interpretation I ∈ JPKM
M |= 〈P〉F iff I |= F holds for some interpretation I ∈ JPKM
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6.2.1. Test Processes for Timing Properties
In the automata-theoretic verification approach [VW86], a property ϕ of an auto-
maton A is verified by constructing an automaton for the negation of ϕ, A¬ϕ, and
showing that the parallel composition A ‖ A¬ϕ is empty, i.e.,

A ‖ A¬ϕ |= false .

In [Mey05, MFHR08], this approach was carried over to DC test formulae and PEA.
DC test formulae are a sub-class of DC, basically comprising conjunctions and dis-
junctions of negated DC counterexample traces, which are used to specify undesired
behaviour of a PEA. In [Mey05] a translation of test formulae into PEA is given.
To verify a test formula against a PEA model, a PEA with final locations, called
test automaton, is constructed from the test formula. The parallel composition of this
test automaton and the PEA model is computed. A model checker is then applied to
check if the final locations are reachable. If this is not the case, the test formula is
unsatisfiable.
The automata-theoretic approach can be applied to verify timed properties within

dCSP. The corresponding proof rule is

[P ‖ P¬F ]false
[P]F , (box timed)

where P¬F is a process with the property that for all terminating interpretations
I = 〈. . . ,X〉 the equivalence

I ∈ JP¬FKM iff I 6∈ JFKM (6.25)

holds. Note that F must not constrain the X-event. In addition, the parallel compos-
ition P ‖ P¬F is required to be fully synchronised, i.e., it synchronises on every event;
by this the processes are also synchronised on the data, because the processes must
agree on the data changes for every synchronisation.
For DC properties, we make use of the approach of [MFHR08]. We restrict ourselves

to DC formulae without data. We consider a formula F = ¬G, where G is a DC test
formula. The process P¬F is then defined by

P¬F := Proc\∅,∅ • G,

where G is the DC formula performing a X-event whenever G is recognised. That
means that the interpretations of G are the interpretations of the corresponding
automaton for G, constructed by the algorithm in [MFHR08], with the difference that
an explicit X-event is fired whenever a final location of the automaton is entered.
Condition (6.25) is satisfied for P¬F : if a terminating interpretation I = 〈. . . ,X〉 is

in JP¬FKM, this implies I |= G and I 6|= ¬G = F ; and the same holds for the other
direction.
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` [P]F1 ∧ [Q]F2

` [P o
9 Q]F1

aF2

(dc sequence)

` [P]F1 ∧ [Q]F2

` [P o
9 Q](F1

a∧
a∈Events 6 l aaF2)

(dc sequence noev)

` 〈[P]〉G
` 〈[P]〉F , G ⇒ F (dc imply right)

〈[P]〉G `
〈[P]〉F `, F ⇒ G (dc imply left)

[Proc\A,V • F ]F
F respects
A and V

(dc uproc)

[P]F1 ∧ [Q]F2

[P ‖ Q]F1 ∧ F2

P,Q without
shared variables

(dc parallel)

ψ1 ∧ [a • ϕ]ψ2

[a • ϕ](dψ1eal aadψ2e)
(dc step)

[a • ϕ](� b)
a 6= b (dc noevent)

Figure 6.2.: Sequent-style proof rules for timing properties

The property [P ‖ P¬F ]false can be verified with the translation-based approach
for parallel components of Sect. 6.1.2 by applying rule (parallel uproc). To this end,
the ProcFree process is to be constructed according to the translation of Sect. 6.1.2
with the exception that G and ProcFree are translated into a test automaton, which
has final locations. With this modification, the resulting ProcFree process terminates
exactly for the interpretations that violate F . Thus, by verifying [P ‖ P¬F ]false, it is
actually shown that F holds for all interpretations.
For DC formulae with data, we cannot directly carry over the test automata ap-

proach of [MFHR08], because it is directed to data-synchronous PEA, while the
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parallel composition in eCSP does usually not synchronise on data (cf. Sect. 3.2.2).
Hence, in the construction of the corresponding test process P¬F , one has to take
care that all data changes are actually synchronised, even for transitions that are not
event-triggered. The case 〈P〉F can be solved by verifying the dual ¬[P]¬F , which is
possible with the proposed technique above if F is a DC counterexample trace. Then,
the negation ¬F is still a DC test formula, which is necessary for the translation into
PEA.

6.2.2. Extended Calculus for Timing Properties
We sketch the idea how proof rules over timing properties are integrated into our
proof calculus using DC as example. Figure 6.2 lists some exemplary proof rules for
solving DC properties over eCSP processes.
One of the central concepts of sequent-style calculi is that operators of the logic are

step-wise replaced by simpler constructs. The basic operator of DC is the chop oper-
ator a, which is used to chop an interval into two sub-intervals. The corresponding
operation on the level of eCSP is the sequential composition. With rule (dc sequence)
the relationship between the chop operator and sequential composition is expressed:
we can reduce the chop operator if two sequential sub-processes can be found that
fit to the sub-intervals of the chop. A variant is rule (dc sequence noev), which is
necessary to handle formulae that forbid the occurrence of events.
The reduction of rule (dc sequence) seems to be quite natural in the sense of

sequent-style reasoning. However, often properties need to be proven that are not
in the shape of the conclusion of the rule. For instance, a typical property to be
proven is

` [Proc • ` < c1
o
9 Proc • ` < c2](` < c1 + c2),

where ` < c1 + c2 is not of the desired shape. Thus, we also need rules embedding
standard DC proof rules like the rules that can be found in [ZHR91, ZH04, OD08].
To this end, the rules (dc imply right) and (dc imply left) can be used to derive pure
DC properties with standard rules. As example consider the following proof tree:

(dc uproc)
` [Proc • ` < c1](` < c1)

(dc uproc)
` [Proc • ` < c2](` < c2) (and right)

` [Proc • ` < c1](` < c1) ∧ [Proc • ` < c2](` < c2) (dc sequence)
` [Proc • ` < c1

o
9 Proc • ` < c2](` < c1

a` < c2) (dc imply right)
` [Proc • ` < c1

o
9 Proc • ` < c2](` < c1 + c2)

In the first proof step (starting from the bottom) rule (dc imply right) is applied to
replace ` < c1 + c2 by ` < c1

a ` < c2, which is a consequence of the Dur-Chop rule
of [OD08]. The leafs of the proof tree are closed by application of rule (dc uproc),
stating that for every unknown process Proc\A,V • F the formula F is valid, as long
as F does not perform an event from A and does not change symbols in V .
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Further important rules reduce parallel compositions and symbolically execute con-
strained events. For the reduction of the parallel composition, it is desired to replace
the parallel composition operator with a conjunction. However, the same issues exist
as for the case without timing properties, which have been discussed in Sect. 6.1: for
parallel processes with shared variables, one has to prove that no unwanted interfer-
ences between the processes occur. This can be done with appropriate Rely-Guarantee
rules or by manually excluding interferences between the processes. See, e.g., [XM98]
for an A-G approach wrt. DC formulae. Rule (dc parallel) in Fig. 6.2 considers the
simple case that both processes have no shared variables and are fully synchronised
on all events.
The last two rules (dc step) and (dc noevent) represent the symbolical execution of

events for DC properties. The rule (dc step) replaces the timing property by standard
dCSP formulae that can be solved with the calculus of Sect. 4.3. The DC formula
in the conclusion reflects the intuition behind the symbolic execution of a: before
occurrence of event a, a formula ψ1 holds, which is valid in the current context of
the rule, and after execution of a, a formula ψ2 is valid. Rule (dc noevent) is used to
derive a DC formula expressing that an event b does not occur.

Discussion

The proof rules of Fig. 6.2 exemplarily show for the DC how timing properties over
eCSP can be proven within the sequent calculus. One of the main reasons for intro-
ducing sequent-style proof rules for dCSP has been that the sequent rules allow us
to step-wise reduce operators symbolically. By this means, suchlike sequent calculi
are suited for a systematic, semi-automatic application of the proof rules, because
in most cases, it is clear which syntactical reduction is to be performed in the next
step. That gives rise to successful implementations of sequent calculi as existing tools
demonstrate [HBB+05, BHS07, PQ08]. However, when extending the calculus to DC
properties these advantages of sequent-style reasoning do no apply anymore. Ap-
plications of rules like rule (dc sequence) are often ambiguous, because it has to be
guessed, at which position the DC formula has to be chopped or which sequential
operator has to be resolved. This holds particularly for longer sequences or formulae,
e.g., [P1

o
9 P2

o
9 P3](F1

aF2
aF3

aF4). The situation becomes even more complex for
the diamond operator: for 〈P1

o
9 P2〉(F1

aF2) one has to find a constraint ϕ that is
valid after F1 and implies 〈P2〉F2.
Moreover, as the DC formulae in the conclusion are often of a specific shape, the

rules (dc imply right)and (dc imply left) have to be applied often in order to trans-
form the formulae into the desired form, which usually cannot be done as systematic
as in remaining sequent calculus. For instance, even in the small example proof tree
above, backward application of rule (dc imply right) does not lead to a decomposition
into a less complex formula. It is not clear how to apply this rule in general.
Therefore, solving DC properties in the sequent calculus might not be the right

choice. Since safety properties are usually expressed in terms of untimed formulae,
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we do not examine in more detail how timing properties can be integrated into our
calculus.

6.3. Examining Completeness
We now examine in which situations and under which circumstances the proposed
VA approach can be considered complete. There are several levels on which one can
look at completeness questions:

Completeness of VA language. It is desirable that all relevant specifications can be
expressed as VA. This depends on what kind of specifications are considered to
be relevant. Since the VA approach presented here is designed to complement
combined specifications, we are particularly interested in the completeness of
our VA approach with respect to CSP-OZ-DC. That is, we examine whether
every CSP-OZ-DC specification can be equivalently expressed as VA.

Completeness of local assumptions. More important than the completeness of the
VA language is the completeness of the local assumptions. The former answers
the question if for all possible specifications an equivalent VA can be given,
but this does reveal nothing about the quality of the architecture. So, we ex-
amine the completeness of the local assumptions, i.e., the possibility to find
local assumptions for every abstract behavioural protocol with unknowns and
a corresponding concrete structural refinement. By this, we show that our ap-
proach is strong enough to formulate every reasonable decomposition in a VA.
This notion of completeness depends on the chosen temporal logic for the local
assumptions. Thus, we exemplarily choose DC as logic and discuss the com-
pleteness of the local assumptions for DC formulae.

Completeness of the proof calculus. With a complete proof calculus, we can prove
every statement that is valid for a specific architecture within our calculus. We
have shortly argued on the incompleteness and the possible relative complete-
ness of the calculus in Thm. 4.4.2.

Completeness of instantiation. Completeness of instantiation means: if a concrete
model is an instantiation of an VA, then we can actually prove it. As elucidated
in Sect. 5.1, we usually apply an efficient but incomplete syntactic rule to es-
tablish the structural refinement between a concrete model and a VA. We have
discussed in Sect. 5.6 how to achieve a complete refinement rule that can be
used to prove every refinement relation.
To show that a concrete specification is an instance of a VA, we additionally
need to verify the local assumptions. This solely depends on the decidability
of the verification problem for the logic of the assumptions and the concrete
model. The model checking problem for DC and CSP-OZ-DC is for instance
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undecidable [Hoe06]. When using timed automata and timed CTL as logic, it
is decidable [ACD93].

Particularly, the second topic, the completeness of local assumptions, gives rise to
the compositionality of the VA approach. If a behavioural protocol with unknowns
and a corresponding concrete model is given, then it is possible to find a set of
local assumptions for the refining components. In general, these assumptions can be
arbitrary complex, because in the worst case they need to reflect the behaviour of the
entire refining component. Hence, to obtain assumptions that are useful in practice
one needs to find assumptions that are minimal (or at least small enough) with
respect to a desired global safety property. But as we assume VAs to be user-given,
the automatic assumption generation is out of the scope of this work, and we take this
completeness result as a confirmation that it is indeed possible to give appropriate
local assumptions for every unknown component. For results on automated generation
of assumptions for components in networks of timed systems see, e.g., [FPS08, FPS10].
In the following, we discuss those completeness issues that are not already treated in

Chap. 4 or Chap. 5, namely the completeness of the VA language and the completeness
of the local assumptions.

6.3.1. Completeness of VA Language
Every CSP-OZ-DC class can equivalently be expressed as VA with DC as logic for
assumptions. The idea is as follows. The CSP part of the CSP-OZ-DC specification is
exactly the CSP part of the architecture without unknown processes. The formulae
of the constrained events of the VA correspond directly to the operation schemata of
the CSP-OZ-DC class. If the CSP-OZ-DC class contains DC formulae, then we add
one parallel unknown process constrained by the conjunction of all DC formulae of
the CSP-OZ-DC specification.
More formally: consider a CSP-OZ-DC specification cod as defined in Fig. 6.3. Here,

ϕ,ψ, δ are OZ constraints as allowed in CSP-OZ-DC specifications. The equivalent
VA is then given as the eCSP process System defined by

System c
= init • η → (P(a1, . . . , an)[(a1 • γ1)/a1, . . . , (an • γn)/an ]

‖
{a1,...,an}

Proc∞\∅,∅ • DC1 ∧ . . . ∧ DCr),

where Q[new1/old1, . . . ,newn/oldn ] denotes the replacement of all oldi by newi in the
process Q, and init is a fresh event not occurring elsewhere. All γi and η are formulae
of the signature Σ = (Sort,SysVar ,Const,Var) with

Sort = {T1, . . . ,Tm} ∪
⋃

i∈1..n
{T i

1, . . . ,T i
ki} ∪ SortConst

SysVar = {v1, . . . , vm}

Var =
⋃

i∈1..n
({pi1, . . . , piki} ∪Var(δi)) ∪Var(ψ)
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cod
chana1 : C1

...
chanan : Cn

main c
= P(a1, . . . , an)

v1 : T1

...
vm : Tm

ϕ(v1, . . . , vm)

Init
ψ(v1, . . . , vm)

com ai
∆(V i)
pi
1 : T i

1
...
pi

ki
: T i

ki

δi(v1, . . . , vm , pi
1, . . . , pi

ki
)

...

DC1

...

DCr

Figure 6.3.: Generic CSP-OZ-DC specification cod

The set Const contains global constants with sorts in SortConst which are defined in
the context of a CSP-OZ-DC specification, including all function symbols used in the
constraints of the class cod (like, e.g., arithmetical symbols). The γi and η are defined
by

γi := δi(v1, . . . , vm , pi1, . . . , piki ) ∧
∧
v 6∈V i

v′ = v

η := ψ(v1, . . . , vn) ∧
∧

i∈1..m
v′i = vi

Note that the specification cod and the System process produce the same interpret-
ations except for the initial model. Due to the eCSP semantics, the System process
may start in an arbitrary model, but the init event can only be executed for models
satisfying the Init constraint of cod. Thus, the interpretations coincide except for
trivial, immediately blocking interpretations of the shape 〈M〉.
If we have a system of two CSP-OZ-DC classes cod1, cod2 communicating over com-

mon channels from a set C , then we compute the CSP representations System(cod1)
and System(cod2) for each of the processes according to the construction above. If
cod1 and cod2 share variable names, the variables in one of the processes have to be
renamed into fresh variable names in order to avoid shared variable access, which is
not possible between CSP-OZ-DC classes. The signature consists of the union of the
signatures of the System(codi), and the entire CSP process is the parallel composition
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of both processes:

System := System(cod1) ‖
C
System(cod2).

With this construction, we can rewrite every CSP-OZ-DC specification into a CSP
process with data constraints and unknown processes. In this sense, we consider our
language to define VAs as complete. This is a weak form of completeness due to its
focus on CSP-OZ-DC. One could also show in general that every set of timed traces
can be modelled with eCSP and an appropriate timed logic. With a sufficient express-
ive timed logic this question can be trivially answered by a VA process consisting of
one unknown component that is appropriately constrained by an assumption.
But as mentioned in the beginning of this section, we are not interested in model-

ling arbitrary specifications in our CSP dialect; instead eCSP processes are used to
formulate architectures for the decomposition of large systems. Hence, we are satis-
fied with this weak notion of completeness that shows that the extended CSP dialect
eCSP is strong enough to be useful. We examine in the next section to what extent
eCSP can be used to formulate every reasonable decomposition of a system.

6.3.2. Completeness of Local Assumptions

We assume to have an abstract protocol given as CSP process with unknown processes
but without temporal assumptions on the unknown processes. Further, we consider a
concrete structural refinement of this protocol. We investigate the question whether
it is always possible to find appropriate local assumptions on the unknown processes
such that the concrete model is an instantiation of the protocol. By this, it becomes
clear that whenever a decomposition by a protocol is given, and the protocol itself
is strong enough to not violate a desired property, then it is possible to find suited
local assumptions.
The short answer to that question is, that this will not work in general, but we

will figure out that it is possible with small modifications to the architecture. These
modifications are necessary, because the only way to define timing properties for eCSP
processes is to constrain unknown processes with timed formulae. Thus, only in the
case that the unknown processes of the VA fit directly to the timing properties of the
concrete model, it is possible the find appropriate timing properties on the VA level.

Example 6.3.1. To give an example for this issue, we consider the CSP process for
an abstract protocol

System c
= a → Proc\{a,b},∅ o

9 b → System.

If we have a concrete specification with a control structure given as a CSP process

main c
= a → c → Skip o

9 b → main,
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which is a structural refinement of System, and an additional timing constraint ex-
pressed as DC formula

F := 2¬(l aa� b ∧ ` > 5),

stating that every a is followed by a b within 5 time units, then we cannot find a
constraint for the unknown process in System such that timing constraint F holds,
because the events constrained by F are not in the scope of the only unknown process.
The way out of this is a small modification to System to capture all possible tim-

ing constraints with an additional unknown process. If the protocol is given by an
extended process of the shape

Proc\∅,∅ ‖
a,b

System,

then we can directly shift the timing constraints of main to the VA level such that
main is an instance of an appropriate abstract protocol. That is, main is an instance
for the following VA process with constraints:

Systemext
c
= Proc\∅,∅ • F ‖

a,b
System

System c
= a → Proc\{a,b},∅ o

9 b → System.

Generally speaking, if the concrete specification contains timing constraints, then the
architecture must cover each timing property with a specific unknown process.

We now show for CSP-OZ-DC how the assumptions can be constructed for a struc-
tural refinement of a given VA process without assumptions.

Assumption completeness for specifications without DC part. Let co be a CSP-
OZ-DC specification without DC part and Prtcl an eCSP process with unknowns
Xi

c
= Proc

(∞)
\Ai ,Vi

for i ∈ 1..n (without constraints over the unknowns) such that co re-
fines Prtcl. That is, co contains sub-processes Y1, . . . ,Yn implementing the unknown
processes X1, . . . ,Xn . We construct an equivalent DC formula Fi for the reduction of
co to the sub-process Yi . The reduction co|Yi has been defined in Def. 5.5.1 and re-
flects exactly the sub-specification that refines an unknown process Xi and for which
the local assumptions must be valid.
To generate a DC formula with the same interpretations as a CSP-OZ-DC specific-

ation without DC part, the specification is firstly translated into two PEA: one PEA
represents the control flow, and the second describes all data changes (Sect. 2.3.2).
These automata can be translated into DC formula analogously to Anders P. Ravns
translation from control automata into DC implementables [Rav94], which can be
represented as DC counterexample traces [Hoe06].
For the control flow PEA, a program counter pc is introduced to identify the loca-

tions of the PEA. For a location l1 and an event a with outgoing transitions l1
a−→ l2
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and l1
a−→ l3 (and there are no other outgoing a-transitions), an equivalent DC for-

mula is defined by

¬3(dpc = l1eal aad¬pc = l2 ∧ ¬pc = l3e).

Transitions that are not event-triggered are specified by

¬3(dpc = l1ead¬pc = l1 ∧ ¬pc = l2 ∧ ¬pc = l3e).

If the event a cannot occur in the location l1, the following DC formula is used:

¬3(dpc = l1eal aa true).

Transitions in the second PEA are event-triggered and describe state changes cor-
responding to operation schemas. For an event a describing a data change ϕ over
unprimed variables x and primed variables x ′, the corresponding the DC formula is
defined by

∀ y • ¬3(dϕyx′eal aadx 6= ye),

where in ϕyx′ variables x
′ are replaced by fresh variables y. The conjunction of all DC

formulae constructed in this way equivalently describes the CSP-OZ-DC specification.
Note that due to the quantification over y the latter DC formula cannot be verified

in negated form with the approach from [MFHR08]. A consequence is that suchlike
assumptions can be verified against concrete CSP-OZ-DC models when checking the
instantiation of a VA, but the assumption cannot be verified with the oracle rules
of Sect. 4.3.5 when proving the correctness of a VA with our sequent calculus. The
reason is that in this case, we need to show a certain property while postulating that
the assumptions hold, i.e., the assumptions occur in negated form in this verification
step. This is not a restriction of the VA approach but of the DC verification technique
we use. Nevertheless, instead of using assumptions as generated above, in practice one
will use more abstract assumptions that do not exactly reflect the concrete process
but instead a class of processes.
The extension of the process Prtcl to a VA process va with additional assumptions

on the unknowns, is defined by

va c
= Prtcl[X1/X1, . . . ,Xn/Xn ]

X i
c
= Proc

(∞)
\Ai ,Vi

• Fi ,

where Fi is the DC formulae for co|Yi as defined by the construction above. Then, co
refines va, because it is a structural refinement of va by precondition, and all local
assumptions are satisfied by construction of the Fi .

Assumption completeness for CSP-OZ-DC specifications. If a CSP-OZ-DC spe-
cification cod with DC formulae G1, . . . ,Gm is given, we use the same construction
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as in Example 6.3.1. That is, we demand that the VA process consists of a parallel
composition

Prtcl0
c
= Ptrcl ‖ Proc(∞)

\∅,∅.

The additional unknown process serves as a carrier process for all DC formulae from
cod. The remaining construction is identical to the case without time. Let co be the
specification that is equal to cod except that the DC formulae are removed. Then the
VA for cod is defined by

va c
= Prtcl[X1/X1, . . . ,Xn/Xn ] ‖ Proc(∞)

\∅,∅ • G1 ∧ . . . ∧ Gm

X i
c
= Proc

(∞)
\Ai ,Vi

• Fi ,

where the parallel composition synchronises on all common events, and the Fi are
DC formulae representing co|Yi according to the construction above. Due to this
construction, the process va is an architecture for cod.
Thus, we have demonstrated in this section to what extent the VA language eCSP

and the local assumptions are complete, i.e., we have examined (1) whether all relev-
ant specifications can be formulated as VA and (2) whether assumptions can be found
for all given concrete models that are structural refinements of VA processes. As these
questions depend on the logic used for the assumptions and on the language for the
concrete model, we have exemplarily showed that all CSP-OZ-DC specifications can
be transformed into an eCSP process and that DC assumptions for all CSP-OZ-DC
models can be found if we modify the VA process by adding an unknown component
with appropriate DC formulae. Otherwise, it is generally not possible to find sufficient
strong assumptions on the unknown components such that all desired properties that
hold for the concrete model can be shown for the VA, because timing properties in
VAs can only be defined over unknown processes.
The construction that we give for finding DC assumptions for a CSP-OZ-DC spe-

cification yields assumptions usually consisting of a large number of sub-formulae,
because they describe all possible transitions of the corresponding CSP-OZ-DC spe-
cification. This suffices for our purpose to demonstrate that the VA language is general
enough to describe architectures for a large class of concrete systems. Since in this
work we require the assumptions to be given by a user, we do not further investigate
how to get good assumptions and instead refer to [FPS08, FPS10].
Further completeness questions, the completeness of the proof calculus and of the

instantiation approach, have been discussed in Chap. 4 and Chap. 5.

6.4. Complementary Decomposition Techniques

In this section, we shortly review two decomposition techniques that can be used
as complementary techniques in combination with our approach: slicing of formal
specifications and the communication-closed layers principle.
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6.4.1. Slicing Formal Specifications

Slicing for CSP-OZ-DC specifications has been developed by Ingo Brückner and Heike
Wehrheim [Brü04, BW05, BMW06, Brü07, Brü08a, Brü08b]. The slicing decompos-
ition technique is based on a syntactic dependency analysis that has originally been
developed in the context static program analysis and later been extended with respect
to formal verification techniques.
The basic idea of slicing specifications is that dependency graphs are computed con-

sidering only the syntactic structure of a specification and also exploiting additional
knowledge on the system structure that often gets lost when translating the specific-
ation into its semantical representation. In a first step, a directed control dependency
graph is calculated, reflecting the control flow of the specification. Afterwards, the
control dependence graph is enriched with data dependencies, and when considering
timed CSP-OZ-DC specifications, also with timing dependencies computed from the
DC part. Given a so-called slicing criterion, which is a property that is to be veri-
fied, e.g., a DC formula, all nodes in the dependence graph are selected that directly
influence the slicing criterion. Starting with these nodes, the set of all nodes relevant
for the slicing criterion can be detected by computing the backward reachability clos-
ure for these nodes. Brückner proved in [Brü08b] that the correctness of the slicing
criterion is preserved when removing all parts of the specification that are not in this
closure, because they have no influence on the property.
Slicing is a very efficient technique, because it operates directly on the syntactic

structure of a specification, i.e., no semantics or parallel composition has to be com-
puted. In [Brü08b], the advantages of slicing are demonstrated on several examples.
Slicing is particularly successful on real-world models, where often large parts of a
specification have no influence on its safety. For instance such specifications contain
pure output or formatting functions that can be ignored when verifying the system.
On the contrary, when verifying examples that are designed with regard to a given

safety property, slicing has a lesser effect, as in this case usually all parts of the
specification affect the desired property. In general, slicing cannot be used for further
decomposition of specifications, in which each part contributes to the desired property
in an arbitrary marginal manner. In the examples of Chap. 8 slicing cannot be used
to reduce the specification significantly when checking the desired safety property
directly.
However, when verifying a global property with the VA approach, the property is

not checked against the entire specification in a single step. Instead the local assump-
tions of the VA are verified against the sub-specifications that refine the unknown
parts of the VA. In these sub-specifications parts of the control flow are often not
reachable or variables are not accessed, because they are only modified in other sub-
processes. Additionally, local assumptions usually comprise other variables than the
global property and are influenced by smaller parts of the system. Thus, when veri-
fying the local assumptions, slicing can be used to automatically remove parts that
are independent of the current examined sub-process. The slicing approach therefore
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complements the VA approach by reducing the specification for proof tasks even if
slicing for the global property has no effect. The verification results for the case study
presented in Sect. 8.2 demonstrates the advantages of using slicing in combination
with the VA approach.

6.4.2. Layered Composition for Timed Protocols
We have discussed in Sect. 4.6.1 that the VA approach works out particularly well on
sequential protocol structures. Even though we showed in Sect. 6.1 how to cope with
parallel compositions, VAs are desired that are as sequential as possible. Thus, it is
an interesting question how a parallel protocol structure can be transformed into a
sequential structure. An approach that examines this question is the communication-
closed layering (CCL) principle [EF82, dRdBH+01], which is extended to timed sys-
tems in [Zwi91].
In [OS10], decompositional layering for timed automata with data, similar to PEA,

is investigated. The basic idea is to transform parallel automata into sequential auto-
mata by using laws for a dedicated layered composition operator A1 • A2 such
that the result is reachability-equivalent to the origin automata. This operator ex-
presses that an operation of A2 can only be executed after all dependent operations of
A1 have been executed, where dependency means mutual access to shared variables
(read/write or write/write).
For the layered composition operator, the following CCL law is defined:

(A1 • A2) ‖ (B1 • B2) ≡ (A1 ‖ B1) • (A2 ‖ B2),

in which ≡ denotes reachability equivalence. A further side condition is that either
(1) every operation in A1 precedes (wrt. time) dependent operations in B2, the same
holds for B1 and A2, and all automata are acyclic, or (2) the operations of A1 and
B2 are independent as well as the operations of B1 and A2.
Using the CCL law, parallel compositions can be transformed into a sequential

composition:

(A1
o
9 A2) ‖ (B1

o
9 B2)

≡ (A1 • A2) ‖ (B1 • B2)

≡ (A1 ‖ B1) • (A2 ‖ B2)

≡ (A1 ‖ B1) o
9 (A2 ‖ B2),

where ≡ is a suited equivalence preserving the desired properties to be shown (in
[OS10] partial-order equivalence is used, which preserves LTL properties). For the
second equivalence the CCL law is applied. By this transformation, the costly parallel
composition operator is applied to smaller automata, which leads to a reduction of
the state space that is to be analysed. See [OS10] for details on the approach.
The layered composition Principle is a promising technique that helps to find good

VAs for concrete systems or to restructure VAs into a layered protocol that can be
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applied more efficiently. To this end, protocol processes are transformed into the
shape of (A1 ‖ B1) o

9 (A2 ‖ B2) by applying the CCL transformation. The parallel
compositions (Ai ‖ Bi) are natural candidates for protocol phases in a VA, modelled
as constrained unknown processes. By this means, the sequential parts of the VA
are handled at the eCSP level, whereas the layers containing the parallel parts are
verified when instantiating the VA process by checking the local assumptions. It is
future work to investigate the details on using the layered composition principle to
derive suited VA processes.

172



7 Implementation and Tools

Oh, but it is true. Things need not have
happened to be true. Tales and dreams are the
shadow-truths that will endure when mere facts
are dust and ashes, and forgot.

(Dream, in Dream Country, Neil Gaiman)
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As this work is focused on automated verification of complex real-time systems, tool
support is essential for the successful application of the VA approach to large systems.
Even though there is still no tool support for every aspect introduced in this thesis,
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a tool chain is introduced in this chapter that allows for automatic verification of
real-time systems and that supports Verification Architectures.
The following section introduces the tool Syspect, which has been developed in the

context of this work and which has been used to model and verify the examples of
Chap. 8. Afterwards, a Verification Architecture plug-in for Syspect is described.

7.1. Syspect
Syspect [FLOQ11] is a graphical UML front-end for CSP-OZ-DC that has initially
been developed as an one-year collaborative student project at the University of
Oldenburg [Sys06]. It has been further improved in Oldenburg as part of the AVACS
project and in the research group “Specification and Modelling of Software Systems”
of Heike Wehrheim in Paderborn. Syspect is an open source project distributed under
the GNU Public License (GPL) and its sources as well as pre-compiled binaries for
Windows, Mac OS, and Linux are available at

http://syspect.informatik.uni-oldenburg.de/.

7.1.1. UML Profile for Real-Time Systems

The Unified Modelling Language (UML) [RJB99, OMG09] is diagram-based language
that is widely used by engineers to describe complex systems. However, these diagrams
generally have no formal semantics and, thus, are not suited for formal analysis and
verification. To overcome this drawback, [MORW08] introduced a dedicated UML
profile with a semantics in terms of CSP-OZ-DC. With a UML profile the UML can
be adjusted to a specific application area by defining so-called stereotypes indicating
a specific role of a UML element in the desired application context.
In [Sys06, FLOQ11], the stereotypes capsule, data, and interface for classes of

reactive systems are defined:

• a UML class that is distinguished by the stereotype capsule has a semantics in
terms of a CSP-OZ-DC class, particularly, capsules describe the control flow,
state changes, and the timing behaviour of an entity

• a data class defines complex data types, and it has a semantics in terms of an
OZ class, i.e., it defines operations on data, but in contrast to capsules it does
not constrain the control structure or the timing behaviour

• classes that are distinguished by the stereotype interface describe the operations
that are provided and shared between several capsules and that are used for
synchronisation.

This UML profile is implemented in Syspect. It incorporates three types of dia-
grams: class diagrams to model the static structure of the system, protocol state
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Figure 7.1.: An exemplary class diagram

machines, which are associated to capsules and which are used to model the con-
trol flow of capsules, and component diagrams to define communication structures
between capsules and instances of capsules in a concrete system.
Figure 7.1 exemplarily pictures a class diagram for a case study from [FIJSS10a].

It is modelled with Syspect using the three stereotypes: Train, RBC-Com, and RBC-
Controller are capsules (marked with an icon with a C ); MAInterface, CRInterface, and
Environment are interfaces (marked with an I icon), and SegmentData and TrainData
are data classes. The connections in the class diagram are the usual UML connections,
representing inheritance, composition, and dependencies.
The Train capsule has an associated state machine to define its control structure.

It is pictured in Fig. 7.2 and consists of locations and transitions that are labelled
with operation names, which have to be declared in the corresponding capsule. An
operation may only be executed if the current location of the state machine has an
outgoing transition labelled with the operation name (with the exception that an
event that does not occur in the alphabet of the state machine can always occur,
which often simplifies modelling). The filled black circles are start locations of the
state machine and the dashed lines separate three hierarchical sub-machines that are
executed concurrently.
The last diagram is the component diagram, pictured in Fig. 7.3, defining the

instances of the capsules and their connections constituting the entire system. The
example diagram connects an RBC-Com object via the MAInterface with two Train
components. Particularly, the trains do not have access to the operations of RBC-
Controller, because they are not connected in the diagram. The System component is
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Figure 7.2.: State machine for Train

Figure 7.3.: Exemplary component diagram
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Table 7.1.: Tags associated with operations (in capsules as well as data classes)
Tag Purpose Type

in input parameter Variable declaration
out output parameter Variable declaration
simple general parameter Variable declaration
changes changed variables list of variable names
enable constraint that enables an op-

eration
a Z constraint without primed variables

effect constraint describing the ef-
fect of an operation

a Z constraint with primed variables

Table 7.2.: Tags associated with classes
Tag Stereotype Purpose Type

init capsule, data initial constraint Z predicate
invariant capsule, data invariant constraint Z predicate
dc counterexample capsule timing behaviour DC counterexample

trace

a special component representing the entire specified system. In addition, the diagram
specifies that any access to methods from the Environment interface is delegated to
the train objects.
An important feature of Syspect is that class diagrams provide a particular view

on the system model that does not need to reflect the entire model. Instead Syspect
distinguished between model elements and views to model elements. By this, it is
possible to cope with large system models by providing many diagrams, all reflecting
a particular aspect of the system. For more information see [Sys06, FLOQ11].
In addition to the content of these UML diagrams, the UML profile of Syspect also

determines supplementary properties of the stereotypes capsule and data. According
to the UML standard [OMG09], such properties can be defined with attributes cor-
responding to a stereotype that are called tags [MORW08]. Table 7.1 lists all tags
that correspond to the operations in capsules and data classes and Table 7.2 all tags
belonging directly to a capsule or a data class. For instance, the tag init is used to
specify a constraint that describes the initial condition of a capsule in terms of a Z
predicate.
In Syspect, these tags are specified using user-friendly dialogs and textual editors

with support for the input of Z predicates. Figure 7.4 gives an idea of the user interface
by picturing a class diagram, where the RBC-Controller is selected, together with a
corresponding property view, where the init tag, i.e., the initial constraint, of the
controller can be specified with a Z predicate. The input of those Z predicates is
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Figure 7.4.: Screenshot of Syspect

either done by selecting the corresponding predicate parts via specific buttons or by
writing LaTeX commands for Z [ISO02] that are replaced on-the-fly by Z symbols.1
The latter is very convenient for users familiar with the common LaTeX representation
of Z.

7.1.2. Tool Structure

The Syspect implementation is based on the Eclipse Rich Client Platform (RCP).
Eclipse is an expansible software development framework structured by plug-ins. It
is written in the programming language Java and it is available at

http://www.eclipse.org.

The RCP is the minimal set of Eclipse plug-ins that are necessary to build a rich
client application using the Eclipse framework.
Being such a rich client application, Syspect takes advantage from many build-in

features of Eclipse, e.g., graphical user interface (GUI) features like layered dialogues
called wizards, SWT (Standard Widget Toolkit) widgets, a user-arrangeable GUI,

1Syspect internally uses the Community Z Tools (CZT) to handle Z expressions. For more inform-
ation on CZT see http://czt.sourceforge.net/ and [MU05].
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and support for drag and drop. Moreover, Syspect inherits the extendability from
Eclipse by which Syspect has been improved with a lot of verification plug-ins after
its initial release. Syspect is highly configurable since plug-ins can be activated or
deactivated such that different Syspect-flavors can be delivered that are tailored to
the particular needs of a user. Some important plug-ins extending the core features
of Syspect are mentioned in the next section.

7.1.3. Syspect Plug-Ins

Most of the existing Syspect plug-ins are export plug-ins that allow for further pro-
cessing of a Syspect model. This is of course essential for the practical usage of
Syspect, because such plug-ins connect Syspect with other existing tools, e.g., model
checkers.

XML export. Syspect supports exporting specifications in terms of XML-files. Either
the CSP-OZ-DC representation of a Syspect model can be output as XML or the CSP-
OZ-DC specification is firstly translated into a PEA network, which is written into
an XML file. These XML representations of Syspect models can be used as exchange
format, which is for instance done in the AVACS project.

LaTeX export. Very important is the LaTeX export of Syspect. Using this plug-in
a CSP-OZ-DC specification of a Syspect model is output as LaTeX file, which is the
standard format to describe CSP-OZ-DC specifications. By this, Syspect provides
a user-friendly graphical way to specify a system, which can then be viewed as a
CSP-OZ-DC specification. This is more comfortable than writing CSP-OZ-DC spe-
cifications directly.

Image export. The diagrams of Syspect can also be exported as common image files
(PDF, JPEG, PNG, EPS). The figures of diagrams in this chapter are direct exports
of Syspect diagrams (Fig. 7.1 up to Fig. 7.3).

PEA editor. In [Pet09], an editor plug-in for PEA has been developed. This enables
a user to model directly in terms of PEA within Syspect. Moreover, a Syspect model
can be exported to PEA which is then displayed in the PEA editor. This is useful for
debugging Syspect specifications, because the semantical PEA representation of all
Syspect elements, particularly for the DC formulae, can be examined and modified.
Furthermore, there are several verification plug-ins, which are explained in the next

section.
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Figure 7.5.: Syspect verification tool chain (modified version of a figure in [Brü08b])
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7.2. Verification with Syspect
A major goal of Syspect is to provide access to formal verification approaches through
suitable plug-ins. Particularly, the CSP-OZ-DC verification approach that is relevant
in the context of this work is supported by Syspect. An overview of the tool chain
for Syspect verification is given in Fig. 7.5.
Since every model in the UML profile can be transformed into a CSP-OZ-DC spe-

cification, which in turn has a semantics in terms of PEA and Transition Constraint
Systems (TCS) [Hoe06], the main approach in Syspect is to employ verification tools
that use TCS as their input language. Additionally, there is an implementation that
uses the CSP semantics for CSP-OZ [Fis00], by what verification with the FDR
model checker for CSP is possible. The remaining chapter focusses on the TCS veri-
fication approach and decompositional verification techniques that are implemented
in Syspect to simplify verification tasks.

7.2.1. Transition Constraint Systems
Figure 7.5 shows the translation steps and tools involved in the translation to TCS. As
explained in Sect. 7.1.1, the UML diagrams of Syspect have via a UML profile a direct
correspondence to CSP-OZ-DC elements. The translation from UML to CSP-OZ-DC
[Sys06, MORW08] proceeds as follows:

• Capsules are translated into CSP-OZ-DC classes. Attributes and methods of
capsules directly become attributes and methods of the class. This is possible,
because the methods of capsules are already in Z syntax with a dedicated list
of symbols that can be changed in a method (tag changes) and with dedicated
input and output variables (tags in and out).

• Data classes are translated into OZ classes, without control structure or timing
part.

• State machines in Syspect always belong to a capsule and can be translated
into equivalent CSP processes.

• DC formulae also belong to capsules and can directly be conveyed to the cor-
responding CSP-OZ-DC class.

Afterwards the specification is translated into PEA according to the operational se-
mantics of CSP-OZ-DC (Sect. 2.3.2). These translation steps are automatically ex-
ecuted in Syspect.

Compositional Reasoning. An important consequence of the compositional seman-
tics of CSP-OZ-DC in terms of PEA is that it permits compositional reasoning in
the follwing sense: whenever a subset of PEA in a parallel composition satisfies a
safety property (given by a DC formula), then also the full parallel composition does.
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See Thm. 2.3.8 for a formalisation. This allows for a cone-of-influence verification
technique: it suffices to verify a safety property for a single component to conclude
safety of the entire system. For example, when verifying a timing property, it often
depends only on the DC part of the specification; then, only the DC part is to be
considered for the verification of the property.

Translation into TCS. In a further step, the PEA are translated into Transition
Constraint Systems (TCS), transition structures that are supported by the verifica-
tion tools ARMC [PR07] and SLAB [BDFW07, BDFW08, DKFW10]. A TCS is a
tuple T = (Var , Init,Trans), where Var is a set of unprimed variables, Init is an
initial constraint describing all initial states of the system, and Trans is a transition
constraint describing state changes, where unprimed variables refer to the state before
the change and primed variables to the state after the change. At the level of TCS,
the clocks of PEA are represented as real-valued data variables.
The translation from a PEA to a TCS is described in [HM05b, Hoe06] and it is

relatively straightforward in that the only constructs in PEA that deserve a special
consideration here are the PEA locations and the clock constructs. The remaining
constructs like state changes during PEA transitions can directly be treated as TCS
transitions, because PEA (and likewise CSP-OZ-DC) use also a primed and unprimed
constraint notation to describe state changes. PEA locations are encoded in a TCS
using a program counter variable, and clocks of PEA are encoded by real-valued
variables. Since clock constraints in PEA are always convex, the progress of time can
be modelled using a further real-valued variable that is added to the clocks in each
transition step. For details see [HM05b, Hoe06, FJSS07].
The drawback of this procedure is the state space explosion, because a system that

consists of parallel components has to be translated into a single TCS (Fig. 7.5), since
at present the model checkers ARMC and SLAB can process only a single TCS.

PEA Toolkit. The translation to a CSP-OZ-DC specification is executed within
Syspect as depicted in Fig. 7.5. Computing the parallel product of all PEA and
translating it into a TCS is done by the PEA toolkit2 [MFHR08], which is part
of Syspect but also available as a separate library for the handling of PEA. The
translation of DC formulae into PEA is also implemented in the PEA toolkit.

7.2.2. Verification of Syspect Specifications

Verification with SLAB/ARMC. The model checker ARMC3 [PR07], developed
at the Max-Planck-Institut für Informatik in Saarbrücken, and SLAB4 [BDFW07,
DKFW10], developed at the Saarland University, both take a single TCS as input.

2Available at http://csd.informatik.uni-oldenburg.de/projects/epea.html
3Available at http://www7.in.tum.de/~rybal/armc/
4Available at http://react.cs.uni-sb.de/tools/slab.html
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Figure 7.6.: Counterexample view in Syspect

They verify safety properties of infinite-state systems by checking reachability of bad
states and return counterexample traces if these bad states are reachable.
In [Mey05, MFR06, MFHR08], these bad states are specified using DC formu-

lae that are also translated into TCS. To this end, the DC counterexample traces
are extended to DC test formulae that can be used to specify bad behaviour that
shall be avoided by a correct implementation. The PEA toolkit also implements the
translation of test formulae into PEA such that ARMC and SLAB can be used to
verify Syspect specifications against DC test formulae by translating the specification
and the test formulae into PEA and passing their parallel composition to the model
checker.
Using the TCS verification approach, Syspect enables parametric verification of

real-time systems in the data and the time dimension [FJSS07]. That is, it is not
necessary to give specific values for all system parameters; it suffices to constrain
system parameters adequately to guarantee safety.
As explained above, all constraints occurring in PEA, and thus also the constraints

of Syspect specifications, are directly shifted down to the TCS level (modulo syn-
tactical modifications). Since Syspect and CSP-OZ-DC both allow arbitrary Z ex-
pressions in operation schemes to describe state changes, not every valid Syspect
specification can be verified with ARMC or SLAB, which both can handle only lin-
ear arithmetic constraints over real-valued variables. The design decision for Syspect
was not to restrict the Syspect language to a specific CSP-OZ-DC subset that can
be verified but to allow an expressive language at the level of Syspect, which is also
supported by CSP-OZ-DC and PEA. The advantage of this is that Syspect can be
used to design specifications, even though they cannot be verified. Moreover, Syspect
can easily be extended by further verification plug-ins without the need to adapt the
Syspect language itself. An example for a verification plug-in that allows for more
complex input constraints than SLAB or ARMC is given with the H-PILoT plug-in,
described below.

Verification Feedback. Syspect supports this verification approach by allowing users
to specify correctness properties of a model by DC test formulae. Using convenient
input dialogues, a user may export a TCS for a given test formula that can directly be
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verified with SLAB or ARMC. In addition, ARMC can be called from within Syspect.
In this case, the feedback from the model checker is also displayed within Syspect. To
this end, a Syspect plug-in of Ulrich Hobelmann [Hob07] maps the counterexample
trace provided by ARMC back to the corresponding high-level elements of the Syspect
model (cf. Fig. 7.5): a counterexample view is displayed that allows step-wise follow-
ing the trace to the error. This way, a user can reproduce the origin of a system error
and correct the model accordingly. The counterexample view of Syspect is pictured
in Fig. 7.6.

Verification with H-PILoT. To support more complex data structures, Syspect ad-
ditionally interfaces with the verification tool H-PILoT5 [ISS09] that has been de-
veloped at the Max-Planck-Institut für Informatik in Saarbrücken. H-PILoT uses
hierarchical reasoning in chains of local theory extensions to reduce the complexity
of verification tasks. To this end, the satisfiability of constraints over specific theory
extensions that are identified to be local are reduced to the satisfiability of constraints
in a base theory for that a dedicated prover exists. Standard SMT solvers can then
be used to check the satisfiability of the formulae of the base theory. With this ap-
proach, the invariant checking problem for local theory extensions becomes decidable.
By this means, CSP-OZ-DC specifications with properties over rich data types like
arrays [FJSS07] or pointer data structures [FIJSS10a] can be verified.
In the train example of Fig. 7.1, that is taken from [FIJSS10a, FIJSS10b], a linked

list is modelled with a function next from Train to Train. Changes or invariants over
this list are modelled with quantified expressions like

∀ t : Train • next(prev(t)) = t.

The safety property that is to be verified is that the RBC controller never assigns one
segment to two different trains, which can be expressed by the invariant property

∀ t1, t2 : Train. t1 6= t2 → sid(segm(t1)) 6= sid(segm(t2)).

With the hierarchical reasoning approach, such invariant checking problems are re-
duced to a decidable fragment. The advantage of having a decidable problem is that
the solver returns a result for correct and incorrect verification tasks. In the case that
a verification task fails, H-PILoT returns with the help of the underlying solver a
model that violates the desired property. This helps the user to correct the model.
Like the ARMC/SLAB verification approach, H-PILoT verification is parametric

for data and time parameters. Moreover, as H-PILoT allows for verifying complex
pointer structures or arrays, it is also possible to verify a parametric number of
components, e.g., an arbitrary number of trains like in [FJSS07].

5Available at http://www.mpi-inf.mpg.de/~ihlemann/software/index.html
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7.2.3. Slicing CSP-OZ-DC Specifications in Syspect

Syspect is designed to cope with systems with concurrent components, real-time,
and (possibly) infinite data types like lists. Due to this inherent complexity of the
specifications written in Syspect, direct verification is often not possible, because
of the state space explosion problem. Thus, further decomposition techniques are
important to enable verification of large and realistic models.
In Sect. 6.4.1, we have introduced slicing of formal specifications as decomposition

technique complementing our approach. Slicing of CSP-OZ-DC specifications is also
supported by a Syspect plug-in that has been developed by Sven Linker in the context
of the PhD thesis of Ingo Brückner [Brü08b]. With this plug-in, slicing can be enabled
for the export and verification functions of Syspect. The user has to choose a slicing
criterion, by what the reduced CSP-OZ-DC specification is automatically computed
according to this criterion.

7.2.4. Further Verification Plug-Ins

Furthermore, there are several verification plug-ins for Syspect that have been de-
veloped at the University of Paderborn.
A CSP verification plug-in translates a Syspect model without timing constraints to

a CSP-OZ [Fis00] specification. CSP-OZ has a semantics in terms of CSPM [Sca98], a
machine readable CSP dialect that can be used as input for the model checker FDR26
for CSP, which can directly be called from within Syspect. The property that is to
be verified needs to be given as a CSPM expression.
In [MWW08, Met10], a technique has been introduced to decompose parallel CSP-

OZ specifications into two phases using a user-specified cut point. These phases are
then verified with a learning-based assume-guarantee rule. This decomposition ap-
proach has also been implemented in Syspect. Applying FDR2, the plug-in can be
used to verify specifications without timing constraints and infinite data.

7.3. Syspect Verification Architecture Plug-In
To enable decompositional verification of real-time systems, Syspect incorporates
a Verification Architecture plug-in, supporting modelling and verification of VAs.
The plug-in has initially been implemented by Matthias Peters in his diploma thesis
[Pet10], and it has been developed further by the author.

7.3.1. Modelling of VAs

VAs can be specified within Syspect using an extended state machine editor, which
consists basically of the standard state machine editor of Syspect. In addition, the
VA editor allows to add unknown phases that are annotated with local real-time

6http://www.fsel.com/software.html
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Figure 7.7.: VA of the running example modelled in Syspect

constraints in terms of DC counterexample traces. Figure 7.7 shows the VA for the
running example as Syspect model. The pictured state machine represents the VA
process of the running example from Sect. 3.1.4.
The plug-in makes use of the standard input dialogs of Syspect. By this means,

state changes, corresponding to events, are defined by Z expression analogous to state
changes described in Syspect class diagrams. Likewise the DC formulae are input in
the usual way. Figure 7.7 shows, besides the VA state machine, the input dialog for
DC assumptions over unknowns.

7.3.2. CSP-OZ-DC Representation of a VA

The VA model can also be exported into a CSP-OZ-DC specification in LaTeX syn-
tax. In this CSP-OZ-DC representation of the VA, all channels of the VA process are
declared in the interface and state variables in the state schema. The CSP process of
the specification is the CSP process with unknown parts generated from the extended
state machine. The CSP process also contains the DC assumptions for the unknown
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Figure 7.8.: Tool chain for VA plug-in

parts but no state changes. State changes are described by operation schemas asso-
ciated with the events as in standard CSP-OZ-DC. The DC part is always empty.
Appendix A.1.3 contains the VA of the running example represented as CSP-OZ-DC
specification exported by Syspect.

7.3.3. Verification of VAs
Given a concrete Syspect specification and a Syspect VA, it can automatically be
verified that the concrete model actually refines a VA. To this end, the refinement
relation of the process structure is syntactically checked according to the rules of
Chap. 5. In addition, the verification of the local real-time assumptions is also per-
formed automatically by exporting the corresponding proof task to ARMC or SLAB.
Figure 7.8 pictures the tool chain for verifying VA instantiations. The following

steps are executed:

• In a first step, the VA represented by a state machine with unknowns is trans-
lated into a CSP process with unknowns. Also, the concrete Syspect specifica-
tion is translated into a CSP-OZ-DC specification.

• The structural refinement relation between the CSP process of the concrete
model (not being sliced) and the VA process is syntactically checked by an
algorithm of Matthias Peters, which is based on the matching rule of Def. 5.4.1.
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• During the computation of the syntactical refinement, all sub-processes of the
concrete model that refine an unknown process are collected.

• The user can select via a dialog which local assumptions are to be checked and
whether slicing is to be used.

• For each local assumption the VA plug-in automatically slices the specification
with the assumption as slicing criterion. The specification is automatically re-
duced to the sub-process belonging to the unknown process of the assumption.
These sub-specifications are identical to the origin specification except that the
CSP part of the protocol class is replaced by the sub-process, and the con-
straint of the initial schema is replaced by true. By this it is guaranteed that
the sub-specification may start with arbitrary valuations of system variables.
The possible initial values are only restricted by the assumptions on a protocol
phase.

• If the specification consists of several CSP-OZ-DC classes, the relevant paral-
lel classes for checking the current assumption are automatically selected; the
initial constraints are also removed. A simple syntactical condition is checked
in order to ensure that the verification with parallel components is actually
admissible.

• To the resulting reduced CSP-OZ-DC specification the standard verification
procedures of Syspect are applied. When using ARMC verification directly from
within Syspect, a counterexample is pictured in the case that the verification
fails.

Parallel components. The structural refinement check of Syspect currently supports
only specifications where exactly one class implements the VA protocol (we refer to
this class as protocol class). As already discussed in Sect. 5.6, specifications often can
be reformulated such that one class implements the VA protocol. However, for con-
venience it is also possible to have classes running in parallel to the class implementing
the VA protocol. But it is important that the restrictions of Sect. 5.6 apply to avoid
that a parallel component spuriously block system runs. This particularly means
that the CSP part of the parallel component is always in its initial state whenever a
sub-process is entered that refines an unknown component and communicates with
a parallel component. To this end, Syspect implements an (incomplete) syntactical
check: it is verified that all components refining an unknown part are triggered by
a unique event. All parallel components of the protocol class need to synchronise on
this event and restart its CSP process when the events occur. By this it is enforced
that every parallel component is actually restarted when an unknown part is entered.
Syspect gives a warning if the check fails—because the user can still prove manually
that the parallel components of the protocol class introduce no spurious blocking
when checking them in isolation.
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In addition, Syspect automatically deselects parallel classes if they are obviously
independent from the current proof task. This is for instance the case if no commu-
nication with a component takes place.
Note that it is always safe to omit parallel components for CSP-OZ-DC (see

Sect. 2.3.2 and 7.2.1). Thus, it is often possible to increase efficiency of the veri-
fication by deselecting components that may not be important for a proof task. But
if a counterexample is returned, it may be a spurious counterexample that actually
cannot occur with all parallel components enabled. Syspect provides a dialog to con-
veniently enable and disable components for verification.

7.4. Discussion

In this chapter, we have introduced our tool set to treat complex real-time systems
with engineering-like graphical modelling techniques. The UML tool Syspect integ-
rates UML modelling and formal methods by providing the translation into formal
CSP-OZ-DC specifications. VAs are supported with a dedicated plug-in that allows
modelling of VA processes with annotated state machines. The VA plug-in proto-
typically checks the instantiation relation between a VA and a concrete model: the
structural refinement of the process structure can be established for the case that the
VA process is refined by one protocol class in the concrete model; the proof tasks
corresponding to the VA are automatically processed.
The class of concrete models that can be verified against a VA are currently re-

stricted to models that syntactically coincide with the VA. It is desirable to relax this
restriction in future work such that also the extended refinement rule of Def. 5.3.2
is supported. In addition, the restriction to one protocol class implementing the VA
process should also be relaxed, e.g., by computing the overall CSP process of a CSP-
OZ-DC specification that is compared to the VA process.
We have not yet implemented the proof calculus from Chap. 4 to verify properties

of the VA itself. Ideally, an implementation of our sequent calculus would also be
integrated into the Syspect environment with the disadvantage that the complete
sequent calculus has to be reimplemented in Syspect. For this reason, it may be
preferable to connect existing sequent calculus tools to Syspect or to translate the
VA process to external tools that are extended by our sequent calculus rules. To
be considered are for instance the theorem provers KeY [BHS07], KIV [HBB+05],
or Isabelle7 [NPW02]. The former seems particularly well-suited, because Platzer
and Quesel have already successfully implemented a sequent calculus similarly to
ours [PQ08]. On the other hand, Isabelle is a generic proof assistant designed for
extendability by domain-specific logics, already including a sequent-based logic.

7http://isabelle.in.tum.de/
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7. Implementation and Tools

Related Tool Environments

Process Analysis Toolkit. The Process Analysis Toolkit (PAT)8 [SLD08] is a tool
environment for CSP#, combining CSP processes with a procedural low-level pro-
gramming language (in C# syntax) and a number of real-time patterns to specify
deadlocks, timed interrupts, and time-outs (see also Sect. 3.4.3). PAT implements
some verification approaches that are currently not available for CSP-OZ-DC. In par-
ticular, PAT is designed for verifying LTL-X specifications with fairness. Its (explicit)
model checking algorithm incorporates partial order reduction and process counter
abstraction techniques as well as bounded model checking. PAT also supports a re-
finement check for CSP# programs and a graph-based simulation of the behaviour of
the input model. In contrast to Syspect, PAT does not have a diagram-based input
language and, except for the fixed real-time patterns, it does not support infinite-data
verification.

Fujaba. A similar concept to Syspect is implemented in the Fujaba tool suite9
[BGH+05]. It is also based on UML diagrams and focused to real-time system devel-
opment. Real-time aspects are specified with real-time state charts [BG03], using a
discrete time domain. The structure of systems is specified with class and component
diagrams. The Eclipse-based Fujaba also incorporates plug-ins for simulation of sys-
tems and for hybrid systems. In contrast to our approach, the semantics of the UML
diagrams is not given in terms of an intermediate combined specification language
but in terms of Kripke structures [GTBF03].
Fujaba also supports a behavioural design patterns approach similarly to the VA

approach [GTBF03, Gie03]. Design Pattern are specified with (real-time) state charts
but without a notion of data and unknown components as in our case. Their patterns
consist of a connector automaton and further (concrete) automata with additional
state invariants (that are not considered to verify pattern correctness). Temporal
constraints over components are not included in the patterns; real-time properties
are encoded in the automata of the patterns. The patterns are verified with model
checking and instantiated syntactically like in our approach. Deadlock-freedom is
additionally checked for instantiating components.
The main differences to the VA approach are the usage of a discrete time do-

main, the lacking of data constraints in the architecture, and the non-compositional
verification of the patterns: the parallel product of all components of the pattern is
verified against a global property. The verification of the pattern in the VA approach
is performed using the sequent calculus of Chap. 4, which is particularly well-suited
for patterns that incorporate rich data types. A further difference is that the Fu-
jaba patterns are directly defined in terms of state charts, while VAs are defined in
terms of the basic process language CSP; with Syspect state machines we provide an
additional front-end for the CSP language.

8http://www.comp.nus.edu.sg/~pat
9http://www.fujaba.de
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8 Case Studies

Every story has got a happy end – you just have
to know when you stop telling.

(A Storyteller, in Preludes and Nocturnes,
Neil Gaiman)
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8.1. Running Example: Small Train Control System

In this thesis, we have considered fragments of a train control system as a running
example. In this section, we bring the different parts of the running example together.
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RBC

︸ ︷︷ ︸
RD︸ ︷︷ ︸

sf︸ ︷︷ ︸
MA

Figure 8.1.: Example

The example is motivated by the European Train
Control System [ERT02] (see Sect. 1.1). The setting
is pictured in Fig. 8.1: a so-called Radio Block Center
(RBC) grants movement authorities (MA) to a train.
The system is considered safe as long as the train stays
within the MA. The distance of the train to the end of
the MA is given by a real-valued variable sf , reflecting
the safety of the system that shall never be below or
equal to 0. As long as the train is far away from the
end of the MA, we do not further restrict the behaviour
of the train, but as soon as the position of the train is
beyond a certain reaching distance (RD) to the end of
the MA, the train has to stop before leaving its MA

block. The position RD is the last position at which the train needs to apply the
brakes to stop in time. The train can request extensions of MAs from the RBC at
any time.
Fig. 8.2 defines this train control system as a VA. The system is described by the

CSP process System, that consists of a choice of sub-processes.
The first process of the choice can perform an event extend, that extends the current

MA, which is expressed in the constraint ϕextend . This constraint sf ′ > sf demands
that the value of the distance to the block end is increased. For realistic systems this
usually means that the authority is extended, but on the level of the VA we do not
exclude unrealistic behaviour like a train that jumps back to the start of the track
segment. A VA usually reflects an abstract view on the system that is as general as
possible but suffices to verify a concrete system.
The second process of the choice in System starts with an unknown process FAR

that can produce arbitrary behaviour except for events from A, which are all events of
this VA. It cannot change the constants of the specification, RD and CT . We further
constrain the unknown process by the DC formula FFAR1 , that demands that if sf
is greater than RD in phase FAR, then sf cannot decrease to a value smaller than
0 within CT time units. The second formula FFAR2 enforces that FAR is left after
CT time units. After termination of FAR the process checks the current value of sf
and, depending on that, behaves as the System again or it changes to a safe recovery
process REC .

8.1.1. Verification of the Architecture

The safety condition we want to prove for the architecture of Fig. 8.2 is that sf never
reaches 0, in terms of dCSP, sf > RD > 0 ` [System]2sf > 0, and we use our sequent
calculus to prove its validity. To apply the proof rules for FAR and REC we need to
verify the corresponding formulae FFAR1 ,FFAR2 , and FREC via the standard model
checking approach for CSP-OZ-DC and DC [MFHR08]. We demonstrate this for one
branch of the proof tree:
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Σ = ({R,B,Time}, {sf : R, ok : B}, {RD : R,CT : Time},∅)

A = {check, fail, pass, extend}
C = {RD,CT}

System c
= extend • ϕextend → System

2

FAR o
9 check • ϕcheck → (fail • ϕfail → REC 2 pass • ϕpass → System)

FAR c
= Proc\A,C • FFAR1 ∧ FFAR2

REC c
= Proc∞\A,C • FREC

ϕcheck = Ξ(sf ) ∧ sf ≤ RD ∧ ¬ok ′ ∨ Ξ(sf ) ∧ sf > RD ∧ ok ′

ϕfail = Ξ(sf ) ∧ ¬ok
ϕpass = Ξ(sf ) ∧ ok

ϕextend = sf ′ > sf
FFAR1 = ¬3(dsf > RDea` < CTadsf ≤ 0e)
FFAR2 = ¬3(` > CT )

FREC = ¬3(dsf > 0eadsf ≤ 0e)

Figure 8.2.: VA for the train control system

sf > RD > 0
(assumption2)

` [Proc\A,C • FFAR]2sf > 0 (process call)
sf > RD > 0 ` [FAR]2sf > 0

... (and right)
sf > RD > 0 ` [FAR]2sf > 0 ∧ [FAR][check → · · · → Skip]2sf > 0 (sequence2)

sf > RD > 0 ` [FAR o
9 · · · → Skip]2sf > 0

To close the left branch of the tree (we omit the right branch indicated by dots) we
apply rule (assumption2), i.e., we need to verify the side-condition of the rule, which
can be expressed by a DC formula

TFAR 1 := ¬(truead(sf > RD)ea` < CTadsf ≤ 0ea true) ∧ (8.1)

¬(truea` > CTa true) ∧ (8.2)

(dsf > RD ∧ RD > 0ea true) ∧ (8.3)

(trueadsf ≤ 0ea true). (8.4)

This formula states that for all runs fulfilling the FAR constraints (lines (8.1) and
(8.2)) and starting with sf > RD > 0 (8.3), the constraint 2sf > 0 is true (8.4).
The latter is expressed negated, because the DC formulae represents bad behaviour,
which shall be identified as unsatisfiable. We verified this property automatically
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ICom
+ ack()

+ sendCurPos()
+ sendMARequest()

IEnv
+ getPosOfTrains()

IRBC
+ extend()

ITrain
+ check()

+ fai l ()
+ pass()

RBC
#  i M A :  

#  iTra inPos:  
#  m i n D i s t :  

#  oTra inPos:  
+ ack()

# calcMA()
# cancelRequest()

+ extend()
+ getPosOfTrains()

+ sendCurPos()
+ sendMARequest()

Train
#  a d :  

#  adReached:  
#  b d :  

#  ebApp l ied :  
#  m a :  
#  o k :  

#  p o s :  
#  s p d :  

# ADReached()
+ ack()

# applyEB()
+ check()

# checkAD()
+ extend()

+ fai l ()
# notADReached()

+ pass()
# reqFailed()

+ sendCurPos()
+ sendMARequest()

# updPos()
# updSpd()

Figure 8.3.: Syspect class diagram for the train control system

within 8 seconds with ARMC using the approach of [MFHR08]. In this way, we have
successfully applied our sequent calculus to verify the validity of the desired safety
property. The entire proof tree can be found in Appendix A.1.1. Four external model
checker calls (each finished in less than 8 seconds) to solve branches on the unknown
parts FAR and REC were necessary.

8.1.2. Instantiation by a CSP-OZ-DC Model

In a second step, we have proven that a concrete CSP-OZ-DC model is an instance of
the VA of Fig. 8.2. Parts of the concrete model for the train control VA have already
been presented as example in Chap. 2. The model comprises two components: a train
and an RBC, where the train implements the VA protocol. Figure 8.3 contains the
Syspect class diagram of the case study and shows how both classes are synchronised
(namely by events extend, ack, sendCurPos, and sendMARequest). The main phase
of the protocol is the FAR phase. In this phase, the train periodically updates its
position. In addition, the train cyclically checks its position. If the position is beyond
an approaching distance (ad), the train requests a new MA from the RBC. To this
end, the train also sends position reports to the RBC. Figure 8.4 shows a part of the
CSP-OZ-DC specification. The full concrete model can be found in Appendix A.1.2.
In order to use ARMC or SLAB as model checkers, all system variables are modelled
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Train
method ack, check, fail, pass
method sendCurPos : [curPos! : R]
method sendMARequest : [curPos! : R; reqDist! : R]
chan extend : [newMA? : R]
local chan ADReached, applyEB, checkAD,notADReached, reqFailed, updPos, updSpd

main c
= ((extend → main) u FAR)

FAR c
= (InitialState0‖|InitialState1‖|InitialState2) o

9 (check → Checked)

InitialState0
c
= (updSpd → State0)

InitialState1
c
= ((sendCurPos → InitialState1) u Skip)

InitialState2
c
= ((checkAD → State5) u Skip)

InitialState3
c
= (applyEB → State8)

REC c
= (InitialState3 o

9 Stop)

State0
c
= (updPos → State1)

State1
c
= (InitialState0 u Skip)

State3
c
= ((ack → Skip) u (reqFailed → Skip) u request)

State5
c
= ((ADReached → request)
2 (notADReached → InitialState2))

State8
c
= (updSpd → State9)

State9
c
= (updPos → State8)

Checked c
= ((fail → REC) 2 (pass → main))

request c
= (sendMARequest → State3)

pos, spd, bd : R
ma, ad, ok : R
ebApplied, adReached : R

Init
ad > maxcd
ma − pos > maxbd + maxcd

effect extend
∆(ma)
newMA? : R

ma′ = newMA?
ma′ − pos′ > ma − pos

effect updPos
∆(pos)

pos′ = pos + spd · CT

effect updSpd
∆(spd)

0 ≤ spd′ ≤ maxspd
0 ≤ bd′ ≤ maxbd
ebApplied ≥ 1

⇒ ma − pos − spd′ · CT > bd′
ebApplied ≥ 1⇒ spd′ = 0 ∨ spd′ < spd
ebApplied ≥ 1⇒ bd′ = 0 ∨ bd′ < bd

effect checkAD
∆(adReached)

(ma − pos ≤ maxbd + ad
∧ adReached′ = 1) ∨

(ma − pos > maxbd + ad
∧ adReached′ = 0)

...

¬3(l updPosa(dtruee ∧ ` < CT)al updPos)
¬((dtruee ∧ � fail)a6 l faila(dtruee ∧ � fail ∧ � check ∧ ` > 10 · CT)a true)

Figure 8.4.: Part of the train specification
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as reals.
The figure exemplarily shows the operation schemas for updating speed values,

depending on the state of the emergency brake ebApplied, and the operation schema
for checkAD, setting a flag adReached to 1 when the train is beyond the approaching
distance to the end of the MA. The operations that are defined by the VA process
(e.g., for check) reoccur in train with the same state change (not pictured in Fig. 8.4).
The system variable ok does occur in the CSP-OZ-DC model as well as in the

VA process (with the difference that we have converted it to a real number for the
verification with ARMC). However, the system variable sf and the constant RD do
not occur in the model, because these symbols are instantiated by

sf = ma − pos
RD = maxbd + maxcd,

i.e., the safety value sf of the system is represented by the distance of the train to
the end of the MA, and the reaching distance is composed of the maximal braking
distance maxbd and the distance maxcd, which is the distance the train can move in
one check cycle. Since the ARMC model checker can only deal with linear constraints,
we instantiate the time constant CT with a concrete value.
For this instance of the train control VA direct verification was not possible (timeout

after 40h) due to its complexity with 17 real-valued variables and clocks and over one
hundred thousand transition constraints. Since the model is an instantiation of the
VA, which was syntactically checked with Syspect, we only needed to verify the local
DC formulae FFAR1 ,FFAR2 and FREC to conclude the safety of the entire system.
This was done automatically with Syspect and ARMC in 82 min for FFAR1 , in 13 sec
for FFAR2 , and less than one second for FREC . Slicing was enabled for FFAR1 and
FREC . The property FFAR2 is not supported by the slicing plug-in. Direct verification
of this property without slicing is successful but needs several hours. But we have
made use of the Syspect feature allowing us to manually deselect components, which
is possible here as FFAR2 only depends on the train component.
Thus, even though the train control architecture is a rather small example, it

nevertheless shows that concrete instances of the architecture are not necessarily
easy to check. For the presented instance it was not directly possible. With the VA
approach, we were able to successfully verify the case study by checking structural
refinement and the local assumptions of the VA with Syspect and ARMC.

8.2. European Train Control System
In the AVACS sub-project R1, several case studies based on the European Train Con-
trol System standard [ECS99, ERT02] were developed [Fab05, MFR06, JSS06, FM06,
FJSS07, MFHR08, FIJSS10a, FIJSS10b]. In particular, the case study presented in
[MFHR08] motivated the Verification Architecture approach. Hence, we demonstrate
in this section how the VA approach can be applied to this case study.
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Figure 8.5.: Case study scenario

Driver Train ComNetwork RBC

Track

driverEB
driverInd

driverAck

send

receive

send

receive

getLOA updatePosition

Figure 8.6.: Components of the Case Study

8.2.1. Case Study Scenario: Emergencies in Train Control Systems

The case study examines the emergency message handling in the European Train
Control System (ETCS, see Sect. 1.1 for a short introduction on ETCS). The case
study scenario is pictured in Fig. 8.5. We consider two consecutive trains on an
(to simplify matters) infinite track segment, defined by train positions: Pos == R.
The trains measure their positions periodically and adjust their speed between a
lower bound, the target speed SysTrgSpd and SysMaxSpd, such that the follower is
always able to brake safely applying the service brakes. To this end, the service brake
intervention limit (SBI) is calculated periodically: the last position where the train has
to apply the service brakes such that it remains possible to stop safely. If the first train
detects an emergency, it sends an alert to the RBC which forwards this message within
5 time units. If necessary the follower immediately brakes. Otherwise, the emergency
is indicated to the driver (within 1.5 time units) who has to acknowledge the warning
(i.e., the driver takes responsibility for driving and the system is assumed to be
safe) or to apply the emergency brakes. If the driver does not react, the emergency
brakes are applied automatically by the ETCS on-board unit within 5 time units.
The desired property in our case study is that the trains do never collide or that the
driver overrules the warning and takes responsibility for the safety.
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8.2.2. Previous ETCS Case Studies

In the previous ETCS case studies of [FM06, MFR06, MFHR08], the ETCS systems
were directly modelled in terms of CSP-OZ-DC in order to adequately encompass the
different aspects of the system, the control flow, data changes, and real-time aspects.
We shortly summarise the basic ideas of the previous ETCS models as published in,
e.g., [MFHR08].
The case study model consists of five components: Train, RBC, Track, Driver,

and a communication layer ComNetwork, which is used to model the transfer times
of messages between trains and RBC. These components are sketched in Fig. 8.6
together with their connections by channels. The main focus of the case study is on
the train component incorporating the logic for the emergency message handling. The
trains communicate with the RBC using the channels send and receive, which are here
used to model that the RBC receives emergency alerts from the first train and timely
forwards a warning to the follower. The blue channels in Fig. 8.6 are channels without
parameters by which a train indicates emergency situations to the driver, who may
choose to acknowledge the indication or to apply the brakes. The track represents
the track-side equipment and can be seen as the environment of the case study. It
periodically receives position updates from the trains and calculates a new limit of
authority (LOA) if requested (getLOA) by the train. We abstract from the ETCS
movement authority procedure (which is modelled in a simple form in Sect. 8.1), in
which a LOA needs to be granted by the RBC. Instead a new LOA is calculated in
the Track component in such a way that always the worst case is assumed, namely
that the new LOA is closely behind the end of the preceding train. Additionally, the
track component guarantees that the train positions are initially safe.

CSP-OZ-DC Specification

In the following, we show parts of the main Train component of the case study model.
The full case study model from [MFHR08] is quoted in Appendix A.2.1.

Interface part. To simplify the verification tasks, we distinguish between the first
and the second train on the track and consider two classes FrontTrain and RearTrain.
The following interface declares the channels used by RearTrain:

RearTrain(ID : TrainID; StartPosition : Position)
chan send : [m! : Message, id : {ID}]
chan receive : [m? : Message, id : {ID}]
chan updatePosition : [id : {ID}, pos! : Position]
chan indication
chan getLOA : [id : {ID}, loa? : Position]
chan computeSBI : [loa?, sbi! : Position]
chan driverAck, driverEB : [id : {ID}]
local chan applySB, releaseSB, selectSpeed, applyEB
local chan getPosition : [pos! : Position]
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This interface declares the public channels used for communications between the
components as depicted in Fig. 8.6. The parameter m of the channels send and
receive is of type

Message ::= Alert |Warning | Ack.

In addition, there are some local channels, e.g., applySB and releaseSB for applying
and releasing the service brakes, or applyEB for applying the emergency brake.

CSP part. The CSP part of RearTrain consists of an interleaving of the two sub-
processes Running and HandleEM with the basic idea that the Running component
models the movement of the train, whereas HandleEM models the emergency hand-
ling procedure.

main c
= Running ‖|HandleEM

Running c
= updatePosition.ID?pos → getLOA.ID?loa →

computeSBI !loa?sbi →
if sbi ≤ pos
then applySB → selectSpeed → Running
else releaseSB → selectSpeed → Running

The subprocess Running states that every updatePosition is followed by a getLOA
event that gets the new limit of authority (LOA). The next permitted event is com-
puteSBI that takes the new LOA as argument and computes the sbi position that
is needed in the if statement. If the current position of the train is already beyond
sbi, the train has to break down to TargetSpeed, the speed the train is allowed to
run in the vicinity of the LOA according to [ERT02]. Otherwise, the train releases
the brakes and selects a new speed value up to MaxSpeed. When the RBC sends an
emergency warning, the train receives this message on the channel receive with the
process HandleEM :

HandleEM c
= receive.Warning.ID → send.Ack.ID →

getPosition?pos → getSBI ?sbi →
if pos < sbi −OffsetDistance
then indication.ID →

(driverAck.ID → DriverResponsible
2 EmergencyStop
2 driverEB.ID → EmergencyStop)

else EmergencyStop
EmergencyStop c

= applyEB → Skip

DriverResponsible c
= Skip

Depending on the current distance to the SBI position, either an emergency stop is
immediately initiated, or the emergency situation is firstly indicated to the driver if
the distance to the SBI position is larger than OffsetDistance.
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OZ part. The OZ part of RearTrain defines attributes of the class, e.g., for the
current position of the train (currentPosition), the current braking mode, or the
position standstillEB that will be reached by the train if applying the emergency
brakes.

currentPosition, currentSpeed : Position
sbi, standstillEB : Position
brakingMode : BrakingMode

Init
brakingMode = None
TargetSpeed < currentSpeed ≤ MaxSpeed
currentPosition = StartPosition

To simplify the treatment of units, we measure speed in terms of Position
updateBound , where

updateBound is the time between two position updates. The Init schema specifies
that the train is initially not braking, the speed is between TargetSpeed andMaxSpeed,
and the current position is set to StartPosition. Note that TargetSpeed and MaxSpeed,
as well as Length, TargetSpeedDistance, and StopDistance are global constants defined
outside the classes.
As example for operation schemas of RearTrain we consider the schema for select-

Speed.

com selectSpeed
∆(currentSpeed)

if brakingMode = None then
TargetSpeed < currentSpeed ′ ≤ MaxSpeed

if brakingMode = ServiceBrake then
currentSpeed ′ = TargetSpeed

if brakingMode = EmergencyBrake then
(currentSpeed ′ < TargetSpeed ∧
currentPosition + currentSpeed ′ ≤ standstillEB)

∨ (currentSpeed ′ = 0 ∧
currentPosition + TargetSpeed > standstillEB)

The idea for constraining com selectSpeed is as follows. If the train is not braking, it
selects a new speed value between TargetSpeed and MaxSpeed. If the service brakes
are applied, the new speed is set to TargetSpeed, and if the emergency brakes are
applied, the speed is set to a value below TargetSpeed. In the latter case, we take the
standstillEB position into account, which is computed in com applyEB.
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DC part. Finally, the timing constraints of RearTrain are given by the following DC
formulae:

¬3(l updatePositionaupdateBound > `al updatePosition)
¬3(� updatePosition ∧ updateBound < `)

¬3(l receive.Warning.IDa� applyEB ∧� indication ∧ 0.5 < `
a� indication ∧ 1 < `)

¬3(l indicationa� driverAck ∧� applyEB ∧ 5 < `)

The first two DC formulae in the train specification define that updatePosition is
a periodic event occurring every updateBound time units. The third DC formula
demands that after receiving an emergency warning, the emergency brakes are applied
within 0.5 time units, or the emergency is indicated to the driver within 1.5 time
units. The driver has to acknowledge the indication, or the emergency brakes are
automatically applied within 5 time units, which is required by the last formula.

Leading Train. The LeadingTrain component is a simplified version of the RearTrain
class. The CSP part only considers the running behaviour as well as the detection
of emergencies. If an emergency is detected, we assume the worst case, i.e., the train
stops immediately.

Verification of the Case Study

The desired safety property in our case study is that the trains will never collide if the
driver has not overruled the warning of the system. In the latter case, the system is
assumed to be safe. In the original ETCS case study this property has been expressed
with the DC formula

¬(` > 0 ∧ � driverAckadRearTrain.currentPosition
> LeadingTrain.currentPosition − Lengthe). (8.5)

In [MFHR08], this property and the CSP-OZ-DC specification were translated into
PEA according to procedure shortly described in Sect. 2.3.2. This translation results
in 18 parallel PEA with 10 real-valued state variables, 15 parameters of channels, and
9 continuous-time clocks. Hence, this model is too large to verify the global safety
property (8.5) without decomposition techniques.
As it is not possible to directly verify the collision freedom of the trains in a single

step, the safety property was manually decomposed into smaller parts. Even though
the case study has not been modelled with a focus to a protocol-based verification,
it turned out that the emergency message protocol of the case study naturally leads
to a composition of the safety property that can be used to simplify its verification.
The following phases of the protocol have been identified:
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1. Without emergency detection there is always a (safe) minimal distance between
the trains.

2. After an emergency detection the follower starts braking within 8 time units.

3. Starting with the minimal distance of 1., the rear train still has a distance of
StopDistance to the preceding train after 8 time units.

4. If the train applies the emergency brakes with a distance of StopDistance to the
the preceding train, it always stops before reaching the danger point.

These properties were formalised in [MFHR08] using DC formulae. Then, ARMC
was used to verify that each of them holds for specific parts of the CSP-OZ-DC
model. By this means, the application of the DC model checking approach for CSP-
OZ-DC specifications has been demonstrated. It has not been formally proven that
the properties, which are locally valid for parts of the CSP-OZ-DC specification,
actually imply the desired global property.

8.2.3. VA for the ETCS Case Study
The Verification Architecture approach has been developed in order to provide a
formal framework for protocol-based verification of real-time systems. Hence, we show
in this section how the VA approach can be used to formally verify that the manual,
protocol-based splitting of the global property of the ETCS case study into local
properties actually leads to a correct decomposition. To this end, we introduce and
verify a VA protocol of the ETCS case study in this and in the following section.
Afterwards, we present an instantiation of the VA as a Syspect model.

Signature

The signature, displayed in Fig. 8.7, comprises the symbols and types used in the
architecture process. It contains, besides B, types for position values and for speed
values and a type for the braking mode:

BrkMd ::= BrkMdNone | BrkMdSrvBrk | BrkMdEmBrk.

Moreover, some of the symbols from the previous ETCS case study are declared as
system variables. Position and speed values are stored in LTcurPos, RTcurPos, and
RTcurSpd. The prefix LT stands for leading train, whereas RT represents the rear
train. RTstndEB contains the standstill position of the rear train and RTdrvRes is
Boolean flag, indicating that the driver has taken responsibility for stopping the train
safely.
Also like for the original case study, there are constants for the maximal length of

the train (SysLength), the maximal speed (SysMaxSpd), the target speed (SysTrgSpd),
as well as the maximal braking distances for braking down to target speed or to a
complete stop (SysTrgSpdDst, SysStpDst).
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Σ = ({Pos,Spd,BrkMd,B},ETCSVars,ETCSConst,∅)

ETCSVars = {RTcurSpd : Spd, ETCSConst = {SysLength : Pos,
RTcurPos : Pos, SysMaxSpd : Spd,
RTstndEB : Pos, SysTrgSpd : Spd,
RTbrkMd : BrkMd, SysTrgSpdDst : Pos,
RTdrvRes : B, SysStpDst : Pos}
LTcurPos : Pos}

Figure 8.7.: Signature for the ETCS VA

VA Process

The process ETCS-EM defining the VA for the ETCS case study is given in Fig. 8.8.
A graphical representation of the VA process, which we developed with the Syspect
tool, is pictured in Fig. 8.9. The figure illustrates that the VA process consists mainly
of four unknown processes, which are pictured as dark square nodes. These four
unknown processes correspond to the four protocol phases from Sect. 8.2.2 that are
used for the verification of the ETCS case study in [MFHR08]. The first unknown part
ProcWaitEM represents the protocol phase 1 in that no emergency has been detected.
The parallel unknown processes ProcRun and ProcAckTime model the phases 2 and
3 after the emergency detection: the emergency handling has to be executed in a fixed
time (ProcAckTime, phase 2) and after this fixed time-interval the distance from the
rear train to the front train is still sufficient to stop safely. The last protocol phase is
realised with the unknown process ProcRec, representing a recovery phase.
This process structure is reflected in the VA process of Fig. 8.8: ETCS-EM be-

gins with the unknown process of the first phase, followed by the parallel compos-
ition of sub-processes HandleEM and Running, and finally, by the recovery phase
ProcRec. The processes HandleEM and Running synchronise1 on the events from
A2: the event for emergency detection LTdetEM , RTappEB by which the rear train
applies its emergency brakes, and RTsetRes for setting the driver responsibility. The
sub-process Running ensures that the LTdetEM event is the first event in the phase
of ProcAckTime and that this phase is concluded by either RTsetRes or RTappEB.
Note that exactly these events are not allowed in the unknown process in ProcRun
due to the exclusion of events from A2.
In the process of Fig. 8.8 it is also specified which variables are not allowed to change

1In the following, Running and HandleEM are always synchronised on A2. Hence, we omit the
synchronisation alphabet from now on.
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ETCS-EM c
= ProcWaitEM o

9 Emergency o
9 ProcRec

Emergency c
= HandleEM ‖

A2

Running

Running c
= (LTdetEM • ΞETCSVars → ProcRun) o

9

((RTappEB • ϕ1 → Skip) 2 (RTsetRes • ϕ2 → Skip))

HandleEM c
= ProcAckTime

ProcWaitEM c
= Proc\A0,∅ •WaitEM

ProcRun c
= Proc\A2,V2

• Run1 ∧ Run2

ProcAckTime c
= Proc\∅,V1

• AckTime

ProcRec c
= (Proc\∅,V3

• Rec o
9 Stop)

A0 = {LTdetEM}
V1 = {LTcurPos,RTcurPos}
A2 = {LTdetEM ,RTappEB,RTsetRes}
V2 = {RTstndEB,RTdrvRes}
V3 = {RTstndEB,RTdrvRes}
ϕ1 = Ξ(ETCSVars \ {RTbrkMd,RTstndEB})

∧ RTbrkMd ′ = BrkMdEmBrk
∧ (RTcurSpd ≤ SysTrgSpd
⇒ RTstndEB′ = RTcurPos + SysStpDst)

∧ (RTcurSpd > SysTrgSpd
⇒ RTstndEB′ = RTcurPos + SysTrgSpdDst + SysStpDst)

ϕ2 = Ξ(ETCSVars \ {RTsetRes}) ∧ RTdrvRes′

Figure 8.8.: The VA process ETCS-EM for the ETCS case study
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DetectEM

ProcAckTime

DetEM

ProcRun

ProcRec

ProcWaitEM

LTdetEM

RTappEB

RTsetRes

Figure 8.9.: The VA process as modelled in Syspect

during executions of the unknown parts. For instance, in ProcAckTime the variables
from V1, LTcurPos and RTcurPos, cannot be changed, because this sub-process is
meant to deal with the emergency procedure and not the train movement.
The constraints ϕ1 and ϕ2 define the state change of RTappEB and RTsetRes,

respectively. The latter simply sets the Boolean variable RTdrvRes, while the former
sets the braking mode to the emergency brake and calculates the position at which
the train will stop.

DC Assumption for the ETCS VA

We define the constraints over the unknown processes of Fig. 8.8 by DC counter-
example traces. These DC formulae are pictured in Fig. 8.10. The formula WaitEM
specifies that after Init, where Init is an arbitrary initial condition, the distance
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WaitEM = ¬(dInitea trueadLTcurPos < RTcurPos + SysLength

+ SysTrgSpdDst + SysStpDstea true)

AckTime = ¬(dtrueealLTdetEM
a(�RTappEB ∧ �RTdrvAck ∧ (` > 8))a true)

Run1 = ¬(dLTcurPos ≥ RTcurPos + SysLength + SysTrgSpdDst + SysStpDste
a(dtruee ∧ (` < 8))

adLTcurPos < RTcurPos + SysLength + SysStpDstea true)

Run2 = ¬(dLTcurPos ≥ RTcurPos + SysLength + SysTrgSpdDst + SysStpDste
a trueadLTcurPos < RTcurPos + SysLength

+ SysTrgSpdDst + SysStpDst ∧ RTcurSpd > SysTrgSpdea true)

Rec = ¬3(dRTstndEB ≥ RTcurPos + SysStpDst ∧ RTbrkMd = BrkMdEmBrk

∧ LTcurPos ≥ RTstndEB + SysLengthea true
adRTstndEB < RTcurPos ∨ LTcurPos < RTstndEB + SysLengthe)

Figure 8.10.: DC assumptions on the protocol phases

between the position of leading train LTcurPos and the following train RTcurPos is
never below a certain safety distance, namely

SysLength + SysTrgSpdDst + SysStpDst (8.6)

Property AckTime defines a maximal reaction time on LTdetEM , RTappEB, and
RTdrvAck: after the occurrence of an LTdetEM event, within 8 time units either
RTappEB or RTdrvAck are to be fired. Run1 states that if the minimal distance
between the trains is at least (8.6), then for 8 time units at least a distance of
StopDistance between the trains is preserved. Run1 ensures that the speed is kept
above SysTrgSpd, as long as the distance between the trains is greater than (8.6).
This is necessary in order to guarantee that a correct standstill position is calculated
in RTappEB. Rec specifies that if the distance between RTstndEB and RTcurPos is
greater than SysStpDst, the emergency braking mode is applied, and the rear end of
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the first train LTcurPos−SysLength is larger than RTstndEB, then RTstndEB always
separates RTcurPos and LTcurPos.

8.2.4. VA Verification

We show with the dCSP approach presented in this work that the so-defined VA for
consecutive trains actually guarantees collision freedom.
The correctness property we want to show is that the position of the second train

is never beyond the rear end of the front train, or the driver has taken responsibility
for keeping the system safe:

safe = RTcurPos < LTcurPos − SysLength ∨ RTdrvRes. (8.7)

Thus, we have to prove with the calculus from Sect. 4.3 that the dCSP formula

Cons, Init ` [ETCS-EM]2safe (8.8)

holds, where Cons is a condition over the global constants of the system,

Cons = SysLength > 0 ∧ SysTrgSpdDst > 0 ∧ SysStpDst > 0,

and Init is the initial constraint from the DC assumption WaitEM . A necessary
condition for Init is the initial safety of the system:

Init ⇒ LTcurPos ≥ RTcurPos + SysLength + SysTrgSpdDst + SysStpDst.

Proof Tree for Collision Freedom of the ETCS VA

The full proof tree, by which we prove collision freedom of the VA process ETCS-EM,
can be found in Appendix A.2.2. Here, we present the most interesting parts of the
proof tree; particularly, how we solve the parallel composition of unknown processes
in the VA.
Since the full proof with all intermediate steps is longish and not very readable, we

use several abbreviations in the presentation of the proof tree. First, we abbreviate
some of the formulae:

sf = RTcurPos + SysLength + SysTrgSpdDst + SysStpDst
rd = RTcurPos + SysLength + SysStpDst

sfnew = RTcurPosnew + SysLength + SysTrgSpdDst + SysStpDst
rdnew = RTcurPosnew + SysLength + SysStpDst.

Second, we apply some of the rules implicitly. In particular, we waive the explicit
application of the rules (weakening left) and (weakening right), i.e., we directly omit
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unnecessary formulae from a sequent, and predominantly apply (process call) impli-
citly. Moreover, we define the abbreviation (next-step), which represents the following
sequence of rule applications:

(next-step) = (prefixδ)(box stepδ)(all right)(implication right)(and left)(or right)

With this, the correctness of the VA is proven in the following way, where we apply
the rules from bottom to top.

(seq.2)
Cons, Init,LTcurPos ≥ sf

(assumption2)
` [Proc\A0,∅ •WaitEM ]2safe (1)

Cons, Init,LTcurPos ≥ sf ` [(Proc\A0,∅ •WaitEM o
9 Emergency)]2safe

(process call)Cons, Init,LTcurPos ≥ sf ` [ETCS-EM]2safe

To resolve the unknown process Proc\A0,∅ •WaitEM the oracle rule (assumption2)
has to be applied. We show in one of the following sections that the side-condition of
the rule can be proven with DC model checking. Similarly, to close sub-goal (1), rule
(box assumptionδ) has to be applied in order to get rid of the unknown process:

(2) (3) (sequence2)
Cons,LTcurPos ≥ sf ` [(HandleEM ‖ Running) o

9 ProcRec]2safe (process call)
Cons,LTcurPos ≥ sf ` [Emergency]2safe (box assumptionδ)

Cons, Init,LTcurPos ≥ sf ` [Proc\A0,∅ •WaitEM ][Emergency]2safe
(1)

The last proof step splits the proof task into two sub-goals (2) and (3), in which we
need to show that the desired property holds everywhere on (HandleEM ‖ Running)
and that after termination of (HandleEM ‖ Running) every execution of the sub-
sequent process ProcRec is safe:

Cons,LTcurPos ≥ sf `
[ProcFree(HandleEM ‖ Running)][ProcRec]2safe (parallel uproc)

Cons,LTcurPos ≥ RTcurPos + SysLength + SysTrgSpdDst + SysStpDst `
[HandleEM ‖ Running][ProcRec]2safe

(3)

Cons,LTcurPos ≥ sf ` [ProcFree(HandleEM ‖ Running)]2safe
(parallel uproc)Cons,LTcurPos ≥ sf ` [HandleEM ‖ Running]2safe

(2)

In both of these sub-trees for tasks (2) and (3), we make use of rule (parallel uproc)
from Sect. 6.1. By this means, we replace the parallel composition that contains
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unknown processes with timing constraints by an untimed process ProcFree with the
same untimed interpretations as the original parallel composition. We demonstrate
in the following section how ProcFree is computed and how the desired property is
established for this process. But beforehand, we close the remaining sub-goal of the
proof tree.
The property ensuring safe execution of ProcRec is given by

ψ = RTdrvRes ∨ RTbrkMd = BrkMdEmBrk ∧ RTstndEB ≤ LTcurPos − Length
∧ RTcurPos ≤ RTstndEB − SysStpDst.

That is, given that this ψ is actually satisfied after HandleEM ‖ Running, we can
close the proof in the following way:

Cons, ψ
(assumption2)

` [ProcRec]2safe (process step)
Cons, [ProcFree(HandleEM ‖ Running)]ψ

` [ProcFree(HandleEM ‖ Running)][ProcRec]2safe

Resolving the Parallel Composition

To resolve the parallel composition over unknowns, we apply a translation-based
approach according to Sect. 6.1.2. That is, in a first step the parallel composition
containing unknowns is translated into its PEA-based semantics. To this end, the
construction of page 130 is applied, resulting in a PEA network. Then, the parallel
product has to be computed.
Finally, the region construction could be applied to get a finite automaton (with

data constraints) from the PEA. However, due to the lack of tool support for the proof
calculus, we do not compute the region construction, which results in a large untimed
process that is to be handled within the calculus. Instead, we follow the proposed
solution without region construction from page 140. That is, the translation from
[HM05a] is used to translate the PEA into a transition constraint system in such
a way that all clocks from the PEA are represented as data variables of type real.
Afterwards, this finite transition system is translated back into a CSP process with
data.
The resulting process ProcFree(HandleEM ‖ Running) is pictured in Fig. 8.11,

where

VR = (LTcurPos,RTcurPos,RTcurSpd,RTdrvRes,RTstndEB,RTbrkMd).

By inspecting the process, one may notice that its structure is indeed as expected: The
first event is LTdetEM as demanded; at the end of the execution an event RTappEB
or RTsetRes occurs, and at the intermediate transitions the important system vari-
ables are either not changed (ΞVR), or the desired properties are explicitly contained
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ProcFree(HandleEM ‖ Running):

P = ProcFree(HandleEM ‖ Running)

P c
= LTdetEM • ΞVR ∧ x ′ < 8 ∧ x ′ = len ∧ len > 0→ P0

P0
c
= P1 2 P2

P1
c
= P6 2 (a • ΞVR ∧ LTcurPos′ ≥ sf ′ ∧ LTcurPos′ ≥ rd ′

∧ x ′ ≤ 8 ∧ x ′ = x + len ∧ len > 0)→ P3

P3
c
= P6 2 (b • Ξ(RTstndEB,RTdrvAck) ∧ LTcurPos′ < sf ′ ∧ LTcurPos′ ≥ rd ′

∧ (RTcurSpd ′ ≤ SysTrgSpd ∨ LTcurPos′ ≥ sf ′)
∧ y′ = len ∧ y ≤ 8 ∧ x ′ ≤ 8 ∧ x ′ = x + len ∧ len > 0)→ P4

P4
c
= P5 2 P6

P5
c
= (c • y′ = y + len ∧ y′ ≥ 8 ∧ x ′ ≤ 8 ∧ x ′ = x + len ∧ len > 0)→ P7

P6
c
= d • ΞVR ∧ x ′ ≤ 8 ∧ x ′ = x + len ∧ len > 0→ P7

P7
c
= RTappEB • ϕ1 → Skip 2 RTsetRes • ϕ2 → Skip

P2
c
= e • ΞVR ∧ LTcurPos′ < sf ′ → P8

P8
c
= . . . unreachable . . .

Figure 8.11.: Representation of the parallel composition without unknown parts

ProcFree(HandleEM ‖ Running) (without timing):

P c
= LTdetEM • ΞVR→ P0

P0
c
= P1 2 P2

P1
c
= P6 2 a • ΞVR ∧ LTcurPos′ ≥ sf ′ ∧ LTcurPos′ ≥ rd ′ → P3

P3
c
= P6 2 b • LTcurPos′ < sf ′ ∧ Ξ(RTstndEB,RTdrvAck) ∧ LTcurPos′ ≥ rd ′

∧ (RTcurSpd ′ ≤ SysTrgSpd ∨ LTcurPos′ ≥ sf ′)→ P4

P4
c
= P6 (because P5 unreachable)

P6
c
= d • ΞVR→ P7

P7
c
= RTappEB • ϕ1 → Skip 2 RTsetRes • ϕ2 → Skip

P2
c
= e • ΞVR ∧ LTcurPos′ < sf ′ → P8

P8
c
= . . . unreachable . . .

Figure 8.12.: Representation of ProcFree without constraints over clocks
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in the guard (e.g., LTcurPos′ ≥ sf ′). One important exception is sub-process P5:
when executing the event c, then arbitrary state changes of the system variables are
possible, by which the desired property is violated. But the c-event is constrained
by explicit clock constraints introduced in the translation (x and y are real-valued
variables and represent the clocks of the original PEA), and it will turn out that the
event c is actually blocked due to this guard over x and y. The reason is that, intu-
itively spoken, x is started before y (x in process P, y in process P3), both variables
are afterwards increased simultaneously, and finally, the guard of c demands that y
is larger or equal to x, which is not possible.
In addition, the event e in P2 can also not occur due to its guard over the system

variables. Hence, we omit the unreachable process part P8 following P2.
Technically, it is no problem to analyse the entire process P with the sequent

calculus in a single proof, but for sake of conciseness, we split the proof into two
parts. We first show that the process P without constraints over clock variables
satisfies the desired property; as long as the problematic process P5 is ignored. This
modified process is given in Fig. 8.12. In a second step, we show that the event c from
P5 can actually not occur, which proves that is was correct to remove P5.

Proof tree for the data part. Hence, to complete the proof of our desired correct-
ness property, we show for the computed process ProcFree(HandleEM ‖ Running) of
Fig. 8.12 that the desired property is valid for the δ-case and the 2-case:

Cons,LTcurPos ≥ sf ` [ProcFree(HandleEM ‖ Running)]2safe and
Cons,LTcurPos ≥ sf ` [ProcFree(HandleEM ‖ Running)]ψ.

The formula ψ is defined as above, i.e., as a formula that ensures safety of the sub-
sequent ProcRec process. The proof is not difficult and very systematic, and we con-
jecture that a theorem prover can solve this part of the proof fully automatic, because
no invariant is to be guessed. The proof tree can be found in Appendix A.2.2.

Proof tree for timing part. In the verification of the desired property above, we
have ommited the timing constraints and have removed sub-process P5. Now, we
show that the timing constraints ensure that after the occurrence of c in P5 every
property is satisfied, which does mean that c can actually not occur due to a false
precondition. This is the expected behaviour, because this part of the process allows
data changes violating the desired safety property, and the timing properties over the
processes guarantee that this process part is unreachable. The process P t contains
the timing properties of ProcFree(HandleEM ‖ Running):

P t c
= LTdetEM •∧ x ′ < 8 ∧ x ′ = len ∧ len > 0→ P t

1

P t
1

c
= a • x ′ ≤ 8 ∧ x ′ = x + len ∧ len > 0→ P t

3

P t
3

c
= b •∧ y′ = len ∧ y′ ≤ 8 ∧ x ′ ≤ 8 ∧ x ′ = x + len ∧ len > 0→ P t

5

P t
5

c
= c •∧ y′ = y + len ∧ y ≥ 8 ∧ x ′ ≤ 8 ∧ x ′ = x + len ∧ len > 0→ Skip
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x3 > y3
(axiom)
` x3 > y3 (relation)(negation left)

y3 ≥ x3, x3 > y3 ` false (relation)
y3 ≥ 8, x3 ≤ 8, x3 = len0 + len1 + y3, len1 > 0, len0 > 0 ` false (relation)

y = y3 + len3, y3 ≥ 8, x ≤ 8, x = x3 + len3, len3 > 0, y3 = len2,
(next-step) y3 ≤ 8, x3 ≤ 8, x3 = len0 + len1 + len2, len2 > 0, len1 > 0, len0 > 0 ` false

y = len2, y ≤ 8, x ≤ 8, x = len0 + len1 + len2, len2 > 0, len1 > 0, len0 > 0 ` [Pt
5]false

(relation)y = len2, y ≤ 8, x ≤ 8, x = x2 + len2, len2 > 0, x2 ≤ 8,
x2 = len0 + len1, len1 > 0, len0 > 0 ` [Pt

5]false (next-step)
x ≤ 8, x = len0 + len1, len1 > 0, len0 > 0 ` [Pt

3]false (relation)
x ≤ 8, x = x1 + len1, len1 > 0, x1 < 8, x1 = len0, len0 > 0 ` [Pt

3]false (next-step)
x < 8, x = len1, len1 > 0 ` [Pt

1]false (next-step)
true ` [Pt ]false

Figure 8.13.: Proof tree for checking that the event c in P5 cannot occur due to timing
constraints

We prove that P t , in which we isolated the process sequence leading to the sub-process
P5, satisfies the property

true ` [P t ]false,

stating that every property is true after executing event c in P5. The proof tree2 for
this property is given in Fig. 8.13.

Verifying Side-Conditions for Oracle Rules

In the proof tree presented in the previous section, the oracle rules (assumption2)
and (box assumptionδ) are applied three times. In order to get a correct proof for
the desired collision freedom, we have to additionally check the side-conditions of
the rules. Hence, we have to verify that the DC assumptions on the unknown parts
actually imply the properties that are needed in the proof tree. The rules are applied
in the following contexts:

Cons, ψ ` [Proc\∅,V3
• Rec]2safe (T1)

Cons, Init,LTcurPos ≥ sf ` [Proc\A0,∅ •WaitEM ]2safe (T2)
Cons, Init,LTcurPos ≥ sf ` [Proc\A0,∅ •WaitEM ]LTcurPos ≥ sf , (T3)

where the first two lines are resolved by application of (assumption2) and the last line
by application of (box assumptionδ). Note that the DC assumptions Run1, Run2, and

2The rule (relation) abbreviates relational conversions in the theory of reals.
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¬(dSysLength ≤ 0 ∨ SysTrgSpdDst ≤ 0 ∨ SysStpDst ≤ 0ea true) ∧
¬(dRTdrvRes ≤ 0 ∧ (RTbrkMd < BrkMdEmBrk ∨

LTcurPos < RTstndEB + SysLength ∨

RTstndEB < RTcurPos + SysStpDst)ea true) ∧
¬3(dRTstndEB ≥ RTcurPos + SysStpDst ∧ RTbrkMd ≥ BrkMdEmBrk

∧ LTcurPos ≥ RTstndEB + SysLengthe
a trueadRTstndEB ≤ RTcurPos ∨ LTcurPos < RTstndEB + SysLengthe) ∧

3(dLTcurPos ≤ RTcurPos + SysLength ∧ RTdrvRes ≤ 0e)

(T1)

F ∧ 3(dLTcurPos ≤ RTcurPos + SysLength ∧ RTdrvRes ≤ 0e) (T2)

F ∧ 3(dLTcurPos < RTcurPos + SysTrgSpdDst + SysStpDst + SysLengthe) (T3)

F = ¬(dSysLength ≤ 0 ∨ SysTrgSpdDst ≤ 0 ∨ SysStpDst ≤ 0 ∨ ¬Init ∨
LTcurPos < RTcurPos + SysLength + SysStpDst + SysTrgSpdDste
a true) ∧

¬(dInitea truea

dLTcurPos < RTcurPos + SysLength + SysStpDst + SysTrgSpdDstea true)

Figure 8.14.: Side-conditions to be checked for (T1) up to (T3) of page 212

AckTime are not resolved by these oracle proof rules but instead by the translation-
based approach for parallel unknowns. Therefore, we do not need to consider them
here.
We follow the approach of Sect. 4.5 to verify these properties with DC model check-

ing [MFHR08]. To simplify matters, we show all three cases by checking instances of
formula (4.19), which is always possible by Remark 4.5.2 on page 94:

(dψeatrue) ∧ F ∧
∧
ev∈A

� ev ∧ (3d¬ϕe),

where ψ is the initial constraint and ϕ the property, we want to show. F is the
constraint on the unknown process, i.e., WaitEM and Rec in this case.
Thus, this results in three proof tasks for (T1) up to (T3), listed in Fig. 8.14. We

need to verify the unsatisfiability of each of these formulae (we omit the event part∧
ev∈A� ev, because it is not relevant here).
All of these proof tasks were successfully identified as unsatisfiable by ARMC. To

this end, the ARMC verification of Syspect (cf. Sect. 7.2.2) was used to automatically
perform the verification process. The runtimes for the verification are not significant:
ARMC checks task (T1) in 1.78 sec, task (T2) in 0.45 sec, and task (T3) in 0.32 sec

213



8. Case Studies

 

CN
+ CNrecFRwrn()

+ CNrecFT()
+ CNsndTRack()
+ CNsndTRalrt()

+ CNsndTT()

I_CN_RBC
+ CNrecFRwrn()
+ CNsndTRack()
+ CNsndTRalrt()

I_CN_T
+ CNrecFT()
+ CNsndTT()

I_LT_Trck
+ LTgetPos()
+ LTupPos()

I_RT_RTDrv
+ RTdrvAck()
+ RTdrvEB()

+ RTind()

I_RT_Trck
+ RTgetLOA()
+ RTupPos()

LT
+ CNrecFT()
+ CNsndTT()
+ LTappEB()
+ LTdetEM()
+ LTgetPos()
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Figure 8.15.: Syspect class diagram for the ETCS case study

(see also Tab. 8.2). The runtimes for the translation process are in the same order of
magnitude.
With this, the proof tree from the previous section is completed, and it is shown

that the desired safety property is actually valid for the VA process.

8.2.5. Instantiating the VA

Having a VA that satisfies the desired safety property for the ETCS case study, the
question is now whether the concrete ETCS model is an instance of this VA. To this
end, we apply the Syspect tool (Sect. 7.1) to automatically check that this is actually
the case.

Syspect Model of the ETCS Case Study

The original ETCS model as presented in Sect. 8.2.2 is specified as pure CSP-OZ-DC
model. Ingo Brückner has remodelled the CSP-OZ-DC specification of the case study
into a Syspect model in order to analyse the case study in [Brü08b] with the slicing
plug-in of Syspect. It turned out that even though the specification can be reduced by
slicing, it is still too large to be verified automatically [Brü08b]. We use this Syspect
model of the case study (not being sliced) as a basis for checking the instantiation of
the ETCS VA. Figure 8.15 presents a Syspect class diagram of the case study.
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EmergencyHandlingRunning0 Running2

Figure 8.16.: Control structure of class Trck as modelled in Syspect

Changes to the Model

As Syspect does support only restricted CSP-OZ-DC specifications, some changes to
the original ETCS specification became necessary. For instance, the if . . . then . . . else-
construct in the CSP part has to be replaced by a standard CSP expression, and local
variables occurring in the CSP part have to be replaced by corresponding variables
of the OZ part. See [Brü08b] for details on these changes.
The instantiation checking approach of Syspect follows the line of Chap. 5. That

is, the refinement check consists of two parts: a syntactic check of the structure of the
model against the VA structure and a second check of the local assumptions. This
makes some further modifications to the ETCS model necessary, because the structure
of the Syspect model does not fit to the VA structure. In particular, the Syspect
model consists of several parallel classes, partly with its own CSP part, while the VA
is designed wrt. a single component. Hence, according to the discussion in Sect. 5.6,
the VA structure must be somehow reflected by a single class. For this reason, we
shift the control part of both train classes, RT and LT , into a protocol class. In
this case, we choose the environment class Trck as protocol class, implementing the
control structure of both trains. That is, instead of having a control structure for each
train, the class Trck implements the structure of Fig. 8.16: the control structures are
integrated into a single process with parallelism.3 Figure 8.17 shows the class diagram
of the extended model with new interfaces, which ensure by synchronisation that the
train classes behave according to the protocol of Trck.
A part of the corresponding CSP process of Trck is pictured in Fig. 8.18. The CSP

processes of the trains from the original case study are rearranged in this overall
control structure. In doing so, the unknown process ProcWaitEM is instantiated with
Running0, ProcAckTime with HandleEMC , ProcRun with Running1, and ProcRec
with Running2. The sub-processes RTRunningi and LTRunningi are with small ex-
ceptions identical to the Running processes of RearTrain and LeadTrain in the ori-
ginal case study. Note that in Syspect no process references are possible. Thus, in the
Syspect model identical sub-processes are realised by copying them.

3The current version of Syspect does not support parallel composition with synchronisation, which
is important in this case study. Nevertheless, we use the interleaving operator of Syspect instead
and take care manually that the synchronisation is correctly handled. (For instance, the LaTeX
export is adapted.) This is possible, because when applying the VA approach, we do not need to
compute the parallel composition of instances of unknown parts.
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Figure 8.17.: Class diagram with Trck as protocol class

In order to simplify the verification, we made a further modification: in the ori-
ginal specification a phase can be changed at any time. For instance, the LTdetEM
event can occur at any point in time during a train movement cycle. In the modified
variant, we restrict the model such that the update cycle can only be left after a
specific event, namely after an RTupdPos event. This is actually a simplification of
the original model, because it could potentially cause an error if the cycle is left at an
unexpected time. Nonetheless, the basic ideas of the original case study are preserved.
The full CSP-OZ-DC specification generated from the Syspect model can be found
in Appendix A.2.3.

8.2.6. Checking the Instantiation with Syspect

The VA plug-in of Syspect can be used to verify that this model is actually a correct
refinement of the VA process ETCS-EM: the structural refinement check of Syspect
returns immediately (< 1s) that the control structure of the model indeed matches
the structure of the architecture.
To automatically verify that the local assumptions on unknowns are valid for instan-

tiations of the unknown parts, we need to pay attention wrt. the parallel unknowns
occurring in the VA process. In particular, the Syspect model comprises several com-
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Figure 8.18.: Part of the CSP process representing the control structure of the ETCS
model

ponents with a CSP part running in parallel: Trck,CN ,RTDrv, and RBC , where
the CSP part of Trck matches the architecture structure. In Sect. 5.6 we noticed
that further parallel components cause no problems as long as the control flow of the
components is restarted at the same time a process refining an unknown component
is entered. We use the syntactic check of Syspect (cf. 7.3.3) to verify that this is
actually the case for the ETCS model, as CN ,RTDrv, and RBC are only synchron-
ised with HandleEM . Hence, they can be ignored when checking the assumptions
in all cases except for the verification of AckTime (the assumption on HandleEM ).
Syspect automatically ignores irrelevant components. Moreover, one can also manu-
ally deselect irrelevant components for each assumption check if desired, but for our
experimental results we always used the components that are automatically selected
by Syspect.
Moreover, we must show that the instantiating processes of the unknown parts can-

not introduce new interferences. This is done by verifying that all system variables
of the instantiation satisfy one of the three conditions in Thm. 6.1.11. As already
mentioned, Syspect does not support parallel compositions with synchronisations;
hence, this step has to be performed manually. To this end, the system variables that
are accessed in HandleEMC and RunningC have to be analysed wrt. the three con-
ditions in Thm. 6.1.11. Table 8.1 lists the variables occurring in the processes. The
column ‘access’ quotes how the variables are accessed by the parallel components. If
the variables are marked with ‘local’ condition 1. of Thm. 6.1.11 is applicable, ‘sync’
indicates that condition 2. and ‘shared’ that condition 3. is applicable. The emer-
gency and the service brakes are modelled by one variable RTbrkMd. But actually,
accesses to the emergency brake are only performed synchronously, while the service
brake is only accessed in RunningC . Hence, we split the variable into two parts in
Tab. 8.1. According to Thm. 6.1.11 ‘local’ and ‘sync’ variables are safe in that they
do not introduce interferences. For the three variables marked with ‘shared’ we must
show that the assumption on HandleEMC , namely AckTime, is actually independent
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from changes to these variables. This is done by a parallel composition with an addi-
tional component setting the shared variables to arbitrary values when checking the
AckTime assumption.
Furthermore, one has to validate that the initial constraint used to prove the cor-

rectness of the VA, here

Cons ∧ Init ∧ LTcurPos ≥ RTcurPos + SysLength + SysTrgSpdDst + SysStpDst,
(8.9)

is an initial constraint of the Syspect specification. We instantiate Init by

Init = RTcurPos ≤ SysRTStrtPos ∧ RTsbi ≤ SysRTStrtSBI
∧ RTcurSpd ≤ SysMaxSpd ∧ SysTrgSpd ≤ LTcurSpd
∧ LTcurPos ≥ SysLTStrtPos ∧ TrLTpos ≤ SysLTStrtPos
∧ LTbrkMd ≤ BrkMdNone.

The Syspect specification (and the CSP-OZ-DC specification; cf. Appendix A.2.3)
contains the Z definitions

SysLength,SysStpDst,SysTrgSpdDst,SysLTStrtPos,SysRTStrtPos,
SysRTStrtSBI ,SysLTStrtPos,SysOffDst : Pos
SysMaxSpd,SysTrgSpd : Spd

0 < SysTrgSpd < SysMaxSpd
0 < SysLength
0 < SysStpDst < SysTrgSpdDst
SysRTStrtSBI = SysLTStrtPos − SysLength − SysTrgSpdDst − SysStpDst

−SysMaxSpd
SysRTStrtPos < SysRTStrtSBI

and initial constraints

RTcurPos = SysRTStrtPos ∧ SysTrgSpd < RTcurSpd ∧ RTcurSpd ≤ SysMaxSpd ∧
RTsbi = SysRTStrtSBI ∧ LTcurPos = SysLTStrtPos ∧ SysTrgSpd ≤ LTcurSpd ∧
LTcurSpd ≤ SysMaxSpd ∧ LTbrkMd = BrkMdNone ∧ TrLTpos = SysLTStrtPos

implying (8.9) as desired. We have also verified this property with Syspect (see
Tab. 8.2).
Finally, as ARMC and SLAB support only linear arithmetical constraints over

reals, we need to replace the symbolic time constants and depending constants, e.g.,
the braking distance, by concrete constants.4 Also, as ARMC only supports real-
valued variables we have to replace all expressions over Boolean or free types by
corresponding real variables.

4We choose the constants as small as possible, because it turned out that the verification runtimes
significantly increase with higher constants.
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Table 8.1.: System variables of HandleEMC and RunningC
HandleEMC RunningC

read write read write access

RTbrkMd(EB) RTbrkMd(EB) sync
RTdrvRes RTdrvRes sync
RTstndEB RTstndEB sync

RTcurSpd RTcurSpd shared
RTsbi RTsbi shared

RTcurPos RTcurPos shared
CNi local
CNm local

RTCSPHpos local
RTCSPHsbi local

RTbrkMd(SB) local
LTcurPos local
TrLTpos local

RTCSPRloa local
RTCSPRsbi local
TrRTpos local
TrLTpos local
LTbrkMd local
LTcurSpd local

Table 8.2.: Experimental results for the ETCS case study
Task Syspect ARMC SLAB Syspect ARMC SLAB

with slicing without slicing

Oracle rules T1 - - - 0.5s 1.78s 11.27s
T2 - - - 0.25s 0.45s 1.98s
T3 - - - 0.12s 0.32s 1.01s

Assumptions WaitEM 14s 7m 11s t.o. 40s 11m 5s t.o.
AckTime 10s 1m 21s 5m 50s 10s 9h 55m mem.
Run1 6s 242m t.o. 15s t.o. t.o.
Run2 5s 1m 2s t.o. 8s 1m 44s t.o.
Rec 7s 1m 57s t.o. 27s 5m 56s t.o.

Initial Constraint 2s 0.53s 2.60s 8s 22s 2m 18s
Structural refinement <1s <1s

Results obtained on a standard desktop computer
(AMD Athlon Dual Core, 2500 MHz, 4 GB RAM).
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With these preparations, the Syspect plug-in can be used to check the structural
refinement relation between CSP-OZ-DC specification and VA process, to compute
the sub-processes that shall guarantee the local assumptions, and to export the proof
obligations into ARMC or SLAB syntax. By this means, we were able to show that
all local assumptions are valid in the concrete specification. Table 8.2 summarises the
results for all verification runs. The column ‘Syspect’ lists the runtimes for generating
the input files for the model checkers, including the computation of the relevant
sub-processes for each assumption, the runtimes for the translation of DC formulae
into PEA, for computation of the parallel composition of the considered PEA, and
for applying some heuristic simplifications and slicing. The columns ‘ARMC’ and
‘SLAB’ lists the runtimes for model checking the proof tasks. The left part of the
table contains results with slicing enabled and the right part the results without
slicing.
The listed runtimes show that the time for computing the model checker input and

for verifying the side-conditions of the oracle rules is not of much consequence. The
runtimes for actually model checking the proof tasks for the assumptions is in fact
much higher—in the order of minutes or even hours for larger parts. The reason is
that the unknown processes are instantiated with processes composed in parallel. For
instance, in the case of the task WaitEM the model checked system part consists of
40 real-valued variables, more than 8500 transitions, and 179 (symbolic) locations.
The long runtime of task Run1 originates from the dependence on time constants: the
longer the distance the train can move in a specific time-interval—which is dependent
on the time constants for the train movement cycle—the longer the runtime of the
model checker for this task. Thus, we choose small time constants in AckTime,Run1,
and in the Syspect model. In addition, we also applied the model checker SLAB on
the proof tasks, but we got time-outs (in the table, ‘t.o.’ stands for time-out, ‘mem.’
for memory error) for some of the problems.
Furthermore, Table 8.2 demonstrates the benefits of slicing when used in combin-

ation with the VA decomposition as argued in Sect. 6.4.1. When slicing the entire
specification with our desired safety property as slicing criterion, almost no advant-
age is achieved, because nearly no component is syntactically independent from the
remainder of the specification. But with the VA approach only sub-components are to
be verified, by what for each sub-tasks large parts of the specification are completely
independent. Thus, slicing can be used to identify and remove the independent parts.
The table shows that this is particularly the case for property AckTime that only
depends on the timing parts of the specification.

8.2.7. Discussion

These results demonstrate that the VA approach allows us to handle problems that
cannot be solved by direct verification. The VA approach ensures that the desired
global safety property (8.7) is valid for the Syspect model of the ETCS case study.
Although the case study is not realistic in all respects—e.g., the train braking is mod-
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elled by approximation since CSP-OZ-DC does not allow us to model general hybrid
systems—it demonstrates the VA approach in the context of a complex system incor-
porating communicating parallel components with data as well as real-time behaviour.
On the other hand, without the VA approach, it was not possible to automatically
verify the model (time out after over 80 hours) even with further decomposition ap-
proaches like slicing. Note that this holds likewise for the slightly simplified model
from the previous section. Even with slicing enabled, the exported file has a size of
over 1.5 GB and contains a hundred thousand of transitions.
Note that the original ETCS case study in [FM06, MFHR08] has not been de-

veloped with respect to a layered protocol design. Instead it turned out after designing
the model that it behaves according to a protocol that can also be used to structure
the verification of the model. In particular, with the graphical tool support given by
Syspect, the VA approach provides a practical instrument to (in the first instance)
manually analyse the structure of a protocol. Then automated methods can be used
to verify that the origin model is actually an instantiation of the protocol.
When comparing the runtimes for checking the proof tasks to the results of the

original case study in [MFHR08], one will notice that they are around the same order
of magnitude. In the original case study, the proof tasks were manually adjusted,
and for each task a dedicated set of relevant automata was chosen, whereas here, the
relevant components were selected according to the VA structure. The proof tasks are
not directly comparable, because in [MFHR08] they are mostly divided into further
sub-tasks.
Once having a specification structured by a VA protocol, it can be reused to verify

different concrete models instantiating the VA protocol. A further aspect is that when
modifying a VA protocol, some of the proof obligations may remain valid without
the need to verify them again. For instance, it is easy to extend the ETCS VA to
an overall cyclic structure: in the recovery phase the system can be reset to a safe
state, and afterwards, the VA process is started again. To this end, we just have to
adapt the unknown process ProcRec such that it can terminate in a safe state. When
modifying the concrete CSP-OZ-DC model in this way and trying to directly verify
it with ARMC, the exported transition system becomes completely untreatable with
over a million transitions and an input file size of several gigabytes. On the contrary,
most of the proof tree for the VA remains the same, we only have to apply the rule
for recursive behaviour, (box loop), and show that after termination of ProcRec the
system is in a safe state again. To get a correct instantiation of the modified VA, one
needs to change only the implementation of the ProcRec process and the protocol.
Then it suffices to verify the structural refinement relation and the assumption of
ProcRec to get a concrete model with the desired property.
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What was it, in the end? – What it always is. A
handful of yarn; a little weaving and stitching;
some embroidery perhaps. A few loose ends, but
that’s only to be expected...

(The Fates, in The Kindly Ones, Neil Gaiman)
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The main focus of this thesis has been on homogeneously integrating different tech-
niques in a formal framework in order to enable exact analysis of complex real-time
systems. To this end, a Verification Architecture (VA) approach has been introduced,
which carries over the informal design pattern approach to formal verification.
VAs are defined in terms of a novel CSP dialect that combines CSP processes

with data and additional temporal constraints over unknown parts in order to define
reusable, behavioural protocols for large classes of systems.
Our new sequent-style proof calculus allows us to verify VAs by a combination of

proof rule based reasoning and a suited verification technique for the temporal con-
straints. We have especially examined how parallel unknown components are verified
in the calculus.
We have built on combined specification languages that are particularly suited to

capture heterogenous system dimensions. As a proof of concept, we have considered
instantiations of VAs by CSP-OZ-DC specifications and have given a syntactic proof
rule to establish structural refinements. Instances of the VA, which are structural
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refinements of the VA process and, additionally, satisfy the temporal constraints,
inherit all safety properties of the VA.
VAs and CSP-OZ-DC models are specified with the graphical UML tool Syspect,

by which the VA approach is also well-integrated with informal analysis techniques for
complex systems. Using Syspect, we have successfully verified a CSP-OZ-DC-specified
train control system taken from the AVACS sub-project R1 that is too complex to be
verified without further decomposition techniques.
In this concluding chapter, we evaluate the VA approach and comment on altern-

ative methods as well as possible future work.

9.1. Discussion
The key achievements of this thesis are

• a framework for specifying and verifying behavioural design patterns for com-
bined specification languages,

• pattern-guided compositional verification of safety properties for concrete, com-
plex specifications that instantiate a VA by checking structural refinement and
verifying the local assumptions on unknown parts,

• the semantical analysis of VAs with respect to shared variable synchronisation
and event-based communication of parallel components.

Language for Verification Architectures. To develop a language for the specifica-
tion of VAs, we have to cope with the following discrepancy: On the one hand, we
need a sufficient sophisticated formalism to treat the different system dimensions of
complex real-time systems. On the other hand, the formalism has to be simple enough
to be suited for formal analysis.
For this reason, we have developed the generic and light-weight CSP extension

eCSP that is able to describe the same system dimensions as CSP-OZ-DC and a
lot of other similar languages but with a very lean, CSP-based syntax. In addition,
data constraints are integrated by many-sorted first-order formulae and temporal or
real-time constraints by an arbitrary logic with the same semantical domain as eCSP.
However, eCSP is not thought as replacement for existing combinations of formalisms
that are usually designed with a different focus. For instance, CSP-OZ-DC combines
well-investigated and standardised formalisms, and CSP-OZ-DC developers can make
use of a large amount of syntactic constructs predefined in the Z standard. Instead,
eCSP is intended for formal analysis of combined formalisms, and it can be used in
combination with them, as it has been presented in this work.
In Sect. 6.3, we have discussed how far eCSP can be considered as complete in the

sense that the language is strong enough to express all reasonable decompositions
of combined specifications. We have shown that all CSP-OZ-DC specifications can
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indeed be reformulated into an eCSP process, provided that the language on the
unknown parts can express all necessary properties. Moreover, if we allow a small
modification to the architecture process to capture global timing properties, then a
stronger completeness result holds: all reasonable decompositions can be expressed
with eCSP. That is, given a CSP-OZ-DC model that structurally refines an eCSP
process, one can find assumptions on all unknown processes such that VA and model
satisfy the same safety properties.
The eCSP formalism and the VA approach are not bound to CSP-OZ-DC, but

can be used with other CSP-based combined formalisms, e.g., [WC01, SLD08], for
which syntactic instantiation rules can be defined similarly to the rule from Sect. 5.1.
However, this is obviously most convenient if the combined formalism is based on
CSP. But it is to be assumed that the basic ideas of eCSP can be carried over to
other process languages like CCS [Mil80] or the π-calculus [Mil99].

Reduction of complexity. VAs with unknown components decompose a global veri-
fication property into local proof obligations. By this, a concrete model can be com-
positionally verified by proving that the local proof obligations are valid. The under-
lying idea is that the complexity of the local proof tasks is reduced in comparison to
the direct verification of the global property. In the case of the parallel composition of
several components that refine parallel unknown processes of a VA, this is indeed the
case, because the blow-up when computing the parallel composition of the parallel
components is avoided; instead every component is checked on its own.
In the case of sequential unknown parts there is also a reduction in complexity,

although the complexity of verifying sequential parts is only additive even when veri-
fying the entire concrete model in a single step. Nevertheless, there is an advantage in
verifying the local properties if a sequential component is repeated many times (then
the local property is to be verified only once) or if it is part of a recursive process
structure. In the latter case, the invariant of the recursion is already contained in
the VA. Thus, it is not necessary to recompute the invariant for every instantiat-
ing and possibly very large model. Instead, the local proof obligations of sequential
components contained in the recursion describe how the components contribute to
the invariant for each cycle of the recursion. Moreover, as elucidated at the end of
Chap. 8, when modifying a VA often large parts of a proof tree can be reused. For an
instance of the VA, only the modified unknown parts and the structural refinement
relation need to be rechecked.
The complexity can be further reduced when it is possible to apply additional re-

duction techniques to the components. An example is the slicing reduction technique
(Sect. 6.4.1): if the global property depends on the whole concrete specification no
slicing is possible; but if the global property can be inferred from local proof oblig-
ations of sequential components, slicing may be applicable for each of the sequential
components. We have demonstrated this characteristic for the ETCS case study in
Sect. 8.2.6. Generally speaking, the VA approach allows us to structure global verific-
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ation tasks into sub-tasks of sub-components that are easier to verify due to arbitrary
reasons dependent on the applied verification tool.
Moreover, the VA may contain large concrete parts (i.e., without unknowns), pos-

sibly with parallelism, that have to be verified only once—when checking the archi-
tecture. Thus, for these parts the complexity in verifying a concrete model is also
reduced, because they do not need to be checked again for every instantiation. The
verified pattern can be reused for arbitrary concrete models.
The complexity is, not least, also reduced in an engineering sense: structuring a

verification problem according to an abstract protocol formulated in terms of a VA
may help a system analyst to increase the understanding of a system or model.

Concurrency in Verification Architectures. In Sect. 6.1, we have discussed how to
treat parallel unknown components with the proof calculus for eCSP. Two solutions
have been provided. However, the given answers sacrifice some of the ideas of VAs
to achieve the desired goal. The translation-based approaches for parallel unknowns
modify the structure of the VA process; for the region construction it is exponentially
blown-up. In particular, when having a timing property for the entire VA process,
which is modelled by an unknown component running in parallel to the remainder
of the VA, the entire structure of the VA is changed with the translation-based ap-
proaches. The approach we used for the ETCS case study expands the structure less
than the region construction, but clutters up the process with timing constraints.
The R-G approach for parallel unknowns allows for compositional reasoning in the
sequent calculus, but the presented rules are only applicable if real-time properties
are not relevant for the global property. Therefore, these results could probably be
improved by developing a compositional real-time R-G rule, which can be integrated
into the proof calculus similarly to the existing R-G rule.
However, it is no surprise that the verification of parallel processes with timing

constraints and additional shared variables is difficult: it introduces a deep interde-
pendence between the components due to mutual interference of variables. Hence,
one may wonder if it was a good design decision to include shared variables along
with the timing constraints. The reason for this decision was the desire for a highly
flexible solution, allowing for unknown components with a large degree of freedom to
capture a large class of concrete systems, involving time, shared variables access, and
synchronisation over events. For example, when using VAs to decompose CSP-OZ-DC
classes one indeed needs shared variable access, because within classes every oper-
ation may access the system variables belonging to the class. Nevertheless, it is no
problem to restrict oneself to components without shared variable access. Then, par-
allel components communicate over synchronising events. Dedicated proof rules for
such specific situations can be developed by adapting existing solutions for Assume-
Guarantee reasoning, e.g., [MC81, Jon81, CLM89, AL93, AL95, FMS98, KV98]. So,
the presented solution with general parallel components involving shared variables
and event-based communication gives rise to a large flexibility; dedicated proof rules
can be developed for specific situations where a smaller degree of freedom is desired.
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9.2. Alternative Approaches

The core of the VA approach is the extended CSP dialect with the proof calculus
for proving safety properties. Of course there are different ways to describe abstract
protocols for combined specification languages. In the following, we elucidate on two
alternative approaches for the specification of VAs and motivate why we have chosen
to introduce eCSP instead.

Pure DC Approach

In [DHO06, DMO+07] a behavioural pattern for cooperating traffic agents was intro-
duced. Concrete models were formulated as hybrid automata, and the behavioural
pattern was completely described in terms of DC formulae. The DC formulae were
manually checked for correctness.
In a similar way, one could also formulate VAs for the use with combined specific-

ations. If automatic analysis is desired, one needs to restrict usage of DC formulae
to a sub-set of DC that can be handled with automated methods, e.g., DC counter-
example traces [Hoe06]. In our experiments it turned out that the number of parallel
DC formulae that can be handled with this approach is rather limited. Thus, it is not
realistic to automatically analyse large protocol structures in this way. Another pos-
sibility is to use one of the proof-rule based verification approaches for DC that can
be found in, e.g., [SS94, Hei99]—but even then one has to deal with a large amount
of parallel DC formulae.
However, we preferred a more structured approach using CSP processes to describe

the protocols with explicit unknown parts and generic temporal constraints. By this
means, the control flow part of the system is described directly in CSP, and it is
not necessary to encode the control flow with DC formulae. Moreover, the temporal
constraints of the protocol are clearly separated by the protocol phases such that it
suffices to analyse DC formulae for protocol phases that are simultaneously enabled.
We showed in this thesis how a refinement relation between an eCSP protocol and
a concrete specification is established; it is not clear how this can be achieved for a
general set of DC formulae.

Pure Model Checking Approach

A second alternative approach is to straightforwardly verify VAs with existing model
checking techniques for the combined specification language CSP-OZ-DC. That is,
in order to apply the verification approach of [MFHR08], we have used parametric
CSP-OZ-DC (with unknown components) to describe the protocol structure of a VA.
DC formulae have been used to specify assumptions on specific phases of the protocol.
Since the assumptions cannot be integrated into the process structure of the CSP-

OZ-DC specification (as long as the CSP-OZ-DC semantics is not to be changed), they
are instead composed in parallel to the CSP-OZ-DC specification. For this reason,
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the assumptions must contain the information for which phase of the protocol they
are valid. The DC assumptions describe the behaviour of components under the
assumption that the environment behaves correctly. So, given a CSP-OZ-DC model
c, describing the protocol structure, and assumptions F1, . . . ,Fn , a safety property
G is proven correct by verifying that

c |= F1 ∧ . . . ∧ Fn ⇒ G.

Using the approach of [MFHR08], this formula can only be automatically verified if
F1, . . . ,Fn , and G are DC counterexample traces.
We successfully applied this approach to verify a simplified VA variant for the

running example of Sect. 1.1. The protocol consists of the three phases FAR,REQ,
and REC . The DC formulae for the assumptions are of the shape

FAR ≡ ¬(trueal grantadcrT > ADe ∧ � req
a6 l reqa� reqa6 l reqadsfT ≤ DDe ∧ � reqatrue).

The safety property for the architecture is ¬(dtrueeadsfT ≤ 0e). It has been verified
in 62 seconds using ARMC by proving the unsatisfiability of the following property
for the CSP-OZ-DC model:

FAR ∧ REQ1 ∧ REQ2 ∧ REQ3 ∧ REC ∧ INIT ∧ (dtrueeadsft ≤ 0e),

where REQ1,REQ2,REQ3,REC are formulated as DC assumptions similar to FAR,
and INIT is an initial DC formula. Appendix A.1.4 lists the DC formulae and the
simple CSP-OZ-DC specification for the architecture.
However, for slightly more complex protocols this approach fails because of the

same reason as for the pure DC approach: the number of parallel assumptions—that
are verified against a CSP-OZ-DC specification, which is also translated into several
parallel automata—lead to a blow-up of the state space that cannot be handled with
the model checking approach. Our VA approach overcomes this difficulty, because we
usually do not have to consider all assumptions at the same time.

9.3. Perspectives
The achievements of this thesis can be extended in several directions.

Automatisation. The most important (practical) extension of this work is the de-
velopment of tool support for the sequent-style calculus of Chap. 4, ideally with an
integration into the Syspect tool. The proof trees for the examples of Chap. 8, which
can be found in the appendix, show that even for small examples sequent-style proofs
become unclear or even infeasible without tool-support. There are promising results
of verification tools for similar calculi [HBB+05, BHS07, PQ08]. These tools are able
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to solve a lot of intermediate proof steps fully automatically such that only in a few
cases user interaction is necessary. It is likely, that the proof trees for our case stud-
ies can be solved nearly completely without user-interaction with appropriate tool
support.
On the theoretical side, automated generation of assumptions for architectures is an

interesting research question: Given a VA process with unknown parts and a concrete
model, how can the weakest assumptions be generated such that the concrete model
is an instance of a VA satisfying a desired safety property. Similar questions are
examined in the AVACS sub-project S1; e.g., in [FSB06, FPS08, FPS10] assumptions
(in terms of automata) are generated for given networks of timed automata. A similar
question is whether assumptions of a given architecture can be weakened without
violating desired properties. Finally, one may also ask how the sequential structure of
a VA can be derived from a given concrete component. In Sect. 6.4.2 we have argued
that the communication closed layer principle for timed systems may be applicable
[OS10].

Proof rules. We have discovered in Thm. 4.4.2 that our proof calculus for VAs is
incomplete due to the data in eCSP and the logic, but it is still an open question
whether a relative completeness result can be established.
A further direction of possible extensions is to supplement the proof rules of this

work. Additional proof rules for checking refinement can be developed that allow
checking of larger classes of systems with a syntactical check. At the moment our
refinement rules comprise only processes that nearly coincide except for the unknown
parts. The rules could be extended to syntactic constructs that have a different shape
but produce the same semantics (e.g., in trace semantics external choice and internal
choice can be identified).
Additionally, in Sect. 9.1 we have already discussed the need for more sophisticated

R-G rules with respect to timing dependencies between parallel components. The
possible extension of the calculus to allow reasoning about timing properties with
sequent-style proof rules has been explicitly analysed in Sect. 6.2.
Our formalisms and proof rules are based on the trace semantics of CSP. With the

current approach it is therefore not possible to solve liveness and deadlock proper-
ties. It is of interest though, how far our results carry over to a more sophisticated
semantics comprising a notion of deadlock or divergence. However, it is to be expec-
ted that there will be some barriers, because currently nothing forces an unknown
component to progress eventually. Additional fairness properties on processes will be
required. Also, with the refinement rules of Chap. 5, a refining model may prevent
any progress, i.e., it can introduce deadlocks, which causes no problems as long as
only safety properties are considered.

Applications. Up to now, we have examined only case studies from the transporta-
tion domain. Thus, it would be interesting to develop and validate further verification
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patterns from a different application context. Likewise, the VA approach is still to
be evaluated with respect to different formalisms for the assumptions and for the
refining model.
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A Case Study Material

A.1. Train Control System of the Running Example
A.1.1. Proof Tree for the VA
In this section, the full proof tree to verify the correctness of the VA from Fig. 8.2 is
given. The desired safety property is

sf > RD > 0 ` [System]2sf > 0.

We use the following abbreviations and definitions within the proof tree:

System c
= System o

9 System
System := (FAR o

9 check →
(fail → REC 2 pass → Skip) 2 extend → Skip)

P0 := (fail • ϕ0
fail → REC 0 2 pass • ϕ0

pass → Skip)

REC 0 := Proc∞\A,C • F
0
REC

REC 1 := Proc∞\A,C • F
1
REC

F0
REC := ¬3(dsf0 > 0eadsf0 ≤ 0e)

F1
REC := ¬3(dsf1 > 0eadsf1 ≤ 0e)
ϕ0
fail := sf ′ = sf0 ∧ ¬ok0

ϕ1
fail := sf1 = sf0 ∧ ¬ok0

ϕ0
pass := sf ′ = sf0 ∧ ok0

ϕ0 := sf0 = sf ∧ sf ≤ RD ∧ ¬ok0

∨ sf0 = sf ∧ sf > RD ∧ ok0

The formulae TFAR 1,TFAR 2, and TREC are the DC proof obligations that are proven
with ARMC. We use additional rules (equal), (relation), and (renaming) for the
insertion of equalities, merging of relations in the theory of reals, and renamings to
simplify the presentation of the proof tree. In addition, the tree is split into several
sub-trees. Note that the proof direction is from bottom to top. That is, the desired
property can be found at the bottom of the tree.
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A.1.2. CSP-OZ-DC Model of the Train Control System
The CSP-OZ-DC specification contains the Train and the RBC component running
in parallel. The sf system variable from VA process (see Fig. 8.2) is instantiated
with ma− pos and RD is instantiated with maxbd +maxcd. The time parameter CT
is also instantiated with a concrete value, because our tool chain does not support
parametric time constants.

maxcd,maxspd,maxbd : R

maxcd = 110
maxspd = 10
maxbd > 0

Train
method ack, check, fail, pass, fb
method sendCurPos : [curPos! : R]
method sendMARequest : [curPos! : R; reqDist! : R]
chan extend : [newMA? : R]
local chan ADReached, applyEB
local chan checkAD
local chan notADReached
local chan reqFailed, updPos, updSpd

FAR c
= ((InitialState0
‖| InitialState1
‖| InitialState2) o

9 (check → checked))

InitialState0
c
= (updSpd → State0)

InitialState1
c
= ((sendCurPos → InitialState1)
u Skip)

InitialState2
c
= ((checkAD → State5)
u Skip)

InitialState3
c
= (applyEB → State8)

REC c
= (InitialState3 o

9 Stop)

State0
c
= (updPos → State1)

State1
c
= (InitialState0
u Skip)

State3
c
= ((ack → Skip)
u (reqFailed → Skip)
u request)

State5
c
= ((ADReached → request)
2 (notADReached → InitialState2))

State8
c
= (updSpd → State9)

State9
c
= (updPos → State8)

checked c
= ((fail → REC)
2 (pass → main))

main c
= ((extend → main)
2 (fb→ FAR))

request c
= (sendMARequest → State3)

pos, spd : R
ma, ad, ok : R
maxbd, bd : R
maxcd,maxspd : R
ebApplied, adReached : R

240



A.1. Train Control System of the Running Example

Init
ad > maxcd
ma − pos > maxbd + maxcd

enable sendCurPos
curPos! : R

effect sendCurPos
curPos! : R

curPos! = pos

effect check
∆(ok)

(ma − pos ≤ maxbd + maxcd ∧ ok′ = 0)
∨ (ma − pos > maxbd + maxcd ∧ ok′ = 1)

enable extend
newMA? : R

effect extend
∆(ma)
newMA? : R

ma′ = newMA?
ma′ − pos′ > ma − pos

effect updPos
∆(pos)

pos′ = pos + spd

enable notADReached

adReached ≤ 0

enable pass

ok ≥ 1

effect checkAD
∆(adReached)

(ma − pos ≤ maxbd + ad ∧ adReached′ = 1)
∨ (ma − pos > maxbd + ad ∧ adReached′ = 0)

enable fail

ok ≤ 0
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effect updSpd
∆(spd, bd)

0 ≤ spd′ ≤ maxspd
0 ≤ bd′ ≤ maxbd
ebApplied ≥ 1⇒ ma − pos − spd′ > bd′
ebApplied ≥ 1⇒ spd′ = 0 ∨ spd′ < spd
ebApplied ≥ 1⇒ bd′ = 0 ∨ bd′ < bd

effect applyEB
∆(ebApplied)

ebApplied′ = 1

enable ADReached

adReached ≥ 1

enable sendMARequest
curPos! : R; reqDist! : R

effect sendMARequest
curPos! : R; reqDist! : R

curPos! = pos
reqDist! = ad + maxcd

¬3(l updPosa(dtruee ∧ (` < 1))al updPos)
¬((dtruee ∧ � fail)a6 l faila(dtruee ∧ � fail ∧ � check ∧ ` > 10)a true)

RBC
method extend : [newMA! : R]
method getPosOfTrains : [otherTrainPos? : R]
chan ack, fb
chan sendCurPos : [curPos? : R]
chan sendMARequest : [curPos? : R; reqDist? : R]
local chan calcMA
local chan cancelRequest

InitialState5
c
= ((getPosOfTrains → InitialState5)
2 (sendCurPos → InitialState5))

InitialState6
c
= (sendMARequest → State12)

State12
c
= ((ack → State13)
u InitialState6)

State13
c
= ((calcMA→ State14)
2 (cancelRequest → InitialState6))

State14
c
= (extend → InitialState6)

main c
= ((InitialState5
‖| InitialState6) o

9 (fb→ main))

oTrainPos : R
iMA : R
minDist : Z
iTrainPos : R
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enable sendCurPos
curPos? : R

effect sendCurPos
∆(iTrainPos)
curPos? : R

iTrainPos′ = curPos?

enable getPosOfTrains
otherTrainPos? : R

otherTrainPos? > iMA

effect getPosOfTrains
∆(oTrainPos)
otherTrainPos? : R

oTrainPos′ = otherTrainPos?

enable cancelRequest

iMA ≥ oTrainPos
∨ iTrainPos + minDist ≥ oTrainPos

enable extend
newMA! : R

effect extend
newMA! : R

newMA! = iMA

effect calcMA
∆(iMA)

iMA < iMA′ < oTrainPos
iTrainPos + minDist < iMA′

enable sendMARequest
curPos? : R; reqDist? : R

effect sendMARequest
∆(iTrainPos,minDist)
curPos? : R; reqDist? : R

iTrainPos′ = curPos?
minDist′ = reqDist?

A.1.3. CSP-OZ-DC Representation of the VA

The following specification is the CSP-OZ-DC representation of the Train Control
VA, generated by Syspect (cf. Sect. 7.3.2).
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Train
local chan check
local chan extend
local chan fail
local chan fb
local chan pass

FAR c
= (Proc\A1,∅ • FAR1 ∧ FAR2 o

9 (check → checked))

REC c
= (Proc∞\A2,∅

• REC o
9 Stop)

checked c
= ((fail → REC)
2 (pass → main))

main c
= ((extend → main)
2 (fb→ FAR))

A1
c
= {pass, check, fail, extend}

FAR1
c
= ¬(trueadma > maxbd + maxcd + posea(` < 10)adma ≤ posea true)

FAR2
c
= ¬(truea(dtruee ∧ (` > 10))a true)

A2
c
= {pass, check, fail, extend}

REC c
= ¬(trueadma > poseadma ≤ posea true)

enable fail

ok ≤ 0

effect check

(ma − pos ≤ maxbd + maxcd ∧ ok′ = 0) ∨ (ma − pos > maxbd + maxcd ∧ ok′ = 1)

effect extend

ma′ − pos′ > ma − pos

enable pass

ok ≥ 1

A.1.4. Alternative Architecture without eCSP

Protocol

The following parametric CSP-OZ-DC classes represent a Verification Architecture
protocol without constraints on the unknown processes according to the model check-
ing approach discussed in Sect. 9.2 for a simplified version of the running example.

DD,AD : A

0 ≤ DD < AD
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RBC
method request : [p : A]
chan grant
chan deny
A == {req, grant, deny}

main c
= PFAR o

9 req → PREQ
o
9 (grant → main 2 deny → PREC )

PFAR
c
= Proc\A,∅

PREQ
c
= Proc\A,∅

PREC
c
= Proc\A,∅

sfR : A

enable grant
sfR > AD

effect request
p? : A

sf ′R = p?

Train
method deny
method grant
chan request : [p : A]
A == {req, grant, deny}

main c
= PFAR o

9 req → PREQ
o
9 (grant → main 2 deny → PREC )

PFAR
c
= Proc\A,∅

PREQ
c
= Proc\A,∅

PREC
c
= Proc\A,∅

sfT : A

Init
sfT > AD

effect request
p! : A

p! = sfT
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Assumptions on the Protocol

• The system is in the FAR phase.

FAR ≡ ¬(trueal grantadsfT > ADe ∧ � req
a6 l reqa� reqa6 l reqadsfT ≤ DDe ∧ � reqatrue)

• The system is in the REQ phase.

REQ1 ≡ ¬(trueal reqadDD < sfR ≤ ADe
∧ � grant ∧ � deny ∧ � req
a6 l grant ∧ 6 l deny ∧ 6 l req
a� grant ∧ � deny ∧ � req
a6 l grant ∧ 6 l deny ∧ 6 l req
adsfR ≤ DD ∨ AD < sfRe

∧ � grant ∧ � deny ∧ � reqatrue)

REQ2 ≡ ¬(trueal reqadsfT > DDe
∧ � grant ∧ � deny
a6 l grant ∧ 6 l deny
a� grant ∧ � deny
a6 l grant ∧ 6 l deny

adsfT ≤ DDe ∧ � grant ∧ � denyatrue)

REQ3 ≡ ¬(trueal reqadsfT > ADe
∧ � grant ∧ � deny
a6 l grant ∧ 6 l deny
a� grant ∧ � deny
a6 l grant ∧ 6 l deny

adsfT ≤ ADe ∧ � grant ∧ � denyatrue)

• The system is in the REC phase.

REC ≡ ¬(trueal denyadsfT > DDeadtrueeadsfT ≤ 0eatrue)

• The system is initially in the INIT phase.

INIT ≡ ¬(� reqa6 l reqadsfT ≤ DDe ∧ � reqatrue)
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A.2. ETCS Emergency Message Case Study

A.2.1. Original CSP-OZ-DC Specification from [MFHR08]

RearTrain(ID : TrainID; StartPosition,StartSBI : Position)
chan send : [m! : Message, id : {ID}]
chan receive : [m? : Message, id : {ID}]
chan updatePosition : [id : {ID},pos! : Position]
chan indication
chan getLOA : [id : {ID}, loa? : Position]
chan driverAck, driverEB : [id : {ID}]

local chan computeSBI : [loa?,sbi! : Position]
local chan applySB, releaseSB
local chan getPosition : [pos! : Position]
local chan getSBI : [sbi! : Position]
local chan selectSpeed
local chan applyEB

main c
= Running‖|HandleEM

Running c
= updatePosition.ID?pos → getLOA.ID?loa → computeSBI !loa?sbi →

if sbi ≤ pos
then applySB → selectSpeed → Running
else releaseSB → selectSpeed → Running

HandleEM c
= receive.Warning.ID → send.Ack.ID → getPosition?pos → getSBI?sbi →

if pos < sbi −OffsetDistance
then indication.ID → (driverAck.ID → DriverResponsible

2 EmergencyStop
2 driverEB.ID → EmergencyStop)

else EmergencyStop
EmergencyStop c

= applyEB → Skip

DriverResponsible c
= Skip

sbi : Position
standstillEB : Position
currentPosition : Position
currentSpeed : Speed
brakingMode : BrakingMode

Init
brakingMode = None
TargetSpeed < currentSpeed ≤ MaxSpeed
currentPosition = StartPosition
position = StartPosition
sbi = StartSBI

com applySB
∆(brakingMode)

if brakingMode = None then
brakingMode′ = ServiceBrake

else
brakingMode′ = brakingMode

com releaseSB
∆(brakingMode)

if brakingMode = ServiceBrake then
brakingMode′ = None

else
brakingMode′ = brakingMode

com selectSpeed
∆(currentSpeed)

if brakingMode = None then
TargetSpeed < currentSpeed′ ≤ MaxSpeed

if brakingMode = ServiceBrake then
currentSpeed′ = TargetSpeed

if brakingMode = EmergencyBrake then
(currentSpeed′ < TargetSpeed ∧
currentPosition + currentSpeed′

≤ standstillEB) ∨
(currentSpeed′ = 0 ∧
currentPosition + TargetSpeed

> standstillEB)

com applyEB
∆(brakingMode, standstillEB)

brakingMode′ = EmergencyBrake
if brakingMode = EmergencyBrake then
standstillEB′ = standstillEB

else
if currentSpeed = TargetSpeed then
standstillEB′ = currentPosition

+StopDistance
else
standstillEB′ = currentPosition

+TargetSpeedDistance + StopDistance
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com updatePosition
∆(currentPosition)
pos! : Position

currentPosition′ = currentPosition+
currentSpeed

pos! = currentPosition′

com computeSBI
∆(sbi)
loa?, sbi! : Position

sbi′ = loa?− TargetSpeedDistance
−StopDistance −MaxSpeed

sbi! = sbi′

com getPosition
pos! : Position

pos! = currentPosition

com getSBI
sbi! : Position

sbi! = sbi

¬(trueal updatePositionaupdateBound > `al updatePosition)

¬(truea(� updatePosition.ID ∧ updateBound < `))

¬(trueal receive.Warning.IDa(� applyEB ∧ � indication ∧ 0.5 < `)a(� indication ∧ 1 < `))

¬(trueal indicationa(� driverAck ∧ � applyEB ∧ 5 < `))

LeadingTrain(ID : TrainID;
StartPosition : Position)

chan send : [m! : Message, id : {ID}]
chan receive : [m? : Message, id : {ID}]
chan updatePosition : [id : {ID},

pos! : Position]
chan detectEmergency
local chan selectSpeed, applyEB

main c
= Running 2 (detectEmergency

→ send.Alert.ID
→ applyEB
→ selectSpeed → main)

Running c
= updatePosition.ID →

selectSpeed → main

currentPosition : Position
currentSpeed : Speed
brakingMode : BrakingMode

Init
brakingMode = None
TargetSpeed ≤ currentSpeed ≤ MaxSpeed
position = StartPosition

com updatePosition
∆(currentPosition)
pos! : Position

currentPosition′ = currentPosition
+currentSpeed

pos! = currentPosition′

com applyEB
∆(brakingMode)

brakingMode′ = EmergencyBrake

com selectSpeed
∆(currentSpeed)

if brakingMode = None then
TargetSpeed ≤ currentSpeed′

else
currentSpeed′ = 0

¬(trueal updatePositionaupdateBound > `
al updatePosition)

¬(truea(� updatePosition.ID
∧ updateBound < `))

RBC
chan send : [m! : Message, id! : TrainID]
chan receive : [m? : Message, id? : TrainID]

main c
= Idle

Idle c
= receive.Alert
→ HandleEM

HandleEM c
= send.Warning!id
→ receive.Ack.id → Idle

¬(trueal receive.Alert
a(� send.Warning ∧ 0.5 < `))

Driver(ID : TrainID)
chan indication : [id : {ID}]
chan driverAck, driverEB : [id : {ID}]

main c
= indication.ID
→ HandleEM

HandleEM c
= main
u driverAck.ID → main
u driverEB.ID → main
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ComNetwork
chan sendToTrain, sendToRBC

: [m? : Message, id? : TrainID]
chan receiveFromTrain, receiveFromRBC

: [m! : Message, id! : TrainID]

main c
= receiveFromTrain?m.id

→ sendToRBC .m.id → main
2 receiveFromRBC?m?id
→ sendToTrain.m.id → main

¬(trueal receiveFromTrain.ida
(� sendToRBC .id ∧ 0.5 < `))

¬(trueal receiveFromRBC .ida
(� sendToTrain.id ∧ 0.5 < `))

Track(StartPosition0,StartPosition1,
StartSBI1 : Position)

chan updatePosition : [id? : TrainID,
pos? : Position]

chan getLOA : [id? : TrainID, pos! : Position]

position0 : Position
position1 : Position

Init
position0 = StartPosition0
position1 = StartPosition1
StartSBI1 = StartPosition0

−Length −MaxSpeed
−TargetSpeedDistance
−StopDistance

StartPosition1 < StartSBI1

com updatePosition
∆(position0, position1)
id? : TrainID
pos? : Position

if id? = 0 then
position′0 = pos?
position′1 = position1

else
position′1 = pos?
position′0 = position0

com getLOA
loa! : Position

loa! = position0 − Length

Length,TargetSpeed,MaxSpeed,
OffsetDistance,StopDistance,
TargetSpeedDistance : Position

0 < Length ∧ 0 < TargetSpeed < MaxSpeed ∧
0 < OffsetDistance
0 < StopDistance < TargetSpeedDistance

For abbreviated synchronisation alphabets and class instances

Trains == LT ‖|RT
LT == LeadingTrain(0,StartPosition0)

RT == RearTrain(1,StartPosition1) ‖
D
Driver(1)

Track == Track(StartPosition0,StartPosition1,StartSBI1)

A == updatePosition, getLOA

B == [send 7→ receiveFromTrain, receive 7→ sendToTrain]

C == [receiveFromRBC 7→ send, sendToRBC 7→ receive]

D == driverAck, driverEB, indication
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the full case study model is defined by the CSP expression

Trains ‖
A
Track ‖

B
ComNetwork ‖

C
RBC .

Note that for synchronisation with the ComNetwork (communication alphabets B
and C ) the linked parallel operator [Ros98] is used. This is, instead of directly syn-
chronising on the channels send and receive between the trains and the RBC, send
and receive are mapped to receiveFromTrain and sendToTrain.

A.2.2. VA Proof Tree for the ETCS Case Study

This section contains the full proof tree for the ETCS VA from Sect. 8.2.4. In the
proof tree, the rule (relation) abbreviates relational conversions in the theory of reals.
We apply some of the rules implicitly: We waive the explicit application of the rules
(weakening left) and (weakening right) and predominantly apply (process call) im-
plicitly. We use the following abbreviations:

(next-step) = (prefixδ)(box stepδ)(all right)(implication right)(and left)(or right)
(choice-split) = (box choice)(and right)

Main Part

Cons, ψ
(assumption2)

` [ProcRec]2safe (process step)
Cons, [ProcFree(HandleEM ‖

A2

Running)]ψ `

[ProcFree(HandleEM ‖
A2

Running)][ProcRec]2safe

(3a)

(3a) (3b) (cut)[ProcFree(HandleEM ‖
A2

Running)]ψ

Cons,LTcurPos ≥ sf `
[ProcFree(HandleEM ‖

A2

Running)][ProcRec]2safe (parallel uproc)
Cons,LTcurPos ≥ RTcurPos + SysLength + SysTrgSpdDst + SysStpDst `

[HandleEM ‖
A2

Running][ProcRec]2safe

(3)

Cons,LTcurPos ≥ sf
(3b’)
` [ProcFree(HandleEM ‖

A2

Running)]2safe (parallel uproc)
Cons,LTcurPos ≥ sf ` [HandleEM ‖

A2

Running]2safe

(2)
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(2) (3) (sequence2)
Cons,LTcurPos ≥ sf ` [((HandleEM ‖

A2

Running) o
9 ProcRec)]2safe (process call)

Cons,LTcurPos ≥ sf ` [DetectEM ]2safe (box assumptionδ)
Cons, Init,LTcurPos ≥ sf ` [(Proc\A0,∅ •WaitEM ][DetectEM ]2safe

(1)

Cons, Init,LTcurPos ≥ sf
assumption2

` [(Proc\A0,∅ •WaitEM ]2safe (1) (sequence2)
Cons, Init,LTcurPos ≥ sf ` [(Proc\A0,∅ •WaitEM o

9 DetectEM)]2safe (process call)
Cons, Init,LTcurPos ≥ sf ` [ETCS-EM]2safe

Proof Tree for Checking the δ-Branch

(11)
Cons,LTcurPos ≥ rd,
RTcurSpd ≤ SysTrgSpd,
RTcurSpd ≤ SysTrgSpd ⇒ RTstndEB = RTcurPos + SysStpDst,
`
RTstndEB ≤ LTcurPos − SysLength ∧
RTcurPos ≤ RTstndEB − SysStpDst

(relation)
Cons,LTcurPos ≥ sf ,
RTcurSpd ≤ SysTrgSpd,
RTcurSpd ≤ SysTrgSpd ⇒ RTstndEB = RTcurPos + SysStpDst,
`
RTstndEB ≤ LTcurPos − SysLength ∧
RTcurPos ≤ RTstndEB − SysStpDst

(16)
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Cons
(relation)(axiom)

` RTcurPos ≤ RTcurPos + SysTrgSpdDst
LTcurPos ≥ sf

(axiom)
` RTcurPos + SysTrgSpdDst + SysStpDst ≤ LTcurPos − SysLength (and right)

Cons,LTcurPos ≥ sf ,
`
RTcurPos + SysTrgSpdDst + SysStpDst ≤ LTcurPos − SysLength ∧
RTcurPos ≤ RTcurPos + SysTrgSpdDst

(relation)
Cons,LTcurPos ≥ sf ,
RTstndEB = RTcurPos + SysTrgSpdDst + SysStpDst
`
RTstndEB ≤ LTcurPos − SysLength ∧
RTcurPos ≤ RTstndEB − SysStpDst

(implication left)(axiom)Cons,LTcurPos ≥ sf ,
RTcurSpd > SysTrgSpd,
RTcurSpd > SysTrgSpd ⇒ RTstndEB = RTcurPos + SysTrgSpdDst + SysStpDst
`
RTstndEB ≤ LTcurPos − SysLength ∧
RTcurPos ≤ RTstndEB − SysStpDst

(15)

(15) (16)

(cut) RTcurSpd > SysTrgSpd

(14)

Cons,LTcurPos ≥ sf ,
RTcurSpd ≤ SysTrgSpd ⇒ RTstndEB = RTcurPos + SysStpDst,
RTcurSpd > SysTrgSpd ⇒ RTstndEB = RTcurPos + SysTrgSpdDst + SysStpDst
`
RTstndEB ≤ LTcurPos − SysLength ∧
RTcurPos ≤ RTstndEB − SysStpDst (and right)

Cons,LTcurPos ≥ sf ,RTbrkMd = BrkMdEmBrk,
RTcurSpd ≤ SysTrgSpd ⇒ RTstndEB = RTcurPos + SysStpDst,
RTcurSpd > SysTrgSpd ⇒ RTstndEB = RTcurPos + SysTrgSpdDst + SysStpDst
`
RTbrkMd = BrkMdEmBrk ∧ RTstndEB ≤ LTcurPos − SysLength ∧
RTcurPos ≤ RTstndEB − SysStpDst (next-step)

Cons,LTcurPos ≥ sf ` [RTappEB • ϕ1]ψ
(13)

LTcurPos ≥ sf
(axiom)
` LTcurPos ≥ sf , [P8]ψ (relation)

LTcurPos ≥ sf ,LTcurPos < sf ` [P8]ψ (relation)
LTcurPos ≥ sf ,LTcurPosnew = LTcurPos,RTcurPosnew = RTcurPos,

LTcurPosnew < RTcurPosnew + SysLength + SysTrgSpdDst + SysStpDst ` [P8]ψ (next-event)
LTcurPos ≥ sf ` [P2]ψ

(5)

Cons,LTcurPos ≥ rd,RTdrvResnew
(axiom)
` RTdrvResnew ,RTbrkMdnew = . . . (next-step)

Cons,LTcurPos ≥ rd ` [RTsetRes • ϕ2]ψ
(8)
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Cons,LTcurPos < sf
(axiom)
` LTcurPos < sf (relation)

Cons,LTcurPos < sf ,LTcurPos ≥ rd,LTcurPos ≥ sf ` [RTappEB • ϕ1]ψ
(10)

Cons,LTcurPos ≥ RTcurPos + SysLength
+ SysStpDst,RTcurPos = RTstndEB − SysStpDst

(relation)(axiom)
` LTcurPos ≥ RTstndEB + SysLength

RTcurPos = RTstndEB − SysStpDst
(relation)(axiom)

` RTcurPos ≤ RTstndEB − SysStpDst (and right)
Cons,LTcurPos ≥ rd,
RTstndEB = RTcurPos + SysStpDst
`
RTstndEB ≤ LTcurPos − SysLength ∧
RTcurPos ≤ RTstndEB − SysStpDst

(12)

RTcurSpd ≤ SysTrgSpd
(axiom)
` RTcurSpd ≤ SysTrgSpd (12) (implication left)

Cons,LTcurPos ≥ rd,
RTcurSpd ≤ SysTrgSpd,
RTcurSpd ≤ SysTrgSpd ⇒ RTstndEB = RTcurPos + SysStpDst,
`
RTstndEB ≤ LTcurPos − SysLength ∧
RTcurPos ≤ RTstndEB − SysStpDst

(11)

RTbrkMd = BrkMdEmBrk
(axiom)
` RTbrkMd = BrkMdEmBrk

(14)

(14) (11) (and right)
Cons,LTcurPos < sf ,LTcurPos ≥ rd,
RTcurSpd ≤ SysTrgSpd,RTbrkMd = BrkMdEmBrk,
RTcurSpd ≤ SysTrgSpd ⇒ RTstndEB = RTcurPos + SysStpDst,
RTcurSpd > SysTrgSpd ⇒ RTstndEB = RTcurPos + SysTrgSpdDst + SysStpDst
`
RTbrkMd = BrkMdEmBrk ∧ RTstndEB ≤ LTcurPos − SysLength ∧
RTcurPos ≤ RTstndEB − SysStpDst (next-step)
Cons,LTcurPos < sf ,LTcurPos ≥ rd,RTcurSpd ≤ SysTrgSpd ` [RTappEB • ϕ1]ψ

(9)

(9) (10) (or left)
Cons,LTcurPos < sf ,LTcurPos ≥ rd,
(RTcurSpd ≤ SysTrgSpd ∨ LTcurPos ≥ sf ) ` [RTappEB • ϕ1]ψ

(7)

(13) (8) (choice-split)(relation)
Cons,LTcurPos ≥ sf ` [P7]ψ (next-step)
Cons,LTcurPos ≥ sf ` [P6]ψ

(6)

253



A. Case Study Material

(7) (8) (choice-split)
Cons,LTcurPos < sf ,LTcurPos ≥ rd, (RTcurSpd ≤ SysTrgSpd ∨ LTcurPos ≥ sf ) ` [P7]ψ (next-step)
Cons,LTcurPos < sf ,LTcurPos ≥ rd, (RTcurSpd ≤ SysTrgSpd ∨ LTcurPos ≥ sf ) ` [P6]ψ (process call)
Cons,LTcurPos < sf ,LTcurPos ≥ rd, (RTcurSpd ≤ SysTrgSpd ∨ LTcurPos ≥ sf ) ` [P4]ψ (renaming)

Cons,LTcurPos ≥ sf ,LTcurPosnew < sfnew ,RTstndEBnew = RTstndEB,
RTdrvAcknew = RTdrvAck,LTcurPosnew ≥ rdnew ,
(RTcurSpdnew ≤ SysTrgSpd ∨ LTcurPosnew ≥ sfnew) ` [P4,new ]ψ (next-step)

Cons,LTcurPos ≥ sf ` [P3]ψ (next-step)
Cons,LTcurPos ≥ sf

(6)
` [P6]ψ Cons,LTcurPos ≥ sf ` [a • · · · → P3]ψ

(box choice)(and right)Cons,LTcurPos ≥ sf ` [P1]ψ
(4)

Cons,LTcurPos ≥ sf
(4)
` [P1]ψ Cons,LTcurPos ≥ sf

(5)
` [P2]ψ (and right)

Cons,LTcurPos ≥ sf ` [P1]ψ ∧ [P2]ψ (box choice)
Cons,LTcurPos ≥ sf ` [P1 2 P2]ψ (process call)

Cons,LTcurPos ≥ sf ` [P0]ψ (all right)(implication right)(renaming)
Cons,LTcurPos ≥ sf ` ∀ΞVR⇒ [P0]ψ (box stepδ)

Cons,LTcurPos ≥ sf ` [LTdetEM • ΞVR][P0]ψ (prefixδ)
Cons,LTcurPos ≥ sf ` [ProcFree(HandleEM ‖

A2

Running)]ψ

(3b)

Proof Tree for Checking the 2-Branch
In the proof of the 2-branch of the tree, we use (∗) as abbreviation for derivations
that already occur in the δ-branch. In addition, we use the following abbreviations:

ψ = 2safe
ψ = safe

VR = (RTcurPos,LTcurPos)

Cons,LTcurPos ≥ sf
(axiom)
` LTcurPos ≥ sf , [P8]ψ (∗)

(21) Cons,LTcurPos ≥ sf ` [P2][P8]ψ (prefix2)
Cons,LTcurPos ≥ sf ` [P2]ψ

(5′)

Cons,RTdrvRes
(axiom)
` RTdrvRes (next-step)

(23) [RTsetRes • ϕ2]ψ (box step)
Cons,LTcurPos ≥ rd ` [RTsetRes • ϕ2]ψ

(8′)

(21) (8′) (choice-split)(relation)
(21) Cons,LTcurPos ≥ sf ` [P6]ψ (prefix2)

Cons,LTcurPos ≥ sf ` [P6]ψ
(6′)
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(21) (8′) (choice-split)(relation)
Cons,LTcurPos ≥ rd ` [P6]ψ (∗)

(22) Cons,LTcurPos ≥ sf ` [b • . . . ][P4]ψ (prefix2)
(6′) Cons,LTcurPos ≥ sf ` [b • . . . ]ψ (choice-split)

Cons,LTcurPos ≥ sf ` [P3]ψ (next-step)
(21) Cons,LTcurPos ≥ sf ` [a • . . . ][P3]ψ (prefix2)

Cons,LTcurPos ≥ sf
(6’)
` [P6]ψ Cons,LTcurPos ≥ sf ` [a • · · · → P3]ψ (choice-split)
Cons,LTcurPos ≥ sf ` [P1]ψ

(4′)

Cons,LTcurPos ≥ sf
(20)
` safe (next-step)

Cons,LTcurPos ≥ sf
(20)
` safe Cons,LTcurPos ≥ sf ` [LTdetEM • ΞVR]safe (box stepδ)

Cons,LTcurPos ≥ sf ` [LTdetEM • ΞVR]2safe
(19)

Cons,LTcurPos ≥ sf
(axiom)
` LTcurPos ≥ sf (or right)(relation)

Cons,RTcurPos ≤ LTcurPos − SysTrgSpdDst − SysStpDst − SysLength
` RTcurPos < LTcurPos − SysLength ∨ RTdrvRes

(20)

Cons,LTcurPos ≥ rd
(axiom)
` LTcurPos ≥ rd (next-step)(relation)

(23) Cons,LTcurPos ≥ rd ` [· • ΞVR]ψ (box step)(or right)(relation)
Cons,LTcurPos ≥ rd ` [· • ΞVR]ψ

(21)

Cons,LTcurPos ≥ rd
(axiom)
` LTcurPos ≥ rd (or right)(relation)

Cons,LTcurPos ≥ rd ` ψ
(23)

Cons,LTcurPos ≥ rd
(23)
` ψ (next-step)

Cons,LTcurPos ≥ sf
(relation)(23)

` ψ Cons,LTcurPos ≥ sf ` [b • . . . ]ψ (box step)
Cons,LTcurPos ≥ sf ` [b • . . . ]ψ

(22)

(4′) (5′) (∗)
Cons,LTcurPos ≥ sf

(19)
` [LTdetEM • ΞVR]2safe Cons,LTcurPos ≥ sf ` [LTdetEM • ΞVR][P0]2safe

(prefix2)Cons,LTcurPos ≥ sf ` [ProcFree(HandleEM ‖
A2

Running)]2safe
(3b′)
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Proof Tree for Checking the Timing Property

x3 > y3
(axiom)
` x3 > y3 (relation)(negation left)

y3 ≥ x3, x3 > y3 ` false (relation)
y3 ≥ 8, x3 ≤ 8, x3 = len0 + len1 + y3, len1 > 0, len0 > 0 ` false (relation)(weakening left)

y = y3 + len3, y3 ≥ 8, x ≤ 8, x = x3 + len3, len3 > 0, y3 = len2,
y3 ≤ 8, x3 ≤ 8, x3 = len0 + len1 + len2, len2 > 0, len1 > 0, len0 > 0 ` false (next-step)

y = len2, y ≤ 8, x ≤ 8, x = len0 + len1 + len2, len2 > 0, len1 > 0, len0 > 0 ` [Pt
5]false

(relation)(weakening left)y = len2, y ≤ 8, x ≤ 8, x = x2 + len2, len2 > 0, x2 ≤ 8,

x2 = len0 + len1, len1 > 0, len0 > 0 ` [Pt
5]false (next-step)

x ≤ 8, x = len0 + len1, len1 > 0, len0 > 0 ` [Pt
3]false (relation)(weakening left)

x ≤ 8, x = x1 + len1, len1 > 0, x1 < 8, x1 = len0, len0 > 0 ` [Pt
3]false (next-step)

x < 8, x = len1, len1 > 0 ` [Pt
1]false (next-step)

true ` [Pt ]false
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A.2.3. Modified CSP-OZ-DC Specification Matching VA

Pos == R
Spd == R
Bool == R
Msg == R

BrkMd == R
TrID == 0 . . 1

SysLTID,SysRTID : TrID

SysLTID < SysRTID

MsgAck,MsgWrn,MsgAlrt : R

MsgAck < MsgWrn
MsgWrn < MsgAlrt

BrkMdNone,BrkMdSrvBrk,
BrkMdEmBrk : R

BrkMdNone < BrkMdSrvBrk
BrkMdSrvBrk < BrkMdEmBrk

SysMaxSpd,SysTrgSpd : Spd

SysTrgSpd > 0
SysTrgSpd < SysMaxSpd

SysLength,SysStpDst,SysTrgSpdDst,
SysLTStrtPos,SysRTStrtPos,
SysRTStrtSBI ,
SysLTStrtPos,SysOffDst : Pos

SysLength > 0
SysStpDst > 0
SysStpDst < SysTrgSpdDst
SysRTStrtSBI = SysLTStrtPos

−SysLength − SysMaxSpd
−SysTrgSpdDst − SysStpDst

SysRTStrtPos < SysRTStrtSBI
SysOffDst > 0
SysMaxSpd = 1
SysTrgSpdDst = 10

RT
method posGEsbi
method posLTsbi
method RTappEB
method RTappSB
method RTcmpSBI
method RTgetLOA : [loa? : Pos]
method RTgetPos
method RTgetSBI
method RTrelSB
method RTselSpd
method RTsetRes
method RTupPos : [rpos! : Pos]
chan CNrecFT : [i! : TrID; m! : Msg]
chan CNsndTT : [i? : TrID; m? : Msg]
chan RTdrvAck
chan RTdrvEB
chan RTind

RTcurSpd : Spd
RTbrkMd : BrkMd
RTCSPHsbi : Pos
RTCSPHpos : Pos
RTdrvRes : Bool
RTsbi : Pos
RTcurPos : Pos
RTCSPRloa : Pos
RTstndEB : Pos
RTCSPRsbi : Pos

Init
RTcurPos = SysRTStrtPos
SysTrgSpd < RTcurSpd
RTcurSpd ≤ SysMaxSpd
RTsbi = SysRTStrtSBI
RTbrkMd = BrkMdNone

enable CNsndTT
i? : TrID; m? : Msg

effect CNsndTT
∆(RTCSPm)
i? : TrID; m? : Msg

i? = SysRTID
m? = MsgWrn
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effect RTappEB
∆(RTbrkMd,RTstndEB)

RTbrkMd′ = BrkMdEmBrk
RTcurSpd ≤ SysTrgSpd ⇒

RTstndEB′ = RTcurPos + SysStpDst
RTcurSpd > SysTrgSpd ⇒

RTstndEB′ = RTcurPos
+SysTrgSpdDst + SysStpDst

effect RTgetPos
∆(RTCSPHpos)

RTCSPHpos′ = RTcurPos

enable CSPposGEsbi

RTCSPHpos ≥ RTCSPHsbi
−SysOffDst

effect RTcmpSBI
∆(RTsbi,RTCSPRsbi)

RTsbi′ = RTCSPRloa
−SysTrgSpdDst − SysStpDst
−SysMaxSpd

RTCSPRsbi′ = RTsbi′

enable RTrelSB

RTCSPRsbi > RTcurPos

effect RTrelSB
∆(RTbrkMd)

RTbrkMd < BrkMdEmBrk
⇒ RTbrkMd′ = BrkMdNone

RTbrkMd ≥ BrkMdEmBrk
⇒ RTbrkMd′ = RTbrkMd

effect RTgetSBI
∆(RTCSPHsbi)

RTCSPHsbi′ = RTsbi

enable RTupPos
rpos! : Pos

RTcurSpd ≤ SysMaxSpd

effect RTupPos
∆(RTcurPos)
rpos! : Pos

RTcurPos′ = RTcurPos + RTcurSpd
RTcurPos′ = rpos!

enable RTappSB

RTCSPRsbi ≤ RTcurPos

effect RTappSB
∆(RTbrkMd)

RTbrkMd > BrkMdNone
⇒ RTbrkMd′ = RTbrkMd

RTbrkMd ≤ BrkMdNone
⇒ RTbrkMd′ = BrkMdSrvBrk

effect RTsetRes
∆(RTdrvRes)

RTdrvRes′ = 1

enable RTgetLOA
loa? : Pos

effect RTgetLOA
∆(RTCSPRloa)
loa? : Pos

RTCSPRloa′ = loa?

enable CNrecFT
i! : TrID; m! : Msg

effect CNrecFT
i! : TrID; m! : Msg

(i! = SysLTID ∧ m! = MsgAlrt) ∨
(i! = SysRTID ∧ m! = MsgAck)

effect RTselSpd
∆(RTcurSpd)

RTbrkMd ≤ BrkMdNone
⇒ (RTcurSpd′ > SysTrgSpd ∧

RTcurSpd′ ≤ SysMaxSpd)
(RTbrkMd > BrkMdNone ∧

RTbrkMd < BrkMdEmBrk)
⇒ RTcurSpd′ = SysTrgSpd

RTbrkMd ≥ BrkMdEmBrk ⇒
((RTcurSpd′ < SysTrgSpd ∧
RTcurPos + SysTrgSpd

≤ RTstndEB) ∨
(RTcurSpd′ = 0 ∧

RTcurPos + SysTrgSpd
> RTstndEB))

enable posLTsbi

RTCSPHpos < RTCSPHsbi − SysOffDst
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¬3(lRTinda
(�RTsetRes ∧ �RTappEB ∧ ` > 1))

¬3(lRTupPosa(` < 1)alRTupPos)
¬3(lCNsndTTa

(�RTappEB ∧ �RTind ∧ (` > 1))a

6 lRTinda(�RTind ∧ (` > 1)))

LT
method LTappEB
method LTdetEM
method LTgetPos : [gpos! : Pos]
method LTselSpd
method LTupPos : [lpos! : Pos]
chan CNrecFT : [i! : TrID; m! : Msg]
chan CNsndTT : [i? : TrID; m? : Msg]

LTbrkMd : BrkMd
LTcurSpd : Spd
LTcurPos : Pos

Init
LTcurPos = SysLTStrtPos
SysTrgSpd ≤ LTcurSpd
LTcurSpd ≤ SysMaxSpd
LTbrkMd = BrkMdNone

enable CNsndTT
i? : TrID; m? : Msg

effect CNsndTT
i? : TrID; m? : Msg

effect LTappEB
∆(LTbrkMd)

LTbrkMd′ = BrkMdEmBrk

enable LTgetPos
gpos! : Pos

effect LTgetPos
gpos! : Pos

gpos! = LTcurPos

enable LTupPos
lpos! : Pos

effect LTupPos
∆(LTcurPos)
lpos! : Pos

LTcurPos′ = LTcurPos + LTcurSpd
lpos! = LTcurPos′

enable CNrecFT
i! : TrID; m! : Msg

effect CNrecFT
i! : TrID; m! : Msg

(i! = SysLTID ∧ m! = MsgAlrt)
∨ (i! = SysRTID ∧ m! = MsgAck)

effect LTselSpd
∆(LTcurSpd)

LTbrkMd ≤ BrkMdNone ⇒
(SysTrgSpd ≤ LTcurSpd′ ∧
LTcurSpd′ ≤ SysMaxSpd)

LTbrkMd > BrkMdNone ⇒
LTcurSpd′ = 0

¬3((�LTupPos ∧ (` > 1)))

¬3(lLTdetEM a(�CNrecFT ∧ (` > 1)))

RTDrv
method RTdrvAck
method RTdrvEB
method RTind

RTDrvHndlEM c
= RTdrvAck → main
u RTdrvEB → main
u main

main c
= RTind
→ RTDrvHndlEM

Trck
chan CNrecFT : [i! : TrID; m! : Msg]
chan CNsndTT : [i? : TrID; m? : Msg]
chan posGEsbi
chan posLTsbi
chan LTappEB
chan LTdetEM
chan LTgetPos : [gpos? : Pos]
chan LTselSpd
chan LTupPos : [lpos? : Pos]
chan RTappEB
chan RTappSB
chan RTcmpSBI
chan RTdrvAck
chan RTdrvEB
chan RTgetLOA : [loa! : Pos]
chan RTgetPos
chan RTgetSBI
chan RTind
chan RTrelSB
chan RTselSpd
chan RTsetRes
chan RTupPos : [rpos? : Pos]
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main c
= Running0 o

9 EmergencyC
o
9 Running2

EmergencyC
c
= (HandleEMC ‖

A
RunningC )

RunningC
c
= ((LTdetEM → Running1)
o
9 ((RTappEB → Skip)
2 (RTsetRes → Skip)))

A = {LTdetEM ,RTappEB,
RTsetRes}

[ProcWaitEM]
Running0

c
= RTRunning0‖|LTRunning0

RTRunning0
c
= ((RTupPos → RTgetL0)
2 (RTupPos → Skip))

RTgetL0
c
= (RTgetLOA→ State3)

State3
c
= (RTcmpSBI → State4)

State4
c
= ((RTappSB → State5)
2 (RTrelSB → State5))

State5
c
= (RTselSpd → RTRunning0)

LTRunning0
c
= ((LTupPos → LTextch0)
2 (LTupPos → Skip))

LTextch0
c
= (LTselSpd → LTRunning0)

[ProcAckTime]
HandleEMC

c
= (Detect o

9 RTsend)

Detect c
= (LTdetEM →

LTsndAlrt)
LTsndAlrt c

= (CNrecFT → Skip)

RTsend c
= (CNsndTT → RTrec)

RTrec c
= (CNrecFT → RTgetP)

RTgetP c
= (RTgetPos → RTgetS)

RTgetS c
= (RTgetSBI →

RTposOPsbi)
RTposOPsbi c

= ((posGEsbi → RTStop)
2 (posLTsbi → RTind))

RTind c
= (RTind → RTchoice)

RTchoice c
= ((RTdrvAck → State0)
u (RTdrvEB → RTStop)
u RTStop)

RTStop c
= (RTappEB → Skip)

State0
c
= (RTsetRes → Skip)

[ProcRec]
Running2

c
= RTRunning2‖|LTRunning2

RTRunning2
c
= (RTgetLOA→ RTcomp2)

RTcomp2
c
= (RTcmpSBI → RTapprel2)

RTapprel2 c
= ((RTappSB → RTselect2)
2 (RTrelSB → RTselect2))

RTselect2 c
= (RTselSpd → RTRun2)

RTRun2
c
= (RTupPos → RTRunning2)

LTRunning2
c
= (LTselSpd → LTmain2)

LTmain2
c
= (LTupPos → LTRunning2)

[ProcRun]
Running1

c
= RTRunning1‖|LTRunning1

RTRunning1
c
= (LTgetPos → RTgetL1)

RTgetL1
c
= (RTgetLOA→ RTcomp1)

RTcomp1
c
= (RTcmpSBI → RTapprel1)

RTapprel1 c
= ((RTappSB → RTselect1)
2 (RTrelSB → RTselect1))

RTselect1 c
= (RTselSpd → RTRun1)

RTRun1
c
= ((RTupPos → RTgetL1)
2 (RTupPos → Skip))

LTRunning1
c
= (LTappEB → LTselect1)

LTselect1 c
= (LTselSpd → LTmain1)

LTmain1
c
= ((LTupPos → LTextch1)
2 (LTupPos → Skip))

LTextch1
c
= (LTselSpd → LTmain1)

TrRTpos : Pos
TrLTpos : Pos

Init
TrLTpos = SysLTStrtPos
TrRTpos = SysRTStrtPos

enable CNsndTT
i? : TrID; m? : Msg

effect CNsndTT
i? : TrID; m? : Msg

enable LTgetPos
gpos? : Pos

effect LTgetPos
∆(TrLTpos)
gpos? : Pos

TrLTpos′ = gpos?

enable RTupPos
rpos? : Pos

effect RTupPos
∆(TrRTpos)
rpos? : Pos

TrRTpos′ = rpos?

enable RTgetLOA
loa! : Pos

effect RTgetLOA
loa! : Pos

loa! = TrLTpos − SysLength
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enable LTupPos
lpos? : Pos

effect LTupPos
∆(TrLTpos)
lpos? : Pos

TrLTpos′ = lpos?

enable CNrecFT
i! : TrID; m! : Msg

effect CNrecFT
i! : TrID; m! : Msg

RBC
chan CNrecFRwrn : [i! : TrID; m! : Msg]
chan CNsndTRack : [i? : TrID; m? : Msg]
chan CNsndTRalrt : [i? : TrID; m? : Msg]

RBCHndlEM c
= CNrecFRwrn
→ RBCsnd

RBCsnd c
= CNsndTRack → main

main c
= CNsndTRalrt
→ RBCHndlEM

enable CNsndTRack
i? : TrID; m? : Msg

effect CNsndTRack
i? : TrID; m? : Msg

i? = SysRTID
m? = MsgAck

enable CNsndTRalrt
i? : TrID; m? : Msg

effect CNsndTRalrt
∆(RBCCSPi)
i? : TrID; m? : Msg

i? = SysLTID
m? = MsgAlrt

enable CNrecFRwrn
i! : TrID; m! : Msg

effect CNrecFRwrn
∆(RBCCSPi,RBCCSPm)
i! : TrID; m! : Msg

i! = SysRTID
m! = MsgWrn

¬3(lCNsndTRalrta�CNrecFRwrn ∧ ` > 1)

CN
method CNrecFRwrn : [i? : TrID; m? : Msg]
method CNrecFT : [i? : TrID; m? : Msg]
method CNsndTRack : [i! : TrID; m! : Msg]
method CNsndTRalrt : [i! : TrID; m! : Msg]
method CNsndTT : [i! : TrID; m! : Msg]

CNrecFromRBC c
= CNsndTT → main

CNrecFromTr c
= CNsndTRack → main
2 CNsndTRalrt → main

main c
= CNrecFRwrn
→ CNrecFromRBC

2 CNrecFT
→ CNrecFromTr

CNi : TrID
CNm : Msg

enable CNsndTT
i! : TrID; m! : Msg

effect CNsndTT
i! : TrID; m! : Msg

m! = CNm
i! = CNi

enable CNsndTRack
i! : TrID; m! : Msg

effect CNsndTRack
i! : TrID; m! : Msg

m! = CNm
i! = CNi

enable CNsndTRalrt
i! : TrID; m! : Msg

effect CNsndTRalrt
i! : TrID; m! : Msg

m! = CNm
i! = CNi

enable CNrecFT
i? : TrID; m? : Msg

effect CNrecFT
∆(CNi,CNm)
i? : TrID; m? : Msg

CNi′ = i?
CNm′ = m?

enable CNrecFRwrn
i? : TrID; m? : Msg
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effect CNrecFRwrn
∆(CNi,CNm)
i? : TrID; m? : Msg

CNi′ = i?
CNm′ = m?

¬3(lCNrecFTa(�CNsndTRalrt
∧ �CNsndTRack ∧ ` > 1))

¬3(lCNrecFRwrna(�CNsndTT ∧ ` > 1))
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