
Carl von Ossietzky Universität Oldenburg

Fakultät II – Informatik, Wirtschafts- und Rechtswissenschaften

Department für Informatik

A hybrid RISC-V architecture supporting mixed

timing-critical and high performance workloads

Bei der Fakultät II - Informatik, Wirtschafts- und Rechtswissenschaften der

Carl von Ossietzky Universität Oldenburg zur Erlangung des Grades und

Titels eines

Doktors der Ingenieurwissenschaften (Dr.-Ing.)

angenommene Dissertation

von Herrn Mehrdad Poorhosseini

geboren am 06.01.1991 in Mashhad, Iran

Mehrdad Poorhosseini: A hybrid RISC-V architecture sup-

porting mixed timing-critical and high performance workloads

Gutachter:

Prof. Dr.-Ing. Wolfgang Nebel

Weiterer Gutachter:

Prof. Dr.-Ing. Jan Reineke

Tag der Disputation:

13.02.2023

Abstract

The hardware platforms available today for embedded systems are already

capable of implementing different classes of applications. These can be real-

time applications, in which compliance with given time limits must be guar-

anteed, and high-performance applications, in which the aim is to execute as

many instructions as possible per unit of time. Existing hardware platforms

are usually designed and optimized for either the class of real-time applica-

tions or the class of high-performance requirements. However, if a mix of

real-time and high-performance applications is to be executed on the same

platform, this either causes a great deal of effort with regard to real-time

verification or the platform does not meet the minimum requirements for the

high-performance application.

The goal of this work is to propose a hybrid (i.e., run-time switchable) hard-

ware platform that is capable of executing the above two classes of appli-

cations without suffering from mutually negative timing predictability and

execution time optimization requirements.

This work presents a set of design requirements for such a hybrid hardware

platform for embedded systems. Based on these requirements, various exist-

ing single- and multi-core platforms, ranging from high-performance embed-

ded architectures to fully time-predictable architectures, are analyzed and

compared. Based on this analysis, a new hybrid HW/SW architecture is

proposed that can switch between a real-time and high-performance execu-

tion mode at runtime. In addition, this work describes the integration and

implementation in an FPGA, based on an open-source RISC-V processor

system and FreeRTOS as the SW management layer. Using an integrated

measurement infrastructure, an analysis of software functionality, software

execution timing, and switching times is performed in a single-core FPGA

implementation of the proposed hybrid architecture.

Kurzzusammenfassung

Die heute verfügbaren Hardwareplattformen für eingebettete Systeme

sind bereits in der Lage unterschiedliche Klassen von Anwendungen zu

realisieren. Dies können zum einen Echtzeitanwendungen sein, bei denen

die Einhaltung gegebener Zeitschranken garantiert werden muss, und zum

andere Hochleistungsanwendungen, bei denen es darum geht möglichst viele

Instruktionen pro Zeiteinheit auszuführen. Existierende Hardwareplattfor-

men sind in der Regel entweder für die Klasse der Echtzeitanwendungen

oder die Klasse der Hochleistungsanforderungen ausgelegt und optimiert.

Soll nun aber ein Mix aus Echtzeit- und Hochleistungsanwendungen auf

derselben Plattform ausgeführt werden, dann verursacht das entweder einen

großen Aufwand bzgl. des Echtzeitnachweises oder die Plattform erfüllt

nicht die Minimalanforderungen für die Hochleistungsanwendung.

Ziel dieser Arbeit ist es, eine hybride (d.h. zur Laufzeit umschaltbare)

Hardwareplattform vorzuschlagen, die in der Lage ist, die beiden o.g. An-

wendungsklassen auszuführen, ohne dass diese unter den sich wechselseitig

negativ beeinflussenden Anforderungen an die Zeitvorhersagbarkeit und

Ausführungszeitoptimierung leiden.

Diese Arbeit stellt eine Reihe von Designanforderungen an eine solche

hybride Hardwareplattform für eingebettete Systeme vor. Basierend

auf diesen Anforderungen werden verschiedene existierende Single- und

Multi-Core-Plattformen, von eingebetteten Hochleistungsarchitekturen,

bis hin vollständig zeitvorhersagbarer Architekturen, analysiert und

miteinander verglichen. Basierend auf dieser Analyse wird eine neue

hybride HW/SW-Architektur vorgeschlagen, welche zur Laufzeit zwischen

einem Echtzeit- und Hochleistungsausführungsmodus umschalten kann.

Zusätzlich beschreibt diese Arbeit einen Ansatz zur Integration und

Implementierung in einem FPGA, basierend auf einem Open-Source RISC-V

Prozessorsystems und FreeRTOS als SW-Verwaltungsschicht. Mit Hilfe

einer integrierten Messinfrastruktur wird eine Analyse der Funktionalität der

Software, dem Softwareausführungszeitverhalten und der Umschaltzeiten

ii

in einer Single-Core FPGA Implementierung der vorgeschlagenen hybriden

Architektur durchgeführt.

iii

Acknowledgement

I would like to thank my supervisor Prof. Dr.-Ing. Wolfgang Nebel for

the continuous support of my Ph.D. studies and related research, for his

patience, motivation, and immense knowledge. I would like to thank Dr.

Kim Grüttner, in the Hardware/Software Design Methodology group of

OFFIS institute, who provided detailed scientific feedback, gave me adequate

research freedom, and helped me become an independent researcher. I

thank Prof. Dr. Martin Georg Fränzle who was always ready for scientific

discussions and interested in hearing an update on my progress. I could not

have imagined a better supervision team for my Ph.D.

I would like to express my deep and sincere gratitude to Ira Wempe,

who has given me suggestions, advice, and support in non-scientific works. I

also want to thank Moritz Brähler, Stephan Adolf, and Razi Seyyedi for the

stimulating discussions and all the fun we have had over the past four years.

I am fortunate to have family and friends who have always supported

me in every decision. Thanks to my close friends who stood by me during

these years: Vahid, Amir, Payam, Sasan, Danial, Iman, and Kamran. I am

infinitely grateful to my parents and sister for their understanding, motiva-

tion, and all the opportunities they gave me. Last but not least, I thank my

beloved wife Yasaman for her sincere love, patience, and optimism even in

difficult moments; without her endless support, this dissertation would not

have been possible.

iv

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Scope and Research Questions 2

1.3 Thesis Organization . 4

2 Background and Foundations 5

2.1 Embedded systems . 5

2.1.1 Real-time Embedded Systems 6

2.1.2 Timing predictability concept in an embedded system . 7

2.1.3 Worst-Case Execution Time analysis 8

2.2 Hybrid embedded computer architecture design 9

2.2.1 Architectural elements 9

2.2.2 Requirement for hybrid switchable architecture design . 11

2.3 Overview of Fifth Generation of Reduced Instruction Set Com-

puter (RISC-V) ecosystem . 13

2.3.1 Compilers . 14

2.3.2 RISC-V cores . 15

3 Related Work 17

3.1 High-Performance platforms 17

3.1.1 Ariane (CVA6) . 17

3.1.2 Raspberry Pi 4 . 18

3.1.3 NVIDIA Jetson Xavier 18

3.1.4 Zynq 7000 . 19

3.2 Real-time class platfroms . 19

v

3.2.1 CompSoC . 19

3.2.2 PATMOS . 21

3.2.3 FlexPRET . 22

3.2.4 SPEAR . 23

3.3 Analysis of suitability of existing platforms for switchable ar-

chitecture design . 24

3.4 Gap analysis . 25

4 Thesis Contributions 29

4.1 Constraints . 29

4.2 Contributions . 30

5 Concept 33

5.1 An overview of mode switchable concept 33

5.1.1 Characteristics of Real-Time mode 34

5.1.2 Characteristics of Non-Real-Time mode 34

5.2 Switchable Architecture Model Definition 34

5.2.1 Application model . 35

5.2.2 Execution model . 35

5.2.3 Example of Application Execution 36

5.3 Architectural Overview of Switchable Design 37

5.3.1 Memory requirements for preparation setup 38

5.3.2 Architectural overview 39

5.3.3 Memory hierarchy for real-time execution 39

5.3.4 Memory hierarchy for non-real-time execution 41

6 Design Flow and Implementation 43

6.1 Implementation: Hardware layer 43

6.1.1 Target implementation 44

6.1.2 Memory system configurations 46

6.2 Implementation: Toolchain Layer and Linking process 47

6.3 Implementation: Software layer 48

6.3.1 Preparation setup . 48

6.3.2 Operating system support 49

vi

6.3.3 Realization of hybrid execution for mixed-Critical ap-

plications . 51

6.4 Design a framework for execution time measurment 53

6.5 Summary . 56

7 Evaluation Process and Results 59

7.1 Evaluation Setup . 59

7.1.1 TACLE benchmark Programs 60

7.1.2 Benchmark Execution process 60

7.1.3 Changes for FreeRTOS 62

7.2 Benchmark Execution on different configurations on the target 64

7.2.1 DRAM with cache . 64

7.2.2 DRAM without cache 64

7.2.3 SRAM without cache 65

7.2.4 SRAM embedded in FreeRTOS 65

7.3 Results . 66

7.3.1 Average Execution Time Comparison 66

7.3.2 Result interpretation 66

7.3.3 execution times for binarysearch benchmark 68

7.3.4 execution times for Cosf benchmark 70

7.3.5 execution times for st benchmark 70

7.4 Discussion . 73

7.5 Summary . 76

8 Conclusion and Future Work 77

8.1 Conclusion . 77

8.2 Future work . 78

References 81

Appendices 89

A Timing Comparison Plots 90

B Execution Visualization Plots 110

vii

C Code listings 120

viii

List of Figures

1.1 Scope of this thesis. 3

2.1 Example distribution of execution time ranging from best-case

to worst-case execution time (BCET/WCET)(figure from [1]). 8

2.2 Architectural elements which are essential sources of unpre-

dictability. 12

3.1 Related work analysis. Mapping related work to the scope. . . 27

4.1 Contributions analysis. Mapping contributions to the scope. . 32

5.1 Example execution trace of two execution modes representing

two Real-time and one Non-real-time task execution behavior 37

5.2 Example execution trace of two execution modes representing

one Real-time and two Non-real-time task execution behavior 38

5.3 Overview of the concept implementation layers on a target

platform. 40

5.4 Data path of the predictable memory section 41

5.5 Data path of the high-performance memory section 42

6.1 The Genesys2 FPGA board 44

6.2 Overview of the evaluation platform 46

6.3 Validation of mode switching in spike using two background

task and a periodic task . 52

6.4 Mode switching execution time measurement with binary-

search benchmark as a periodic task 52

6.5 Baremetal execution flow . 54

ix

6.6 FreeRTOS execution flow . 57

7.1 Average execution times in clock cycle for kernel benchmarks

of TACLE benchmark suite. 67

7.2 Execution time analysis on Ariane processor for binarysearch

benchmark . 69

7.3 Execution time analysis on Ariane processor for Cosf benchmark 71

7.4 Execution time analysis on Ariane processor for st benchmark 72

7.5 Comparison of proposed work with other processors in the

RISC-V ecosystem. 75

A.1 quad bsort . 91

A.2 quad cosf.pdf . 92

A.3 quad rad2deg.pdf . 93

A.4 quad deg2rad.pdf . 94

A.5 quad ludcmp.pdf . 95

A.6 quad binarysearch.pdf . 96

A.7 quad countnegative.pdf . 97

A.8 quad recursion.pdf . 98

A.9 quad prime.pdf . 99

A.10 quad jfdctint.pdf . 100

A.11 quad fir2dim.pdf . 101

A.12 quad complex updates.pdf . 102

A.13 quad bitonic.pdf . 103

A.14 quad isqrt.pdf . 104

A.15 quad matrix1.pdf . 105

A.16 quad bitcount.pdf . 106

A.17 quad st.pdf . 107

A.18 quad insertsort.pdf . 108

A.19 quad iir.pdf . 109

B.1 bsort . 110

B.2 cosf.pdf . 111

B.3 rad2deg.pdf . 111

x

B.4 deg2rad.pdf . 112

B.5 ludcmp.pdf . 112

B.6 binarysearch.pdf . 113

B.7 countnegative.pdf . 113

B.8 recursion.pdf . 114

B.9 prime.pdf . 114

B.10 jfdctint.pdf . 115

B.11 fir2dim.pdf . 115

B.12 complex updates.pdf . 116

B.13 bitonic.pdf . 116

B.14 isqrt.pdf . 117

B.15 matrix1.pdf . 117

B.16 bitcount.pdf . 118

B.17 st.pdf . 118

B.18 insertsort.pdf . 119

B.19 iir.pdf . 119

xi

List of Tables

2.1 RISC-V cores from Low cost to Linux capable cores 16

3.1 Comparison of different processors and platforms based on the

requirements of switchable architecture design 25

6.1 Size of static memory for different TACLE benchmarks 49

6.2 WCET estimate for different TACLE benchmarks 50

7.1 Comparison of RISC-V based processors based on the require-

ments of switchable architecture design with the proposed work 75

xii

List of Listings

1 FreeRTOS initialization C code assigning static priorities to

different tasks . 56

2 Assembler instructions for enabeling or disabeling the first

level caches of the Ariane core 65

3 Vivado tcl script to program the FPGA with a bitstream . . . 120

4 Gdb script for loading, execution and result extraction 120

5 Measurement instrumentation asm code for initialization the

Ariane as the target platform 121

xiii

Acronyms

AXI Advanced eXtensible Interface

BCET Best-Case Execution Time

CDF Cumulative Distribution Function

CLINT core level interrupt controler

COTS Commercially available Off-The-Shelf

CPS Cyber-Physical System

CPU Central Processing Unit

CSR Control and Status Register

DDR Double Data Rate

DMA Direct Memory Access

DMEM Data Memory

DRAM Dynamic RAM

FPGA Field Programmable Gate Array

xiv

FPU Floating Point Unit

GCC GNU Compiler Collection

GPU Graphics Processing Unit

HP High-Performance

HPC High-Performance Computing

HRT Hard Real-Time

IMEM Instruction Memory

IoT Internet of Thing

ISA instruction set architecture

MMU Memory Management Unit

MPSoC Multiprocessor System on a Chip

NoC Network-on-Chip

OS Operating System

PL Programmable Logic

PREM PRedictable Execution Model

PS Processing System

xv

RISC-V Fifth Generation of Reduced Instruction Set

Computer

RT Real-Time

SDRAM Synchronous DRAM

SPM Scratchpad Memory

SRAM Static Random Access Memory

SRT Soft Real-Time

TDM Time-Division Multiplexing

WCET Worst-Case Execution Time

xvi

xvii

Chapter 1

Introduction

This chapter provides an overview of the thesis, motivating the necessity for

supporting high-performance and time-predictable embedded computing in

one platform. Then the scope and research questions will be introduced.

Finally, it will be explained how we cover the related contents in the rest of

the thesis.

1.1 Motivation

In today’s embedded system design, developers try to reduce cost, size, and

power consumption. In order to have an efficient model in mixed-criticality

systems, consisting of different tasks with different levels of assurance in one

platform, we need to propose a dynamic switching between different execu-

tion modes to ease the integration of real-time and non-real-time workloads

on the same system [2]. In Cyber-Physical System (CPS), where computation

interacts with physical processes, the design of timing predictable architec-

ture plays an important role because delivering the correct information to

the physical world in time is essential.

We could observe that current available embedded platforms in indus-

try and academia are mainly optimized for timing predictability or High-

Performance (HP) computation. There are some reasons for these optimiza-

tions. For instance, we could consider a workload consisting of some Real-

1

Time (RT) tasks that are highly timing critical, and it should be guaranteed

that RT tasks finish within the desired timing. On the other hand, we could

also design a processor to meet the requirements associated with application

performance, such as fast response time and processing speed. Accordingly,

there is a trade-off between typical case performance and predictable sys-

tems, which means the more the design is optimized in one direction, the

more we lose features in the other direction. Therefore, if we have embedded

high-performance requirements, many platforms are typically available. If

we have tight real-time constraints, typically, there are other platforms avail-

able, and we can separate these systems from each other. The motivation of

this project is to propose an architecture that can support both of them in

a single-core architecture.

1.2 Scope and Research Questions

The scope of this work aims to investigate how we can get the best from

both timing predictable software execution (usually supported by the sim-

ple microcontroller without cache) and high-performance software execution

(usually supported by larger processors with a complex microarchitecture

and several cache hierarchies). The main focus of the project is to propose

a single processor architecture in the RISC-V ecosystem, which is based on

a high-performance embedded processor core formerly named Ariane [3, 4]

that can be switched at run-time from the high-performance to a real-time

mode and vice versa. In the future, the final goal is to make this architecture

applicable also in a multi-core environment.

In approaching an embedded processor, this thesis will focus on improving

the timing predictable execution capabilities of a high-performance embed-

ded single-core platform. Therefore, the overall goal is to execute real-time

software with minimum speed overhead compared to non-real-time software

on the same hardware platform to yield predictability as much as possible.

Figure 1.1 depicts the scope of this research work. We have visualized the

scope using circles. So we have Central Processing Unit (CPU) on top, and

predictable hardware (PR HW) belongs to the CPU as a processing part

2

HP SW RT SW

OS

CPU HW

PR HW

RQ1

RQ2

RQ3
RQ4

Figure 1.1: Scope of this thesis.

for executing real-time software. We have real-time software (RT SW) and

high-performance software (HP SW) on the right and left, respectively, even-

tually, as software support operating system (OS) on the bottom. Hence,

each research question can be positioned in one of those circles or between

the overlapping zones.

We formulate the following scientific questions regarding designing a

switchable platform in the RISC-V ecosystem

RQ1 What are the microarchitecture and memory subsystems that make

timing predictability difficult?

RQ2 How can timing-predictability and high-performance computation be

supported on a single-core architecture by switching modes?

RQ3 How can we benefit from an Operating System that allows switching

between Real-time (RT) and High-Performance (HP) mode at runtime?

3

RQ4 What overheads do these hardware and software changes have on

overall execution time?

1.3 Thesis Organization

This thesis is organized into eight chapters. The second chapter provides an

overview of the foundations for this thesis. Once the basics are set, Chapter

3 discusses related scientific work covering application class and real-time

class processors. At the end of this chapter, the existing gap will be cov-

ered. Afterward, Chapter 4 contains the presentation of contributions and

constraints. Next, in Chapter 5, the concept is presented, which starts with

the application and execution model definitions. Once the model is pre-

sented, two possible example executions which could be directly extracted

from the concept will be discussed. The chapter concludes with an overview

of the switchable architecture design and the memory hierarchy of the con-

cept implementation. The proposed mode switchable architecture is then

implemented as described in Chapter 6. Chapter 7 of this thesis contains

the evaluation of the contributions and discusses the results. Chapter 8 con-

cludes the thesis and discusses possible future activities. Finally, Appendices

presents the measurement results for all executed benchmarks.

4

Chapter 2

Background and Foundations

This chapter includes essential information about the embedded system, the

real-time embedded world, architectural elements that affect the predictabil-

ity of a system, and some information about the RISC-V.

Therefore, in Section 2.1 preliminaries of embedded systems, and the

connection between embedded systems and real-time computing will be ex-

plained. The timing predictability of a system and Worst-Case Execution

Time (WCET) analysis as the key design requirements for real-time em-

bedded systems are illustrated in Sections 2.1.2 and 2.1.3. Afterward, hy-

brid computer architecture design will be characterized by explaining the

requirements that a system should meet to call a system suitable for high-

performance and real-time computing. Then, we describe the RISC-V in-

struction set architecture (ISA) and the differences from other available ISAs.

Finally, some information about available compilers and cores in the RISC-V

ecosystem will complete Chapter 2.

2.1 Embedded systems

Embedded systems are microprocessor-based information processing systems

designed to perform certain routines of specific functions repeatedly. Embed-

ded systems, as small and intelligent electronic systems, have become a key

technological factor for complex systems as widely used, ranging from com-

5

mercial electronics such as cell phones to critical infrastructures such as fac-

tory production lines and intelligence systems [5, 6, 7]. Compared to general-

purpose computers, embedded systems perform limited dedicated functions

with limited computing capability and power sources. Today, around 95%

of all innovations are driven and controlled by embedded electronics compo-

nents and software [8]. Many of the current embedded systems are required

to operate in dynamic environments, where the characteristics of the compu-

tational workload cannot consistently be predicted in advance [9].

2.1.1 Real-time Embedded Systems

In general, we can classify the real-time embedded systems into two categories

hard and soft real-time embedded systems. For Hard Real-Time (HRT) em-

bedded systems, tasks must execute within a particular deadline, while in

contrast, for Soft Real-Time (SRT) embedded systems, minor deadline vio-

lations will not be considered as system failure. In addition, a Scheduling

policy is considered one of the main factors affecting real-time embedded sys-

tems performance. It helps to choose which task should be selected first from

a queue ready to run [5]. Embedded systems that are subject to responses

to the event within the precise timing constraints and predictable execution

are named real-time embedded systems [10].

There are two categories of real-time tasks in real-time embedded systems.

1. Aperiodic tasks and 2. Periodic tasks. In each category, two types of tasks

exist, which are: A) Preemptive: where a process “task” is blocked or inter-

rupted by another process that has a higher priority, and B) Non-preemptive:

any task completes its execution cycle even though there is another task with

higher priority in the ready queue [11]. These task definitions are essential

since each task could be one of the mentioned categories or subcategories in

an execution flow that includes different tasks.

6

2.1.2 Timing predictability concept in an embedded

system

As explained in [12], there are three different kinds of predictable systems.

Simple systems with a fixed worst-case response time. In systems with only

periodic tasks, the designer could choose a fixed cyclic schedule for all tasks in

order to facilitate the computation. And finally, the ability to realize complex

computation and react to timing relevant aspects in a pre-defined and nonde-

terministic way with tight and loose time constraints requires complex soft-

ware scheduling algorithms. In cyber-physical real-time embedded systems,

developers try to design a hardware platform that is able to integrate differ-

ent levels of criticality, from highly critical workloads to high-performance

workloads. However, it is challenging to design a processor that supports

different levels, such as critical and non-critical workloads.

Characterizing upper and lower bounds of execution times is required to

perform schedulability analysis. Therefore, a reasonable quality measure is

the quotient of Best-Case Execution Time (BCET) over WCET [13]. The

sources of uncertainty are the program input and the hardware state in which

execution begins. Figure 2.1 illustrates the situation and displays essential

notions. Accordingly, based on [14] here we can provide a formal definition

of timing predictability:

Definition 1. (Timing Predictability). Given the uncertainty about the

initial hardware states Q Ď Q and uncertainty about the program inputs

I Ď ι, the timing predictability of a program p is

PrppQ,Iq :“ min
q1,q2PQ

min
i1,i2PI

Tppq1,i1q

Tppq2,i2q

where Q denotes the set of all hardware states and I denotes the set of

all program inputs. Furthermore, Tppq,iq be the execution time of program

p starting in hardware state q P Q with input i P I. The quality measure

quotient is Prp P r0,1s, where 1 means surely predictable.

An informal definition of timing predictability is the ability to calculate

the execution time on a specific hardware platform and prove that the system

7

Figure 2.1: Example distribution of execution time ranging from best-case
to worst-case execution time (BCET/WCET)(figure from [1]).

fulfills all requirements concerning workloads [12, 15]. In other words, a

predictable execution time means that in a set of periodically repeated tasks,

we could accurately predict the execution time of all tasks, regardless of

how often the experiments were repeated. Therefore, running experiments

with the same program under similar conditions lead to the same results. In

combination with timing predictability, we require real-time analysis before

using the system under consideration.

2.1.3 Worst-Case Execution Time analysis

WCET analysis could be performed in many ways using different tools. Two

of them are explained here:

Measurement-based WCET analysis is suitable for less time-critical

software and for which the average-case behavior is more significant than a

precise estimate like, for instance, in systems where the worst-case scenario

is improbable to occur. The traditional and most common method in the in-

dustry to determine program timing is by measurements. The basic principle

of this method follows the statement that “the processor is the best hardware

model” [16].

8

Static WCET analysis could be performed in different phases, from

flow analysis to low-level phase. There are some advantages of using static

analysis techniques that rely on mathematical models, such as eliminating

the need to set up a real hardware platform and calculating the safe WCET

upper-bounds without running the program on the target platform. Static

analysis typically uses models of all the hardware components and their ar-

bitration policies, including CPU caches, instruction pipeline, memory bus,

arbitration policies, etc. These models are typically represented in complex

mathematical abstractions for which a worst-case operation can be estimated

[16].

2.2 Hybrid embedded computer architec-

ture design

Traditionally, High-Performance Computing (HPC) and Embedded Comput-

ing have different design, programmability, and energy efficiency objectives.

However, on the one hand, due to the ever-increasing demand for performance

and the need to support more robust applications - such as, e.g., smart video

surveillance and, more in general, mobile and Cyber-Physical System applica-

tions - those objectives tend to adopt similar solutions [17, 18]. On the other

hand, the high demands on embedded systems products put pressure on the

designers to maximize the system performance and minimize the prices [19].

2.2.1 Architectural elements

Single-core and multi-core devices developed using Commercially available

Off-The-Shelf (COTS) components have become the preferred choice in em-

bedded systems design. The reason is that COTS components are optimized

for faster average case computation by increasing the design complexity. Nev-

ertheless, as soon as it comes to a real-time computation where we have to

meet the deadline and require a more straightforward timing analysis, these

elements can cause trouble [20]. In order to improve the predictability of

9

a COTS system, we need to replace some architectural elements by pre-

dictable versions. Some real-time researchers have proposed several solutions

to improve the predictability in COTS components e.g. Pellizzoni et al. [21]

introduced the PRedictable Execution Model (PREM), which enforces pre-

dictable execution for some tasks by annotating a code called by getting

benefits from a compiler extension. This technique requires support from

both compiler and Operating System (OS).

It is clearly evident that there is a conflict between performance and pre-

dictability. The more we achieve performance, the more we lose predictabil-

ity. Here we explain the architectural elements that make predictability dif-

ficult while on the other side improve the performance.

Pipeline: Pipelines increase the performance of the processor by ex-

ecuting different instructions in parallel with little hardware cost. Hence,

depending on the employed pipeline features, the complexity of WCET anal-

ysis varies. For example, dynamic branch prediction and deeper pipeline

design bring about more dependencies and influence both execution time

and nondeterminism in terms of predictability.

Cache hierarchy (L1 and L2): Analysis of modern caches which de-

signed for high-performance multi-core systems is extremely challenging due

to the replacement policy and high set-associativity. It is necessary to de-

termine the cache latencies, but usually, the latency provided by companies

like ARM and Intel could not be used to guarantee WCET tight estimates

because these latencies are more for best or average cases.

Scratchpad Memory (SPM): In [22] a Dynamic Scratchpad Memory

(SPM) unit has been introduced in order to protect the critical tasks from

interference of non-critical tasks. Any task that runs out of the SPM is

guaranteed to have a predictable execution time. On the other hand, because

the non-critical tasks run out of the cache, there is no degrading in the

performance of other non-critical tasks.

Shared bus: Multiple cores access the main memory via a bus. The

impact of bus arbitration protocol and communication delay must be ac-

counted for to obtain a tight WCET analysis. One solution is the TDMA

bus arbitration which is an excellent mechanism to isolate the tasks and is

10

predictable and composable. However, most of the existing high-performance

COTS-based systems did not apply the TDMA, mainly because it requires

additional hardware modifications.

DRAM memory: The unpredictability in DRAMs originate from their

internal architecture, which is designed to deliver high volume storage at low

cost. The target row must first be opened on a DRAM access before reading,

or writing operations can be issued to the word-sized column elements. The

response time of memory requests in DRAM is highly variable because a

single DRAM chip is designed to have a limited data bus (usually 8 bits) to

minimize chip cost [23]. So, this impacts the execution time from a few clock

cycles to tens of cycles. Therefore, DRAM memories should be considered a

highly unpredictable resource.

Memory Controller: The memory controller connects the processor

tile to the off-chip DRAM and is responsible for scheduling memory accesses

according to the system requirements. Thus, the response time to a memory

request strongly depends on the page policy, the scheduling algorithm, and

the power-management policy used in the memory controller.

Direct Memory Access (DMA): In many embedded systems, when-

ever a task requires to communicate with an off-chip memory, DMA allows

this access independently from the processor. This feature is useful for de-

creasing the CPU overhead, leading to better performance at the end. How-

ever, the composition of DMA with other components, for instance, simulta-

neously accessing a bus, can make the predictability difficult [24].

2.2.2 Requirement for hybrid switchable architec-

ture design

From the perspective of the architectural elements, some characteristics make

a system suitable for predictable or high-performance computation. These

characteristics could be related to either the processor core or the whole

platform. Our analysis focuses on identifying the suitability of different plat-

forms for the realization of implementing a switchable architecture between

high-performance and real-time modes. There are some constraints that our

11

CPU
pipeline

CPU
pipeline

CPU
pipeline

DMA

cache cache

Shared Bus

Memory Controller

DRAM

Figure 2.2: Architectural elements which are essential sources of unpre-
dictability.

desired system should meet for building a switchable architecture. These

constraints could be identified as specific requirements for the switchable

architecture.

Reproducible and predictable execution times: In order to ful-

fill this requirement, both processors and the memory subsystems directly

connected to the core need to be time-predictable. In this regard, static ex-

ecution time analysis is required to estimate the WCET to guarantee that

execution is free of interferences. For instance, a compiler can increase the

predictability by annotating metadata to the binary file of critical applica-

tions so that these applications execute e.g. from the scratchpad memory, to

omit the impact of the Dynamic RAM (DRAM) for hard real-time workloads.

Reproducible and predictable communication times: In a single-

core scenario, it is not a big problem, but as soon as we have DMA, it

can be problematic whenever some master components want to access the

bus simultaneously. Here we are interested in evaluating the predictability

of components like busses that are being used to safely upper bound the

communication times of the shared resources. A critical decision here is which

kind of memory controller each platform uses and how DRAM accesses are

managed in the scope of predictability. Some types of memory controllers

could significantly enhance predictability.

12

Operating system capability to support task scheduling for

mixed-criticality workloads: Here the task scheduler has to figure out

the sequence of programs while keeping specific timing constraints. In this

regard, the predictability of a platform helps a lot to provide the scheduling

guarantee because, without it, there is no guarantee for all times. Thus,

in some cases, it turns out to be operating system support for real-time

systems to handle the execution of hard real-time and soft real-time

tasks. Time-Division Multiplexing (TDM) is a common solution for mixed

workloads, but this method’s problem is higher latency.

High-performance features: This can be assessed in terms of archi-

tectural elements and computing resources that have been designed for per-

formance and not necessarily tuned out for RT guarantees. For instance, how

well the platform’s processor core and memory hierarchy are optimized for

average-case performance computing.

Execution mode switching for mixed workloads: With this require-

ment, we want to explain the potentiality of each platform for separating

between real-time and non-real-time workloads, which enables the system to

handle multiple context switches between high-performance and predictable

execution modes at run time. This is not available in many processors and

platforms to the best of our knowledge, but we aim to provide a processor

that fulfills this requirement.

2.3 Overview of RISC-V ecosystem

Throughout the last decades, large semiconductor companies like INTEL and

AMD have dominated the CPU market, which concerns their x86 architec-

tures. Similarly, ARM develops processor designs mainly for mobile devices

and microcontrollers. In 2010, RISC-V was born in a lab at the University

of California, Berkeley. RISC-V is a new instruction set architecture (ISA)

originally designed to support computer architecture research and education.

RISC-V evolved a new era of computing on an open and collaborative con-

cept. Recently RISC-V became a standard free and open architecture also for

industry implementations [25]. Some fundamental characteristics of RISC-V

13

are simplicity, modularity, stability, and design for specialization. In order

to manage the diversity and support the modularity, there are 47 base in-

structions from 32-bit to 128-bit address space and some optional standard

extensions. However, a single fixed ISA spec can not work for all domains.

Currently, there are different RISC-V ISAs as standard extensions avail-

able. It is also possible to produce a binary by combining these RISC-V

ISA configurations. In the following, different RISC-V ISAs for the 64-bit

processors, as an example, have been introduced:

• rv64i for base integer instruction set

• rv64a for atomic memory operations

• rv64f for single-precision floating-point operations

• rv64d for double precision floating-point operations

• rv64m for integer multiplication and division

• rv64c for compressed instructions

For instance, ”rv64imac” describes a 64-bit implementation with integer

multiplication, atomic memory instructions, and support for compressed in-

structions.

The specification is divided into two parts: the unprivileged and privi-

leged specifications. The unprivileged specification, also called the user mode

ISA, defines general-purpose computational instructions. The privileged ISA

describes capabilities used for an operating system or platform level code

[26].

2.3.1 Compilers

Regarding the available software toolchain for RISC-V1, compiler support for

C and C++ is provided through GCC and Clang/LLVM.

1A full overview of the RISC-V software ecosystem is available at
https://github.com/riscv/riscv-software-list.

14

The GNU Compiler Collection (GCC) has been the de-facto standard

compiler for embedded systems for a long time. The main reason was its

support for many embedded processors and microcontrollers and its place as

the official compiler for GNU/Linux. The main reason for this success was

the open-source model and the support from the GNU/Linux community.

Today GCC is one of the most mature compilers for all kinds of computer

systems from the embedded to the HPC spectrum. Furthermore, for RISC-V,

GCC was the first available compiler and is still the ”default” one.

Clang/LLVM [27] is the new ”challenger” for GCC. LLVM is an open-

source software developed at the University of Illinois/NCSA. The initial

version was released in 2003. The name of LLVM was first abbreviated from

Low-Level Virtual Machine. Clang is the C, C++, and Objective-C front-end

for LLVM. In previous years, back-end support for RISC-V has been added

into the Clang/LLVM release [28].

With the availability of two different mature compilers for RISC-V pro-

cessors, one interesting question is which compiler offers the best performance

w.r.t. binary size and execution time. The execution time analysis of the

compiled binaries in [29] shows that in 42% of the experiments, GCC and

LLVM have nearly the same execution time clock cycles while in 40% GCC

execute faster and in 18% LLVM binaries executed faster. Regarding the

binary size, in 94% of the experiments, these compilers provide the same

binary size. So, in general, the GCC still performs better, and we continue

the project with the GCC compiler.

2.3.2 RISC-V cores

There are many core implementations based on RISC-V ISA available in the

market. These processors are either optimized for size and code density [30]

or optimized for embedded high-performance computing [3, 31]. Developing

32-bit cores essential for Internet of Thing (IoT) and microcontrollers is much

more populated than 64-bit in RISC-V. From the design point of view, the

first reason could be the complexity of the 64-bit processor design. The sec-

ond reason is that it is much more expensive to make 64-bit cores available in

15

Table 2.1: RISC-V cores from Low cost to Linux capable cores

32-bit 64-bit
Low cost DSP Linux capable

• Zero-riscy
– RV32-ICM

• Micro-riscy
– RV32-CE

• RI5CY
– RV32-ICMFX
– SIMD
– HW loops
– Bit manipulation
– Fixed point

• Ariane
– RV64-ICMAFD
– Full privileged specifi-

cation
• Boom

– RV64-ICMAFD
– Full privileged specifi-

cation
– Out-of-order pipeline

silicon or instantiate it on a Field Programmable Gate Array (FPGA). More-

over, supporting the Linux environment for open source implementations is

essential for a 64-bit core. Nevertheless, there are several 64-bit cores, e.g.,

Boom [32, 33] and Ariane [3] available. We focus on the Ariane processor in

the rest of this thesis.

16

Chapter 3

Related Work

In this chapter, different embedded platforms have been widely investigated.

Therefore, this chapter gives an overview of existing platforms that provide

solutions for time predictable, high-performance, or both and places them in

the context of the work presented in this thesis. In the end, an analysis of the

introduced related work platforms will be presented to check the suitability

of existing platforms with the concept of switchable architecture design based

on the requirements proposed in Section 2.2.2.

3.1 High-Performance platforms

Some embedded high-performance platforms will be reviewed in this section,

and their characteristics will be investigated. These platforms are typically

available in the embedded system domain if we want to use an embedded

high-performance system. Some representations are reviewed here.

3.1.1 Ariane (CVA6)

Ariane [3] is a processor that is optimized as a low area high-performance

class processor in the RISC-V ecosystem. On the other hand, Ariane fea-

tures support address translation via a Memory Management Unit (MMU)

to support an operating system [3]. The processor supports the Linux ker-

nel, but there is no real-time task scheduling in the current version. So, its

17

performance for a comparatively low-area chip is acceptable, but the caches

and memory subsystem were not designed for predictability. My approach

will introduce predictable execution capabilities to the core. We will also

add real-time operating system support for scheduling tasks with different

real-time requirements to make it capable of executing tasks with different

criticality levels.

3.1.2 Raspberry Pi 4

The Raspberry Pi 4 [34] consists of ARM Cortex A-series processors with the

hierarchy of shared caches and the out-of-order pipeline, which is optimized

for average-case performance. So, it is not designed to fulfill the predictability

and composability requirements for timing critical workload in a switchable

architecture. In this platform, we could integrate a system partitioner using

a software layer to separate the cache accesses or install a hypervisor on it

to fulfill the predictability requirements to a certain degree but still not fully

reach the requirements. So it is not that easy to realize predictable support

with the hardware components. The Raspberry Pi supports the operating

system but is not out of the box for the scheduling of real-time applica-

tions. Therefore, we can easily claim that it is an excellent high-performance

platform but not a good option for mixed-criticality environments.

3.1.3 NVIDIA Jetson Xavier

Regarding NVIDIA Jetson Xavier [35], the explanation about the architec-

ture and the compatibility with the requirements is quite similar to Raspberry

Pi plus additional high-performance feature that it has w.r.t its heterogeneity

of the embedded Graphics Processing Unit (GPU) inside the architecture. So

controlling the accesses and static analysis for predictability is very difficult

in such an architecture. Thus, we will not elaborate more about this high-

performance platform because it cannot fulfill predictability requirements

and support mixed critical workloads.

18

3.1.4 Zynq 7000

The Zynq 7000 includes Programmable Logic (PL) and Processing System

(PS). The exciting feature inside the PL is the potential to implement ar-

bitrary hardware depending on whether we want to customize hardware for

timing predictable computation using the Microblaze processor or realize

custom hardware accelerators to boost performance. There are also some

designs available that successfully developed a mixed timing criticality sys-

tem using FPGA in Zynq 7000 [36]. Furthermore, regarding the operating

system support, Zynq UltraScale+ supports hypervisor or Linux to make

shared caches access times more predictable by providing cache partitioning

or cache coloring. On the other hand, Zynq UltraScale+ is an Multiprocessor

System on a Chip (MPSoC) that inherits the properties of Zynq 7000 plus the

so-called safety island design for real-time applications utilizing a dual-core

ARM Cortex-R5 based processing system. Regarding the communication

times, the system could be composable and predictable due to the globally

time-triggered architecture of the NoC, but this requires some manipulations

in components. It is possible to support execution mode switching in the

Zynq 7000 but not in a single core rather than using both PL and PS parts

or in multi-core scenario implementations.

3.2 Real-time class platfroms

Some platforms designed to satisfy timing predictability requirements will be

reviewed in this section, and their characteristics will be investigated. These

platforms are typically available in the embedded system domain if we have

tight real-time constraints. Some representations are reviewed here.

3.2.1 CompSoC

CompSoC [37] is being categorized as a system that provides solutions for

predictability and composability on a platform level by having a global sched-

ule for the whole system, so we analyze it tile by tile and on the platform

19

level. In order to assess the predictable execution capability, before execut-

ing an application on the processor tile, a WCET analysis is done to ensure

that the execution time will be within the deadline on the Microblaze proces-

sor. The CompSoC platform does not have any cache, but instead, Comp-

SoC utilized local Instruction Memory (IMEM) and Data Memory (DMEM)

as a predictable solution with the precise size of instruction and data of

programs that are allowed to be executed. Of course, this trade-off affects

the platform’s performance, but this allows the virtual platform to maintain

the average case performance and improve the predictability potential. The

Network-on-Chip (NoC) of CompSoC is entirely predictable and responsi-

ble for transporting requests from the direct memory access unit (DMA) to

the off-chip DRAM memory. Another essential component approach in this

architecture are predictable memory controllers with a combination of stati-

cally and dynamically scheduled Synchronous DRAM (SDRAM) controllers

[38]. CompSoC resets the resource state between scheduling intervals. Thus,

the interconnects and memory subsystem of the CompSoC are organized to

decrease interferences with other communicational elements by controlling

the accesses. This makes it slower due to some buffering and WCET estima-

tions but fulfills the composability and predictability requirements in terms

of communication times. Regarding operating system support for different

criticality tasks, by using a hypervisor-based software approach, a description

is annotated to each application code to make it ready to start the execution

on a specific physical tile on the virtual platform. Also, CompSoC provides

time-triggered scheduling. This causes CompSoC to be able to execute appli-

cations with different timing requirements simultaneously [39]. In this multi-

core platform, the potentiality of processor separation from each other is very

important to reduce the probability of interferences. Moreover, this platform

can exchange the Microblaze processor with the ARM processor in the tiles

to improve the high-performance features of the platform, which is an out-

standing feature in multi-core scenarios. In a switchable platform, it could be

configured in case of predictable and high-performance computation, which

processor gets the priority of accessing the NoC. This architecture puts the

processors in independent tiles with independent local memories to avoid the

20

interferences of the shared memory. If we want to consider it as a platform

capable of switching between different modes at run-time, it could be easily

available thanks to the software features of the virtual platform. Based on the

explained architectural characteristics of the CompSoC virtual platform, it

could be understood that the application execution is completely partitioned,

so executed applications cannot affect others. Furthermore, the utilization of

shared resources for different applications with different criticality levels has

been done thanks to the composability of the platform efficiently. The stable

software scheduling, predictable hardware design components, and average

performance of the processor make this platform a good choice as a run-time

switchable platform. The only drawback of CompSoC is that it does not

support high-performance execution.

3.2.2 PATMOS

Generally, T-CREST [40] is optimized to be a time-predictable multi-core

platform. From the processor point of view, PATMOS is used as the fully

predictable core in the T-CREST platform that provides tight integration of

the compiler and WCET analysis to enable higher processor utilization [41].

On the other hand, to enable the overall predictability of the whole plat-

form, T-CREST benefits from system partitioning to assign each real-time

application a unique execution environment (hardware resources) and avoid

other applications using this exclusive hardware. So, the assumption is that

there is enough hardware to isolate for executing a program, which is costly

but practical. It statically serves the WCET execution time with average

performance output and does not waste much performance. PATMOS con-

tains size configurable method, data, and stack caches and two SPMs, but for

T-CREST as a multi-core platform, the SPM usage is under MOSSCA oper-

ating system control [42]. Regarding operating system support, the TDMA

based memory access arbitration is used for fair and predictable accessing

the controller. Moreover, a combination of the time-predictable memory tree

and the time-predictable memory controller is needed on a multi-core system.

T-CREST interconnects consist of predictable NoC, which is used to com-

21

municate between processors to enable time-predictable usage of a shared

resource. Thus, PATMOS features the first four requirements because the

processor has enough potential as an average case performance and a fully

predictable processor. Hardware-based isolation is considered as a secure so-

lution for predictability and also, in this case, provides good performance.

The only drawback is that it is not the case in many other architectures

due to hardware resources limitations. In addition, the PATMOS pipeline is

configurable to be either a standard dual-issue for good performance without

the unpredictability of dynamic instruction issuing or a single issue to occupy

less area. Since T-CREST has been designed as a fully predictable platform,

it does not support switching for mixed workloads. However, PATMOS is

applicable to be a switchable platform due to its predictability and perfor-

mance features, among many other available architectures. Nevertheless, it

should be considered that this implementation is costly and also requires

some modifications to separate between mixed HP and RT workloads.

3.2.3 FlexPRET

FlexPRET [43] is a 32-bit, 5-stage, a fine-grained multithreaded processor

with software-controlled, flexible thread scheduling. It employs a classical

RISC 5-stage pipeline with instruction fetch (F), decode (D), execute (E),

memory (M), and writeback (W). FlexPRET naturally offers running soft-

real-time and hard-real-time workloads in parallel. It supports an arbitrary

interleaving of threads, controlled by a thread scheduler in a mixed-criticality

system to reduce hardware costs. Applications executed in a hard real-time

thread execute in predictable and reproducible time. Furthermore, for these

threads, the execution times are composable because FlexPRET utilized

hardware-based isolation for these HRTTs, so this is an excellent example

of self composability inside the pipeline. Another aspect of FlexPRET is

using instruction and data SPMs to avoid the unpredictability issues of the

caches. Since FlexPRET is only a processor core and not an entire platform,

no statement can be made concerning the properties of the communication

times. One solution for operating system support for task scheduling could

22

have been software-based isolation provided by an RTOS, but the operat-

ing system support is not available so far. Compared with a predictable

PATMOS processor in the T-CREST platform, FlexPRET supports execut-

ing tasks with lower predictability using soft real-time threads and avoids

underutilization of resources. The overall performance of this processor is

limited by the in-order pipeline design. In addition, the execution mode

switching is available for hard and soft real-time applications and not for

high-performance and real-time applications.

3.2.4 SPEAR

SPEAR consists of a 16-bit processor core with three pipeline stages to

achieve reasonable performance; however, in SPEAR2 [44] the performance

feature is improved by adding memory stage to the pipeline, but it is still far

from performance optimizations. The goal of SPEAR architecture is deter-

ministic timing behavior within the processor core. Moreover, SPEAR offers

a constant one-clock cycle execution time for each instruction by avoiding

all pipeline data and control hazards to keep the processor predictable. It

fulfills the predictability of execution time requirement. Since it is a sin-

gle processor that is optimized only for hard real-time workloads, the com-

posability features and predictability for communication purposes are not

available. Regarding the memory architecture, there are 4kB data and four

kB instructions on-chip memories and external caches. SPEAR neither sup-

ports an operating system nor a switching environment for mixed workloads.

Although SPEAR has a highly efficient architecture suitable for hard real-

time applications, it needs more optimization in the memory subsystem in

order to increase the capability of utilizing it for some average-performance

workloads.

23

3.3 Analysis of suitability of existing plat-

forms for switchable architecture de-

sign

In Section 2.2.2 the requirements for switchable processor design were demon-

strated. As a general assessment, we have provided Table 3.1 to check for the

processor whether it fulfills each specific requirement or not. In this regard,

we introduced a scoring scheme to clarify to what extent they fulfill each re-

quirement. Therefore, ++ is assigned to a processor that completely fulfills

that requirement without needing any other modification in the microarchi-

tectures or software level. + assigned to a processor capable of fulfilling that

requirement but with minor modification and - is for the platform that does

not perform well on that requirement. Finally, for the platforms that cor-

responding requirement is not defined or is not possible to progress in the

sense of that requirement na assigned as not applicable.

In order to illustrate a summary of the results collected in this table, we can

see that in the Zynq 7000, it is possible to support execution mode switching

but not in a single core rather than using both PL and PS parts. Comp-

SoC and PATMOS include average-case performance processors that fulfill

most requirements because of the capability of providing high timing pre-

dictability levels. However, the exciting feature of the CompSoC platform

is its potential to execute different workloads. Therefore, the CompSoC ful-

fills all requirements. Altogether, like Zynq 7000, this could be considered

a multi-core solution, but the advantage is that CompSoC can fulfill all re-

quirements. In addition, FlexPRET as a RISC-V-based processor naturally

offers the execution mode switching for hard and soft real-time applications

but not for high-performance and real-time applications. Ariane offers better

performance than FlexPRET, but the caches and memory subsystem were

not designed for predictability.

24

Table 3.1: Comparison of different processors and platforms based on the
requirements of switchable architecture design

Platform

require-
ments

Pred.
execu-
tion
times

General
OS

support
HP

feature

Execution
mode

switching

CVA6 (Ariane) - + + na
Raspberry Pi 4 - + + -
NVIDIA Jetson - + + -

XLINX Zynq 7000 + + + na
CoMPSoC + + + +
PATMOS + + + na

FlexPRET + - + +
SPEAR + - - na

proposed + + + +

3.4 Gap analysis

Based on the literature review, this section maps existing platforms to the

scope of this work to identify the research gap. To this end, related work is

identified from R1 to R8. The following list shows the related work that has

been mapped to the scope:

R1 Ariane an embedded application class RISC-V based platform [3] (see

description in Section 3.1.1)

R2 Raspberry Pi 4 an average-case performance ARM-based platform [34]

(see description in Section 3.1.2)

R3 NVIDIA Jetson Xavier a high-performance platform [35] (see descrip-

tion in Section 3.1.3)

R4 Zynq 7000 [36] (see description in Section 3.1.4)

R5 CompSoC virtual platform [37] (see description in Section 3.2.1)

25

R6 PATMOS fully predictable processor [41] (see description in Section

3.2.2)

R7 FlexPRET predictable processor [39] (see description in Section 3.2.3)

R8 SPEAR predictable processor [44] (see description in Section 3.2.4)

Figure 3.1 demonstrates the diagram resulting from mapping related

work to the scope, which comprises two research areas: embedded high-

performance platforms, where speed is more important than meeting the

deadline for real-time tasks; real-time platforms, where executing a real-time

task within the deadline is essential. However, none of them describes how

they can be implemented so that it will be possible to run different software

programs on a single-core platform where it is possible to meet the deadline

for the real-time workloads as well as supporting non-real-time workloads.

Although, as shown in the figure, R4 and R5 could be named as plat-

forms that can support mode switching, the solution they may provide for

our research will be in the area of multi-core implementation where the imple-

mentation is costly. Our goal is to fill this gap for single-core implementation

in the RISC-V ecosystem.

26

HP SW RT SW

OS

CPU HW

PR HW

R8R7

R6R5

R4

R2

R1

R3

Figure 3.1: Related work analysis. Mapping related work to the scope.

27

28

Chapter 4

Thesis Contributions

This thesis covered the fundamentals of embedded system development for

both real-time and high-performance systems and explained the challenges in

the specification and development of the systems that can fulfill requirements

for these different platforms. In addition, state-of-the-art platforms, exclud-

ing their microarchitecture, were introduced to be familiar with the benefits

and drawbacks of these platforms for different criticality execution environ-

ments. From the gap analysis (see Section 3.4), we concluded that a couple of

available platforms could provide solutions for both RT and HP applications;

however, not for single-core implementation. In Chapter 4, contributions and

assumptions of the thesis will be discussed.

4.1 Constraints

Before introducing the contributions, the following assumptions and con-

straints need to be determined:

A&C1 The platform we are targeting to propose our mode switchable de-

sign should be single-core, and we are not looking at multi-core solutions.

A&C2 It should be applicable in the RISC-V ecosystem. Therefore we are

not comparing this approach with any other architecture.

29

A&C3 Since we are supporting both embedded high-performance and tim-

ing predictable workloads, the platform should include a high-performance

class processor with the capability of adopting for real-time application by

performing architectural and software modifications or manipulations.

A&C4 We are looking at a solution with light operating system support

regarding the software complexity. Therefore, we are not comparing our

approach with Linux-based or hypervisor-based platforms.

A&C5 We are not focusing on dynamic memory allocation for real-time

tasks and scheduling these tasks statically before actual execution at run-

time.

4.2 Contributions

This research work aims to propose a RISC-V-based processor with two dif-

ferent configurations (real-time and non-real-time) capable of switching be-

tween these two modes. The reason for designing such a system is to have

the advantages of predictable and high-performance in one microarchitecture,

which to the best of our knowledge, is not available in any other architecture

in the RISC-V ecosystem. Therefore, for RISC-V, there is a dedicated need

to satisfy more real-time requirements on an embedded application class pro-

cessor. Therefore, this is not well addressed in the ecosystem. Altogether,

the contributions of this thesis are:

Contribution C1: Timing analysis of different memory architecture con-

figurations with respect to performance and predictability on Ariane plat-

form.

Before starting any implementation, it is needed to perform a timing anal-

ysis to assess the impact of the memory subsystem of the Ariane processor

to understand to what extent the caches and the DRAM is predictable. So,

by completing this evaluation, we were able to think about a way to improve

the platform’s time-predictability for our real-time mode.

30

Contribution C2: Implementation of Static Random Access Memory

(SRAM) into the memory subsystem of Ariane platform as a predictable

building block for real-time applications. Ariane currently lacks this feature.

The hardware side of this project will consist of a modified Ariane proces-

sor core. The hardware is made ready to switch between high-performance

and real-time mode by exploiting more predictable components compared to

the Ariane platform. The idea is to benefit from the default platform con-

figuration, including caches and DRAM for the high-performance mode, and

design and implement a predictable platform for the real-time mode. In con-

nection with improvements to the predictability of the hardware, we injected

a SRAM into the processor implementation such that we can guarantee a

predictable execution time for real-time tasks.

Contribution C3: Provide operating system support for switching tasks

with different criticality levels using freeRTOS on the Ariane processor.

The software (operating system) will be able to trigger mode switch-

ing of the hardware. Tasks will be classified as Real-Time (RT) and High-

Performance (HP) and executed in the corresponding hardware mode. The

operating system will be able to guarantee the task scheduling for predictable

execution of the real-time tasks with reasonable overhead, using hardware

features of the processor. The idea is to configure a model that gives prior-

ity to real-time tasks in specific time frames which are repeated periodically

while allowing the non-real-time tasks to be scheduled in unused slacks in the

remaining time of each frame [45]. By executing different tasks with different

levels of criticality, we improve the composability of the execution time on

this platform.

Contribution C4: Propose an automatic measurement framework to

capture the applications timing behavior for different compiler or execution

configurations.

By mapping the presented contributions to the scope of the thesis, as

shown in Figure 4.1, the main focus is on improving the overlapped area.

31

HP SW RT SW

OS

CPU HW

PR HW

C2C1

C3

Figure 4.1: Contributions analysis. Mapping contributions to the scope.

32

Chapter 5

Concept

This section presents how it is possible to conceptually realize the idea of

switchable architecture design in a single-core platform by providing a for-

mal formulation and execution examples in theory. Hence, The first section

presents an overview of the concept. Afterward, Section 5.2 introduces the

application and execution model for the proposed concept. Then Section 5.3

describes how the memory architecture could look like if the concept applies

to real hardware. Finally, the memory hierarchy with the data path for each

execution mode will be depicted.

5.1 An overview of mode switchable con-

cept

This project aims to design a system that by construction can fulfill the tim-

ing requirement of the real-time tasks executed by a time predictable archi-

tecture configuration and the non-real-time tasks executed by a performance-

optimized architecture configuration. To realize this objective, we require a

mode switchable architecture including RT and non-RT architecture config-

urations. The mode switchable architecture refers to the capability of differ-

ent applications with different timing requirements on a single-core platform.

Consequently, the platform itself, excluding any ISA, should have the ca-

pability to execute real-time and non-real-time applications without losing

33

either performance for non-real-time tasks or timing predictability for real-

time tasks. So, we categorize all executing applications into two modes before

run-time: applications in real-time mode and applications in non-real-time

mode. Each of these two modes has specific characteristics. In this section,

these two modes will be introduced, and the properties of each mode will be

explained.

5.1.1 Characteristics of Real-Time mode

In a mode switchable platform, a task is in real-time mode if it needs guar-

anteeing execution within its deadline and other tasks cannot interrupt the

execution of the RT task. We are not considering hard-real-time and soft-

real-time tasks in different categories to simplify modeling. So, we consider

all RT tasks in the same workload in real-time mode.

5.1.2 Characteristics of Non-Real-Time mode

Some applications do not have real-time requirements. For non-real-time

tasks, we apply the best effort policy, which means the tasks executing in

this architecture configuration should do the computation as fast as possible.

In a mode switchable platform, a task is in non-real-time mode; if this task

is executing in the background continuously or within the slacks of executing

the real-time tasks. However, it should be guaranteed that real-time tasks

should be executed without any timing constraints.

5.2 Switchable Architecture Model Defi-

nition

The mode switchable platform is a processor that executes a set of tasks.

According to the static scheduling policy, one or some of the tasks could be

periodic, which is defined prior to the execution. Similarly, some tasks could

be executed in the background as non-real-time programs. The following

34

subsections define the main application and execution modeling elements

through formal notation.

5.2.1 Application model

Definition 2. The application model A is defined as a tuple pT,S,Mq con-

sisting of a set of tasks T , switching modes S, and memory mapping M .

A task ti P T={B, P} where B is a background task which is always non-

real-time and consisting of a chain of functions fi ; and P is a periodic task

which is always real-time. Switching mode si P S={R, N} where R is a real-

time task and N is a non-real-time task. Memory mapping M differentiates

the tasks based on their switching modes to be mapped on a predictable or

high-performance memory region.

Definition 3. There are some other constraints for a periodic task P . Ac-

cordingly, P could be represented by a tuple ppi,di,ui,ciq. pi is a period of

the task, di is the task’s deadline, ui is upper bound or WCET, and finally,

ci is the capacity of the task that should be smaller or equal to the size of

memory.

5.2.2 Execution model

This section explains the execution semantics in a mode switchable environ-

ment. Tasks should be mapped statically before execution in the real-time

mode, and in non-real-time mode, tasks will be dynamically mapped dur-

ing execution. The run-time model is inspired by [45], which separates the

estimated resource temporally into frames. The frames will be executed ac-

cording to the type of applications (Real-time and Non-real-time).

Definition 4. The execution model E consists of a set of frames {fj}. The

frame size F is set through the maximum execution duration of the periodic

tasks. This could be determined by offline analysis before actual execution

on the platform. Thus, the scheduling policy for each P should be static

before execution, and the scheduling policy for each B could be dynamic

during run-time. Furthermore, in order to achieve more performance, in the

35

case of execution of the periodic task P does not take until the end of the

frame, the background task B in the slack phase could be scheduled during

run-time so that we do not lose the time until the end of the frame. Based on

the constraints of mode switchable architecture design of this thesis (Section

4.1) and the previous sections in this chapter, two examples are introduced

in the following as probable scenarios. Figure 5.1 and Figure 5.2 depict these

two example executions.

5.2.3 Example of Application Execution

To explain the example shown in Figure 5.1 and based on the application

model described in Section 5.2.1, three tasks with different timing require-

ments are running that in this case, two of them are periodic tasks (T1 and

T2), and one of them is a background task B. T1 and T2 are running in the

switching mode R while B is running in the switching mode N . Accordingly,

T1 and T2 conceptually should be mapped to the predictable memory region,

and B should be mapped to the high-performance memory region. When we

look at the first two tasks, on the one hand, we do not have preemption

between two periodic tasks (real-time) because T1 and T2 were statically

scheduled with known WCET before executing on a real platform. On the

other hand, based on this static scheduling, we should know and guarantee

that T1 and T2 execute before the frame ends. The frame size is calculated

based on the WCET of the slowest periodic task, which is, in this exam-

ple T1. We can observe that execution of the T2 finished before the frame

ends. Therefore, conceptually it is possible to use the remained time frame

for executing the background task. So they should be executed without any

timing issue. Nevertheless, when there is no real-time task running, and

background task B starts executing, it is always possible to interrupt this

task (slim lanes show when an interrupt occurs and the scheduler decides to

execute the real-time task). Therefore, underneath, we can observe that T1

and T2 are executing by RT mode, which could guarantee the predictable

execution on the hardware, while B executes by the HP mode, which is the

default architecture configuration without a predictable execution guarantee.

36

t

B

T1

T2

Mode RT HP RT HP RT

Figure 5.1: Example execution trace of two execution modes representing
two Real-time and one Non-real-time task execution behavior

Figure 5.2, shows another scenario in which three tasks are running, and

in this case, two of them are background tasks (B1 and B2), and one of

them is a periodic task T . T runs in the switching mode R while B1 and

B2 run in the switching mode N . Accordingly, T should be mapped to the

predictable memory region, while B1 and B2 should be mapped to the high-

performance memory region. So the first two tasks should be executed in

the slacks that no real-time task is executing. We can notice that they are

running in the first three execution frames. There is no preemption between

these two background tasks and just a frame change based on the scheduling

policy. However, for the periodic task based on this static scheduling, we

know that it should be executed without any timing issue. Hence, the same

as the previous figure, slim lanes show when a background task should be

interrupted, and the real-time task execution should be triggered.

5.3 Architectural Overview of Switch-

able Design

The concept of this thesis explains different modes and the integration of

these modes. Thus different steps have to be done from the preparation to

execution based on whether a task is real-time or non-real-time. This section

explains the concept from an architectural perspective.

37

t

B1

B2

T

Mode RT HP RT HP RT

Figure 5.2: Example execution trace of two execution modes representing
one Real-time and two Non-real-time task execution behavior

5.3.1 Memory requirements for preparation setup

A predictable memory should support the real-time section. In this thesis,

SRAM is used as a memory subsection to guarantee a predictable execution

time of the real-time tasks. The response time of memory requests in DRAM

is highly variable, which has an impact on the execution time in the range of

a few clock cycles to tens of cycles. In addition, refresh cycles make DRAM

unpredictable. SRAM is known as an expensive, limited resource in computer

architecture. Therefore, we need to do a pre-analysis step on our real-time

application code to obtain an upper bound for the memory requirements.

We can then combine these upper bounds for all real-time tasks to get the

acsram amount that our platform must support. An accurate pre-analysis is

not the focus of this work, but we will briefly introduce our approach in the

following.

To analyze the memory requirements, we will first need to enumerate

the capacity requirements for each benchmark program to be executed from

within the SRAM. The following list shows the sources of memory consump-

tion for each benchmark program: program code, static data, dynamic data,

and execution stack.

The size of the code and static data can be obtained precisely from the

image after compilation. Generally, the estimation of dynamic data is com-

plicated and usually requires either a measurement approach with extensive

testing or some static analysis, potentially combined with a coding style lim-

38

iting dynamic allocation to cases the analyzer can understand [46]. However,

we have excluded dynamic allocation in real-time code as a prerequisite in

our case. The execution stack is also naturally dynamic, and estimating the

maximum stack depth is challenging in an embedded system due to size lim-

itations. The most critical thing would be large stack allocation and deep

recursion. We know that all programs will match to the stack size based on

execution time measurements, so we did not focus intensely on this part.

As part of pre-analysis, memory mapping could be formalized through

a size-counting function because the physical memory sizes (especially the

SRAM size) are limited. We have to prove if all real-time tasks fit into the

SRAM. This could be formalized as
ř

iPI Si ď C where C is the capacity of

the SRAM, I is the set of all real time tasks and Si is the size of task i P I.

5.3.2 Architectural overview

As shown in the Figure 5.3 we have two modes (real-time & non-real-time).

The non-real-time mode here means that a task is being executed in this

mode can be preempted. In the same way, we conceptually do not want a

task belonging to real-time mode to be preempted. Then we have the config-

uration as part of the kernel, which links to memory mapping (static memory

allocation based on the task criticality), e.g., T1 should be mapped in a spe-

cific memory region in SRAM. It is automatically configured by freeRTOS

or a bare-metal implementation so that it will be executed from within the

specific memory region that T1 belongs to, which is for the T1 predictable

memory section and, e.g., for the T4 high-performance memory section.

5.3.3 Memory hierarchy for real-time execution

To explain the concept precisely, we can zoom in to the memory parts and

see how the hardware is modified to execute each task from each part of the

memory subsystem that it belongs to, based on the criticality level (Real-time

or non-real-time). Therefore, as depicted in Figure 5.4 for the predictable

memory section, we bypass the cache. Then attach the SRAM for executing

real-time applications employing the SRAM instead of DRAM or cache.

39

T1 T2 T3 T4 T5 T6

Real-time Non-real-time

Application

Compilation

Memory Mapping

Linking

Compilation & Linking

mapping check schedulability check

estimate memory
requirements

estimate execution
time

preparation setup

Configuration

FreeRTOS/ Bare Metal

Run-time

Predictable
memory section

High-performance
memory section

Single core Platform

Figure 5.3: Overview of the concept implementation layers on a target plat-
form.

40

RT-mode HP-mode

CPU

cache

Memory Interconnect

DRAMSRAM

Figure 5.4: Data path of the predictable memory section

5.3.4 Memory hierarchy for non-real-time execu-

tion

We had the processor on top, the cache, and the DRAM as available hardware

for the high-performance memory section (Figure 5.5). In the evaluation pro-

cess, we use these different memory configurations to measure the execution

time based on the tasks executed from which part of the memory subsystem.

41

RT-mode HP-mode

CPU

cache

Memory Interconnect

DRAMSRAM

Figure 5.5: Data path of the high-performance memory section

42

Chapter 6

Design Flow and

Implementation

This work aims to propose a processor in the RISC-V ecosystem with two

different configurations (HP and RT) with the capability of switching between

these two modes. The hardware side of this project consists of a modified

Ariane platform by exploiting more predictable components comparing to

what currently exists in the Ariane platform. The approach is to benefit from

the default platform configuration for the HP mode. Additionally, design

and implement a predictable platform for the RT mode in a mode switchable

scenario.

Chapter 6 presents hardware, toolchain, and software layers and how to

apply the concept to an implemetation from both hardware and software

perspectives. The developed measurement framework will be introduced for

evaluating execution time behavior for different architecture configurations.

The realization of the project by using different layers in order to fulfill the

concept requirements here will be illustrated.

6.1 Implementation: Hardware layer

As a proof of concept, our approach has been implemented on the Ariane core.

In order to realize the Ariane core, we used an FPGA emulation. By using an

43

Figure 6.1: The Genesys2 FPGA board (from [47]).

FPGA, we can adapt the implementation to our specific needs. It could even

allow us to implement a modified version of the Ariane core with minimal

effort. For our implementation, the Genesys 2 FPGA board by Digilent

was used (see Figure 6.1). The Genesys 2 Board features a Xilinx Kintex

7 FPGA as well as a variety of peripheral connectors [47]. The bitstream

was generated directly from the Ariane source code using the Xilinx Vivado

2018.3 synthesis suite [48] to program the FPGA. The resulting bitstream is

used to program the Genesys 2 board using Vivado.

6.1.1 Target implementation

Ariane is an open-source RISC-V-based processor developed by the PULP

group in ETH Zurich. It is a low area application class processor capable

of being implemented on the FPGA. Ariane is a 64 bit, single-issue, in-

order pipeline processor. It has support for hardware multiply/divide, atomic

44

memory operations, and a Floating Point Unit (FPU). Moreover, it supports

the compressed instruction set extension and the full privileged instruction

set extension.

The processor core includes L1 instruction and data caches. These caches

are tightly integrated into the core and not considered separate components

from a platform perspective. Ariane also provides several performance coun-

ters, including Control and Status Registers (CSRs), for different purposes.

CSRs control the execution mode of the core. These registers are restricted

to the same or a higher privilege level. In addition to the counters for elapsed

clock cycles and retired instructions suggested by the RISC-V specification,

Ariane supplies cache miss counters for the instruction and data cache. Also,

there is a mechanism to enable or disable these caches in software using CSRs

[3, 4].

Figure 6.2 shows an overview of the Ariane platform and available pe-

ripherals. It depicts how peripherals are connected to the core via an AXI-4

crossbar. There are two different memory interfaces available; the SRAM

interface implemented as a simple Advanced eXtensible Interface (AXI) to

on device block RAM, and the Double Data Rate (DDR) memory interface,

which needs to cross the clock domain boundary between the core clock and

the DDR memory clock and connect to the off-chip DDR memory banks.

In addition, there is the core level interrupt controler (CLINT), which no-

tably supplies timer interrupts necessary for operating system support that

is controlled via memory-mapped registers that are exposed on the AXI bus.

Lastly, there is the debug controller that connects to the JTAG port. These

peripherals are used for the implementation and evaluation.

All memory accesses by the core pass through the cache interface. This

interface consists of two seperate caches (instruction cache and data cache)

that share a single connection port to the main bus. The caches are tightly

integrated, which is why they are considered part of the core and not seperate

components. Also noteworthy are the performance counters used to perform

the timing measurements in our evaluation. These counters are also part of

the core and concepturally seperate from the memory mapped timer registers.

45

Ariane

I$ D$

Perf Counter

AXI 4 - Crossbar

CLINT Debug

JTAG

AXI 2 Mem

SRAM

AXI CDC

DDR

Figure 6.2: Overview of the evaluation platform

6.1.2 Memory system configurations

The results of our experiment show the total variance in execution times

caused by non-determinism in three different configurations. We can use the

Ariane platform’s cache-control mechanism to implement these environments.

The mechanism consists of 2 performance counters named CSRs. The CSRs

enable or disable the caches, one for the instruction cache and the other

for the data cache. Additionally, two performance counters are available to

count cache misses when the respective caches are enabled. We divided the

possible sources of non-determinism into three categories:

In the first configuration, all memory accesses are served in constant time.

This will generate baseline results where only non-determinism introduced by

microarchitectural features unrelated to the memory interface will be visible.

This environment executes each benchmark once to load all instructions in

the instruction cache and all accessed memory in the data cache. Then several

runs are executed without flushing the cache in between. If the cache is large

enough to hold all required memory (considered separately for instructions

and data), the first run will load the cache, and the subsequent runs will then

run entirely inside the cache.

In the second configuration, memory accesses are served directly by the

DRAM. The variance in the generated results will be caused either by the

46

internal features or by the memory backend. This environment could be

implemented by turning off the cache. To verify that this works as intended,

we can use two indicators. First, the cache miss counters do not count when

the caches are disabled. Therefore, no misses should be counted in this

case. Second, execution times should be significantly larger than with caches

enabled because all memory access is served from the main memory, which

is naturally much slower than the cache.

In the third configuration, we implemented a Static RAM (SRAM) to

the processor implementation to guarantee a predictable execution time for

critical tasks and reduce the variations in the memory backend. This environ-

ment could be implemented using Xilinx FPGA components and generating

the SRAM as an IP. The next step is turning off the cache and forcing the

program to be executed from the SRAM. Verification of this implementation

is the same as the previous configuration. However, we expect constant exe-

cution time with no variation and lower latency than DRAM without cache.

6.2 Implementation: Toolchain Layer and

Linking process

The allocated tasks based on the criticality level are mapped to appropriate

memory areas during the linking process. Accordingly, the operating sys-

tem and the real-time tasks are mapped into the memory area served by the

SRAM statically to maintain timing predictability execution for the real-time

task (without execution time variance). On the other hand, since the FreeR-

TOS is not large, it is worth keeping it in the predictable memory section

to avoid unpredictable artifacts from the operating system side. Similarly,

high-performance tasks are mapped into memory areas served by DRAM. For

executing the HP code, dynamic allocations are always mapped to DRAM.

Since the caches are enabled for these areas, they can execute with maximal

performance.

The separation into different memory areas affects both code and static

data sections. On the developer side, HP and RT codes are separated into

47

different compilation units. Afterward, the linker maps these units as nec-

essary. Consequently, it is the programmer’s responsibility not to use HP

data from RT code, as this would break the real-time guarantees for the RT

section. Dynamic memory allocation is usually by design incompatible with

real-time requirements. Therefore, we support dynamic allocation only for

HP tasks and static allocation for RT tasks.

6.3 Implementation: Software layer

One aspect of the software layer is preparing the system for the execution time

measurements and calculating the WCET of benchmarks by measurement.

The other aspect, which is an essential part, is the operating system support.

The following subsections will explain the mentioned software layer aspects

in more detail.

6.3.1 Preparation setup

As mentioned in Chapter 5, for executing a real-time task in a mode switch-

able architecture, we need static scheduling to guarantee execution within

its deadline by interrupting any non-real-time program. For calculating the

upper bound and the frame size for each benchmark, we must assess the

parameters mentioned in Section 5.3.1. Therefore, we need the size of each

benchmark to see whether it could fit within SRAM size and an estimation

on the WCET for each benchmark. Table 6.1 indicates the size of applica-

tions measured in bytes. The largest size is for the quicksort benchmark,

indicating 66350 bytes required memory. The size of available SRAM on the

FPGA is 1MB, providing a comfortable margin.

One of the most common methods to determine the WCET is

measurement-based WCET Analysis. In this method, the program code is

executed on the hardware for 100 iterations. Table 6.2 shows the worst-case

execution time we observed during the execution process for each of the

executed TACLE benchmark programs on the Ariane platform. The WCET

is measured by executing benchmarks using a measurement framework

48

Table 6.1: Size of static memory for different TACLE benchmarks

benchmark static memory size in bytes
binarysearch 1658
bitcount 2652
bitonic 2762
bsort 1092
complex updates 3794
cosf 5282
countnegative 2422
deg2rad 458
fac 508
filterbank 1436
fir2dim 1622
iir 994
insertsort 1160
isqrt 5798
jfdctint 1518
lms 2932
ludcmp 24314
matrix1 2052
md5 8364
prime 796
rad2deg 466
recursion 490
st 10090

iteratively, and we know how long it takes each program to execute in the

worst case based on the measurement. Therefore, in this project, we chose

the frame sizes appropriately based on the measurements because there is a

specific FPGA as a hardware to host the implementation. Therefore, static

WCET analysis is not in the scope of this thesis.

6.3.2 Operating system support

The Ariane processor supports executing general-purpose operating systems,

notably the Linux operating system. In principle, adding the real-time capa-

49

Table 6.2: WCET estimate for different TACLE benchmarks

benchmark WCET estimate in cycles
binarysearch 1022
bitcount 19089
bitonic 16582
bsort 60269
complex updates 1824
cosf 17567
countnegative 17837
deg2rad 6883
fac 250
filterbank 2928201
fir2dim 5022
iir 1645
insertsort 1364
isqrt 526734
jfdctint 3614
lms 121006
ludcmp 2394
matrix1 7569
md5 9830954
pm 5730584
prime 416
rad2deg 6866
recursion 3328
st 125903

bility does not change this, and it is indeed possible to benefit from a Linux

as a strong OS for task scheduling. However, to execute a real-time code with

timing predictability requirements, some features in an operating system are

required, which are not usually present in a general-purpose operating sys-

tem. For this reason, FreeRTOS, an open-source real-time operating system,

was chosen for this project.

FreeRTOS can be constructed with approximately twenty different com-

pilers and run on more than thirty different processor architectures. In addi-

tion, FreeRTOS can be considered a library that provides multitasking capa-

50

bilities. Every FreeRTOS port comes with at least one pre-configured demo

application that should build with no errors or warnings [49, 50]. FreeRTOS

datasheet recommends that new projects be created by adapting one of these

available projects. However, it is not desirable in this project because, in de-

mos, many other irrelevant components were involved that we did not need

most of them. So the project was created from scratch.

6.3.3 Realization of hybrid execution for mixed-

Critical applications

Figure 6.3 is constructed to verify the FreeRTOS scheduler. It just used an

artificial busy loop for each task running on the spike simulator. It executes

three tasks. Two tasks are executed as background tasks that run continu-

ously. The third task is a periodic task (RT) with a higher priority. All tasks

collect periodic time samples from the platform clock, separated by a busy

wait for a predefined number of instructions. The implementation results

confirmed that the operating system would alternatingly schedule the back-

ground tasks whenever RT task is not executed. As soon as the RT task is

ready to execute, it will be scheduled instead of any background tasks until

it has finished. Then, one of the background tasks resumes and computes

as much as possible and as fast as possible in the slack period. Regarding

the scheduling of two background tasks, the operating system’s scheduler

alternated between them because we assigned both tasks an equal priority.

Therefore, on every interrupt, the OS decides which task to execute.

Figure 6.4 shows a real experiment on the Ariane platform. It replaces the

busy loop between time samples in the periodic task of the first experiment

by a benchmark program. This real example is executed based on the second

execution scenario model introduced in section 5.2.3. Here the results show

that the same framework also works with realistic workloads. In this case,

execution time measurement was performed with binarysearch benchmark as

a periodic task.

51

0 50000 100000 150000 200000 250000 300000
Clock cycles (relative to first data point)

Back-
ground
Task 2

Back-
ground
Task 1

RT
Task

Figure 6.3: Validation of mode switching in spike using two background task
and a periodic task

0 500000 1000000 1500000 2000000 2500000 3000000
Clock cycles (relative to first data point)

Back-
ground
Task 2

Back-
ground
Task 1

RT
Task

Figure 6.4: Mode switching execution time measurement with binarysearch
benchmark as a periodic task

52

6.4 Design a framework for execution

time measurment

Figure 6.5 represents different steps that were accomplished to execute the

benchmarks and collect the results in the bare metal case. Therefore, in the

baremetal case, we want to execute benchmarks from three different memory

regions one by one iteratively without involving OS. Accordingly, in this case,

the execution was separated into two parts. The first part, which can be seen

on top of Figure 6.5 are the stages that trigger the execution on the host side,

and the second part, which could be seen at the bottom of the figure 6.5 are

the stages that do the execution on the target platform, which is Ariane

64-bit with RISC-V based ISA single-core platform. Hence, we can observe

a framework loop on the host computer. So first step is the compilation

and linking to a specific memory region. Technically, this is not part of

the measurement loop, but conceptually it is in a loop because we perform

the compilation and linking process for all benchmarks. Then we load the

program (only upload the compiled program to the specific memory region

on the platform) and finally execute the program on the target platform.

At this point, the host computer waits for the breakpoint from the Ariane

platform and then collects the results. These steps were done via gdb (GNU

Debugger).

The second part of the execution could be seen on the platform side

at the bottom of Figure 6.5. Accordingly, we do the initialization to set

up the Ariane platform to execute C code. The execution repeats for

some iterations. Subsequently, when the breakpoint signals the end of

the measurement, the results are stored on the platform in a memory

array. Eventually, we can collect the results when execution is done

and return them to the host side inside the gdb. We are now done

with one benchmark, and we repeat the experiment for one of the three

mentioned configurations in section 6.1.3 for all benchmarks. Consequently,

the execution time measurements were performed for all three memory

subsystem configurations: cache, DRAM, and SRAM.

53

compile and link

load

execute

collect results

loop over benchmark programs

host

initialize

measure

store result

loop

breakpoint

results

infrastructure

benchmark program

platform

Figure 6.5: Baremetal execution flow

54

Figure 6.6 depicts different steps that were performed to trigger the ex-

ecution of different benchmarks using the freeRTOS operating system. So

with this setup, the mode switching scenario for executing different tasks

with the different real-time requirements will be explained. The host part

is the same as the previous figure, so the framework loop on the host com-

puter, compilation, assigning execution to the processor platform, waiting for

the breakpoint, and finally collecting the results from the platform with the

debugger.

However, we have a periodic task as a real-time program besides two

background tasks as two high-performance programs (non-real-time tasks).

The operating system also prioritizes the execution of these programs on

the platform side. In the previous setup, we had several benchmarks that

were required to be executed and measure the execution time, while now

there is an entirely different scenario. We have a composition of three tasks

that are running according to the real-time requirements of each task. Each

benchmark could be executed as a real-time task in this scenario.

Similarly, we have an initialization code on the platform side, but the dif-

ference is that it initializes the platform and initializes the operating system.

Then we have OS main loop. When we have no real-time task to execute,

each of these two background tasks should execute. This process could be

seen in the very bottom yellow diagram named ”HP-mode”. The benchmark

task, which is our real-time task, is being executed after getting the priority

of the operating system. The real-time benchmark task periodically gener-

ates and collects the timestamps. So we collect the time stamp, execute the

benchmark, then collect the time stamp again and do this for a group of

iterations. The termination task executes once at the beginning, sets the

timer, and gives the controller to the kernel. As soon as interrupt execution

occurs, it returns the control to the host. Therefore, it does not disturb the

measurement. Furthermore, it does not collect any timestamps; this process

is managed by freeRTOS.

In the benchmark task and termination task box, the delay functions are

operating system calls. The benchmark loop executes uninterrupted by the

operating system. So it is required to operate the delay function and then

55

wait for the OS cycles The example of defining the tasks in Listing 1 also

illustrates the process.

Listing 1: FreeRTOS initialization C code assigning static priorities to dif-
ferent tasks

1 xTaskCreate(

2 task_benchmark, // task function

3 "realtime_task", // task name (debugging only)

4 configMINIMAL_STACK_SIZE, // stack size

5 NULL, // user data pointer

6 2, // static priority

7 NULL); // optional, set to NULL

8 xTaskCreate(task_background, "background_task_1",

9 configMINIMAL_STACK_SIZE, NULL, 1, NULL);

10 xTaskCreate(task_background, "background_task_2",

11 configMINIMAL_STACK_SIZE, NULL, 1, NULL);

12 xTaskCreate(task_interrupt, "task_interrupt",

13 configMINIMAL_STACK_SIZE, NULL, 3, NULL);

6.5 Summary

This chapter presented the layers corresponding to design, implementation,

and evaluation. First, the hardware is made ready to implement Ariane

on the FPGA. Later, the measurement infrastructure is integrated with the

hardware implementation to evaluate the execution time for different memory

system configurations, including cache, DRAM, or SRAM. To prepare exe-

cutable binaries from the toolchain perspective for our evaluation platform

on the FPGA, we need to choose a compiler and a standard ISA configura-

tion in the RISC-V ecosystem. After that, the linking process enables us to

link these binaries to the appropriate memory area based on the real-time

requirement of the application. Regarding the software layer, a real-time

operating system, FreeRTOS, manages the execution of the tasks based on

the priorities on the Ariane single-core platform. The measurement infras-

tructure could be instantiated in two categories: baremetal and FreeRTOS.

In the baremetal case, each benchmark’s execution was done in isolation and

56

compile and link

load

execute

collect results

loop over benchmark programs

host

delay

breakpoint

termination task

initialize

OS main loop

measure loop

delay

loop

benchmark task

busy loop

background tasks

benchmark program

results

RT-mode

HP-mode

platform

Figure 6.6: FreeRTOS execution flow

57

without interfering with another task. However, for FreeRTOS, the execu-

tion was analyzed in a composition scenario to show if the idea of switching

between real-time and high-performance works.

58

Chapter 7

Evaluation Process and

Results

The following sections evaluate the execution time results corresponding to

different memory configurations described in Chapter 6. Hence, first sec-

tion presents the evaluation setup, including a debugger, openOCD, and the

benchmark suite. Afterward, Section 7.2 introduces the different memory

configurations. Then Section 7.3 describes the evaluation of execution time

analysis in composition based on the concept implementation. Finally, Sec-

tion 7.4 evaluates the whole approach and compares the implemented mode

switchable architecture between other available architectures in the RISC-V

ecosystem.

7.1 Evaluation Setup

The TACLe benchmark suite [51] as a good collection of embedded

benchmarks for real-time systems were selected for our experiments because

the TACLe team collected open-source programs, and all of them are

self-contained without any dependencies. We need benchmarks to measure

the execution times from different memory regions and show the predictable

behavior of these different memories. In order to control the execution within

the platform, we must devise measurement instrumentation which is not a

59

trivial task. Therefore, we are inspired by the automated benchmarking

framework proposed in [?] for the execution time measurement. The

measurements were executed using 100 repetitions. Initialization and

measurements are performed in a wrapper implemented in an assembler

that contains a call to the main function. This function is expected to take

no arguments and return a single integer. Furthermore, the results were

generated by getting benefits from the built-in Ariane performance counters

and transmitting the results using the existing debug link.

7.1.1 TACLE benchmark Programs

To evaluate the platform, we chose to measure the execution of benchmark

programs. As a source of benchmark programs, we chose the TACLE bench-

mark suite. This suite consists of a series of small benchmark programs

designed to evaluate embedded systems on a variety of different workloads.

The designers’ goal was to create benchmarks that closely reflect real world

workloads and comprehensively cover different types of load on the target

system. Furthermore, the programs are portable and not limited to any

particular architecture and do not require the presence of standard library

functions. These properties make them well suited for our purpose.

7.1.2 Benchmark Execution process

The execution of benchmarks is driven by an automation framework execut-

ing on the host system. In a preparatory phase, it is responsible for building

the target memory image. During execution, it initializes the FPGA device,

establishes a hardware debug link to the emulated Ariane processor, loads

the device with the target memory image, executes the image, and finally

extracts the result data to the host system, where it is stored for further

analysis. This process is repeated 100 times for each benchmark program.

On the target system side, measurement instrumentation is responsible for

the benchmark program’s initialization, execution, and measurement. The

individual steps will now be explained in more detail.

60

Memory image generation In this step, the platform-independent

benchmark program code and the measurement infrastructure code are

compiled and linked together into a memory image. The details of linking

and memory mapping are described in Chapter 6. The framework builds

memory images for all required benchmark programs that are used in the

later stages.

Hardware initialization As mentioned earlier, the evaluation was

performed on a Xilinx Kintex 7 FPGA device mounted on the Genesys 2

development board. Building the bitstream for this device as well as loading

it onto the FPGA is performed using the Xilinx Vivado development suite.

The task of the automation framework for this step is to pass the correct

instructions to Vivado. Listing 3 shows a script for this purpose.

Debug link Establishing the debug link is done using OpenOCD as an in-

termediary. OpenOCD is a piece of open-source software designed to trans-

late between a high-level software debugger and low-level hardware debug

interface. The Ariane distribution includes a configuration file for OpenOCD

that connects to the hardware debug interface the Ariane core exposes via a

JTAG link. From the host side, OpenOCD acts as a gdb server. This gains

us convenient access to the Ariane core using gdb on the host system.

Loading, execution and result extraction All following steps are per-

formed using that gdb interface. Listing 4 shows an abbreviated form of the

used gdb automation script. It can be seen that loading and execution can

be performed using simple gdb commands. Result extraction is only a little

more complex.

Measurement instrumentation The measurement instrumentation ex-

ecutes on the platform. It provides the main entry point for execution. It

initializes the platform and executes the benchmark program. It measures

this execution and makes the results available to the host system. The mea-

61

surement instrumentation is implemented in assembler. Listing 5 shows an

abreviated form of this code.

The first part of the code consists of platform initialization routines. This

code performs the platform-specific steps necessary to prepare the platform

to execute the benchmark programs. It also initializes the stack pointer

required by the c calling convention. There is also some code specific to the

target configuration described below.

The second part consists of the measurement loop. This loop will repeat-

edly execute the benchmark program and measure the execution time. The

measurements are performed by accessing the performance counters of the

platform. The results are stored in a memory array that is then accessed by

the host system, as explained above.

The instrumentation is able to execute the benchmark multiple times in

a loop, but one instance will only execute one benchmark program. In order

to execute all benchmarks, the instrumentation has to be built and executed

for each benchmark program separately.

7.1.3 Changes for FreeRTOS

The previous section presented the process for executing and measuring pro-

grams in the bare-metal configuration. The process for executing and mea-

suring programs in the FreeRTOS configuration is mostly similar. The dif-

ferences are during linking and in the measurement infrastructure.

Differences in linking During linking, three different components are

linked together to form the target memory image: the benchmark program,

the operating system core, and the infrastructure code. The benchmark pro-

gram is unchanged from the bare-metal configuration. The operating system

core is not present there. Furthermore, the infrastructure code is heavily

modified in the presence of the operating system.

Apart from this, the linker must now support targeting different memory

areas depending on the execution mode. In the bare-metal case, the entire

memory image was either put in SRAM or DRAM, depending on whether

62

high-performance or real-time measurement should proceed. However, the

core motivation in supporting the operating system is to support tasks in

both modes in one execution environment. To support this, since we use

static allocation for the tasks, the linker must be responsible for allocating

the tasks to the appropriate memory type.

Differences in instrumentation The instrumentation now separates into

conceptually different stages. There is code that executes before the operat-

ing system takes control, and there is code that is executed as tasks under

operating system control.

The first stage contains the platform initialization code as before. In

addition, it now needs to contain initialization routines for the operating

system itself. As a part of this, it is responsible for initializing the statically

defined tasks. The stage finishes by executing the operating system scheduler.

The second stage consists of 4 tasks. The tasks are a watchdog task, the

benchmark execution loop, and two background tasks.

The watchdog task’s only purpose is to determine when to signal to the

host environment that execution has terminated. This is implemented using

an operating system wait structure. The signal itself is emitted using the

previously explained ”ebreak” instruction.

The benchmark execution loop is similar in purpose and implementation

to the benchmark execution loop in the bare-metal instrumentation. The

difference is that it does not execute all requested iterations back to back.

Instead, it executes a few program iterations and then yields control back to

other tasks. Measuring and collection of results are performed as above.

The background tasks work by executing an infinite busy loop. The

operating system will schedule them alternating for execution. It will also

interrupt them whenever a higher priority task (the benchmark loop or the

watchdog task) is ready to execute.

63

7.2 Benchmark Execution on different

configurations on the target

In Section 7.1 the evaluation process for bare-metal and FreeRTOS experi-

ments are demonstrated. This section clarifies different configurations uti-

lized to evaluate the behavior of the memory subsystem in terms of timing

predictability. The first three subsections cover bare-metal configurations for

measuring the execution times in isolation. Finally, the last subsection will

explain the configuration to measure the execution time in the composition

scenario with the support of FreeRTOS as a management layer.

7.2.1 DRAM with cache

In this configuration, all memory accesses are served in constant time.

DRAM with cache configuration will generate baseline results where only

non-determinism introduced by microarchitectural features unrelated to

the memory interface will be visible. The environment is implemented by

executing the benchmark once to load all instructions in the instruction

cache and all accessed memory in the data cache. Then several runs are

executed without flushing the cache in between. If the cache is large enough

to hold all required memory (considered separately for instructions and

data), the first run will load the cache, and the subsequent runs will then

run entirely inside the cache.

7.2.2 DRAM without cache

In this configuration, memory accesses are served directly by the DRAM. The

variance in the generated results will be caused either by the internal features

or by the memory backend. This environment can be implemented by turning

off the cache. To verify that this works as intended, we can use two indicators.

Firstly, the cache miss counters do not count when the caches are disabled.

Therefore, no misses should be counted in this case. Secondly, because all

memory access is served from the main memory (which is naturally much

64

slower than the cache), execution times should be significantly larger than

with caches enabled. Listing 2 shows a part of the script for enabling or

disabling the cache.

Listing 2: Assembler instructions for enabeling or disabeling the first level
caches of the Ariane core

1 # turn off caches

2 csrwi 0x700, 0

3 csrwi 0x701, 0

4 # turn on caches

5 csrwi 0x700, 1

6 csrwi 0x701, 1

7.2.3 SRAM without cache

In this configuration, we injected SRAM into the processor implementation

to guarantee a predictable execution time for critical tasks and reduce the

execution time variations affected by the memory backend. This environment

could be implemented using Xilinx FPGA components and generating the

SRAM as an IP. The next step is turning off the cache and forcing the

program to be executed from the SRAM. Verification of this implementation

is the same as the previous configuration. However, we expect constant

execution time with no variation and lower latency than DRAM without

cache.

7.2.4 SRAM embedded in FreeRTOS

In this configuration, the aim is to realize the concept of executing real-time

and non-real-time tasks. Therefore, the same benchmark programs were ex-

ecuted as real-time tasks on the target platform to have a fair comparison.

In addition, FreeRTOS as the management layer was employed to schedule

these real-time tasks by assigning higher priorities than the non-real-time

tasks in a scenario, including one real-time task and two non-real-time tasks.

Like the previous SRAM configuration, we expect constant execution time

65

with no variation and, in the best case, with minimum timing overhead pro-

duced by freeRTOS compared to SRAM without cache, which was just an

execution time analysis in isolation.

7.3 Results

This section presents the benchmark execution time results provided by exe-

cuting from the different memory subsystems. In section 7.2, different target

configurations were introduced. We analyze the execution time distribution

for each benchmark based on the memory configuration. Furthermore, we

assess the efficiency impacts of mapping the switchable architecture design to

the implementation. We use the benchmark programs as tasks in RT mode.

7.3.1 Average Execution Time Comparison

Figure 7.1 shows the average execution times of the different benchmark pro-

grams executed in clock cycles on a logarithmic scale. It is clearly visible that

the execution time of benchmarks varies significantly. However, for all bench-

marks, the configuration for DRAM without cache takes significantly longer

to execute than other configurations. The DRAM with cache (hot cache)

configuration is always faster than the other configurations. The SRAM

configuration represents better execution time results than DRAM without

cache but is still slower than hot cache. In the end, the benchmarks executed

within freeRTOS show very close results to SRAM, which is the best case we

expected when running a benchmark in the composition scenario.

7.3.2 Result interpretation

In order to interpret the variance introduced by the memory subsystem, the

comparison was performed using the execution times collected as histograms

and as a Cumulative Distribution Function (CDF) for each benchmark pro-

gram. CDF of the observed execution times maps execution time onto the

probability of an execution time less than or equal to that time to occur. As

66

103 104 105 106 107

Average execution time (cycles, log scale)

st

recursion

rad2deg

prime

matrix1

ludcmp

jfdctint

isqrt

insertsort

iir

fir2dim

deg2rad

countnegative

cosf

complex_updates

bsort

bitonic

bitcount

binarysearch

DRAM without cache
DRAM with cache
SRAM without cache
SRAM, embedded in freeRTOS

Figure 7.1: Average execution times in clock cycle for kernel benchmarks of
TACLE benchmark suite.

67

a result, the CDF raises from 0 to 1 in an interval from the lowest to the

highest observed execution time. If these measurements are distributed over

many different execution times in an interval, the resulting curve will appear

relatively smooth. However, if the results are concentrated in a few distinct

times, the curve will have significant steps and be very non-smooth. Because

it is not possible to represent all plots, we provide two benchmark figures as

examples. Binarysearch as a low latency benchmark and st as a high latency

benchmark is selected. However, all benchmark results are provided in the

appendices.

7.3.3 execution times for binarysearch benchmark

Figure 7.2 shows the measurement results for the binarysearch benchmark.

The figure consists of four plots representing the results of DRAM with cache

(hot cache), DRAM without cache, and two SRAM-involved configurations,

respectively. Each of these plots contains a histogram and CDF as the data

representations. It should be noted that the y-axis uses different scales for

the histogram on the left side and the CDF on the right side. In addition, the

x-axes use different scales in the different plots due to different benchmark

binary sizes in the histograms. The hot cache and SRAM configurations

run in constant time, so they consists of a single step and has maximum

steepness. Thus, we can observe predictable behavior for the last three

configurations. However, the DRAM without cache configuration creates a

pattern of some narrow spikes in the histogram that is broadly distributed

over a large range, so the CDF is smooth. For the last configuration,

freeRTOS was introduced as the management layer and executed a mixed

workload model, but this does not change the predictability of the real-time

workload in comparison with the SRAM in isolation.

68

pr
ob

ab
ilit

y
Hi

st
og

ra
m

 a
nd

 K
DE

pr
ob

ab
ilit

y
CD

F

9800 10000 10200
DRAM without cache execution time (cycles)

0.00

0.05

0.10

Histogram
binsize: 3

1020 1025
DRAM with cache execution time (cycles)

0.0

0.5

1.0 Histogram
binsize: 1

3820 3825
SRAM without cache execution time (cycles)

0.0

0.5

1.0 Histogram
binsize: 1

3900 3905
SRAM, embedded in freeRTOS execution time (cycles)

0.0

0.5

1.0 Histogram
binsize: 1

0.0

0.2

0.4

0.6

0.8

1.0

CDF

0.0

0.2

0.4

0.6

0.8

1.0

CDF

0.0

0.2

0.4

0.6

0.8

1.0

CDF

0.0

0.2

0.4

0.6

0.8

1.0

CDF

Figure 7.2: Execution time analysis on Ariane processor for binarysearch
benchmark

69

7.3.4 execution times for Cosf benchmark

Figure 7.3 depicts the measurement results for the cosf benchmark. It is

visible that keeping the cache hot for this benchmark is not possible due to

the large binary size. Therefore, the histogram creates a pattern of some

spikes, and the CDF of this configuration has a few large steps that prooves

the unpredictable execution time for DRAM with and without cache configs.

The SRAM configurations run in constant time, so the CDF consists of a

single step and has maximum steepness. So these results show that the

introduced approach eliminates the unpredictability of caches and guarantees

the predictable execution time. Additionally, execution time from SRAM

without cache is faster than DRAM without cache.

7.3.5 execution times for st benchmark

Figure 7.4 shows the measurement results for the st (Statistics calculations)

benchmark. The figure consists of four plots representing the results of

DRAM with cache (hot cache), DRAM without cache, and two SRAM-

involved configurations, respectively. For this measurement result, the hot

cache and SRAM configurations run in constant time, so the CDF consists

of a single step and has maximum steepness. However, the DRAM without

cache configuration is broadly distributed over a large range, so the CDF

is smooth. We can still observe a little unpredictability for the SRAM

configuration due to a single OS interrupt. This can happen for some large

benchmarks. However, these are only 10 clock cycles.

70

pr
ob

ab
ilit

y
Hi

st
og

ra
m

 a
nd

 K
DE

pr
ob

ab
ilit

y
CD

F

381800 381900 382000
DRAM without cache execution time (cycles)

0.0

0.1

0.2
Histogram
binsize: 2

17550 17560
DRAM with cache execution time (cycles)

0.0

0.1

0.2
Histogram
binsize: 1

152155 152160 152165
SRAM without cache execution time (cycles)

0.0

0.5

1.0 Histogram
binsize: 1

150690 150695 150700
SRAM, embedded in freeRTOS execution time (cycles)

0.0

0.5

1.0 Histogram
binsize: 1

0.0

0.2

0.4

0.6

0.8

1.0

CDF

0.0

0.2

0.4

0.6

0.8

1.0

CDF

0.0

0.2

0.4

0.6

0.8

1.0

CDF

0.0

0.2

0.4

0.6

0.8

1.0

CDF

Figure 7.3: Execution time analysis on Ariane processor for Cosf benchmark

71

pr
ob

ab
ilit

y
Hi

st
og

ra
m

 a
nd

 K
DE

pr
ob

ab
ilit

y
CD

F

1928500 1928550 1928600
DRAM without cache execution time (cycles)

0.0

0.1

0.2

0.3 Histogram
binsize: 1

125875 125880 125885
DRAM with cache execution time (cycles)

0.0

0.5

1.0 Histogram
binsize: 1

754420 754440 754460 754480
SRAM without cache execution time (cycles)

0.0

0.5

1.0 Histogram
binsize: 1

741510 741515 741520
SRAM, embedded in freeRTOS execution time (cycles)

0.00

0.25

0.50

0.75
Histogram
binsize: 1

0.0

0.2

0.4

0.6

0.8

1.0

CDF

0.0

0.2

0.4

0.6

0.8

1.0

CDF

0.0

0.2

0.4

0.6

0.8

1.0

CDF

0.0

0.2

0.4

0.6

0.8

1.0

CDF

Figure 7.4: Execution time analysis on Ariane processor for st benchmark

72

7.4 Discussion

In this thesis, we had some limitations, such as picking a single-core platform

in the RISC-V ecosystem, the capability of supporting an operating system,

and not focusing on scheduling policies intensely. Therefore, analyzing state

of the art played an essential role in finding a suitable solution based on the

limitations. In addition, for our RT mode, we need enough SRAM memory

which is heavily dependent on the FPGA. The Genesys 2 FPGA board by

Digilent provides 1MB SRAM, which is a comfortable margin for executing

our real-time tasks in the RT mode.

The results presented in the previous section and other results in the

appendices prove that the idea of executing tasks with different timing re-

quirements on a single-core platform in the RISC-V domain works. In the

early results, we observed some unpredictability due to some compiler op-

timization artifacts during compilation and some operating system artifacts

during execution. The first issue was solved by modifying the in-lin assembly

block. The second issue was solved by configuring three individual configs

with different clock rates to extend the ticks for the OS interrupts based on

the execution speed of programs in the benchmark suite. Then we observed

entirely predictable execution times for 90% of benchmarks except two of

them. These two are insertsort and st.

Although these two benchmarks show predictable behavior in SRAM con-

figuration, we have observed a small unpredictability in SRAM embedded in

the FreeRTOS config. The reason for this behavior is a single operating sys-

tem interrupt during execution. We observed this issue for some other slow

benchmarks, but the problem was solved by increasing the intervals in which

the OS interrupts the program. Therefore we do not have any interruptions

during execution. However, for these two benchmarks, we still have a single

interrupt during execution, which is why we do not have a single bar in the

resulting plot. Altogether this unpredictability is in the margin of 20 clock

cycles.

In Chapter 3, the state-of-the-art comparison was introduced. Two of

those platforms (Ariane and FlexPRET) are more noteworthy because, on

73

the one hand, they use the RISC-V ISA, where this project implementation

is based on. On the other hand, one of them is the platform implemented and

extended in this work. Therefore, to sum up, in this section, we compare these

two platforms with the proposed implementation based on the defined scope

to check in case of functioning the idea of mode switchable architecture design

how well the proposed work could be comparable with these architectures in

the RISC-V ecosystem. More detail information could be found in Table 7.1

and Figure 7.5

The FlexPRET supports a kind of mode switching in hardware but just

for hard-real-time and soft-real-time applications and is not suitable for em-

bedded high-performance applications without supporting any operating sys-

tem. Ariane is not designed as a timing predictable processor, so it could

not support mode switching at all. However, by modifications performed in

the Ariane hardware, supporting real-time applications is now possible. Al-

though there is still some room for improvement, my proposed architecture

can support real-time workloads and switch between two modes thanks to

operating system support.

74

HP SW RT SW

OS

CPU HW

PR HW

Fl

PrAr

Figure 7.5: Comparison of proposed work with other processors in the RISC-
V ecosystem.

Table 7.1: Comparison of RISC-V based processors based on the require-
ments of switchable architecture design with the proposed work

Platform

require-
ments

Pred.
execu-
tion
times

General
OS

support
HP

feature

Execution
mode

switching

CVA6 (Ariane) - + + na
FlexPRET + - + +
proposed + + + +

75

7.5 Summary

In this chapter, we have evaluated the application and execution models pro-

posed in this thesis. First, Section 7.1 discussed the evaluation setup to assess

the execution times for four different configurations on the FPGA board with

and without FreeRTOS. The evaluation considered various TACLE bench-

marks for the real-time mode in our proposed switchable architecture in the

RISC-V ecosystem. In Section 7.2 different configurations for measuring the

execution times from DRAM, SRAM, cache, and in at last composition sce-

nario from different memory regions (SRAM and DRAM) were introduced.

Next, the corresponding results to the configuration introduced in Section 7.2

have been evaluated, and we have compared the results by showing the exe-

cution time distributions for all memory subsystem configurations explained

before. Section 7.4 then represents that the idea works and describes some

challenges that we faced to realize the idea. In addition, we explained the

reason for a couple of exceptions that the predictability did not completely

fulfill. To end up, we have compared the proposed architecture with compa-

rable available other RISC-V single-core platforms to show the significance

of such a design in the RISC-V domain and the strength of our platform

in supporting both real-time and non-real-time workloads in a single-core

system.

76

Chapter 8

Conclusion and Future Work

8.1 Conclusion

This thesis started with observing the significance of considering the execu-

tion of applications with different timing requirements on a unique processor

in the RISC-V ecosystem. The contributions of this thesis address the chal-

lenges of running distinct embedded software programs on a platform, where

the functionality can be categorized along with their criticality into real-time

or non-real-time.

When several software applications with different levels of criticality are

integrated into a device, multiple challenges need to be considered and man-

aged. In order to answer RQ1, we identified the memory subsystems that

make timing predictability difficult in Section 2.2.1 and 5.3. We have pro-

posed several requirements that a processor and/or platform should meet

to support both real-time and high-performance workloads in Section 2.2.2

to address RQ2. Based on these requirements, we have assessed different

platforms and processors to recognize to what extent current architectures

can potentially support the handling of mixed workloads. Then, we have

proposed a switchable single-core processor based on the Ariane processor in

the RISC-V ecosystem, which can handle mixed workloads at runtime. This

switchable processor meets predictable processor design requirements while

providing respectable performance for high-performance applications. The

77

main design features are avoidance of interferences in the memory subsys-

tem and predictable execution time behavior while maintaining acceptable

performance on the processor side. Moreover, operating system support is

integrated into the system to handle the interruption and mixed timing work-

loads in Section 6.3 as a solution to RQ3. The execution time measurement

was illustrated entirely in Section 7.3 to address the RQ4.

8.2 Future work

There is some room for improvement of this work in the future. We have

defined some constraints that can be removed to extend this work.

Extension to multi-core implementation

Although this work has advantages concerning the cost compared to multi-

core implementation, making this approach applicable as a multi-core plat-

form could be considered a promising future extension. From the hardware

perspective, on the one hand, one challenge could arise in memory manage-

ment for different shared caches, SRAMs, and DRAMs. On the other hand,

benefiting from an isolated processor for executing real-time or non-real-time

software could be another fascinating, challenging aspect.

Tightly integrated SRAM to the processor

The current SRAM configuration is designed to solve the problem of unpre-

dictability execution inside DRAM. Accordingly, it is now connected to the

processor through the generic peripheral bus. However, there would have

been better optimization in SRAM implementation to provide a dedicated

high-speed bus like the caches to improve the future execution duration to

something near cache rather than something between DRAM and cache.

Improvement in operating system support and scheduling com-

plicated scenarios

In this thesis, we introduced two possible scenarios that fit into the concept of

this work. In addition, we tried to implement one of the mentioned scenarios

in Section 6. However, it is possible to extend the features in FreeRTOS in

different ways, which was not possible due to a shortage of time within this

Ph.D. project. For instance, in another experiment, we should be able to add

78

larger benchmarks with longer execution times. This may cause some unpre-

dictability due to the operating system artifacts on the software side or the

amount of available predictable memory on the platform side. Furthermore,

it should be possible to schedule more benchmark programs as an extension

in the scheduling part that was not in this project’s scope.

79

80

References

[1] J. Bin, S. Girbal, D. G. Pérez, A. Grasset, and A. Merigot, “Studying co-

running avionic real-time applications on multi-core cots architectures,”

in Embedded Real Time Software and Systems (ERTS2014), 2014.

[2] P. Ittershagen, K. Grüttner, and W. Nebel, “An integration flow for

mixed-critical embedded systems on a flexible time-triggered platform,”

ACM Transactions on Design Automation of Electronic Systems (TO-

DAES), vol. 23, no. 4, pp. 1–25, 2018.

[3] F. Zaruba and L. Benini, “The cost of application-class processing: En-

ergy and performance analysis of a linux-ready 1.7-ghz 64-bit risc-v core

in 22-nm fdsoi technology,” IEEE Transactions on Very Large Scale In-

tegration (VLSI) Systems, vol. 27, no. 11, pp. 2629–2640, 2019.

[4] P. P. Project. (2021) Ariane github. [Online]. Available: https:

//github.com/openhwgroup/cva6

[5] A. Alsheikhy, S. Han, and R. Ammar, “Delay and power consumption

estimation in embedded systems using hierarchical performance model-

ing,” in 2015 IEEE International Symposium on Signal Processing and

Information Technology (ISSPIT). IEEE, 2015, pp. 34–39.

[6] Y. Jung and L. P. Carloni, “σvp: Host-gpu multiplexing for efficient sim-

ulation of multiple embedded gpus on virtual platforms,” in Proceedings

of the 52nd Annual Design Automation Conference, 2015, pp. 1–6.

[7] I. Grasso, P. Radojkovic, N. Rajovic, I. Gelado, and A. Ramirez, “En-

ergy efficient hpc on embedded socs: Optimization techniques for mali

81

https://github.com/openhwgroup/cva6
https://github.com/openhwgroup/cva6

gpu,” in 2014 IEEE 28th International parallel and distributed processing

symposium. IEEE, 2014, pp. 123–132.

[8] R. Hegde, G. Mishra, and K. Gurumurthy, “Software and hardware de-

sign challenges in automotive embedded system,” International Journal

of VLSI Design & Communication Systems, vol. 2, no. 3, p. 165, 2011.

[9] G. Buttazzo, “Research trends in real-time computing for embedded

systems,” ACM SIGBED Review, vol. 3, no. 3, pp. 1–10, 2006.

[10] G. Chen, “Resource management in real-time multicore embedded sys-

tems: Performance and energy perspectives,” Ph.D. dissertation, Tech-

nische Universität München, 2016.

[11] A. Alsheikhy, R. Ammar, and R. Elfouly, “An improved dynamic

round robin scheduling algorithm based on a variant quantum time,” in

2015 11th International Computer Engineering Conference (ICENCO).

IEEE, 2015, pp. 98–104.

[12] J. A. Stankovic and K. Ramamritham, “What is predictability for real-

time systems?” 1990.

[13] D. Grund, J. Reineke, and R. Wilhelm, “A template for predictabil-

ity definitions with supporting evidence,” in Bringing Theory to Prac-

tice: Predictability and Performance in Embedded Systems. Schloss

Dagstuhl-Leibniz-Zentrum fuer Informatik, 2011.

[14] P. Axer, R. Ernst, H. Falk, A. Girault, D. Grund, N. Guan, B. Jon-

sson, P. Marwedel, J. Reineke, C. Rochange et al., “Building timing

predictable embedded systems,”ACM Transactions on Embedded Com-

puting Systems (TECS), vol. 13, no. 4, pp. 1–37, 2014.

[15] R. Kirner and P. Puschner, “Time-predictable computing,” in IFIP In-

ternational Workshop on Software Technolgies for Embedded and Ubiq-

uitous Systems. Springer, 2010, pp. 23–34.

[16] L. M. Pinho, E. Quinones, and A. Marongiu, High-performance and

time-predictable embedded computing. River Publishers, 2018.

82

[17] M. Duranton, S. Yehia, B. De Sutter, K. De Bosschere, A. Cohen, B. Fal-

safi, G. Gaydadjiev, M. Katevenis, J. Maebe, H. Munk et al.,“The hipeac

vision,” Report, European Network of Excellence on High Performance

and Embedded Architecture and Compilation, vol. 12, 2010.

[18] R. Giorgi, “Scalable embedded systems: Towards the convergence of

high-performance and embedded computing,” in 2015 IEEE 13th Inter-

national Conference on Embedded and Ubiquitous Computing. IEEE,

2015, pp. 148–153.

[19] A. A. Alsheikhy, “High performance embedded systems,” 2016.

[20] D. Dasari, B. Akesson, V. Nelis, M. A. Awan, and S. M. Petters, “Identi-

fying the sources of unpredictability in cots-based multicore systems,” in

2013 8th IEEE international symposium on industrial embedded systems

(SIES). IEEE, 2013, pp. 39–48.

[21] R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Caccamo, and

R. Kegley, “A predictable execution model for cots-based embedded sys-

tems,” in 2011 17th IEEE Real-Time and Embedded Technology and

Applications Symposium. IEEE, 2011, pp. 269–279.

[22] S. Wasly and R. Pellizzoni, “A dynamic scratchpad memory unit for

predictable real-time embedded systems,” in 2013 25th Euromicro Con-

ference on Real-Time Systems. IEEE, 2013, pp. 183–192.

[23] K. K. Chang, “Understanding and improving the latency of dram-based

memory systems,” Ph.D. dissertation, Carnegie Mellon University, 2017.

[24] L. Thiele and R. Wilhelm, “Design for timing predictability,”Real-Time

Systems, vol. 28, no. 2, pp. 157–177, 2004.

[25] (2021). [Online]. Available: https://riscv.org/about/

[26] A. Waterman and K. Asanovic, “The RISC-V Instruction Set

Manual Volume I: Unprivileged ISA,” University of California at

Berkeley Berkeley United States, Tech. Rep., 2019. [Online]. Available:

https://riscv.org/specifications/

83

https://riscv.org/about/
https://riscv.org/specifications/

[27] L. Project. (2019) LLVM Download Page. [Online]. Available:

http://releases.llvm.org/download.html#10.0.0

[28] lowRISC Community Interest Company. (2019) lowrisc home page.

[Online]. Available: https://www.lowrisc.org

[29] M. Poorhosseini, W. Nebel, and K. Grüttner, “A compiler comparison in

the risc-v ecosystem,” in 2020 International Conference on Omni-layer

Intelligent Systems (COINS), 2020, pp. 1–6.

[30] M. Gautschi, P. D. Schiavone, A. Traber, I. Loi, A. Pullini, D. Rossi,

E. Flamand, F. K. Gürkaynak, and L. Benini, “Near-threshold RISC-

V core with DSP extensions for scalable IoT endpoint devices,” IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25,

no. 10, pp. 2700–2713, 2017.

[31] “RISC-V Exchange: Cores & SoCs,” accessed FILL ME IN. [Online].

Available: https://riscv.org/exchange/cores-socs/

[32] J. Zhao, B. Korpan, A. Gonzalez, and K. Asanovic, “Sonicboom: The

3rd generation berkeley out-of-order machine,” in Fourth Workshop on

Computer Architecture Research with RISC-V, vol. 5, 2020.

[33] “BOOM RISC-V CPU,” accesssed 2022-02-21. [Online]. Available:

https://github.com/riscv-boom/riscv-boom

[34] datasheet. (2021) Raspberry pi 4. [Online]. Available: https:

//datasheets.raspberrypi.org/cm4/cm4-datasheet.pdf

[35] S. Mittal, “A survey on optimized implementation of deep learning mod-

els on the nvidia jetson platform,” Journal of Systems Architecture,

vol. 97, pp. 428–442, 2019.

[36] M. O. Aboelhassan, O. Bartik, and M. Novak, “Embedded multi-core

systems for mixed-critical applications with rpmsg protocol based on

xilinx zynq-7000,” in 2017 7th IEEE International Conference on Con-

trol System, Computing and Engineering (ICCSCE). IEEE, 2017, pp.

162–167.

84

http://releases.llvm.org/download.html#10.0.0
https://www.lowrisc.org
https://riscv.org/exchange/cores-socs/
https://github.com/riscv-boom/riscv-boom
https://datasheets.raspberrypi.org/cm4/cm4-datasheet.pdf
https://datasheets.raspberrypi.org/cm4/cm4-datasheet.pdf

[37] K. Goossens, A. Azevedo, K. Chandrasekar, M. D. Gomony, S. Goossens,

M. Koedam, Y. Li, D. Mirzoyan, A. Molnos, A. B. Nejad et al., “Virtual

execution platforms for mixed-time-criticality systems: The compsoc

architecture and design flow,”ACM SIGBED Review, vol. 10, no. 3, pp.

23–34, 2013.

[38] B. Akesson and K. Goossens, Memory controllers for real-time embedded

systems. Springer, 2011.

[39] S. Goossens, B. Akesson, M. Koedam, A. B. Nejad, A. Nelson, and

K. Goossens, “The CompSOC design flow for virtual execution plat-

forms,” in Proceedings of the 10th FPGAworld Conference on - FPGA-

world ’13. Stockholm, Sweden: ACM Press, 2013, pp. 1–6.

[40] M. Schoeberl, S. Abbaspour, B. Akesson, N. Audsley, R. Capasso,

J. Garside, K. Goossens, S. Goossens, S. Hansen, R. Heckmann et al., “T-

crest: Time-predictable multi-core architecture for embedded systems,”

Journal of Systems Architecture, vol. 61, no. 9, pp. 449–471, 2015.

[41] M. Schoeberl, W. Puffitsch, S. Hepp, B. Huber, and D. Prokesch, “Pat-

mos: A time-predictable microprocessor,” Real-Time Systems, vol. 54,

no. 2, pp. 389–423, 2018.

[42] F. Kluge, M. Schoeberl, and T. Ungerer, “Support for the Logical Exe-

cution Time Model on a Time-predictable Multicore Processor,” p. 7.

[43] M. Zimmer, D. Broman, C. Shaver, and E. A. Lee, “Flexpret: A pro-

cessor platform for mixed-criticality systems,” in 2014 IEEE 19th Real-

Time and Embedded Technology and Applications Symposium (RTAS).

IEEE, 2014, pp. 101–110.

[44] M. Fletzer, “SPEAR2 - an improved version of SPEAR,” Thesis, 2008,

accepted: 2020-06-30T09:53:10Z.

[45] P. Ittershagen, “Application modelling and performance estimation of

mixed-critical embedded systems,” Ph.D. dissertation, Universität Old-

enburg, 2018.

85

[46] P. Giusto, G. Martin, and E. Harcourt, “Reliable estimation of execution

time of embedded software,” in Proceedings Design, Automation and

Test in Europe. Conference and Exhibition 2001. IEEE, 2001, pp. 580–

588.

[47] “Genesys 2,” accessed 2020-08-21. [Online]. Available: https://reference.

digilentinc.com/reference/programmable-logic/genesys-2/start

[48] “Vivado Design Suite,” accessed 2020-08-21. [Online]. Available:

https://www.xilinx.com/products/design-tools/vivado.html

[49] R. Barry. (2016) Mastering the FreeRTOS Real Time

Kernel- A Hands-On Tutorial Guide. [Online]. Avail-

able: https://freertos.org/Documentation/161204 Mastering the

FreeRTOS Real Time Kernel-A Hands-On Tutorial Guide.pdf

[50] A. W. Services. (2017) The FreeRTOS Reference Manual-

API Functions and Configuration Options. [Online]. Avail-

able: https://www.freertos.org/fr-content-src/uploads/2018/07/

FreeRTOS Reference Manual V10.0.0.pdf

[51] “TACLe Benchmarks,” accessed 2020-08-21. [Online]. Available:

https://github.com/tacle/tacle-bench

86

https://reference.digilentinc.com/reference/programmable-logic/genesys-2/start
https://reference.digilentinc.com/reference/programmable-logic/genesys-2/start
https://www.xilinx.com/products/design-tools/vivado.html
https://freertos.org/Documentation/161204_Mastering_the_FreeRTOS_Real_Time_Kernel-A_Hands-On_Tutorial_Guide.pdf
https://freertos.org/Documentation/161204_Mastering_the_FreeRTOS_Real_Time_Kernel-A_Hands-On_Tutorial_Guide.pdf
https://www.freertos.org/fr-content-src/uploads/2018/07/FreeRTOS_Reference_Manual_V10.0.0.pdf
https://www.freertos.org/fr-content-src/uploads/2018/07/FreeRTOS_Reference_Manual_V10.0.0.pdf
https://github.com/tacle/tacle-bench

Appendices

89

Appendix A

Timing Comparison Plots

90

pr
ob

ab
ilit

y
Hi

st
og

ra
m

 a
nd

 K
DE

pr
ob

ab
ilit

y
CD

F

1279100 1279200
DRAM without cache execution time (cycles)

0.0

0.1

0.2

Histogram
binsize: 2

60265 60270 60275
DRAM with cache execution time (cycles)

0.0

0.5

1.0 Histogram
binsize: 1

491620 491625 491630
SRAM without cache execution time (cycles)

0.0

0.5

1.0 Histogram
binsize: 1

488595 488600
SRAM, embedded in freeRTOS execution time (cycles)

0.0

0.5

1.0 Histogram
binsize: 1

0.0

0.2

0.4

0.6

0.8

1.0

CDF

0.0

0.2

0.4

0.6

0.8

1.0

CDF

0.0

0.2

0.4

0.6

0.8

1.0

CDF

0.0

0.2

0.4

0.6

0.8

1.0

CDF

Figure A.1: quad bsort

91

pr
ob

ab
ilit

y
Hi

st
og

ra
m

 a
nd

 K
DE

pr
ob

ab
ilit

y
CD

F

381800 381900 382000
DRAM without cache execution time (cycles)

0.0

0.1

0.2
Histogram
binsize: 2

17550 17560
DRAM with cache execution time (cycles)

0.0

0.1

0.2
Histogram
binsize: 1

152155 152160 152165
SRAM without cache execution time (cycles)

0.0

0.5

1.0 Histogram
binsize: 1

150690 150695 150700
SRAM, embedded in freeRTOS execution time (cycles)

0.0

0.5

1.0 Histogram
binsize: 1

0.0

0.2

0.4

0.6

0.8

1.0

CDF

0.0

0.2

0.4

0.6

0.8

1.0

CDF

0.0

0.2

0.4

0.6

0.8

1.0

CDF

0.0

0.2

0.4

0.6

0.8

1.0

CDF

Figure A.2: quad cosf.pdf

92

pr
ob

ab
ilit

y
Hi

st
og

ra
m

 a
nd

 K
DE

pr
ob

ab
ilit

y
CD

F

69155 69160 69165
DRAM without cache execution time (cycles)

0.0

0.5

1.0 Histogram
binsize: 1

6860 6865 6870
DRAM with cache execution time (cycles)

0.0

0.5

1.0 Histogram
binsize: 1

28375 28380 28385
SRAM without cache execution time (cycles)

0.0

0.5

1.0 Histogram
binsize: 1

23680 23685 23690
SRAM, embedded in freeRTOS execution time (cycles)

0.0

0.5

1.0 Histogram
binsize: 1

0.0

0.2

0.4

0.6

0.8

1.0

CDF

0.0

0.2

0.4

0.6

0.8

1.0

CDF

0.0

0.2

0.4

0.6

0.8

1.0

CDF

0.0

0.2

0.4

0.6

0.8

1.0

CDF

Figure A.3: quad rad2deg.pdf

93

pr
ob

ab
ilit

y
Hi

st
og

ra
m

 a
nd

 K
DE

pr
ob

ab
ilit

y
CD

F

69300 69320
DRAM without cache execution time (cycles)

0.0

0.1

0.2

0.3 Histogram
binsize: 1

6880 6885 6890
DRAM with cache execution time (cycles)

0.0

0.5

1.0 Histogram
binsize: 1

28440 28445 28450
SRAM without cache execution time (cycles)

0.0

0.5

1.0 Histogram
binsize: 1

23735 23740 23745
SRAM, embedded in freeRTOS execution time (cycles)

0.0

0.5

1.0 Histogram
binsize: 1

0.0

0.2

0.4

0.6

0.8

1.0

CDF

0.0

0.2

0.4

0.6

0.8

1.0

CDF

0.0

0.2

0.4

0.6

0.8

1.0

CDF

0.0

0.2

0.4

0.6

0.8

1.0

CDF

Figure A.4: quad deg2rad.pdf

94

pr
ob

ab
ilit

y
Hi

st
og

ra
m

 a
nd

 K
DE

pr
ob

ab
ilit

y
CD

F

34250 34300 34350
DRAM without cache execution time (cycles)

0.00

0.05

0.10

0.15
Histogram
binsize: 1

2385 2390 2395
DRAM with cache execution time (cycles)

0.0

0.2

0.4

0.6
Histogram
binsize: 1

13220 13240 13260
SRAM without cache execution time (cycles)

0.0

0.5

1.0 Histogram
binsize: 1

13050 13055
SRAM, embedded in freeRTOS execution time (cycles)

0.0

0.5

1.0 Histogram
binsize: 1

0.0

0.2

0.4

0.6

0.8

1.0

CDF

0.0

0.2

0.4

0.6

0.8

1.0

CDF

0.0

0.2

0.4

0.6

0.8

1.0

CDF

0.0

0.2

0.4

0.6

0.8

1.0

CDF

Figure A.5: quad ludcmp.pdf

95

pr
ob

ab
ilit

y
Hi

st
og

ra
m

 a
nd

 K
DE

pr
ob

ab
ilit

y
CD

F

9800 10000 10200
DRAM without cache execution time (cycles)

0.00

0.05

0.10

Histogram
binsize: 3

1020 1025
DRAM with cache execution time (cycles)

0.0

0.5

1.0 Histogram
binsize: 1

3820 3825
SRAM without cache execution time (cycles)

0.0

0.5

1.0 Histogram
binsize: 1

3900 3905
SRAM, embedded in freeRTOS execution time (cycles)

0.0

0.5

1.0 Histogram
binsize: 1

0.0

0.2

0.4

0.6

0.8

1.0

CDF

0.0

0.2

0.4

0.6

0.8

1.0

CDF

0.0

0.2

0.4

0.6

0.8

1.0

CDF

0.0

0.2

0.4

0.6

0.8

1.0

CDF

Figure A.6: quad binarysearch.pdf

96

pr
ob

ab
ilit

y
Hi

st
og

ra
m

 a
nd

 K
DE

pr
ob

ab
ilit

y
CD

F

222375 222400 222425
DRAM without cache execution time (cycles)

0.0

0.1

0.2

Histogram
binsize: 1

17835 17840
DRAM with cache execution time (cycles)

0.0

0.5

1.0 Histogram
binsize: 1

87240 87245 87250
SRAM without cache execution time (cycles)

0.0

0.5

1.0 Histogram
binsize: 1

91930 91935 91940
SRAM, embedded in freeRTOS execution time (cycles)

0.0

0.5

1.0 Histogram
binsize: 1

0.0

0.2

0.4

0.6

0.8

1.0

CDF

0.0

0.2

0.4

0.6

0.8

1.0

CDF

0.0

0.2

0.4

0.6

0.8

1.0

CDF

0.0

0.2

0.4

0.6

0.8

1.0

CDF

Figure A.7: quad countnegative.pdf

97

pr
ob

ab
ilit

y
Hi

st
og

ra
m

 a
nd

 K
DE

pr
ob

ab
ilit

y
CD

F

45650 45660
DRAM without cache execution time (cycles)

0.0

0.1

0.2 Histogram
binsize: 1

3325 3330 3335
DRAM with cache execution time (cycles)

0.0

0.5

1.0 Histogram
binsize: 1

18470 18475 18480
SRAM without cache execution time (cycles)

0.0

0.5

1.0 Histogram
binsize: 1

20925 20930 20935
SRAM, embedded in freeRTOS execution time (cycles)

0.0

0.5

1.0 Histogram
binsize: 1

0.0

0.2

0.4

0.6

0.8

1.0

CDF

0.0

0.2

0.4

0.6

0.8

1.0

CDF

0.0

0.2

0.4

0.6

0.8

1.0

CDF

0.0

0.2

0.4

0.6

0.8

1.0

CDF

Figure A.8: quad recursion.pdf

98

pr
ob

ab
ilit

y
Hi

st
og

ra
m

 a
nd

 K
DE

pr
ob

ab
ilit

y
CD

F

4140 4160
DRAM without cache execution time (cycles)

0.0

0.1

0.2 Histogram
binsize: 1

380 385 390
DRAM with cache execution time (cycles)

0.0

0.5

1.0 Histogram
binsize: 1

1695 1700 1705
SRAM without cache execution time (cycles)

0.0

0.5

1.0 Histogram
binsize: 1

1700 1705 1710
SRAM, embedded in freeRTOS execution time (cycles)

0.0

0.5

1.0 Histogram
binsize: 1

0.0

0.2

0.4

0.6

0.8

1.0

CDF

0.0

0.2

0.4

0.6

0.8

1.0

CDF

0.0

0.2

0.4

0.6

0.8

1.0

CDF

0.0

0.2

0.4

0.6

0.8

1.0

CDF

Figure A.9: quad prime.pdf

99

pr
ob

ab
ilit

y
Hi

st
og

ra
m

 a
nd

 K
DE

pr
ob

ab
ilit

y
CD

F

65260 65280
DRAM without cache execution time (cycles)

0.0

0.2

0.4 Histogram
binsize: 1

3610 3615 3620
DRAM with cache execution time (cycles)

0.0

0.5

1.0 Histogram
binsize: 1

26105 26110 26115
SRAM without cache execution time (cycles)

0.0

0.5

1.0 Histogram
binsize: 1

26195 26200 26205
SRAM, embedded in freeRTOS execution time (cycles)

0.0

0.5

1.0 Histogram
binsize: 1

0.0

0.2

0.4

0.6

0.8

1.0

CDF

0.0

0.2

0.4

0.6

0.8

1.0

CDF

0.0

0.2

0.4

0.6

0.8

1.0

CDF

0.0

0.2

0.4

0.6

0.8

1.0

CDF

Figure A.10: quad jfdctint.pdf

100

pr
ob

ab
ilit

y
Hi

st
og

ra
m

 a
nd

 K
DE

pr
ob

ab
ilit

y
CD

F

73080 73100 73120 73140
DRAM without cache execution time (cycles)

0.0

0.1

0.2

Histogram
binsize: 1

5020 5025
DRAM with cache execution time (cycles)

0.0

0.5

1.0 Histogram
binsize: 1

27450 27455 27460
SRAM without cache execution time (cycles)

0.0

0.5

1.0 Histogram
binsize: 1

31560 31565 31570
SRAM, embedded in freeRTOS execution time (cycles)

0.0

0.5

1.0 Histogram
binsize: 1

0.0

0.2

0.4

0.6

0.8

1.0

CDF

0.0

0.2

0.4

0.6

0.8

1.0

CDF

0.0

0.2

0.4

0.6

0.8

1.0

CDF

0.0

0.2

0.4

0.6

0.8

1.0

CDF

Figure A.11: quad fir2dim.pdf

101

pr
ob

ab
ilit

y
Hi

st
og

ra
m

 a
nd

 K
DE

pr
ob

ab
ilit

y
CD

F

20050 20075 20100
DRAM without cache execution time (cycles)

0.0

0.2

0.4

0.6 Histogram
binsize: 1

1815 1820 1825
DRAM with cache execution time (cycles)

0.00

0.25

0.50

0.75
Histogram
binsize: 1

7705 7710
SRAM without cache execution time (cycles)

0.0

0.5

1.0 Histogram
binsize: 1

7715 7720 7725
SRAM, embedded in freeRTOS execution time (cycles)

0.0

0.5

1.0 Histogram
binsize: 1

0.0

0.2

0.4

0.6

0.8

1.0

CDF

0.0

0.2

0.4

0.6

0.8

1.0

CDF

0.0

0.2

0.4

0.6

0.8

1.0

CDF

0.0

0.2

0.4

0.6

0.8

1.0

CDF

Figure A.12: quad complex updates.pdf

102

pr
ob

ab
ilit

y
Hi

st
og

ra
m

 a
nd

 K
DE

pr
ob

ab
ilit

y
CD

F

215520 215530 215540 215550
DRAM without cache execution time (cycles)

0.0

0.2

0.4

0.6
Histogram
binsize: 1

16540 16560 16580
DRAM with cache execution time (cycles)

0.0

0.1

0.2

0.3
Histogram
binsize: 1

84410 84415 84420
SRAM without cache execution time (cycles)

0.0

0.5

1.0 Histogram
binsize: 1

78600 78605
SRAM, embedded in freeRTOS execution time (cycles)

0.0

0.5

1.0 Histogram
binsize: 1

0.0

0.2

0.4

0.6

0.8

1.0

CDF

0.0

0.2

0.4

0.6

0.8

1.0

CDF

0.0

0.2

0.4

0.6

0.8

1.0

CDF

0.0

0.2

0.4

0.6

0.8

1.0

CDF

Figure A.13: quad bitonic.pdf

103

pr
ob

ab
ilit

y
Hi

st
og

ra
m

 a
nd

 K
DE

pr
ob

ab
ilit

y
CD

F

10420200 10420400 10420600
DRAM without cache execution time (cycles)

0.0

0.1

0.2

0.3 Histogram
binsize: 3

526730 526735 526740
DRAM with cache execution time (cycles)

0.0

0.5

1.0 Histogram
binsize: 1

4254105 4254110
SRAM without cache execution time (cycles)

0.0

0.5

1.0 Histogram
binsize: 1

3931170 3931175 3931180
SRAM, embedded in freeRTOS execution time (cycles)

0.0

0.5

1.0 Histogram
binsize: 1

0.0

0.2

0.4

0.6

0.8

1.0

CDF

0.0

0.2

0.4

0.6

0.8

1.0

CDF

0.0

0.2

0.4

0.6

0.8

1.0

CDF

0.0

0.2

0.4

0.6

0.8

1.0

CDF

Figure A.14: quad isqrt.pdf

104

pr
ob

ab
ilit

y
Hi

st
og

ra
m

 a
nd

 K
DE

pr
ob

ab
ilit

y
CD

F

150460 150480 150500 150520
DRAM without cache execution time (cycles)

0.0

0.1

0.2

0.3
Histogram
binsize: 1

7565 7570 7575
DRAM with cache execution time (cycles)

0.0

0.5

1.0 Histogram
binsize: 1

57035 57040 57045
SRAM without cache execution time (cycles)

0.0

0.5

1.0 Histogram
binsize: 1

58255 58260 58265
SRAM, embedded in freeRTOS execution time (cycles)

0.0

0.5

1.0 Histogram
binsize: 1

0.0

0.2

0.4

0.6

0.8

1.0

CDF

0.0

0.2

0.4

0.6

0.8

1.0

CDF

0.0

0.2

0.4

0.6

0.8

1.0

CDF

0.0

0.2

0.4

0.6

0.8

1.0

CDF

Figure A.15: quad matrix1.pdf

105

pr
ob

ab
ilit

y
Hi

st
og

ra
m

 a
nd

 K
DE

pr
ob

ab
ilit

y
CD

F

340200 340300 340400
DRAM without cache execution time (cycles)

0.00

0.05

0.10

0.15
Histogram
binsize: 2

19060 19065 19070
DRAM with cache execution time (cycles)

0.0

0.5

1.0 Histogram
binsize: 1

129125 129130 129135
SRAM without cache execution time (cycles)

0.0

0.5

1.0 Histogram
binsize: 1

128325 128330 128335
SRAM, embedded in freeRTOS execution time (cycles)

0.0

0.5

1.0 Histogram
binsize: 1

0.0

0.2

0.4

0.6

0.8

1.0

CDF

0.0

0.2

0.4

0.6

0.8

1.0

CDF

0.0

0.2

0.4

0.6

0.8

1.0

CDF

0.0

0.2

0.4

0.6

0.8

1.0

CDF

Figure A.16: quad bitcount.pdf

106

pr
ob

ab
ilit

y
Hi

st
og

ra
m

 a
nd

 K
DE

pr
ob

ab
ilit

y
CD

F

1928500 1928550 1928600
DRAM without cache execution time (cycles)

0.0

0.1

0.2

0.3 Histogram
binsize: 1

125875 125880 125885
DRAM with cache execution time (cycles)

0.0

0.5

1.0 Histogram
binsize: 1

754420 754440 754460 754480
SRAM without cache execution time (cycles)

0.0

0.5

1.0 Histogram
binsize: 1

741510 741515 741520
SRAM, embedded in freeRTOS execution time (cycles)

0.00

0.25

0.50

0.75
Histogram
binsize: 1

0.0

0.2

0.4

0.6

0.8

1.0

CDF

0.0

0.2

0.4

0.6

0.8

1.0

CDF

0.0

0.2

0.4

0.6

0.8

1.0

CDF

0.0

0.2

0.4

0.6

0.8

1.0

CDF

Figure A.17: quad st.pdf

107

pr
ob

ab
ilit

y
Hi

st
og

ra
m

 a
nd

 K
DE

pr
ob

ab
ilit

y
CD

F

21375 21400 21425 21450
DRAM without cache execution time (cycles)

0.0

0.1

0.2 Histogram
binsize: 1

1360 1365 1370
DRAM with cache execution time (cycles)

0.0

0.5

1.0 Histogram
binsize: 1

8375 8380
SRAM without cache execution time (cycles)

0.0

0.5

1.0 Histogram
binsize: 1

7200 7220
SRAM, embedded in freeRTOS execution time (cycles)

0.0

0.2

0.4

Histogram
binsize: 1

0.0

0.2

0.4

0.6

0.8

1.0

CDF

0.0

0.2

0.4

0.6

0.8

1.0

CDF

0.0

0.2

0.4

0.6

0.8

1.0

CDF

0.0

0.2

0.4

0.6

0.8

1.0

CDF

Figure A.18: quad insertsort.pdf

108

pr
ob

ab
ilit

y
Hi

st
og

ra
m

 a
nd

 K
DE

pr
ob

ab
ilit

y
CD

F

26770 26775 26780
DRAM without cache execution time (cycles)

0.0

0.2

0.4

0.6 Histogram
binsize: 1

1640 1645 1650
DRAM with cache execution time (cycles)

0.0

0.5

1.0 Histogram
binsize: 1

10095 10100 10105
SRAM without cache execution time (cycles)

0.0

0.5

1.0 Histogram
binsize: 1

11775 11780 11785
SRAM, embedded in freeRTOS execution time (cycles)

0.0

0.5

1.0 Histogram
binsize: 1

0.0

0.2

0.4

0.6

0.8

1.0

CDF

0.0

0.2

0.4

0.6

0.8

1.0

CDF

0.0

0.2

0.4

0.6

0.8

1.0

CDF

0.0

0.2

0.4

0.6

0.8

1.0

CDF

Figure A.19: quad iir.pdf

109

Appendix B

Execution Visualization Plots

0.0 0.2 0.4 0.6 0.8
Clock cycles (relative to first data point) 1e9

Back-
ground
Task 2

Back-
ground
Task 1

RT
Task

Figure B.1: bsort

110

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Clock cycles (relative to first data point) 1e7

Back-
ground
Task 2

Back-
ground
Task 1

RT
Task

Figure B.2: cosf.pdf

0 500000 1000000 1500000 2000000 2500000 3000000
Clock cycles (relative to first data point)

Back-
ground
Task 2

Back-
ground
Task 1

RT
Task

Figure B.3: rad2deg.pdf

111

0 500000 1000000 1500000 2000000 2500000 3000000
Clock cycles (relative to first data point)

Back-
ground
Task 2

Back-
ground
Task 1

RT
Task

Figure B.4: deg2rad.pdf

0 500000 1000000 1500000 2000000 2500000 3000000
Clock cycles (relative to first data point)

Back-
ground
Task 2

Back-
ground
Task 1

RT
Task

Figure B.5: ludcmp.pdf

112

0 500000 1000000 1500000 2000000 2500000 3000000
Clock cycles (relative to first data point)

Back-
ground
Task 2

Back-
ground
Task 1

RT
Task

Figure B.6: binarysearch.pdf

0.0 0.5 1.0 1.5 2.0 2.5
Clock cycles (relative to first data point) 1e7

Back-
ground
Task 2

Back-
ground
Task 1

RT
Task

Figure B.7: countnegative.pdf

113

0 500000 1000000 1500000 2000000 2500000 3000000
Clock cycles (relative to first data point)

Back-
ground
Task 2

Back-
ground
Task 1

RT
Task

Figure B.8: recursion.pdf

0 500000 1000000 1500000 2000000 2500000 3000000
Clock cycles (relative to first data point)

Back-
ground
Task 2

Back-
ground
Task 1

RT
Task

Figure B.9: prime.pdf

114

0 500000 1000000 1500000 2000000 2500000 3000000
Clock cycles (relative to first data point)

Back-
ground
Task 2

Back-
ground
Task 1

RT
Task

Figure B.10: jfdctint.pdf

0 500000 1000000 1500000 2000000 2500000 3000000
Clock cycles (relative to first data point)

Back-
ground
Task 2

Back-
ground
Task 1

RT
Task

Figure B.11: fir2dim.pdf

115

0 500000 1000000 1500000 2000000 2500000 3000000
Clock cycles (relative to first data point)

Back-
ground
Task 2

Back-
ground
Task 1

RT
Task

Figure B.12: complex updates.pdf

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Clock cycles (relative to first data point) 1e7

Back-
ground
Task 2

Back-
ground
Task 1

RT
Task

Figure B.13: bitonic.pdf

116

0.0 0.2 0.4 0.6 0.8
Clock cycles (relative to first data point) 1e9

Back-
ground
Task 2

Back-
ground
Task 1

RT
Task

Figure B.14: isqrt.pdf

0.0 0.5 1.0 1.5 2.0 2.5
Clock cycles (relative to first data point) 1e7

Back-
ground
Task 2

Back-
ground
Task 1

RT
Task

Figure B.15: matrix1.pdf

117

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Clock cycles (relative to first data point) 1e7

Back-
ground
Task 2

Back-
ground
Task 1

RT
Task

Figure B.16: bitcount.pdf

0.0 0.2 0.4 0.6 0.8
Clock cycles (relative to first data point) 1e9

Back-
ground
Task 2

Back-
ground
Task 1

RT
Task

Figure B.17: st.pdf

118

0 500000 1000000 1500000 2000000 2500000 3000000
Clock cycles (relative to first data point)

Back-
ground
Task 2

Back-
ground
Task 1

RT
Task

Figure B.18: insertsort.pdf

0 500000 1000000 1500000 2000000 2500000 3000000
Clock cycles (relative to first data point)

Back-
ground
Task 2

Back-
ground
Task 1

RT
Task

Figure B.19: iir.pdf

119

Appendix C

Code listings

Listing 3: Vivado tcl script to program the FPGA with a bitstream

1 set bitstream $::env(BITSTREAM)

2 open_hw

3 connect_hw_server

4 open_hw_target [lindex [get_hw_targets] 1]

5 set_property PROGRAM.FILE $bitstream [current_hw_device]

6 program_hw_device

Listing 4: Gdb script for loading, execution and result extraction

1 target remote localhost:3333

2 restore image.elf

3 set $a0 = 10

4 j _init

5 p $a0

6 p $a1

7 set $i = 1

8 while $i <= $a1

9 p *((signed long *)(0x80100000) - $i)

10 set $i = $i + 1

11 end

120

Listing 5: Measurement instrumentation asm code for initialization the Ari-
ane as the target platform

1 # entry point into the program

2 _init:

3 # enable the floating point unit

4 li t0, 0x2000

5 csrrs zero, mstatus, t0

6 # initialize the stack pointer

7 li sp, 0x90000000

8 # flush caches, by turning them off and on again

9 csrwi 0x700, 0

10 csrwi 0x701, 0

11 csrwi 0x700, 1

12 csrwi 0x701, 1

13

14 # loop index in s1 runs from n-1 downto 0

15 mv s1, a0

16 .L1:

17 addi s1, s1, -1

18

19 # capture the current value of the mcycle performance counter

20 csrr s0, mcycle

21 # call the main function of our benchmark

22 call main

23 # calculate the number of cycles elapsed during execution of main

24 csrr t0, mcycle

25 sub s0, t0, s0

26

27 # store the result

28 la t0, _results

29 slli t1, s1, 3

30 add t0, t0, t1

31 sd s0, 0(t0)

32

33 # end loop

34 bgt s1, null, .L1

35

36 # signal the debugger that execution has terminated

37 ebreak

121

Versicherung

Hiermit versichere ich, dass ich diese Arbeit selbstständig verfasst und keine

anderen als die angegebenen Quellen und Hilfsmittel verwendet habe. Außer-

dem versichere ich, dass ich die allgemeinen Prinzipien wissenschaftlicher Ar-

beit und Veröffentlichung, wie sie in den Leitlinien guter wissenschaftlicher

Praxis an der Carl von Ossietzky Universität Oldenburg und den DFG-

Richtlinien festgelegt sind, befolgt habe. Des Weiteren habe ich im Zusam-

menhang mit dem Promotionsvorhaben keine kommerziellen Vermittlungs-

oder Beratungsdienste in Anspruch genommen.

Mehrdad Poorhosseini

	Introduction
	Motivation
	Scope and Research Questions
	Thesis Organization

	Background and Foundations
	Embedded systems
	Real-time Embedded Systems
	Timing predictability concept in an embedded system
	Worst-Case Execution Time analysis

	Hybrid embedded computer architecture design
	Architectural elements
	Requirement for hybrid switchable architecture design

	Overview of riscv ecosystem
	Compilers
	RISC-V cores

	Related Work
	High-Performance platforms
	Ariane (CVA6)
	Raspberry Pi 4
	 NVIDIA Jetson Xavier
	 Zynq 7000

	Real-time class platfroms
	CompSoC
	PATMOS
	FlexPRET
	SPEAR

	Analysis of suitability of existing platforms for switchable architecture design
	Gap analysis

	Thesis Contributions
	Constraints
	Contributions

	Concept
	An overview of mode switchable concept
	Characteristics of Real-Time mode
	Characteristics of Non-Real-Time mode

	Switchable Architecture Model Definition
	Application model
	Execution model
	Example of Application Execution

	Architectural Overview of Switchable Design
	Memory requirements for preparation setup
	Architectural overview
	Memory hierarchy for real-time execution
	Memory hierarchy for non-real-time execution

	Design Flow and Implementation
	Implementation: Hardware layer
	Target implementation
	Memory system configurations

	Implementation: Toolchain Layer and Linking process
	Implementation: Software layer
	Preparation setup
	Operating system support
	Realization of hybrid execution for mixed-Critical applications

	Design a framework for execution time measurment
	Summary

	Evaluation Process and Results
	Evaluation Setup
	TACLE benchmark Programs
	Benchmark Execution process
	Changes for FreeRTOS

	Benchmark Execution on different configurations on the target
	DRAM with cache
	DRAM without cache
	SRAM without cache
	SRAM embedded in FreeRTOS

	Results
	Average Execution Time Comparison
	Result interpretation
	execution times for binarysearch benchmark
	execution times for Cosf benchmark
	execution times for st benchmark

	Discussion
	Summary

	Conclusion and Future Work
	Conclusion
	Future work

	References
	Appendices
	Timing Comparison Plots
	Execution Visualization Plots
	Code listings

