
Dissertation, submitted to the Carl von Ossietzky Universität Oldenburg
in partial fulfillment of the requirements for the degree of Doktor-Ingenieur

Unmasking fault tolerance:
Quantifying deterministic recovery dynamics

in probabilistic environments

by Nils Henning Müllner

Examining board:
Chair Prof. Dr. Martin Fränzle

Carl von Ossietzky Universität Oldenburg, Germany
First Supervisor Prof. Dr.-Ing. Oliver Theel

Carl von Ossietzky Universität Oldenburg, Germany
Second Supervisor Prof. Dr. Ir. Joost-Pieter Katoen

RWTH Aachen, Germany
Universiteit Twente, Netherlands

Faculty Member PD Dr. Elke Wilkeit
Carl von Ossietzky Universität Oldenburg, Germany

Day of Submission Monday, 30 September 2013
Day of Defense Wednesday, 26 February 2014

Faculty II - Department of Computer Science
Oldenburg, Germany

"To infinity. . . and beyond!"
Cpt. Buzz Lightyear

iv

Abstract (English)

The present thesis focuses on distributed systems operating under probabilistic influences
like faults. How well can such systems provide their service under the effects of faults?
How well can they recover from faults? The present thesis introduces with limiting win-
dow availability a suitable measure to answer such questions, and presents a method for its
computation. For the computation, the transition models of the systems are constructed,
which are exponential in the size of the constituting system models. This is known as
state space explosion. Combining decomposition and lumping — methods for state space
reduction from the domain of model checking — allows to dampen the state space explo-
sion.

v

Kurzzusammenfassung (Deutsch)

Die vorliegende Arbeit betrachtet verteilte Systeme, welche unter wahrscheinlichkeitsthe-
oretischen Einflüssen, beispielsweise Fehlern, operieren. Wie gut können solche Systeme
unter den Auswirkungen von Fehlern ihren Dienst erbringen? Wie gut können sie sich
von Fehlern erholen? Die vorliegende Arbeit stellt mit der limiting window availability
ein geeignetes Maß zur Beantwortung dieser Fragen vor und präsentiert eine Methode, um
es zu berechnen. Zur Berechnung werden die Transitionsmodelle der Systeme konstru-
iert, welche exponentiell in der Größe der zugrundeliegenden Systemmodelle sind. Dies
ist auch bekannt als Zustandsraumexplosion. Die Kombination von Dekomposition und
Lumping — Methoden zur Zustandsraumreduktion aus dem Bereich Modellprüfung —
erlaubt es, die Zustandsraumexplosion zu dämpfen.

vi

Declaration of authorship

The present dissertation was composed by myself. Its content has not been published as
Diploma- or similar examination (except where cited accordingly) and the employed re-
sources are completely declared. The present dissertation was composed according to the
guidelines for research integrity and good scientific practice by the DFG. The author did
neither consume any stimulants other than coffee for the time of being a PhD student, nor
did he task a commercial consulting or placing service.

Eigenständigkeitserklärung

Die vorliegende Dissertation wurde selbstständig verfasst. Ihr Inhalt wurde nicht für eine
Diplom- oder ähnliche Prüfungsarbeit verwendet (soweit nicht anders angegeben) und die
verwendeten Hilfsmittel sind vollständig angegeben. Die vorliegende Dissertation wurde
den Regeln guter wissenschaftlicher Praxis entsprechend der DFG-Richtlinien verfasst.
Der Autor hat als Doktorand weder Stimulanzien außer Kaffee konsumiert, noch einen
kommerziellen Beratungs- oder Vermittlungsdienst in Anspruch genommen.

Nils Henning Müllner

vii

Acknowledgments

This thesis is the result of a trace, a sequence of singular probabilistic events. The out-
comes of the events were (most of the times) to my advantage, for which I owe to many
people who I would like to thank here. Without each of them, the result would have been
a different one. First of all, I owe thanks to my doctor-father Professor Oliver Theel for
taking me under his wing, for his endless patience and for letting me pursue the topic
so freely. I met Professor Joost-Pieter Katoen during a MoVeS meeting at TU Delft for
the first time and was intrigued by his competence in model checking. I thank you for
becoming my second supervisor, for sharing your knowledge with me and for fruitful dis-
cussions along the way. Professor Martin Fränzle employed me after my stipend ended.
I am grateful that I could disseminate and apply some of my results under his guidance
within the MoVeS project and in turn benefit from a great deal of the MoVeS experience
to improve this thesis. I thank you for your continuous availability, for sharing your in-
credible amount of expertise and for your calming yet distinct way of working things out.
Last but definitely not least I thank Dr. Elke Wilkeit for introducing me to the scientific
method in the first place. I still remember my first steps writing my "individuelles Projekt"
under her guidance in 2006 and how it sparked my interest in distributed computing.

While Professor Theel is my doctor-father, Drs.-Ing. Jens Oehlerking and Abhishek Dha-
ma, Professor Andreas Schäfer and Dr. Sebastian Gerwinn acted as my doctor-older-
brothers who I could ask any question at any time. Your support is invaluable. I thank
PD Dr. Sibylle Fröschle, Ulrich Hobelmann and Annika Schwindt for their proof-reading
and Professors Sandeep Kulkarni and Sèbastien Tixeuil and Dr. Vassilios Mertsiotakis for
sharing their expertise. I would also like to take the opportunity to commemorate Profes-
sor Mieso Denko from the University of Guelph, Canada, who passed away unexpectedly
on 27 April 2010. I met Professor Denko at the Symposium on UbiCom Frontiers in
Brisbane in 2009. He gave me a great portion of motivation by accepting my second pa-
per. Another big boost of motivation came in Japan in 2012. I thank Professors Makoto
Takizawa and Leonard Barolli for awarding my fourth paper with the AINA Best Paper
Award that year.

One continuous factor for which I am very grateful is the friendly work environment. I
thank my colleagues Christian Ellen, Eike Möhlmann, Oday Jubran, Andreas Eggers, Dr.
Kinga Lipskoch, Sven Linker, Hendrik Radke, Felix Oppermann, Robert Schadek, Eckard
Böde, Philip Rehkop, Brian Clark, Christoph Etzien, Dr. Stephanie Kemper, Markus Oer-
tel, Thomas Peikenkamp, Axel Reimer, Dr. Michael Siegel, Sven Sieverding, Daniel So-
jka and Raphael Weber. I thank Pietu Pojahlainen from the University of Helsinki for
inviting me to his winter school as lecturer in 2008. I hope we meet again.

Last but not least I owe my deepest gratitude to my parents Ingeborg and Helmut, my
sister Nina and my girlfriend Katrin Gese. Without your ongoing encouragement this
would not have been possible.

Thank you all for being part of this amazing trace!

viii

List of publications

Below are listed the peer-reviewed publications that were published during the writing of
this thesis between 2008 and 2013. Parts of the present dissertation are based on these
references. The contributions are listed in descending order of publication date.

[Müllner et al., 2008] Müllner, N., Dhama, A., and Theel, O. (2008). Derivation of Fault
Tolerance Measures of Self-Stabilizing Algorithms by Simulation. In Proceedings of
the 41st Annual Symposium on Simulation (AnSS2008), pages 183 – 192, Ottawa, ON,
Canada. IEEE Computer Society Press

[Müllner et al., 2009] Müllner, N., Dhama, A., and Theel, O. (2009). Deriving a Good
Trade-off Between System Availability and Time Redundancy. In Proceedings of the Sym-
posia and Workshops on Ubiquitous, Automatic and Trusted Computing, number E3737
in Track "International Symposium on UbiCom Frontiers - Innovative Research, Systems
and Technologies (Ufirst-09)", pages 61 – 67, Brisbane, QLD, Australia. IEEE Computer
Society Press

[Müllner and Theel, 2011] Müllner, N. and Theel, O. (2011). The Degree of Masking
Fault Tolerance vs. Temporal Redundancy. In Proceedings of the 25th IEEE Workshops
of the International Conference on Advanced Information Networking and Applications
(WAINA2011), Track "The Seventh International Symposium on Frontiers of Information
Systems and Network Applications (FINA2011)", pages 21 – 28, Biopolis, Singapore.
IEEE Computer Society Press

[Müllner et al., 2012] Müllner, N., Theel, O., and Fränzle, M. (2012). Combining De-
composition and Reduction for State Space Analysis of a Self-Stabilizing System. In
Proceedings of the 26th IEEE International Conference on Advanced Information Net-
working and Applications (AINA2012), pages 936 – 943, Fukuoka-shi, Fukuoka, Japan.
IEEE Computer Society Press. Best Paper Award

[Müllner et al., 2013] Müllner, N., Theel, O., and Fränzle, M. (2013). Combining De-
composition and Reduction for the State Space Analysis of Self-Stabilizing Systems. In
Journal of Computer and System Sciences (JCSS), volume 79, pages 1113 – 1125. Else-
vier Science Publishers B. V. The paper is an extended version of a publication with the
same title

[Kamgarpour et al., 2013] Kamgarpour, M., Ellen, C., Soudjani, S. E. Z., Gerwinn, S.,
Mathieux, J. L., Müllner, N., Abate, A., Callaway, D. S., Fränzle, M., and Lygeros, J.
(2013). Modeling Options for Demand Side Participation of Thermostatically Controlled
Loads. In Proceedings of the IREP Symposium-Bulk Power System Dynamics and Control
-IX (IREP), August 25-30, 2013, Rethymnon, Greece

[Müllner et al., 2014a] Müllner, N., Theel, O., and Fränzle, M. (2014a). Combining De-
composition and Lumping to Evaluate Semi-hierarchical Systems. In Proceedings of the
28th IEEE International Conference on Advanced Information Networking and Applica-
tions (AINA2014)

[Müllner et al., 2014b] Müllner, N., Theel, O., and Fränzle, M. (2014b). Composing Ther-
mostatically Controlled Loads to Determine the Reliability against Blackouts. In Pro-
ceedings of the 10th International Symposium on Frontiers of Information Systems and
Network Applications (FINA2014)

Contents

Abstract (English) . iv

Kurzzusammenfassung (Deutsch) . v

Declaration of Authorship / Eigenständigkeitserklärung vi

Acknowledgments . vii

List of Publications . viii

1 Introduction 1

1.1 Practical application scenarios . 3

1.2 Hypothesis . 4

1.3 Thesis structure . 4

2 System, environment and transition model 5

2.1 System model . 5

2.2 Probabilistic influence . 7

2.2.1 Fault model . 8

2.2.2 Execution semantics and scheduling 11

2.3 Execution traces . 13

2.4 From system model to transition model 14

2.5 Example - traffic lights . 16

2.6 Summarizing the system model . 22

3 Fault tolerance terminology and taxonomy 23

3.1 Definitions . 24

3.1.1 Safety . 26

3.1.2 Fairness . 26

3.1.3 Liveness . 28

3.1.4 Threats . 29

x Contents

3.1.5 Types and means of fault tolerance 31

3.1.6 Fault tolerance measures . 32

3.1.7 Redundancy . 34

3.2 Self-stabilization . 34

3.3 Design for masking fault tolerance . 36

3.4 Fault tolerance configurations . 39

3.5 Unmasking fault tolerance . 41

3.6 Summarizing fault tolerance terminology and taxonomy 43

4 Limiting window availability 45

4.1 Defining limiting window availability 46

4.1.1 LWA vector . 48

4.1.2 LWA vector gradient . 49

4.1.3 Instantaneous window availability 49

4.2 Computing limiting window availability 51

4.3 Examples . 51

4.3.1 Motivational example . 52

4.3.2 Self-stabilizing traffic lights algorithm (TLA) 52

4.3.3 Self-stabilizing broadcast algorithm (BASS) 56

4.4 Comparing solutions . 62

4.5 Summarizing LWA . 62

5 Lumping transition models of non-masking fault tolerant systems 63

5.1 Equivalence classes . 65

5.2 Ensuring probabilistic bisimilarity . 66

5.3 Example . 71

5.4 Approximate bisimilarity . 72

5.5 Summarizing lumping . 73

6 Decomposing hierarchical systems 75

6.1 Hierarchy in self-stabilizing systems . 81

6.2 Extended notation . 83

6.3 Decomposition guidelines . 91

6.4 Probabilistic bisimilarity vs. decomposition 93

Contents xi

6.5 BASS Example . 94

6.5.1 Composition method in detail 95

6.5.2 Example interpretation . 101

6.6 Decomposability - A matter of hierarchy 103

6.6.1 Classes of semi-hierarchical systems 104

6.6.2 Temporal semi-hierarchy and topological symmetry 106

6.6.3 Mixed mode heterarchy . 107

6.7 Summarizing decomposition . 107

7 Case studies 109

7.1 Thermostatically controlled loads in a power grid 109

7.2 A semi-hierarchical, semi-parallel stochastic sensor network 126

7.3 Summarizing the case studies . 133

8 Conclusion 135

Bibliography 139

List of figures 151

Appendix 153

A Appendix 155

A.1 Employed resources . 155

A.2 List of abbreviations . 155

A.3 Table of notation . 156

A.4 Definitions . 157

A.4.1 Fault tolerance trees . 157

A.4.2 Fault tolerance . 159

A.4.3 Safety . 160

A.4.4 Fairness . 161

A.4.5 Liveness . 162

A.4.6 Threats to system safety . 163

A.4.7 Availability . 164

A.4.8 Reliability . 164

xii Contents

A.5 Source code . 166

A.5.1 Simulation . 166

A.5.2 The BASS example . 166

A.5.3 The power grid example . 168

A.5.4 The WSN example . 169

A.5.5 Counterexample for the double-stroke alphabet 170

A.5.6 MatLab source code: Computing the LWA for the TLA example . 171

A.5.7 iSat source code: Callaway’s TCL example without noise 172

A.6 Curriculum vitæ . 173

1. Introduction

Fault tolerance generally is the ability of a system to fulfill a desired task even in the
presence of faults. Over the past decades, this ability has been discussed for a variety
of systems and a wide range of application scenarios. This thesis focuses on distributed
systems with the ability to recover from the effects of faults. These systems contain
processes that cooperate to allow for recovery.

Quantifying fault tolerance

The goal of this thesis is quantifying fault tolerance properties of distributed system with
deterministic dynamics and a probabilistically faulty environment to measure the recov-
ery. To achieve this, a deterministic system is put into an probabilistic environment and it
is observed, how well it recovers.

For instance, assume a set of data-gathering interconnected buoys in the ocean, trans-
mitting their data to one central buoy that can upload the collected data in real time via a
satellite uplink. This setup provides the distributed system and its deterministic dynamics.
Further, assume the communication between the buoys to be prone to faults, thus provid-
ing a probabilistic faulty environment. Property desired for evaluation can be the timely
availability and consistency of the data measured. The goal of this thesis is to develop
concepts for quantifying such properties and to develop methods for their computation.

Evaluating deterministic system dynamics under probabilistic influence

The first part of the thesis focuses on fault tolerance in general to derive a suitable measure
in the context of this thesis. The second part reasons about methods to compute the
desired method. One suitable formalism in this context are Markov models. When the
dynamics of a deterministic distributed system is combined with probabilistic influence,
a probabilistic transition model can be constructed with which the desired properties can
be evaluated. The systems focused in this thesis have a discrete state space and execute in
discrete computation steps. Therefore, discrete time Markov chains (DTMC) are selected
as transition model.

Both fault tolerance and probabilistic reasoning with Markov chains are attractive research
topics. Liskov was awarded with the A. M. Turing Award for her contributions to "the

2 1. Introduction

practical and theoretical foundations of [. . .] system design, especially related to [. . .]
fault tolerance and distributed computing"1 in 2008, showing the importance in determin-
ing the fault tolerance properties of distributed systems. Hillston was awarded with the
BCS/CPHC Distinguished Dissertation award in 1995 for her PhD thesis on "Composi-
tional Markovian Modelling Using a Process Algebra" [Hillston, 1995]. The performance
evaluation process algebra (PEPA) she developed contributed to the theoretical founda-
tion that is exploited in this thesis. Their work being highly awarded by the scientific
community reflects the significance of the topic.

The primary objectives

The development of novel measure called limiting window availability (LWA) to quantify
the probabilistic aspects of system recovery is the primary objective. LWA is practically
a probability sequence over first-hitting-times, regarding the first time a system recovers
to a legal state. Furthermore, a method to compute LWA based on DTMCs is developed.

The challenge in the approach lies in the DTMC being exponential in the size of the con-
stituting system, an effect commonly known as state space explosion. A technique to
minimize the size of a DTMC by pruning information that is not relevant to the com-
putation of the desired measure is known as lumping. In order to evade to necessity to
construct the full product chain before lumping can be applied, constructing the much
smaller Markov chains of the subsystems — known as marginals or sub-Markov chains
— provides the required leverage. Lumping can then be applied on the sub-Markov chains
which are sequentially composed afterwards. This method has been successfully applied
for mutually independent systems as discussed in paragraph "Related work" on page 78.
On the contrary, this thesis focuses on cooperating processes that are mutually depending.
To fulfill the goal of developing a method to compute the LWA, it is necessary to adapt
decomposition, lumping and composition to the context of such systems.

But are systems — and their respective transition models — always too large to be
analyzed? The average system size2 grew over the past six decades, irrespective of
whether the system to by analyzed is a hard- or software system. Vaandrager and Rozen-
berg [Rozenberg and Vaandrager, 1996] expect a doubling of code-size for software sys-
tems every two years, just like Moore’s law [Moore, 1965] proclaims a similar trend for
the hardware domain. Conclusively, Wirth [Wirth, 1995] assumes that software complex-
ity increases at a slightly higher pace than hardware complexity.

While the complexity of computing the limiting window availability is exponentially pro-
portional to the system size, the systems grow at an exponential pace themselves. Hence,
it is highly desirable to reason about possibilities to at least dampen the effects of the state
space explosion.

Limitations of the approach

The quality of the results computed by the proposed methods depends on the quality of the
input data. This input data consists of deterministic system dynamics and a probabilistic
environment. While the deterministic system model is assumed to be realistic in this
thesis, the quality of the result hinges on the quality of the probabilistic environment. The

1As quoted in the corresponding notification by the ACM.
2Here, the average system size is accounted for by the number of the components it consists of.

1.1. Practical application scenarios 3

following example of rare natural events shows that it can be challenging to precisely
account for probabilistic environmental events.

Freak waves are extraordinary high waves at sea of rare occurrence. They were perceived
as purely fictional until New Year’s Eve 1995, when the Norwegian oil rig Draupner-E
measured a wave of 26 meters altitude. After a second incident, when the ship Queen Eliz-
abeth II reported a freak wave on her passage from Cherbourg to New York on September
11th 1995, scientists began to develop a probability model for the occurrence of freak
waves. While initial approaches assumed that the occurrence of freak waves is based on
the Rayleigh distribution [Kharif and Pelinovsky, 2003], further reported incidents insin-
uate that freak waves are far more common [Shemer and Sergeeva, 2009].

Since the occurrence of transient faults is — like freak waves — often based on a prob-
ability distribution, determining that distribution precisely3 is challenging. The analysis
with the concepts developed in this thesis is precise, but only as good as the input data. On
the bright side, the analysis can be easily reevaluated when more precise data is available.

1.1 Practical application scenarios
This section briefly discusses practical application scenarios and how quantifying limiting
window availability could benefit to their particular context.

Power grids

Consumers in a power grid demand energy when they want to use an electrical appliance.
Their demand is probabilistic. When too many consumers simultaneously increase or
decrease their demand simultaneously, the power grid blacks out. Energy suppliers have
the task to plan the energy demand ahead. They estimate the energy demand in the future,
adding a small amount of ventable excess energy to minimize the probability that the
system blacks out. The amount of excess energy must ensure that the risk of black out
does not exceed a certain limit. At the same time, the amount of excess energy is to be
minimized in order to be able to offer competitive prices. The goal in this scenario is to
determine, if a specified amount of excess energy suffices to uphold a desired probability
that a black out does not occur. The LWA in this case allows to determine the duration of
a black out. It answers the question: In case of a black out, how long does it take for the
system to become operable again, such that every household is sufficiently supplied with
energy?

Sensor networks

In sensor networks, the components of the distributed system are autonomous sensor
motes gathering environmental data like temperature or humidity. Notable field stud-
ies are the vineyard project [Burrell et al., 2004], which also provides a discussion about
realistic fault assumptions, Duck Island [Mainwaring et al., 2002], focusing on the sta-
tionary monitoring of a bird habitat, and "ZebraNet" [Juang et al., 2002], which concerns
the mobile monitoring of a flock of zebras. A sensor network should provide the status of
the motes with minimal message loss. Increasing the update frequency promotes message
congestion and loss. The first-hitting-time here is the availability of sensor data for each
sensor mote. By analyzing the availability of data in relation to the update frequency, the
sweet spot between both can be determined.

3One exemplary discussion about this topic demonstrating its practical relevance is provided by
Schroeder et al. [Schroeder et al., 2009]. The phenomenon of such influence is sometimes also referred
to as soft errors.

4 1. Introduction

1.2 Hypothesis
We assume i) a distributed system with deterministic dynamics and the ability to recover
from the effects of transient faults4, and ii) a probabilistic environment to influence the dis-
tributed system. Computing fault tolerance properties like recovery dynamics is a highly
desirable task. A novel fault tolerance measure accounting for the effectiveness of recov-
ery called limiting window availability is introduced to accomplish this task. It has to be
presented in the light of the state of the art. The expected challenge in computing the
limiting window availability lies in i) the processes of the underlying system being mutu-
ally depending, and ii) the size of the transition model being exponential in the size of the
system. In order to compute the recovery dynamics of even large systems, approaches to
dampen the state space explosion are an important objective.

1.3 Thesis structure
Chapter 2 introduces the system model used in this thesis. Chapter 3 provides a fault
tolerance taxonomy suitable to discuss the recovery of distributed systems. Chapter 4
proposes limiting window availability as a novel fault tolerance measure to account for
the recovery in distributed systems in the context of this thesis. Chapters 5 and 6 concern
dampening the state space explosion in the light of mutually depending processes. The
application of concepts and methods that are proposed in this thesis is shown in chapter 7.
Chapter 8 concludes the key points of this thesis and provides a rich set of promising
future directions in this topic.

4In the context of this thesis, the effects of faults are errors and failures. The threat taxonomy is explained
in detail in section 2.2.1.

2. System, environment and transition
model

2.1 System model . 5

2.2 Probabilistic influence . 7

2.3 Execution traces . 13

2.4 From system model to transition model 14

2.5 Example - traffic lights . 16

2.6 Summarizing the system model 22

This chapter introduces a general system model to discuss the analysis of fault tolerance
properties. It further introduces models for environmental influence like faults or dis-
tributed scheduling. From the context of this thesis, the goal is to exploit the information
of the system and environment models to construct a DTMC to determine the system’s
fault tolerance.

2.1 System model
The components of a distributed system S collaborate — thereby communicating — to
achieve a common goal. The components are referred to as set of processes. A set of
processes is labeled Π = {π1, . . . , πn}. Two processes πi, πj ∈ Π sharing a communi-
cation channel labeled ei,j are called neighbors. Processes and communication channels
together are also referred to as system topology. Processes execute an algorithm labeled
A to achieve a common goal. The processes store only that part of the algorithm that
they require to execute correctly, referred to as sub-algorithm. An example is provided
in figure 4.6 on page 57. Each process contains two memory partitions, one static par-
tition containing the particular sub-algorithm and one dynamic partition for the process
variables. The process variables are stored in registers R. To assume that the algorithm is
in a static partition while the process variables are stored in volatile memory is motivated
in paragraph "Immunity of algorithm and scheduler to faults" on page 8. The algorithms
introduced in this thesis require one register per process. The register of process πi is
labeled Ri.

6 2. System, environment and transition model

Definition 2.1 (System model).
A distributed system S is a tuple S = {Π, E,A} comprising

• a finite, non-empty set of processes Π = {π1, . . . , πn},

• a finite, non-empty set of edges E connecting the processes E = {ei,j, . . .}
such that

– ei,j connects processes πi and πj ,

– every edge is bidirectional,

– and each process is reachable from any other process via a finite number of
processes, and

• an algorithm A.

We assume that the number of processes |Π| is larger than 1 or else the system would
not be distributed. Hence, E is non-empty. Communication among the processes is com-
monly realized via either message passing or shared memory access as discussed for in-
stance in [Lamport, 1986a, Lamport, 1986b, Afek et al., 1997] and [Dolev, 2000, p.73].
In this thesis a register Ri is considered to be write- and read-accessible by its own pro-
cess πi and read-accessible by all neighbors of its process πj : ei,j ∈ E.

Definition 2.2 (System state).
The system state st = 〈R1, . . . , Rn〉 is the snapshot over all registers at time t.

Definition 2.3 (State space).
The state space S is the set of all possible states of the system.

The state space S contains all possible permutations of register domains. The set of
initial states S0 is a non-empty subset of S with regards to algorithm A. In the ex-
amples provided in this thesis, the set of initial states always coincides with the state
space. For instance, assume two traffic lights controlling a crossing. Then, the state
space contains any permutation of two values of the set {green, yellow, red}: S =
{〈green, green〉, . . . , 〈red, red〉, }. The transitions between the states are controlled by
the algorithm.

Algorithm

An algorithm A is a set of guarded commands. A guarded command is an atomic com-
mand guarded by a Boolean expression. If the expression evaluated to true, the guard is
enabled and the command can be executed within one, in this thesis atomic, computation
step. Each guarded command is a triple

ak : gk → ck (2.1)

with a unique label ak, a guard gk and a command ck. The label ak is required to address
the commands. A guard gk is a Boolean expression over read-accessible registers. A
guard is enabled when it evaluates to true. When selected to execute a computation step
by the scheduler, that is introduced in the next section, a process executes one command
for which its guard is enabled. For sake of clarity, the algorithms presented in this thesis
are deterministic, meaning that always exactly one guard per process is enabled.

2.2. Probabilistic influence 7

Restricting communication via guards

As mentioned in the introduction, the decomposition of systems is later necessary to ap-
ply the reduction method of lumping on the transition models of the subsystems. It is
noticeable in that context that the bidirectional communication channels allow faults to
propagate generally in any direction. Yet, the algorithms possess the ability to restrict the
communication among processes such that communication is carried out in only one di-
rection by reading only from specific processes such that no circular dependencies arise.
Thereby, a strict hierarchy among the processes can be established by an algorithm. This
potential of algorithms to establish a hierarchy among processes is important. It is later
exploited to reason about the system decomposition.

2.2 Probabilistic influence
After having specified the deterministic system dynamics with processes, communication
channels and algorithms, probabilistic influence is required.

The notions of determinism, probabilism and non-determinism

Two options to account for events as not being deterministic are probabilistic and non-
deterministic. An event with one certain outcome is deterministic. An event is probabilis-
tic or non-deterministic when it has more than one probable or possible outcomes. In the
context of this thesis, an event like a coin flip or dice roll is

• deterministic when its outcome is certain,

• probabilistic when the probability for each probable outcome is known and

• non-deterministic when each possible outcome is known, but not the probability
with which it occurs.

For instance, a coin toss event is deterministic when its outcome is known, for instance
when the coin has two sides both showing heads. The event is probabilistic with multiple
outcomes when the probabilities for all outcomes like both heads and tails are known and
are not 0. The event is non-deterministic in case all possible outcomes are known but not
the probabilities with which they occur.

Probability notation, time and constant influence

Single probabilities for outcomes of events are labeled pr(outcome). For instance, the
outcome of a coin toss event can be described with pr(heads) = 0.5. The proba-
bility distribution over all probable outcomes of an event is a probability distributions
characterized by a probability mass function

∑
outcomes

Pr({outcomes}) = 1. For in-

stance, the distribution over the outcomes of a coin toss event is Pr({heads, tails}) =
{pr(heads), pr(tails)} = {0.5, 0.5}. Index t labels events and probabilities with a time-
stamp, for instance pr(outcomet). We assume a discrete time model. All commands
are atomic and their execution consumes one time step.The two probabilistic influences
regarded in this thesis are scheduling and faults. Probabilistic scheduling is considered
as second probabilistic influence to demonstrate that further probabilistic influence de-
spite the fault model can be accounted for. The fault model is introduced next before the
scheduling.

8 2. System, environment and transition model

2.2.1 Fault model

A fault model specifies possible undesired influence perturbing the system such that it
does not work according to its specification. This thesis focuses on transient probabilistic
faults corrupting the register of an executing process with a given probability. These faults
are also referred to as sporadic faults.

The thesis focuses on systems that are supposed to run indefinitely. When such a system
is perturbed by a transient fault, it is designed to recover, that is, to converge to a desired
behavior after the influence by transient faults stopped. In this context, certain faults like
permanent and intermittent faults are not in the focus of this thesis. On the contrary, the
goal is to evaluate how transient faults perturb a system in the long run, and how well the
recovery of a system is able to cope with the effects of transient faults.

The focus on system properties in the long run further motivate to consider constant fault
and scheduling probabilities. Systems that are designed for a limited mission time com-
monly exhibit a burn-in and burn-out phase, commonly known as bathtub-curve. The
systems in the scope of this thesis are designed to run indefinitely and to be accessed at
some arbitrary random time point. Since that time point is undetermined, it is not reason-
able to consider probabilistic influence to be time-dependent.

The fault probability, which is the general probability that a sporadic fault occurs, is
labeled q = 1 − p. The probability that a process executes without being perturbed by a
fault is hence p. A fault causes the register of the executing process to store an arbitrary
value within its register domain. For instance, a traffic light would not be able to store
the value blue. The assumption that only the register of the executing process is prone to
faults while the other processes are immune is motivated in the next paragraph "Immunity
of algorithm and scheduler to faults".

In event of a fault q, the process stores and arbitrary value from the executing process
domain. Each such probable outcome of that fault event is labeled q = {q1, . . .}. The set
of fault outcomes is finite if the corresponding register domain is discrete and finite. The
probability distribution over all probable fault free and faulty outcomes is labeled

Pr(Q) = {pr(p), pr(q1), pr(q2), . . .} (2.2)

such that the fault probability q is distributed among all possible fault outcomes
|Q\p|∑
i=1

pr(qi)

= q, with |Q| being the cardinality of Q, the number of possible outcomes. We consider
that faults perturb only the executing process’ register and nothing else. This means that
registers of non-executing processes are temporarily immune and algorithm as well as
scheduler are immune, too.

Immunity of algorithm and scheduler to faults

The assumption that registers are susceptible to sporadic faults while the algorithms’ sus-
ceptibility is negligible is realistic. For instance, embedded systems have the algorithm
commonly burned to a mask ROM. A mask ROM cannot be changed by ordinary means
once it is written. Contrary to the mask ROM, volatile data like intermediate results is
commonly written into SRAM. Compared to SRAM, the liability to faults of a mask
ROM is negligible.

2.2. Probabilistic influence 9

Regarding the realism of employed models as discussed in the introduction, two recent
studies by Schroeder et al. [Schroeder and Gibson, 2007, Schroeder et al., 2009] are note-
worthy. The studies determine the fault susceptibility of volatile memory of real world
systems, revealing that transient faults occur less frequently than originally anticipated.
Assuming that also the scheduler is immune to faults is motivated by the focus on the
fault tolerance of the system topology and the algorithm executed, whereas the degree to
which the system’s fault tolerance depends on the scheduling is not considered here.

Malign and benign faults

The outcome of a fault event qi can be of either malign or benign nature. Malign here
means that an illegal value is stored such that the system state violates safety conditions.
Benign on the other hand means that a fault stores a legal value by chance. Notably, even
if a fault causes to store a value that is different to what the algorithm would have stored,
the result can still be benign, if it does not violate safety constraints, although it might
reroute the execution trace in an unintended direction.

Fault, error, failure

Classifying the effects of undesired sporadic perturbations into faults, errors and failures
is widely accepted and for instance classified by Aviz̆ienis et al. [Aviz̆ienis et al., 2004].
Yet, there are some controversies (e.g. [Denning, 1976]1) about these definitions. This
paragraph introduces a set of definitions tailored to suit the scope of this thesis that is
based on the definitions by Aviz̆ienis et al. [Aviz̆ienis et al., 2004].

Definition 2.4 (Transient fault).
A transient fault temporarily (i.e. for finitely many computation steps) perturbs a process
by manipulating its communication or computation, forcing it to store any arbitrary value.

The system recovers to a legal state when the fault is benign or when it is compensated
before it is detected. For instance, if a process writes a faulty value into its register and
overwrites it with a correct value before the faulty value effects the safety conditions. For
instance, in the case of write-after-faulty-write, the fault is not read and thus it can be
considered as undetected.

Definition 2.5 (Error).
An error is the possible consequence of a fault. A fault becomes an error when it is
detected.

A system might be able to temporarily deprive its services from system user while errors
are detected. A system recovers from errors when there are no more errors detected.
Notably, Aviz̆ienis et al. [Aviz̆ienis et al., 2004] distinguish between "latent" undetected
errors and detected errors. In the scope of this thesis, this distinction is not required. Errors
are detected faults that are — on the pathway to becoming a failure — still tolerable.

1In this light, Denning [Denning, 1976] argues that the term "fault tolerance" is misleading and actually
should be replaced by "error tolerance". Although his arguments are conclusive, the term fault tolerance
has been coined over the past decades.

10 2. System, environment and transition model

Definition 2.6 (Failure).
A failure is the possible consequence of an error. When an error is not compensated for
in time, it becomes a failure.

On the escalation from correct operation to catastrophic failure, an error must violate
desired constraints in order to be detectable. Yet, the possibility to successfully recover
to an operable status in time still remains. For some time, errors can be tolerable in the
sense that there is still hope that the system will recover and that the system will be able
to provide the desired service with an acceptable delay.

Threat cycle

Figure 2.1 concludes this section by introducing the threat cycle:

legalfault
avoidance

recovery

perturbance

recovery

recovery

detection

fault
persistance

error
persistance

failure
persistance

fault

er ror

failure

error becoming
intolerable

undetected
fault strike

partial
recovery

Figure 2.1: Threat cycle

The traffic light colors indicate the severity. The legal state is green, symbolizing that the
system is up and running as expected. The fault stage is gray as it stands for those faulty
states that the system cannot detect. The yellow state summarizes detected errors against
which the system can deploy counter measures to recover. The red state marks failures.

The bold black arrows mark the transitions that are important in the context of this thesis.
The transition from legal to fault states reflect the continuous probabilistic influence by
the fault model. When a fault is detected, the system can actively try to compensate its
effects. Until then, the error persists. In case the maximal admissible time span2 for
recovery is finite, the error becomes intolerable when that time runs out. In that case, the
error becomes a failure. The system user can then be provided with a failure message
and/or an incorrect result, depending on the system design.

Probabilistic faults

The examples in this thesis consider a probabilistic model for transient faults with a con-
stant fault probability q = 1 − p. When a process πi executes a computation step and is
not perturbed by a fault, it deterministically executes one guarded command as specified

2Here, the maximal admissible time span means the amount of time that the user is willing to wait. That
amount of time is admitted by the system user for recovery.

2.2. Probabilistic influence 11

by its algorithm A. Otherwise, it stores a random value in its register. With c being the
cardinality of the register domain — for instance c = 3 for a traffic light with three colors
green, yellow and red —, one of these values is selected, each with an equal probability
of 1

c
. This assumption can be arbitrarily adapted as desired.

2.2.2 Execution semantics and scheduling
While the — here deterministic — algorithm defines what the processes execute,
scheduling and execution semantics determine how the processes execute.

Execution semantics

The term execution semantics, as for instance presented by Theel [Theel, 2000], specifies
the cardinality of concurrent execution and its limitations. Processes executing concur-
rently or in parallel3 introduce parallel execution semantics to the system, whereas pro-
cesses executing one at a time introduce serial execution semantics to the system. The
case when not every enabled process is allowed to execute, but more than one process is
allowed to execute is referred to as semi-parallel. When every process with an enabled
guard is continuously allowed to execute, the system executes under maximal parallel
execution semantics as described for instance by Sarkar [Sarkar, 1993].

The examples in this thesis employ only serial execution semantics except for the case
studies in chapter 7. It might initially seem that maximal parallel execution semantics are
more general than serial execution semantics. On second thought, the processes share the
common resource of execution right. Thereby, processes depend on each other. Serial
execution semantics regards this issue while maximal parallel execution semantics does
not. Thus, serial execution semantics allows for a more general discussion than maxi-
mal parallel execution semantics. The general examples before chapter 7 focus on serial
execution semantics for two reasons: First, to allow for a more general approach than
maximal parallel execution semantics, and second, to keep this approach comprehensive.
The case studies in chapter 7 later explain the developed methods and concepts in the light
of different kinds of execution semantics to further discuss this issue.

As discussed above, the algorithms of the examples are deterministic, meaning that always
every process has exactly one guard enabled, and the commands are atomic, requiring
exactly one discrete time step each. Combined with serial execution semantics, in each
time step one process executes exactly one atomic command.

Scheduler

Distributed systems operate under schedulers controlling the execution sequence among
the processes. With serial execution semantics and discrete time, the scheduler selects one
process at each time step. The examples in this thesis are designed such that every process
has exactly one guard enabled at each time step. In that context, the algorithms featured
in this thesis are deterministic. Regarding the schedulers, the question arises, how the
processes are selected to execute. The scheduler selections can be deterministic, proba-
bilistic or non-deterministic. But what distinguishes a deterministic and a probabilistic
scheduler?

3Armstrong [Armstrong, 2007] for instance distinguishes parallel execution as being synchronized from
concurrent execution as being not synchronized. With a central scheduler demon and atomic execution steps
considered in all examples, this thesis focuses on parallel execution.

12 2. System, environment and transition model

Consider the goal of verifying that a system can recover from the effects of faults. Further
consider a scheduler probabilistically putting all processes in a fixed sequence with each
process occurring once, and deterministically calling the processes according to that order
over and over again. Is the scheduler deterministic or probabilistic with regards to the goal
of verifying the property of recovery?

One of the challenges to prove a system’s fault tolerance is to show that certain required
events eventually occur. The above scheduler selects every process within finite time, that
is, within the length of the sequence each process is selected at least once. Since recovery
commonly requires every process to execute finitely many times, the scheduler is suitable
to prove that the system can recover after finitely many computation steps. Although the
scheduler randomly selects the initial finite order, it deterministically selects the processes
to execute once within each sequence. Regarding the verification of guaranteed finite
recovery, the scheduler is considered to be deterministic. It allows to show that every
execution trace of a certain length satisfies the desired property.

On the contrary, consider now a scheduler selecting a process to execute based on a prob-
abilistic dice with the dice have as many sides as there are processes. The goal of every
process executing eventually then cannot be verified as the scheduler can constantly ig-
nore a process. The probability that a process is constantly ignored yet converges to zero
over time and the probability for every process to be selected some time — without a
specific upper temporal boundary — is 1. Regarding the verification of guaranteed finite
recovery, this second scheduler is considered to be probabilistic. It does not allow to show
that every execution trace of a certain length satisfies the desired property, but it allows to
show that the accumulated probability of all infinite execution traces to satisfy the desired
property is 1.

The schedulers considered in the examples are probabilistic in this context. They select the
processes according to a uniform probability distribution that might as well be replaced
by any other distribution. We label the event of scheduler selection with s, its outcome
with s = πi such that for uniformly distributed scheduling ∀πi ∈ Π : pr(s = πi) = 1

|Π| .
We abbreviate pr(s = πi) with si.

Probabilistic faults, convergence and scheduling

This thesis considers a probabilistic fault model. With such a fault model, recovery cannot
be shown for every execution trace as there are execution traces that continuously suffer
from malign faults. When recovery cannot be shown for every execution trace anyway,
one might consider a probabilistic scheduler for which deterministic recovery cannot be
shown as well instead of a deterministic one, thereby accounting for a more general class
of schedulers.

In this light, the scheduler is not part of the deterministic system model as per defini-
tion 2.1. It is modeled along with the fault model as probabilistic environmental influence.
The goal of this thesis is yet to determine the tolerance of the system and not to consider
the susceptibility of the environment to faults. In that context, the fault model is excluded
from effecting the scheduler. Otherwise, the computed measure would not account for the
fault tolerance of the system, but for the fault tolerance of the probabilistic scheduler as
well.

2.3. Execution traces 13

2.3 Execution traces
Let si,t be the state visited at time t and st be the process selected by the scheduler at
that time. Execution traces are sequences of states 〈si,t → sj,t+1 . . .〉 that the system tra-
verses over time, as similarly specified in [Alpern and Schneider, 1985, Ebnenasir, 2005]
and [Lynch, 1996, p.206]. A distinct infinite execution trace is referred to as σi and
a distinct partial (or finite) execution trace within the interval [t, t + k] is referred to
as σit,k. Since different probabilistic events cause the system to visit different states,
we include the events causing a transition between two subsequently visited states, an-
notated by the responsible event outcomes being the labels of the transition arrows:
σi = 〈si,0

s0=πi,p−−−−→ sj,1
s1=πj ,q3−−−−−→ . . .〉. Thereby, different execution traces traversing the

same states can be distinguished, like for instance two traces where i) correct execution
and ii) a benign fault have the same effect on the system. The transition from si to state sj
is abbreviated with (−−→si, sj).

Each execution trace is the concatenation of outcomes of events, that is, probabilistic
scheduler decisions and faults. With multiple outcomes being probable for each state at
each time, the execution traces unfold like a tree structure over time. Execution traces
distribute the probability mass of the system being in a certain state over all finitely many
states of the state space as the execution progresses. With each computation step, the
number of probable execution traces increases. In the limit4, there are uncountably in-
finitely many5 execution traces. Each of them is improbable, meaning they all have zero
probability. Their accumulated probability is 1. The following coin-toss example explains
this.

Assume the simple system of one process storing heads when it is not perturbed by a
fault and tails otherwise. Consider that the set of initial states contains both states S0 =
{〈heads〉, 〈tails〉}. The two shortest execution traces both contain one of the states. After
one time step, the execution traces σi0,1 ∈ {〈heads

p−→ heads〉, 〈heads
q−→ tails〉, 〈tails

p−→
heads〉, 〈tails

q−→ tails〉} are probable, their specific probabilities can be computed. After n
time steps and |S| = 2, there are 2n probable execution traces. After infinitely many time
steps, which means after concatenating infinitely many outcomes, each of the uncountably
infinitely many execution traces is improbable but possible.

Abbreviations for outcome probabilities

We further introduce the following notational abbreviations. Consider the probability for
all specific faults qi to be uniformly distributed. The probability that a process is selected
to execute and is corrupted by a specific fault qj is then q = si · pr(qj) for all faults, and
the probability it executes correctly is p = si · p. With uniformly distributed scheduling
and fault probabilities, p and q are equal for every process.

Reachability of states

The state space comprises all reachable states. To show that every state is reachable
from every other state within finitely many steps with a non-zero probability, the fault

4The limit refers to infinitely many preceding execution steps that have been executed.
5The execution traces are a bijection to the real numbers. Thereby, they are uncountable. For instance,

assume a one process system in which the process randomly stores one digit from 0 to 9, initially storing
0. That way, each positive real number between 0 and 1 can be generated. this holds for every probabilistic
system with infinite execution traces and more than one state.

14 2. System, environment and transition model

model suffices. Every time step, one process is randomly selected and probably stores
any value with a certain probability. Every finite sequence of scheduler selections is
probable, including all those of the same length as there are processes in the system. In
all these sequences, there are sequences in which every process is selected exactly once.
In each such sequence, every process probably changes the value stored in its register to
any arbitrary value. Thus, every state is probably reachable from every other state within
finitely many computation steps.

After introducing deterministic system dynamics and probabilistic environmental models,
the discussion about execution traces and reachability allows to discuss the construction
of a transition model.

2.4 From system model to transition model
The state space S contains the states that the system can reach. A finite amount of out-
comes of probabilistic events is responsible for the transition between each two states si
and sj , thus determining the transition probability pr(−−→si, sj), which is the probability to
jump from si to sj within one computation step, with pr(−−→si, sj) : S × S 7→ [0, 1]. A tran-
sition between two states si and sj is probable when there exists at least one event with a
corresponding outcome that is responsible for that transition. For each state si ∈ S, the
outgoing transition probabilities accumulate to one: ∀si, sj ∈ S :

∑
sj

pr(−−→si, sj) = 1. Each

transition probability can be computed with the accumulated6 scheduling and fault proba-
bilities while accounting for the algorithm and the topology. Consider a quadratic transi-
tion matrixM with |S| rows and columns, such that the element in the i-th row and the j-
th column is the transition probability between the corresponding statesMi,j = pr(−−→si, sj).

Notably, we consider probabilistic influence like fault and scheduling probabilities to be
constant. If it was time-dependent, the transition matrix would have to be computed for
each time step. A relaxation to this assumption is discussed in chapter 8. Furthermore,
under serial execution semantics, only transitions between states that differ in not more
than one register are probable. For maximal parallel execution semantics on the other
hand, every state is reachable from any other state within one computation step. Serial
execution semantics lead to a sparse matrix while maximal parallel execution semantics
result in a dense matrix. The same holds for fault models which allow the corruption of
non-executing processes.

Due to discrete computation steps and serial execution semantics, a discrete time
transition model is selected. Furthermore, the register domains are considered to
be finite and discrete, meaning that the state space is finite. Thus, discrete time
Markov chains as introduced for instance in [Kemeny and Snell, 1976, Norris, 1998]
and [Baier and Katoen, 2008, p.747] are selected as transition model.

Definition 2.7 (Discrete time Markov chain [Müllner et al., 2013]).
A discrete time Markov chain is a tuple D = {S,M,Pr 0(S)} where

• S is a countable, nonempty set of states,

• M = Pr(S × S),Pr : S × S 7→ [0, 1] is the transition probability matrix

6Since multiple events — like benign faults and correct execution — can trigger the same transitions,
the transition probabilities accumulate the respective probabilities of all those events responsible for them.

2.4. From system model to transition model 15

• and Pr 0(S),Pr : S 7→ [0, 1] is the initial probability distribution at time t = 0.

The DTMCs constructed in the context of this thesis have finite state spaces. The number
of states of D, which is the cardinality of the DTMC, is denoted by |S|. The vertices of D
are the states in S. The probability mass in state si at time t is denoted as pr t(si) 7→ [0, 1]
and the probability distribution at time t with Pr t(S) = {pr t(s1), . . .}.

Ergodicity of the DTMC

Suitable introductions to Markov chain theory are provided by Kemeny and
Snell [Kemeny and Snell, 1976], Norris [Norris, 1998] and Baier and Ka-
toen [Baier and Katoen, 2008]. A state si in S is ergodic if it is aperiodic and
positive recurrent. A DTMC D is ergodic when it is irreducible and only contains ergodic
states. This means that a Markov chain is ergodic if every state is reachable from any
other state.

With probabilistic scheduling and transient faults that can cause an executing process to
store any arbitrary value, each state is reachable within finitely many steps from every
other state. Thereby, the DTMC resolving from the deterministic system dynamics and
the model of transient faults and the probabilistic scheduler is ergodic.

Why is this important? The following chapter motivates to focus on recovering systems
that are designed to run indefinitely. This thesis assumes that the system is initially upon
user request in a state with a probability according to the stationary distribution. With
their DTMC being ergodic, their limiting probability distribution (or stationary distribu-
tion) over the state space converges to a specific distribution in the limit. To measure the
probability with which the system satisfies desired constraints, we assume that the sys-
tem user accesses the system at an arbitrary time point set to the limit. The methods and
concepts account for any arbitrary initial configuration or probability distribution. Yet, the
stationary distribution is the most reasonable assumption in the context of non-terminating
recovering systems.

Hamming distance

In graph theory, the Hamming distance, as introduced by Hamming [Hamming, 1950] in
1950 and similarly also by Golay [Golay, 1949] in 1949, is the number of vertices on the
shortest path between two vertices. Here, the vertices are states in a DTMC. An execution
trace σi traverses the states of the (finite) state space S of a system according to the
probabilities that are specified by its transition model. Under serial execution semantics,
at most one process changes its register per time step. Therefore, two successive states
si,t, sj,t+1 ∈ σi can differ in at most one register. Only such transitions between states are
probable that differ in at most one register.

In this context, we refer to the number of registers that can at most change per execution
step as Hamming distance. Consider the simple traffic light example with a transition
model as shown in figure 2.2.

16 2. System, environment and transition model

0
1

2

yellow
yellow

yellow

yellow

yellow
red
red

red

red

red

green

green
greengreen

green

green
yellow

red

Figure 2.2: Simple traffic lights transition model demonstrating Hamming distance

Assume that the current state of two traffic lights is 〈red,red〉. Within Hamming distance
1, demarcated as yellow area, lie the states 〈red,red〉 since distance 0, demarcated as green
area, lies within distance 1, 〈yellow,red〉, 〈red,green〉, 〈green,red〉, and 〈red,yellow〉. This
means that at least one register must remain red. Increasing the Hamming distance of a
system means to allow the system to reach a broader spectrum of states within one time
step. For instance, allowing transitions between states differing in two registers means
a Hamming distance of two. The maximal Hamming distance in that sense coincides
with the number of registers that can possibly change. Values greater than the maximal
Hamming distance are futile.

2.5 Example - traffic lights

Before the system model is used to compute fault tolerance properties, a brief example
demonstrates how a system can be modeled and how a transition model can be derived on a
pedestrian crossing, based on an example by Baier and Katoen [Baier and Katoen, 2008,
p.90] and shown in figure 2.3. It contains two intersecting paths, a road for cars and a
pedestrian passage. Each path is controlled by two traffic lights, one for each direction,
to exclude simultaneous access by both cars and pedestrians. Each pair of traffic lights
handling the access for one passage is controlled by one process, either π1 or π2, and is
accessing the same registers. For simplicity, all processes and traffic lights are assumed
to be equal, that is, pedestrians also see a yellow light.

System model

Figure 2.3 shows the schematics of the crossing.

2.5. Example - traffic lights 17

Figure 2.3: Pedestrian crossing

Pedestrians look at traffic lights of process π1 and cars at traffic lights of process π2. The
traffic lights of each process are considered to be mutually consistent. Either the cars
or the pedestrians are allowed to exclusively access the crossing. Situations in which
both have simultaneous access are prohibited. A system S = {Π, E,A} contains two
processes Π = {π1, π2} that are connected via one communication channel E = {e1,2} as
shown in figure 2.4.

Figure 2.4: Topology of two processes in the traffic light example

The communication channel refers to the processes having mutual read access. The algo-
rithm A controlling both traffic lights is shown in algorithm 2.1. The scheduler selects at
each time step one of the two processes at random, each with a probability of si = 0.5.
The algorithm is referred to as traffic lights algorithm (TLA).

18 2. System, environment and transition model

LabelGuard enabled and s = π1 Command LabelGuard enabled and s = π2 Command
a1 R1 = green ∧R2 = green R1 := red1 a26 R1 = green ∧R2 = green R2 := red1

a2 R1 = green ∧R2 = yellow R1 := red1 a27 R1 = green ∧R2 = yellow R2 := red1

a3 R1 = green ∧R2 = yellow1R1 := red1 a28 R1 = green ∧R2 = yellow1R2 := red1

a4 R1 = yellow ∧R2 = green R1 := red1 a29 R1 = yellow ∧R2 = green R2 := red1

a5 R1 = yellow1∧R2 = green R1 := red1 a30 R1 = yellow1∧R2 = green R2 := red1

a6 R1 = green ∧R2 = red R1 := red a31 R1 = green ∧R2 = red R2 := red1

a7 R1 = green ∧R2 = red1 R1 := yellow1 a32 R1 = green ∧R2 = red1 R2 := red1

a8 R1 = red ∧R2 = green R1 := red1 a33 R1 = red ∧R2 = green R2 := red
a9 R1 = red1 ∧R2 = green R1 := red1 a34 R1 = red1 ∧R2 = green R2 := yellow1

a10 R1 = yellow ∧R2 = yellow R1 := red1 a35 R1 = yellow ∧R2 = yellow R2 := red1

a11 R1 = yellow ∧R2 = yellow1R1 := red1 a36 R1 = yellow ∧R2 = yellow1R2 := red1

a12 R1 = yellow1∧R2 = yellow R1 := red1 a37 R1 = yellow1∧R2 = yellow R2 := red1

a13 R1 = yellow1∧R2 = yellow1R1 := red1 a38 R1 = yellow1∧R2 = yellow1R2 := red1

a14 R1 = yellow ∧R2 = red R1 := red a39 R1 = yellow ∧R2 = red R2 := red1

a15 R1 = yellow1∧R2 = red R1 := red a40 R1 = yellow1∧R2 = red R2 := red1

a16 R1 = yellow ∧R2 = red1 R1 := green a41 R1 = yellow ∧R2 = red1 R2 := red1

a17 R1 = yellow1∧R2 = red1 R1 := red a42 R1 = yellow1∧R2 = red1 R2 := red1

a18 R1 = red ∧R2 = yellow R1 := red1 a43 R1 = red ∧R2 = yellow R2 := red
a19 R1 = red ∧R2 = yellow1R1 := red1 a44 R1 = red ∧R2 = yellow1R2 := red
a20 R1 = red1 ∧R2 = yellow R1 := red1 a45 R1 = red1 ∧R2 = yellow R2 := green
a21 R1 = red1 ∧R2 = yellow1R1 := red1 a46 R1 = red1 ∧R2 = yellow1R2 := red1

a22 R1 = red ∧R2 = red R1 := red1 a47 R1 = red ∧R2 = red R2 := red
a23 R1 = red1 ∧R2 = red R1 := red a48 R1 = red1 ∧R2 = red R2 := yellow
a24 R1 = red ∧R2 = red1 R1 := green a49 R1 = red ∧R2 = red1 R2 := red
a25 R1 = red1 ∧R2 = red1 R1 := yellow a50 R1 = red1 ∧R2 = red1 R2 := green

Algorithm 2.1: The traffic lights algorithm (TLA)

The algorithm does not comply with the three aspect standard sequence 〈red〉 → 〈red and
yellow〉 → 〈green〉 is replaced by 〈red → yellow → green〉 in the algorithm.

Although a set of common traffic lights shows only three colors, this example requires
five colors. Consider the system to be in a state where both processes store red . Since
the scheduler can be probabilistic, it is undetermined which process is next to execute.
Hence, a second red value is required to indicate which process is next to proceed to
green, independent of which choice the scheduler makes. Furthermore, a second yellow
light is required. In the constellation of one light showing red and the other showing
yellow, the process showing yellow would not know if next to proceed to green or red.
This extension is required since Markov chains have no memory and fairness7 among the
road users is required. The extra values are explained in detail in paragraph "Probabilistic
scheduling and algorithmic sequencing" on page 20.

The algorithm executes the following loop sequence over and over again:

. . .→ 〈red1, red〉 → 〈red1, yellow〉 → 〈red1, green〉 → 〈red1, yellow 1〉 →
〈red1, red1〉 → 〈yellow , red1〉 → 〈green, red1〉 → 〈yellow 1, red1〉 →

〈red , red1〉 → 〈red , red〉 → 〈red1, red〉 → . . .
(2.3)

When the system is in a state that does not belong to that sequence and executes a fault
free step, it immediately reaches a state of the sequence as shown in figure 2.5. The system
converges to that sequence.

7Fairness here refers to the alternating access to the intersection, cf. section 3.1.2.

2.5. Example - traffic lights 19

The loop sequence described in equation 2.3 models the behavior one would expect8 from
a set of traffic lights. The corresponding transition model is shown in figure 2.5. The
colors are abbreviated with their initial letter. The bold black arrows show the loop of
equation 2.3. The states in that loop are colored: the left part shows the value of R1

and the right part shows the value9 of R2. Furthermore, the blue light arrows show the
convergence towards the states of the loop. Self-targeting transitions are not shown for a
better visibility.

g,g g,y g,y
1 g,r g,r1 y,y y,y

1

y,g y
1
,g r,g r

1
,g y

1
,y y1,y1

y,r y
1
,r r,y r,y

1 r,r r
1
,r

y,r
1 y1,r1 r

1
,y r1,y1 r,r

1 r1,r1

Figure 2.5: Algorithm transitions

The system does not reach a state outside the loop sequence deliberately. When the system
is initially in a state within the loop, the guarded commands controlling the loop from
formula 2.3 — including the self-targeting transitions — guarantee algorithmic closure
during the absence of faults. Algorithmic closure means that the algorithm is closed with
regards to a specific set of states that in this example form a loop. It cannot reach a state
not belonging to that set solely with fault free execution A.

In case the system is not in the loop, execution of any process lets the system reach a
state within the loop within one computation step, providing convergence10. Convergence
is the property of a system to reach a set of states — here the states of the loop —
within finitely many computation steps. This property can here be guaranteed even with
probabilistic schedulers since the algorithmic Hamming distance from every state outside
the loop sequence to a state within the loop sequence is 1.

8To be precise, a probabilistic scheduler might continuously select the same process over and over again,
thus leaving the system in the same state. Other than that, this system is as close as possible to a real traffic
light considering a probabilistic scheduler.

9Different yellow and red tones are not distinguished.
10This special case coincides with the notion of snap stabilization [Delporte-Gallet et al., 2007,

Tixeuil, 2009]

20 2. System, environment and transition model

To show convergence for a system operating under a probabilistic scheduler is a special
property that includes i) probabilistic scheduling, ii) only two processes being involved,
and iii) the leverage that only one arbitrary process is required to execute one fault free
computation step to converge to the loop.

This concludes the fault tolerance aspects of the TLA example. The next paragraph dis-
cusses the functional issue that both parties should get alternating access to the crossing.

Proving interleaving access in spite of probabilistic scheduling

A probabilistic coin-flip scheduler randomly selects one of the two processes each with
a probability of s1 = s2 = 0.5. As discussed on page 7, the algorithm has the ability to
enforce hierarchy and order among the processes and their execution. Here, the algorithm
exploits two additional values — one yellow and one red — to establish an alternating
access, also referred to as interleaving access, of both cars and pedestrians, provided the
system is in a state within the loop sequence. The proof that access is interleaving among
the parties is discussed informally. Assume that the system is in any arbitrary state outside
the loop sequence. Then, the system reaches a state within the loop sequence within one
computation step, regardless which process is selected by the scheduler. After the system
converged to a state within the loop sequence, interleaving access is desired. In absence
of faults, a process can only change its register when the other process did execute since
its own last execution. Otherwise, it will only store the value its register already stores
according to algorithm 2.1. If the particular other process executed directly before a
process executes, the system must be in a state for which the registers enable a guarded
command that will change the value stored in the executing process’ register. Thereby,
the algorithm guarantees alternating access between the parties.

Notably, — for the same reason the system guarantees alternating access in spite of prob-
abilistic scheduling — it also provides the same functionality under both serial and par-
allel execution semantics, considering that the registers are read at the beginning of each
computation step and written at its end.

Fault model

Next, the probabilistic fault model is specified. We select the probability for a transient
fault in this example to be q = 0.25 and p = 0.75 as numerical values. In average,
every fourth execution is perturbed by a transient fault. Any other probability distribution
works as well. In this case, traffic lights are made of unreliable components and operate
in a very hostile environment. When perturbed by a fault, the executing process writes a
random value of its domain to its register. We assume that faults can be of either malign
or of benign nature. The domain of each process’ register comprises five values: green,
yellow , yellow 1, red and red1. A fault causes a process to store one of these values at
random, each with an equal probability. The probability that a specific process is selected
and executes without corruption is

p = si · p = 0.5 · 0.75 = 0.375 (2.4)

The probability for a specific process to be selected and to execute with a corruption is

1− (|Π| · p) = 0.25 (2.5)

2.5. Example - traffic lights 21

The probability that a specific process is selected and executes with a specific corruption
is

q = si · pr(qi) = 0.5 · 0.25 · 0.2 = 0.025 (2.6)

Since both scheduling and fault distributions are uniformly distributed among the pro-
cesses and faults, they are not particularly considered in the variables.

DTMC

The transition probability matrix M(S × S) shown in table 2.1 contains the transition
probabilities between each state pair for all 25 states. The colors are abbreviated with
their initial letters, that is, g for green, y for yellow and r for red. For now, the symbolic
DTMC suffices. The numerical DTMC in which the variables are replaced with their
numerical values is required later and shown in table 4.1.

↓from/to→ g, g g, y g, y1 y, g y1, g g, r g, r1 r, g r1, g y, y y, y1 y1, y y1, y1

g, g 2q q q q q q p + q q p + q
g, y q 2q q q p + q q q
g, y1 q q 2q q p + q q q
y, g q 2q q q p + q q q
y1, g q q 2q q p + q q q
g, r q q q 2q p + q
g, r1 q q q q p + 2q
r, g q q q 2q p + q
r1, g q q q q p + 2q
y, y q q 2q q q
y, y1 q q q 2q q
y1, y q q q 2q q
y1, y1 q q q q 2q
y, r q q q q
y1, r q q q q
y, r1 q p + q q q
y1, r1 q q q q
r, y q q q q
r, y1 q q q q
r1, y q p + q q q
r1, y1 q q q q
r, r q q
r1, r q q
r, r1 q q
r1, r1 q p + q

↓ from/to→ y, r y1, r y, r1 y1, r1 r, y r, y1 r1, y r1, y1 r, r r1, r r, r1 r1, r1
g, y q p + q
g, y1 q p + q
y, g q p + q
y1, g q p + q
g, r q q p + q q
g, r1 q p + q q q
r, g q q p + q q
r1, g q p + q q q
y, y q p + q q p + q
y, y1 q p + q q p + q
y1, y q p + q q p + q
y1, y1 q p + q q p + q
y, r 2q q p + q p + q q
y1, r q 2q p + q p + q q
y, r1 q p + 2q q q q
y1, r1 q q p + 2q p + q q
r, y 2q q p + q p + q q
r, y1 q 2q p + q p + q q
r1, y q p + 2q p q q
r1, y1 q q p + 2q q p + q
r, r q q q q p + 2q p + q q
r1, r q q p + q q q p + 2q q
r, r1 q q q q p + q p + 2q q
r1, r1 p + q q q q q q 2q

Table 2.1: Symbolic transition matrixM of the TLA

22 2. System, environment and transition model

The left half ofM is shown in the upper part and the right half on the lower part, skipping
the first empty row in the latter one. The transitions in the blue cells represent the loop
sequence from formula 2.3, that is, the algorithmic progress. The green cells model the
remaining transitions by the algorithm and benign faults, that is, the recovery property —
also referred to as convergence — of the system to reach a state within the loop sequence.
The red cells model malign faults with the dark red cells being twice as probable as the
light red cells. The DTMC is obviously ergodic since every state is reachable from every
other state.

2.6 Summarizing the system model
This chapter introduced the system topology and algorithm and distinguished determin-
istic system dynamics from probabilistic environmental influence. Execution traces were
discussed and the construction of a transition model — discrete time Markov chains —
was presented. A simple example demonstrated the modeling of a real world system
within a probabilistic environment along with the construction of the corresponding tran-
sition model.

3. Fault tolerance terminology and
taxonomy

3.1 Definitions . 24

3.2 Self-stabilization . 34

3.3 Design for masking fault tolerance 36

3.4 Fault tolerance configurations 39

3.5 Unmasking fault tolerance . 41

3.6 Summarizing fault tolerance terminology and taxonomy 43

This chapter introduces the necessary fault tolerance terminology and discusses how
the relevant terms are related. Since the "Notes on Digital Coding" by Golay from
1949 [Golay, 1949], fault tolerance related terms have often been defined for specific
purposes. Since then there has been an ongoing process to establish a general taxon-
omy [Becker et al., 2006, Rus et al., 2003]. This chapter provides one taxonomy, based
on an article by Aviz̆ienis et al. [Aviz̆ienis et al., 2004], that is consistent with the scope
of this thesis.

Setting

The setting we assume is simple. A user requests a service from an interactive system.
The system is designed to run permanently. It provides an answer in response to the user
request. The system runs in a hostile environment in which it is exposed to transient faults.
The system has the ability to recover from the effects of such faults. Its response to the
system user is considered as being correct when no effects of transients faults are present
in the system. A safety predicate specifies if the system operates correctly or if effects
of a fault are present. The system provides incorrect answers when the effects of faults
are present, and correct answers otherwise. A detector can be mounted between user and
system to check responses for their correctness according to the predicate. In case an
incorrect response is detected, the system service can be deprived from the user until the
system provides a correct answer again.

24 3. Fault tolerance terminology and taxonomy

user

system

detector

request

response

Figure 3.1: A user requesting system service

The system user is not willing to wait indefinitely for a correct answer. With system and
transition models — as established in the previous chapter — at hand, the goal is to
determine how well the system can provide a correct service in a hostile environment in
time. To achieve this goal, a novel fault tolerance measure is proposed in the following
chapter that suits the scope of this thesis, that is, measuring how well a system provides
its service and how well it recovers.

Structure of this chapter

A taxonomy of terms that are required to discuss fault tolerance is introduced in sec-
tion 3.1 and the individual terms are defined. The concept of self-stabilization and its
variants that are required in the context of this thesis are discussed in section 3.2. Sec-
tion 3.3 reflects on the static distinction of deterministic fault tolerance types to set them
in the light of the dynamic aspects of probabilistic recovery in section 3.4. Section 3.5
exploits this view to introduce unmasking fault tolerance with the previously established
terminology. Section 3.6 concludes the key aspects of this chapter.

3.1 Definitions

In this section, a fault tolerance taxonomy is proposed that suits the scope of this thesis.
The terms it contains are defined. The example of the TLA is continued. The following
taxonomy contains the terms that are important for this thesis1:

1Notably, fault tolerance can be perceived as part of dependability and be embedded into a broader
context. Further examples of how relevant terms can be connected are shown in appendix A.4.1 on pages
157 ff.

3.1. Definitions 25

safety

attributes/properties fairness

liveness

fault

threats error

failure

failsafe

fault tolerance type non-masking

masking

detection

means

correction

reliability

measures

availability

time

resource/redundancy

space

Figure 3.2: Fault tolerance taxonomy (not exhaustive)

The fault tolerance taxonomy shown in figure 3.2 is not exhaustive. Further leafs2 and
branches might be added to the tree. The goal of fault-tolerant systems is to provide for
desired properties such as safety, fairness or liveness. Threats put these properties at risk.
The fault tolerance type specifies whether safety or liveness are allowed to be (temporar-

2Due to the tree shape of the taxonomy, fault tolerance is referred to as root, the middle layer as branches
and the terms on the right hand side are referred to as leafs.

26 3. Fault tolerance terminology and taxonomy

ily) violated. Means provide functionalities to increase the chances of satisfying desired
properties, for instance by lowering the risk that a fault succeeds with respect to the type.
Measures allow to address how well a system manages to satisfy desired properties with
regards to threats and type, and supported by means. The means to increase the fault
tolerance of a system can be provided via spatial or temporal redundancy, which are also
referred to as the currencies of fault tolerance to pay for certain means. The remainder of
this section discusses the leaf terms from top to bottom.

3.1.1 Safety

Popular definitions of safety in literature are provided in appendix A.4.3 for comparison.
Informally, safety means that "the bad thing" does not happen [Lamport, 1977]. We define
safety in the context of the thesis as state predicate:

Definition 3.1 (State safety).
A system S is in a safe state si with regards to a safety predicateP when that state satisfies
the safety predicate.

This thesis refers to safety with its invariant based notion of state safety for brevity. A
safety predicate is a Boolean expression over (a subset of) process registers. It partitions
the state space into legal states satisfying P and illegal states violatingP . Formally, safety
is expressed as si |= P . A system violating the safety predicate si 6|= P can possibly reach
a state from which it satisfies P at a later time3.

Alternative definitions from literature consider safety for execution traces or to be final in
the sense that once safety is violated the system cannot reach a legal state anymore. Both,
an extension to cover for execution traces as well as the co-evaluation of mixed mode
faults like permanent and transient, are discussed in the future work section in chapter 8.

3.1.2 Fairness

Definitions of fairness from literature are concluded in appendix A.4.4. Informally, fair-
ness means that every process that can execute is selected to execute eventually, that is,
within finite time or within a finite number of execution steps.

Definition 3.2 (Fairness).
Fairness means that every process that is enabled infinitely often is selected infinitely often
by the scheduler.

Finite terminating sequences are necessarily fair as no enabled process is neglected
forever [Manna and Pnueli, 1981a, p.246]. Weak fairness means that a process must
be continuously enabled, that is, without possible interruptions, whereas strong fair-
ness means that a process must be continually enabled, that is, with possible interrup-
tions [Lamport, 2002].

From the system execution perspective this notion — strong and fair — seems unintuitive
as the processes fulfill a stronger requirement being continuously available compared to
their continually enabled counterpart. From the scheduling perspective yet, this notion is

3The perception that systems can recover from safety violations (cf. e.g. [Alpern and Schneider, 1985],
quoted in A.4.3 on page 160) contradicts the perception that faults are remediable as advocated in this thesis.

3.1. Definitions 27

right. The scheduler can be weaker as all processes are continuously enabled until they are
selected. This distinction, that weak goes with continuously and strong with continually
is important to the remainder of this thesis.

Every weakly fair sequence is also strongly fair, but not vice versa. Hence, the class
of weakly fair systems is contained in the class of strongly fair systems. Similarly, the
possible execution traces caused by the classes of i) deterministic schedulers and ii) prob-
abilistic schedulers with a finite horizon are contained within the possible execution traces
caused by probabilistic schedulers with an infinite horizon as discussed in section 2.2.2.
The section also states that the examples in this thesis consider continuously enabled pro-
cesses.

weak, continuously

strong, continually

Figure 3.3: Weak fairness is a subset of strong fairness

With a probabilistic scheduler the fairness assumption is relaxed as follows:

Definition 3.3 (Probabilistic fairness).
Probabilistic fairness means that every process that is enabled infinitely often from a time
step onwards is selected with probability 1 by the scheduler.

The probabilistic relaxation is applicable to both weak and strong fairness: A process that
is infinitely often continuously (strong) or continually (weak) enabled is selected with
probability 1 by the scheduler. The difference between fairness and probabilistic fairness
is vital and returns also for differentiating between self-stabilization and probabilistic self-
stabilization in section 3.2. A probabilistic scheduler might continuously ignore one pro-
cess. Although the probability for such a trace decreases over time and is 0 in the limit,
such traces are possible, but not probable. Thus, referring to fairness only with probability
1 does not suffice to verify fairness since (at least) one possible counter example can be
provided like the one in which one process is infinitely neglected by the scheduler.

The deterministic system dynamics of the examples in this thesis rely on weak fair-
ness. But why must every process have deterministically one guard continuously en-
abled? When fairness can be discussed only probabilistically regarding the fault model
and scheduling, would it not be reasonable to relax the system dynamics accordingly?

The answer is: Yes, the system dynamics do not necessarily have to be deterministic. For
instance, multiple guards can simultaneously be active and the choice which command is
carried out could be probabilistic or non-deterministic. Yet, the goal of this thesis is to
establish a method to evaluate the fault tolerance — with a focus on the dynamic aspects
of recovery from transient faults — of system dynamics under a given probabilistic envi-
ronment. To achieve this, a simple mode of reasoning — based on deterministic system
dynamics — is applied first. An extension to probabilistic and non-deterministic system
dynamics is discussed in the future work section in chapter 8.

28 3. Fault tolerance terminology and taxonomy

3.1.3 Liveness

Selected definitions of liveness from literature are provided in appendix A.4.5. Informally,
liveness means that "the good" happens eventually [Lamport, 1977]. In the context of
finite branching structures, this means that "the good" happens deterministically within
finite time or finitely many computation steps.

Definition 3.4 (Liveness).
A system S is live w.r.t. to an event when that event is guaranteed to occur eventually.

There are two types of events — the desired "good" things — considered in this thesis
that both require liveness. The first is algorithmic liveness.

Definition 3.5 (Algorithmic liveness).
An algorithm A is live when it causes the system to change its state continually.

The desired event for algorithmic liveness is that the system changes its state, that it shows
algorithmic progress of some kind. A system that is not algorithmically live is silent. It
reaches a certain state eventually and does not change its state afterwards. For instance,
the traffic light algorithm from the previous chapter is algorithmically live. The second
liveness aspect is recovery liveness.

Definition 3.6 (Recovery liveness).
The recovery of a system is live when the system progresses towards the legal set of states
with regards to a ranking function.

The desired event for recovery liveness is to reach a legal state. Recovery liveness insinu-
ates a ranking among the states regarding their distance to the legal set of states. With the
discussion about the Hamming distance in mind, the reasonable ordering among system
states is obvious: The legal states have a Hamming distance of 0. The illegal states from
which any legal state can be reached with one computation step — considering the exe-
cution semantics — have a Hamming distance of 1 and so forth. The maximal Hamming
distance has the state in which all registers are corrupted. It requires as many computation
steps as there are processes in the system, considering every process has one register and
serial execution semantics apply. Its Hamming distance then coincides with the number
of processes. When the algorithm guarantees that in the absence of faults either

• a system continuously decreases its Hamming distance towards the next proximal
legal state with every computation step (weak recovery liveness, i.e. continuous
progress towards Slegal) or

• a system continually decreases and never increases its Hamming distance towards
the next proximal legal state (strong recovery liveness, i.e. continual progress to-
wards Slegal)

it provides for recovery liveness. Both algorithmic and recovery liveness are not in con-
flict. A system can provide recovery liveness and be functionally silent with regards to
algorithmic liveness at the same time. That is, recovery and algorithmic behavior are
mutually independent and define the whole set of behavior described by the algorithm.

3.1. Definitions 29

Showing that both liveness types are mutually independent for execution traces also shows
they are independent regarding the guarded commands. Since both guards and safety are
state-based, each command can be attributed exclusively to either recovery or algorithmic
liveness. Therefore, their independence is shown for the more general case of execution
traces. Assume that safety is defined not state-based but over execution traces. Then, a
guarded command can be enabled for a state that is safe in one trace and unsafe in another
trace. Yet, no state can be satisfying and violating safety at the same time. The respective
state still belongs to one partition exclusively at that time point and the recovery types are
never intersecting. This discussion thread continues in paragraph "State-based safety" on
page 33.

Commonly, systems (or more specifically algorithms) under probabilistic schedulers and
serial execution semantics cannot accomplish to guarantee weak recovery liveness as one
process that is required to execute to converge to a legal state might be postponed indefi-
nitely. Yet, there are exceptions. The TLA for instance converges instantly to a legal state
regardless which one of the two processes executes. Nevertheless, in most cases only
strong recovery liveness is provided.

3.1.4 Threats

The threat branch provides the antagonist to the fault-tolerant system. Its application in
this thesis is discussed in section 2.2.1. The threat branch classification is based on the
work by Aviz̆ienis et al. [Aviz̆ienis et al., 2001, Aviz̆ienis et al., 2004]. Notably, we as-
sume that faults only corrupt the registers of currently executing processes. The scheduler
is immune to faults.

Definition 3.7 (Transient fault).
A transient fault (or fault step) is a computation step that is not (necessarily4) conform
with the algorithm. Its result is the executing process’ register to possibly store an unin-
tended value. A fault step does not cause the system state to violate safety. Faults are not
detected by the system and tolerable.

Faults do not necessarily have an effect on the system behavior if they remain undetected
until they vanish. A faulty state does not yet violate safety.

Definition 3.8 (Error).
A fault becomes an error upon its detection. It is detectable by violating safety. An error
remains an error as long as it is is tolerable and until it becomes intolerable or it vanishes.

An error is the stage at which the system state deviates from the legal states and at which
that deviation is detected, but at which it is still tolerable. During the error stage, the
system has the opportunity to recover. If the recovery takes too long, that is, when the
system did not recover in time, the error becomes intolerable.

Definition 3.9 (Failure).
A failure is an intolerable detected deviation from the intended system behavior. It occurs
when safety conditions have been continuously violated for too long, when a system did
not recover from an error in time.

4It is not conform for malign faults and conform for benign faults.

30 3. Fault tolerance terminology and taxonomy

With a perfect fault detector, faults become errors instantly. When the system leaves
no time for repair and must satisfy safety instantly upon request, errors become failures
instantly. This thesis focuses on relaxing the latter to evaluate how time helps the system
to avoid errors from becoming failures. This allows to determine recovery liveness, the
speed with which a system recuperates from the effects of faults.

The threat cycle in figure 2.1 shows the transitions from legal states to subsequently fault,
error and failure. Here, the system can recover from each threat stage. Notably, errors
and failures are perceived as safety violations. Some authors consider safety violations
as "irreversible" like Alpern [Alpern and Schneider, 1985] while others do not like Lam-
port [Lamport, 1977]. This thesis follows the latter perception to allow for recovery live-
ness.

In this thesis, the deterministic system dynamics — which are system topology and algo-
rithm — are not prone to transient faults. The volatile memory, the process registers, on
the other hand, are prone to transient faults. The scheduler is probabilistic like the fault
model on the one hand, demonstrating the versatility of the approach, while being immune
to faults on the other hand. Its immunity is justified in paragraph "Immunity of algorithm
and scheduler to faults" on page 8. The deterministic system dynamics are supposed to
provide for recovery liveness. Hence, the perception that safety violations can be treated
by recovery is suitable in this context and the distinction into errors and failures allows to
quantify the recovery of deterministic system dynamics in a probabilistic environment.

There are two important remarks differentiating the definitions in this thesis from other
related work.

Components and system

The causal chain proposed by Aviz̆ienis et al. [Aviz̆ienis et al., 2004] distinguishes be-
tween fault, error and failure from two perspectives, component and system. When a
component fails — referred to as local failure — the effects possibly propagate into the
system, in which the local failure is perceived as a fault. In this thesis, the terms fault,
error and failure are used solely in the system context to avoid confusion.

Are failures permanent?

One common interpretation of failure is the transition "from correct to incorrect ser-
vice" [Aviz̆ienis et al., 2004]. When interpreted as safety violation, failures are "irremedi-
able" [Alpern and Schneider, 1985]. As discussed for errors before, this thesis perceives
safety violations, and thus also failures, as remediable. A fault is an undetected perturba-
tion that becomes an error when it is detected. When detected, the error can be treated.
During that process, the system knows that it does not work correctly, meaning that it does
not meet its specified safety conditions during that time. It possibly can deprive its service
from the system user during that time. In case the system does not recover in time, the
error becomes a failure.

The transition from error to failure is — in the context of this thesis — purely time related.
We focus on the relation between the amount of time for recovery and the probability
that the system is in a legal state. The time-dependent transition from error to failure is
important here.

3.1. Definitions 31

3.1.5 Types and means of fault tolerance

One common classification of fault tolerance is based on the use of means that can be
exploited to provide fault tolerance.

Means of fault tolerance

Detectors and correctors are such means. Detectors are related to safety. They promote
faults to errors and failures. Correctors are related to liveness. They allow the system to
recover from faults, errors and failures. When the system is allowed to temporarily violate
safety, correctors allow to prevent the transition from error to failure for those execution
traces that do not violate safety for too long. Notably, faults need not necessarily be
detected to be correctable. For instance assume a transient fault perturbing a register
and the register being overwritten before it is read. Then, the fault was corrected by
overwriting it before it was detectable by reading it.

Types of fault tolerance

In a deterministic setting, when fault tolerance is discussed with regards to specific faults,
the combination of detectors and correctors determines the fault tolerance type.

• no detectors, no correctors: When a system can neither detect nor correct specific
faults, providing statements regarding its safety or liveness is not possible. In this
context, the system is not fault-tolerant.

• only detectors: A system with detectors for specific faults can shut down to pre-
vent a fault from becoming a failure5. As the system ensures safety, it is failsafe
fault-tolerant regarding the faults it can detect and prevent from becoming errors.
When the system fails, that is, as soon as the system state is about to violate safety
conditions, it fails safely, actually before violating safety conditions. "The bad"
(i.e. violating safety conditions) does not happen. Yet, when failing safely, the sys-
tem stops operating, possibly violating liveness conditions. "The good" — which
here is termination, reaching a legal state or simply being accessible — will then
not happen. Informally, a failsafe system only provides correct answers or service
or none at all.

• only correctors: Systems with correctors for specific faults continue to operate
even in the presence of safety violations caused by these faults. While safety is
violated, that is, when recovery liveness takes over from algorithmic liveness, the
system user is exposed to the unsafe system behavior. Since the system user is ex-
posed to that unsafe behavior, that is, when the faulty service cannot be temporarily
deprived upon detection, this fault tolerance type is called non-masking fault toler-
ance. The effects of the faults are not masked from — or hidden from or transparent
to — the system user. Non-masking fault-tolerant systems are continuously ac-
cessible. They always provide an answer/service. Yet, they are only continually
available. The term available is explained in the next section.

5In that context, the system is shut down when the transition from fault to error is imminent.

32 3. Fault tolerance terminology and taxonomy

• both detectors and correctors: Systems with both detectors and correctors can
detect specific faults and deprive the system user until the correctors let the system
recover to a legal state, assuming that both detectors and correctors have the same
fault coverage. The effects of faults, that is, errors and failures, from that specific
fault coverage are thus transparent to the system user, apart from a possible admissi-
ble delay that is required by recovery liveness. The system is masking fault-tolerant
for these specific faults. It continuously satisfies safety and continuously provides
liveness regarding these specific faults.

continuously safe continually safe
recovery liveness masking non-masking
no recovery liveness failsafe

Table 3.1: Defining fault tolerance types via fault tolerance properties

When proving fault-tolerance properties, the goal is to show that the effects of specific
— in that sense deterministic — faults can be dealt with maskingly. Arora and Kulka-
rni [Arora and Kulkarni, 1998a, Arora and Kulkarni, 1998b, Kulkarni, 1999] provide re-
lated workin that regard. The scope of this thesis is yet the quantification of recovery
under probabilistic conditions. This thesis targets the gap between non-masking and
masking fault tolerance by evaluating recovery liveness. The transition from masking
to non-masking fault tolerance is taken by those transitions that take too long for their
recovery in a probabilistic environment.

Fault coverage

The term fault coverage has been defined for various con-
texts [Williams and Sunter, 2000]. In the context of fault tolerance, fault coverage
means that a system is non-masking fault tolerant for one class of faults, failsafe fault
tolerant for another class of faults, masking fault tolerant for the intersection of both
classes and intolerant for all faults for which it is neither non-masking nor failsafe
fault tolerant. The goal of this thesis is to exploit this classification, to extend it from
classifying faults being specifically either non-masking, failsafe or masking tolerable.
This thesis computes how fault-tolerant a system is with regards to each fault tolerance
type. This discussion thread is continued in section 3.3.

3.1.6 Fault tolerance measures

Measures allow to quantify the fault tolerance of a system, that is, how well it provides
for desired fault tolerance attributes like safety. This section defines the fault tolerance
measures availability and reliability.

Availability

Selected definitions from literature are provided in appendix A.4.7.

Definition 3.10 (Availability).
Availability is the mean probability that a system satisfies its safety conditions.

3.1. Definitions 33

Let MTTF be the mean time to failure, MTTR be the mean time to repair and MTBF =
MTTF + MTTR be the mean time between failures. Then, availability is defined as
follows:

A = MTTF/MTBF (3.1)

In the context of the threat cycle shown in figure 2.1, errors instantly advance to failures.
Yet, to measure how well recovery can be exploited if the system is allowed to recover
from the effects of faults before errors become failures, a more distinguished approach is
required. To measure the recovery over time, availability must be measured with regards
to time.

Definition 3.11 (Point availability).
The point availability is the probability that the system is in a state satisfying safety at
that time point: At =

∑
si∈Slegal pr(si)t

The point availability is the aggregated probability that the system is in any legal state.
As discussed in paragraph "Types of fault tolerance" on page 31, this thesis focuses on
masking and non-masking fault-tolerant systems that can recover from transient faults.
These systems are commonly designed to run indefinitely. Hence, availability of a system
in the limit must be defined.

Definition 3.12 (Limiting availability).
The limiting availability is the limiting value of A(t) as t approaches infinity, if existent.

Reliability

While availability is the measure for masking and non-masking fault-tolerant systems,
reliability is appropriate for failsafe systems.

Definition 3.13 (Reliability).
The reliability of a system with respect to time point t is the probability that the system
continuously satisfies its safety conditions until that time point.

Accordingly, the limiting reliability with a probabilistic fault model is 0 [Trivedi, 2002,
p.321] as it continuously decreases under a probabilistic fault model. Informally, reliabil-
ity with regards to a time point t is the probability that the system survives until that time
point.

State-based safety

This paragraph returns to recovery and algorithmic liveness to motivate the definition of
safety being defined state-based. The safety predicate partitions the state space into legal
and illegal states. The algorithm specifies operations within both partitions: recovery op-
erations in the illegal states and desired service operations in the legal states. It might yet
be desirable to specify safety based on execution traces within the legal states. Contrary
to state-based safety, the notion of operationality6 allows to define safety accordingly.

This thesis focuses on i) transient faults putting a system in recovery mode and ii) the
convergence dynamics of that recovery. The correct execution, that is, the system being
operational, in absence of transient faults is not addressed. While availability and reli-
ability measure the transition probabilities between both legal and and illegal partitions,
operationality is suitable to measure algorithmic liveness within the legal states. Hence,
contrary to operationality, safety is defined purely state-based in this thesis.

6The term has been coined by Keller in 1987 [Keller, 1987].

34 3. Fault tolerance terminology and taxonomy

3.1.7 Redundancy
Means of fault tolerance commonly utilize redundancy. Popular examples are error de-
tecting and correcting codes utilizing spatial redundancy to implement parity bits based
on generator polynomials on the one hand and time to compute and check these polyno-
mials on the other hand. This thesis focuses on the time-based recovery dynamics. Spatial
redundant fault tolerance mechanisms like parity bits in registers are considered to be part
of the system under investigation.Regarding redundancy, the question driving this thesis
is: How far can the availability of a non-masking fault-tolerant system be increased for an
amount of temporal redundancy?

3.2 Self-stabilization
Self-stabilization is a suitable concept to reason about the recovery of non-masking and
masking fault-tolerant systems introduced by Dijkstra in 1974 [Dijkstra, 1974]. Notably,
it consists of two deterministic properties as pointed out in the definition by Schneider in
1993, which is based on the classic definition:

Definition 3.14 (Self stabilization - Schneider [Schneider, 1993, p.3]).
We define self-stabilization for a system[7] S with respect to a predicate P , over its set of
global states, where P is intended to identify its correct execution. S is self-stabilizing
with respect to predicate P if it satisfies the following two properties:

• Closure: P is closed under the execution of S. That is, once P is established in S,
it cannot be falsified.

• Convergence: Starting from an arbitrary global state, S is guaranteed to reach a
global state satisfying P within a finite number of state transitions.

Notably, convergence must succeed "within a finite number of state transitions", regard-
less of whether the state space is finite or infinite. This attribute of convergence is often
referred to as "eventually" [Dolev, 2000].

Probabilistic self-stabilization

As the thesis focuses on recovery liveness, the convergence property is important. Al-
gorithmic liveness is related to the closure property. With probabilistic scheduling, weak
recovery liveness cannot be guaranteed as the scheduler can ignore a process that is re-
quired to execute to complete convergence. Hence, only strong recovery liveness can be
achieved. Devismes et al. [Devismes et al., 2008] provide a suitable extension to self-
stabilization in 2008:

Definition 3.15 (Probabilistic self-stabilization - Devismes et al. [Devismes et al., 2008]).

S is[8] probabilistically self-stabilizing for P if there exists a non-empty subset of S,
noted Slegal , such that: (i) Any execution of S starting from a configuration of Slegal
always satisfies P (Strong Closure Property), and (ii) Starting from any configuration,
any execution of S reaches a configuration of Slegal with Probability 1 (Probabilistic
Convergence Property).

7The symbols have been adapted to suit this thesis.
8The symbols have been adapted to suit this thesis.

3.2. Self-stabilization 35

What does convergence mean? Dijkstra and Schneider define convergence such that the
legal set of states is reached "in finite time". Convergence does not mean that the distance
to the legal states is continuously or continually decreased. Probabilistic convergence
replaces the term eventually by with probability 1 . Thus, probabilistic self-stabilization
fits perfectly with the context discussed in section 2.39.

Convergence vs. recovery liveness

Recovery liveness means progress towards the set of legal states. Regarding the progress
towards the set of legal states, probabilistic convergence is a super-set of recovery liveness
as it also allows to temporarily recede from (i.e. increase the Hamming distance to) the set
of legal states. This means that — regarding the progress towards the set of legal states
— every system providing weak recovery liveness also provides strong recovery liveness,
and that every system providing strong recovery liveness provides also probabilistic con-
vergence as shown in figure 3.4.

Yet, neither weak nor strong recovery liveness hold for convergence, as continuous or con-
tinual progress towards the set of legal states does not imply ever reaching them. Assume
a continuous state space or a state space with infinitely many states. Then, the system
might continuously or continually approach the set of legal states without ever reaching
them. One example execution trace is an inward bound spiral that approaches the center
point arbitrarily close without ever reaching it. It would satisfy recovery liveness but not
(probabilistic) convergence. Yet, in the context of finite discrete state spaces as applied in
this thesis, recovery liveness does imply probabilistic convergence.

Figure 3.4: Execution traces permitted by weak recovery liveness (left), strong recov-
ery liveness (middle) and (probabilistic) convergence (right) examples. The sectors are
labeled according to the Hamming distance.

The examples presented in this thesis provide for both probabilistic convergence and
strong recovery liveness. The benefit of strong recovery liveness is that it allows to easily
show probabilistic convergence. The methods proposed in this thesis yet hold for proba-
bilistic self-stabilizing systems in general.

Non-masking fault tolerance and self-stabilization

Self-stabilizing systems are non-masking fault tolerant, but not every non-masking fault
tolerant system is self-stabilizing. The concepts and methods discussed in this thesis

9See paragraph before "Abbreviations" on page 13.

36 3. Fault tolerance terminology and taxonomy

generally apply to non-masking fault tolerant systems. Yet the examples show only self-
stabilizing systems. The motivation behind that is twofold.

First, self-stabilizing systems are deterministically designed to cope with the effects of
transient faults. This makes it comfortable to distinguish between the effects of transient
faults and non-deterministic or probabilistic system design10. The second benefit is dif-
ficult to grasp at this stage as the means to understand it are discussed in the following
chapters. Stabilization is a concept that works similar to fault propagation. Opposed to
sporadic faults, it provides deterministic control via the algorithm to assure that the system
converges to a legal state. The processes in a self-stabilizing system communicate. They
cooperate according to the algorithm to allow for convergence. Analyzing fault tolerance
properties of uncontrolled non-masking fault tolerant systems, in which the processes nei-
ther propagate the effects of faults nor cooperate to allow for self-stabilization, is simple
compared to controlled processes. Section 7.1 later provides a coherent case study to
explain this argument in detail.

3.3 Design for masking fault tolerance

As previously discussed, Arora and Kulkarni [Arora and Kulkarni, 1998a,
Arora and Kulkarni, 1998b, Kulkarni, 1999] provide the formalisms and concepts
to discuss fault tolerance design. Contrary to the probabilistic perspective of this thesis,
they focus on deterministically satisfying fault tolerance types with respect to specific
fault coverages. In fault tolerance design, an intolerant system is subsequently amended
by detectors and then by correctors to acquire a functional equivalent yet fault-tolerant
system. The following figure shows how means can be combined to achieve masking
fault tolerance with respect to specific faults.

intolerant

detectors
��

correctors // non−masking

detectors
��

fail− safe correctors // masking

Figure 3.5: From fault intolerance to masking fault tolerance

A system without detectors and correctors, for which no assertions about its fault tolerance
can be made, becomes non-masking fault-tolerant against faults when correctors are added
correcting these faults. It becomes failsafe fault-tolerant against faults when detectors are
added detecting these faults. A non-masking fault-tolerant system becomes masking fault-
tolerant against faults when detectors are added detecting the faults also covered by the
corrector. A failsafe fault-tolerant system becomes masking fault-tolerant against faults
when correctors are added correcting the faults also covered by the detector. Notably,
a system is only masking fault-tolerant against faults in the cut-set of the detector’s and
corrector’s fault coverages as depicted in the following figure 3.6.

10At least in the context of this thesis, distinguishing between the effects of faults and non-deterministic
or probabilistic algorithms is important, as explained in section 3.5.

3.3. Design for masking fault tolerance 37

detected
masked

corrected
faults

Figure 3.6: Fault tolerance classes

The effects of faults that are detected and corrected, which is the green area in the above
figure, are masked. Effects of faults that are neither detected nor corrected belong to the
red area and are, in the context of fault tolerance, not supported. But what does this
classification mean for a system user and how would probabilistic dynamics of recovery
fit in?

Fault tolerance type from the user perspective

Assume a user accessing a system. Means of fault tolerance like detectors and correctors
are supplied as a layer between user and system. The user has a set of requests to the
system. At each time step, the user requests the system service and expects a correct
response the very same time step. The user requests are queued and the user provides
them as a sequence. A request is repeated when an incorrect answer is detected. The
following figure 3.7 depicts the setting:

38 3. Fault tolerance terminology and taxonomy

correct
behavior

unaccounted faults

detected corrected
masked

no fault

correct
behavioruser

tr
an

si
en

t
fa

u
lt

s

system

inquiry

detected
faulty
system
behavior

undetected
faulty
behavior

corrected
system
behavior

incorrect behavior

Figure 3.7: System behavior

A system user (top layer) requests some service from a distributed system (lower layer)
depicted as bold black downward arrow. Transient faults influence the system. Between
the two layers is a fault tolerance layer comprising detectors (yellow) and correctors (blue)
that overlap (green). While posting requests is assumed to be immune to faults11, the
responses computed by the system12 are prone to transient faults occurring in the system.
Responses are depicted as colored upward arrows.

The fault tolerance layer is designed analogous to the fault tolerance classes shown in
figure 3.6. A system response is either carried out without malign fault (correct behavior,
lower arrow), or it provides a wrong answer (incorrect behavior). The fault tolerance layer
takes the system response and applies detectors and correctors. In case no fault is detected
in a correct answer (correct behavior, upper arrow) or in situ correction is applicable

11This assumption is covered by the goal of this thesis being the fault tolerance of the underlying system
and not of the transmission media.

12Again, the transmission itself is assumed to be immune.

3.4. Fault tolerance configurations 39

(corrected system behavior), the correct answer is provided to the user. In case a fault
is not detected, the user is exposed to its effects (undetected faulty behavior). In case a
fault is detected but cannot be corrected, the request is returned to the system (detected
faulty system behavior). Notably, detectors might malfunction, too. These malfunctions
are called false positives and false negatives. The scheduler and the algorithm are not
pictured here.

Figure 3.7 shows how fault tolerance can be added to a system without manipulating the
system itself. Three changes to this model are necessary to fit the scope of this thesis.
The first is, that aspects of in situ correction are not the topic of this thesis and are thus
excluded. Second, detector malfunctions are excluded. The goal to quantify the fault tol-
erance of the system and not the fault tolerance of the detectors. Third, the fault coverage
classification must be adapted to account for the recovery dynamics of the system. These
adaptations are discussed in the following section.

3.4 Fault tolerance configurations

In the beginning of this chapter, figure 3.1 painted the picture of a user interacting with
a system and a detection layer between them. In this section, this picture is continued.
The user is now permanently requesting the system service. In the optimal case there are
no effects of faults present in the system and the detection layer passes correct responses
directly to the user. But how are temporal constraints modeled? What about unreliable
detectors that raise the detection flag wrongfully with no actual fault present?

The discussion in section 3.1.5 motivated the focus on non-masking fault-tolerant systems
that can utilize time to withhold incorrect service from the user for a limited amount of
time. The three fundamental questions in that context are:

a) Is the system in a safe state?

b) Is an error detected?

c) Are temporal constraints regarding convergence violated?

Unmasking fault tolerance (Fundamental questions).

Configurations

All three questions can be answered with either "yes" or "no" at each time point. For
brevity, "yes" is encoded with 1 and "no" with 0. The configurations are:

40 3. Fault tolerance terminology and taxonomy

〈a), b), c)〉 meaning
〈1 , 0 , 0 〉 The system is in a legal state, no fault is detected and

temporal constraints are not violated.
〈1 , 1 , 0 〉 The system is in a legal state, yet a fault is detected

(false positive) but temporal constraints are not
violated yet.

〈1 , 1 , 1 〉 The system is in a legal state, yet a fault is detected
(false positive) and the detection flag has been raised
for too long.

〈0 , 1 , 0 〉 A fault is correctly detected and the correction does
not yet violate temporal constraints.

〈0 , 1 , 1 〉 A fault occurred and was detected, but a legal state
could not be reached within time.

〈0 , 0 , 0 〉 An undetected fault causes the system to deliver
wrong results and persists until it is either detected or
corrected by chance.

Table 3.2: Fault tolerance configurations

The first digit in every triple answers the first question, the second digit the second ques-
tion and so forth. Two configurations are omitted: 〈0, 0, 1〉 and 〈1, 0, 1〉. We assume that
the system service is deprived from the system user when the detection flag is raised, re-
gardless if an actual error is present or not. With the detection flag not being raised, the
system is not deprived from the user and temporal constraints are not violated. The two
states can thus be omitted. Notably, the questions still distinguish between correctly and
incorrectly detected faults, the so-called false positives.

Transitions between configurations

Configuration 〈1, 0, 0〉 (green, center) is the desired predicate combination. The system
provides a correct answer and no fault is detected. If detectors trigger a false alarm (false
positive), the system converges to configuration 〈1, 1, 0〉 (yellow, upper right).

Figure 3.8: Configuration transition diagram

Else, if detectors trigger an alarm correctly, the system converges to configuration 〈0, 1, 0〉
(yellow, upper left). In both (yellow) cases, the system retries the last inquiry until it ei-
ther succeeds (towards green, or gray in case of an undetected fault) or until temporal

3.5. Unmasking fault tolerance 41

constraints are violated (red). The amount of time that the system is granted to succeed is
the amount time that the user is willing to wait. Else, after temporal constraints are vio-
lated, the system reaches the particular lower configuration, depending whether the fault
was detected correctly 〈0, 1, 1〉 (red, lower left) or not 〈1, 1, 1〉 (red, lower right). Even af-
ter temporal constraints are violated, the system can recover to a legal state. Finally, there
is also the possibility that faults are and remain undetected (false negative) and the user
is unknowingly exposed to an incorrect service modeled by configuration 〈0, 0, 0〉 (gray).
Regarding the fault coverage, an insufficient fault model is the common cause for false
positives. In this final case, either the fault is eventually detected, or the fault is washed
out prior to its detection. It might also occur that a persisting fault is temporarily de-
tected while not violating temporal constraints (i.e. the transitions between configurations
〈0, 1, 0〉 and 〈1, 1, 0〉), or that a persisting fault is temporarily undetected while violating
temporal constraints (i.e. the transitions between configurations 〈0, 1, 1〉 and 〈1, 1, 1〉).

Bounded recovery liveness

In the above configurations, the transitions from the yellow to the red states are taken
when temporal constraints regarding the recovery are violated, when converging to the
legal states took too long. These transitions coincide with the transition from error to
failure as discussed in the threat cycle on page 10. We define bounded liveness with
regards to a maximal admissible recovery time window to address this property formally:

Definition 3.16 (Bounded recovery liveness).
Let w be the maximal admissible amount of time (here: computation steps) allowed to
complete convergence, hereafter referred to as recovery time window. A partial execu-
tion trace σit,k is bounded recovery live w.r.t.w, if it does not continuously (i.e. without
interruption) raise the detection flag for that duration within the trace.

If the recovery time window w exceeds the length of the partial execution trace k, that
partial execution trace satisfies bounded recovery liveness. Otherwise, the system must
complete convergence within the partial execution trace. Notably, fault bursts might con-
tinually perturb the system such that bounded recovery liveness is violated.

3.5 Unmasking fault tolerance
A deterministically masking fault-tolerant system guarantees to complete convergence
within at most w computation steps for specific faults. With a probabilistic environment,
such a guarantee is obsolete. The goal in optimizing the fault tolerance of a system is to
minimize the probability of the system to stay in an unsafe state for more than w steps. To
find the system (design) that offers the best chance to complete convergence, the recovery
liveness of the system must be measured. The recovery liveness of the system is the
transition

−−−−−−−−−−−→
〈0, 1, 0〉, 〈1, 0, 0〉 in figure 3.8. To focus on that transitions, this section prunes

all transitions that are not required in this context.

The fault masker

To measure the recovery liveness of the system with regards to a probabilistic environ-
ment, false positives and negatives must be excluded. This thesis considers the layer of
detection to be perfect in order to exclude false positives as well as false negatives, rep-
resented by the right yellow and red configurations and the gray configuration. A perfect

42 3. Fault tolerance terminology and taxonomy

detector never wrongfully raises the detection flag (i.e. the second digit in the configura-
tion transition diagram). A perfect detector detects every fault and instantly promotes it
to an error. The latter part of the assumption is a simplification, assuming that the amount
of time consumed by detection is negligible compared to the amount of time that is con-
sumed by one computation step executed by the system. Detection is thereby assumed to
occur within each computation step.

Assume a perfect fault detector allowing for instantaneous fault detection of all faults and
faults only [Müllner et al., 2009, p.63]. Thereby, faults are instantly promoted to errors.
For this reason, faults and errors are concluded in figure 2.1. We refer to a perfect fault
detector as fault masker. It forces the system to retry inquiries with erroneous system
responses. If the demand is not satisfied within the recovery time window w, the error
becomes a failure as shown in figure 3.9(a). Otherwise, the effects of faults are masked as
shown in figure 3.9(b).

System User

Fault Masker

System
t t+1 ... t+ time

(a) Fault masker fails

time

System User

Fault Masker

System
t t+1 t+2

(b) Fault masker succeeds

Figure 3.9: The fault masker

The fault masker prunes the configurations that are redundant for the evaluation of recov-
ery liveness. The resulting diagram, shown in figure 3.10 on the left hand side, coincides
with the threat cycle introduced in figure 2.1 shown on the right hand side. It reduces the
configuration transition diagram from figure 3.8 to those configurations that are required
to measure the fault tolerance of a system.

Figure 3.10: Reduced configuration transition diagram, perfect detectors

The fault masker allows to focus on quantifying the recovery dynamics of the system. It
filters out the effects of faulty detectors to solely account for the quality of the correctors.
For sake of completeness, the following paragraph reasons about what happens when
perfect correctors are assumed and faulty detectors are employed before the next chapter
introduces a fault tolerance measure for the quantification.

3.6. Summarizing fault tolerance terminology and taxonomy 43

Untrusting fault tolerance

Consider a set of applicable detectors of varying quality and a perfect corrector. Every
detected error is corrected instantaneously. The original model from figure 3.8 is then
reduced to the configurations and transitions shown in figure 3.11. No (detected) error
is promoted to become a failure. The configurations 〈0, 1, 0〉 and 〈1, 1, 0〉 are traversed
instantaneously, that is, in situ, indicated as dotted arrows. Under perfect correction,
configuration 〈1, 1, 0〉 leaves room for interpretation. How does perfect correction work
when there is no error present? We assume that correction will correct the non-fault and
return immediately (after one step) to configuration 〈1, 0, 0〉 like it does for configuration
〈0, 1, 0〉. The intricate part of the discussion is configuration 〈0, 0, 0〉. With no error
detected, temporal constraints cannot be violated. The type of non-masking tolerance
exposes the system user to the effects of undetected faults only.

Figure 3.11: Reduced Configuration Transition Diagram, perfect correctors

Ergodicity of the configuration transition diagram

Consider a system user continuously requesting the system service with some finite po-
tential to wait and a non-masking fault tolerant system shielded by a fault masker and
exposed to probabilistic transient faults as described above. The corresponding reduced
configuration transition diagram is ergodic. The goal of the following chapters is to derive
a relation, mapping the system’s transition model onto the reduced configuration transi-
tion model. The challenge is to account for state safety and temporal constraints. The
following chapter introduces a fault tolerance measure that is suitable for measuring the
reduced configuration transition diagram and shows how the DTMC of a system can be
adapted to compute that measure.

3.6 Summarizing fault tolerance terminology and taxon-
omy

This chapter introduced a fault tolerance taxonomy that is suitable for the scope of this
thesis and, in the same context, provided definitions for the terminology. The concept of
self-stabilization was discussed and the focus on the probabilistic variant was motivated.
The design for masking fault tolerance paradigm by Arora and Kulkarni was discussed
and adapted to suit a probabilistic context. The concept of the fault masker was introduced
to prune those configurations that are not required for quantifying recovery dynamics.
The next chapter builds on this formal background and introduces a novel fault tolerance
measure to quantify the recovery dynamics.

44 3. Fault tolerance terminology and taxonomy

4. Limiting window availability

4.1 Defining limiting window availability 46

4.2 Computing limiting window availability 51

4.3 Examples . 51

4.4 Comparing solutions . 62

4.5 Summarizing LWA . 62

This chapter introduces the fault tolerance measure limiting window availability (LWA)
and presents a general method to compute it. LWA quantifies the recovery dynam-
ics in the limit as discussed in the previous chapter. Parts of this chapter are pub-
lished [Müllner and Theel, 2011, Müllner et al., 2012, Müllner et al., 2013].

Motivating LWA

Quantifying the recovery dynamics of a non-masking fault-tolerant system, whose service
can be deprived while errors are present, allows to compare different solutions to the same
problem regarding their efficiency in exploiting temporal redundancy for fault tolerance.
Similar to optimal generator polynomials in the domain of spatial redundancy, specific
non-masking fault-tolerant designs have characteristic optimal offsets in the trade-off be-
tween the amount of temporal redundancy and recovery probability. When the maximal
admissible amount of time for recovery is known, those system designs are optimal that
have an offset closest to but smaller than that maximal admissible amount of time. Oth-
erwise, when saving time is a secondary objective and the recovery probability must not
be below a certain threshold, the system designs can be ordered according to the time
they require to achieve the desired probability. The most economic system achieving that
probability is then optimal. Thus, LWA is a valuable indicator that allows to compare
systems according to their ability to recover from transient faults.

The history of the term limiting windows availability

At the beginning of the studies for this thesis, the idea was to measure the availability
of a system and to determine its recovery. In case a system is unavailable, how does its

46 4. Limiting window availability

availability change when the user is willing to wait for some time? This coined the term
window availability. Initially, in 2009 [Müllner et al., 2009], the setup comprised a system
that was initially unavailable and executing a fixed number of computation steps before its
availability was measured, thus being defined as instantaneous window availability. With
the discussion that indefinitely running systems converge to the stationary distribution, it
was motivated to assume that this distribution should hold at the time a user requests the
system service, which is in the limit. Hence, the recovery of non-masking fault tolerant
systems was measured with limiting window availability.

Structure of this chapter

Section 4.1 contains the formal definition of LWA. Section 4.2 explains how LWA is
computed. LWA is specifically defined to measure the fault tolerance of non-masking
fault-tolerant systems under the fault masker. The design decisions for LWA are discussed
in the following section along with possible alterations like limiting window reliability.
After the general method to compute the LWA is introduced and the design decisions
are motivated, section 4.3 shows on three examples how LWA can be computed. The
evaluation, interpretation and comparison of solutions are discussed in section 4.5.

4.1 Defining limiting window availability
Consider a system S executing a self-stabilizing algorithm being exposed to a probabilis-
tic fault environment. A fault masker is mounted between the system and its user. LWA
of that system with regards to a specific amount of time — the time window for recovery
— is the probability for the system to having reached a safe state at least once within that
time window, considering that the initial probability for the system to be in a certain state
coincides with the stationary distribution. In case the effects of all present faults are elim-
inated within the time window, failures do not arise. In such cases, the effects of faults
are successfully masked within the given time window. Otherwise, if the repair takes
too long, errors become failures. Then, the effects of faults could not have been masked
within the given time window. In that case, the system user is either provided with the
corrupted value, with an error message, or both, depending on the system design and fault
tolerance type. The first option (corrupted value) is in accordance with the non-masking
fault tolerance type and the second option allows for the design of failsafe fault-tolerant
systems (although the information needs not necessarily be exploited). The third option
is reasonable when degraded corrupted values decrease the functionality, but allow the
system to maintain a lower level of service or operation.

Regarding this thesis’ context, the first option is selected to solve the question, how far
faults can be contained and treated within a given amount of time, and how far errors
become failures. From the perspective of fault tolerance types, the question translates to:
how masking is an otherwise non-masking system if it is provided with a fault masker and
a limited amount of time to stabilize? The amount of time that a system should be allowed
for recovery needs not necessarily to be predetermined. Therefore, we refer to that max-
imal admissible amount of time as time window which can be arbitrarily wide opened1.
The width of the time window — which is the duration for recovery or allowed convales-
cence — is addressed as parameter w. When w is infinite, probabilistic convergence is
achieved. This thesis focuses on finite values for w.

1The notion of interval availability, cf. Appendix A.4.7, is similar.

4.1. Defining limiting window availability 47

As motivated in the previous chapter, an ergodic transition model is assumed and further-
more that the system user accesses the system after it converged to its stationary distri-
bution PrΩ(S). The limiting window availability of window size w, labeled lw, is the
probability with which the system is available to the user for at least one computation step
within w computation steps.

There are multiple approaches to formalize LWA. This thesis discusses two of these
approaches, the first being easier to understand, the second one being more precise. LWA
can be formalized as shown in equation 4.1.

lw = pr(∃i ∈ [Ω,Ω + w] : si |= P) (4.1)

LWA of window size w is the probability that there exists a legal state within the corre-
sponding time window. A more precise but harder to understand approach is to define
LWA via execution traces and the first hitting time2. The first hitting time in this context
is the time step at which the trajectory first reaches a legal state.

Definition 4.1 (Limiting Window Availability).
A system S executing a (probabilistic) self-stabilizing algorithm is under a probabilistic
influence. Its corresponding transition model D is in its stationary distribution PrΩ(S).
Let

Ts : inf
t>0
{st ∈ Slegal |s0 = s} (4.2)

be the first time the system reaches a legal state for each execution trace. The limiting
window availability of window size w, denoted as lw, is the probability that the system
functions correctly with regards to a safety predicate P at least once within that window:

lw =
∑
s∈S

pr(Ts ≤ w ∧ s0 = s) · prΩ(s) (4.3)

LWA of time window w is the accumulated probability mass of all partial execution traces
of interval length w that reach the legal set of states — meaning they contain at least one
legal state — with Pr(S)0 := Pr(S)Ω. The limiting availability

∑
si∈Slegal

pr 0(si) coincides

with l0. LWA of a time window w = 1, which is l1, is the probability that the system
is either initially in a safe state or, in case it was initially not in a safe state, that it is
in a safe state one time step later. The trajectories in which the system state is legal at
both time points is covered by the first case. By increasing the window, the probability
for the system to successfully recover eventually, increases, too. LWA is an accumulated
distribution function, a probability measure on stopping times. It assigns a probability
mass for each stopping time at which the system probably reaches a legal state. LWA in
the context of probabilistic real time computational tree logic (PCTL) is discussed in the
future work section in chapter 8.

Absorbing states

The stationary probability distribution PrΩ(S) assigns probability mass to each state in
which the system can possibly be in in the limit. With each further computation step, the

2The lower case letter τ that is commonly used to refer to the stopping or Markov time is reserved as
splitting operator in chapter 6. Hence, the upper case letter T is used instead here.

48 4. Limiting window availability

set of partial execution traces σΩ,Ω+w that reach a safe state for the first time after the limit,
grows. Hence, the aggregated probability continuously increases with w. The set of legal
states absorbs those traces hitting the legal set of states for the first time. Even in case the
system is perturbed by a fault again afterwards in an execution trace, the goal of reaching
the set of legal states would have been accomplished. The set of legal states within the
otherwise ergodic DTMC D becomes absorbing when computing LWA.

Hansson and Jonsson [Hansson and Jonsson, 1994] provide a similar approach based
on an extension of the computational tree logic (CTL) as introduced by Emerson et
al. [Clarke et al., 1986]. They also exploit DTMCs and focus on algorithms to verify if
desired conditions — specified in probabilistic real time CTL (PCTL) — hold. In that
context, LWA can be expressed with

L(P (3≤ws |= P)) ≥ pr (4.4)

Although their provided methods are closely related, the nature of their work is different.
While they introduce a general logic, this thesis focuses on one distinct predicate. The
nature of their work is to provide general algorithms for checking DTMCs and to reason
about their complexity. This thesis on the other hand aims at reducing the complexity
of checking DTMCs specifically in the context of quantifying fault tolerance measures.
Although quantifying fault tolerance measures and probabilistic real time CTL share a
common ground, the contribution of this thesis lies not in exploiting probabilistic real
time CTL, but in finding a notion of time-restricted fault tolerance and its quantification.
The exploitation and application of methods that have been introduced in a general context
is discussed in the future work section in chapter 8.

4.1.1 Limiting window availability vector
While the LWA lw is a point availability, we are interested in the sequence of these prob-
abilities over time. Such a LWA vector v can be either finite, bounded by a finite w, or
infinite with w =∞.

Definition 4.2 (Limiting window availability vector).
The LWA vector v is a (finite or infinite) vector of probabilities

v = 〈l0, l1, . . .〉 (4.5)

such that ∀li, lj : 0 < li, lj ≤ 1, and ∀i < j; i, j ∈ N0 : li < lj .

Notably, 0 < li or else D would not be ergodic3, and li ≤ 1 since l∞ = 1.

Estimating a reasonable window size

There are two motivations to set a fixed maximal admissible window size. Typically,
either safety specifications constrain the maximal admissible window size (e.g. a point
of no return), or the window size has to be increased until a specific probability mass is
reached. In the first case, w is simply set to that maximal admissible window size and
the aggregated probability mass lw is computed. In the second case, w is successively
increased until lw exceeds the minimal required availability for the first time. When the
desired minimal required availability is smaller than one, it is achieved within finite time.

3Further possibilities are i) another initial probability distribution and ii) an empty set of legal states.
The first case is discussed in paragraph "An Exception to Strict Monotonicity" in this section.

4.1. Defining limiting window availability 49

4.1.2 Limiting window availability vector gradient

In case of neither the system specification requiring temporal boundaries (i.e. starvation is
not an issue), nor a fixed demand requiring a minimal desired availability, a third possible
motivation to compute the LWA might be to determine the sweet spot. At this point in
time, the probability increase to reach a safe state is maximal. The gradient of the LWA
vector shows the increase in probability mass for each additional time step spent. It can
be used as an indicator to determine the sweet spot. The question for the sweet spot asks:

At which time step is the increase of probability to reach a safe state maximal?

Definition 4.3 (Limiting window availability vector gradient).
The v gradient (or LWA vector gradient / differential), denoted as g, is a finite or infinite
vector such that

g = 〈g1, . . . , gi〉 = 〈l1 − l0, . . . , li − li−1, . . .〉 (4.6)

with |v| − 1 = |g|

4.1.3 Instantaneous window availability

This section discusses a variation of LWA to demonstrate the versatility of the notion
of window availability in general, and to exploit the benefits of the variation to dis-
cuss monotonicity of the vector gradient. The LWA increases strictly monotonic over
time. With an ergodic DTMC, each state contains probability mass in the limit, including
states with a Hamming distance of 1. Furthermore, the transition probabilities from these
states to a legal state are positive. Hence, the probability mass in the legal states strictly
monotonically increases. One of the basic design decisions in defining LWA was to set
Pr 0(S) := PrΩ(S). For other probability distributions, for instance when the initial states
all have a Hamming distance of 2, the property of strict monotonicity would not neces-
sarily hold. Yet, regular monotonicity holds as long as there are states within the set of
initial states with a Hamming distance smaller w.

For the following example we assume the worst case that the system is initially in a state
with the maximal Hamming distance. Hence, definitions 4.1, 4.2 and 4.3 do not ap-
ply here. This example stems from a comparison between fault tolerance evaluation by
simulation and by analysis [Müllner et al., 2009]. The experiment was conducted on a
self-stabilizing BFS algorithm [Dolev, 2000] executing on a four process topology with
E = {(π1, π4), (π2, π3), (π2, π4), (π3, π4)} (cf. figure A.5 in the appendix on page 166).
The processes execute under serial execution semantics and a probabilistic scheduler. The
registers are exposed to probabilistic transient faults. As a variation to LWA, the system is
initially deterministically in the state in which every register is corrupted. Therefore, the
fault tolerance measure computed is not the limiting window availability but the instan-
taneous window availability (IWA) with a lead tie of zero and the presented initial state.
This deviation is motivated for two reasons: it provides an example for which strict mono-
tonicity does not hold and it amplifies the vector differential as there is no probability mass
not available to the recovery. The system requires at least four computation steps under se-
rial execution semantics to reach the set of legal states. Figure 4.1 shows the LWA vector
gradient g for that system for different fault probabilities q ∈ {0.01, 0.03, 0.06, 0.08, 0.1}.

50 4. Limiting window availability

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
0,00

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0,09

0,10

0.01

0.03

0.06

0.08

0.1

In
st

an
ta

n
eo

u
sm

w
in

d
ow

ma
va

il
ab

il
it

y
ve

ct
or

mg
ra

d
ie

n
t

computationmsteps

fault
prob.

Figure 4.1: Instantaneous window availability gradient - analysis via
PRISM [Kwiatkowska et al., 2002]

The sweet spot in this example is clearly between the ninth and the tenth time step regard-
less of the fault probability. After that, the probability mass increase is reduced. The ex-
ample also demonstrates how available tools — like PRISM4 [Kwiatkowska et al., 2002]
in this case — can be exploited. A direct comparison between the results for the four pro-
cess topology between PRISM and simulation can be found in [Müllner et al., 2009]. One
of the challenges with the analysis with PRISM — concerning the available computing
power in 2009 — was that larger systems soon rendered intractable with the system size
increasing. Therefore, a simulation based approach was proposed. Section 7.2 provides
a further example computing the IWA in the context of the decomposition-and-lumping-
approach presented in chapters 5 and 6.

Sample-based analysis via simulation

As discussed before, computing the LWA suffers from state space explosion. One way
to avoid this issue is to consider only a limited amount of execution traces by restricting
the analysis to sampling-based methods like simulation. An example similar to the pre-
vious one was conducted on a larger topology that was not tractable with PRISM and the
available computing power back then. The example topology comprised eight processes
(cf. figure A.6 on page 166) executing the same BFS algorithm. The experiment consisted
of ten trials, one for each fault probability. Each trial was executed one million times and
the time span until the set of legal states was first reached was counted. Each time, the
initial state was selected randomly and the lead tie was set to 1000. The results are shown
in figure 4.2.

4The PRISM source code for this example is available online http://www.informatik.uni-oldenburg.de/
~phoenix/docs/UFirst09_IWA.rar.

http://www.informatik.uni-oldenburg.de/~phoenix/docs/UFirst09_IWA.rar
http://www.informatik.uni-oldenburg.de/~phoenix/docs/UFirst09_IWA.rar

4.2. Computing limiting window availability 51

1 2 3 8 9 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
0,00

0,05

0,10

0,15

0,20

0,25

0,30

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1

L
im

it
in

gu
w

in
d

ow
ua

va
il

ab
il

it
y

ve
ct

or
ug

ra
d

ie
n

t

computationusteps

fault
prob.

4 5 6 7

Figure 4.2: Limiting window availability gradient - simulation via
SiSSDA [Müllner, 2007]

Comparing the LWA vector gradients of both four and eight process experiments indi-
cates that i) the shape of the graph is typical for this setting and that ii) simulation is a
viable means for locating the region in which the sweet spot is located in case a system
is intractably large for the analysis. While the analysis provides precise results, depicted
as solid green block in figure 4.1, the simulation based approach indicates the region of
the sweet spot only with a certain confidence as indicated by the green waveform. Fur-
thermore, the initial probability for the fault probabilities is different, showing that the
trajectories in figure 4.1 are in opposite order until computation step 15 as compared to
the order in figure 4.2.

4.2 Computing limiting window availability
This section informally describes how LWA of a system under a given environment can
be computed. Given the system specifications and a fault model, an ergodic DTMC D
can be derived as discussed in the previous chapter. Being ergodic, the stationary dis-
tribution PrΩ of D can be computed. To determine LWA (and v and g), the bounded
reachability, which is the probability mass leaking from the set of illegal states into the
set of legal states over time, is calculated by making the legal states absorbing. When
the system reaches a legal state, the user inquiry succeeds. The adapted DTMC with ab-
sorbing legal states is labeled DLWA. In DLWA, no probability mass emanates from the
absorbing legal states towards the illegal states. Let PrΩ(S) be the stationary distribu-
tion of D. The probability distribution for each following time step is computed with
∀i > 0 : PrΩ+i(S) = DLWA · PrΩ+1−i(S). Thereby, the accumulated probability mass
for each time step in the absorbing legal states can be computed, thus calculating the
LWA vector. The complexity of computing the LWA vector is thus linear in the maximal
window size to be determined.

4.3 Examples
This section provides three examples. The first example in section 4.3.1 serves only to
motivate LWA. The traffic lights example in section 4.3.2 then catches up with the TLA
to show how LWA of a small distributed system comprising only two processes can be
computed. Section 4.3.3 then introduces the self-stabilizing broadcast algorithm (BASS).
Compared to the TLA, the BASS is simple (only three guarded commands compared to

52 4. Limiting window availability

50 in the TLA, and only three possible variable allocations instead of five), making it
attractive to discuss the analysis of larger systems (i.e. more processes) and to investigate
the impact of fault propagation.

4.3.1 Motivational example
Although the rather formal concept of LWA and its related entities might seem abstract,
it already is anticipated it in our everyday lives. For instance when an internet browser
(i.e. the machine running it) is disconnected from the internet, the browser will throw
an appropriate error message after some time. What the annoyed user does not see is
the fact that until the error message is displayed, the browser automatically (re-)tries to
reach the requested website several times. In case each one of the connection attempts
fails, the browser quickly realizes that further attempts are futile. Otherwise, in case the
browser receives at least partially correct information (or any information at all), it will
invest further retries. In that case, it takes longer to surrender. Although the target is not
unreachable in the latter case, the browser will usually tell so. The requested site is just
not reachable enough. It takes the browser more retries and thereby longer to determine
that the probability to ultimately succeed is sufficiently low to throw an error message
compared to the case where it has no connection at all.

4.3.2 Self-stabilizing traffic lights algorithm (TLA)
This section continues the traffic lights example from chapter 2. We specify the safety
predicate as follows:

si |= P ⇔ R1 = red ∨R1 = red1 ∨R2 = red ∨R2 = red1 (4.7)

At least one of the traffic lights must show red. Then, at most one party can have ac-
cess and there cannot occur a crash. The safety predicate partitions the state space from
figure 2.5 into legal and illegal states as shown in figure 4.3.

g,g g,y g,y
1 g,r g,r1 y,y y,y

1

y,g y
1
,g r,g r

1
,g y

1
,y y1,y1

y,r y
1
,r r,y r,y

1 r,r r
1
,r

y,r
1 y1,r1 r

1
,y r1,y1 r,r

1 r1,r1

Figure 4.3: State space partitioning via predicate P

4.3. Examples 53

Algorithm 2.1 contains the guarded commands providing algorithmic as well as strong
recovery liveness. Since the system provides for strong recovery liveness, it guarantees
recovery with probability 1. We assume that eternity is not the amount of time a system
user would be willing to wait.

Despite the possibility for a symbolic computation of LWA, the actual probabilities are
computed as presented in paragraph "Fault Model" on page 20. The numerical transition
matrix shown in table 4.1 is computed.

↓ from/to→ g, g g, y g, y1 y, g y1, g g, r g, r1 r, g r1, g y, y y, y1 y1, y y1, y1
g, g 0.05 0.025 0.025 0.025 0.025 0.025 0.4 0.025 0.4
g, y 0.025 0.05 0.025 0.025 0.4 0.025 0.025
g, y1 0.025 0.025 0.05 0.025 0.4 0.025 0.025
y, g 0.025 0.05 0.025 0.025 0.4 0.025 0.025
y1, g 0.025 0.025 0.05 0.025 0.4 0.025 0.025
g, r 0.025 0.025 0.025 0.05 0.4
g, r1 0.025 0.025 0.025 0.025 0.425
r, g 0.025 0.025 0.025 0.05 0.4
r1, g 0.025 0.025 0.025 0.025 0.425
y, y 0.025 0.025 0.05 0.025 0.025
y, y1 0.025 0.025 0.025 0.05 0.025
y1, y 0.025 0.025 0.025 0.05 0.025
y1, y1 0.025 0.025 0.025 0.025 0.05
y, r 0.025 0.025 0.025 0.025
y1, r 0.025 0.025 0.025 0.025
y, r1 0.025 0.4 0.025 0.025
y1, r1 0.025 0.025 0.025 0.025
r, y 0.025 0.025 0.025 0.025
r, y1 0.025 0.025 0.025 0.025
r1, y 0.025 0.4 0.025 0.025
r1, y1 0.025 0.025 0.025 0.025
r, r 0.025 0.025
r1, r 0.025 0.025
r, r1 0.025 0.025
r1, r1 0.025 0.4

↓ from/to→ y, r y1, r y, r1 y1, r1 r, y r, y1 r1, y r1, y1 r, r r1, r r, r1 r1, r1
g, y 0.025 0.4
g, y1 0.025 0.4
y, g 0.025 0.4
y1, g 0.025 0.4
g, r 0.025 0.025 0.4 0.025
g, r1 0.025 0.4 0.025 0.025
r, g 0.025 0.025 0.4 0.025
r1, g 0.025 0.4 0.025 0.025
y, y 0.025 0.4 0.025 0.4
y, y1 0.025 0.4 0.025 0.4
y1, y 0.025 0.4 0.025 0.4
y1, y1 0.025 0.4 0.025 0.4
y, r 0.05 0.025 0.4 0.4 0.025
y1, r 0.025 0.05 0.4 0.4 0.025
y, r1 0.025 0.425 0.025 0.025 0.025
y1, r1 0.025 0.025 0.425 0.4 0.025
r, y 0.05 0.025 0.4 0.4 0.025
r, y1 0.025 0.05 0.4 0.4 0.025
r1, y 0.025 0.425 0.025 0.025 0.025
r1, y1 0.025 0.025 0.425 0.025 0.4
r, r 0.025 0.025 0.025 0.025 0.425 0.4 0.025
r1, r 0.025 0.025 0.4 0.025 0.025 0.425 0.025
r, r1 0.025 0.025 0.025 0.025 0.4 0.425 0.025
r1, r1 0.4 0.025 0.025 0.025 0.025 0.025 0.05

Table 4.1: Transition matrix of the ergodic DTMC D of TLA with numerical values

Computing the stationary probability distribution is demonstrated on an example in Mat-
Lab in appendix A.5.2 on page 166.

54 4. Limiting window availability

state stationary probability state stationary probability state stationary probability
〈g, g〉 0.006833008158440 〈g, y〉 0.005419916453587 〈g, y1〉 0.006496008792927
〈g, r〉 0.007384644613641 〈g, r1〉 0.080896038928274 〈r, g〉 0.008754549072939
〈y, y1〉 0.006361104635544 〈y1, y〉 0.005510976759820 〈y1, y1〉 0.006587069099161
〈y, r1〉 0.076039489262492 〈y1, r1〉 0.084174209952678 〈r, y〉 0.007341457368085
〈r1, y1〉 0.124949002535158 〈r, r〉 0.086556689346863 〈r1, r〉 0.079689388262128

state stationary probability state stationary probability
〈y, g〉 0.006698104001057 〈y1, g〉 0.006924068464673
〈r1, g〉 0.137080979693621 〈y, y〉 0.005285012296204
〈y, r〉 0.007249740456258 〈y1, r〉 0.007475704919874
〈r, y1〉 0.008417549707426 〈r1, y〉 0.086209678318900
〈r, r1〉 0.072821008031510 〈r1, r1〉 0.068844600868740

Table 4.2: Stationary probability distribution PrΩ(S) of D(S × S)

Predicating desired properties

The traffic lights example demonstrates that not only safety, but a variety of desired prop-
erties can be identified. Two desired properties are obvious:

• safety (cf. definition 3.6 and predicate 4.7) and

• operability (cf. sequence 2.3):

si,t |= Pop ⇔ si,t ∈ {〈g, r1〉, 〈r, g〉, 〈r, r〉, 〈r1, r〉, 〈y, r1〉,
〈y1, r1〉, 〈r1, y〉, 〈r1, y1〉, 〈r, r1〉, 〈r1, r1〉}

(4.8)

Liveness and bounded liveness predicates can be defined analogously via (bounded) ex-
ecution traces. There is a marginal difference between the two predicates P and Pop .
While si,t |= Pop means that the system is in a desired state, si,t |= Psafe means that the
system is not in an undesired state. The difference is made by six states that neither violate
safety nor satisfy operability. The cardinalities5 are |P| = 16 and |Pop| = 10. This shows
that the analysis is not necessarily restricted to measuring safety, but that it is possible to
analyze any desired property that can be likewise formalized as a predicate. To compute
LWA, only safety is regarded.

Remark 4.1 (Limiting availability).
The limiting availability (cf. Appendix A.4.7) is the aggregated probability mass of those
states that are considered to be safe, which in the current case of the TLA example is:

A∞(S) = l0 =
∑

si∈Slegal

prΩ(si) = 0.943884731338587 (4.9)

To compute LWA, all legal states of the DTMC become absorbing states as discussed in
the corresponding paragraph on page 47. Hence, all self-targeting transitions that origi-
nate from a legal state are set to probability 1, while all other transitions originating from
a legal state that are not self-targeting are set to probability 0.

5We abbreviate |s |= P|, the number of legal states, with |P| and analogously for all other predicates.

4.3. Examples 55

↓ from/to→ g, g g, y g, y1 y, g y1, g g, r g, r1 r, g r1, g y, y y, y1 y1, y y1, y1
g, g 0.05 0.025 0.025 0.025 0.025 0.025 0.4 0.025 0.4
g, y 0.025 0.05 0.025 0.025 0.4 0.025 0.025
g, y1 0.025 0.025 0.05 0.025 0.4 0.025 0.025
y, g 0.025 0.05 0.025 0.025 0.4 0.025 0.025
y1, g 0.025 0.025 0.05 0.025 0.4 0.025 0.025
g, r 1
g, r1 1
r, g 1
r1, g 1
y, y 0.025 0.025 0.05 0.025 0.025
y, y1 0.025 0.025 0.025 0.05 0.025
y1, y 0.025 0.025 0.025 0.05 0.025
y1, y1 0.025 0.025 0.025 0.025 0.05

↓ from/to→ y, r y1, r y, r1 y1, r1 r, y r, y1 r1, y r1, y1 r, r r1, r r, r1 r1, r1
g, y 0.025 0.4
g, y1 0.025 0.4
y, g 0.025 0.4
y1, g 0.025 0.4
y, y 0.025 0.4 0.025 0.4
y, y1 0.025 0.4 0.025 0.4
y1, y 0.025 0.4 0.025 0.4
y1, y1 0.025 0.4 0.025 0.4
y, r 1
y1, r 1
y, r1 1
y1, r1 1
r, y 1
r, y1 1
r1, y 1
r1, y1 1
r, r 1
r1, r 1
r, r1 1
r1, r1 1

Table 4.3: Transition matrix Pr(S × S) of DTMC DLWA of the traffic lights example

With the stationary distribution set as initial probability distribution, LWA can easily be
computed. The MatLab source code is provided in appendix A.5.6 on page 171.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0,94

0,95

0,96

0,97

0,98

0,99

1,00

Limiting Window Availability for TLA Example

Time Window

L
im

it
in

g
W

in
d

ow
 A

va
il

ab
il

it
y

Figure 4.4: LWA of the traffic lights example

Figure 4.4 shows the probability mass within the legal states as it aggregates over time
for the first 17 steps. Assume that the driver or walker observes the traffic light for some
time steps during their approach to validate the accountability of the traffic light. The
figure shows that even if the traffic lights violate safety specifications (in the limit), they
converge fast. After two time steps, the probability for the traffic lights to have reached a
legal state is above 0.99. After at most 17 steps, the aggregated probability mass reaches
1.000000000000000 with an accuracy of 15 decimal digits.

56 4. Limiting window availability

In engineering disciplines, the availability6 of non-terminating systems is often given
in terms of nines. For instance, an availability of five nines means 99.999%, which
in downtime per year computes to 0.00001 · 525960 minutes = 5.2596 minutes down-
time per year. The switch AXD301 by Ericsson for instance has an even lower average
downtime of 0.631 seconds per year [Armstrong, 2007] and even undercuts nine nines:
0.631s

1a
< 0.000000001. Assume an average availability of nine nines is desired for the

TLA example. LWA reaches that amount of probability with the eleventh step.

LWA can further be exploited to depict the probability mass for each state individually
as it develops over time as shown in figure 4.5. The states are in the same order as in
table 4.3. The figure shows how the illegal states are drained off their probability mass,
converging to 0, while the 16 legal states gain probability mass. This helps in identifying
illegal states withholding probability mass for too long. The according exploitation of this
data is later exemplarily demonstrated on a larger example is section 6.5.2 on page 101.

Probability

0

2

4

6

8

10

g,
g

g,
y

g,
y 1
y,
g

y 1
, g
g,
r

g,
r 1
r ,
g

r 1
, g
y,
y

y,
y 1

y 1
, y

y 1
, y
1

y,
r

y 1
, r

y,
r 1

y 1
, r
1

r ,
y

r ,
y 1

r 1
, y

r 1
, y
1

r ,
r

r 1
, r

r ,
r 1

r 1
, r
1State

Time Step

0.1

0.05

0

Figure 4.5: Probability distribution over states and time for five steps

Ruthless transition pruning

In table 4.3, all self-targeting transitions originating from legal states were set to 1. This
procedure is valid for measuring LWA which is the aggregated probability mass of all
legal states. For a more sophisticated analysis, in which the probability mass is evaluated
individually for each state, such a simplification is not appropriate. Then, the transition
probabilities originating from legal states and targeting illegal states must be set to 0 and
the remaining transitions adapted accordingly.

One motivation to wait with the aggregation of the probability mass within state partitions
is for instance the predicate relaxation. One might consider states where both traffic lights
show a yellow sign at the same time less critical than states with one yellow and one green
light, or both lights being green. Then, it is reasonable to consider the probability mass
progress for each state separately to determine reasonable state combination permutations,
for both relaxations as well as intensification, afterwards.

4.3.3 Self-stabilizing broadcast algorithm (BASS)
This example discusses the possibilities and challenges that come with hierarchi-
cal systems. Their simplicity regarding system topology, register domains and

6As stated in chapter 2, fault tolerance terminology is not consistent. Instead of availability, some
sources refer to the average downtime of a system as reliability, cf. e.g. [?, p.199].

4.3. Examples 57

algorithm, predestines them for this discussion. Parts of this section are pub-
lished [Müllner and Theel, 2011, Müllner et al., 2012, Müllner et al., 2013]. The goal of
the BASS is to communicate a certain value among all processes from one designated root
process to all other processes.

(Probabilistic) self-stabilization

Consider the algorithm shown in figure 4.6 (cf. [Müllner and Theel, 2011]). To increase
readability, guarded commands are replaced by pseudo-code. Contrary to the TLA in
which both processes depended on each other, this algorithm requires one designated
process, referred to as root process, which is labeled π1 by default. The root process is
independent as it does not compute its own value based on the values in registers of other
processes. All other non-root processes rely on the values stored in registers of processes
that are closer to the root process than themselves. In this example, they even rely only on
those neighbors that are closest to the root among their neighbors. Thereby, the processes
executing BASS rely on each other hierarchically. An example topology is introduced
in the following paragraph. The sub-algorithm executed by the root process is shown in
algorithm 4.1 and the algorithm executed by all other processes is shown in algorithm 4.2.

const id := 0,
var R,
repeat {
R := 0

}.

const neighbors := 〈πi, . . .〉,
const distance :=min(distance(neighbors))+1,
const set := 〈Rj , . . .〉|∀πj :

(πj ∈ neighbors)∧(distance(πj) =distance−1),
var R,
repeat{
¬((∃Ri : πi ∈ set ∧Ri = 2)xor
∃Ri : πi ∈ set ∧Ri = 0))
→ R := 1;

2∃Ri : πi ∈ set ∧Ri = 0
→ R := 0;

2∃Ri : πi ∈ set ∧Ri = 2
→ R := 2

}.

Algorithm 4.1: Root Process Algorithm 4.2: Non-root Processes

Figure 4.6: Self-stabilizing broadcast algorithm (BASS)

The 2 symbol in the algorithm demarcates an case block. In the repeat loop in algo-
rithm 4.2, the register is set to 1 in case the first clause holds. Otherwise, if the second
clause holds, it is set to 0. In any other case the third clause holds and the executing
process sets its register to 2 .

As a canonical simplification, each process contains one register with a domain of three
different values. A process πi stores one of the three possible values (0, 1, 2) in its single
register Ri. If Ri = 0 applies, then process πi fulfills its local part in satisfying safety; Ri

then currently satisfies its safety predicate P , denoted byRi |= P . Safety is satisfied glob-
ally when all registers satisfy safety. Notably, in this scenario, registers do not mutually
depend on each other to satisfy safety.

58 4. Limiting window availability

When the values stored in a register are not conform with the predicate, Ri 6|= P , then
πi either knowingly cannot determine the correct value, for instance due to dependencies
on unavailable data from other processes, or it is unknowingly perturbed by a fault, either
directly or via (hierarchical) fault propagation. In the abstraction, Ri takes the value 1
when πi knowingly cannot compute a correct value for its register, and Ri := 2 in case
πi unknowingly stores an incorrect7 value. A system state si,t = 〈R1,t, . . .〉 satisfies the
global safety predicate when all registers store 0:

si,t |= P ⇔ ∀Rj ∈ si,t : Ri = 0 (4.10)

The system topology

The system topology is shown in figure 4.7. It comprises seven processes Π =
{π1, . . . , π7} such that E = {e1,2, e1,3, e2,4, e3,4, e4,5, e4,6, e5,7, e6,7}. As discussed in para-
graph "Restricting communication via guards" on page 7, the algorithm utilizes the com-
munication channels only unidirectionally as indicated by the arrows.

Figure 4.7: System

Furthermore, a probabilistic scheduler randomly selects the processes to execute under
serial execution semantics.

The functionality

The root process π1, when executing a computation step, stores the value 0 in its register
in absence of a fault, and 2 if it is perturbed by a fault. Processes π2 and π3, when exe-
cuting, copy the value of R1 to their respective register. In case a process is not perturbed
by a fault directly, it is possibly provided with contradicting data. In the example topol-
ogy in figure 4.7, this is not possible for processes π1, π2 and π3. For instance, when a
process reads both 0 and 2 from the processes in its set (cf. line 3 in algorithm 4.2), then
it writes 1 to its register. The value 1 means don’t know. Otherwise, an undecidable pro-
cess would have to make a non-deterministic or probabilistic choice between the values
provided. Then, the algorithm is not self-stabilizing anymore as a process could always
make the wrong decision, thereby preventing convergence. The 1 value provides clarity
and prevents non-determinism.

• π4 stores 0 when (R2 = 0 ∧R3 = 0) ∨ (R2 = 0 ∧R3 = 1) ∨ (R2 = 1 ∧R3 = 0).

• It stores 2 when (R2 = 2 ∧R3 = 2) ∨ (R2 = 2 ∧R3 = 1) ∨ (R2 = 1 ∧R3 = 2).

• The value 1 is stored otherwise, when both 0 and 2 are read.
7The abstraction does not distinguish between different faults. So if a process in the abstraction reads 2

twice, the abstraction pessimistically assumes that it might also read consistent values (e.g. originating from
the same fault) in the concrete, and consequently accepts that value as locally correct.

4.3. Examples 59

Process π7 executes the same way with respect to R5 and R6 (extending the third point,
it stores 1 also when it only reads 1 from all processes in its set). Processes π5 and π6,
when executing a computation step, adopt the value from R4 to their respective register.
The proposed algorithm is self-stabilizing with regards to P .

Theorem 4.1 (The broadcast algorithm is self-stabilizing).
The broadcast algorithm in figure 4.6 is self-stabilizing under a fair scheduler8 and serial
execution semantics for systems with finitely many processes.

Proof 4.1 (The broadcast algorithm is self-stabilizing).
Anchor: The root process executes eventually writing 0 into its register.

Step: Eventually, every non-root process πi, 1 < i ≤ n executes after all processes that
are closer to the root than itself executed in the order of the path. Then, πi writes 0 to its
register.

Closing: Every process eventually stores 0 and no process can store a different value in
absence of faults (closure). The algorithm is self-stabilizing.

The algorithm is silent self-stabilizing [Dolev et al., 1996] as the system does not change
its state once it completed convergence, meaning it is not algorithmically live. Theo-
rem 4.1 and Proof 4.1 are published similarly in [Müllner and Theel, 2011, sec. 4.1] and
have been adapted to suit this thesis. The system is probabilistically self-stabilizing under
a probabilistic scheduler [Tixeuil, 2009, Devismes et al., 2008]. The proof is analogous
to the proof of self-stabilization. The root process and following the non-root processes
execute in descending order of their Hamming distance without being perturbed by errors
with probability 1, thereby providing probabilistic convergence. The closure property
remains untouched by the scheduler and is thereby also provided. The next step is to
construct the ergodic transition model.

From system and environment models to the transition model

The state space contains the following states:

si ∈ S : si = 〈R1, R2, . . . , R7〉 ∈ {〈0, 0, 0, 0, 0, 0, 0〉, . . . , 〈2, 2, 2, 2, 2, 2, 2〉} (4.11)

The state space9 comprises 23 · 34 = 648 states. Transient faults perturb the executing
process with a probability q = 1 − p. The registers of non-executing processes remain
untouched by faults. We select q := 0.05. A process stores 2 with a probability of 5%
and executes as specified by the algorithm with a probability of 95%. The contour plot of
the ergodic DTMC displayed in figure 4.8 shows the transition pattern. Each blue dot is a
positive transition probability. The self-targeting transitions are on the diagonal from top
left to bottom right.

8This excludes probabilistically fair schedulers.
9Processes π1, π2, and π3 cannot derive 1. Therefore, only two different values (0 and 2) can be stored

in the first three registers.

60 4. Limiting window availability

State (Target)

S
ta

te
 (

O
ri

gi
n

)

100 200 300 400 500 600

100

200

300

400

500

600

Figure 4.8: Transition matrix contour plot

The computation of LWA proceeds analogously to the prior example. The presentation
of the complete DTMC is skipped due to its size. Chapters 5 and 6 present an alternative
approach to compute LWA for this example without the necessity to build the full DTMC.

Computing LWA comprises six steps:

1. Build the state space S = {〈0, . . . , 0〉, . . . , 〈2, . . . , 2〉}).

2. Compute the transition probabilities between each pair of states to construct the
ergodic DTMC D.

3. Compute the stationary distribution PrΩ(S).

4. Specify the desired (safety) predicate P .

5. Prune all transitions departing from legal states (i.e. set them to 0 while their self-
targeting transitions are set to 1) to construct DLWA.

6. Use PrΩ(S) on DLWA such that the aggregated probability mass over all legal states
after i iterations (i.e. matrix multiplications) computes li.

4.3. Examples 61

size w

L
W

A

0 100 200 300 400 500 600 700 800 900 1000
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Figure 4.9: Limiting window availability of BASS Example for w ≤ 1000

Figure 4.9 shows LWA for the first 1000 time window sizes. Figure 4.10 shows the prob-
ability mass distribution over time for the illegal states.

Figure 4.10: Probability mass distribution over time for the illegal states

Constructing DLWA vs. reachability

Assume that the initial distribution Pr 0(S) is provided and that the maximal admissible
time window w is smaller than the maximal Hamming distance in the system. Then,

62 4. Limiting window availability

the construction of D is not compulsorily required to its full extent. When the maximal
admissible amount of time for reaching a safe state (i.e.w) is smaller than the number of
processes, then there are states from which the system deterministically cannot recover in
time. Such states (and their transitions) can then be omitted.

4.4 Comparing solutions
Assume a variety of different fault-tolerant solutions to the same problem. For instance, a
variety of processes with different availabilities can be utilized to build a desired system.
The processes have a different cost and different fault probabilities. Different solutions
then simply contain all possible permutations of process choices. Alternatively, different
solutions can possibly be different structural fault tolerance design compositions.

In order to get the desired degree of fault tolerance at a reasonable price, the trade-
offs10 must be comparable. First, LWA is addressed. Assume two LWA vectors va =
〈la,0, la,1, . . . , la,w〉 and vb = 〈lb,0, lb,1, . . . , lb,w〉 for two such solutions. The smaller func-
tion with regards to two LWA vectors is defined as

va < vb :
def.⇐=⇒ ∀i, 1 ≤ i ≤ w : la,i ≤ lb,i ∧ va 6= vb (4.12)

Proving va < vb can be accomplished even for infinite w via induction.

LetMi = (wi, vi) be a system instance utilizing temporal redundancywi and providing the
corresponding LWA vector vi of length wi. Different system design instances Mi 6= Mj

can contain an equal amount of temporal redundancy wi = wj and yet carry different
vectors vi. We say that one solution Mi is strictly better than another solution Mj if
they both contain an equal amount of (temporal) redundancy (i.e.wi = wj) and Mi has a
greater LWA vector:

Mi �Mj :⇔ wi = wj ∧ vi > vj (4.13)

Vice versa, when two solutions Mi and Mj have equal LWA vectors but different amounts
of (temporal) redundancy, the solution carrying the smaller amount of redundancy is the
cheaper option offering an equal amount of fault tolerance (w.r.t. to LWA).

4.5 Summarizing LWA
This section introduced LWA as measure for the efficiency of temporal redundancy. It pre-
cisely outlined characteristic properties of LWA such as the stationary distribution being
used as initial probability distribution or that it suffices that an execution trace contains
one legal state in the desired time window. Three examples, ordered according to their
complexity, demonstrated how LWA can be computed. The examples also demonstrated
the perils of state space explosion. Finally, in an outlook, the chapter briefly discussed
how the LWA vectors of different design solutions can be compared.

10Each trade-off contains the costs (e.g. redundancy) and fault tolerance (e.g. LWA) of a chosen instance
set of system and fault environment.

5. Lumping transition models of
non-masking fault tolerant systems

5.1 Equivalence classes . 65

5.2 Ensuring probabilistic bisimilarity 66

5.3 Example . 71

5.4 Approximate bisimilarity . 72

5.5 Summarizing lumping . 73

The coverage of computing LWA is inherently confined by the state space explosion,
meaning that the size of the Markov chain is exponential in the size of the underlying
system, meaning the quantity of processes, their registers and the value domains of the
registers.

Lumping, introduced by Kemeny and Snell [Kemeny and Snell, 1976] originally1 in 1960,
is a popular method to cope with the state space explosion. In the context of Markov
chains, the concept of lumping is introduced as probabilistic bisimulation by Larsen and
Skou [Larsen and Skou, 1989] in 1991.

Lumping allows coalescing of bisimilar states — which are states that have the same
effect on the system — to reduce the size of a DTMC. It facilitates the computation of the
relevant measures on the quotient Markov chain under lumping equivalence, which is the
DTMC in which all bisimilar states have been lumped. This chapter discusses lumping
in the context of computing LWA. Parts of it are published [Müllner and Theel, 2011,
Müllner et al., 2012, Müllner et al., 2013].

Process and state lumping

Lumping coalesces bisimilar entities and is applicable to both processes in the system
model as well as to states in the transition model. This chapter focuses on lumping in the

1The first edition edition was published in 1960. The second edition from 1976 defines lumpability in
Definition 6.3.1 [Kemeny and Snell, 1976, p.124].

64 5. Lumping transition models of non-masking fault tolerant systems

transition model. Informally, states in a transition system are bisimilar if they have the
same effect in the transition model, meaning, they precisely simulate each other’s behav-
ior. Formally, states are bisimilar when they have equal transition probabilities regarding
their target states and both satisfy and dissatisfy the same predicates.

After this chapter will have prepared lumping of states, chapter 6 determines
the relation between bisimilar processes — which are processes that "behave
equally"[Milner et al., 1992] — in the system model, and bisimilar states in the sys-
tem’s transition model. This provides valuable insights to discuss decomposing the system
model in the following chapter.

Example

Informally, the information which process from a set of bisimilar processes is in a cer-
tain state is irrelevant. The information that one of them is in a certain condition
suffices. For instance, in the BASS example from section 4.3.3, assume two states
si = 〈x1, 2, 0, x4, x5, x6, x7〉 and sj = 〈x1, 0, 2, x4, x5, x6, x7〉, where the xi values are
pairwise equal. When computing LWA, both states si and sj have an equal effect within
the transition model. It is not important to know, which one of the process registers R2

and R3 is corrupted and which one is not. The information that one of the process reg-
isters is corrupted and the other one is not suffices. States having an equal effect with
regards to a specific predicate in a transition model belong to the same equivalence class
and are probabilistic bisimilar (cf. e.g. [Shanks, 1985]). A set of probabilistic bisimilar
states can be represented by one state. The process of coalescing bisimilar states is called
lumping [Kemeny and Snell, 1976]. Lumping states in the transition model allows to re-
duce the state space. Fortunately, fault-tolerant systems often rely on multiply instantiated
homogeneous components that likely offer a great potential for lumping2.

Related literature

Lumping of probabilistic bisimilar states, based on the definition of probabilis-
tic bisimulation by Larsen and Skou from 1989 [Larsen and Skou, 1989], is pre-
sented by Buchholz [Buchholz, 1994] in 1994. Milner introduces lumping in the π-
calculus [Milner, 1999] in 1999 in a deterministic setting for processes. Processes qualify
for lumping when "they have the same behavior [. . .] for some suitable notion of behavior"
(cf. also [Pucella, 2000, Meyer, 2009]).

Lumping and system decomposition are important topics. Popular model checkers like
PRISM [Kwiatkowska et al., 2002], CADP [Garavel et al., 2001, Garavel et al., 2011]
and MRMC [Katoen et al., 2005] already exploit lumping and decomposition techniques
to cope with large system and transition models. Katoen et al. [Katoen et al., 2007] pro-
vide a general discussion how to generally exploit bisimulation minimization — which
is minimizing models by exploiting bisimilarity — in the context of applied probabilistic
model checking. Computation of window availabilities with probabilistic model checkers
has been demonstrated on instantaneous window availability exemplarily with PRISM in
section 4.1.3.

Yet, instead of feeding system models into a model checker and reasoning about the po-
tential of lumping in general, the goal of this chapter is to conduct the fault tolerance

2Furthermore, it is important to consider that the relevant predicates do not partition the state space
unfavorably as discussed paragraph "Multiple Predicates" on page 70.

5.1. Equivalence classes 65

analysis by hand. This contributes to reason about the relation between fault propagation
among processes and bisimilarities in transition models. Furthermore, it shows how lump-
ing can be exploited in the context of non-masking fault tolerant systems in this context to
dampen the state space explosion. Discussing the fault tolerance analysis by hand allows
to understand how computing LWA depends on the system design.

Structure of this chapter

Section 5.1 introduces the notions of equivalence relation and state bisimilarity. Sec-
tion 5.2 then applies these notions to discuss lumping in the context of computing the
LWA. The most complex part in lumping is the aggregation of transitions. The same sec-
tion also discusses the transition lumping in detail. A small example in section 5.3 demon-
strates how lumping can be executed generally. The larger example from section 4.3.3 is
continued in the following chapter, including a discussion about system decomposition
and the influence of hierarchy on fault propagation. Section 5.4 briefly discusses the ben-
efits and limitations of approximate lumping. Section 5.5 concludes this chapter.

5.1 Equivalence classes
Let D = {S,M,Pr 0(S)} be a DTMC representing the transition model of a self-
stabilizing system as specified in section 4.3.3 with the initial probability distribution
being the stationary distribution Pr 0(S) = PrΩ(S) as discussed in section 4.1. Baier and
Katoen define probabilistic bisimilarity as follows:

A probabilistic bisimulation on D is an equivalence relation R on S such
that for all states si, sj ∈ R : L(si) = L(s2) ∧ pr(

−−→
si, T) = pr(

−−→
sj, T) for

each equivalence class T ∈ S/R. States si, sj are bisimulation-equivalent (or
bisimilar), denoted si ∼D sj , if there exists a bisimulation R on D such that
(si, sj) ∈ R [Baier and Katoen, 2008, p.808]3.

Here, AP is a set of atomic propositions and L : S → 2AP being a labeling func-
tion [Baier and Katoen, 2008, p.748]. Two states si, sj ∈ S are bisimilar with regards
to P , if i) both satisfy or both dissatisfy predicate P and ii) both have equal transition
probabilities towards each equivalence class respectively.

Definition 5.1 (State bisimilarity). Two states si and sj are bisimilar when they satisfy the
same predicates and have equal transition probabilities for all transition targets.

∀si, sj ∈ S : si ∼ sj :⇔
((si |= P ∧ sj |= P) ∨ (si 6|= P ∧ sj 6|= P))∧

(∀d ∈ S :
∑
s∈[d]∼

pr(−−→si, s) =
∑
s∈[d]∼

pr(−−→sj, s)) (5.1)

Bisimilar states can be represented by one state referred to as lump
(cf. also [Larsen and Skou, 1989, Smith, 2003]). The quotient space, which is the
state space in which all bisimilar states are replaced by their respective lumps, is labeled
S ′ = S/ ∼. Figure 5.1 on page 71 provides a small example demonstrating lumping.

3The symbols have been adapted to suit this thesis.

66 5. Lumping transition models of non-masking fault tolerant systems

5.2 Ensuring probabilistic bisimilarity
The idea of the reduction is to construct a Markov chain D′ from D that is smaller than D
but can also compute the LWA. The reduction method will show that, due to the ergodicity
ofM, onlyM′ needs to be computed and that the predicate has to be adapted to fit the
new state space.

This section starts by briefly describing transition lumping, which is the lumping of the
transition matrix. Afterwards, lumping is introduced formally in the context of quantify-
ing fault tolerance measures.

Lumping D

Assume the construction starts with D and an empty matrix for D′ as inputs. There are
three types of transitions to be regarded when computing the transition probabilities for
D′:

1. Transitions originating from non-bisimilar states targeting non-bisimilar states
can be transferred to D′ directly. The small circles represent states, the dotted
circles equivalence classes and the arrows transitions.

transition in transition in

2. Transitions originating from non-bisimilar states targeting states within lumps
now target the lump instead in D′. In case multiple such transitions originate all
in one state so : so 6∈ [s]∼ and target multiple states belonging all to the same
equivalence class [s]∼, then their aggregate transition probability becomes the
respective sum.

transition in transition in

3. Transitions originating from bisimilar states are computed as described in equa-
tion 5.6.

transition in transition in

5.2. Ensuring probabilistic bisimilarity 67

Computing lumped transitions is only required in the third case. All other transitions
can be transferred directly from D to D′. Let so = {si, . . . , sj} be the origin lump. The
target is either an equivalence class st = {sk, . . . , sl}, too, or a target state st. Each
aggregated transition is weighted according to the aggregate weight in the origin states
prΩ([si]∼) =

∑
d∈[si]∼

prΩ(d).

The formal reduction method

A Markov chain can be lumped and the safety predicate adapted accordingly with the
reduction function red(D,P) , as shown in definition 5.2. The set of states from which
the aggregated transition originates is labeled [so]∼ and the set of targeted states is labeled
[st]∼.

Definition 5.2 (Reduction). The reduction comprises seven parts,

• the reduction function:
red(D,P) = (D′,P ′) (5.2)

with red : S → S ′

• the reduced DTMC:
D′ = (S ′,M′,Pr 0(S ′)) (5.3)

with Pr 0(S ′) := PrΩ(S ′), and with si, sj ∈ S ′, pr(−−→si, sj) ∈M′ → [0, 1]

• state lumping:
S ′ = {[s]∼|s ∈ S} (5.4)

• probability mass lumping:

pr 0([s]∼) =
∑
d∈[s]∼

pr 0(d)|∀s ∈ S, with pr 0(d) := prΩ(d) (5.5)

with pr 0([s]∼)→ [0, 1]

• transition lumping:

pr(
−−−−−−→
[so]∼, [st]∼) =

∑
di∈[so]∼

∑
dj∈[st]∼

pr(
−−→
di, dj) · pr(di)∑

di∈[so]∼

pr(di)
(5.6)

with pr(
−−−−−−→
[so]∼, [st]∼)→ [0, 1]

• predicate lumping:
[s]∼ |= P ′ :⇔ ∃d ∈ [s]∼ : d |= P (5.7)

The reduction red(D,P) shown in definition 5.2 in equation 5.2 reduces the DTMCD and
adapts the predicate P accordingly. The reduced DTMC D′ consists of a reduced state
space S ′ and correspondingly adapted transitions — both regarded in the three following
equations — as shown in equation 5.3. An initial probability distribution as in defini-
tion 2.7 is not required here as the resolving transition system is an ergodic Markov chain

68 5. Lumping transition models of non-masking fault tolerant systems

that applies its stationary as initial distribution. Equation 5.4 describes the state lumping
(including the aggregation of the probability masses w.r.t. the equivalence classes shown
in equation 5.5). The initial probability distribution over S is aggregated, such that the
probability mass of all states within each equivalence class is summed up to compute
the initial probability mass for the lumped states in S ′ as shown in equation 5.5. Those
states belonging to the same equivalence class [s]∼ are aggregated and their transitions
are computed respectively as shown in equation 5.6. Equation 5.6 describes the transition
lumping. It simply states that the probability of any equivalence class C to class D is
pr(
−−→
s , D) =

∑
s′∈D

pr(
−−→
s , s ′). Equation 5.7 is only provided for sake of completeness4 and

follows directly from definition 5.1.

The weight terms can be canceled based on the law of total probability (LTP,
cf. e.g. [Pfeiffer, 1978, p.47]) for conditional probabilities5 and with the conditions for
states to be bisimilar (cf. definition 5.1):

pr(
−−−−−−→
[so]∼, [st]∼) =

∑
di∈[so]∼

∑
dj∈[st]∼

pr(
−−→
di, dj) · pr(di)∑

di∈[so]∼

pr(di)

Def. 5.1
=⇒

∑
di∈[so]∼

pr(
−−→
di, dj) (5.8)

Section 5.3 provides a demonstrative and simple example explaining why the weighting
terms can be canceled.

Lumping preserves the ability to compute the LWA

In the model checking community it is common knowledge that a quotient transition sys-
tem under an equivalence relation preserves desired attributes with regards to the equiva-
lence relation [Baier and Katoen, 2008, p.459]. This section shows that the ergodic quo-
tient transition model of a non-masking fault tolerant system preserves the desired at-
tributes, which in this case implies preservation of the ability to compute LWA.

Informally, the proof shows that both D and D′ progress equally over time with bisimilar
initial distributions and with respect to the equivalence relation. When progress is equal
in each time step, they have bisimilar stationary distributions, too. Finally, with bisimilar
distributions and bisimilar progress, both D and D′ compute the same LWA. The first
assumption is that the order in which i) computing the LWA and ii) lumping are executed
does not matter, or else the reduction would not be bisimilar.

Theorem 5.1 (Commutativity of lumping and calculating the stationary distribution).
Computing the stationary distribution with subsequent lumping leads to the same result
as first lumping and then computing the stationary distribution.

∀[s]∼ ∈ S ′ : prΩ([s]∼) =
∑
d∈[s]∼

prΩ(d) (5.9)

4With the conditions specified in definition 5.1, the ∃ quantifier in equation 5.7 can be replaced with an
∀ quantifier (i.e. if one state of the equivalence class satisfies the predicate, then all states must satisfy the
predicate).

5Soudjani and Abate [Soudjani and Abate, 2013b, eq.7] exploit the same opportunity in a similar con-
text.

5.2. Ensuring probabilistic bisimilarity 69

The prk(si) function, which is the probability mass in state si at time t, is overloaded by
allowing a set of states as input referring to the aggregated probability mass within the set
of states.

Theorem 5.1 is implicitly verified in proof 5.1 by showing that both the original and the
reduced Markov chain have an equal stationary probability distribution — with regards
to their particular equivalence classes — by induction. The proof is twofold. It first shows
that for any initial probability distribution both DTMCs show bisimilar progress and there-
fore converge to bisimilar stationary distributions (i.e. PrΩ(S)

eq. 5.5
===⇒ PrΩ([s]∼)). Then,

given that both DTMCs have a bisimilar stationary distribution and provide bisimilar
progress, it is simple to show that the quotient Markov chain preserved the ability to
compute the LWA.

For any initial probability distribution Pr 0(S), the corresponding initial probability distri-
bution for S ′ is computed with equation 5.5. This provides the anchor for the proof. The
induction step shows that the lumped transitions do the same as the original transitions,
meaning that they cause bisimilar progress.

Proof 5.1 (Equivalence of stationary distributions).
Let Pr 0(S) be an arbitrary initial distribution for D and let Pr 0([s]∼) =

∑
d∈[s]∼

pr 0(d)

be an initial distribution for D′. Show that for Prk(S) and Prk([s]∼) — which are the
probability distributions for D and D′ at time step k — the following holds:

∀k ≥ 0,∀[s]∼ ∈ S ′ : prk([s]∼) =
∑
d∈[s]∼

prk(d) (5.10)

Proof per induction over k.

Anchor: k = 0 holds by assumption (cf. equation 5.5).

Step: show that the following holds

Assumption:

prk+1([s]∼) =
∑

[d]∼∈S′
prk([d]∼) · pr(

−−−−−→
[d]∼, [s]∼) (5.11)

=
∑

[d]∼∈S′
(
∑
e∈[d]∼

prk(e)) · (
∑
f∈[s]∼

pr(
−→
d, f)) (5.12)

=
∑

[d]∼∈S′

∑
e∈[d]∼

∑
f∈[s]∼

prk(e) · pr(
−→
d, f) (5.13)

and with pr(
−→
e, f) = pr(

−→
d, f) (with e and d being bisimilar, cf. definition 5.1)

=
∑

[d]∼∈S′

∑
e∈[d]∼

∑
f∈[s]∼

prk(e) · pr(
−→
e, f) (5.14)

=
∑
e∈S

∑
f∈[s]∼

prk(e) · pr(
−→
e, f) (5.15)

=
∑
f∈[s]∼

∑
e∈S

prk(e) · pr(
−→
e, f) (5.16)

=
∑
d∈[s]∼

prk+1(d) (5.17)

70 5. Lumping transition models of non-masking fault tolerant systems

Thereby, ∀k ≥ 0,∀[s]∼ ∈ S ′ : prk([s]∼) =
∑

d∈[s]∼

prk(d). The corresponding equality for

the stationary distributions follows.

The anchor of the proof holds by equation 5.5 in definition 5.2. The lumped states simply
aggregate the probability mass that the states they comprise contain. The step shows that
both the original and the reduced system converge to the same probability distribution
with regards to the equivalence relation. Thereby, both DTMCs also have a probabilistic
bisimilar stationary distribution.

Corollary 5.1 (Equivalence of l0).
Theorem 5.1 and the two conditions of definition 5.1 imply that the limiting availability
l0 satisfies l0(D,P) = l0(D′,P ′) (with respect to the equivalence classes). Thereby,
l0(D,P) =

∑
s|=P

prΩ(s) and consequently l0(D′,P ′) =
∑

[s]∼|=P ′
prΩ([s]∼).

The final step is to show that both D and D′ compute the same LWA. The proof exploits
the previous proof that showed both DTMCs have bisimilar progress.

Theorem 5.2 (Equivalence of LWA).
For each n ∈ N, ln(D,P) = ln(D′,P ′).

Proof 5.2 (Equivalence of LWA).
The proof follows immediately from definition 4.1 (LWA) plus theorem 5.1, applied to the
stationary distributions PrΩ(S) and PrΩ(S ′) as initial distributions.

Therefore, both the original DTMCDLWA and the lumped DTMCD′LWA compute the same
LWA. With lumping, information that is not relevant for computing the LWA is abstracted.
The reduction is an irreversible surjective function regarding the conditions specified in
definition 5.1, resulting in a probabilistic bisimilar quotient DTMC D′.

Each state in the domain S is mapped to a state in the co-domain S ′ but not vice versa.
The reduction step is irreversible. The full product chain D cannot be created from D′.

Multiple predicates

It might be desirable to evaluate more than one predicate at a time, like for instance oper-
ability and safety as discussed in paragraph "Predicating desired properties" on page 54.
Such systems are also known as mixed criticality systems (cf. e.g. [Baruah et al., 2012]).
States belong to the same equivalence class, if they satisfy or dissatisfy each predicate
uniformly:

Definition 5.3 (Mixed criticality bisimulation).

∀si, sj ∈ S : si ∼ sj :⇔
(∀Pk : ((si |= Pk ∧ sj |= Pk) ∨ (si 6|= Pk ∧ sj 6|= Pk))∧

(∀d ∈ S :
∑
s∈[d]∼

pr(−−→si, s) =
∑
s∈[d]∼

pr(−−→sj, s))

Each predicate partitions the state space. Mixed criticality systems are further discussed in
the future work section in chapter 8. Analyzing systems according to multiple predicates
does not increase the complexity of the analysis, assuming that the predicate partitioning
of the state space is not influencing with lumping and decomposition. Therefore, this
thesis continues with one predicate.

5.3. Example 71

The double-stroke alphabet

This paragraph introduces an alternative labeling of lumped states that increases the read-
ability in the upcoming examples. Instead of labeling a lumped state with the equivalence
class it constitutes, lumped states are labeled with identifiers from the double-stroke al-
phabet (e.g. 1, 2, 3, . . .) or with abstract identifiers (e.g. si, sj) to refer to coerced register
partitions. For instance, let si = 〈0, 2, 0〉 and sj = 〈0, 0, 2〉 be two bisimilar states si ∼ sj .
Then, the corresponding lump is labeled si = 〈0, 2〉. A coerced register partition is that
set of registers within bisimilar states in which the states differ. In the example, that par-
tition contains the second and third registers. In the examples provided in this thesis, a
double-stroke integer refers to the sum over the values stored in each such register parti-
tion. The labeling is valuable for the examples in this thesis but might be ambiguous for
others. A counterexample is provided in appendix A.5.5.

5.3 Example
Lumping is discussed in more detail on a large example in the following chapter in con-
nection with system decomposition. This section demonstrates lumping on a small ex-
ample with two isomorphic — and thereby bisimilar — states. A similar example in a
different context is used in [Graf et al., 1996, p.8]. Consider the DTMC shown in fig-
ure 5.1(a) as the transitional model of a two process system. The safety predicate for this
example demands both registers to store 0.

02

20

2200

0.2

0.2

0.3

0.3

0.5

0.5

(a) Original DTMC D

00 22
0.2

0.5
0.3

(b) Lumped DTMC D′

Figure 5.1: Small lumping example

In this example, the states 〈0, 2〉 and 〈2, 0〉 can be lumped. Irrelevant transition probabili-
ties are not shown to increase the readability. According to definition 5.1, states 〈2, 0〉 and
〈0, 2〉 are probabilistic bisimilar if and only if:

• their transition probabilities regarding each target state are equal and

• they both satisfy or both dissatisfy P .

The transitions originating from 〈2, 0〉 and 〈0, 2〉 are respectively equal and both states
dissatisfy P . The states are probabilistic bisimilar and are replaced by one state that

72 5. Lumping transition models of non-masking fault tolerant systems

is labeled 2. For demonstration we assume different weights: prΩ(〈0, 2〉) = 0.3 and
prΩ(〈2, 0〉) = 0.4. All transitions targeting one of the lumpable states target the lump
instead without further adaptation. All transitions that originate in the lumpable states
originate from the lump now and are computed with equation 5.6. The following three
transitions compute p(

−−−−−−→
〈2〉, 〈0, 0〉), p(

−−−−→
〈2〉, 〈2〉), and p(

−−−−−−→
〈2〉, 〈2, 2〉):

p(
−−−−−−→
〈2〉, 〈0, 0〉) =

0.2 · 0.3 + 0.2 · 0.4
0.3 + 0.4

=
0.2 · (0.3 + 0.4)

0.3 + 0.4
= 0.2 (5.18)

p(
−−−−→
〈2〉, 〈2〉) =

0.5 · 0.3 + 0.5 · 0.4
0.3 + 0.4

=
0.5 · (0.3 + 0.4)

0.3 + 0.4
= 0.5 (5.19)

p(
−−−−−−→
〈2〉, 〈2, 2〉) =

0.3 · 0.3 + 0.3 · 0.4
0.3 + 0.4

=
0.3 · (0.3 + 0.4)

0.3 + 0.4
= 0.3 (5.20)

The weight of the new lumped state is the aggregated weight of the states that constitute
the lumped state, which is in this case:

prΩ(〈2〉) = prΩ(〈0, 2〉) + prΩ(〈2, 0〉) = 0.7 (5.21)

The example demonstrates that the weights — which is the aggregated probability mass
of the states of a lump according to the stationary distribution — of the lumpable states
are canceled.

Reachability vs. equivalence class identification

In the above example 〈2, 2〉 was not considered to be part of the lump from the beginning.
Considering serial execution semantics, it cannot belong to 2 according to its Hamming
distance which is different from the one of 〈0, 2〉 and 〈2, 0〉. The benefit of serial execution
semantics is that the identification of equivalence classes can be focused to reachability
classes regarding the legal set of states (considering multiple predicates partitioning the
state space, cf. the corresponding paragraph on page 70). While states belonging to equiv-
alence class 2 can converge to the legal state in one computation step, state 〈2, 2〉 requires
at least two steps. Clustering the states according to their Hamming distance, described in
paragraph "Hamming Distance" on page 15, to the closest legal state simplifies the search
for equivalence classes to the relevant clusters. Furthermore, when i) the initial probability
distribution is already known and ii) the maximal admissible window size is smaller than
the maximal Hamming distance towards the legal set of states, then the DTMC requires
to be constructed only as far from the legal states with descending Hamming distance as
the admissible time window reaches. Benoit et al. [Benoit et al., 2006] propose a similar
technique in 2006 for continuous time Markov chains under the compositional construc-
tion with the Kronecker product. This thesis requires a different approach for i) employing
DTMCs and ii) as the Kronecker product is not generally applicable in the context of this
thesis as explained later in paragraph "Serial DTMC composition operator⊗" on page 87.
The idea, nevertheless, is the same.

5.4 Approximate bisimilarity
When states are not precisely bisimilar but only (sufficiently) similar, and lumping is re-
quired in order to reduce a system to become tractable for analysis, approximate lumping

5.5. Summarizing lumping 73

might be a good choice. While Jou and Smolka [Jou and Smolka, 1990] introduce approx-
imate bisimulation generally in 1990, Girard and Pappas [Girard and Pappas, 2005] add a
discussion for linear systems in 2005 and D’Innocenzo et al. [D’Innocenzo et al., 2012]
discuss approximate lumping with regards to PCTL. When similar states are lumped pes-
simistically regarding the predicates, the measures that are then computed with the lumped
transition system are a conservative approximation. In some cases it is possible to prove
that desired properties are satisfied at least within certain boundaries, although the system
is likely perform better regarding the properties. As previously discussed, fault-tolerant
systems typically contain homogeneously redundant components and thus, also likely
provide a large potential for precise lumping. Hence, this thesis focuses on probabilistic
bisimilarity.

5.5 Summarizing lumping
This chapter presented equivalence classes and probabilistic bisimulation for the transi-
tion models of non-masking fault tolerant systems. It was shown that lumping preserves
the ability to compute the LWA and the possibility to tackle multiple predicates simul-
taneously was discussed. The double-stroke alphabet for lumped states was introduced
and a small example demonstrated lumping. Next to lumping, limiting the construction
of the DTMC to the reachable partition of the maximal admissible time window was pre-
sented as an opportunity to simplify the analysis. Finally, the opportunity of approximate
lumping was briefly discussed.

Although lumping is a well known technique that has been generally introduced in model
checking, it is important to have discussed lumping in the context of this thesis. Now, the
following chapter can exploit the results of this chapter to discuss the decomposition of
hierarchically depending systems, like self-stabilizing systems, to show how lumping can
be applied locally on the transition models of subsystems. This will be one of the most
interesting points in the following chapter. While lumping and compositional construction
Markov models is often presented for systems with mutually independent processes, this
thesis aims at hierarchically ordered systems.

74 5. Lumping transition models of non-masking fault tolerant systems

6. Decomposing hierarchical systems

6.1 Hierarchy in self-stabilizing systems 81

6.2 Extended notation . 83

6.3 Decomposition guidelines . 91

6.4 Probabilistic bisimilarity vs. decomposition 93

6.5 BASS Example . 94

6.6 Decomposability - A matter of hierarchy 103

6.7 Summarizing decomposition 107

In order to avoid the computation of lumping equivalences on intractably large Markov
chains, a system decomposition is proposed that splits the system into subsystems. The
goal is to exploit lumping locally on the considerably smaller Markov chains of the sub-
systems. Recomposing the lumped Markov chains of the subsystems constructs a lumped
transition model of the whole system, thus avoiding the construction of the full product
chain. Parts of this chapter are published [Müllner and Theel, 2011, Müllner et al., 2012,
Müllner et al., 2013].

Section 2.4 introduced the construction of a DTMC D modeling the behavior of a deter-
ministic system dynamics under probabilistic influence as shown in figure 6.2.

fault model, scheduler

//S // D

Figure 6.1: DTMC construction, section 2.4

After chapter 3 discussed fault tolerance and the scope of this thesis to motivate LWA as
suitable measure in this context, chapter 4 showed how to compute LWA by adapting the
Markov chain as shown in figure 6.2:

76 6. Decomposing hierarchical systems

fault model, scheduler

//S // D // DLWA

Figure 6.2: Computing LWA without lumping, chapter 4

Chapter 5 discussed the reduction of the Markov chain and showed that the ability to
precisely compute LWA is preserved as shown in figure 6.3:

fault model, scheduler

..S // D []∼
// D′ // D′LWA

Figure 6.3: Lumping, chapter 5

Yet, either D can be constructed — which means LWA can be computed and lumping
is not necessary — or the construction of D is intractable. In that case, sampling meth-
ods as presented in paragraph "Sample-based analysis via simulation" on page 50 are a
reasonable option to acquire results.

When sample-based methods are insufficient as precise results are required from an analy-
sis, then it is desirable to find a solution to make lumping applicable without the necessity
to construct the full Markov chain. This chapter proposes a general approach to sys-
tem decomposition with the intention to compute LWA. It introduces the decomposition
function τk(S), which takes a system topology as input and provides a set of overlap-
ping subsystems as output. Then, the Markov chains for all subsystems are constructed.
From here on they are referred to as sub-Markov chains1. The sub-Markov chains are
considerably smaller than the full product chain D, making lumping far more likely to be
applicable. The intention of the decomposition is that it is lossless. Contrary to lumping,
no information is abstracted from the transition model. Recomposing the subsystems or
sub-Markov chains should result in the original system or full product chain. Thereby,
bisimilarity with regards to safety predicate P is preserved.

The overlap of subsystems is important to account for the fault propagation as well as
for the convergence among the subsystems. Furthermore, a re-composition function
⊗({D1, . . .}) is presented. It is a matrix multiplication similar to the Kronecker prod-
uct which accounts for the underlying execution semantics. In that sense, the Kronecker
product provides a parallel composition while the ⊗ function provides a hierarchical
composition for serial execution semantics.

When lumping is not applied on the sub-Markov chains, then recomposing them with
the ⊗ function yields the full product chain D of the previously decomposed system as
shown in figure 6.4. The system topology is sliced according to some function τk(S) into
overlapping subsystems that are given as subsets of processes of Π. Instead of writing
τk(S) = {{Π1, E1,A1}, . . .} we write τk(S) = {{Π1,Π2, . . .}, E,A} for short.

1In related literature, these are also referred to as marginals.

77

fault model, scheduler

,,S
τk(S)

// {{Π1, . . . ,Πn}, E,A} // {D1, . . .Dn}
⊗
// D // DLWA

Figure 6.4: Lossless system decomposition and transition model re-composition

Both approaches from figures 6.2 and 6.4 have the same inputs and outputs, showing that
the intention behind system decomposition and sub-Markov chain re-composition is to be
lossless.

The final stage is to apply lumping on the sub-Markov chains before the full product
chain is constructed as shown in figure 6.5. Since decomposition is lossless and therefore
bisimilar, and lumping is also bisimilar, the whole procedure is bisimilar, too. Lumping
is a congruence with regards to the proposed composition. When D1 is bisimilar to D′1,
then the composed DTMCs D = D1 ⊗ D2 and D′ = D′1 ⊗ D2 are bisimilar as well
(cf. [Buchholz, 1997]2).

fault model, scheduler

,,S
τk(S)

// {{Π1, . . . ,Πn}, E,A} // {D1, . . .Dn}
[]∼
// {D′1, . . .D′n}

⊗
// D′ // D′LWA

Figure 6.5: Combining decomposition and lumping

At first glance, the decomposition seems to increase the complexity of computing the
LWA by adding further steps. Figure 6.2 contained only two steps — construction of the
Markov chain and adapting it to compute the LWA — while figure 6.5 comprises five
steps, which are

1. decomposition,

2. construction of the sub-Markov chains,

3. local lumping,

4. re-composition of the lumped sub-Markov chains and

5. adapting it to compute the LWA.

Yet, these additional steps allow to circumvent the necessity to construct the full product
Markov chain. After discussing the general approach, this chapter provides a figurative
example in section 6.5 demonstrating on the BASS example from section 4.3.3 how the
complexity of computing LWA can be drastically decreased.

2Buchholz discusses the congruence for Petri nets.

78 6. Decomposing hierarchical systems

Related work

One of the earliest approaches to minimize the transition models of subsystems was pro-
posed by Graf et al. [Graf et al., 1996] in 1996. Their work on "minimisation" of finite
state distributed systems "produces processes that are smaller in the specification imple-
mentation preorder" [Graf et al., 1996, p.24]. They demonstrate the "minimisation" on a
small example of two processes exchanging messages via a buffer. "Minimisation" allows
to lump the states of the two buffers, resulting in one shared buffer for both processes.
Their setting of two communicating processes is similar to the TLA setting in section 2.5.
The decomposition as it is proposed in this thesis differs in two major points: First, this
thesis provides examples for systems comprising more than two processes. Extending
their example seems equally complex to extending the TLA discussed in section 2.5. As
discussed there, two mutually depending processes are a special case of heterarchy that
is not trivially extended. Second, this thesis provides a more distinguished composition
operator that does not necessarily rely on a parallel composition.

One important system characteristic regarding the decomposability is how the processes
depend on each other. When processes are mutually independent, system decomposition
is arbitrary. Every process can be represented by its own DTMC and since the DTMCs of
the processes do not influence each other, they can be composed and lumped arbitrarily.
Their composition is parallel. On the other hand, when processes — like in some self-
stabilizing systems — depend on each other, fault propagation and convergence make the
sub-Markov chains depend on each other as the processes — and therefore the subsystems
— are not independent. The subsystems and their corresponding sub-Markov chains are
ordered hierarchically and cannot be composed in parallel. Their composition must be
carried out hierarchically.

Hermanns and Katoen [Hermanns and Katoen, 1999] provide a compositional approach
in 1999/2000 for analyzing independent processes, in this case "a plain-old tele-
phone system" [Hermanns and Katoen, 1999, p.14] which is similar to the work by Er-
lang [Erlang, 1909, Erlang, 1917]. Their approach shows very well how drastically
and simply the size of a transition model can be reduced with independent processes.
While certain "interactions can only appear when all participants are ready to engage in
it" [Hermanns and Katoen, 1999, p.10], meaning that participants synchronize on some
actions, the basic system functionality of participants does not rely on synchronization.
Section 7.1 provides a case study in a similar context.

In 2002, Garavel and Hermanns [Garavel and Hermanns, 2002] utilize the Caesar/Alde-
baran Development Package (CADP) [Garavel et al., 2001, Garavel et al., 2011] to carry
out formal verification and performance analysis with the non-stochastic process algebra
LOTOS [198, 1989], extended by a few additional operators (one of them being "minimi-
sation" [Garavel and Hermanns, 2002, p.20]), and combined with the tool BCG_MIN
for reducing the transition model. They demonstrate the application in the context of "the
SCSI-2 bus arbitration protocol" [Garavel and Hermanns, 2002, ch.3], in which seven
disks share one bus with a controller. This work shows the practical value of the tools
and the importance of reasoning about decomposition strategies to analyze desired sys-
tem properties. Similar to previous work [Hermanns and Katoen, 1999], the property of
process independence is exploited for parallel composition.

Benoit et al. [Benoit et al., 2006] discuss limited reachability, similar to the discussion in
paragraph "Reachability of states" on page 13, to cope with large product chains. Contrary

79

to the analysis in this thesis, they also focus on a parallel composition with the Kronecker
product.

Boudali et al. provide publications [Boudali et al., 2007a, Boudali et al., 2007b,
Boudali et al., 2008a, Boudali et al., 2008b, Boudali et al., 2009, Boudali et al., 2010] be-
tween 2007 and 2010 focusing on a modular approach to evaluate the dependability of
systems based on the CADP background. Their work on using "dynamic fault trees"
to construct "input/output interactive Markov chains" (IO-IMCs) [Boudali et al., 2007b]
provides for a modular analysis of systems to avoid "vulnerability to state-space explo-
sion" and facilitates a modular model construction. They extend their work by case studies
in [Boudali et al., 2007a]. One key aspect is:

"Compositional modeling (4a) entails that a model can be created by com-
posing smaller sub-models. There are two important types of compo-
sition: parallel composition, which combines two or more components
which are at the same level of abstraction, and hierarchical composi-
tion, where one component is internally realized as a combination of sub-
components." [Boudali et al., 2008a, p.244]

In this publication from 2008 [Boudali et al., 2008a] they introduce the Arcade formalism
(ARChitecturAl Dependability Evaluation) as an extension to their previous work to dis-
cuss "the requirements that a suitable formalism for dependability modeling/evaluation
should posses. [. . .] The Arcade modeling language incorporates both parallel and hierar-
chical composition." Although the authors claim that the "hierarchical composition will be
realized" and point out that "aggressive aggregation (also called lumping or bisimulation
minimization)" is important in this context, the hierarchical composition is not discussed.
In [Boudali et al., 2008b], a sequential composition of transition models of subsystems
is proposed, exploiting lumping after each parallel composition [Boudali et al., 2008b,
ch.4]. This sequential composition is facilitated by a composer tool which uses CADP. In
2009, they analyze [Boudali et al., 2009] the availability of distributed software systems,
"where the software designer simply inputs the software module’s decomposition anno-
tated with failure and repair rates." The repair of components here does not rely on the
functionality of other components. Similarly, their later work [Boudali et al., 2010] also
discusses only parallel composition [Boudali et al., 2010, sec.3.2]. Although this set of
publications discusses important topics such as

• motivating IO-IMCs as suitable transition model for analyzing nonfunctional prop-
erties like fault tolerance,

• the exploitation of popular tools such as CADP, and

• pointing out that minimization is crucial in the analysis,

it does solely focus on parallel composition.

This thesis focuses on evaluating the recovery within a system of mutually depending
processes based on DTMCs, as motivated in paragraphs "Restricting communication via
guards" on page 7 and "Execution Semantics" on page 11. Fault tolerance is not always
achieved locally, but can also be achieved via dependability among components of a sys-
tem. This latter case is intrinsically a harder problem which is addressed in this chapter.

80 6. Decomposing hierarchical systems

DTMCs are the selected transition model in this thesis. While the work by Boudali et
al. is based on IO-IMCs, Rakow [Rakow, 2011] discusses coping with the state space ex-
plosion on Petri nets. The two techniques she proposes are Petri-net slicing and cutvertex
reduction. Their work shows the importance of selecting the right transition model, as
discussed in the future work section in chapter 8.

Contributions and limitations

The core contributions of this chapter are

• classifying systems according to their fault propagation as either

1. hierarchical, meaning with unidirectional fault propagation,

2. semi-hierarchical, meaning with neither uni- nor fully omnidirectional fault
propagation,

3. heterarchical, meaning omnidirectional fault propagation, or

4. independent, meaning with no fault propagation,

• reasoning about general decomposition guidelines for hierarchically structured sys-
tems,

• showing that the proposed decomposition is lossless, thus preserving the ability to
compute LWA, and

• discussing the main variants of semi-hierarchical systems and how they still can
possibly benefit from the system decomposition.

This chapter provides general guidelines for system decomposition. It does not show how
tools like PRISM and CADP have to be adapted to cope with hierarchic composition or
discuss how optimal slicing can be achieved.

Structure of this chapter

Section 6.1 discusses the hierarchy among processes introduced by self-stabilization. Sec-
tion 6.2 extends the notation by the terms subsystem and sub-Markov chain and intro-
ducing their relation. Section 6.3 discusses general guidelines for the decomposition of
system models. Section 6.4 shows that the decomposition process preserves probabilistic
bisimilarity as presented in figure 6.4. The BASS example from section 4.3.3 is used to
exemplify decomposition, local lumping and re-composition. Section 6.5 demonstrates
how the example system is decomposed, lumping is locally applied on the sub-Markov
chains of the subsystems and the fault propagation from superior subsystems into inferior
subsystems is accounted for. The example allows to figuratively address and explain the
challenges that are discussed before. Section 6.6 reasons about the connection between
hierarchical fault propagation and decomposability. With hierarchical systems being fully
decomposable on the one side and heterarchical systems being not at all decomposable
on the other side, semi-hierarchical systems possibly provide some exploitable leverage
to cope with otherwise intractable systems. Section 6.7 concludes this chapter.

6.1. Hierarchy in self-stabilizing systems 81

6.1 Hierarchy in self-stabilizing systems
Detection and correction of the effects of faults are means of fault tolerance as discussed
in section 3.1. The fault masker introduced in section 3.5 covers for detection. Fault
tolerance design is like constructing an equation. The right hand side of the equation, the
purchased commodity, is the degree of faults that the system can cope with maskingly,
or the degree to which faults are corrected in time. Figuratively, the price tag on a fault
tolerance design, the left hand side of the equation, shows two currencies: temporal and
spatial redundancy. Chapter 3 refined the focus to temporal redundancy. Probabilistic
self-stabilization, as introduced in section 3.2, provides a possible formal foundation to
discuss the relation between temporal redundancy and degree of masking fault tolerance.

The classification of self-stabilizing systems according to fault propagation is proposed
in [Müllner et al., 2012, Müllner et al., 2013]. It is extended in this thesis by distinguish-
ing dependent from independent processes. In systems through which the effects of faults
propagate, processes rely on each other. For instance, the TLA assigns a value to the
executing process always with regards to the register of the other process. Similar to the
scenario by Graf et al. [Graf et al., 1996], here all processes rely on even every other pro-
cesses, which for two processes is trivial. Another case of depending processes was pre-
sented with the BASS example, in which processes relied on each other not fully meshed,
but hierarchically. In case the algorithm executed by the processes of the system does
not consult foreign registers to derive the local value, the processes are considered to be
independent. Notably, mixed mode systems are possible. Sub-systems with dependencies
are further distinguished into three classes according to the fault propagation within the
(sub-)system: i) hierarchical shown in figure 6.6(a), ii) semi-hierarchical shown in fig-
ure 6.6(b) and iii) heterarchical, either directly shown in figure 6.6(c) or indirectly shown
in figure 6.6(d).

(a) Hierarchic depen-
dency

(b) Semi-hierarchic (c) Heterarchic - direct (d) Heterarchic - indirect

Figure 6.6: Different dependency types

• In a hierarchical system, the processes are topologically ordered. For instance, the
examples presented in this thesis, except the TLA, feature a designated root process
which does not rely on any other process and is the only independent process. The
processes are semi-ordered according to their distance to this root. Each non-root
process only accepts information from processes that are closer to the root than

82 6. Decomposing hierarchical systems

itself. Therefore, the effects of faults strictly propagate from the root towards the
leaf processes, which are the processes with the greatest minimal distance to the
root on their branch. The decomposition starts in the subsystem containing the root
process and sequentially progresses towards those subsystems containing the leaf
processes. While this chapter focuses on systems with one root process for sake
of clarity, an extension to systems with multiple root processes in the future work
section in chapter 8.

• In heterarchical systems, all processes are peers and influence each other either
directly or indirectly. Every process provides information to every other process,
possibly via processes. The effects of faults propagate omni-directionally. Since
every process relies on every other process, decomposition is highly complex.

• Semi-hierarchical systems are not globally heterarchical, but are neither globally
hierarchical. One example are hierarchically structured heterarchical subsystems.
Section 6.6.1 introduces further notions of semi-hierarchy and generally discusses
the possibilities for decomposing them.

The benefits of hierarchical fault propagation can be exploited to allow for a combination
of lumping and decomposition. Hierarchical fault propagation transforms a system topol-
ogy into a directed acyclic graph (DAG) in which processes communicate only according
to the hierarchy as discussed in paragraph "Restricting communication via guards" on
page 7. When decomposing such a system, the property of unidirectional fault propaga-
tion becomes an invaluable asset.

While hierarchy is common among self-stabilizing systems — generally being enforced
via unique identifications (e.g. BASS, cf. algorithm 4.6) — heterarchical systems are un-
common when processes are supposed to cooperate in order to provide for fault tolerance.
One heterarchical example that is presented in this thesis, though, is the TLA, introduced
in section 2.5. Its task is to establish a hierarchy — which here means alternating access
to the crossing — among an otherwise heterarchical system.

Motivating slicing with overlapping processes

Slicing becomes necessary when the full transition model is intractable. With the sub-
systems being hierarchically depending, faults propagate only in one direction from root
towards leafs. Decomposing the hierarchical system by slicing allows to treat the over-
lapping processes as gateways of fault propagation, channeling the effects of faults that
processes closer to the root have on processes that are farther away from the root. From
the perspective of a leaf process it does not matter why its superior process acts the way
it does — meaning how it is influenced by other processes and fault propagation — but
only how it acts.

Assume a process in a hierarchical system that is neither root nor leaf, referred to as
transient process hereafter. Slicing the system in that process allows to first compute how
the process behaves as a leaf process of the superior subsystem. Then, all influence from
unidirectional fault propagation of the superior processes is accounted for. After that, the
process can act as the root process for the inferior processes.

6.2. Extended notation 83

6.2 Extended notation
This section

• formally introduces the terms subsystem, residual process and overlapping process
in paragraph "Subsystems, residuals and sets of overlapping process",

• relates subsystems according to fault propagation and their respective position in
the system in paragraph "Inferior and superior positions", and

• further distinguishes subsystems into root, transient and leaf subsystems in para-
graph "Root, transient and leaf subsystems".

Paragraph "Overlapping sets" elaborates on processes overlapping. This issue is impor-
tant for reasoning about decomposition strategies in section 6.3. But before that, this
section further extends the formal notation by a decomposition function τk(S) introduced
in paragraph "Decomposition function τk(S)" and a decomposition function⊗ (colloqui-
ally o-times) proposed in paragraph "Serial DTMC composition operator ⊗".

Subsystems, residuals and sets of overlapping process

A system S comprises processes Π = {π1, . . . , πn} and is sliced into subsystems
τk(S) = {{Π1, . . . ,Πm}, E,A}. The decomposition operator τk(S) is explained in
detail in paragraph "Decomposition function τk(S)". The system is sliced into subsets
of processes Πi (referred to as subsystem from hereon). This means that between each
two processes of a subsystem there exists a path via edges such that every process is
reachable3. Subsystems share at least one process with another subsystem in which they
overlap. Each subsystem contains at least one process that is not shared with any other
subsystem. Processes belonging exclusively to one subsystem are referred to as resid-
ual process (or just residual for short). Processes belonging to multiple subsystems are
referred to as overlapping processes.

The term slicing in this context means to divide the set of processes into partially overlap-
ping subsystems. Contrary, the term uncoupling refers to the extraction of the sub-Markov
chains accounting for overlapping processes from their corresponding sub-Markov chains
as explained later in paragraph "Uncoupling with ⊗" on page 89.

The following figure 6.7 depicts the terms that are introduced in this paragraph. Subsys-
tems containing besides residuals only overlapping processes, such that no overlapping
process has read access to a register from a process not belonging to its own subset, are
referred to as root subsystems. They commonly contain a root process and are not in-
fluenced by other subsystems. Subsystems containing besides residuals only overlapping
processes from which no process outside the subsystem reads, are referred to as leaf sub-
systems. These are commonly farthest away from the root subsystem. The effects of faults
are propagated into them from the whole system, yet the effects of faults do not emanate
from them back into the system (i.e. other adjacent subsystems). All other subsystems are
referred to as transient subsystems.

3The distinction between the system model and the transition model is important. The processes of a
subsystem in the system model must be a connected component, cf. also [Baier and Katoen, 2008, p.96].

84 6. Decomposing hierarchical systems

root subsystem
superior

overlap

ov
er

lap
overlap

leaf subsystems
inferior

transient subsystem residual

System

residual

residual residual residual residual

residual

residual residual

residual

Figure 6.7: Extended notation - example

Figure 6.7 provides an illustrative example to explain the new terms. The dotted (blue)
lines indicate the aspired slicing. The root subsystem contains four processes depicted as
circles on the top. The top three of them are the residuals and the remaining process is an
overlapping process. The effects of faults propagate from the root through the transient
into the leaf subsystems. Figuratively, overlapping processes are the gateways (or more
precisely: valves for the case of unidirectional fault propagation) of fault propagation.
General guidelines for system decomposition are discussed in section 6.3.

Inferior and superior positions

A subsystem or process that can propagate faults (directly or indirectly) into other sub-
systems or processes is superior to these subsystems or processes. The subsystems or
processes that are prone to possible fault propagation from superior subsystems or (over-
lapping) processes are inferior to these. When subsystems or processes possibly propagate
faults mutually into one another, they must commonly not be decomposed. Constructing
independent transition models from interrelated processes is not in the focus of this thesis.
Exceptions are discussed in section 6.6.

Root, transient and leaf subsystems

Some self-stabilizing systems work with a fixed hierarchy — for instance via unique iden-
tifiers — while others, like self-stabilizing leader election (LE) [Fischer and Jiang, 2006,
Nesterenko and Tixeuil, 2011], switch the leader role among the processes from time to
time. When the role of the root process can be switched among the processes, the direc-
tion of fault propagation changes accordingly. Newton’s cradle is an illustrative example
to address the latter case as shown in figure 6.8. When the role of the root is switched to
another process the direction of fault propagation changes accordingly.

6.2. Extended notation 85

root
transient leaf

impact/
fault propagation

Figure 6.8: Newton’s cradle and fault propagation

Overlapping sets

Consider the system topology presented in figure 6.9 executing the BASS. The superior
root subsystem Π1 propagates the effects of faults into the inferior leaf subsystems Π2

to Π7 via the sets of processes in which the subsystems overlap {π5}, {π6}, {π7, π8} and
{π9, π10}.

root subsystem

overlapping processes/sets

leaf subsystems

Figure 6.9: Classifying decomposition possibilities via overlapping sets

The superior subsystem Π1 propagates into inferior subsystems either through one pro-
cess (e.g. π5 or π6) or through multiple processes (e.g.π7 and π8, or π9 and π10) into either
one subsystem (e.g. Π2 or Π5) or multiple subsystems (Π3 and Π4, or Π6 and Π7). The
case where multiple superior subsystems channel their fault propagation through one or
more overlapping processes does not occur. The overlapping process would depend on
both superior subsystems. Being mutually dependent, the joint set of superior subsys-
tems and overlapping process would be regarded as not decomposable in the context of
this thesis. The possible relation cardinalities are of the form4 〈superior, overlapping,
inferior〉 = 〈1, 1 . . . n, 1 . . .m〉. A set of overlapping processes is referred to as an over-
lapping set when it contains all relevant5 overlapping processes that two subsystems, one
superior and one inferior subsystem, share. Notably, multiple overlapping sets might over-
lap with one another. For instance, if π8 and π9 were together replaced by one process,

4The relation cardinality notation stems from the entity relationship model [Chen, 1976].
5Relevant here means in the context of two overlapping subsystems all processes that are part of both

subsystems.

86 6. Decomposing hierarchical systems

then both rightmost overlapping sets would overlap in that process. This case is discussed
in detail in paragraph "Non-overlapping sets of overlapping processes" on page 91 and
depicted in figure 6.11. Overlapping processes belong to all their subsystems initially, for
instance π5 ∈ Π1 ∧ π5 ∈ Π2. When the sub-Markov chains have been constructed, the
influence of each overlapping process is to be awarded to one sub-Markov chain exclu-
sively as explained in paragraph "Uncoupling with ⊗" on page 89, or otherwise it would
be multiply accounted for.

Decomposition function τk(S)

Commonly, there are multiple options to decompose a system, or else, the system would
be sufficiently small to analyze it without the need for decomposing it. Let the set of all
applicable decompositions be τ(S) = {τ1(S), . . .}. A decomposition τk(S) is appli-
cable when it slices the system into at least one root subsystem and one leaf subsystem
and all contain at least one residual and overlap with at least one other subsystem. From
τ(S), one distinct applicable decomposition rule τk(S) is selected. The conditions for a
decomposition rule to be applicable or even to be optimal are discussed in section 6.3. The
selected decomposition slices the set of processes Π of a system S into sets of subsys-
tems τk(S) = {{Π1, . . .}, E,A}. As discussed at the beginning of this chapter we write
{{Π1, . . .}, E,A} as short form of {{Π1, E1,A1 . . .}}. Furthermore, the set of processes
Π as sole input does usually not sufficient. Some schedulers or algorithms might exclude
certain decompositions. Therefore, scheduling must implicitly be regarded during the
decomposition.

Notably, not all self-stabilizing systems necessarily qualify for decomposition. A
self-stabilizing counter example class are ring topologies. They are, for in-
stance, a precondition to the self-stabilizing variant of the mutual exclusion algo-
rithm (MutEx) [Pnueli and Zuck, 1986, Brown et al., 1989, Arora and Nesterenko, 2004,
Lamport, 1986c]. Due to cyclic dependencies (i.e. there are no superior processes), the
cyclic topology cannot be sliced. Similarly, heterarchical systems cannot be sliced, too,
due to mutual dependencies.

Bernstein conditions

This paragraph briefly presents Bernstein conditions [Bernstein, 1966], introduced by
Bernstein in 1966, in the light of this thesis. It discusses, how they can be exploited
in reasoning about decomposability, and their limitations.

In the area of parallel computing, the Bernstein conditions specify if two program seg-
ments are independent and can be executed in parallel [Bernstein, 1966]. The basic idea
is that two program segments Pi and Pj with inputs Ii and Ij and outputs Oi and Oj are
independent when:

Ij ∩Oi = ∅ (6.1)

Ii ∩Oj = ∅ (6.2)

Oi ∩Oj = ∅ (6.3)

In case no Bernstein condition is violated, the subsystems are independent and can be
analyzed individually and composed arbitrarily as discussed in paragraph "Related work"

6.2. Extended notation 87

on page 78. In case only Bernstein condition 6.1 is violated, which is introduced by Bern-
stein as flow dependency, the system can be decomposed. It coincides with this thesis’
notion of unidirectional fault propagation. Analogously, condition 6.2, which is called
anti-dependency, formalizes the opposed. The dependency between the two subsystems
is simply switched and a hierarchic decomposition is applicable. In case condition is 6.3
violated, which is introduced by Bernstein as output dependency, a decomposition is im-
possible with the methods discussed in this thesis. Notably, programs might temporarily
switch between satisfying and dissatisfying Bernstein conditions.

Serial DTMC composition operator ⊗

The composition of sub-Markov chains is intricate. Liu and Tren-
kler [Liu and Trenkler, 2008] provide a survey discussing various matrix products.
One of them, the Kronecker product, is applicable here for the special case of maximal
parallel execution semantics. For instance, assume the following two transition matrices:

M1 =

(
0.2 0.8
0.7 0.3

)
, andM2 =

(
0.1 0.9
0.6 0.4

)
(6.4)

M1 = 0

0.8
!!

0.2
%%

2

0.7

``
0.3

yy M2 = 0

0.9
!!

0.1
%%

2

0.6

``
0.4

yy

Figure 6.10: DTMC construction, section 2.4

Both matrices model processes that are independent of one another, executing BASS for
instance. Despite their independence, they execute simultaneously, meaning that each
time step every enabled process executes. In this particular case, a parallel composition is
suitable. Let ⊗K denote the Kronecker product only for this example. Then

M1 ⊗KM2 =

 0.2 ·
(

0.1 0.9
0.6 0.4

)
0.8 ·

(
0.1 0.9
0.6 0.4

)
0.7 ·

(
0.1 0.9
0.6 0.4

)
0.3 ·

(
0.1 0.9
0.6 0.4

)
 =

0.02 0.18 0.08 0.72
0.12 0.08 0.48 0.32
0.07 0.63 0.03 0.27
0.42 0.28 0.18 0.12

(6.5)

The Kronecker product suits maximal parallel execution semantics as every process can
change its register together with other processes, which is also known as synchronous
composition. Yet, if the Kronecker product is applied under lesser parallel execution se-
mantics, it results in an aggregate matrix containing positive transition probabilities for
transitions between states with a greater Hamming distance than permissible via the ex-
ecution semantics. This issue is demonstrated comprehensively in the example in sec-
tion 6.5.

To account for serial execution semantics, the composition operator is required to prevent
such transitions. In this thesis, an adapted variant of the Kronecker product labeled ⊗ is
introduced, accruing to the Kronecker product under maximal parallel execution seman-
tics. The ⊗ operator is presented in algorithm 16 in MatLab notation.

Let |S| = |S1| · |S2| be the size of the aggregate state space and sΠi
be the probability

for a process within subsystem Πi to be selected. The transition matricesM1 andM2 of
the corresponding sub-Markov chains D1 and D2 are iterated row by row and column by
column, thereby resulting in four for-loops.

88 6. Decomposing hierarchical systems

Algorithm 6.1 (The ⊗ operator).
1 M = zeros(|S|);
2 for j = 1 : |S1| do
3 for l = 1 : |S2| do
4 for i = 1 : |S1| do
5 for k = 1 : |S2| do
6 if i 6= j ∧ l 6= k then
7 M((j − 1) · |S2|+ l, (i− 1) · |S2|+ l) =
8 M((j − 1) · |S2|+ l, (i− 1) · |S2|+ l)+
9 M1(j, i) · M2(l, k) · sΠ1 ;

10 M((j − 1) · |S2|+ l, (j − 1) · |S2|+ k) =
11 M((j − 1) · |S2|+ l, (j − 1) · |S2|+ k)+
12 M1(j, i) · M2(l, k) · sΠ2 ;

13 else
14 M((j − 1) · |S2|+ l, (i− 1) · |S2|+ k) =
15 M((j − 1) · |S2|+ l, (i− 1) · |S2|+ k)+
16 M1(j, i) · M2(l, k);

The first line initializes an empty matrixM in the dimensions of the product matrix |S|.
Then, the transition models of the sub-Markov chains D1 and D2 are iterated row by
row and column by column. Each permutation of cells withinM1(i, j) andM2(k, l) is
computed as specified in algorithm 16. The cases in which more than one register changes
are distinguished, regarding the relative scheduler selection probabilities, into those cases
of exclusively either register changing. This is accounted for in the code in lines 7 to 12.

We return to the previous example that explained the Kronecker product. This time, we
computeM =M1⊗M2. The green filled cells correspond to the first assignment in the
if block in lines 7 to 9. The yellow filled cells correspond to the second assignment in the
if block in lines 10 to 12. The red filled cells correspond to the third assignment in the
else block in lines 14 to 16.

i j k l
if line 7 line 8 line 9

line 10 line 11 line 12
else line 14 line 15 line 16

1 1 1 1 M(1, 1) = M(1, 1)+ M1(1, 1)· M2(1, 1)
1 1 2 1 M(1, 2) = M(1, 2)+ M1(1, 1)· M2(1, 2)
2 1 1 1 M(1, 3) = M(1, 3)+ M1(1, 2)· M2(1, 1)
2 1 2 1 M(1, 3) = M(1, 3)+ M1(1, 2)· M2(1, 2) ·sΠ1

M(1, 2) = M(1, 2)+ M1(1, 2)· M2(1, 2) ·sΠ2

1 1 1 2 M(2, 1) = M(2, 1)+ M1(1, 1)· M2(2, 1)
1 1 2 2 M(2, 2) = M(2, 2)+ M1(1, 1)· M2(2, 2)
2 1 1 2 M(2, 4) = M(2, 4)+ M1(1, 2)· M2(2, 1) ·sΠ1

M(2, 1) = M(2, 1)+ M1(1, 2)· M2(2, 1) ·sΠ2

2 1 2 2 M(2, 4) = M(2, 4)+ M1(1, 2)· M2(2, 2)
1 2 1 1 M(3, 1) = M(3, 1)+ M1(2, 1)· M2(1, 1)
1 2 2 1 M(3, 1) = M(3, 1)+ M1(2, 1)· M2(1, 2) ·sΠ1

M(3, 4) = M(3, 4)+ M1(2, 1)· M2(1, 2) ·sΠ2

2 2 1 1 M(3, 3) = M(3, 3)+ M1(2, 1)· M2(1, 1)
2 2 2 1 M(3, 4) = M(3, 4)+ M1(2, 1)· M2(1, 2)
1 2 1 2 M(4, 2) = M(4, 2)+ M1(2, 1)· M2(2, 1) ·sΠ1

M(4, 3) = M(4, 3)+ M1(2, 1)· M2(2, 1) ·sΠ2

1 2 2 2 M(4, 2) = M(4, 2)+ M1(2, 1)· M2(2, 2)
2 2 1 2 M(4, 3) = M(4, 3)+ M1(2, 1)· M2(2, 1)
2 2 2 2 M(4, 4) = M(4, 4)+ M1(2, 1)· M2(2, 2)

Table 6.1: Computing the aggregated matrix

6.2. Extended notation 89

Table 6.1 shows how the execution semantics sensitive product is computed in equa-
tion 6.6.

M =

0.2 · 0.1 0.2 · 0.9 + 0.8 · 0.9 · sΠ2 0.8 · 0.1 + 0.8 · 0.9 · sΠ1 0

0.2 · 0.6 + 0.8 · 0.6 · sΠ2 0.2 · 0.4 0 0.8 · 0.6 · sΠ1 + 0.8 · 0.4
0.7 · 0.1 + 0.7 · 0.9 · sΠ1 0 0.3 · 0.1 0.3 · 0.9 + 0.7 · 0.9 · sΠ2

0 0.7 · 0.6 · sΠ1 + 0.7 · 0.4 0.7 · 0.6 · sΠ2 + 0.3 · 0.6 0.3 · 0.4

(6.6)

Assuming that the scheduler selects both processes with the same probability,M is com-
puted as shown in equation 6.7

M =

0.02 0.54 0.44 0
0.35 0.08 0 0.56
0.385 0 0.03 0.585

0 0.49 0.39 0.12

 (6.7)

The comparison between both product chains from equation 6.5 and 6.7 shows that the
aggregate transition probability is evenly divided among the probabilities that exclusively
either of the processes executes according to the evenly distributed scheduling probability.

The labeling of sub-Markov chains

The final addition to the notation regards the labeling of sub-Markov chains. Each set
of overlapping processes is to be awarded to one sub-Markov chain exclusively or else it
would by accounted for too often. Therefore, it must be uncoupled (i.e. extracted) from
all sub-Markov chains except one. With unidirectional fault propagation, it is convenient
to uncouple sets of overlapping processes from superior subsystems and award them to
one inferior subsystem exclusively.

A sub-Markov chain carrying all its sets of overlapping processes is simply labeled Di,
referring to its set of processes Πi. Uncoupled sub-Markov chains, which are the sub-
Markov chains of sets of overlapping processes, are labeled with the set of processes they
refer to, for instance Dπj for single processes or D{πj ,πj} for sets with more than one
process. Those sub-Markov chains from which the influence from all sets of overlap-
ping processes haven been uncoupled are labeled with a minus sign, for instance Di,−.
Consider the example in figure 6.9. First, D1 is constructed including all sets of over-
lapping processes. Then, the influence form the particular overlapping sets is uncoupled,
leaving D1,−, Dπ5 , Dπ6 , D{π7,π8} and D{π9,π10}. Then, the sub-Markov chains of the in-
ferior subsystems are computed with the sub-Markov chains of the sets of overlapping
processes. The sub-Markov chains of shared overlapping sets of processes, which are
Dπ6 and Dπ9,π10 in this case, finally have to be awarded exclusively to one of the infe-
rior subsystems. For instance, π6 can be awarded to Π3 resulting in D3 and D4,− and π9

and π10 can be awarded to Π6 resulting in D6 and D7,− (or vice versa). An example in
section 6.5 shows how the labeling is applied.

Uncoupling with ⊗

As discussed in the previous paragraph, overlapping processes are to be awarded to one
subsystem exclusively. This process is referred to as uncoupling. Despite its application to
(re-)composing sub-Markov chains, the⊗ operator is further employed in the uncoupling.
For instance, when the system shown in figure 6.9 is decomposed with τk andD1 has been

90 6. Decomposing hierarchical systems

constructed from Π1 and the relevant information6, the sets of overlapping processes have
to be uncoupled fromD1 before computing the leaf sub-Markov chains. Assume a DTMC
Di to account for a set of processes Πi. The goal of uncoupling is to arrive at multiple sub-
Markov chains that each account for a subset of processes — or more generally process
registers — exclusively.

Let M be a DTMC from which M1 is uncoupled. Uncoupling is a surjective function
that lumps those states, in which the values stored by the processes of the uncoupled states
coincide. In the context of this thesis — that is by labeling states via process registers —
M1 is uncoupled fromM by lumping all states in which the registers are equal. Equa-
tion 5.6 computes the aggregated transition probabilities. For instance, consider the BASS
example from section 4.3.3. Uncoupling a DTMC containing the first six processes would
exemplarily lump 〈0, 0, 0, 0, 0, 0, 0〉, 〈0, 0, 0, 0, 0, 0, 1〉 and 〈0, 0, 0, 0, 0, 0, 2〉 inM to form
〈0, 0, 0, 0, 0, 0〉, and analogously for all other states which coincide in the first six digits.

Figuratively, consider an observer to watch the process registers. The processes change
their register from one value to another value with a certain probability. The correspond-
ing Markov chain contains all these probabilities in its transition probability matrix. By
uncoupling one (sub-)Markov chain into multiple sub-Markov chains, the observer is split
(i.e. uncoupled) into two observers, each monitoring one part of the registers.

In the case only one set of overlapping processes has to be uncoupled, the uncoupling
results in two sub-Markov chains, one accounting for the residuals and one accounting
for the set of overlapping processes. The conduct of uncoupling (sub-)Markov chains in-
volves lumping. Contrary to the reduction lumping, the uncoupling lumping is lossless
and therefore reversible via the ⊗-composition. The input (sub-)Markov chain is lumped
twice. First, all those states are coalesced in which the registers of the residuals are re-
spectively equal and the registers of the overlapping processes differ. Then, all those states
are coalesced in which the registers of the overlapping processes are respectively equal
and the registers of the residuals differ. The reverse process (i.e. re-coupling) coincides
with the composition: D1 = D1,− ⊗ Dπ5 ⊗ . . . ⊗ D{π9,π10}. The example discussed in
section 6.5.1 demonstrates the uncoupling of one (product) sub-Markov chain into two
(factor) sub-Markov chains in figure 6.15.

Incomplete lumping

In case of bisimilar processes being awarded to different subsystems during the slicing,
the bisimilar states they evoke in the full product chain do not occur in the corresponding
sub-Markov chains. For instance, consider the BASS example from section 4.3.3. When
π2 and π3 are awarded to different subsystems, they do not evoke bisimilar states within
one sub-Markov chain. Yet, when both sub-Markov chains of π2 and π3 are composed,
the product chain will carry bisimilar states which then can be lumped. Hence, further
bisimilar states possibly arise during the successive re-composition of the locally reduced
sub-Markov chains. The overline (e.g.D) indicates that a Markov chain possibly carries
further potential for lumping for that reason. For instance, assume two factor chains to be

lumped locally and then recomposed: 〈Di,Dj〉
[]∼−→ 〈D′i,D′j〉

⊗−→ D′. Then the cardinality
(i.e. number of states) ofD′ is possibly smaller than the cardinality ofD′ (i.e. |D′| < |D′|).
The product chain might contain bisimilar states that do not occur in the factor chains.

6The relevant information contains the edges of the particular subsystem, the algorithm and the proba-
bilistic influence.

6.3. Decomposition guidelines 91

The order in which sub-Markov chains are composed plays an important role as it dictates
the size of the maximal intermediate Markov chain. Since state bisimilarity depends on
the Hamming distance which depends — in the context of self-stabilizing systems — on
the distance between non-processes from the root, it is advisable to privilege composition
of sub-Markov chains which subsystems have an equal distance to the root subsystem.

6.3 Decomposition guidelines
Bisimilar processes in the system model evoke bisimilar states in the corresponding tran-
sition model. Hence, it is reasonable to put them in the same subsystem. As discussed in
paragraph "Reachability vs. Equivalence Class Identification" on page 72, there are indica-
tors that help in identifying bisimilar processes. This section discusses general guidelines
exploiting the equivalence class identification to help arriving at a reasonable slicing.

As a consequence of unidirectional fault propagation, cyclic dependencies must be ex-
cluded from the system design as discussed in section 6.1. This allows for arbitrary slicing
as long as two conditions are fulfilled:

• Each subsystem has at least one overlapping and one residual process, and

• there are no two subsystems with both containing processes that are (directly or
indirectly) superior to one or more processes of the respective other subsystem
(i.e. exclusion of cyclic dependencies).

Despite these limitations, there are four basic considerations.

Hierarchical cut sets

Lumping is only applicable on bisimilar states in order to preserve the ability to compute
the precise LWA. Bisimilar states frequently arise with bisimilar processes that have an
equal distance to the root process. Hence, processes with an equal distance to the root
process are preferably put into same subsystems.

The reasonable size of a subsystem

To increase the probability that bisimilar processes are put into same subsystems, one
objective is to make subsystems as large as possible. The upper boundary for the size
of subsystems is limited only by the tractability. The reasonable size of subsystems is as
large as possible and as small as necessary (i.e. subsystems with only two or less processes
are not reasonable).

Non-overlapping sets of overlapping processes

The example in figure 6.9 introduced sets of overlapping processes. When such sets do not
mutually overlap, they only have to be computed once. For instance, 〈π7, π8〉 is uncoupled
fromD1 once and then assigned to the construction ofD5. The same accounts for 〈π9, π10〉
which only has to be uncoupled once to be then included twice, once in D6 and once in
D7. Finally, it has to be uncoupled from one of them.

Now assume an alternate topology in which π8 and π9 are replaced by one process π8 such
that both overlapping sets overlap in that process as shown in figure 6.11.

92 6. Decomposing hierarchical systems

root subsystem

overlapping processes/sets

leaf subsystems

Figure 6.11: Mutually overlapping sets of overlapping processes

Then

• the overlap sets 〈π7, π8〉 and 〈π8, π10〉 have to be constructed to be taken into account
for the inferior subsystem,

• the overlapping set 〈π7, π8, π10〉 has to be computed to be excluded from the supe-
rior subsystem, and

• the overlapping overlapping7 set 〈π8〉 needs to be computed to be excluded from all
but one of the inferior subsystems.

Overlapping sets that overlap themselves cause further computation steps and should be
avoided.

Avoid bisimilar processes in overlaps

It might occur that a (sub-)system is intractable and the only (reasonable) way is to de-
compose the system such that the minimal overlapping set contains bisimilar processes,
for instance when processes π7 and π8 in figure 6.9 were bisimilar. Then, both sequences
of slicing and lumping are possible. Either the transition model of the superior subsys-
tem is lumped, then uncoupled, and finally the overlapping set is included in the inferior
subsystem which is then lumped as shown in figure 6.12(a), or the transition model of the
superior subsystem is first uncoupled with the residuals being lumped afterwards while
the unlumped overlapping set is included in the inferior subsystem and eventually lumped
as shown in figure 6.12(b).

7The double overlapping is correct here. There are two overlapping sets (vertically between subsystems),
i.e. sets of overlapping processes, that overlap (horizontally between overlapping sets). Hence, they are
overlapping overlapping sets.

6.4. Probabilistic bisimilarity vs. decomposition 93

un
cou
ple

uncouple

(a) Lump first, uncouple later

un
cou
ple

uncouple

(b) Uncouple first, lump later

Figure 6.12: Markov chain uncoupling

The benefit of the first procedure is that the transition model of the overlapping set is
already minimized. Thus, its subsequent inclusion is less complex. The benefit of the
second procedure is that parallelizing the process might benefit from two detached lump-
ing operations that can be executed concurrently. Section 6.6 continues the discussion of
decomposition from the perspective of semi-hierarchic systems.

6.4 Probabilistic bisimilarity vs. decomposition
Lumping preserves probabilistic bisimilarity with regards to a safety predicate P . This
section discusses that the decomposition does not violate the probabilistic bisimilarity
either (cf. figure 6.4).

Theorem 6.1 (Decomposition Preserves Bisimilarity).
The decomposition τk(S) preserves probabilistic bisimilarity between the full DTMC
of the original system and the composition with the ⊗ operator of the (unlumped) sub-
Markov chains of the corresponding subsystems.

Proof 6.1 (Decomposition preserves bisimilarity).
The proof is straightforward. Uncoupling and composing sub-Markov chains with ⊗
are reversible and thereby lossless as discussed in paragraph "Uncoupling with ⊗" on
page 89. Sequentially construction via sub-Markov chains is equal to constructing the
full product chain. Both construct the same product chain. Decomposing a system, con-
structing its sub-Markov chains and composing them with the ⊗ operator provides the
exact same DTMC as constructing the DTMC directly from the undecomposed system.
With both DTMCs being equal, bisimilarity is preserved.

Fault propagation and scheduling

This paragraph points out the importance of fault propagation and scheduling. In hierar-
chically structured systems, faults propagate in one direction. Systems are decomposed
sequentially in the direction of faults propagating from root towards leafs. This marks the
first difference to systems with independent processes as discussed in paragraph "Related
work" on page 78. With independent processes, decomposition is arbitrarily possible.

The second difference arises during the re-composition: Execution semantics must be
regarded. With independent processes, an analysis becomes much simpler as they can

94 6. Decomposing hierarchical systems

commonly be composed in parallel with the Kronecker product. With serial execution
semantics, a more sophisticated reasoning about sub-Markov chain composition is neces-
sary. Even when the processes are algorithmically independent, they can still be relying
on a mutual central scheduler. The behavior of this scheduler must be accounted for when
recomposing sub-Markov chains.

The next step: local lumping

Both lumping and decomposition preserve probabilistic bisimilarity. Thus, the next step
is to exploit lumping locally on the sub-Markov chains to avoid the construction of the full
product chain. The basic idea is, that from D ∼ D′ follows that also for the subsystems
∀i : Di ∼ D′i holds. Consequently, with D′1 ⊗ . . .⊗D′n = D′ follows that D′ ∼ D, based
on ∼ being a congruence relation with respect to ⊗.

6.5 BASS Example
We recall the system model introduced in section 4.3.3 and add the slicing shown in
figure 6.14. The source code to reproduce this example are provided in appendix A.5.2.
The system model is shown in figure 6.13. It extends the topology shown on page 58
by slicing it in the overlapping process π4. A probabilistic scheduler s selects one of
the enabled processes in each computation step. Each process is selected with the same
probability. All processes are continuously enabled and serial execution semantics are
applied. The processes execute the broadcast algorithm BASS from algorithm 4.6 on
page 57.

Figure 6.13: The example system - decomposition with τπ4(S)

The example is small enough to have its full transition model constructed, and also struc-
tured ideally to demonstrate decomposition, local lumping and re-composition. Thereby,
the example allows to exemplify that probabilistic bisimilarity is preserved throughout the
whole process of decomposition, local lumping and re-composition.

While the transition models of systems comprising independent parallel processes can be
automatically constructed by sequentially composing the sub-Markov chains, the inter-
process dependencies demand that inter-process dependencies are accounted for. Since
mutual influence, including algorithmic liveness as well as recovery liveness, makes it
inherently challenging to automatically construct a transition model of a hierarchical sys-
tem, the focus here is not on scalability but on finding the limitations of the approach.
The future work section in chapter 8 discusses automatizing the construction of transition
models.

The system has two pairs of bisimilar processes: π2 ∼ π3 and π5 ∼ π6. As discussed in
section 6.3, process π4 is selected as overlapping process to derive two equally sized and
tractable subsystems. The system has a root subsystem Π1 = {π1, . . . , π4}, no transient
subsystems and one leaf subsystem Π2 = {π4, . . . , π7}. All processes are residuals except
π4.

6.5. BASS Example 95

The decomposition pattern

Figure 6.14 shows the decomposition pattern, consisting of five consecutive steps that are
iteratively explained in this section.

step 1: uncoupling

step 2: lumping

step 3:
constructing

step 4: lumping

step 5: recomposition

Figure 6.14: Decomposition pattern

The solid arrows show the pattern without decomposition as per figure 6.2 extended by
lumping as per figure 6.3. The dotted arrows show the extension by combining decom-
position and lumping as per figure 6.5. For now, we disregard the final step that makes
the transition model absorbing to compute the LWA. The system is decomposed into
τπ4(S) = {{Π1,Π2}, E,A} with Π1 = {π1, . . . , π4} and Π2 = {π4, . . . , π7} and the root
sub-Markov chain D1 constructed according to section 2.4 as if there were no processes
π5, π6 and π7. Then, the root sub-Markov chain is uncoupled D1 = D1,− ⊗ Dπ4 into
one sub-Markov chain accounting for the residual processes and one sub-Markov chain
accounting for the set of overlapping processes. The number of states in the uncoupled
root sub-Markov chain |D1,−| = 8 is reduced to |D′1,−| = 6 via lumping. Then, sub-
Markov chainDπ4 (which is irreducible for obvious reasons) and the remaining processes
found the leaf sub-Markov chain D2 with |D2| = 34 = 81 states. In D2, 54 states can
be lumped to 27 lumps (each representing a pair of states), resulting in D′2 to comprise
|D′2| = 81 − 27 = 54 states. The recomposed DTMC D′ = D′1,− ⊗ D′2 (the overline
DTMC is skipped as all equivalence classes have already been exploited locally) has a
cardinality of |D′| = 324 states which is only half the number of states of D.

6.5.1 Composition method in detail

The composition method comprises five steps shown in figure 6.14. Each following para-
graph describes one step. We set the fault probability to q = 0.05. Solving Markov
models symbolically is also possible. We focus on the numerical evaluation since the
symbolic results are very large formulas that are impossible to comprehend and very hard

96 6. Decomposing hierarchical systems

to compute8. The stationary distribution of D1 to later compute the LWA is shown in
table 6.2.

Step 1: Uncoupling the sub-Markov chain D1 → D1,− ⊗Dπ4

First, DTMC D1 is computed shown9 in figure 6.15(a). The probability that the scheduler
selects a process of Π1 is sΠ1 = s1 + . . . + s4 = 4

7
. Here, any scheduling probability

distribution is feasible and the uniform distribution is selected. Hence, each transition in
D1 is to be multiplied by 4

7
. Then, all self-targeting transitions, which are the diagonal

entries of the transition matrix D1, gain the probability mass 1 − sΠ1 = 3
7
, which is the

probability that a process outside Π1, i.e. in Π2, is selected for execution. The graphical
representation of the transition matrixM1 is shown in the appendix in figure A.7(a) on
page 167.

(a) D1 (b) D1,− (top) and Dπ4 (bottom)

Figure 6.15: Markov chain uncoupling

8The symbolical computation of this example with MatLab consumes about one week at 2.6 GHz on a
Pentium 7, single threaded, and about 48 GBytes of main memory. The numerical computation takes less
than a second on the same hardware.

9The transition probabilities are omitted from the figure to increase readability.

6.5. BASS Example 97

State 〈0, 0, 0, 0〉 〈2, 0, 0, 0〉 〈0, 2, 0, 0〉 〈0, 0, 2, 0〉
Probability 0.7238 0.0125 0.0208 0.0208
State 〈0, 0, 0, 2〉 〈0, 0, 0, 1〉 〈2, 2, 0, 0〉 〈2, 0, 2, 0〉
Probability 0.0469 0.0514 0.0046 0.0046
State 〈2, 0, 0, 2〉 〈2, 0, 0, 1〉 〈0, 2, 2, 0〉 〈0, 2, 0, 2〉
Probability 0.0008 0.0007 0.0022 0.0063
State 〈0, 2, 0, 1〉 〈0, 0, 2, 2〉 〈0, 0, 2, 1〉 〈2, 2, 2, 0〉
Probability 0.0308 0.0063 0.0308 0.0048
State 〈2, 2, 0, 2〉 〈2, 2, 0, 1〉 〈2, 0, 2, 2〉 〈2, 0, 2, 1〉
Probability 0.0005 0.0035 0.0005 0.0035
State 〈0, 2, 2, 2〉 〈0, 2, 2, 1〉 〈2, 2, 2, 2〉 〈2, 2, 2, 1〉
Probability 0.0077 0.0022 0.0104 0.0037

Table 6.2: Stationary Distribution of D1

Lumping is applicable to both uncoupling, as for instance in paragraph "Step 1: D1 →
D1,− ⊗Dπ4" as well as reduction, as for instance in the next paragraph "Step 2: D1,−

[]∼−→
D′1,−". For the uncoupling shown in figure 6.15(b), all states in D1 that have the first
three digits in common — for instance where 〈R1, R2, R3, R4〉 = 〈0, 0, 0, 0〉, 〈0, 0, 0, 1〉,
or 〈0, 0, 0, 2〉 — are lumped in order to acquireD1,−. Afterwards, all states inD1 that have
the fourth digit in common are lumped to acquire Dπ4 . As lumping during uncoupling is
lossless, recomposing D1,− ⊗Dπ4 is the reverse process resulting in D1.

The second way to exploit lumping reduces DTMCD1,− toD′1,− by lumping probabilistic
bisimilar states. The equivalence class [0, 2]∼ containing 〈Ri, Rj〉 = {〈0, 2〉, 〈2, 0〉} is
abbreviated with 2. The double-stroke number indicates the sum of values stored in the
registers, which is 0 + 2 = 2 in this case, as introduced in paragraph "The double-stroke
alphabet" on page 71. For the analysis, it is regardless which of the processes π2 and π3

exactly is corrupted as they behave equally due to same scheduler selection probability,
equal fault probability and same position in the system. The corresponding states, for
instance 〈R1, R2, R3〉 being 〈0, 0, 2〉 or 〈0, 2, 0〉, have an equal role in the DTMC.

Sub-Markov chain D1 is uncoupled into D1,− shown in table 6.3 — the transition proba-
bilities of the bisimilar states are colored respectively in light and dark gray — and Dπ4 ,
shown in table 6.4. The stationary distributions of the uncoupled sub-Markov chains are
simply the sum of the probability mass in the corresponding states within the original sub-
Markov chain. Since the sub-Markov chains are too large to print in numbers, a graphical
representation of the transition matrix M1,− is shown in the appendix in figure A.7(b)
on page 167, forM′

1,− in figure A.7(c), and forMπ4 in figure A.7(d). In the graphical
representations, the default color mapping in MatLab is used where blue means zero and
red means one. The transition probabilities in the overlapping sub-Markov chain Dπ4 are
labeled as shown in table 6.4 to later refer to them when D2 is computed. For the iden-
tification of lumpable states, the transition probabilities to all mutual target equivalence
classes must be equal.

98 6. Decomposing hierarchical systems

↓ from/to→ 〈0, 0, 0〉 〈2, 0, 0〉 〈0, 2, 0〉 〈0, 0, 2〉
〈0, 0, 0〉 0.978571 0.007143 0.007143 0.007143
〈2, 0, 0〉 0.135714 0.578571
〈0, 2, 0〉 0.135714 0.850000
〈0, 0, 2〉 0.135714 0.850000
〈2, 2, 0〉 0.135714
〈2, 0, 2〉 0.135714
〈0, 2, 2〉 0.135714 0.135714
↓ from/to→ 〈2, 2, 0〉 〈2, 0, 2〉 〈0, 2, 2〉 〈2, 2, 2〉
〈2, 0, 0〉 0.142857 0.142857
〈0, 2, 0〉 0.007143 0.007143
〈0, 0, 2〉 0.007143 0.007143
〈2, 2, 0〉 0.721429 0.142857
〈2, 0, 2〉 0.721429 0.142857
〈0, 2, 2〉 0.721429 0.007143
〈2, 2, 2〉 0.135714 0.864286

Table 6.3: The transition matrix of D1,−

↓ from/to→ 〈0〉 〈1〉 〈2〉
〈0〉 r4 = 0.982972 s4 = 0.008687 t4 = 0.008341
〈1〉 u4 = 0.055813 v4 = 0.930721 w4 = 0.013466
〈2〉 x4 = 0.081422 y4 = 0.023461 z4 = 0.895117

Table 6.4: The transition matrix of Dπ4

In table 6.4, the states are labeled to later refer to them in the construction of the inferior
sub-Markov chain as discussed above.

Step 2: Lumping the uncoupled root sub-Markov chain D1,−
〈R1,[R2,R3]∼〉−−−−−−−−→ D′1,−

In D1,−, the two states 〈0, 0, 2〉 and 〈0, 2, 0〉 are probabilistic bisimilar and lumped to
〈0, 2〉, and analogously are 〈2, 0, 2〉 and 〈2, 2, 0〉. The transition matrix of the resulting
sub-Markov chain D′1,− is shown in table 6.5.

↓ from/to→ 〈0, 0, 0〉 〈2, 0, 0〉 〈0, 2〉 〈2, 2〉 〈0, 2, 2〉 〈2, 2, 2〉
〈0, 0, 0〉 0.9786 0.0071 0.0143
〈2, 0, 0〉 0.1357 0.5786 0.2857
〈0, 2〉 0.1357 0.8500 0.0071 0.0071
〈2, 2〉 0.1357 0.7214 0.1429
〈0, 2, 2〉 0.2714 0.7214 0.0071
〈2, 2, 2〉 0.1357 0.8643

Table 6.5: Transition matrix of the root sub-Markov chain D′1,−

6.5. BASS Example 99

Step 3: Constructing the leaf sub-Markov chain Dπ4 ⊗ |Π2 \ {π4}| → D2

The third step takes the uncoupled sub-Markov chain of the overlapping process Dπ4 and
composes it with the processes of Π2 except π4 to construct D2. With Dπ4 at hand, D2

can be constructed. In the inferior subsystem Π2, each process stores either 0, 1 or 2.
Therefore — with four processes — the state space of Π2 comprises 34 = 81 states.
The hybrid method of using a sub-Markov chain combined with process, scheduling and
fault model information is not more complex than constructing a sub-Markov chain, for
instance Π1, from scratch. The transition probability pr(

−−−−−−−−−−−−−−→
〈1, 2, 2, 2〉, 〈2, 2, 2, 2〉) is exem-

plarily computed with w4 = 0.013466 provided in table 6.4 as shown in equation 6.8:

pr(
−−−−−−−−−−−−−−→
〈1, 2, 2, 2〉, 〈2, 2, 2, 2〉) =

1

4
· w4 = 0.0033665 (6.8)

The transition probability w4 is given in table 6.4 and multiplied with the probability that
π4 is selected to execute a computation step within Π2. The probabilities are put into re-
lation to the superior subsystem by multiplying each transition with 4

7
and adding 3

7
to the

diagonal elements of the sub-Markov chain. Thus, the global probability of the previously
computed transition is 0.0033665 · 4

7
= 0.00192374. Other transitions where R4 changes

are computed analogously. Transitions between states where R4 remains unchanged are
computed analogously to D1. Table 6.4 is not required for their computation. The graph-
ical representation of the transition matrixM2 is shown in the appendix in figure A.7(e)
on page 167.

Step 4: Lumping the leaf sub-Markov chain D2
〈R4,[R5,R6]∼,R7〉−−−−−−−−−−→ D′2

Reducing D2 → D′2 offers 27 probabilistic bisimilar state pairs to be lumped. The sets
can informally be described as pairs of states, where R4 and R7 store equal values, while
R5 and R6 store unequal values, and each state’s R5 is equal to the mutual other state’s
R6. For instance, states 〈0, 0, 2, 2〉 and 〈0, 2, 0, 2〉 can be lumped to 〈0, 2, 2〉. For the
computation of LWA, the information which of the registers R5 and R6 actually is cor-
rupted is redundant. Knowing that one of them is defective suffices to compute LWA. The
following pattern defines the sets (i.e. pairs in this case) of probabilistic bisimilar states
formally:

The identification of bisimilar states follows the proceeding shown in figure 6.16. States
of D2 are of the form 〈R4, R5, R6, R7〉. States

• 〈x, 0, 1, y〉 and 〈x, 1, 0, y〉 form 〈x, 1, y〉,

• 〈x, 0, 2, y〉 and 〈x, 2, 0, y〉 form 〈x, 2, y〉, and

• 〈x, 1, 2, y〉 and 〈x, 2, 1, y〉 form 〈x, 3, y〉.

Notably, the lump notation here is unambiguous as there are no two probabilistic bisimilar
states in which both R5 and R6 store the value 1. A pair of states si = 〈Ri

4, R
i
5, R

i
6, R

i
7〉

and sj = 〈Rj
4, R

j
5, R

j
6, R

j
7〉 is probabilistic bisimilar if

100 6. Decomposing hierarchical systems

si = 〈 R4,
OO

=

��

R5,
XX

=

��

OO

6=

��

oo

6=
// R6,
FF

=

��

OO

6=

��

R7OO

=

��

〉

si ∼ sj :

sj = 〈 R4, R5, oo 6=
// R6, R7 〉

Figure 6.16: Equivalence Class Identification in D2

The first condition demands both registers R4 to be equal and analogously for both R7

registers. The second condition demands the registers R5 and R6 to be different within
each tuple. The third condition demands register R5 to be equal to register R6 of the mu-
tually other state. After the identification of the probabilistic bisimilar pairs, the affected
transitions are lumped. The lumping of the transition pr(

−−−−−−−−−−−→
〈1, 1, 0〉, 〈0, 1, 0〉) is presented

exemplarily in figure 6.17.

1,1,0,0

1,0,1,0

0,1,0,0

0,0,1,0
1, ,0 0, ,0

Figure 6.17: Reduction example

The first lump 〈1, 1, 0〉 comprises states 〈1, 1, 0, 0〉 and 〈1, 0, 1, 0〉. The second lump
〈0, 1, 0〉 comprises states 〈0, 1, 0, 0〉 and 〈0, 0, 1, 0〉. While some transition probabilities
are zero:

• pr(
−−−−−−−−−−−−−−→
〈1, 1, 0, 0〉, 〈0, 0, 1, 0〉) = 0

• pr(
−−−−−−−−−−−−−−→
〈1, 0, 1, 0〉, 〈0, 1, 0, 0〉) = 0

due to serial execution semantics as discussed in paragraph "Hamming Distance" on
page 15, others contribute to the aggregated transition probability:

• pr(
−−−−−−−−−−−−−−→
〈1, 1, 0, 0〉, 〈0, 1, 0, 0〉) = u4 · s4 · 4

7

• pr(
−−−−−−−−−−−−−−→
〈1, 0, 1, 0〉, 〈0, 0, 1, 0〉) = u4 · s4 · 4

7
.

The variable u4 is the transition probability of R4 changing its value from 1 to 0 as shown
in table 6.4, and s4 = 1

4
is the execution probability of π4 within the subsystem Π2. As dis-

cussed in paragraph "Step 1", the distinction between the possibilities that either a process
in the sub-Markov chain D2 is selected for execution, or a process outside is selected —
that is within D1,− — is important. This distinction is regarded before lumping. Hence,
the transition probabilities are multiplied with 4

7
.

↓ from/to→ 〈0, 1, 0, 0〉 〈0, 0, 1, 0〉
〈1, 1, 0, 0〉 u4 · π4 · 4

7
0

〈1, 0, 1, 0〉 0 u4 · π4 · 4
7

Table 6.6: Example Transition Lumping of Transition pr(
−−−−−−−−−−−→
〈1, 1, 0〉, 〈0, 1, 0〉)

6.5. BASS Example 101

With steady state probabilities prΩ(〈1, 1, 0, 0〉) = prΩ(〈1, 0, 1, 0〉) =
0.002557259339314 and the above transition probabilities, equation 5.6 from page 67
computes the lumped transition probability shown in equation 6.9 according to
figure 6.17:

pr(
−−−−−−−−−−−→
〈1, 1, 0〉, 〈0, 1, 0〉) = pr(

−−−−−−−−−−−−→
〈1,1,0,0〉,〈0,1,0,0〉)·prΩ(〈1,1,0,0〉)+pr(

−−−−−−−−−−−−→
〈1,0,1,0〉,〈0,0,1,0〉)·prΩ(〈1,0,1,0〉)

prΩ(〈1,1,0,0〉)+prΩ(〈1,0,1,0〉)
(6.9)

The other transitions are computed analogously and D′2 is constructed. The graphical
representation of the transition matrix M′

2 is shown in the appendix in figure A.7(f) on
page 167.

Step 5: Re-composition D′ = D′1,− ⊗D′2

With D′1,− and D′2 at hand, D′ is composed. Notably, both reduced sub-Markov chains
D′1,− andD′2 execute computation steps parallel as their probabilities have been weighted.
For re-composition, each transition in D′1,− is multiplied with each transition in D′2. The
coordinates are labeled row i and column j in D′1,−, and k and l in D′2 respectively.
Notably, transitions between states that differ in more than one register must be dealt
with separately to cope with serial execution semantics. Algorithm 16 computes the re-
composition for serial execution semantics. The graphical representation of the transition
matrixM′ is shown in the appendix in figure A.7(g) on page 167.

The final step to transform D′ to D′LWA to compute LWA — the stationary distribution is
known — is to set10 the transition probabilityM′(1, 1) := 1, and ∀m, 1 < m ≤ 324 :
D′(1,m) := 0 as discussed in section 4.3.2 (cf. also [Müllner and Theel, 2011, ch.4]).
Then, the legal state is absorbing. The computed LWA coincides with the LWA computed
with the full product chain as depicted in figure 4.9 on page 61.

6.5.2 Example interpretation
We start with discussing the benefits of the decomposition and then reason about the
results of the example.

The decomposition

The goal was to simplify the computation of the LWA. Instead of 648 states in S, the
decomposition method was able to construct a probabilistic bisimilar DTMC where S ′
contains only half as many states. The example demonstrated the challenges of decom-
posing hierarchic systems and presented an approach for decomposition with overlapping
processes. In the second half of the procedure, the re-composition, execution semantics
have been found to play an important part. Contrary to direct dependency among pro-
cesses via fault propagation, execution semantics let processes depend indirectly. The ⊗
operator has been introduced as replacement for the Kronecker product in cases where
maximal parallel execution semantics are not applied. Both hierarchic ordering and serial
execution semantics have been discussed in this present example to explain, how LWA
can be computed for hierarchically structured systems with less than maximal parallel
execution semantics.

10M′(1, 1) is the transition in the first row and the first column in D′,
i.e. pr(

−−−−−−−−−−−−−−−−−−−−−−−→
〈0, 0, 0, 0, 0, 0〉, 〈0, 0, 0, 0, 0, 0, 0〉).

102 6. Decomposing hierarchical systems

The LWA

The LWA vector serves three purposes:

1. In case the system under consideration is supposed to obtain a certain least amount
of availability, the LWA vector can be exploited to acquire the associated amount of
time that is required to meet the demand.

2. When the system is allowed a maximal distinct number of computation steps,
the LWA vector can be exploited to determine the achievable availability for that
amount of temporal redundancy.

3. In case multiple solutions to the same problem are applicable, LWA can be a valu-
able quantification of fault tolerance to select the optimal solution as discussed in
section 4.5.

Despite these, another interesting question arises: What are the most critical states, from
which the system is most unlikely to recover in time?

The probability mass drain exposes two equivalence classes to discuss this question. Fig-
ure 6.18 shows the probability mass over illegal equivalence classes and time, similar to
figure 4.10 on page 61 did for states and time.

Figure 6.18: Probability mass drain

To increase readability, the y-axis showing the probability mass in each state for each time
window is cropped at 0.08, which is a little more than the maximal probability mass an un-
safe state contains in the limit. Equivalence classes 〈0, 0, 0, 1, 1, 1, 1〉 and 〈0, 1, 0, 0, 0, 0〉
both contain not only the most, but also a similar amount of probability mass in the limit.

6.6. Decomposability - A matter of hierarchy 103

Although initially — from the limit onwards — equipped with a similar amount of prob-
ability mass11, state 〈0, 1, 0, 0, 0, 0〉 looses its probability mass rapidly compared to state
〈0, 0, 0, 1, 1, 1, 1〉 as shown in figures 6.19(a) and 6.19(b).

Time Window

P
ro

b
ab

il
it

y
M

as
s

0 100 200 300 400 500 600 700 800 900 1000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

(a) State 〈0, 0, 0, 1, 1, 1, 1〉
Time Window

P
ro

b
ab

il
it

y
M

as
s

0 100 200 300 400 500 600 700 800 900 1000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

(b) State 〈0, 1, 0, 0, 0, 0〉

Figure 6.19: Comparing states

The motivation to compute LWA in the first place was to find the amount of time required
to achieve a desired probability for a non-masking fault-tolerant system to mask faults
as discussed in chapter 3. Knowing about the probability mass drain of all states (and
lumps) allows yet for much more. Some systems offer the possibility for certain states
to be either prevented or instantly repaired. One applicable method is snap stabiliza-
tion [Tixeuil, 2009, Delporte-Gallet et al., 2007]. It provides a functionality for instanta-
neous recovery by (re-)setting distinct states directly to a legal value. When searching for
states to apply such targeted counter measures, state 〈0, 0, 0, 1, 1, 1, 1〉 is obviously a far
more suitable target than state 〈0, 1, 0, 0, 0, 0〉. Either preventing state 〈0, 0, 0, 1, 1, 1, 1〉
to gather probability mass or employing targeted counter measures to drain this state at
a faster pace both seem desirable targets. The set of equivalence classes can be sorted
according to their probability mass for each time step in this manner. Such a list tells,
which equivalence classes withhold the most probability mass at a certain time. When the
upper boundary for w and the number of distinct stated to evade or drain are known, it is
simple to look at that list at that time point and to pick the top number of states that can
be evaded to produce an optimal result regarding a system’s fault tolerance.

6.6 Decomposability - A matter of hierarchy
In paragraph "Related work" on page 78 it was pointed out, that a parallel composition
with the Kronecker product is not applicable for hierarchic systems. Afterwards, this
chapter focused on the decomposition of hierarchic systems. Yet, as discussed in sec-
tion 6.1, there are systems in which every process depends on every other process, called
heterarchic systems. When all process rely on each other, decomposition becomes a lot
less promising. With independent and hierarchical systems being ideal for decomposition
and heterarchic systems being the worst case for decomposition, this section is dedicated
to discuss the possibilities for decomposition of systems that are between the extremes. It

11The probabilities in the limit are prΩ(〈0, 0, 0, 1, 1, 1, 1〉) = 0.0715034677782571 and
prΩ(〈0, 1, 0, 0, 0, 0〉) = 0.0721206997887467.

104 6. Decomposing hierarchical systems

determines a possible classification of semi-hierarchical systems and proposes individual
approaches on how to accomplish decomposition in each identified case.

Semi-hierarchic systems are — like redundancy — hierarchic either in space or in time
or in both. In terms of the Bernstein conditions discussed on page 86, semi-hierarchic
systems violate the third condition only locally or temporarily while otherwise violating
only the first condition or none at all.

6.6.1 Classes of semi-hierarchical systems

Three system classes between purely hierarchical and purely heterarchical, referred to
as semi-hierarchical, can be distinguished. In semi-hierarchical systems, dependability
slices can be identified that are locally of temporarily hierarchic. If not the whole system
is decomposable, possibly decomposition within dependability slices is applicable.

Contrarily, it is not possible for systems to be globally heterarchical and hierarchical oth-
erwise. Assume a hierarchic subsystem that is mutually reliant with another subsystem.
Then, every process within each subsystem relies on the other subsystem and as a conse-
quence indirectly on itself. Thereby, every process relies on every other process and there
cannot be local hierarchies.

The first type of semi-hierarchy is locally heterarchical and hierarchical otherwise, the
second is temporarily heterarchical, and the third class accounts for dynamic topologies.

6.6. Decomposability - A matter of hierarchy 105

Type Description
local One class of semi-hierarchic systems contains locally

heterarchic subsystems like dependability cycles, which
globally influence each other hierarchically. Such sys-
tems can be sliced into locally heterarchic subsystems, but
the subsystems cannot be sliced any further. The follow-
ing figure provides an example.

locally omnidirectional
fault propagation

globally unidirectional
fault propagation

temporal A temporally semi-hierarchic system can switch between
phases of hierarchy and heterarchy. Then, each interval of
hierarchy is called in epoch13.
For instance, consider a self-stabilizing leader
election algorithm (LE) [Fischer and Jiang, 2006,
Nesterenko and Tixeuil, 2011] to execute when there is
no elected leader to act as root process, and that another
self-stabilizing work-algorithm requiring a designated
root process executes otherwise. Each case of elected
leader is then one system instance for the work algorithm.
During phases of leader election — that is between
epochs — the processes are mutually dependent.

dynamic Despite static topologies, systems with dynamic topolo-
gies face a similar problem like temporally semi-
hierarchic systems. Processes and edges connecting them
do not necessarily need to be static. When processes enter
and leave a dynamic topology, each possible topology in-
stantiation is to be regarded with its own transition model.
The topologies can then be linked with the probabilities
for processes to enter or leave the system like in the case
of temporal semi-hierarchy.

Table 6.7: Classifying categories of local heterarchies in globally hierarchic systems

While the first case is straight forward, the second and third case introduce a new is-
sue. They distinguish cases — elected leader and topology instantiation — and each
case requires to be regarded with its own transition model. Furthermore, they possi-
bly provide transition probabilities connecting the case transition models, meaning one
transition model for each probability distribution. Consider for instance the TLA from
sections 2.5 and 4.3.2. For simplicity, assume that only exclusively one of the probabilis-
tic influences of either scheduler or fault model probabilistically switches between three

106 6. Decomposing hierarchical systems

different14 probability distributions. Figure 6.20 exemplarily shows that the three case
transition models are uniform for three different fault probability distributions q1, q2 and
q3 in the sense that they span the equal state space and contain positive transition probabil-
ities for the same state tuples. Yet, the particular transition probabilities differ according
to the fault probability distributions.

g,g g,y g,y1 g,r g,r1 y,y y,y1

y,g y1 ,g r,g r1 ,g y1 ,y y1 ,y1

y,r y1 ,r r,y r,y1 r,r r1 ,r

y,r1 y1 ,r1 r1 ,y r1 ,y1 r,r1 r1 ,r1

g,g g,y g,y1 g,r g,r1 y,y y,y1

y,g y1 ,g r,g r1 ,g y1 ,y y1 ,y1

y,r y1 ,r r,y r,y1 r,r r1 ,r

y,r1 y1 ,r1 r1 ,y r1 ,y1 r,r1 r1 ,r1g,g g,y g,y1 g,r g,r1 y,y y,y1

y,g y1 ,g r,g r1 ,g y1 ,y y1 ,y1

y,r y1 ,r r,y r,y1 r,r r1 ,r

y,r1 y1 ,r1 r1 ,y r1 ,y1 r,r1 r1 ,r1

Figure 6.20: Multiple layers of transitional models

The layers are connected via orthogonal transitions15. Assume that the availability of the
processes can be controlled either discretely or continuously. In the discrete case, layers
as depicted in figure 6.20 specify the operation modes of the system that can dynamically
adapt its fault tolerance. In the continuous case, the transition model becomes a infinite
space stochastic process.

The basic concept of layers within the transition model arising with semi-hierarchy pos-
sibly provides further leverage for lumping. The desired uniformity among the layers of
temporally semi-hierarchic systems can be generally achieved via symmetric structures as
exemplified in the following paragraph.

6.6.2 Temporal semi-hierarchy and topological symmetry

The case of combining LE with a working algorithm provides another interesting dis-
cussion regarding the topology. The system topology is not only important to its de-
composability, but also for the lumpability in the analysis of temporally semi-hierarchic
systems. For instance, assume a platonic solid — a regular convex polyhedra — like
eight processes that are connected like a cube as shown in figure 6.21. During epochs, the
processes execute the BASS under uniformly distributed fault and scheduling probabili-
ties. In case a fault initiates the election of a new root, a self-stabilizing LE executes until
a leader is elected and a new epoch begins.

14 This possibilities for alternating the example are limited since i) changing the topology would result
in transition models with different state spaces and ii) changing the root is not possible in the heterarchic
TLA.

15Figure 6.20 abstracts the single orthogonal transitions as indicated by the black arrows.

6.7. Summarizing decomposition 107

π1 π2

π3 π4

π5 π6

π8 π8

Figure 6.21: Platonic leader election

Irrespective of which process becomes the elected leader, the transition model will in any
case be the same. The transition model only requires one additional state (or transition
model) to account for the intervals between the epochs. This example demonstrates that
highly symmetric systems are promising for being highly lumpable.

6.6.3 Mixed mode heterarchy

This section briefly reasons about how mixed mode systems — these are systems execut-
ing multiple algorithms in parallel — forfeit hierarchy and become heterarchic. Assume
a distributed system with parallel maximal execution semantics and two algorithms being
executed in parallel: For instance, a wireless sensor network in which the sensors prop-
agate measured data to a central process is updated with control strategies by the same
central process frequently. The control strategies can include data type (temperature or
humidity) or update frequency. Each system is hierarchical for itself. The sensor motes
propagate straight towards the center process and the center process sends the updates
towards the leafs. The whole system utilizes one communication infrastructure for bidi-
rectional communication. Although the systems are algorithmically independent, they
rely on each other by sharing a common resource. Message congestion caused by one
algorithm also blocks convenient routes for the other algorithm. Assuming that message
congestion and real time constraints are critical issues, both systems are considered to be
dependent. Notably, the communication directions need not necessarily be opposing.

6.7 Summarizing decomposition
This chapter started by classifying independent, hierarchic, semi-hierarchic and heterar-
chic systems. This work’s context motivated to focus on hierarchic systems. After in-
troducing the necessary formalisms and outlining basic guidelines for decomposition, the
BASS example was continued to discuss how decomposition and lumping can be prac-
tically combined. Interpreting the results provided for an insightful discussion. Finally,
a pathway to discussing semi-hierarchic systems was proposed by classifying them and
proposing approaches for each class individually. The following chapter uses these find-
ings to focus on two properties exemplarily: i) the complexity of parallel composition to
contrast the intricacies of hierarchic decomposition, and ii) a small semi-hierarchic system
with execution semantics that are neither serial nor maximal parallel to show the benefits
of hierarchy.

108 6. Decomposing hierarchical systems

7. Case studies

7.1 Thermostatically controlled loads in a power grid 109

7.2 A semi-hierarchical, semi-parallel stochastic sensor network . . 126

7.3 Summarizing the case studies 133

This section provides two case studies to demonstrate the practical utility of the presented
methods and concepts, and to point out technical difficulties that could not be addressed
before. The first case study focuses on parallel systems comprising independent pro-
cesses, similar to the work discussed in paragraph "Related work" on page 78, to compare
parallel independent and hierarchical systems regarding their composability. The second
case study considers relaxing several assumptions like concerning execution semantics
and hierarchical dependencies. Both case studies start with discussing how a DTMC can
be derived from the real world model in general before demonstrating a concrete example.

7.1 Thermostatically controlled loads in a power grid
The methods that have been developed in the present thesis are applied within the project
Modeling, Verification and Control of Complex Systems (MoVeS), funded by the Euro-
pean Commission under grant FP7-ICT-2009-257005. The goal of this case study is to
determine the risk of voltage peaks in a power grid. Such voltage peaks occur when the ac-
cumulated load demanded by the consumers changes too fast, that is, when too many con-
sumers simultaneously either increase of simultaneously decrease their energy demand.
In this example we consider the load to be caused by cooling systems that are controlled
by thermostats. The example is based on a case study about thermostatically controlled
loads (TCL) presented by Callaway [Callaway, 2009] in 2009. The scenario itself is based
on the temperature model proposed by Malhame and Chong [Malhamè and Chong, 1985]
in 1985 and was later extended by Koch et al. [Koch et al., 2011] in 2011. Parts of this
section are published in [Kamgarpour et al., 2013].

The TCL model

Consider a set of homogeneous houses in a warm region. While the ambient temperature
θa outside is constantly 32 ◦C, the desired set indoor temperature θs is 20 ◦C. A thermostat

110 7. Case studies

controls the cooling system in the house. It turns on when the temperature reaches the
upper bound of the hysteresis δ = 0.5 ◦C, which is 20.5 ◦C, and it turns off when reaching
the lower boundary which is 19.5 ◦C.

The deadband

Similar to defining safety to demarcate legal from illegal states, temperature bands can be
used to specify comfort zones in which the thermostat should operate. Consider that the
thermostat has a latency of one time step and measures the temperature at discrete evenly
distributed time points utilizing a bang-bang control [Sonneborn and van Vleck, 1964].
A bang-bang control is a simple on/off switch turning the cooling system on when it is
too hot, and off when it is too cold. It is reasonable to specify the comfort zones according
to how far the actual temperature deviates from θs. The system is

• in a legal state within [19.5, 20.5],

• a switching should occur within a reasonable interval, that is, not too long after the
deadband is left,

• an undesired state is reached beyond that interval, when switching did not occur
timely.

t

undesired region

undesired region

switching region

legal region

switching region

Figure 7.1: Specifying legal and undesired states

This shows how classification of fault, error and failure discussed on page 9 can be
mapped onto temperature intervals.

Temperature progress

The following equation describes the temperature progress:

θ(t+ 1) = aθ(t)︸ ︷︷ ︸
i)

+ (1− a)(θa −m(t)R · P)︸ ︷︷ ︸
ii)

+ g(t)︸︷︷︸
iii)

[Callaway, 2009, p.8] (7.1)

The equation1 reads as follows: the temperature in the next time step is i) the tempera-
ture of the current time step plus ii) the temperature progress depending on whether the

1The equation has been adapted from [Callaway, 2009, p.8] in the context of this thesis. For instance, the
original version uses w instead of g as noise term. To avoid ambiguity with the window size, equation 7.1
shows gi(tn) as noise term.

7.1. Thermostatically controlled loads in a power grid 111

thermostat is turned on or off plus iii) some noise. Parameter a "governs the thermal
characteristics of the thermal mass and is defined as a = exp(−h/CR)" [Callaway, 2009]
with h being the duration of a time step measured in seconds, C being the thermal capac-
itance measured in kWh/ ◦C and R being the thermal resistance measured in ◦C/kW .
The switch m is defined as follows:

mi(tn+1) =

0, θ(t) < θs − δ = θ−

1, θ(t) > θs + δ = θ+

m(t) otherwise [Callaway, 2009, p.9]

(7.2)

Parameter P described the energy transfer rate to or from the thermal mass measured in
kW . The term g(t) is a noise term. Table 7.1 shows the standard parameters used by
Callaway [Callaway, 2009]:

Parameter Meaning Standard value Unit
R average thermal resistance 2 ◦C/kW
C average thermal capacitance 10 kWh/ ◦C
P average energy transfer rate 14 kw
η load efficiency 2.5
θs temperature set point 20 ◦C
δ thermostat hysteresis 0.5 ◦C
θa ambient temperature 32 ◦C

Table 7.1: Model parameters

Parameter η is required to describe the total power demand: y(t + 1) =
N∑
i=1

1
η
P · m(t +

1). The parameter describes the efficiency "and can be interpreted as the coefficient of
performance" [Callaway, 2009].

Deterministic execution

To determine the influence of each single parameter, the system execution is evalu-
ated at first without noise, that is, without part iii) in equation 7.1. Then, the system
is deterministic without probabilistic influence. The corresponding implementation in
iSat [Fränzle et al., 2007] is provided in the appendix A.5.7 on page 172.

112 7. Case studies

Figure 7.2: The TCL model executing with standard parameters

We first describe the initial behavior and then the behavior in the limit. The upper graph
in figure 7.2 shows the status of the switch and the lower graph shows the temperature
evolving over time. Initially, the system detects that the temperature is too high and
initiates cooling one time step later. At time step 8, it enters the deadband for the first
time — at time step 7 it is just above the hysteresis — and continues cooling until time
step 9.

• The system requires ten time steps to reach the lower boundary of the hysteresis for
the first time,

• the switch is turned off for (alternatingly) three or four steps,

• the switch is turned on for (alternatingly) two or three steps, and

• the repetitive switching cycle shown in Figure 7.3 occurs the first time at time instant
44 and persists at least until time step 100. It even holds until time step 1000, not
depicted in the graph, so that the assumption that the cyclic behavior is stable is
justified.

4off
1
,,
3off

1
,,
2off

1
,,
1off

1
++
4on

1
++
3on

1
++
2on

1
++
1on

1
		

1on

1

II

2on
1

kk 3on
1

kk 1off
1

kk 2off
1
ll 3off

1
ll 4off

1
ll 5off

1
ll

Figure 7.3: Repetitive cycle

Each vertex is labeled number status, referring to the number of steps the system will
remain in the status. The deterministic setting without noise allows to understand how
the single parameters influence the equation. Therefore, we repeat the same setting but
change each parameter one at a time, amplifying it by a factor of ten compared to the
standard parameters from table 7.1, except for the parameters altered in figures 7.4(e)

7.1. Thermostatically controlled loads in a power grid 113

and 7.4(f), which are amplified by adding 10 ◦C in figure 7.4(e) and subtracting 10 ◦C in
figure 7.4(f).

(a) R = 20 ◦C/kW (b) P = 140kw

(c) C = 100kWh/ ◦C (d) δ = 5 ◦C

(e) θa = 42 ◦C (f) θs = 10 ◦C

(g) η = 25

Figure 7.4: Deviating parameters

When the isolation of the house via parameter R is increased, it heats up at a far slower
pace as shown in figure 7.4(a). Furthermore, the cooling process is more efficient. The
switching delay forces the system to even cool below the safety threshold as the temper-
ature reaches below 18 ◦C. Figure 7.4(b) shows that amplifying the cooling power via

114 7. Case studies

P cools the house down rapidly. With the delay of one time step given, the cooling de-
vice freezes the house even below 0 ◦C. In case the thermal capacitance is increased —
imagine for instance the house filled with a liquid instead of air — via parameter C, both
cooling and heating phases are slowed down as shown in figure 7.4(c). If the deadband
is relaxed via parameter δ as shown in figure 7.4(d), the cooling and heating phases take
longer as well. Since it would be unreasonable to amplify the ambient temperature via θa
beyond a certain point, 10 ◦C are added instead of multiplying by a factor of 10. As shown
in figure 7.4(e), the heating phases are shortened and the cooling phases are extended. The
setting in depicted in figure 7.4(f) lowers the set point θs to 10 ◦C which also shortens the
heating phase and flattens the graph. Amplifying the load efficiency via η by a factor of
ten as shown in figure 7.4(g) has almost no effect.

Adding noise

When the TCL model without noise is explored, the system executes along one determin-
istic execution trace. By adding a general noise term, like the last part in equation 7.1,
the transition model becomes Markovian. The execution traces then spread over time as
exemplarily shown in figure 7.5 by Koch et al. [Koch et al., 2011].

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
19.5

20

20.5
Temperature State Evolution for 200 TCLs (randomly chosen out of 1000)

θ
[°
C
]

hrs

Figure 7.5: Temperature state evolution via simulation by Koch et al. [Koch et al., 2011,
p.3]

In this setup, 200 households execute in parallel with noise added, thus reaching the dead-
band boundaries at different times. While they are all initially in the same state, their
progress differs such that after about three hours it seems as if all synchronicity is lost.
One time step lasts ten seconds in this example.

Binning

The method to compute a window property like LWA is based on system and proba-
bilistic influence to be translated into a DTMC. An intermediate step to finally acquire
a DTMC from the TCL scenario is the discretization of the continuous temperature do-
main. A discretization in this context is commonly known as binning [Callaway, 2009,
Koch et al., 2011]. The temperature domain is partitioned into — in this case equally
sized — bins.

The probabilistic execution traces reach a bin with a certain probability in the next time
step. The progress of each household along the temperature domains — one domain for
m being off and one for m being on — can be formally be described with a DTMC as
pictured in figure 7.6.

7.1. Thermostatically controlled loads in a power grid 115

ON

OFF

temperature

1 2 3 4

Nbin-1 Nbin-2 Nbin-3Nbin Nbin
2 +4

Nbin
2 +3

Nbin
2 +2

Nbin
2 +1

Nbin
2
-3
Nbin
2
-2
Nbin
2
-1

Nbin
2

Figure 7.6: The state bin transition model by Koch et al. [Koch et al., 2011, p.2]

The figure shows how the temperature domain is binned for both on and off states
of m, and that the transition probabilities can be computed for each state tuple.
The TCL example points out the limitations of deriving precise transition probabil-
ities analytically. Transition probabilities are often derived via approximate meth-
ods like simulation or sampling. In this case, binning is an abstraction intro-
ducing an error. The coarser the bin are, the greater becomes the abstraction
error. Soudjani and Abate [Soudjani and Abate, 2013a, Soudjani and Abate, 2013b,
Soudjani and Abate, 2013c] currently work on methods to compute the error that is in-
troduced by the abstraction. Notably, they propose a method to directly compute the
transition probabilities in a product chain of multiple housings, contrary to the sequential
construction of the lumped product Markov chain that is discussed in this section.

The analytic methods proposed in the previous chapters rely on the quality of the provided
probabilities. The discussion of power grids addressed, that determining this quality is
important. Furthermore, it showed, that safety can be formulated and a DTMC can be
constructed to evaluate the safety over time. The remainder of this section demonstrates
how the composition in this case benefits from processes being independent compared to
hierarchically structured systems.

Population lumping

The example contains homogeneous housings with uniform parameters. This is not unre-
alistic, given the uniformity of communities in suburban areas. Each housing is modeled
as a process. The goal is to construct one DTMC as surrogate transition model for one
housing in the community. By multiplying it with the Kronecker product, the probabil-
ity of too many houses within the population switching simultaneously can be computed.
Lumping can be applied between each two Kronecker multiplications to minimize the
product chain to a counting abstraction.

The complexity of the aggregate DTMC of all households depends on the number of
households and the granularity of the applied binning. This is similar to the size of the
state space being the product over all register domains in the previous examples. The size
of the full product chain here is nk with n bins per household and k households. Notably,
each bin has to be accounted for twice: once for on and once for off mode as shown
in figure 7.6. In order to arrive at a tractable Markov chain, it is reasonable to select a
binning according to the number of households such that the full product chain remains
tractable. Assume the following symbolic DTMC D1 for one terrace housing as given.

116 7. Case studies

The states are labeled number status again a described above in paragraph "Deterministic
execution". Probability pi is the probability that the temperature in a house remains in its
current bin i for one time step and 1 − pi is the probability that it progresses to the next
temperature bin. The matrix is intentionally designed simple with only two bins and a
sparse matrix to demonstrate lumpability.

↓ from/to→ 1 on 2 on 1 off 2 off
1 on p1 1− p1

2 on p2 1− p2

1 off p3 1− p3

2 off 1− p4 p4

Table 7.2: Example symbolic DTMC for one surrogate housing, D1

Consider the Markov chain to be irreducible and labeled D1. With the houses being
mutually independent and executing equation 7.1 in parallel, maximal parallel execution
semantics apply. In this case, the ⊗ operator specified in algorithm 16 coincides with the
Kronecker product.

The product Markov chain of two houses with uniform parameters is the Kronecker prod-
uct of two Markov chains D1. It calculates to D1 ⊗ D1 and is labeled D2 — the index
in Di refers to the number of households — shown in table 7.3 on the next page. Empty
quadrants are omitted according to the scheme shown in figure 7.4, in which the black
cells represent the omitted zero values.

↓ from/to→ first quarter second quarter third quarter fourth quarter
first quarter
second quarter
third quarter
fourth quarter

Table 7.4: Omission scheme for lumping the DTMC in table 7.3

Lumping is conducted as described in chapter 5 to reduce the DTMC shown in table 7.3
to the DTMC shown in table 7.5. The state lumping follows the schematics shown in
figure 7.7 which describes the equivalence classes. It also shows the symmetry of the
equivalence classes in the state space: The states mirrored at the diagonal or pairwise
bisimilar. States 〈1on, 2on〉 and 〈2on, 1on〉 become state 〈1on, 2on〉. The other equiva-
lence classes are labeled analogously.

7.1. Thermostatically controlled loads in a power grid 117

↓fi
rs

tq
ua

rt
er

ro
w

fir
st

qu
ar

te
rc

ol
um

n
se

co
nd

qu
ar

te
rc

ol
um

n
↓

fr
om

/to
→

〈1
on
,1

on
〉

〈1
on
,2

on
〉

〈1
on
,1

of
f〉

〈1
on
,2

of
f〉

〈2
on
,1

on
〉

〈2
on
,2

on
〉

〈2
on
,1

of
f〉

〈2
on
,2

of
f〉

〈1
on
,1

on
〉

p
2 1

p
1
·(
1
−
p

1
)

p
1
·(
1
−
p

1
)

(1
−
p

1
)2

〈1
on
,2

on
〉

p
1
·p

2
p

1
·(
1
−
p

2
)

(1
−
p

1
)
·p

2
(1
−
p

1
)·(

1
−
p

2
)

〈1
on
,1

of
f〉

p
1
·p

3
p

1
·(
1
−
p

3
)

(1
−
p

1
)
·p

3
(1
−
p

1
)·(

1
−
p

3
)

〈1
on
,2

of
f〉

p
1
·(
1
−
p

4
)

p
1
·p

4
(1
−
p

1
)·(

1
−
p

4
)

(1
−
p

1
)
·p

4

↓s
ec

on
d

qu
ar

te
rr

ow
se

co
nd

qu
ar

te
rc

ol
um

n
th

ir
d

qu
ar

te
rc

ol
um

n
↓

fr
om

/to
→

〈2
on
,1

on
〉

〈2
on
,2

on
〉

〈2
on
,1

of
f〉

〈2
on
,2

of
f〉

〈1
of

f,
1o

n〉
〈1

of
f,
2

on
〉

〈1
of

f,
1o

ff
〉

〈1
of

f,
2o

ff
〉

〈2
on
,1

on
〉

p
2
·p

1
p

2
·(
1
−
p

1
)

(1
−
p

2
)· 1

(1
−
p

2
)·(

1
−
p

1
)

〈2
on
,2

on
〉

p
2 2

(1
−
p

2
)
·p

2
p

2
·(
1
−
p

2
)

(1
−
p

2
)2

〈2
on
,1

of
f〉

p
2
·p

3
p

2
·(
1
−
p

3
)

(1
−
p

2
)
·p

3
(1
−
p

2
)·(

1
−
p

3
)

〈2
on
,2

of
f〉

p
2
·(
1
−
p

4
)

p
2
·p

4
(1
−
p

2
)·(

1
−
p

4
)

(1
−
p

2
)
·p

4

↓t
hi

rd
qu

ar
te

rr
ow

th
ir

d
qu

ar
te

rc
ol

um
n

fo
ur

th
qu

ar
te

rc
ol

um
n

↓
fr

om
/to
→

〈1
of

f,
1o

n〉
〈1

of
f,
2

on
〉

〈1
of

f,
1o

ff
〉

〈1
of

f,
2o

ff
〉

〈2
of

f,
1o

n〉
〈2

of
f,
2

on
〉

〈2
of

f,
1o

ff
〉

〈2
of

f,
2o

ff
〉

〈1
of

f,
1o

n〉
p

3
·p

1
p

3
·(
1
−
p

1
)

p
3
·(
1
−
p

1
)

(1
−
p

3
)·(

1
−
p

1
)

〈1
of

f,
2o

n〉
p

3
·p

2
p

3
·(
1
−
p

2
)

(1
−
p

3
)
·p

2
(1
−
p

3
)·(

1
−
p

2
)

〈1
of

f,
1o

ff
〉

p
2 3

p
3
·(
1
−
p

3
)

(1
−
p

3
)
·p

3
(1
−
p

3
)2

〈1
of

f,
2o

ff
〉

p
3
·(
1
−
p

4
)

p
3
·p

4
(1
−
p

3
)·(

1
−
p

4
)

(1
−
p

3
)
·p

4

↓f
ou

rt
h

qu
ar

te
rr

ow
fo

ur
th

qu
ar

te
rc

ol
um

n
fir

st
qu

ar
te

rc
ol

um
n

↓
fr

om
/to
→

〈1
on
,1

on
〉

〈1
on
,2

on
〉

〈1
on
,1

of
f〉

〈1
on
,2

of
f〉

〈2
of

f,
1o

n〉
〈2

of
f,
2

on
〉

〈2
of

f,
1o

ff
〉

〈2
of

f,
2o

ff
〉

〈2
of

f,
1o

n〉
(1
−
p

4
)
·p

1
(1
−
p

4
)·(

1
−
p

1
)

p
4
·p

1
p

4
·(
1
−
p

1
)

〈2
of

f,
2o

n〉
(1
−
p

4
)
·p

2
(1
−
p

4
)·(

1
−
p

2
)

p
4
·p

2
p

4
·(
1
−
p

2
)

〈2
of

f,
1o

ff
〉

(1
−
p

4
)
·p

3
(1
−
p

4
)·(

1
−
p

3
)

p
4
·p

3
p

4
·(
1
−
p

3
)

〈2
of

f,
2o

ff
〉

(1
−
p

4
)2

(1
−
p

4
)
·p

4
p

4
·(
1
−
p

4
)

p
2 4

Ta
bl

e
7.

3:
E

xa
m

pl
e

T
C

L
D

T
M

C
co

m
po

si
tio

n
D

2
,1

6
st

at
es

,6
4

tr
an

si
tio

ns

118 7. Case studies

〈1on, 1on〉 〈1on, 2on〉
77

∼

ww

〈1on, 1off〉11

∼

��

〈1on, 2off〉22

∼

��

〈2on, 1on〉 〈2on, 2on〉 〈2on, 1off〉
77

∼

ww

〈2on, 2off〉
BB

∼

qq

〈1off, 1on〉 〈1off, 2on〉 〈1off, 1off〉 〈1off, 2off〉
77

∼

ww

〈2off, 1on〉 〈2off, 2on〉 〈2off, 1off〉 〈2off, 2off〉

Figure 7.7: Lumping scheme

↓ from/to→ 〈1on, 1on〉 〈1on, 2on〉 〈1on,1off〉 〈1on, 2off〉 〈2on, 2on〉 〈2on, 1off〉 〈2on, 2off〉
〈1on, 1on〉 p2

1 2 · p1 · (1−
p1)

(1− p1)2

〈1on, 2on〉 p1 · p2 p1 ·(1−p2) (1−p1) ·p2 (1− p1) ·
(1− p2)

〈1on,1off〉 p1 · p3 p1 ·(1−p3) (1−p1) ·p3 (1− p1) ·
(1− p3)

〈1on,2off〉 p1 ·(1−p4) (1− p1) ·
(1− p4)

p1 · p4 (1−p1) ·p4

↓ from/to→ 〈1on, 2on〉 〈1on,1off〉 〈1on, 2off〉 〈2on, 2on〉 〈2on,1off〉 〈2on, 2off〉 〈1off, 1off〉 〈1off,2off〉
〈2on, 2on〉 p2

2 2 · (1−
p2) · p2

(1− p2)2

〈2on,1off〉 p2 · p3 p− 2 ·
(1− p3)

(1− p2) ·
(1− p3)

(1− p2) ·
p3

〈2on,2off〉 p1 · (1−
p4)

(1− p1) ·
(1− p4)

p2 · p4 (1− p2) ·
p4

↓ from/to→ 〈1on, 1on〉 〈1on,1off〉 〈1on, 2off〉 〈1off, 1off〉 〈1off,2off〉 〈2off, 2off〉
〈1off, 1off〉 p2

3 2 · (1−p3) ·p3 (1− p3)2

〈1off, 2off〉 p3 · (1− p4) (1− p3) ·
(1− p4)

p3 · p4 (1− p3) · p4

〈2off, 2off〉 (1− p4)2 2 · (1−p4) ·p4 p2
4

Table 7.5: Lumped DTMC D′2, ten states, 36 transitions

This process can be repeated for k uniform households, that is, their respective transition
models, until D′k is composedly constructed.

Computing the complexity with enumerative combinatorics

Enumerative combinatorics provide the means to compute the number of states the lumped
aggregate DTMC comprises. The state space explosion without lumping draws a state
space according to variation with repetition. Therefore, there are |S| = nk states when
considering k houses and n bins. The successive lumping arrives at a state space of |S ′| =((
n
k

))
=
(
n+k−1

k

)
= (n+k−1)!

(n−1)!·k!
— the multiset (rising) binomial coefficient [Feller, 1968]

— by combination with repetition. Figures 7.8(a) and 7.8(b) compare both state space
explosions when adding more uniform households on the x-axis. They show that lumping
dampens the explosion tremendously. The largest DTMC before the final lumping step in
compositional lumping in this context is

((
n
k−1

))
· n. Figure 7.8(a) compares the initial

explosions up to ten households, while figure 7.8(b) computes the scalability for up to 100

7.1. Thermostatically controlled loads in a power grid 119

households. The figures demonstrate that instead of the exponential state space explosion
depicted in the red graphs, the size of the DTMC increases almost linearly with lumping,
depicted in the blue graphs.

1 2 3 4 5 6 7 8 9 10
0

200000

400000

600000

800000

1000000

1200000

StatevSpacevExplosionvwithvandvwithoutvLumping
variationvUunlumpedDvvs.vcombinationvUlumpedD

NumbervofvStatesvinv
UnlumpedvDTMC
NumbervofvStatesvinv
LumpedvDTMC

NumbervofvUniformvHouseholds

N
um

be
r

of
St

at
es

(a) Ten Steps

1 135 9 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97
0

2T00ED059

4T00ED059

6T00ED059

8T00ED059

1T00ED060

1T20ED060

1T40ED060

1T60ED060

1T80ED060

StatemSpacemExplosionmwithmandmwithoutmLumping
variationmNunlumpedfmvsCmcombinationmNlumpedf

NumbermofmStatesminm
UnlumpedmDTMC

NumbermofmStatesminm
LumpedmDTMC

NumbermofmUniformmHouseholds

N
um

be
r

of
St

at
es

(b) 100 Steps

Figure 7.8: Dampening the state space explosion

Compared to unlumped multiplication, the graph under application of lumping almost
coincides with the x-axis. Both complexities are computed with enumerative combina-
torics, that is, variation and combination with repetition. The tractability of the DTMC
depends on the available computing power. Even with lumping and perfectly homoge-
neous households, S ′ contains 176, 851 states for 100 housings and the proposed binning.
Yet, compared to approximately 1.61 · 1060 states, sequential composition and lumping
are obviously preferable.

Control destroys bisimilarity

The sequential application of composition and lumping hinges on the mutual indepen-
dence of the processes. Control strategies can prioritize housings to distribute limited
resources, for instance when a limited amount of energy faces more demand than it can
satisfy. In that case, processes loose their independence. The demand by one prioritized
process can delay the satisfaction of another process.

For instance, assume that in the above example ofD2 in table 7.3 one house constantly has
a higher priority than the other one. Further, assume that the power grid cannot tolerate
both thermostats switching simultaneously from on to off or vice versa. In case both
thermostats desire to switch, the thermostat with the lower priority must wait exactly one
time step. This adds two novel states to the system and replaces transitions accordingly
as shown in table 7.6.

120 7. Case studies

↓ from/to→ 〈2on, 2on〉 〈1off, 2on〉 〈2on, 1off〉 〈1off, 3on〉
〈2on, 2on〉 p2

2 (1− p2) · p2 p2 · (1− p2) (1− p2)2

↓ from/to→ 〈2off, 2off〉 〈1on, 2off〉 〈2off, 1on〉 〈1on, 3off〉
〈2off, 2off〉 p2

4 (1− p4) · p4 p4 · (1− p4) (1− p4)2

↓ from/to→ 〈1off, 1off〉 〈2off, 1off〉 〈1on, 1on〉 〈2on, 1on〉
〈1off, 3on〉 p3 1− p3

〈1on, 3off〉 p1 1− p1

Table 7.6: Prioritized TCL DTMC

In case the transition probabilities are not equal — p1 6= p2 ∧ p1 6= p3 ∧ p1 6= p4 ∧ p2 6=
p3 ∧ p2 6= p4 ∧ p3 6= p4 — the DTMC becomes irreducible. For instance, the states
〈1on, 2on〉 and 〈2on, 1on〉 are then no longer probabilistic bisimilar as their outgoing tran-
sition probabilities would not coincide anymore as required by definition 5.1. Although
the processes do not propagate values to one another thus excluding fault propagation,
they depend on each other by sharing a mutual resource. When that resource is controlled,
bisimilarity can be destroyed.

This paragraph demonstrated how sequential composition and lumping can be executed
and pointed out that the absence of fault propagation does not necessarily imply indepen-
dence of the processes. The example introduced control to destroy bisimulation among
non-communicating processes. Next, a small numerical example computes the probability
for a small community to suffer from a black out.

Sequential interleaving application of the ⊗ operator and lumping

Consider a set of 1000 households. For the sake of argument we assume the coarsest
possible binning, yielding one bin for on and one for off mode. As discussed before,
acquiring precise probabilities is not in the scope of this thesis. Therefore, we assume the
following values as being provided. The probability to remain in the on bin is 0.9 and the
probability to remain in the off bin is 0.8.

The full product chain without lumping contains |S| = 21000 = 1, 0715 · 10301 states.
When lumping is applied after each composition — which is a counting abstrac-
tion [Fu et al., 2002, p.195] —, the resulting DTMC contains only |S ′| = 1001 states,
one state in which all are off one in which only one is on and so on until one state in
which all 1000 are on. Its computation took about 50 minutes on a Intel(R) Core(TM) i5-
3317U CPU at 1.7 GHz equipped with 8GB DDR3 SODIMM with MatLab. The source
code is provided in appendix A.5.3. A graphical representation of the lumped product
DTMC is shown in figure 7.9.

7.1. Thermostatically controlled loads in a power grid 121

100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

900

1000 0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

number of housings in on mode (origin)

number of housings in on mode (target)

Figure 7.9: 1000 housings TCL power grid

Notably, there are no zero-probability transitions. The transitions in the blue areas are
just very close to zero. The figure shows in the top row, in which all housings are off, a
steep maximum at 100 housings simultaneously switching on. The bottom row in which
all housings are on shows a shallower distribution with the maximum at 800 housings,
indicating that about 200 housings simultaneously switch off.

With each housing being added, the matrix grows. Hence, each further addition takes
longer than the previous one. The graph in figure 7.10 shows how the computation time
of adding further housings increases with each housing.

0 100 200 300 400 500 600 700 800 900 1000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000
time in seconds

number of households

Figure 7.10: Time consumption to compute 1000 housings TCL power grid

Compared to decomposing hierarchical systems and otherwise mutually depending pro-
cesses, composing mutually independent processes is rather simple. With the households
being homogeneous, one surrogate DTMC can be multiplied with the Kronecker prod-
uct over and over again with the resulting matrix being lumped after each iteration. The
example in this section used the coarsest possible matrix — in which the θ domain of
the temperature is not partitioned — to prove a point: Writing a script to compose inde-
pendent processes can be as trivial as in this case. Then, generating matrices containing

122 7. Case studies

thousands of states automatically is just a matter of time. The DTMC shown in figure 7.9
was generated in less than an hour on a tablet PC with the specifications given above.
Contrary, constructing hierarchically structured systems is not as easy. The DTMC of the
BASS example in the previous chapter contained only 648 states in its unreduced version
and 324 states in its reduced state space. Its computation by hand took two weeks. Sim-
ilarly, the DTMC of the example in the following section contains only 144 states and
also took two weeks to compute by hand. Its computation is even more intricate than the
computation of the BASS example although it contains less processes and also less states.

The number of states is not a good indicator to reason about scalability of the approach.
Instead, the effort that is required to construct a DTMC to compute the desired measure
can be used as an indicator. In the BASS example there were seven scheduler probabilities
s1 to s7 and two fault probabilities p and q. For each of the 648 states there were hence 14
possible outcomes of an execution step, accumulating to 9072 possible outcomes overall
in the unreduced matrix. The example in this had to regard merely two events for two
states, accumulating to just four possible outcomes overall. The example in the following
section regards two switches, two faults, ten scheduling decisions and 324 states, accumu-
lating to 12960 possible outcomes overall in the unreduced matrix. Discussing scalability
is not answered by the size of the state space, but by how complex the transition model
is and how far the combination of decomposition and lumping allows to dampen the state
space explosion. While this thesis provides the basic concepts that are necessary to reason
about decomposing hierarchical systems, one promising goal for the future is hence an au-
tomatized method — including automatized slicing — like it is available for independent
processes.

Safety in the context of power grid stability

From the consumer point of view, safety — the desired mode of operation — concerns
the temperature. The current temperature should not deviate too much from the set tem-
perature. From the supplier point of view, the system is safe when no voltage peaks occur.
Such peaks occur when overall too many housings switch from on to off or vice versa. For
instance, when 500 housings switch on while in the same step 500 housings switch off,
then overall nothing changes. Redundancy here is the amount of houses that the power
grid can cope with to simultaneously switch overall. Consider a community of 1000 hous-
ings. When all housings are off, one can expect about 100 housings to turn on again. On
the contrary, when all housings are on, about 200 are expected to switch off. Yet, in the
limit, the chances that all houses are either on or off are rather slim. To compute the
chances of a black out we must compute the chances of too many housings — which
means more than the system can cope with — simultaneously switch overall weighted
with the stationary distribution. The goal is to compute this measure for all possible num-
ber of housing sufficing to cause a blackout to determine, which number provides which
reliability.

The risk of black out – limiting window reliability

The probability that the system blacks out is the accumulated transition probability of
too many houses switching on or off simultaneously. For instance, if the system blacks
out with 1000 simultaneous houses switching, the probability for a black out computes as
pr(
−−−−→
0, 1000) ·prΩ(〈0〉)+pr(

−−−−→
1000, 0) ·prΩ(〈1000〉). The index here refers to the number of

simultaneous switches necessary to cause a black out. When the system breaks down for

7.1. Thermostatically controlled loads in a power grid 123

even 999 simultaneous switches, the probability for black out computes as pr(
−−−−→
0, 1000) ·

prΩ(〈0〉) + pr(
−−−−→
1000, 0) ·prΩ(〈1000〉) + pr(

−−−→
0, 999) ·prΩ(〈0〉) + pr(

−−−→
999, 0) ·prΩ(〈999〉) +

pr(
−−−−→
1, 1000) · prΩ(〈1〉) + pr(

−−−−→
1000, 1) · prΩ(〈1000〉) and so forth. Figure 7.11(a) shows the

stationary distribution that is required to compute the probability to crash. Figure 7.11(b)
shows the probability to crash according to the required number of simultaneous switches
that are required for the system to black out.

State

P
ro
ba
bi
li
ty

0 100 200 300 400 500 600 700 800 900 1000
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

(a) Stationary distribution

number of households sufficing to cause a black out
by simultaneous switching

pr
ob

ab
il

it
y

fo
r

bl
ac

k
ou

t

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Risk per time step to black out depending on the
number of simultaneously switching households

Figure 7.11: Determining the risk to crash

In this scenario we are not interested in the probability that a system converges timely as
specified via LWA, but in the probability that closure is not violated within a given time
window. The limiting window reliability in this context is similar to LWA, a probability
distribution on first stopping times. In contrast to LWA it is a probability on stopping times
of taking a wrong transition that violates closure while LWA measured the probability of
taking a right transition to achieve convergence. The limiting window reliability, which
is the chance to survive a given time window w without a black out, is simply computed
with (1 − pr i)

w with respect to the critical accumulated number of households i that
synchronously switch to evoke a black out.

With the limiting window reliability distribution, the ongoing risk of eventually suffering
from a black out can be computed. Figure 7.12 shows how the probability for each safety
predicate — that is, that either 1 house suffices to cause a black out, or 2, or 3 . . . —
converges to 1 over time. The axis showing the number of households sufficing to cause
a blackout is cropped at 100 but extends to 1000. With fewer houses required to cause
a black out, the probability for a black out increases at a faster pace. The figure shows
that more than about 60 houses are required in the predicate to pose a thread for the
community to survive the first 100 time steps from the limit onwards. The algorithm to
compute limiting window reliability for this case is provided in appendix A.5.3.

124 7. Case studies

number of households sufficing to cause a black out
number of execution steps

number of execution steps

pr
ob

ab
il

it
y

of
 b

la
ck

 o
ut

0 20 40 60 80 100 0

50

100

0

0.2

0.4

0.6

0.8

1

Figure 7.12: Limiting window reliability over 100 time steps

Figure 7.13 shows the same plot with the reliability being encoded via color for a larger
time scale. This perspective nicely shows that i) the demarcation between unreliable (dark
red) and reliable (dark blue) is very sharp (white) and ii) providing a safety threshold
of even less than 100 houses can already suffice to provide for a high reliability for a
time window size of at least 10,000 computation steps. If the available energy buffer
— probably continuously realized via a battery — can cover for about 100 housings
and furthermore superfluous excess energy is ventable, the system is quite reliable. No-
tably, the critical number of households required for simultaneous switching to cause a
black out that the graph converges to in the limit is not a value about 50 as figure 7.13
might insinuate, but the total number or housings. What seems like counting to infin-
ity twice — the limiting window reliability starts in the limit and then runs to the limit
again — provides an important discussion. Similar to limiting reliability as discussed by
Trivedi [Trivedi, 2002, p.321], the limiting window reliability for a limiting window is
zero, too. In the limit, the red area extends to 1000 households sufficing to cause a black
out.

7.1. Thermostatically controlled loads in a power grid 125

number.of.households.sufficing.to.cause.a.black.out

nu
m

be
r.

of
.e

xe
cu

ti
on

.s
te

ps

0 100 200 300 400 500 600 700 800 900 1000

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 7.13: Limiting window reliability over 10,000 time steps

The result

The example demonstrated how a transition model and safety specifications can be de-
rived from a real world system and how they can be utilized in the context of this thesis.
With an initial probability distribution, the risk of eventually taking a transition in which
too many households simultaneously switch in the same direction can be computed. Con-
trary to LWA that computes the probability that the system reaches the legal states within
a time window, the window reliability computes the probability that a system leaves the
legal states in a time window. Contrary to the limiting reliability [Trivedi, 2002, p.321]
— with a probabilistic fault model the reliability of a system is zero in the limit — , it is
reasonable in this context to compute the limiting window reliability. Consider the system
to be initially supported by a vent and a buffer to compensate for voltage peaks until it
converges sufficiently close to its stationary distribution. From thereon, the limiting win-
dow reliability determines the probability with which the system survives (cf. Appendix
A.4.8) a desired time window by adding up all the relevant transition probabilities over
that time.

Concluding power grids

This section provided a practical case study to discuss important aspects. It highlighted

• that determining probabilistic inputs is crucial to acquire realistic results with the
presented methods and concepts,

• that a DTMC and a safety predicate can be derived from some real world systems
for which fault tolerance properties shall be determined,

• that absence of fault propagation does not automatically imply process indepen-
dence and thus bisimilarity, and

126 7. Case studies

• that the notion of limiting or instantaneous window properties can be easily adapted
to suit a desired context.

It furthermore demonstrated how synthesizing a transition model benefits from the pro-
cesses being independent. The constructed DTMC accounts for thousand processes and
was generated in less than an hour. On the contrary, the transition models of hierarchic
systems are not constructed that easy. Yet, this thesis provides the concepts and methods
to apply decomposition and lumping in their context.

7.2 A semi-hierarchical, semi-parallel stochastic sensor
network

The BASS example in chapter 6 had to take several restrictions to allow for a comprehen-
sive description.

• The influence allowed only for deterministic and probabilistic influence so far.

• With serial execution semantics, parallel execution with regards to subsystems and
scheduling could not be discussed.

• The processes were organized strictly hierarchically.

• Slicing in multiple processes was addressed only informally.

The setting in this section is selected with the intention to demonstrate that the methods
and concepts that have been described for a restrictive setting can also cope with more
complex settings.

The setup

A greater space like a desert or vineyard [Burrell et al., 2004] is covered evenly with such
small local networks as depicted in figure 7.14. Each sensor mote — modeled as a process
— in such a local wireless sensor network (WSN) is supposed to measure either humidity
or temperature, exclusively one of them at a time. A broadcast station radios the type of
value that shall be stored.

rootroot

rootroot

rootroot

root root

root root

root root

root
root

rootroot

root root

root rootroot root

root rootroot root

root rootroot root

root

broadcast

upper subsystem

lower subsystem

overlap

Figure 7.14: Small wireless sensor network

7.2. A semi-hierarchical, semi-parallel stochastic sensor network 127

Since radio receivers are expensive and the lower sensor motes have bad reception, only
the top sensor mote is equipped with a radio receiver. This example focuses on the evalu-
ation of a single local WSN. We are interested in the transition model of one local WSN
that, when required, can be composed as discussed in the previous section to account for
a whole field.

Each process contains both sensors and enough memory to store measured data for the
duration of the desired mission time. The sensors can only measure one kind of data per
time step. The root process reads the broadcasted value and propagates it to all neigh-
boring processes. The switch between measuring temperature or humidity is arbitrary
and modeled probabilistically. Consider for instance an observer that wants to evaluate
temperature and humidity of a region. That observer can switch the type of data to be
recorded. With a probability pr switch they change want the other measure to be recorded
and with probability 1− pr switch they continue with the same value.

Process π1 is the root process and reads only the probabilistic broadcast. The non-root
processes behave similar to the BASS algorithm but without priorities. Processes π2 and
π3 read from π1 and from each other. Processes π4 and π5 read from both π2 and π3. A
central scheduler demon that is not shown in the figure probabilistically selects two pro-
cesses per time step to execute in parallel. Each computation step starts with a read phase
in which the executing processes inquire which type of data is to be stored. Afterwards,
they store the corresponding measure. Forcing the processes to maintain a strict sequence
of reading and writing allows to exclude read-after-write hazards as discussed by Pat-
terson and Hennessy [Hennessy and Patterson, 1996, Patterson and Hennessy, 2005]. For
instance, assume that π1 and π2 execute. Without a strict sequence it is undetermined
whether first π1 updates according to the radio broadcast and also updates π2 in the same
step, or if first π2 inquires the old status of π1 before both processes write. With the strict
sequence the latter constellation is considered.

We abbreviate temperature with 0 and humidity with 2. Contrary to the BASS example 2
is not a fault value. When a process cannot determine which the intended type is — that
is, when there is no majority for one of the two types —, it stores nothing to save memory,
and propagates 1 until it executes again. The value 1 coincides with the don’t know value
in the BASS example. The fault model forces a process to store 0 when it should store 2
and vice versa. In case a process is supposed to store 1 and is perturbed by a fault, the
effect of the fault is undetermined. We pessimistically assume that it stores the currently
inappropriate value that is not broadcasted at that time.

With five processes and two processes executing in parallel per time step, it requires at
least five steps for every processes to have executed. Hence, after a switch on the broad-
cast, the system must execute at least three steps to propagate the new type of data to be
stored. The system thus cannot continuously store the desired data in every process.

With pr switch ≥ 1
3
, meaning that a switch occurs in average every three or less time steps,

it is unlikely that — even without transient faults — the consistency is very high, since
the mean switching interval is lower than the minimal time required for convergence.

The goal

The goal is to determine the consistency of the measured data in a given probabilistic
environment. A set of data contains the data stored by each process. That set is consistent
if it coincides with the broadcasted type at that time. The system has not only to cope

128 7. Case studies

with transient faults propagating through the system, but also with probabilistic switches.
The system probabilistically converges to the currently broadcasted type of data and is
thereby probabilistically self-stabilizing. In this case, the LWA is adapted to cover not
only for one time step, but for each time step during the whole mission time. What
is the probability that each process stores the desired type of data in each time step?
Furthermore, we assume that all processes initially store 0 and 0 is broadcasted in the
first time step. Thereby, we are interested in the instantaneous window availability with
window size 1 for each time step.

The motivation

This example allows to highlight four important properties that have been discussed in the
beginning of this section. The first point concerns resolving non-determinism. In the fault
model it is undetermined which value the perturbed process stores when it is supposed
to store 1. In the example, we pessimistically assume that the currently not broadcasted
value is stored to resolve this non-determinism, thus computing the lower boundary of
the probability that all processes store the currently broadcasted value. The same com-
putation can be repeated with an optimistic assumption — that is, storing the currently
broadcasted value — leading to the upper boundary of the probability that all processes
store the currently broadcasted value. The upper and lower boundaries demarcate the
corridor of possible execution traces. Notably, for the case of the non-deterministic de-
cisions being controllable, interactive Markov chains can provide a suitable transition
model [Hermanns, 2002] to replace DTMCs. Similar to reducing DTMCs, their bisimi-
lar states can be reduced as well as for instance discussed for independent processes by
Hermanns and Katoen [Hermanns and Katoen, 2009]. Replacing the transition model is
discussed in chapter 8.

The second variation to the previous chapter are parallel execution semantics. In the
BASS example, the DTMC was split and the adapted Kronecker product accounted for
that either exclusively in the upper subsystem Π1 or exclusively in the lower subsystem
Π2 one process executed. Contrary, parallel execution semantics as in section 7.1 are not
challenging as the processes do not compete for the resource of execution. Semi-parallel
execution semantics — that is, not all processes but more than one process can execute
per time step — are a special challenge as a case distinction is necessary that is neither
required for strictly serial execution semantics nor for parallel execution semantics. The
present case study allows to address this challenging issue.

Third, the system contains a heterarchical subsystem with processes π2 and π3 being lo-
cally heterarchical. As discussed before, decomposing heterarchical (sub-)systems or sub-
systems is not possible offhand. Therefore, they are to be always kept together during the
decomposition. With the discussion about overlapping sets on page 85 in mind, the chal-
lenge here will be to slice the system through the heterarchical set. The two heterarchical
processes are the overlapping set.

This also allows to discuss the fourth alteration. Slicing through multiple processes was
discussed only informally before. This example allows to show how slicing through multi-
ple processes is not more complex than slicing in one process. The slicing in this example
further demonstrates that the processes in subsystems — in this case π4 and π5 — need
not even necessarily be connected.

7.2. A semi-hierarchical, semi-parallel stochastic sensor network 129

The input parameters

The input parameters contain

1. fault probabilities,

2. switching probabilities and

3. scheduling probabilities.

We consider the fault probability of an executing process storing the wrong type of data
to be q = 0.01 and the switching probability to be pr switch = 0.03 for both switching
directions, from 0 to 2 and vice versa. The numerical values2 can be adapted as desired.
The scheduler selects two processes randomly with a uniform probability distribution.

The safety predicate

The system is in a safe state — that is, the data set being recorded is consistent — when
all processes record the value that is broadcasted at that time:

st |= P

{
st = 〈0, 0, 0, 0, 0〉 ∧ broadcasted value is 0

st = 〈2, 2, 2, 2, 2〉 ∧ broadcasted value is 2
(7.3)

The quantification method can easily be adapted such that safety is also satisfied when not
all, but only a subset of the processes stores the broadcasted type of value.

The state spaces

The first process can store either 0 or 2 and all other processes can derive 1 as well.
Furthermore, the broadcasted value determines whether st |= P and must be accounted for
as well. For instance, the system can be in state st = 〈0, 0, 0, 0, 0〈 when 0 is broadcasted,
thus satisfying P , or it can be in the same state when 2 is broadcasted, thus not satisfying
P . The full product transition model hence contains |S| = 2 · 2 · 34 = 324 states — that
is, number of possibly broadcasted values times the number of possible values in π1 times
the number of possible states to the power of processes these are being stored in — as
pictured in figure 7.15(a).

broadcast

root

(a) Full state space

broadcast

root

(b) Lumped state space

Figure 7.15: State space reduction
2The source code is available at http://www.mue-tech.com/WSN.zip. The tables in the source code

contain symbolic DTMCs such that the input parameters can be easily adapted.

http://www.mue-tech.com/WSN.zip

130 7. Case studies

Coalescing of states results in a state space of |S ′| = 2 · 2 · 6 · 6 = 144 states.

The decomposition

The system is sliced in π2 and π3 as discussed in chapter 6. The upper subsystem com-
prises processes π1, π2 and π3. The lower subsystems contains processes π4 and π5.
Contrary to the proceeding in the BASS example, the overlapping processes π2 and π3 are
awarded to the upper subsystem during the uncoupling of the decomposition as described
in paragraph "Uncoupling with⊗" on page 89. The scheduler selects two processes. If the
two processes were to deterministically execute both within the same subsystem, the de-
composition could be carried out like for serial execution semantics. Here, two processes,
one in each subsystem, can execute in parallel. Therefore, each case must be accounted
with its own transition matrix. The first case is that both processes selected for execution
belong to the upper subsystem. The second case is that both selected processes belong
to the lower subsystem. The third case is that one process belongs to each of the two
subsystems.

We label the sub-Markov chain for the upper subsystem D1 and D2 for the lower sub-
system. A second index is added labeling the case if no process in the corresponding
subsystem is selectedD1,0, if one process is selectedD1,1 or if both selected processes are
within the subsystem D1,2 (analogously for D2). Figure 7.16 shows the decomposition
schema.

Figure 7.16: Decomposing the WSN transition system

Like in the BASS example, the upper subsystem — being hierarchically superior —
is tackled first. A graphical representation of the sub-Markov chains is provided in ap-
pendix A.5.4. The transition matrices describe what can happen in one execution step with
two processes executing simultaneously. The three probabilistic influences are switch,
fault and scheduler selection. The latter comprises the events s1,2, the probability that
processes π1 and π2 are selected, s1,3, s1,4, s1,5, s2,3, s2,4, s2,5, s3,4, s3,5 and s4,5. With
uniformly distributed scheduling probabilities, each combination is likely to be selected
with 0.1. The probability that exactly one process in the upper subsystem is selected is

7.2. A semi-hierarchical, semi-parallel stochastic sensor network 131

hence s1,4 + s1,5 + s2,4 + s2,5 + s3,4 + s3,5 = sboth = 0.6. The probability that both selected
processes belong to the upper subsystem is s1,2 + s1,3 + s2,3 = 0.3 = sup. The probability
that none of them is selected is s4,5 = 0.1 = slow.

For each case, the transition matrix is constructed as described in section 2.4. Next, all
three matrices D1,0, D1,1 and D1,2 are lumped to D′1,0, D′1,1 and D′1,2. These matrices are
required again later. Afterwards, the three matrices D′1,0, D′1,1 and D′1,2 are added and
D′π2,π3

is uncoupled.

Both π4 and π5 store

• 0 when reading 〈0, 0〉 or 〈1〉, which is the lumped state of states 〈0, 1〉 and 〈1, 0〉,

• 1 when reading 1, 1 or 〈2〉 which is the lumped state of states 〈0, 2〉 and 〈2, 0〉, and

• 2 when reading 〈2, 2〉 or 〈3〉 which is the lumped state of states 〈1, 2〉 and 〈2, 1〉.

A minor simplification

At this stage we exploit a minor simplification that is helpful when computing the instan-
taneous window availability instead of a limiting property. When computing a limiting
property, the limiting probability that a certain input is propagated from superior to infe-
rior subsystem does not change over time. It is the same for time step Ω as it is for time
step Ω + 1. For instantaneous properties on the other hand, the probability that a certain
values is propagated does change, until reaching the stationary distribution in the limit.
For a precise quantification it would be necessary to construct the transition model for the
lower subsystem for each time step.

The important question is, how this simplification influences the result. In the beginning,
the input vector (i.e. the initial distribution) differs maximal from the stationary distribu-
tion. With each time step it differs less. When the stationary distribution replaces the
current distribution as input parameter, convergence is sped up. The next question is, how
much the convergence is sped up. Provided that the initial distribution assigns the com-
plete probability mass to state 〈0, 0, 0, 0, 0〉 and that 0 is broadcasted in the beginning, the
probability that this status changes is less 0.08. With each additional computation step
the computation error gets slimmer until becoming zero in the limit. The simplification is
considered to be acceptable since i) the convergence to the stationary distribution is quick
and the introduced error only relevant to the first few computation steps, ii) the error con-
verges to zero itself, and iii) the gain for accepting this slight error is a great simplification
in the computation. The lower sub-Markov chains needs not be computed (and lumped
subsequently) for each time step.

Continuing the construction of D′

Thus, matrices D′2,0, D′2,1 and D′2,2 are constructed. In these matrices, the states where
π2 and π3 are responsible for bisimilarities have been lumped but the states where π4 and
π5 are responsible for bisimilarities have not, hence the overline notation. Processes π2

and π3 are uncoupled subsequently. Lumping further reduces the state space and D2,−,0,
D2,−,1 andD2,−,2 are constructed. Finally,D′low = D′1,0⊗KD′2,−,2,D′both = D′1,1⊗KD′2,−,1
and D′up = D′1,2 ⊗K D′2,−,0 are computed by applying the Kronecker product. Here, the
Kronecker product is applicable since two processes execute in parallel. As the cases of
parallel executions have been distinguished from the beginning, the full DTMC D′ is the
accumulated effort of all three case DTMCs: D′ = D′low +D′both +D′low.

132 7. Case studies

The result

Figure 7.17 shows the probability mass in states 〈0, 0, 0, 0, 0〉 when 0 is propagated (green
line converging from above) and 〈2, 2, 2, 2, 2〉 when 2 is propagated (red line converg-
ing from below) for the first thousand time steps. It merely takes a little more than a
hundred steps until both lines meet and the system converged. The numerical values
at this time-step are pr(s100 = 〈0, 0, 0, 0, 0〉 ∧ propagated value = 0) = 0.4151 and
pr(s100 = 〈2, 2, 2, 2, 2〉 ∧ propagated value = 2) = 0.4033. With equal switching an
fault probabilities it was expected that both predicate satisfaction probabilities converge
to the same value. With switching at 0.03 and a minimum of three computation steps for
convergence and a fault probability of 0.01 it seems plausible that the consistency is about
0.82.

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 7.17: Result of the WSN example – converging consistency

The average consistency of the measured data is about 0.82 in the limit. The convergence
inertia — which is the time spent for convergence due to both switching and recovery —
is shown in figure 7.18. The term inertia is chosen as the system requires time to cope
with switching and the effects of faults. The convergence inertia is the probability with
regards to the current time step that the system is between the legal states.

0 10 20 30 40 50 60 70 80 90 100
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Figure 7.18: Result of the WSN example – convergence inertia

7.3. Summarizing the case studies 133

It converges to about 0.18 very fast which is why it is plotted only for the first 100 states.

Interpretation

While the LWA is a measure on stop times, this example demonstrates how such stop
time can continuously be exploited by measuring the desired probability for each time
step in contrast to just its first occurrence. The example further demonstrated how non-
determinism, local heterarchies, semi-parallel execution semantics and slicing among
multiple — even heterarchical lumpable — processes can be achieved. The notion of
switching introduced a further challenge by demanding dynamic predicates and doubling
the size of the state space. Furthermore, it extended pure recovery liveness during times
of error to a more general convergence inertia that accounts for both switching as well
as effects of faults. A system designer has now the opportunity to test various settings,
alter the fault and switching probabilities as well as the topology, until a suitable system
is found providing the desired consistency of the measured data.

7.3 Summarizing the case studies
The case studies demonstrated the practical benefit of the proposed methods and concepts
and further pointed out challenges and limitations that could not be addressed before. The
power grid example showed that it can be challenging to determine probabilistic influence
and that composing sub-Markov chains of independent processes is a whole lot easier than
composing hierarchical systems that are in the focus of this thesis. The second example
required four extensions to the previous discussion, all of which could be coped with.
Combining the lessons learned from both examples, decomposing large systems seems
tractable when i) the whole system comprises mutually independent uniform components
like in section 7.2, ii) the subsystems are structured hierarchically like in section 6.5, and
heterarchies occur only locally and do not have to be further decomposed as in section 7.2.

134 7. Case studies

8. Conclusion

The goal of this thesis was to develop methods and concepts for a probabilistic reasoning
and quantification of the fault tolerance properties of systems that can recover from the
effects of faults. Distinguishing systems into being hierarchical, semi-hierarchical and
heterarchical allowed to demarcate the scope of this thesis: Hierarchical systems.

Chapter 1 introduced and motivated the goals of this thesis and chapter 2 presented sys-
tem, fault and environment models as foundations to achieve these goals. The term fault
tolerance is perceived differently in various contexts1. This thesis provided a general
fault tolerance taxonomy in the context of this thesis in chapter 3. In this context, limit-
ing window availability was proposed as a suitable measure in chapter 4. A technique to
compute it, based on discrete time Markov chains, was presented. This technique derives
from probabilistic model checking and suffers from state-space explosion. Lumping, an
opportunity to cope with this issue, has been discussed in the context of computing LWA
in chapter 5. Yet, to apply lumping, it was necessary to construct the full product DTMC.
Decomposing the system to apply lumping locally has been addressed in probabilistic
model checking for systems without fault propagation. The systems discussed in this the-
sis demand a different approach, yet, as they allow fault propagation as necessary evil to
benefit from self-stabilization. A novel decomposition technique for hierarchical systems
was developed to apply lumping locally on the considerably smaller sub-Markov chains
of the subsystems. In this context, the Kronecker product, that has been applied for par-
allel and mutually independent processes, was successfully adapted to suit hierarchical
systems and serial execution semantics. Chapter 6 explained the general decomposition
method. To show the suitability of the concepts developed and to point out challenges
and opportunities that could not be addressed before, chapter 7 provided two case studies.
This chapter closes the thesis by contemplating about future directions.

The core contributions to the state of the art include:

• a sound and general fault tolerance taxonomy that extends to probabilism and non-
determinism

• determining those aspects that are important regarding recovery dynamics of a sys-
tem and probabilistic fault tolerance

1Appendix A.4 presents a variety of selected definitions of those terms constituting fault tolerance.

136 8. Conclusion

• window measures like instantaneous and limiting window availability and reliability
to quantify the recovery dynamics

• providing a method based on DTMCs to compute these measures

• discussing lumping in this context

• introducing decomposition of hierarchically structured systems

• combining lumping and decomposition

• contrasting systems with mutually independent processes and hierarchical, semi-
hierarchical and heterarchical (sub-)systems

• academical examples including TLA and BASS as well as practical examples like
TCL and WSN

Future work

Limiting window availability is a specific measure. Instantaneous window availability was
presented early to point out that this measure can easily be adapted to satisfy a different
focus. Further variations concern safety to hold for more than one consecutive time step
or to hold for a least number of computation steps within a time window. Further possible
extensions to the discussion concern multiple root processes, approximate decomposition
of heterarchic subsystems and to further investigate semi-parallel execution semantics.

The trustworthiness of the probabilistic data is a promising topic as well. As discussed in
the introduction, the strength of the proposed approach lies in its precision. With prob-
abilities for scheduling and faults being provided, the proposed analytic method allows
to precisely compute the fault tolerance measures of a system in a probabilistic environ-
ment, thereby overcoming the limitations of sampling methods such as simulation and
real world experiments. The Achilles heel of the approach is the quality of the assumed
or estimated probabilities. The discussion about rare events pointed out how critical this
precondition is.

The remaining directions proposed for future research aim at related work. The focus
is on either exploiting methods and concepts from related domains in the context of this
thesis, or, on the contrary, to disseminate the contributions of this thesis.

The concept of self-stabilization — as presented in section 3.2 — provides a rather strict
corset to discuss hierarchically structured fault tolerant systems. Relaxing the conver-
gence property to probabilistic self-stabilization [Devismes et al., 2008] allowed to ac-
count for probabilistic transient faults. It seems promising to reason about further re-
laxations. The work by Podelski, Wagner and Mitrohin [Mitrohin and Podelski, 2011,
Podelski and Wagner, 2006] for instance discusses relaxations for hybrid systems that
might be applicable in the context of this thesis.

The systems presented in this thesis were already minimal regarding the register domains.
In reality, systems commonly feature much larger domains like integers or floats. Ab-
stracting such domains to the relevant information is already discussed by Katoen et
al. [Katoen et al., 2012]. Similarly, the continuous temperature domain in the TCL ex-
ample was abstracted into bins. The relation between the granularity of binning and
the precision of the resolving transition model is currently addressed by Soudjani and

137

Abate [Soudjani and Abate, 2013a]. When decomposition and lumping provide insuf-
ficient leverage, widening the bins might help in achieving the goal. Another similar
angle is approximate lumping of similar states as for instance discussed by Mertsio-
takis [Mertsiotakis, 1998]. The criteria for states to be sufficiently similar to qualify for
lumping can be softened until the analysis of the system becomes tractable. It seems very
promising to combine these relaxations and to determine a reasonable trade-off between
approximate lumping and granularity of abstraction of parameter spaces. The challenge
seems to be the computation of the precise error that is introduced by either relaxation in
order to find the tractable solution with the smallest error.

This thesis focused solely on DTMCs as they naturally model the behavior of the systems
under consideration. Yet, switching the transition model might be beneficial. For instance,
Baier and Katoen [Baier and Katoen, 2008] as well as Mertsiotakis [Mertsiotakis, 1998]
discuss a variety of transition models and their respective advantages. It might be worth-
while to discuss the developed methods and concepts for other transition models as well.

Considering other transition models consequently leads to the discussion about non-
determinism. Assume not every single probability is known like in the WSN example.
In that case, discrete time Markov decision processes or interactive Markov chains could
replace the DTMCs. For instance, the papers by Zhang et al. [Zhang et al., 2010] and
Fränzle et al. [Fränzle et al., 2011] discuss deterministic system dynamics under partially
probabilistic, partially non-deterministic influence.

The task of probabilistic fault tolerance design is a problem of multi-objective optimiza-
tion (cf. e.g. [Deb, 2001]). While the costs are to be minimized, the degree of fault
tolerance is to be maximized. Section 3.5 motivated to focus on temporal redundancy to
account for recovery liveness. Yet, systems might offer a huge variety of possibilities to
allocate different resources in order to acquire different kinds of fault tolerance. On the
other hand, systems might have more desirable properties than just fault tolerance, like
performance or energy consumption. In this context, Andova et al. [Andova et al., 2003]
provide a suitable extension to PCTL. Figure 8.1 depicts a system as a black box that has
different kinds of redundancy — the currencies of fault tolerance — as input parameters
and different kinds of fault tolerance as output parameters.

currency 1
currency 2

currency n

metric 1
metric 2

metric m

instance of system
and fault environment

Figure 8.1: Black box fault tolerance design

Converting different kinds of redundancy into different kinds of fault tolerance or
other quantifiable system properties is not always as easy as determining the ef-
ficiency of triple modular redundancy. With multiple inputs and multiple outputs
confining the design space, a counter-example guided abstraction refinement (CE-
GAR) [Hermanns et al., 2008] of the system design seems in order. Once the internals

138 8. Conclusion

of the black box are specified — for instance as a symbolic DTMC —, the input param-
eters can be adjusted until the output parameters satisfy desired constraints.

Furthermore, the development of software to tackle hierarchical systems is desirable. Ex-
isting tools like PRISM already provide the opportunity to generate a transition model
from a system definition. Adding to popular tools such as CADP or PRISM to support
the automatic decomposition and lumping of hierarchical — and possibly even semi-
hierarchical — systems and different execution semantics can be based on the concepts
and methods developed in this thesis.

Bibliography

[IEE, 1988] (1988). IEEE Standard 982.1-1988. superseded by 982.1-2005 - IEEE Stan-
dard Dictionary of Measures of the Software Aspects of Dependability.

[198, 1989] (1989). LOTOS - A formal description technique based on the temporal
ordering of observational behaviour. Standard. Information Processing Systems, Open
Systems Interconnection.

[IEE, 1990] (1990). IEEE Std 610.12-1990(R2002).

[ISO, 1999] (1999). ISO/IEC 14598-1: Information Technology - Software Product Eval-
uation - Part 1: General Overview.

[ISO, 2001] (2001). ISO/IEC 9126.

[Afek et al., 1997] Afek, Y., Kutten, S., and Yung, M. (1997). The Local Detection
Paradigm and its Applications to Self-Stabilization. Theoretical Computer Science,
186:199 – 230.

[Alpern and Schneider, 1985] Alpern, B. and Schneider, F. B. (1985). Defining Liveness.
Technical report, Ithaca, NY, USA.

[Andova et al., 2003] Andova, S., Hermanns, H., and Katoen, J.-P. (2003). Discrete-time
Rewards Model-Checked. In Larsen, K. G. and Niebert, P., editors, Formal Modeling
and Analysis of Timed Systems (ForMATS), volume 2791 of Lecture Notes in Computer
Science, pages 88–104. Springer Verlag.

[Armstrong, 2007] Armstrong, J. (2007). Programming Erlang: Software for a Concur-
rent World. Pragmatic Bookshelf.

[Arora and Kulkarni, 1998a] Arora, A. and Kulkarni, S. S. (1998a). Designing Mask-
ing Fault-Tolerance via Nonmasking Fault-Tolerance. IEEE Transactions on Software
Engineering, 24(6):435 – 450.

[Arora and Kulkarni, 1998b] Arora, A. and Kulkarni, S. S. (1998b). Detectors and Cor-
rectors: A Theory of Fault-Tolerance Components. In International Conference on
Distributed Computing Systems, pages 436 – 443.

[Arora and Nesterenko, 2004] Arora, A. and Nesterenko, M. (2004). Unifying Stabiliza-
tion and Termination in Message Passing Systems. Distributed Computing.

[Aviz̆ienis et al., 2001] Aviz̆ienis, A., Laprie, J.-C., and Randell, B. (2001). Fundamental
Concepts of Dependability. pages 7 – 12.

140 Bibliography

[Aviz̆ienis et al., 2004] Aviz̆ienis, A., Laprie, J.-C., Randell, B., and Landwehr, C.
(2004). Basic Concepts and Taxonomy of Dependable and Secure Computing. IEEE
Transactions on Dependable and Secure Computing, 1:11 – 33.

[Baier and Katoen, 2008] Baier, C. and Katoen, J.-P. (2008). Principles of Model Check-
ing (Representation and Mind Series). The MIT Press.

[Baruah et al., 2012] Baruah, S. K., Bonifaci, V., D’Angelo, G., Li, H., Marchetti-
Spaccamela, A., Megow, N., and Stougie, L. (2012). Scheduling Real-time Mixed-
criticality Jobs. IEEE Transactions on Computers, 61(8):1140–1152.

[Becker et al., 2006] Becker, S., Hasselbring, W., Paul, A., Boskovic, M., Koziolek, H.,
Ploski, J., Dhama, A., Lipskoch, H., Rohr, M., Winteler, D., Giesecke, S., Meyer, R.,
Swaminathan, M., Happe, J., Muhle, M., and Warns, T. (2006). Trustworthy Soft-
ware Systems: A Discussion of Basic Concepts and Terminology. SIGSOFT Software
Engineering Notes, 31(6):1 – 18.

[Benoit et al., 2006] Benoit, A., Plateau, B., and Stewart, W. J. (2006). Memory-efficient
Kronecker Algorithms with Applications to the Modelling of Parallel Systems. Future
Gener. Comput. Syst., 22(7):838–847.

[Bèrard et al., 2001] Bèrard, B., Bidoit, M., Finkel, A., Laroussinie, F., Petit, A., Petrucci,
L., and Schnoebelen, P. (2001). Systems and Software Verification. Model-Checking
Techniques and Tools. Springer.

[Bernstein, 1966] Bernstein, A. (1966). Analysis of Programs for Parallel Processing.
IEEE Transactions on Electronic Computers, 15(5):757 – 763.

[Boehm et al., 1976] Boehm, B. W., Brown, J. R., and Lipow, M. (1976). Quantitative
Evaluation of Software Quality. In Proceedings of the Second International Conference
on Software Engineering, ICSE1976, pages 592 – 605, Los Alamitos, CA, USA. IEEE
Computer Society Press.

[Boudali et al., 2008a] Boudali, H., Crouzen, P., Haverkort, B. R., Kuntz, M., and
Stoelinga, M. (2008a). Arcade - A Formal, Extensible, Model-Based Dependability
Evaluation Framework. In ICECCS, pages 243–248. IEEE Computer Society.

[Boudali et al., 2008b] Boudali, H., Crouzen, P., Haverkort, B. R., Kuntz, M., and
Stoelinga, M. (2008b). Architectural Dependability Evaluation with Arcade. In DSN,
pages 512–521.

[Boudali et al., 2007a] Boudali, H., Crouzen, P., and Stoelinga, M. (2007a). A Composi-
tional Semantics for Dynamic Fault Trees in Terms of Interactive Markov Chains. In
Proceedings of the 5th international conference on Automated technology for verifica-
tion and analysis, ATVA’07, pages 441–456, Berlin, Heidelberg. Springer-Verlag.

[Boudali et al., 2007b] Boudali, H., Crouzen, P., and Stoelinga, M. (2007b). Dynamic
Fault Tree analysis using Input/Output Interactive Markov Chains. In 37th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks, DSN
2007, pages 708–717, Los Alamitos, CA, USA. IEEE Computer Society Press.

Bibliography 141

[Boudali et al., 2010] Boudali, H., Crouzen, P., and Stoelinga, M. (2010). A Rigorous,
Compositional, and Extensible Framework for Dynamic Fault Tree Analysis. IEEE
Trans. Dependable Sec. Comput., 7(2):128–143.

[Boudali et al., 2009] Boudali, H., Sözer, H., and Stoelinga, M. (2009). Architectural
Availability Analysis of Software Decomposition for Local Recovery. In SSIRI, pages
14–22.

[Bozzano and Villafiorita, 2010] Bozzano, M. and Villafiorita, A. (2010). Design and
Safety Assessment of Critical Systems. CRC Press (Taylor and Francis), an Auerbach
Book, 1st edition.

[Brown et al., 1989] Brown, G. M., Gouda, M. G., and Wu, C.-L. (1989). Token Systems
That Self-Stabilize. IEEE Transactions on Computing, 38(6):845 – 852.

[Buchholz, 1994] Buchholz, P. (1994). Exact and Ordinary Lumpability in Finite Markov
Chains. Journal of Applied Probability, 31(1):59–75.

[Buchholz, 1997] Buchholz, P. (1997). Hierarchical structuring of superposed gspns. In
Petri Nets and Performance Models, 1997., Proceedings of the Seventh International
Workshop on, pages 81–90.

[Burrell et al., 2004] Burrell, J., Brooke, T., and Beckwith, R. (2004). Vineyard Comput-
ing: Sensor Networks in Agricultural Production. IEEE Pervasive Computing, 3:38 –
45.

[Callaway, 2009] Callaway, D. S. (2009). Tapping the Energy Storage Potential in Elec-
tric Loads to Deliver Load Following and Regulation, with Application to Wind En-
ergy. Energy Conversion and Management, 50:1389 – 1400.

[Chen, 1976] Chen, P. P.-S. (1976). The Entity-relationship Model — Toward a Unified
View of Data. ACM Transactions on Database Systems, 1(1):9 – 36.

[Clarke et al., 1986] Clarke, E. M., Emerson, E. A., and Sistla, A. P. (1986). Automatic
Verification of Finite-State Concurrent Systems Using Temporal Logic Specifications.
ACM Transactions on Programming Languages and Systems, 8:244–263.

[Coulouris et al., 2001] Coulouris, G., Dollimore, J., and Kindber, T. (2001). Distributed
Systems Concepts and Design. International Computer Science Series. Addison-
Wesley Pub. Co., 3 edition.

[Deb, 2001] Deb, K. (2001). Multi-objective Optimization Using Evolutionary Algo-
rithms. Wiley-Interscience series in systems and optimization. John Wiley & Sons.

[Delporte-Gallet et al., 2007] Delporte-Gallet, C., Devismes, S., and Fauconnier, H.
(2007). Robust Stabilizing Leader Election. In Proceedings of the Ninth International
Conference on Stabilization, Safety, and Security of Distributed Systems (SSS2007),
pages 219 – 233, Berlin, Heidelberg. Springer.

[Denning, 1976] Denning, P. J. (1976). Fault Tolerant Operating Systems. ACM Com-
puting Surveys, 8(4):359 – 389.

[Department of Defense, 1988] Department of Defense, W. D. (1988). Electronic Relia-
bility Design Handbook. Number 1. Defense Technical Information Center.

142 Bibliography

[Devismes et al., 2008] Devismes, S., Tixeuil, S., and Yamashita, M. (2008). Weak
vs. Self vs. Probabilistic Stabilization. In Proceedings of the 28th International Confer-
ence on Distributed Computing Systems (ICDCS2008), pages 681 – 688, Washington,
DC, USA. IEEE Computer Society Press.

[Dijkstra, 1974] Dijkstra, E. W. (1974). Self-Stabilizing Systems in Spite of Distributed
Control. Communications of the ACM, 17(11):643 – 644.

[D’Innocenzo et al., 2012] D’Innocenzo, A., Abate, A., and Katoen, J.-P. (2012). Robust
PCTL Model Checking. In Proceedings of the 15th ACM international conference on
Hybrid Systems: Computation and Control, HSCC ’12, pages 275–286, New York,
NY, USA. ACM.

[Dolev, 2000] Dolev, S. (2000). Self-Stabilization. The MIT Press, Cambridge, MA,
USA.

[Dolev et al., 1996] Dolev, S., Gouda, M. G., and Schneider, M. (1996). Memory Re-
quirements for Silent Stabilization. In Proceedings of the 15th Annual ACM Sympo-
sium on Principles of Distributed Computing (PODC1996), pages 27 – 34, New York,
NY, USA. ACM.

[Ebnenasir, 2005] Ebnenasir, A. (2005). Automatic Synthesis of Fault-tolerance. PhD
thesis, East Lansing, MI, USA. Advisors: Sandeep S. Kulkarni, Laura Dillon, Betty
Cheng, Jonathan Hall.

[Echtle, 1990] Echtle, K. (1990). Fehlertoleranzverfahren. Studienreihe Informatik.
Springer. ISBN: 978-3-540-52680-3.

[Erlang, 1909] Erlang, A. K. (1909). The Theory of Probabilities and Telephone Con-
versations. Nyt Tidsskrift for Matematik, 20(B):33–39. accessble online via http:
//de.scribd.com/doc/27138581/The-Life-and-Works-of-a-K-Erlang.

[Erlang, 1917] Erlang, A. K. (1917). Solution of some Problems in the The-
ory of Probabilities of Significance in Automatic Telephone Exchanges. Elek-
trotkeknikeren, 13. accessble online via http://de.scribd.com/doc/27138581/
The-Life-and-Works-of-a-K-Erlang.

[Feller, 1968] Feller, W. (1968). An Introduction to Probability Theory and Its Applica-
tions, volume 1. Wiley.

[Fischer and Jiang, 2006] Fischer, M. and Jiang, H. (2006). Self-stabilizing Leader Elec-
tion in Networks of Finite-state Anonymous Agents. In Proceedings of the Tenth In-
ternational Conference on Principles of Distributed Systems, number 4305, pages 395
– 409. Springer.

[Fränzle et al., 2011] Fränzle, M., Hahn, E. M., Hermanns, H., Wolovick, N., and Zhang,
L. (2011). Measurability and Safety Verification for Stochastic Hybrid Systems. In
Proceedings of the 14th International Conference on Hybrid systems: Computation
and Control (HSCC2011), pages 43 – 52. ACM.

[Fränzle et al., 2007] Fränzle, M., Herde, C., Teige, T., Ratschan, S., and Schubert, T.
(2007). Efficient Solving of Large Non-linear Arithmetic Constraint Systems with
Complex Boolean Structure. Journal on Satisfiability, Boolean Modeling and Compu-
tation (JSAT), 1(3-4):209 – 236.

http://de.scribd.com/doc/27138581/The-Life-and-Works-of-a-K-Erlang
http://de.scribd.com/doc/27138581/The-Life-and-Works-of-a-K-Erlang
http://de.scribd.com/doc/27138581/The-Life-and-Works-of-a-K-Erlang
http://de.scribd.com/doc/27138581/The-Life-and-Works-of-a-K-Erlang

Bibliography 143

[Frolund and Koistinen, 1998a] Frolund, S. and Koistinen, J. (1998a). QML: A Language
for Quality of Service Specification. Technical Report HPL-98-10, Hewlett-Packard
Software Technology Laboratory.

[Frolund and Koistinen, 1998b] Frolund, S. and Koistinen, J. (1998b). Quality of Service
Specification in Distributed Object Systems Design. Technical report.

[Frolund and Koistinen, 1999] Frolund, S. and Koistinen, J. (1999). Quality of Service
Aware Distributed Object Systems. In Proceedings of the Fifth USENIX Conference
On Object-Oriented Technology and Systems (COOTS1999), pages 69 – 83.

[Fu et al., 2002] Fu, X., Bultan, T., and Su, J. (2002). Formal Verification of E-Services
and Workflows. In Proc. ESSW, pages 188–202. Springer-Verlag.

[Garavel and Hermanns, 2002] Garavel, H. and Hermanns, H. (2002). On Combining
Functional Verification and Performance Evaluation Using CADP. In FME 2002: For-
mal Methods - Getting IT Right, International Symposium of Formal Methods Europe,
Copenhagen, Denmark, July 22-24, 2002, Proceedings, pages 410–429.

[Garavel et al., 2001] Garavel, H., Lang, F., and Mateescu, R. (2001). An overview of
CADP 2001. Research Report RT-0254, INRIA.

[Garavel et al., 2011] Garavel, H., Lang, F., Mateescu, R., and Serwe, W. (2011). CADP
2010: A Toolbox for the Construction and Analysis of Distributed Processes. In
Tools and Algorithms for the Construction and Analysis of Systems - TACAS 2011,
Saabrücken, Allemagne.

[Girard and Pappas, 2005] Girard, A. and Pappas, G. J. (2005). Approximate Bisimula-
tions for Nonlinear Dynamical Systems. In 50th IEEE Conference on Decision and
Control and European Control, pages 684 – 689, Seville, Spain. IEEE Computer Soci-
ety Press.

[Golay, 1949] Golay, M. J. E. (1949). Notes On Digital Coding. IRE, 37.

[Graf et al., 1996] Graf, S., Steffen, B., and Lüttgen, G. (1996). Compositional Minimi-
sation of Finite State Systems Using Interface Specifications. Formal Asp. of Comp,
8:607–616.

[Hamming, 1950] Hamming, R. W. (1950). Error Detecting and Error Correcting Codes.
In Bell System Technology Journal, volume 29, pages 147 – 150.

[Hansson and Jonsson, 1994] Hansson, H. and Jonsson, B. (1994). A Logic for Reason-
ing about Time and Reliability. Formal Aspects of Computing, 6:102–111.

[Hennessy and Patterson, 1996] Hennessy, J. L. and Patterson, D. A. (1996). Computer
Architecture: A Quantitative Approach, 2nd Edition. Morgan Kaufmann Publishers
Inc.

[Hermanns, 2002] Hermanns, H. (2002). Interactive Markov Chains: The Quest for
Quantified Quality, volume 2428 of Lecture Notes in Computer Science. Springer.

[Hermanns and Katoen, 1999] Hermanns, H. and Katoen, J.-P. (1999). Automated Com-
positional Markov Chain Generation for a Plain-Old Telephone System. In SCIENCE
OF COMPUTER PROGRAMMING, pages 97–127.

144 Bibliography

[Hermanns and Katoen, 2009] Hermanns, H. and Katoen, J.-P. (2009). The How and
Why of Interactive Markov Chains. In FMCO, pages 311–337.

[Hermanns et al., 2008] Hermanns, H., Wachter, B., and Zhang, L. (2008). Probabilistic
CEGAR. In Gupta, A. and Malik, S., editors, Computer Aided Verification, volume
5123 of Lecture Notes in Computer Science, pages 162–175. Springer Berlin Heidel-
berg.

[Hillston, 1995] Hillston, J. (1995). Compositional Markovian Modelling Using a Pro-
cess Algebra. In Numerical Solution of Markov Chains, pages 177 – 196. Kluwer
Academic Publishers.

[Jalote, 1994] Jalote, P. (1994). Fault Tolerance in Distributed Systems. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA.

[Jou and Smolka, 1990] Jou, C.-C. and Smolka, S. A. (1990). Equivalences, Congru-
ences, and Complete Axiomatizations for Probabilistic Processes. In Baeten, J. and
Klop, J., editors, CONCUR 1990 Theories of Concurrency: Unification and Extension,
volume 458 of Lecture Notes in Computer Science, pages 367–383. Springer Berlin
Heidelberg.

[Juang et al., 2002] Juang, P., Oki, H., Wang, Y., Martonosi, M., Peh, L.-S., and Ruben-
stein, D. (2002). Energy-Efficient Computing for Wildlife Tracking: Design Tradeoffs
and Early Experiences with ZebraNet. In Proceedings of the Tenth International Con-
ference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS2002), pages 96 – 107, New York, NY, USA. ACM.

[Kamgarpour et al., 2013] Kamgarpour, M., Ellen, C., Soudjani, S. E. Z., Gerwinn, S.,
Mathieux, J. L., Müllner, N., Abate, A., Callaway, D. S., Fränzle, M., and Lygeros,
J. (2013). Modeling Options for Demand Side Participation of Thermostatically Con-
trolled Loads. In Proceedings of the IREP Symposium-Bulk Power System Dynamics
and Control -IX (IREP), August 25-30, 2013, Rethymnon, Greece.

[Katoen et al., 2007] Katoen, J.-P., Kemna, T., Zapreev, I. S., and Jansen, D. N. (2007).
Bisimulation Minimisation Mostly Speeds up Probabilistic Model Checking. In Pro-
ceedings of the 13th international conference on Tools and algorithms for the construc-
tion and analysis of systems, TACAS’07, pages 87–101, Berlin, Heidelberg. Springer-
Verlag.

[Katoen et al., 2005] Katoen, J.-P., Khattri, M., and Zapreev, I. S. (2005). A Markov
Reward Model Checker. In Proceedings of the Second International Conference on
the Quantitative Evaluation of Systems, QEST ’05, pages 243–, Washington, DC, USA.
IEEE Computer Society.

[Katoen et al., 2012] Katoen, J.-P., Klink, D., Leucker, M., and Wolf, V. (2012). Three-
Valued Abstraction for Probabilistic Systems. Journal on Logic and Algebraic Pro-
gramming, pages 1 – 55.

[Keller, 1987] Keller, R. M. (1987). Defining operationality for explanation-based learn-
ing. In Proceedings of the sixth National conference on Artificial intelligence - Volume
2, AAAI’87, pages 482–487. AAAI Press.

Bibliography 145

[Kemeny and Snell, 1976] Kemeny, J. G. and Snell, J. L. (1976). Finite Markov Chains.
University Series in Undergraduate Mathematics. New York, NY, USA, 2, 1976 edi-
tion.

[Kharif and Pelinovsky, 2003] Kharif, C. and Pelinovsky, E. (2003). Physical Mecha-
nisms of the Rogue Wave Phenomenon. European Journal of Mechanics - B/Fluids,
22(6):603 – 634.

[Koch et al., 2011] Koch, S., Mathieu, J. L., and Callaway, D. S. (2011). Modeling and
Control of Aggregated Heterogeneous Thermostatically Controlled Loads for Ancil-
lary Services. In Proceedings of the 17th Power Systems Computation Conference,
Stockholm, Sweden.

[Kulkarni, 1999] Kulkarni, S. S. (1999). Component Based Design of Fault-Tolerance.
PhD thesis. Advisors: Anish Arora, Mukesh Singhal, Ten-Hwang Lai.

[Kwiatkowska et al., 2002] Kwiatkowska, M., Norman, G., and Parker, D. (2002). Prob-
abilistic Symbolic Model Checking with PRISM: A Hybrid Approach. In International
Journal on Software Tools for Technology Transfer (STTT, pages 52–66. Springer.

[Lamport, 1977] Lamport, L. (1977). Proving the Correctness of Multiprocess Programs.
IEEE Transactions on Software Engineering, SE-3(2):125 – 144.

[Lamport, 1986a] Lamport, L. (1986a). On Interprocess Communication. Part I: Basic
Formalism. Distributed Computing, 1(2):77 – 85.

[Lamport, 1986b] Lamport, L. (1986b). On Interprocess Communication. Part II: Algo-
rithms. Distributed Computing, 1(2):86 – 101.

[Lamport, 1986c] Lamport, L. (1986c). The Mutual Exclusion Problem: Part I - A The-
ory of Interprocess Communication. Journal of the ACM, 33(2):313 – 326.

[Lamport, 2002] Lamport, L. (2002). Specifying Systems, The TLA+ Language and Tools
for Hardware and Software Engineers. Addison-Wesley Pub. Co.

[Larsen and Skou, 1989] Larsen, K. G. and Skou, A. (1989). Bisimulation Through Prob-
abilistic Testing. In Conference Record of the 16th ACM Symposium on Principles of
Programming Languages (POPL1989, pages 344 – 352.

[Leveson, 1995] Leveson, N. G. (1995). Safeware : System Safety and Computers.
Addison-Wesley Pub. Co.

[Liu and Trenkler, 2008] Liu, S. and Trenkler, G. (2008). Hadamard, Khatri-Rao, Kro-
necker and Other Matrix Products. International Journal of Information & Systems
Sciences, 4(1):160 – 177.

[Lowrance, 1976] Lowrance, W. W. (1976). Of Acceptable Risk: Science and the Deter-
mination of Safety. William Kaufmann, Inc., One First Street, Los Altos, California
94022.

[Lynch, 1996] Lynch, N. A. (1996). Distributed Algorithms. Morgan Kaufmann Publish-
ers Inc., San Francisco, CA, USA.

146 Bibliography

[Mainwaring et al., 2002] Mainwaring, A., Culler, D., Polastre, J., Szewczyk, R., and
Anderson, J. (2002). Wireless Sensor Networks for Habitat Monitoring. In Proceed-
ings of the First ACM International Workshop on Wireless Sensor Networks and Appli-
cations (WSNA2002), pages 88 – 97, New York, NY, USA. ACM.

[Malhamè and Chong, 1985] Malhamè, R. and Chong, C.-Y. (1985). Electric-load Model
Synthesis by Diffusion Approximation of a High-order Hybrid-state Stochastic-system.
IEEE Transactions on Automatic Control, 30:854 – 860.

[Manna and Pnueli, 1981a] Manna, Z. and Pnueli, A. (1981a). Temporal Verification of
Concurrent Programs: The Temporal Framework for Concurrent Programs, lecture
notes in computer science 5, pages 215 – 271. The Correctness Problem in Computer
Science. Academic Press.

[Manna and Pnueli, 1981b] Manna, Z. and Pnueli, A. (1981b). Verification of Concur-
rent Programs Part I: The Temporal Framework. Technical Report STAN-CS-82-915,
Stanford University, Stanford, CA, USA.

[Mertsiotakis, 1998] Mertsiotakis, V. (1998). Approximate Analysis Methods for Stochas-
tic Process Algebras. PhD thesis, Universität Erlangen-Nürnberg. Advisors: Gerhard
Herold, Ulrich Herzog, Manuel Silva.

[Meyer, 2009] Meyer, R. (2009). Structural Stationarity of the π-Calculus. PhD the-
sis, Department für Informatik, Fakultät II - Informatik, Wirtschafts- und Rechtswis-
senschaften, Carl von Ossietzky Universität Oldenburg.

[Milner, 1999] Milner, R. (1999). Communicating and Mobile Systems - the π-calculus.
Cambridge University Press.

[Milner et al., 1992] Milner, R., Parrow, J., and Walker, D. (1992). A Calculus of Mobile
Processes, I. Information adn Comutation, 100:1 – 40.

[Mitrohin and Podelski, 2011] Mitrohin, C. and Podelski, A. (2011). Composing Stabil-
ity Proofs for Hybrid Systems. In FORMATS, pages 286–300.

[Moore, 1965] Moore, G. E. (1965). Cramming More Components onto Integrated Cir-
cuits. Electronics, 38(8).

[Müllner, 2007] Müllner, N. (2007). Simulation of Self-Stabilizing Distributed Algo-
rithms to Determine Fault Tolerance Measures. Diplomarbeit, Department für Infor-
matik, Fakultät II - Informatik, Wirtschafts- und Rechtswissenschaften, Carl von Ossi-
etzky Universität Oldenburg, Oldenburg (Oldb), Germany.

[Müllner et al., 2008] Müllner, N., Dhama, A., and Theel, O. (2008). Derivation of Fault
Tolerance Measures of Self-Stabilizing Algorithms by Simulation. In Proceedings of
the 41st Annual Symposium on Simulation (AnSS2008), pages 183 – 192, Ottawa, ON,
Canada. IEEE Computer Society Press.

[Müllner et al., 2009] Müllner, N., Dhama, A., and Theel, O. (2009). Deriving a Good
Trade-off Between System Availability and Time Redundancy. In Proceedings of the
Symposia and Workshops on Ubiquitous, Automatic and Trusted Computing, number
E3737 in Track "International Symposium on UbiCom Frontiers - Innovative Research,
Systems and Technologies (Ufirst-09)", pages 61 – 67, Brisbane, QLD, Australia. IEEE
Computer Society Press.

Bibliography 147

[Müllner and Theel, 2011] Müllner, N. and Theel, O. (2011). The Degree of Masking
Fault Tolerance vs. Temporal Redundancy. In Proceedings of the 25th IEEE Work-
shops of the International Conference on Advanced Information Networking and Ap-
plications (WAINA2011), Track "The Seventh International Symposium on Frontiers of
Information Systems and Network Applications (FINA2011)", pages 21 – 28, Biopolis,
Singapore. IEEE Computer Society Press.

[Müllner et al., 2012] Müllner, N., Theel, O., and Fränzle, M. (2012). Combining De-
composition and Reduction for State Space Analysis of a Self-Stabilizing System. In
Proceedings of the 26th IEEE International Conference on Advanced Information Net-
working and Applications (AINA2012), pages 936 – 943, Fukuoka-shi, Fukuoka, Japan.
IEEE Computer Society Press. Best Paper Award.

[Müllner et al., 2013] Müllner, N., Theel, O., and Fränzle, M. (2013). Combining De-
composition and Reduction for the State Space Analysis of Self-Stabilizing Systems.
In Journal of Computer and System Sciences (JCSS), volume 79, pages 1113 – 1125.
Elsevier Science Publishers B. V. The paper is an extended version of a publication
with the same title.

[Müllner et al., 2014a] Müllner, N., Theel, O., and Fränzle, M. (2014a). Combining De-
composition and Lumping to Evaluate Semi-hierarchical Systems. In Proceedings of
the 28th IEEE International Conference on Advanced Information Networking and Ap-
plications (AINA2014).

[Müllner et al., 2014b] Müllner, N., Theel, O., and Fränzle, M. (2014b). Composing
Thermostatically Controlled Loads to Determine the Reliability against Blackouts. In
Proceedings of the 10th International Symposium on Frontiers of Information Systems
and Network Applications (FINA2014).

[Musa et al., 1987] Musa, J. D., Iannino, A., and Okumoto, K. (1987). Software Relia-
bility – Measurement, Prediction, Application. McGraw-Hill, New York, NY, USA.

[Nesterenko and Tixeuil, 2011] Nesterenko, M. and Tixeuil, S. (2011). Ideal Stabiliza-
tion. In Proceedings of the 25th IEEE International Conference on Advanced Informa-
tion Networking and Applications (AINA2011), pages 224 – 231, Biopolis, Singapore.
IEEE Press. Best Paper Award.

[Neumann, 2000] Neumann, P. G. (2000). Practical Architectures for Survivable Sys-
tems and Networks. Report 2, SRI International, SRI International, Room EL243, 333
Ravenswood Avenue, Menlo Park CA 94025-3493.

[Norris, 1998] Norris, J. (1998). Markov Chains. Number Nr. 2008 in Cambridge Series
in Statistical and Probabilistic Mathematics. Cambridge University Press.

[Owicki and Gries, 1976] Owicki, S. and Gries, D. (1976). Verifying Properties of Par-
allel Programs: An Axiomatic Approach. Communications of the ACM, 19:279 – 285.

[Owicki and Lamport, 1982] Owicki, S. and Lamport, L. (1982). Proving Liveness Prop-
erties of Concurrent Programs. volume 4, pages 455 – 495, New York, NY, USA.
ACM.

148 Bibliography

[Patterson and Hennessy, 2005] Patterson, D. A. and Hennessy, J. L. (2005). Computer
Organization and Design: The Hardware/Software Interface. Morgan Kaufmann Pub-
lishers Inc.

[Pfeiffer, 1978] Pfeiffer, P. E. (1978). Concepts of Probability Theory. Dover Books on
Mathematics. Dover Publications.

[Pfleeger, 1997] Pfleeger, C. P. (1997). Security in Computing. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA.

[Pnueli and Zuck, 1986] Pnueli, A. and Zuck, L. (1986). Verification of Multiprocess
Probabilistic Protocols. Distributed Computing, 1(1):53 – 72.

[Podelski and Wagner, 2006] Podelski, A. and Wagner, S. (2006). Model Checking of
Hybrid Systems: From Reachability Towards Stability. In HSCC, pages 507–521.

[Pucella, 2000] Pucella, R. (2000). Review of Communicating and Mobile Systems: The
π-calculus. In [Milner, 1999], pages I–XII, 1–161.

[Rakow, 2011] Rakow, A. (2011). Slicing and Reduction Techniques for Model Check-
ing Petri Nets. PhD thesis, Department für Informatik, Fakultät II - Informatik,
Wirtschafts- und Rechtswissenschaften, Carl von Ossietzky Universität Oldenburg,
Uhlhornsweg 49-55, 26129 Oldenburg, Germany. Advisors: Eike Best, Ernst-Rüdiger
Olderog.

[Rozenberg and Vaandrager, 1996] Rozenberg, G. and Vaandrager, F. W., editors (1996).
Lectures on Embedded Systems, European Educational Forum, School on Embedded
Systems, volume 1494 of Lecture Notes in Computer Science. Springer.

[Rus et al., 2003] Rus, I., Komi-Sirvio, S., and Costa, P. (2003). Software Dependabil-
ity Properties - A Survey of Definitions, Measures and Techniques. Survey 03-110,
Fraunhofer USA - Center for Experimental Software Engineering, Maryland, Fraun-
hofer Center - Maryland, University of Maryland, 4321 Hartwick Road, Suite 500,
College Park, MD 20742.

[Sarkar, 1993] Sarkar, V. (1993). A Concurrent Execution Semantics for Parallel Program
Graphs and Program Dependence Graphs. In Banerjee, U., Nicolau, D. G. A., and
Padua, D., editors, Languages and Compilers for Parallel Computing (LCPC), volume
757 of Lecture Notes in Computer Science, pages 16–30. Springer Berlin Heidelberg.

[Schneider, 1998] Schneider, F. B. (1998). Trust in Cyberspace. National Academy Press,
Washington, DC, USA.

[Schneider, 1993] Schneider, M. (1993). Self-stabilization. ACM Computing Surveys,
25(1):45 – 67.

[Schroeder and Gibson, 2007] Schroeder, B. and Gibson, G. A. (2007). Disk Failures in
the Real World: What Does an MTTF of 1,000,000 Hours Mean to You? In Proceed-
ings of the Fifth USENIX conference on File and Storage Technologies (FAST2007),
page 1, Berkeley, CA, USA. USENIX Association.

Bibliography 149

[Schroeder et al., 2009] Schroeder, B., Pinheiro, E., and Weber, W.-D. (2009). DRAM
Errors in the Wild: A Large-Scale Field Study. In Proceedings of the Eleventh Inter-
national Joint Conference on Measurement and Modeling of Computer Systems (SIG-
METRICS2009), pages 193 – 204, New York, NY, USA. ACM.

[Shanks, 1985] Shanks, D. (1985). Solved and Unsolved Problems in Number Theory.
Chelsea Publishing Co., Inc., New York, USA.

[Shemer and Sergeeva, 2009] Shemer, L. and Sergeeva, A. (2009). An Experimental
Study of Spatial Evolution of Statistical Parameters in a Unidirectional Narrow-banded
Random Wavefield. Journal of Geophysical Research, 114.

[Sistla, 1985] Sistla, A. P. (1985). On Characterization of Safety and Liveness Properties
in Temporal Logic. In Proceedings of the Fourth Annual ACM Symposium on Prin-
ciples of Distributed Computing (PODC1985), pages 39 – 48, New York, NY, USA.
ACM.

[Smith, 2003] Smith, G. (2003). Probabilistic Noninterference through Weak Probabilis-
tic Bisimulation. In Computer Security Foundations Workshop, 2003. Proceedings.
16th IEEE, pages 3 – 13.

[Sommerville, 2004] Sommerville, I. (2004). Software Engineering. Pearson Addison
Wesley, seventh edition.

[Sonneborn and van Vleck, 1964] Sonneborn, L. M. and van Vleck, F. S. (1964). The
Bang-bang Principle for Linear Control Systems. Journal of the Society for Industrial
and Applied Mathematics (SIAM), 2:151–159.

[Soudjani and Abate, 2013a] Soudjani, S. E. Z. and Abate, A. (2013a). Adaptive and
Sequential Gridding Procedures for the Abstraction and the Verification of Stochastic
Processes. Submitted for review to the Society for Industrial and Applied Mathematics
(SIAM).

[Soudjani and Abate, 2013b] Soudjani, S. E. Z. and Abate, A. (2013b). Aggregation of
Thermostatically Controlled Loads by Formal Abstractions. Prodceedings of the Eur-
poean Control Conference (ECC2013). submitted for review.

[Soudjani and Abate, 2013c] Soudjani, S. E. Z. and Abate, A. (2013c). Probabilistic
Reachability Computation for Mixed Deterministic-Stochastic Processes. unpublished
draft.

[Stark and Einaudi, 1996] Stark, D. and Einaudi, M. (1996). Heterarchy: Asset Ambigu-
ity, Organizational Innovation, and the Postsocialist Firm. Working Papers on Tran-
sitions From State Socialism. Center for Advanced Human Resource Studies, Cornell
University, ILR School.

[Storey, 1996] Storey, N. R. (1996). Safety Critical Computer Systems. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA.

[Tanenbaum and Steen, 2001] Tanenbaum, A. S. and Steen, M. V. (2001). Distributed
Systems: Principles and Paradigms. Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
1st edition.

150 Bibliography

[Theel, 2000] Theel, O. (2000). Exploitation of Ljapunov Theory for Verifying Self-
Stabilizing Algorithms. In Herlihy, M., editor, Distributed Computing, volume 1914
of Lecture Notes in Computer Science, pages 213 – 251. Springer.

[Tixeuil, 2009] Tixeuil, S. (2009). Algorithms and Theory of Computation Handbook,
Second Edition, chapter Self-stabilizing Algorithms, pages 26.1 – 26.45. Chapman
& Hall/CRC Applied Algorithms and Data Structures. CRC Press, Taylor & Francis
Group. http://www.crcpress.com/product/isbn/9781584888185.

[Trivedi, 2002] Trivedi, K. S. (2002). Probability and Statistics with Reliability, Queuing,
and Computer Science Applications. John Wiley & Sons, second edition.

[Williams and Sunter, 2000] Williams, T. W. and Sunter, S. (2000). How Should Fault
Coverage Be Defined? In Proceedings of the 18th IEEE VLSI Test Symposium, VTS
’00, page 325, Washington, DC, USA. IEEE Computer Society.

[Wirth, 1995] Wirth, N. (1995). A Plea for Lean Software. Computer, 28(2):64 – 68.

[Zhang et al., 2010] Zhang, L., She, Z., Ratschan, S., Hermanns, H., and Hahn, E. M.
(2010). Safety Verification for Probabilistic Hybrid Systems. In Proceedings of the
22nd International Conference on Computer Aided Verification (CAV2010), pages 196
– 211.

List of Figures

2.1 Threat cycle . 10

2.2 Simple traffic lights transition model demonstrating Hamming distance . . 16

2.3 Pedestrian crossing . 17

2.4 Topology of two processes in the traffic light example 17

2.5 Algorithm transitions . 19

3.1 A user requesting system service . 24

3.2 Fault tolerance taxonomy (not exhaustive) 25

3.3 Weak fairness is a subset of strong fairness 27

3.4 Recovery liveness vs. convergence . 35

3.5 From fault intolerance to masking fault tolerance 36

3.6 Fault tolerance classes . 37

3.7 System behavior . 38

3.8 Configuration transition diagram . 40

3.9 The fault masker . 42

3.10 Reduced configuration transition diagram, perfect detectors 42

3.11 Reduced Configuration Transition Diagram, perfect correctors 43

4.1 Instantaneous window availability gradient - analysis via
PRISM [Kwiatkowska et al., 2002] . 50

4.2 Limiting window availability gradient - simulation via
SiSSDA [Müllner, 2007] . 51

4.3 State space partitioning via predicate P 52

4.4 LWA of the traffic lights example . 55

4.5 Probability distribution over states and time for five steps 56

4.6 Self-stabilizing broadcast algorithm (BASS) 57

4.7 System . 58

152 List of Figures

4.8 Transition matrix contour plot . 60

4.9 Limiting window availability of BASS Example for w ≤ 1000 61

4.10 Probability mass distribution over time for the illegal states 61

5.1 Small lumping example . 71

6.1 DTMC construction, section 2.4 . 75

6.2 Computing LWA without lumping, chapter 4 76

6.3 Lumping, chapter 5 . 76

6.4 Lossless system decomposition and transition model re-composition . . . 77

6.5 Combining decomposition and lumping 77

6.6 Different dependency types . 81

6.7 Extended notation - example . 84

6.8 Newton’s cradle and fault propagation 85

6.9 Classifying decomposition possibilities via overlapping sets 85

6.10 DTMC construction, section 2.4 . 87

6.11 Mutually overlapping sets of overlapping processes 92

6.12 Markov chain uncoupling . 93

6.13 The example system - decomposition with τπ4(S) 94

6.14 Decomposition pattern . 95

6.15 Markov chain uncoupling . 96

6.16 Equivalence Class Identification in D2 100

6.17 Reduction example . 100

6.18 Probability mass drain . 102

6.19 Comparing states . 103

6.20 Multiple layers of transitional models 106

6.21 Platonic leader election . 107

7.1 Specifying legal and undesired states . 110

7.2 The TCL model executing with standard parameters 112

7.3 Repetitive cycle . 112

7.4 Deviating parameters . 113

7.5 Temperature state evolution via simulation by Koch et
al. [Koch et al., 2011, p.3] . 114

List of Figures 153

7.6 The state bin transition model by Koch et al. [Koch et al., 2011, p.2] . . . 115

7.7 Lumping scheme . 118

7.8 Dampening the state space explosion . 119

7.9 1000 housings TCL power grid . 121

7.10 Time consumption to compute 1000 housings TCL power grid 121

7.11 Determining the risk to crash . 123

7.12 Limiting window reliability over 100 time steps 124

7.13 Limiting window reliability over 10,000 time steps 125

7.14 Small wireless sensor network . 126

7.15 State space reduction . 129

7.16 Decomposing the WSN transition system 130

7.17 Result of the WSN example – converging consistency 132

7.18 Result of the WSN example – convergence inertia 132

8.1 Black box fault tolerance design . 137

A.1 Software quality characteristics tree by Boehm et al. [Boehm et al., 1976,
p.595] . 157

A.3 Illustrative subset of requirements hierarchy [Neumann, 2000, p.51] . . . 157

A.2 Dependability tree by Echtle [Echtle, 1990] 158

A.4 Dependability tree by Aviz̆ienis et al. [Aviz̆ienis et al., 2004, p.14] 159

A.5 Four process system . 166

A.6 Eight process system . 166

A.7 BASS DTMCs . 167

A.8 WSN DTMCs . 169

A.9 Example topology showing ambiguity of the double-stroke alphabet . . . 170

154 List of Figures

A. Appendix

A.1 Employed resources
In the writing of the present thesis, the following software has been used: LATEX(MikTex,
Texnic Center), Open Office, Microsoft Office, MatLab (including the functions fig2u3d
and plot2svg), Prism, Dia, and Inkscape (adapted to include Latex commands). The wiss-
doc package by Roland Bless has been slightly adapted to build the present thesis. The
computing resources have been provided by the Carl von Ossietzky Universität Olden-
burg and the OFFIS Institute for Computer Science. This work was partly supported
(presented in chronologically descending order) by the German Research Council (DFG)
as part of the Transregional Collaborative Research Center Automatic Verification and
Analysis of Complex Systems (SFB/TR 14 AVACS), the Graduate College on Trustworthy
Software Systems TrustSoft (GRK 1076/1), the European Commission under the MoVeS
project (FP7-ICT-2009-257005) and by the funding initiative Niedersächsisches Vorab of
the Volkswagen Foundation and the Ministry of Science and Culture of Lower Saxony as
part of the Interdisciplinary Research Center on Critical Systems Engineering for Socio-
Technical Systems.

A.2 List of abbreviations
abbreviation meaning first occurrence
BASS Self Stabilizing Broadcast Algorithm page 57
DTMC Discrete Time Markov Chain page 14
IWA Instantaneous Window Availability page 49
LTP Law of Total Probability page 68
LWA Limiting Window Availability page 47
MOOp Multi Objective Optimization page 137
PCTL Probabilistic Real Time Computation Tree Logic page 47
QoS Quality of Service page 160
ROM Read Only Memory page 8
SRAM Static Random Access Memory page 8
TLA Traffic Light Algorithm page 17

Table A.1: List of abbreviations

156 A. Appendix

A.3 Table of notation

symbol formula example description first occurrence
P s |= P (safety) predicate page 28
σit,k σ = 〈s0

πi,p−−→ s1 . . .〉 partial execution trace page 41
3 |≡ ϕ(x̄) ⊂ 2w eventually page 47
A(t) pr(si,t |= P) point availability page 33
A(t)
t→∞

limiting availability page 33

Slegal set of legal states page 34
S S = {Π, E,A, s} system page 6
Π Π = {π1, . . . , πn} set of n processes page 5
E E = {ei,j, . . .} communication channels page 5
A A = {a1, . . .} algorithm page 5

ak : gk → ck guarded command page 6
ak label page 6
gk 〈R1, . . . , Rn〉 guard page 6
ck ck : Ri := value command page 6
s system state page 6
S state space page 6
si selection probability of πi page 12
q q = si · pr(qi) combined success probability page 13
p p = si · p combined error probability page 13
pr(−−→si, sj) transition probability page 14
D discrete time Markov chain page 15
σit,k partial execution trace page 13
lw limiting window availability page 47
w window size page 47
v LWA vector page 48
g LWA vector gradient page 49
DLWA DTMC computing the LWA page 51
D′ maximally lumped DTMC page 67
D′ partially lumped DTMC page 90
D′LWA lumped DTMC computing the

LWA
page 70

∼ si ∼ sj, [si]∼ equivalence relation page 65
τ τ(S) = {Π1,Π2 . . .} set of subsystems page 76
⊗ D′ = D′1 ⊗ . . .⊗D′n recomposition/uncoupling

operator
page 76

Table A.2: Table of symbols

A.4. Definitions 157

A.4 Definitions

A.4.1 Fault tolerance trees

General Utility

As-is Utility

Maintainability

Portability

Reliability

Efficiency

Human Engineering

Testability

Understandability

Modifiability

Devive Independence

Self-containedness

Accuracy

Completeness

Robustness/Integrity

Consistency

Accountability

Device Efficiency

Communicativeness

Self-Descriptiveness

Structuredness

Conciseness

Legibility

Augmentability

Accessibility

Figure A.1: Software quality characteristics tree by Boehm et al. [Boehm et al., 1976,
p.595]

Survivability

Security

Reliability

Performance

Integrity

Confidentiality

Availability

Fault Tolerance

Fail Modes

Real-time

Non-real-time

Availability

MLI

No change

MLS

Discretionary

MLA

Unified Availability Requirements

No change

Priorities

X

Sys

Data

X

X

Figure A.3: Illustrative subset of requirements hierarchy [Neumann, 2000, p.51]

158 A. Appendix

D
ep

en
d

ab
ili

ty

m
ea

su
re

s

im
p

ai
rm

en
ts

p
ro

cu
re

m
en

t

an
al

ys
is

re
lia

b
ili

ty

ti
m

e
to

 f
ai

lu
re

av
ai

la
b

ili
ty

er
ro

r

fa
u

lt
, f

ai
lu

re

F
A

U
L

T
 T

O
L

E
R

A
N

C
E

fa
u

lt
 a

vo
id

an
ce

ve
ri

fi
ca

ti
on

er
ro

r
fo

re
ca

st
in

g

fa
u

lt
 s

p
ec

if
ic

at
io

n

re
d

u
n

d
an

cy

fa
u

lt
 d

ia
gn

os
is

er
ro

r
p

ro
ce

ss
in

g

fa
u

lt
 c

la
ss

es

fa
u

lt
 m

od
el

at
tr

ib
u

te
 o

f
re

d
u

n
d

an
cy

ac
ti

va
ti

on
 o

f
re

d
u

n
d

an
cy

er
ro

r
p

as
si

va
ti

on

er
ro

r
re

co
ve

ry

er
ro

r
co

m
p

en
sa

ti
on

st
ru

ct
u

ra
l r

ed
u

n
d

an
cy

fu
n

ct
io

n
al

 r
ed

u
n

d
an

cy

in
fo

rm
at

io
n

 r
ed

u
n

d
an

cy

te
m

p
or

al
 r

ed
u

n
d

an
cy

st
at

ic
 r

ed
u

n
d

an
cy

d
yn

am
ic

 r
ed

u
n

d
an

cy

re
co

n
fi

gu
ra

ti
on

fo
rw

ar
d

 e
rr

or
 r

ec
ov

er
y

b
ac

k
w

ar
d

 e
rr

or
 r

ec
ov

er
y

fa
u

lt
 m

as
k

in
g

er
ro

r
co

rr
ec

ti
on

ad
d

it
io

n
al

 f
u

n
ct

io
n

d
iv

er
si

ty

h
yb

ri
d

 r
ed

u
n

d
an

cy

u
n

u
ti

liz
ed

/i
d

le
 r

ed
u

n
d

an
cy

le
as

ed
 r

ed
u

n
d

an
cy

m
u

tu
al

 r
ed

u
n

d
an

cy

ev
ac

u
at

io
n

in
se

rt
io

n

el
im

in
at

io
n

Figure A.2: Dependability tree by Echtle [Echtle, 1990]

A.4. Definitions 159

Dependability
and Security

Attributes

Threats

Means

Availability

Reliability

Safety

Confidentiality

Integrity

Maintainability

Faults

Errors

Failures

Fault Prevention

Fault Tolerance

Fault Removal

Fault Forecasting

Figure A.4: Dependability tree by Aviz̆ienis et al. [Aviz̆ienis et al., 2004, p.14]

A.4.2 Fault tolerance

Fault tolerance means to avoid service failures in the presence of faults.
[Aviz̆ienis et al., 2004]

A system can provide its services even in the presence of faults.
[Tanenbaum and Steen, 2001]

A system is fault tolerant if it can mask the presence of faults in the system by using re-
dundancy. The goal of fault tolerance is to avoid system failure, even if faults are present.
[Jalote, 1994]

Fault tolerance is an approach by which reliability of a computer system can be increased
beyond what can be achieved by traditional methods. Fault tolerant systems employ re-
dundancy to mask various types of failures. [Jalote, 1994]

A fault tolerant service [. . .] always guarantees strictly correct behavior despite a certain
number and type of faults. [Coulouris et al., 2001]

Fault tolerance (or graceful degradation) is the capacity of a system to operate
properly on the hypothesis of the failure of one (or more) of its components.
[Bozzano and Villafiorita, 2010, p.34]

160 A. Appendix

The capability of the software product to maintain a specified level of performance in
cases of software faults or of infringement of its specified interface. [ISO, 2001]

By quality of service we refer to non-functional properties such as
performance, reliability, availability, and security. [Frolund and Koistinen, 1998a]
performance, reliability, quality of data, timing, and security. [Frolund and Koistinen, 1998b]
performance, reliability, availability, timing, and security. [Frolund and Koistinen, 1999]

A.4.3 Safety

For P to be a safety property, if P does not hold for an execution then at some point
some "bad thing" must happen. Such a "bad thing" must be irremediable because a safety
property states that the "bad thing" never happens during execution. Thus, P is a safety
property if and only if

(∀σ : σ ∈ Sω : σ 6|= P ⇒ (∃i : 0 ≤ i : (∀β : β ∈ Sω : σiβ 6|= P))). (A.1)

[Alpern and Schneider, 1985]

Examples of safety properties include mutual exclusion, deadlock freedom, partial cor-
rectness, and first-come-first-serve. In mutual exclusion, the proscribed "bad thing" is two
processes executing in critical sections at the same time. In deadlock freedom it is dead-
lock. In partial correctness it is terminating in a state not satisfying the postcondition
after having been started in a state that satisfies the precondition. Finally, in first-com-
first-serve, which states that requests are serviced in the order they are made, the "bad
thing" is servicing a request that was made after one that was not yet being serviced.
[Alpern and Schneider, 1985]

Consider first the class of program properties that hold continuously throughout the exe-
cution. They are expressible by formulas of the form:

| ≡ 2w.

Such a formula states that 2w holds for every admissible computation, i.e.w is an invari-
ant of every computation. By generalization rule this could have been written as | ≡ w,
but we prefer the above form since it emphasizes that we are discussing invariance prop-
erties.

Note that the initial condition associated with the admissible computation is:

at̄l0 ∧ ȳ = f0(x̄) ∧ ϕ(x̄)

which characterizes the initial state for input x̄ satisfying the precondition ϕ(x̄). Here,
l̄0 = (l̄10, . . . , l̄

m
0) is the set of initial locations in each of the processes. To emphasize the

precondition ϕ(x̄) we sometimes express | ≡ 2w as

| ≡ ϕ(x̄) ⊂ 2w.

A formula in this form therefore expresses an invariance property. The properties in
this class are also known as safety properties, based on the premise that they ensure that
"nothing bad will happen" [Lamport, 1977]. [Manna and Pnueli, 1981a, p.252]

A safety property is one which states that something will not happen. For example, the
partial correctness of a single process program is a safety property. It states that if the

A.4. Definitions 161

program is started with the correct input, then it cannot stop if it does not produce the
correct output. [Lamport, 1977]

Formally, safety property P is defined as an LT property over AP such that any infinite
word σ where P does not hold contains a bad prefix. The latter means a finite prefix σ̂
where the bad thing has happened, and thus no infinite word that starts with this prefix σ̂
fulfills P . [Baier and Katoen, 2008, p.112]

A safety property expresses that, under certain conditions, an event never
occurs.[Bèrard et al., 2001]

Safety is a property of a system that it will not endanger human life or the environment.
[Storey, 1996]

The term safety critical system is normally used as a synonym for a safety-related system,
although in some cases it may suggest a system of high criticality. [Storey, 1996]

We will define safety as a judgment of the acceptability of risk, and risk, in turn, as a
measurement of the probability and the severity of harm to human health. A thing is safe
if its attendant risks are judged to be acceptable. [Lowrance, 1976]

Safety of a system is the absence of catastrophic consequences on the user(s) and the
environment. [Aviz̆ienis et al., 2004]

Safety-critical software is any software that can directly or indirectly contribute to the
occurrence of a hazardous system state. [Leveson, 1995]

Safety-critical functions are those system functions whose correct operation, incorrect
operation (including correct operation at the wrong time), or lack of operation could con-
tribute to a system hazard. [Leveson, 1995]

Safety can be described as a characteristic of the system of not endangering, or causing
harm to, human lives or the environment in which the equipment or plant operates. That is,
safety evaluates the system operation in terms of freedom from occurrence of catastrophic
failures. [Bozzano and Villafiorita, 2010]

A.4.4 Fairness

[. . .] By that we mean that no process which is ready to run (i.e. enabled) will be neglected
forever. Stated more precisely, we exclude infinite executions in which a certain process
which has not terminated is never scheduled from a certain point on. Note that all finite
terminating sequences are necessarily fair. [Manna and Pnueli, 1981a, p.246]

Weak fairness of A [action] asserts that an A step must eventually occur if A is continu-
ously enabled. [Lamport, 2002]

Strong fairness of A asserts that an A step must eventually occur if A is continually en-
abled. Continuously means without interruption. Continually means repeatedly, possibly
with interruptions. [Lamport, 2002]

For a transition system TS = (S,Act ,→, I,AP , L) without terminal states, A ⊆ Act ,
and infinite execution fragment ρ = s0

α0−→ s1
α1−→ . . . of TS :

1. ρ is unconditionally A-fair whenever
∞
∃ j. αj ∈ A.

162 A. Appendix

2. ρ is strongly A-fair whenever

(
∞
∃ j.Act(sj) ∩ A 6= ∅)⇒ (

∞
∃ j.αj ∈ A).

3. ρ is weakly A-fair whenever

(
∞
∀ j.Act(sj) ∩ A 6= ∅)⇒ (

∞
∃ j.αj ∈ A).

[Baier and Katoen, 2008, p.130]

Let TS be a transition system with the set of actions Act and F a fairness assumption for
Act . F is called realizable for TS if for every reachable state s : FairPathsF(s) 6= ∅.
[Baier and Katoen, 2008, p.139]

A.4.5 Liveness
A partial execution α is live for a property P if and only if there is a sequence of states β
such that αβ |= P . A liveness property is one for which every partial execution is live.
Thus, P is a liveness property if and only if

(∀α : α ∈ S∗ : (∃β : β ∈ SΩ : αβ |= P)) (A.2)

[Alpern and Schneider, 1985]

Examples of liveness properties include starvation freedom, termination, and guaranteed
service. In starvation freedom (i.e. the dining philosophers problem), which states that
a process makes progress infinitely often, the "good thing" is making progress. In ter-
mination, which asserts that a program does not run forever, the "good thing" is com-
pletion of the final instruction. Finally, in a guaranteed service1, which states that
every request for service is satisfies eventually, the "good thing" is receiving service.
[Alpern and Schneider, 1985]

(∃β : β ∈ SΩ : (∀α : α ∈ S∗ : αβ |= P)). (A.3)

P is a uniform liveness property if and only if there is a single execution (β) that
can be appended to every partial execution (α) so that the resulting sequence is in P .
[Alpern and Schneider, 1985]

(∃γ : γ ∈ SΩ : γ |= P)∧
(∀β : β ∈ SΩ : β |= P ⇒ (∀α : α ∈ S∗ : αβ |= P))

(A.4)

P is an absolute-liveness property if and only if it is non-empty and any execution (β) in
P can be appended to any partial execution (α) to obtain a sequence in P . [Sistla, 1985]2

A second[3] category of properties are those expressible by formulas of the form

| ≡ w1 ⊃ 3w2

1This is called responsiveness in [Manna and Pnueli, 1981b]
2This definition is also published by Alpern & Schneider [Alpern and Schneider, 1985]
3The first category are invariance, i.e. safety properties as described in [Manna and Pnueli, 1981a,

p.252].

A.4. Definitions 163

This formula states that for every admissible computation, if w1 is initially true then w2

must eventually be realized. In comparison with invariance properties that only describe
the preservation of a desired property from one step to the next, an eventuality property
guarantees that some event will finally be accomplished. It is therefore more appropriate
for the statement of goals which need many steps for their attainment.

Note that because of the suffix closure of the set of admissible computations this formula
is equivalent to:

| ≡ 2(w1 ⊃ 3w2)

which states that wheneverw1 arises during the computation it will eventually be followed
be the realization of w2.

A property expressible by such formula is called an eventuality (liveness) prop-
erty [Owicki and Lamport, 1982, Owicki and Gries, 1976]. [Manna and Pnueli, 1981a,
p.260]4

A liveness property is one which states that something must happen. An example of a
liveness property is the statement that a program will terminate if its input is correct.
[Lamport, 1977]

LT property Plive over AP is a liveness property whenever pref (Plive) = (2AP)∗.
[Baier and Katoen, 2008, p.121]

A liveness property states that, under certain conditions, some event will ultimately occur.
[Bèrard et al., 2001]

A.4.6 Threats to system safety

An incorrect step, process, or data in a computer program. [IEE, 1990]

A fault is the (adjudged or hypothesized) cause of an error. When it produces an error, it
is active, otherwise it is dormant. [Aviz̆ienis et al., 2001]

An error is that part of the system state that may cause subsequent failure. Before an error
is detected (by the system), it is latent. The detection of an error is indicated at the service
interface by an error message or error signal. [Aviz̆ienis et al., 2001]

A failure of a system is an event that corresponds to a transition from correct service
to incorrect service. It occurs when an error reaches its service interface. The inverse
transition is called service restoration. [Aviz̆ienis et al., 2004]

. . . fault activation // error
propagation

// failure causation // fault . . .

[Aviz̆ienis et al., 2001, p.3]

. . . fault activation //

dormant
��

��

error detection //

latent

��

error
propagation

//

recovery recovery

��

failure causation //

��

fault . . .

legal
perturbance

gg

| component |

4Manna and Pnueli refer to a preliminary draft of [Owicki and Lamport, 1982].

164 A. Appendix

A.4.7 Availability

Quality attributes are detailed quality properties of a software system, that can be mea-
sured using a quality metric. A detailed metric is a measurement scale combined with
a fixed procedure describing how measurement is to be conducted. The application of a
quality metric to a specific software-intensive system yields a measurement. [ISO, 1999]

Probability, that a system will work without failures at any time point t. [Echtle, 1990]

Availability is the property asserting that a resource is usable or operational during a given
time period, despite attacks or failures. [Schneider, 1998]

Now we define the instantaneous availability (or point availability) A(t) of a component
(or a system) as the probability that the component is properly functioning at time t, that
is, A(t) = P (I(t) = 1). [Trivedi, 2002]

[. . .] we define the limiting or steady state availability (or simply availability) of a compo-
nent (system) as the limiting value of A(t) as t approaches infinity. [Trivedi, 2002]

The interval (or average) availability is the expected fraction of time a component (system)
is up in a given interval. [Trivedi, 2002]

Availability is the expected fraction of time during which a software component or system
is functioning acceptably. [Musa et al., 1987]

The availability of a system is the probability that the system will be functioning cor-
rectly at a given time. [. . .] Availability presents a fraction of time for which a system is
functioning correctly. [Storey, 1996]

Availability means that assets are available to authorized parties at appropriate times. In
other words, if some person or system has legitimate access to a particular set of ob-
jectives, that access should not be prevented. For this reason, availability is sometimes
known by its opposite, denial of service. [Pfleeger, 1997]

Availability is the probability that a system, at a point in time, will be operational and able
to deliver the requested services. [Sommerville, 2004]

Availability is a system’s readiness for correct service. [. . .] Availability presents a frac-
tion of time for which a system is functioning correctly, where correct service is delivered
when the service implements the system function. [Aviz̆ienis et al., 2004]

Availability evaluates the probability of a system to operate correctly at a specific
point in time. [. . .] Alternatively, availability can be seen as measuring the per-
centage of time the system is providing correct service over a given time interval.
[Bozzano and Villafiorita, 2010]

A.4.8 Reliability

The probability that the component survives until some time t is called reliability R(t) of
the component. [Trivedi, 2002, p.124]

The probability of a failure-free operation over a specified time in a given environment
for a specific purpose. [Sommerville, 2004]

Reliability refers to the characteristic of a given system of being able to operate correctly
over a given period of time. That is, reliability evaluates the probability that the system

A.4. Definitions 165

will function correctly when operating for a time interval t. [. . .] Equivalently, reliability
can be defined in terms of failure rate, that is, the rate at which system components fail;
or time to failure, that is, the time interval between beginning of system operation and
occurrence of the first fault. [Bozzano and Villafiorita, 2010]

Mission reliability is the measure of the ability of an item to perform its required func-
tion for the duration of a specified mission profile. It defines that the system will not
fail to complete the mission, considering all possible redundant modes of operation.
[Department of Defense, 1988]

It is the probability of failure-free operation of a computer program for a specified time in
a specified environment. [Musa et al., 1987]

The probability that software will not cause the failure of a system for a specified time,
under specified conditions. [IEE, 1988]

The ability of a system or component to perform its required functions under stated con-
ditions for a specified period of time. [IEE, 1990]

The capability of the software product to maintain a specified level of performance when
used under specific conditions. [ISO, 2001]

166 A. Appendix

A.5 Source code

A.5.1 Simulation

Figure A.5: Four process system

Figure A.6: Eight process system

A.5.2 The BASS example

The required source code is available at http://www.mue-tech.com/BASS.zip. The re-
quired tools are MatLab and a tool to view open document tables (e.g. Libre, Open or
Microsoft Office). The file bass1.ods contains all matrices. The variables in the symbolic
M1 are replaced by their numerical values. MatLab accomplishes this as shown in file
M1.m (cf. line 26). The stationary distribution is computed with the code in lines 27 to
29. The formulas in the cells of the table show howM1 is uncoupled toM1,− andMπ4 .
It further shows the lumping ofM1,− toM′

1,−. The next step is the symbolic construc-
tion ofM2 and the substitution of the variables with numerical values. Analogously to
the root sub-Markov chain, file M2.m provides the i) symbolic sub-Markov chain, the
variable substitution and the computation of the stationary distribution. The lumping of
M2 is shown in the table again. Finally, the file Recomposition.m composes the two sub-
Markov chains, computes the stationary5 distribution. For comparison, the script for the
full product chain is included in the file RecompositionFULL.m.

Figure A.7 shows the color plots of the corresponding Markov chains. For the color table
please refer to figure 7.9 on page 121.

5Previously, it was argued that the stationary distribution can as well be computed from the stationary
distributions of the particular sub-Markov chains. Yet, with a numerical computation rather than a symbolic
solving, computing the stationary distribution is only a matter of seconds (as discussed in section 6.5.1).

http://www.mue-tech.com/BASS.zip

A.5. Source code 167

(a) Root transition matrixD1 from
the BASS Example

(b) Uncoupled root transition ma-
trix D1,− from the BASS Example

(c) Lumped and uncoupled root
transition matrix D′1,−

(d) Uncoupled overlap transition
matrix Dπ4

(e) Leaf transition matrix D2 from
the BASS example

(f) Lumped leaf transition matrix
D′2

(g) Recomposed lumped product chain D′

Figure A.7: BASS DTMCs

168 A. Appendix

A.5.3 The power grid example
Algorithm A.1 (Composing housing: Sequential interleaving application of the Kro-
necker product and lumping).

1 a = [0 . 9 , 0 . 1 ; 0 . 2 , 0 . 8] ;
2 m a t r i x = a ;
3 c o u n t e r = 1;
4 numberhouses = 1000;
5 t i m e s = [] ;
6 t i c ;
7 f o r i =1: numberhouses−1
8 m a t r i x=kron (a , m a t r i x) ;
9 %lumping

10 f o r j =1: c o u n t e r
11 m a t r i x (: , j +1)=m a t r i x (: , j +1)+m a t r i x (: , j +1+ c o u n t e r) ;
12 end
13 %d e l e t i n g s u p e r f l u o u s rows and colums
14 m a t r i x _ s i z e = s i z e (m a t r i x) ;
15 f o r k =1: c o u n t e r
16 m a t r i x (m a t r i x _ s i z e / 2 + 1 , :) =[] ;
17 m a t r i x (: , m a t r i x _ s i z e /2+1) =[] ;
18 end
19 c o u n t e r=c o u n t e r +1;
20 s t o r e (i)=t o c ;
21 end
22 c s v w r i t e (’ m a t r i x . csv ’ , m a t r i x) ;

Algorithm A.2 (Computing limiting window reliability).

1 m a t r i x ;
2 s i ze_m_temp = s i z e (m) ;
3 s i z e _m = s i ze_m_temp (1) ;
4 s t o r e = [] ;
5 [V ,D] = e i g (m’) ;
6 I=abs (d iag (D) −1.)<1e−08;
7 s t a t i o n a r y = V (: , 1) . / sum (V (: , 1)) ;
8 f o r i =1: s i z e _m
9 acc = 0;

10 f o r j =1: i
11 acc = acc + m(j , s i ze_m−i+ j) ∗ s t a t i o n a r y (j)+m(s ize_m−i+j , j) ∗ s t a t i o n a r y (s i ze_m−i+ j) ;
12 end
13 s t o r e (i) = acc ;
14 end
15 s t o r e (s i z e_ m) = s t o r e (s i z e _m) / 2 ;
16 f o r i =2: s i z e _m
17 s t o r e (i) = s t o r e (i −1)+ s t o r e (i) ;
18 end
19 s t o r e = f l i p l r (s t o r e) ;
20 c r a s h t e r r a i n = [] ;
21 r u n l e n g t h = 100000;
22 f o r countdown =1: r u n l e n g t h
23 f o r c t =1: s i z e_m
24 c r a s h t e r r a i n (countdown , c t) = 1−((1− s t o r e (c t)) ^ countdown) ;
25 end
26 end
27 imagesc (c r a s h t e r r a i n)
28 colormap (h o t)
29 colormap (f l i p u d (colormap))
30 c o l o r b a r
31 p l o t 2 s v g

A.5. Source code 169

A.5.4 The WSN example

Figure A.8 shows the color plots of the corresponding Markov chains.

(a) D′1,0 (b) D′1,1 (c) D′1,2

(d) D′2,−,0 (e) D′2,−,1 (f) D′2,−,2

(g) D′low (h) D′both (i) D′up

(j) D′

Figure A.8: WSN DTMCs

170 A. Appendix

A.5.5 Counterexample for the double-stroke alphabet

Counterexample

Assume the process topology shown in figure A.9 to execute under a uniformly distributed
probabilistic scheduler, a uniformly distributed fault model and the BASS algorithm to be
executed on the processes.

Figure A.9: Example topology showing ambiguity of the double-stroke alphabet

Then, the states

• 〈0, 0, 0, 0, 2, 2〉, 〈0, 0, 0, 2, 0, 2〉 and 〈0, 0, 0, 2, 2, 0〉

belong to one equivalence class6, and the states

• 〈0, 0, 0, 2, 1, 1〉, 〈0, 0, 0, 1, 2, 1〉 and 〈0, 0, 0, 1, 1, 2〉

belong to another equivalence class. The latter three registers in each class form the co-
erced register partition. Both equivalence classes claim the label 〈0, 0, 0, 4〉. The example
provides one case of ambiguity, showing that the double-stroke alphabet is not universally
applicable. Yet, for the examples presented in this thesis, it is applicable and increases the
readability.

6 There might be combinations of s and p for which [〈0, 0, 0, 0, 2, 2〉]∼ ∼ [〈0, 0, 0, 2, 1, 1〉]∼. This
counter example accounts for any other case.

A.5. Source code 171

A.5.6 MatLab source code: Computing the LWA for the TLA exam-
ple

Algorithm A.3 (Computing the Stationary Distribution of the TLA - Rounding Errors).

1 syms p q r e a l
2 d m a t r i x = [
3 q+q , q , q , q , q , q , p+q , q , p+q , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ;
4 q , q+q , q , 0 , 0 , q , p+q , 0 , 0 , q , 0 , q , 0 , 0 , 0 , 0 , 0 , q , 0 , p+q , 0 , 0 , 0 , 0 , 0 ;
5 q , q , q+q , 0 , 0 , q , p+q , 0 , 0 , 0 , q , 0 , q , 0 , 0 , 0 , 0 , 0 , q , 0 , p+q , 0 , 0 , 0 , 0 ;
6 q , 0 , 0 , q+q , q , 0 , 0 , q , p+q , q , q , 0 , 0 , q , 0 , p+q , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ;
7 q , 0 , 0 , q , q+q , 0 , 0 , q , p+q , 0 , 0 , q , q , 0 , q , 0 , p+q , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ;
8 q , q , q , 0 , 0 , q+q , p+q , 0 , 0 , 0 , 0 , 0 , 0 , q , q , 0 , 0 , 0 , 0 , 0 , 0 , p+q , q , 0 , 0 ;
9 q , q , q , 0 , 0 , q , p+q+q , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , q , p+q , 0 , 0 , 0 , 0 , 0 , 0 , q , q ;

10 q , 0 , 0 , q , q , 0 , 0 , q+q , p+q , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , q , q , 0 , 0 , p+q , q , 0 , 0 ;
11 q , 0 , 0 , q , q , 0 , 0 , q , p+q+q , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , q , p+q , 0 , q , 0 , q ;
12 0 , q , 0 , q , 0 , 0 , 0 , 0 , 0 , q+q , q , q , 0 , q , 0 , p+q , 0 , q , 0 , p+q , 0 , 0 , 0 , 0 , 0 ;
13 0 , 0 , q , q , 0 , 0 , 0 , 0 , 0 , q , q+q , 0 , q , q , 0 , p+q , 0 , 0 , q , 0 , p+q , 0 , 0 , 0 , 0 ;
14 0 , q , 0 , 0 , q , 0 , 0 , 0 , 0 , q , 0 , q+q , q , 0 , q , 0 , p+q , q , 0 , p+q , 0 , 0 , 0 , 0 , 0 ;
15 0 , 0 , q , 0 , q , 0 , 0 , 0 , 0 , 0 , q , q , q+q , 0 , q , 0 , p+q , 0 , q , 0 , p+q , 0 , 0 , 0 , 0 ;
16 0 , 0 , 0 , q , 0 , q , 0 , 0 , 0 , q , q , 0 , 0 , q+q , q , p+q , 0 , 0 , 0 , 0 , 0 , p+q , q , 0 , 0 ;
17 0 , 0 , 0 , 0 , q , q , 0 , 0 , 0 , 0 , 0 , q , q , q , q+q , 0 , p+q , 0 , 0 , 0 , 0 , p+q , q , 0 , 0 ;
18 0 , 0 , 0 , q , 0 , 0 , p+q , 0 , 0 , q , q , 0 , 0 , q , 0 , p+q+q , q , 0 , 0 , 0 , 0 , 0 , 0 , q , q ;
19 0 , 0 , 0 , 0 , q , 0 , q , 0 , 0 , 0 , 0 , q , q , 0 , q , q , p+q+q , 0 , 0 , 0 , 0 , 0 , 0 , p+q , q ;
20 0 , q , 0 , 0 , 0 , 0 , 0 , q , 0 , q , 0 , q , 0 , 0 , 0 , 0 , 0 , q+q , q , p+q , 0 , p+q , 0 , q , 0 ;
21 0 , 0 , q , 0 , 0 , 0 , 0 , q , 0 , 0 , q , 0 , q , 0 , 0 , 0 , 0 , q , q+q , 0 , p+q , p+q , 0 , q , 0 ;
22 0 , q , 0 , 0 , 0 , 0 , 0 , 0 , p+q , q , 0 , q , 0 , 0 , 0 , 0 , 0 , q , 0 , p+q+q , q , 0 , q , 0 , q ;
23 0 , 0 , q , 0 , 0 , 0 , 0 , 0 , q , 0 , q , 0 , q , 0 , 0 , 0 , 0 , 0 , q , q , p+q+q , 0 , q , 0 , p+q ;
24 0 , 0 , 0 , 0 , 0 , q , 0 , q , 0 , 0 , 0 , 0 , 0 , q , q , 0 , 0 , q , q , 0 , 0 , p+q+q , p+q , q , 0 ;
25 0 , 0 , 0 , 0 , 0 , q , 0 , 0 , q , 0 , 0 , 0 , 0 , q , q , 0 , 0 , 0 , 0 , p+q , q , q , p+q+q , 0 , q ;
26 0 , 0 , 0 , 0 , 0 , 0 , q , q , 0 , 0 , 0 , 0 , 0 , 0 , 0 , q , q , q , q , 0 , 0 , p+q , 0 , p+q+q , q ;
27 0 , 0 , 0 , 0 , 0 , 0 , q , 0 , p+q , 0 , 0 , 0 , 0 , 0 , 0 , p+q , q , 0 , 0 , q , q , 0 , q , q , q+q ;
28]
29 r e p l a c e d = subs (dmat r i x , { p , q } , { 0 . 3 7 5 , 0 . 0 2 5 })
30 [V ,D] = e i g (r e p l a c e d ’)
31 s t a t i o n a r y = V (: , 1) . / sum (V (: , 1))
32 v e c i n i t = s t a t i o n a r y
33 f o r i =1:100
34 f o r j = 1:25
35 s t o r e (j , i) = v e c i n i t (j) ;
36 end
37 v e c i n i t = r e p l a c e d ’∗ v e c i n i t ;
38 v e c i n i t = v e c i n i t . / sum (v e c i n i t) ;
39 end
40 v e c i n i t = v e c i n i t ’

172 A. Appendix

A.5.7 iSat source code: Callaway’s TCL example without noise

This section provides the iSat source code that was used to generate figures 7.2 and 7.4 in
section 7.1.

Algorithm A.4 (Callaway’s TCL in iSat).

1 DECL
2 i n t [0 , 1] m; −−t h e r m o s t a t o f f / on = 0 / 1
3 i n t [0 , 100] h ; −−t i m e e l a p s e d
4 i n t [0 ,50000] a c c _ l o a d ; −−accumula t ed load
5 f l o a t [−63 ,63] t h e t a ; −−(i n i t i a l) c u r r e n t t e m p e r a t u r e
6 f l o a t [−63 ,63] t h e t a _ o n ; −−deadband lower bound
7 f l o a t [−63 ,63] t h e t a _ o f f ; −−deadband upper bound
8 f l o a t [0 , 5 0 0 0] y ; −−accumula t ed load
9 f l o a t [0 , 1] a ; −−g o v e r n s char . t h e r m a l mass , a = exp(−h / CR) .

↪→ w i t h h=0−>a=1
10 b o o l e t h e t a _ g r e _ t h e t a _ o f f ; −−A u x i l i a r y v a r i a b l e t o e n f o r c e (t h e t a <

↪→ t h e t a _ o f f) or (t h e t a >= t h e t a _ o f f) , a v o i d s non−d e t e r m i n i s t i c
↪→ b e h a v i o r

11 b o o l e t h e t a _ l e s _ t h e t a _ o n ;
12 d e f i n e t h e t a _ a m b i e n t = 32; −−ambien t t e m p e r a t u r e (o u t s i d e)
13 d e f i n e t h e t a _ s e t = 20; −−temp . s e t p o i n t
14 d e f i n e R = 20; −−t h e r m a l r e s i s t a n c e C / kW
15 d e f i n e P = 14; −−r a t e o f en e rg y t r a n s f e r kW
16 d e f i n e C = 10; −−t h e r m a l c a p a c i t a n c e kWh / C
17 d e f i n e r = 0 . 0 5 ;
18 d e f i n e c = 0 . 1 ;
19 d e f i n e number_o f_houses = 20;
20 d e f i n e e t a = 2 . 5 ; −−l oad e f f i c i e n c y
21 d e f i n e d e l t a = 0 . 5 ; −−t h e r m o s t a t deadband
22

23 INIT
24 −− C o n d i t i o n s a t t h e moment when c o o l i n g s t a r t s .
25 m = 0; −−t h e r m o s t a t i s o f f
26 h = 1; −−w i d t h o f t i m e s t e p s
27 t h e t a = 26; −− i n i t i a l room t e m p e r a t u r e
28 a = 1; −−d e s c r i p t i o n r e q u i r e d
29 t h e t a _ o n = t h e t a _ s e t − d e l t a ;
30 t h e t a _ o f f = t h e t a _ s e t + d e l t a ;
31 y = 0; −−a g g r e g a t e d power demand
32 a c c _ l o a d = 0;
33

34 TRANS
35 t h e t a _ o n ’ = t h e t a _ o n ;
36 t h e t a _ o f f ’ = t h e t a _ o f f ;
37 h ’ = h ;
38 a ’ = exp(−h∗c∗ r) ; −−a depends on t i m e
39 t h e t a ’ = a∗ t h e t a +(1−a) ∗ (t h e t a _ a m b i e n t−m∗R∗P) ;
40 −−t h e new t e m p e r a t u r e s k i p p i n g n o i s e f o r now : + w;
41

42 −−e ne rg y demand
43 y ’ = y + P ∗ m;
44 acc_ load ’ = a c c _ l o a d +(number_o f_houses∗y) ;
45

46 −−t h e t h e r m o s t a t s w i t c h e s when i t h i t s t h e deadband
47 t h e t a _ g r e _ t h e t a _ o f f <−> (t h e t a > t h e t a _ o f f) ;
48 t h e t a _ l e s _ t h e t a _ o n <−> (t h e t a < t h e t a _ o n) ;
49 t h e t a _ g r e _ t h e t a _ o f f −> (m’ = 1) ;
50 t h e t a _ l e s _ t h e t a _ o n −> (m’ = 0) ;
51 (! t h e t a _ g r e _ t h e t a _ o f f and ! t h e t a _ l e s _ t h e t a _ o n) −> m’=m;
52

53 TARGET
54 (h = 100) and (y > 500) ;

A.6. Curriculum vitæ 173

A.6 Curriculum vitæ

Personal data

First Name Nils
Middle Name Henning
Family Name Müllner
Date of Birth November 19 1979
Place of Birth Bremen, Germany

Current activities

since August 1 2013 Research assistant Carl von Ossietzky Universität Oldenburg,
Germany, Department of Computer Science, Interdisciplinary
Research Center on Critical Systems Engineering for
Socio-Technical Systems, Supervisors: Prof. Dr. Martin
Fränzle, PD Dr. Sibylle Fröschle

since April 1 2008 PhD student, Carl von Ossietzky Universität Oldenburg,
Germany, Department of Computer Science, Graduate School
TrustSoft, System software and Distributed Systems Group,
Supervisor: Prof. Dr.-Ing. Oliver Theel

Studies

2007− 2014 Promotion Informatik, Carl von Ossietzky Universität
Oldenburg, Germany, PhD Thesis: Unmasking fault tolerance –
Quantifying deterministic recovery dynamics in probabilistic
environments.

2000− 2007 Diplom Informatik, Carl von Ossietzky Universität Oldenburg,
Germany, Diploma thesis: Simulation of Self-Stabilizing
Distributed Algorithms to Determine Fault Tolerance
Measures [Müllner, 2007], Supervisor: Prof. Dr.-Ing. Oliver
Theel

School

1990− 1999 Gymnasium (High school), Ökumenisches Gymnasium,
Bremen, Germany. Passed with Abitur.

1986− 1990 Grundschule (Elementary school), Grundschule Oberneuland,
Bremen, Germany

174 A. Appendix

Work experience

since 2013 Research assistant Carl von Ossietzky Universität, Oldenburg,
Department of Computer Science, CSE: Interdisciplinary
Research Center on Critical Systems Engineering for
Socio-Technical Systems

2011− 2013 Research assistant OFFIS Institute for Computer Science,
MoVeS: Modeling, Verification, and control of complex
Systems, Funded by the European Commission, ICT Research
in FP7-ICT-2009-257005, Supervisor: Prof. Dr. Martin Fränzle

2008− 2011 Scholarship holder Carl von Ossietzky Universität, Oldenburg,
Department of Computer Science, TrustSoft Graduate College,
funded by the German Research Council (DFG), Supervisors:
Prof. Dr.-Ing. Oliver Theel, Prof. Dr. Ernst-Rüdiger Olderog,
Prof. Dr. Martin Fränzle.

2007− 2008 Research assistant Carl von Ossietzky Universität, Oldenburg,
Department of Computer Science, AVACS SFB/TR 14
(Automatic Verification and Analysis of Complex Systems,
Transregional Collaborative Research Center), funded by the
German Research Council (DFG), Supervisor: Prof. Dr.-Ing.
Oliver Theel.

2002− 2003 Student assistant Berufsakademie Oldenburg (University of
Cooperative Education).

Language Skills

German Native speaker
English Excellent first foreign language, PhD studies in English,

Cambridge First Certificate
Latin Basics second foreign language in school
Spanish Basics third foreign language in school

Honors

Individual Project Ausgezeichnet (Distinguished) (awarded for ≥ 95%),
Supervisor: PD Dr. Elke Wilkeit, Dr. Hans Fleischhack, Topic:
Logisch-Funktionale Sprachen im Vergleich (Comparison of
Logical-Functional Languages). The individual project in the
former German "Diplomstudiengang" coincides with the
bachelor thesis today.

TrustSoft Full scholarship awarded for three years within the TrustSoft
Graduate College by the German Research Council (DFG)

AINA2012 Best Paper Award, best of 361 published papers, first author,
29% acceptance rate on main track

A.6. Curriculum vitæ 175

Academic Services

FGCS 2014 Future Generation Computer Systems, Springer Journal
DPNoS 2014 The 2014 International Workshop on the Design and

Performance of Networks on Chip
ICEPIT 2014 The 2014 International Conference on Electronic Publishing

and Information Technology
IJCDS’V3 International Journal of Computing and Digital Systems
CSS 2013 The 5th International Symposium on Cyberspace Safety and

Security (CSS 2013)
ADC 2013 The 24th Australasian Database Conference
ICDKE 2012 2012 International Conference on Data and Knowledge

Engineering
SEFM 2012 The Tenth International Conference on Software Engineering

and Formal Methods
reviewed for Martin Fränzle

EMSOFT 2012 The Twelfth International Conference on Embedded Software
reviewed for Martin Fränzle

ICDKE 2011 2011 International Conference on Data and Knowledge
Engineering

ARES 2010 The Fifth International Conference on Availability, Reliability
and Security
reviewed for Oliver Theel

	Abstract (English)
	Kurzzusammenfassung (Deutsch)
	Declaration of Authorship / Eigenständigkeitserklärung
	Acknowledgments
	List of Publications
	Contents
	1 Introduction
	1.1 Practical application scenarios
	1.2 Hypothesis
	1.3 Thesis structure

	2 System, environment and transition model
	2.1 System model
	2.2 Probabilistic influence
	2.2.1 Fault model
	2.2.2 Execution semantics and scheduling

	2.3 Execution traces
	2.4 From system model to transition model
	2.5 Example - traffic lights
	2.6 Summarizing the system model

	3 Fault tolerance terminology and taxonomy
	3.1 Definitions
	3.1.1 Safety
	3.1.2 Fairness
	3.1.3 Liveness
	3.1.4 Threats
	3.1.5 Types and means of fault tolerance
	3.1.6 Fault tolerance measures
	3.1.7 Redundancy

	3.2 Self-stabilization
	3.3 Design for masking fault tolerance
	3.4 Fault tolerance configurations
	3.5 Unmasking fault tolerance
	3.6 Summarizing fault tolerance terminology and taxonomy

	4 Limiting window availability
	4.1 Defining limiting window availability
	4.1.1 LWA vector
	4.1.2 LWA vector gradient
	4.1.3 Instantaneous window availability

	4.2 Computing limiting window availability
	4.3 Examples
	4.3.1 Motivational example
	4.3.2 Self-stabilizing traffic lights algorithm (TLA)
	4.3.3 Self-stabilizing broadcast algorithm (BASS)

	4.4 Comparing solutions
	4.5 Summarizing LWA

	5 Lumping transition models of non-masking fault tolerant systems
	5.1 Equivalence classes
	5.2 Ensuring probabilistic bisimilarity
	5.3 Example
	5.4 Approximate bisimilarity
	5.5 Summarizing lumping

	6 Decomposing hierarchical systems
	6.1 Hierarchy in self-stabilizing systems
	6.2 Extended notation
	6.3 Decomposition guidelines
	6.4 Probabilistic bisimilarity vs.decomposition
	6.5 BASS Example
	6.5.1 Composition method in detail
	6.5.2 Example interpretation

	6.6 Decomposability - A matter of hierarchy
	6.6.1 Classes of semi-hierarchical systems
	6.6.2 Temporal semi-hierarchy and topological symmetry
	6.6.3 Mixed mode heterarchy

	6.7 Summarizing decomposition

	7 Case studies
	7.1 Thermostatically controlled loads in a power grid
	7.2 A semi-hierarchical, semi-parallel stochastic sensor network
	7.3 Summarizing the case studies

	8 Conclusion
	Bibliography
	List of figures
	Appendix
	A Appendix
	A.1 Employed resources
	A.2 List of abbreviations
	A.3 Table of notation
	A.4 Definitions
	A.4.1 Fault tolerance trees
	A.4.2 Fault tolerance
	A.4.3 Safety
	A.4.4 Fairness
	A.4.5 Liveness
	A.4.6 Threats to system safety
	A.4.7 Availability
	A.4.8 Reliability

	A.5 Source code
	A.5.1 Simulation
	A.5.2 The BASS example
	A.5.3 The power grid example
	A.5.4 The WSN example
	A.5.5 Counterexample for the double-stroke alphabet
	A.5.6 MatLab source code: Computing the LWA for the TLA example
	A.5.7 iSat source code: Callaway's TCL example without noise

	A.6 Curriculum vitæ

