
tdited \'
jim Greel

Proceedings of AI-ED 95-
lVorlcl Conferencc- on
Arriliciitl Tntrlliq.r, c in t,lu, atiort

I1'ashurytnn. l)(,::,trtgt.rL 1(; I9, I995

A Cognitive Model of Design Processes
for Modelling Distributed Systems

Olaf Schöder
Institute OFFIS, Esch€rweg 2. 26121 Oldenbug, Gennany

Claus Möbus
Depanment of Informatics, C.v.O. University, 26111 Oldenburg, Germany

IGut Pitschke
Department of Informatics, C.v.O. Unive{sity, 26111 Old€nbulg, Gemany

E-Mail: { schroeder, moebus, pitschke} @informatik.uni-oldenburg.de

Abstract. Condition-event Petn nets are a means to model technical, social. and
naruial processes and organizations in order to unterstand their b€havior, lo identify
bottienecks and resource shortcomings, and to Fopose apFopriate changes. PETRI-
I{ELP is an intelligent plobl€m solving environment that süpports this modelling
activiay. Since there is no clear-cut domain theory of Petn net modelling, net design
processes can be supported only in limited ways. In ode. to overcome this situation,
a cognitile model of Foblem solving, knowledge acquisition, and knowledge
modification was developed which is an instance of a general theoretical hamework.
The main rcsults of the model can be summarized in three hypotheses: koblem
solving and knowledge acquisition in a domain wilhout a worked-out domain theory
I . consists of i) applying weak heudstics and acquidng new knowledge in response
to impasses, and ii) knowledge optimization
2. involves fe1v simple, fairly g€neral heuristics which seem to be imponana also to
other design and configuration domains
3. can be supported by giving feedback and help information sensitive and adaptive to
the actual needs of the leamer. if apFopriate behavioral indicators are prouded.

1. Introduction

Petri nets are a powerful formalism for modelling rime-discrete distributed systems. Many natulal. social and

technical systems can be conveniently modelled by lhem, and the dynamic behavior of ahese systems can be

studied by simulationr for example, technical devices (like nachines, n€chanical or €lecEical devices, electric or
hydraulic circuits), producdon lines, office networks, organizational p.ocesses in a factory, in administration, etc.
with Petri nets, systems of lhis kind can be described and analyzed in orde(to identify fauLs, botd€ne.ks, or
resource shortcomings. P€tri nets are an especially convenient, €asy to understand formalism because they
vi$ra y represent concurrency and syncbronization- Their algebmic reFesentaaion has a clear semantics. so they
are also used as semantics of abstract fomalisns like process terms (Olderog, 1989), hadwarc description
languages (Danrn et al., 1990), and nonsequential proganmidg languages.
For a novice, working with Petri nets can cause sevenl difficulties. Features like the distributedness of Focesses
and the syncbrcnization of concurrent subprocesses are sometimes hard to undqstand. So design Foblems in the

net domain are rather different from "classical" ITs-problems. like arithmetic, geometry, or functional
prograruning, which for exarnple is supported by oul inteligent problem solving envAonment ABSYNT
(Möbus et.al, 1994; 1995). But there are sinilarities to the donain ofparalel p.ogralnming. Another source of
problems for novices is the fact that ther€ are not many approaches to suppon Petri net design in a systematical
way. Even in inFoductory textbooks (e.9. Reisig, 1985; 1992), Petri nels tend to be pr€sented as ready-made
solutions to modelling tasks describ€d infornally, but there is no clear cut methodology for their construction.
Furthermore, we think thal students n€ed to have an opportunity to practice design and problem solving in the
net domain. So a compüter-based int€lligent problem solving environment (I4öbus, 1995) should be valuable.
we developed such an environment, PETRI-HELP (Möbus et al., 1992; Pitschke, 1994; Schröder et al., 1993),
that enables the leamer to creat€ condition-event Petsi nets to given specifications of distribuled systems, to state

146

i

7

ald test hypotheses about the conectness of the given solution proposal with rcspect to (parts of) the
slecification, to receive feedback and to ask for completion and conection pfoposals. PETRI-HELP was created

uiirg guidelines which w€Ie derived liom our ISP-DL Theory (tmPasse - ruccess - problem solving - driven
ieaming, e.g., Möbus €t al.. 1992; 1994) which is a theoretical ftamework of problem solving, knowledge
acquisition, and knowledge modifrcation. It attempts to inte$ate impasse-driven leaming (Laird et al , 1986;

Newen, 1990; van Lehn, 1991), success-ddven leaming (e.g. Anderson, 1989), and phas€s of problem solving
(Go wiuer, 1990). Briefly, il states that the problem solving process may consist of four phases: The Problem
so1\er deliberates withüe result of choosing or creating a goal to püsue, then a pran to reach the goal is created,

ür pl?Il is etecuted, a\d tE result obtained is ?vafuated lnPdsres might result becaus€ the problem solver is not
abl€ to choose a goal, or a plan cannot be deated, ü execution is not possibie, or the result is not satisfying
Ite problem solver reacts to an impasse by applying weak ieertrricr like asking for help. As a result, the

Foblem solver may overcome the impasse and acquire new knowledge (impasse_driven leaming) Kno*ledge
applied successtully is optimized (succ€ss-driven learning) so it can be used more efficiendy in tuüre.
'Ihe ISP-DL approach implies several design p.itr€iples for an intelligent problem solving environment (see e.g.

Möhrs et al., 1992): Fißtly, free, unconstrained problem solving should be enabled. The learner should not be

intenupted because he or she will actively look for help as a weäk heuristic when caught at an impasse.

Se.ondly, the leamer shoutd be encourag€d to make use of her/his own solution ideas. So the system should be

able to deal with a large sotütion space and to tailor lhe information provided to the actual problem solving phase

and knowledge slate. Thirdly, help information should be direcred io the actual Foblem solving phase. PETRI-
I.IELP is designed according to lhese cdteria. lt ,.rfaru help but does not interrupt the leamer. The learner may
state h,?otheses about the corectness of her,/his solütion proposals, and PETRI-HELP gives fe€dback and, oo
funher request, completion and correction proposals and explanations. PETRI-HELP supports even unusual
solution ideas by being able to atralyze and comment on an) solution proposal of the lea er. This is possible

because Petri net solution proposals are analyzed with respect to temporal logic task specifications by model
checking (see below). Concerning the problem solving phases described above, PETRI-HELP suppo s the

following sub-activities of Petri net modelling: i) to develop specifications of systems or processes to be

rl'odelled ("delibe tine'\, ii) to plan a Petri net solution for a sp€cfication ('?/rrnira"), iii) to actualty consruct
aPeir ret (" eteauing"\. and iv) ao check whethe. the resulting net meets the specific tion (" e|aluating").
In the "classical" ITS domains, there is a domain lheory wherc help and explanations are usually based on. But as

mertioned, for Petri nets such a design theory is lackjng. Ther€fore, lhe completion and corection proposals
delivered by PETRI-HELP are based on "ad hoc" rules learn€d by the system {iom the actions of its users These

rul€s arc not based on a theoretical and empirical account of Petri net design- A consequence of this is that
?ETRI-HELP proposes what to add and to del€te from the actual Petri net proposal, but does not give enough

suppofi to the constnrction p/rcrrr. A related problem is that a general understanding of learners' cognitive
processes in constructing models of disaibuted systems (i.e., PeEi nets) is missing. Thercfore, the design
processes of subjects were inv€stigated empirically by single-sübject protocol studies, and based on them a
cogtritive model of Petri net design was developed which is described in this paper. The model int€nds to put
forward an empirically based design thoory. More specifically, it is aimed at the following rcseärch questions:

' In a domain without a worked-out domain theory, is it feasible to model ploblem solving änd knowledge
acquisition processes within the ISP-DL ftam€work, i.e., consisting of i) applying weak heudstics and
acquidng new knowledge in rcsponse to impass€s, and ii) lhe optimization of knowledge already acquired?
. Itr a domain without a worked-out domain theory, is it feasible to model Foblem solving and knowledge
acquisition processes by simple and general, "weak" heuristics requidng not much domain knowledge?

' In a domain without a worked-out domain aheory, is it possible to dJrzti.ar] diagnose online the domair
knowtedge. heuristic knowledge, and howledge acquisitioü processes of the leam€r?
.In a domain without a worked-out domain theory, how is feeiback and help infonnation to be designed that
is sensidve and adaptive to the actual problem solving and knowledge acqüisition proc€sses of the learner?

Answ€rs to these questions should provide i) hypotheses about problem solving, heuristics, and knowledge
acquisition Focesses of Petri ner modellers and, more g€nerally, hypoiheses about processes in design of models
of distributed syst€ms, ii) (parts of) a domain lheory of Petri net design that can be used for improved feedback
and h€lp informatioo, and iii) a basis for adapting the infomation offered by PETRI-HELP to the actual
knowledge of rhe user. In the next section we will sketch PETru-HELP. Then we will describe the model. Most
of ir is impl€menred but not yet integated into PETRI-EELP. We wi end the paper with some conclusions.

2. The problern solving environment PETRI-HELP

PETRI-HELP (Möbus et al., 1992; Pitschke, 1994; Schröder et al., 1993) is designed to suppot novices
mod€lliüg time-discrete and distribured systems with condition-even. PeEi nets. PETRI-HELP con.ains a

147

---'1

sequence of twelve modelling tasks partialy ordered according to several modelling goals. The leamer may cr$&

Petri net solutions ro these lasks. Each rask is specified as a set of temPoral logic fomulas (L1öger, 1987). lbis

allows the analysis and verification of Petd net solinion Foposais by model checking (Clarke et al.' 1986;

Damm et a1., 1990).
Figure I is a snapshot of some of the environments of PETRI-HELP. The uPPer left shows the temporal logic

specificalion to the modelling task "Restaurant"- Initiauy, the waiter is sleeping (starting condition: Ws) Tle

window on the upper right ofFigure I explains the abbreviations used in ahe fomulas.

= Formulos : Bestourant = l: Description: Bestaurant :

Starting condition:

Progress Conditions:
tr (wro -t(O (w! ^ K)))
tr(Kr(o P))
El(P)(o R))
tr(R^wse(O lYrs))
B(R^wro)(O wß))
tr (!Yß)(a ws))
o (w3 +(O wro))

E:{clusion Donditions
o (- (w3

^ wro))
o (- (ws ^wrr))
E(-(Wro^Wr3))
tr(Ws-Wro-Wß)

Description of States :

W3 4 Woiter i3 sleepiD9
Wro = Wailer is readg to.ccePt order
Wrs A \^r'aiter is readg to 3erwe
K ä Kirchen 9ol ordcr
P + Heal qets prepared
R 4 Heol is readg

: Net: nestaurant

-

m
trl

1.
o

E R

ll= complete : Reslourant

(-reip--- l
Tc-p': * I

@

ComDlete PlEces:

{t, l,in}

Complete TrEnsitions :

from PlE e(s) to PlEce(s)

({R, Wro)) r Wß

({R, |V,))) llr!

P)R
\

Figure 1 : A snapshot of the envnonments of PETRI-HELP

The iempoml logic formulas consist ofproSress conditions specifying time relations between states, and

erclusion conditions specifying that certain states cannot b€ present (or absent) at the same time. tr, 0, O arl

the temporal loglc operators. Informally, tr means "always" ("it is always true that ..."), 0 means "evenrually
("now or at some point in firture it will be tue that ..."), and O means "nexttime" ("at any next point in lme i

will be Eue that ..."). So for exampte E (Wro ; (0 (ws
^

K))) neans: "It is always true that if the !4aite

is leady to acc€pt an order then the yaiter will eventualy be sleeping, and tlle kitch€n has the order."

148

v./inilow.'Net:Restaürant''ofFigureldepictsasnapshotofthePETRI-HELPneteditor:acondition-event
*i rotuilon p.oposal to the iRestauränt" task A condition-event net consists of a sel 9l e]ace,s P

.irüriJ.ii.t.a * .it"r.s), a set of tansitions T representing events orlrocesses (depicted a^s

äa a set oia;ectea eages (depictetl as arrowsl connecting places with transitions and vice versa A

i*v'"""L"
"

,.1.." i"ai.atiig *atihe srare represented bv rhi place is actuallv rue aI a given Üme A
.':..L...'

t is able to fire iff every;tace of its preset (i.e, the set of places p with an anow pointing to 0
;"i

"
Lt"" -a "*.y

pf""e ofiti posaet (i.e- ttre set of places q whire an anow from t points to) is empty'

tuing a transition, each place of its Feset is emPtv (i.e., the corresponding states are not Eu:-1lI.T:e,],
.""i,jf"""

"f
u" postsei contains a token lttre conesponding states.are true now) -ln

PETRT-HELP'

able ro fire ; marked boldly So in Figure l. the transition with the preset {Ws} and the postset

I is able to fire s;nce 'Ws conhins ä roken and "Wro is empty
'ttre leamer is constructing a PeFi n€t to a given task, he or she may state hypolheses about which subset

ioÄ"i"i i" fufiff"a ry ine actual state o1 the solution Hvpotheses are stated bJ sirnply marking the

ive task formulas. The iystem then analyzes the setected formulas (the tr)po,,estr) bv model checking As

result, it returns the formuLs fulfiUed and not fulfilted by the cunent state of the solution (see the window

lerted'Tas*: nestaurant' on the lower left ofFigrre 1). In model checking, the formulas are interPreted on the

&";;h; il i; ;;i
"roDosal

Each node of; case gaph rcFesents a possible state of the net' i € , a set of

iiucei Äorainine rot.nr ai rhe same tme. An arc represents the transition from one set ofplaces containidg

to anothe; ser For example. when analyzing the fomula tr (K J (0 P)) the mod€l checker ve'ifies

r from each noal€ of the case güph ofthe P€tsi net conbining "K", a node containing "P" is reachable

io JÄtion, ttre tea-". -uy receive why-not explanations for the untutfilled formulas. For exanple, the fact rhat

fWro --) tO fws ^
fill ii nol fulfilbä by thtnet in the window "Net Restaunnt" is.explain€d by showing

formulas fulfilled by them

3. A cognitive model of the process of creating Petri nets

ltr rhe firsr sübsecdon, we will state rhe kinds of hypothetical design knovledge to model distributed systems

wfth Petri nets. Then th€ runnable model will be desctibed.

3,1 A taxonomy of d€sigü knowledg€

Fisure 2 deDicls rhe hvpothetical design knowledge for modelling distributed systems with Petri nets. It is a

*-*orty oilSf or guiä"a protocol an;lyses of single subje(t! uorking sith PETRI-HELP'

tlaia stut" ir'reacttubl" r"trer" "Wro" has ttoken, but "Ws" has not, ard no transition is able to fire

TEIRI_HELP also offers complerion and codection proposals. The lower dghr of Figue 1 shows a completion

rrooosal;twoolacesandlourtrangtions.Theseproposalsa.rebasedonrulesthesystemleamsfiomitsusers'
i Äe -r.r *!ociut. tr tuccessrue stages of a Fetri net solution Foposal, or ii) Petri net ftagments and the

desrgn knowledge

specifi cation knowledge

.".,äx_
ftagments hewistics heüristics "_..,ä*x;::".selection heüristics for impasses

Ec,r--rT t"-"t"-y
"f

d"ttcn-k t"*l"dc" f- modelling distibuted systems with PeEi nels

Specificatiott tto"J€dge is the knowleige utilized in specifying a distributed system PETRI-HELP has a

conponent supponing the specification Foc€ss, but it will not be considered here

Con|ruaioniÄowle- e is itre knowtedge to construct a rumable model of a distributed system (i.e., a Pelri net)

frorn a specification."k consists of dinain knowledee and donain indePendent knowledqe The doßain
knowledie consists of i) le sign fregnents wlnch rclate pieces of rempol'al togic fomulas to Petri net fragments,

ü) desis; h4unsics rclatng 6mpoä logic progess conditions to Petd net ftagments (thev can he viewed as the

149

result of chunking of design fragments, thus they rcFesent optimized lnowledge)' and lil\ rcpai heu^tiß

"o-i"l
inio pr"y]i a*ig;ftagments and design heu;sdcs rum our ro be nor sufficienr for constructing a nel

."rr.i.'r. rr,JaÄ"i" naipendint knowleage c6nsi sts of contrcl knortedge, spec\f1cdt, selection heunstics fq

.it*Line rfre next formulu ro *o.L on, o, to, *ou,ng ro the next problen'solving phase rdeliberatug plannrng

.-"-t,"',. .r"r"",i"",. *d weak heutisrics litited;r impasse srtuaLions. tike tooking for help informalion.

ü""* l"ir,"*" ""t-. a.sign ftasments and conesponding design heuristics 'The foü design fiagm€nts on the

,p'p* r"ri "i
rig*" : a"sirite itre step*ise construction of a net fragment for the Fogress condition schem

dix _+ o vl. ihe conesponding design heuristic reFesents a chunk relaring rhis progess condition to the

,"*tt ot ,t
"
io-

","p"
on ihe tett. the nane lprnitic indicates that it does not necessarily lead to a solution

ftr. aesisn frapmenis and heuristics w€re obtarned {iom video-taped single-subject studies For exanple' if a

*Li.cr tisa hyiortr..'t ui and later lests hvpothesis Hi+1' and Hi+1 differs from Hi by one additional fornula

p, äa uet*e"n_tt
"se

t*o iests the subject creates the net {iagment N, then i1 s€€ms reasonable that the subje*

considenNtobearealizationofF.ThisaJsumptionwas$pportedbytheve$alconmentsweobtain€dfton
our subiecLs The F-N-associations obained in this way coFespond to üle design heuristics

W. uf.ä
"*t

u".a design fragments for rnore complex Fogress condition schemata containing conjunctions

unaloiaiijo*tio*. rhi desfin ftagnents in rhe toweileft par of Figure 3 can be.viewed as the result of

iäinitio^ "t auis"{iaÄents of rhe upper left The design heuristics are ßlatedbv e bed&tbitiry'Tt]ut'

ihe nel fiagmenl ofrhe upper destgn heunsuc in Figure I i! pan ofüe lower one'

oesipn frismenrs or deiisi heuristics mav nor always be suffrcr€nt lo create a solution thal satisfres a giver

i*.in.uuä. Ir ur,.. uppliing rhem for each progr€ss condjdon. rhere are srill unsarisfied formulas. lb€n relai.

L'",;r;.r.om. into ptäy.'aasid on prorocol anatvses. üe followrng repair h€unslics were rdetrtjfie-d:

. Heunsncs lot unfuIfLLed proSrcss con(litions.Prcgress conditions mav be untulfrlled for lwo reasons:

fir"tf', t
"

if"""."r"i."""ntinfdre premise may noi be reachable. The heuristic tries to find another fomula wilh

1n
"äe

pri-i"". ti su"h a fonnuia is found, the corresponding petri net fragmenl is idenrified, and edges are

created rhät rcad frorn ttre transition of rbrs net fiagment to the places re*esenting the premise in question- S0

irr""" pr""* *il ,"*ir" tokens agair. The upper palt of Figure 4 shows an example. suppose rhe unfutfilled

fomruia is tr (X -+ 0 Z). After the transition with preset {W, X) and postset {Y} has fired. the place X is not

reachabl€ any more. The heunstic mends this siüration by proposing the bold edge on the right
i"""närv, ,rr" pr"*" -presenting the conclusion oi rhe progress condrrion ma] nor be reachrble because ofa

aeaao"i'rno öa*iti*'is able t; fire). In this cas€ the heurisrrc idenufies rhe places conraining tokens in the

deadlock situation. Then edges 3re creat€d from these places to the sansitions wllch postsets contain the places

,"!r"ser,ting the p."-i"" of-the progress condition. The lower part of Figue 4 shows an example: The formula

Ci((W "
XJ- tO fV " Z))) is not fulfilled: wllen the Eansition with postset {w, X} fires, rhe premise of üc

fo;da holds. Now the transition with lh€ Preset {w, X} and postset {Y, Z} fires, leading to tokens on Y and Z
ii now the transition wittr preset {zl fires, V receives a toker Again the transition with postset {w, x} may fire

"o
ttre p."-i"" of th" fo-iula is ;ue But now the transition with preset {W, Xl and Postset {Y' Z} cannot tue

since tire place y is not empty. The €onclusio of rhe formula cannot be fulfi11ed. thus the formula is not üue. Ä

deadlock
-has

occurred. The heuristic mends lhis situation by proposing the bold edges on the dght

. Heunsics fot a,{ltlftled exctusion conditions. If an exclusion condilion schema tr - (X
^

Y) is not satisfi€d,

then for each transition having Y in its posrser, an edge is created fiom x to this transition, and vice versa

(Figure 5, upper paf). Thus X ian only receive a token if Y loses irs token, and vice versa' If a formula E(x t
vl is not

"uti"nea
r*ru.

"xcluding
the drrer.e of boü x and y), then edges are created such rhat ihe ransirions I

wittr X in ttreir poitset trave Y i; their preset. The transitions with Y in their preset are remov€d, and edges are

creared ftom rh; Fansitions t io rhe püces in the postset ofthejust removed transition. This is also done vice

versa (Figure 5, lower part). Thus X can only lose its token if Y rcceives one' and vice veNa

3.2 Th€ model

The model is generic in lhat it is intended to rcpresent rhe domain dependent and domain independent knowledg€,

heuristics, anä knowledge acquisition and modification processes of Petri net modelle.s of varying experlise

Thus it is supposed to
-nodei

novices as well as expens The problem solving and knowledge acquisilion

nrmesses oI soecific Petn net modellers art vieued as rn.Bntiations ol üe model l-igure 6 gives an overvjew

the model is itrucrured accordins to the 1SP-DL Theory. A run stans with the presentation of a rar& a temporal

logic spe€ification of a distributa system. The first action ("deliberate',) consisrs of relecdnS a formula ro work

on: W; extract€d different saategies Iiom the Protocols: selecting formulas in the order they are stated, selecting

th€ formula with th€ minirnum nurnber of logical operators, or selecting a formula that can be handl€d by a

design heuristic. Wllen a fomula is selected, a Soal is set to implement it. A PeEi net fragment for this formula

has io be plaaned using the available knowledge: design heuristics, design fragEl€nts. or repair heuristics-

't50

,-

,,t
embedd.able

,t
enbeddable

generalizq.tion

one place each for the atom of the

Femise and the atom of the conclüsio

olle transition

an edge leading to the transilion

atr edge ftom lhe Eansition to lhe plac€

representing lhe atom ofthe conclusio

Y)

a)
tr(x--)0Y)

xo>E->oY

one place each for the atom
of lhe pr€mise and the atoms
ofthe conclusio

one transition

an edge leading to lhe transition

for each place representing an
aton of the conclusio: an edge
from the transition to lhis place

tr (x -+0(Y1 ^Y2,

xo o 8;;
"o--n $;;
'o{€}l

tr (X -t 0 (Y1
^

Y2))

'o-ü€I;

Figue 3: Design ftagments and desigl heuristics relating formulas to net fiagments

w

x

Y

z

w

x

Y

z

Figure 4: Two repan heun.tics lor unfulfilled progress condjtions

w
Figue 5: Two repair heuristics for unfulfilled exclusion conditions

t
151

The Dlan is
"r..üted.

leadin! ro a Peti nel fragmenr \"protocol't wlnch is
'vatrarrd

by byporheses rertrngorby

.Hffi;. iili; fäil;ÄÄi"Ä ':
,i'niä , *,iess r then the goal is set to impremenr anorler rormula" Ii

;;;;;;;;'i;;;;, ;; knowledge used is o/"';zed (design ftagments are chunked' leadins to design heuis'

;;;.:;;;ö;:i. ihe; -" i*o""ou.""" of ;.porres in
'he

moder: lLa.Dningnrsht
rair because or tss'n3

iÄi" ni,ia*.
^a,valuation

misbr reveai üat a Jomuta ß not J lfrtted in bolh cases a rtrbeodl is crcakd

ä"i"."._",ü. i^Ä* ui .aal Lrairac,. ft;,;s represenred by a recursive ca of problem solvins .

:"'i;#;';;;ä;.,i'..i *'"ii"g A''.'" Lo*teoge a generatrzaton orthede'ign ftägrnenß
'seE

Frgu€

:irJii,i,äiäi"l ""i,ä,r,"
.,^p"i,,7, n.,t"ae" (i.€. rhe-senerarized desisn {iasment) is acquüed. ff nor,

"nortrer
Iormuta is setected, orcompleLion/ conecrion ProposÄls are asked fo

:'iiü" -r*.. *"* o."ause ofan unfulfilled lormuü tie repair heuri"Lics described abote are consider€d Ar

.;;ü;i;;;;;;;l;J, ;d iI I' checked wherher rhe previor'rsrv untulfirr€d rormura is rurfilred lf so then

;ä;ä,;;ä;;i;;;;.tat.' tt'. n.t *t'"r. rt'"
'mpasse

arose wiLh rhe acrual ner qhere lhe impasse is sohed

i;ö;ii;;;i;";-ü;*ieJie). ff not' hvpotheses ar; tesled' and asarn completroff/corr€cüons ate asked for'

knowledge basel

- design heulistics
- design ftagments
- repair heuristics
- selection heurisrics

- weat heuristicsgoal: formula(s)

@Ej@ Problem solving
\v ith u' e ak he urist i c s :
- select another formula
- generalize design fragmenis

- try a new repair heuristlc
- lest h,?otheses
- ask for completion /correction

figure 6: rtre moaet as a higher-order Petri net

4. Conclusions

we Dresented a modelof oroblem solving. kto$ledge acquisiuon and ktowledge optimization jn lhe donaro 0t

*"'afii1ääi-ü"iJ,vrt!nl, *id,
"onaöon-"uenr

Feri nets. a domarn wirhour a worked-our design rieory. rrt

\52

model atiempts to desc.ibe these processes by simple, weal heuristics within the general ftamework of the ISP,
DL lheory. lte heudstics should b€ of interesl also to other areas of design prcblems.
'Ite nod€l seems to pmvide a feasibl€ basis for dl,naflicalJ diagnosin? t\e changing knowtedge states of Petri
nel rnodelleß online, and to supply appropriate feedback and help information (see Möbus et a1., 1994, for the
domain of tuncdonal programming)- Help information would consist of i) Foposing the actually needed design
hagments and design heuristics, and by modvating lhem by showing how they can be derived fiom üe already
acquired knowledge by generalization or chunking, and of ü) proposing repair heuristics and explaining how they
üsolve lhe actual impasse. A necessary condition for dynamic diagnosis and adaprive help is to define empirical
iüdicators for the hlTothetical knowledge, heuristics, and impasses that can be registered automatically. For
example, a reasonable indicator fot desiglr fragmentr is the pi€cemeal codstruction of places, transitions, and
edges, iirterrupted by cursor movements and by pointing to the formula to be implemented. ln conhast, a design
,arartr'c should be implemeted fast and uninterruptedly (see also Möbus et al., 1994).
Sbce the model is not yet fully implemenred and integrated into PETRI-HELP, ir has not been empirically
tested- This will involve testing predictions derived ftom the modelt use for dynamic diagnosis, and testing tbe
efectiveness and acceptance of the help information. A Feliminary analysis of 171 solurions of sübjects
working with PETRI-HELP showed lhat 153 (89,57o) could be explainei by the heuristics stated by the model-
the nodel is not yet complete. Heüistics not y€t handled by i! are: realüing nore than one fomlula ar a dme
(thus applying large chutrks), and trying to be parsimonious, i.e., deliberarely not implementing all formulas.
Cünently we work on extending PETRI-HELP to other domains. For example, in the domain of hydraulic
circuits, task specifications consist of function diagrams (whicb can be transformed into remporal logic
formulas), and the solutions consisr of hydraulic circuits which may be translared into P€tri ners or case graphs.
Problem solving in this mea should be similar in many respects to probl€m solving in PETRI-I{ELP.
Hylolheses about problem solving and knowledge ac4uisition could be utilized in rhis donain as well.

5. References

Andenon. J.R. (1989). A rheory of the origins of hun'Jl,kDwled9e. Aftifcial Intelligence, 40, 313-351.
Clarke, E.M.. Emerson, F.A. & Sisda, A.P. (1986). Aütonatic ve.ification of finire-stare concurent systems using

tenporal logic specifications. ACM Trcns. oa Prc8running Iang@ees an l Stttens, 8(2), 244-263.
Damm, W., Döhmen, C.. Geßtn€r, V., Josko, B. (1990). Modular verificatior of Pebi n€ts. The telnporal toeic

approach. In J.w. de Balüer, w.P- de Roever, G. Rozenberg (edt: Prcceedihss REx-wo.kshop on srepwke
rcfneh.nt of disnibuted slstens: nodels, forutisns, co-r"cr.€$. Spnnger (LNcs 430).

Colhdtzer. P.M. (1990). Acrion phases and mind*ets. In E.T. Higgins & R.M. Sorentino (eds\: Handbook oJ
nottuation dh.l coqaitioa: Foundations of social behdtiot, Yol.2, 53-92.

köge\ F. (1987)- T.npotul Lo9ic oJ ProEruns. Be:Jla: Spnnget.
Laird, J.E.. Rosenbloon. P.s., Newell, A. (1986). Univ.ßal subqodlins and crart8s. Boston: Kluwer.
Möbus, C. (1995). Towards an Epislemoiogt of Intelligent Problem Solving Environm€nrs: The Hypothesk Testjng

Approach. This volume.
Möbus, C., Pitscbke, K., Schritder, O. (1992). Towards rhe lheory-guided design of help sysrems fo. p.ogrmmjng and

modeiling tasks. L C. Frasson, G. cauthier & c.I. Mcc^ll^ leds\ Int.lligent tutoriaq usEm, ptu..edin,s ITS 92.
B€rlin: Splinger. LNCS 608, 294-301.

Möbus, C., Schröder, O., Thole, H.,J. (1994). Diagnosing and evalüating tlte acquisition process of programming
rchemta. In J-8. Greer, G. Mccalla (eds): Snded Modelling: Tne Ke! to Ik litiduolize.t Knovt dSe-Based
/trrtucrtor. Berlinr Spring€r (NATO ASI Series F: Computer and Sysrems Sciences, Vol. 125), 2l l-264.

Möbus, C., Schröder O., Thole, H.,J- (1995). Online Modelling the Novice-Expen Shifr'in Prognmmine Skills on a
Rule-Schema-Case Partial Orde.. In K-F. wend€r, F. Schmalbofer, H.-D. Böcker (ens): co|aition aad Conputet
PrrSrahntrS. Norwood: Ablex, 63-105.

Neweil, A. (1990). Unifi.d th2ones of c nitiotr. cMbridse: Harward Unjversity P.ess.
Oiderog, E.-R. (199I). x,tr tertu', anAfomulas. cambridss Cambridge Univeßity Press.
Pißchke, K. (1994). User modelling for domains without explicit d€sign theones. h Proceedinss oJ the Foutth

Interurio@l Conf.renc. on Uter Moda ing (UM94).HyMis, MA. USA, The MITRE CoQorarion, 191-195.
Reisig, W. (1985). P.rt ,.ß - aa iatrc.lwtion. Betlln: Sqinget.
Reisig, W. {1992). Ä ptner in Peffi rct desiEn. Beün: spn,i.aet.
Schröder, O., Möbus, C., Pitschke. K. (1993). Design of help for viewpoift centered ptüning of petri nets. In B.

Blrla, S. Ohlsson, H. Pain (eds): Proceedinqs o! the 5th Intematio.al Caafer.nce ü Aftificial Inte is.n.. ana
Educario" (AI-ED 93). A,ssociation of the Advancement of Conpuring in Education (N\CE),370 - 3j 1.

Van Lebn. K. (199i). Rule acquisition evenrs in the discovery of problem sotving state9ies. Cogn. Sciehce,lS,147.

6, Acknowledgements

We rhank JÖRG FOLKERS for implementiDg ihe PETRI-HELP interface.
llis research was supported by the Stifrung Volkswagenwerk (Az. 210-70631/913-14/89)

'153

